91 research outputs found

    Motion Control of the Hybrid Wheeled-Legged Quadruped Robot Centauro

    Get PDF
    Emerging applications will demand robots to deal with a complex environment, which lacks the structure and predictability of the industrial workspace. Complex scenarios will require robot complexity to increase as well, as compared to classical topologies such as fixed-base manipulators, wheeled mobile platforms, tracked vehicles, and their combinations. Legged robots, such as humanoids and quadrupeds, promise to provide platforms which are flexible enough to handle real world scenarios; however, the improved flexibility comes at the cost of way higher control complexity. As a trade-off, hybrid wheeled-legged robots have been proposed, resulting in the mitigation of control complexity whenever the ground surface is suitable for driving. Following this idea, a new hybrid robot called Centauro has been developed inside the Humanoid and Human Centered Mechatronics lab at Istituto Italiano di Tecnologia (IIT). Centauro is a wheeled-legged quadruped with a humanoid bi-manual upper-body. Differently from other platform of similar concept, Centauro employs customized actuation units, which provide high torque outputs, moderately fast motions, and the possibility to control the exerted torque. Moreover, with more than forty motors moving its limbs, Centauro is a very redundant platform, with the potential to execute many different tasks at the same time. This thesis deals with the design and development of a software architecture, and a control system, tailored to such a robot; both wheeled and legged locomotion strategies have been studied, as well as prioritized, whole-body and interaction controllers exploiting the robot torque control capabilities, and capable to handle the system redundancy. A novel software architecture, made of (i) a real-time robotic middleware, and (ii) a framework for online, prioritized Cartesian controller, forms the basis of the entire work

    Legged locomotion over irregular terrains: State of the art of human and robot performance

    Get PDF
    Legged robotic technologies have moved out of the lab to operate in real environments, characterized by a wide variety of unpredictable irregularities and disturbances, all this in close proximity with humans. Demonstrating the ability of current robots to move robustly and reliably in these conditions is becoming essential to prove their safe operation. Here, we report an in-depth literature review aimed at verifying the existence of common or agreed protocols and metrics to test the performance of legged system in realistic environments. We primarily focused on three types of robotic technologies, i.e., hexapods, quadrupeds and bipeds. We also included a comprehensive overview on human locomotion studies, being it often considered the gold standard for performance, and one of the most important sources of bioinspiration for legged machines. We discovered that very few papers have rigorously studied robotic locomotion under irregular terrain conditions. On the contrary, numerous studies have addressed this problem on human gait, being nonetheless of highly heterogeneous nature in terms of experimental design. This lack of agreed methodology makes it challenging for the community to properly assess, compare and predict the performance of existing legged systems in real environments. On the one hand, this work provides a library of methods, metrics and experimental protocols, with a critical analysis on the limitations of the current approaches and future promising directions. On the other hand, it demonstrates the existence of an important lack of benchmarks in the literature, and the possibility of bridging different disciplines, e.g., the human and robotic, towards the definition of standardized procedure that will boost not only the scientific development of better bioinspired solutions, but also their market uptake

    Climbing and Walking Robots

    Get PDF
    With the advancement of technology, new exciting approaches enable us to render mobile robotic systems more versatile, robust and cost-efficient. Some researchers combine climbing and walking techniques with a modular approach, a reconfigurable approach, or a swarm approach to realize novel prototypes as flexible mobile robotic platforms featuring all necessary locomotion capabilities. The purpose of this book is to provide an overview of the latest wide-range achievements in climbing and walking robotic technology to researchers, scientists, and engineers throughout the world. Different aspects including control simulation, locomotion realization, methodology, and system integration are presented from the scientific and from the technical point of view. This book consists of two main parts, one dealing with walking robots, the second with climbing robots. The content is also grouped by theoretical research and applicative realization. Every chapter offers a considerable amount of interesting and useful information

    Humanoid Robot Soccer Locomotion and Kick Dynamics: Open Loop Walking, Kicking and Morphing into Special Motions on the Nao Robot

    Get PDF
    Striker speed and accuracy in the RoboCup (SPL) international robot soccer league is becoming increasingly important as the level of play rises. Competition around the ball is now decided in a matter of seconds. Therefore, eliminating any wasted actions or motions is crucial when attempting to kick the ball. It is common to see a discontinuity between walking and kicking where a robot will return to an initial pose in preparation for the kick action. In this thesis we explore the removal of this behaviour by developing a transition gait that morphs the walk directly into the kick back swing pose. The solution presented here is targeted towards the use of the Aldebaran walk for the Nao robot. The solution we develop involves the design of a central pattern generator to allow for controlled steps with realtime accuracy, and a phase locked loop method to synchronise with the Aldebaran walk so that precise step length control can be activated when required. An open loop trajectory mapping approach is taken to the walk that is stabilized statically through the use of a phase varying joint holding torque technique. We also examine the basic princples of open loop walking, focussing on the commonly overlooked frontal plane motion. The act of kicking itself is explored both analytically and empirically, and solutions are provided that are versatile and powerful. Included as an appendix, the broader matter of striker behaviour (process of goal scoring) is reviewed and we present a velocity control algorithm that is very accurate and efficient in terms of speed of execution

    Advanced Mobile Robotics: Volume 3

    Get PDF
    Mobile robotics is a challenging field with great potential. It covers disciplines including electrical engineering, mechanical engineering, computer science, cognitive science, and social science. It is essential to the design of automated robots, in combination with artificial intelligence, vision, and sensor technologies. Mobile robots are widely used for surveillance, guidance, transportation and entertainment tasks, as well as medical applications. This Special Issue intends to concentrate on recent developments concerning mobile robots and the research surrounding them to enhance studies on the fundamental problems observed in the robots. Various multidisciplinary approaches and integrative contributions including navigation, learning and adaptation, networked system, biologically inspired robots and cognitive methods are welcome contributions to this Special Issue, both from a research and an application perspective

    ๋™์˜์ƒ ์† ์‚ฌ๋žŒ ๋™์ž‘์˜ ๋ฌผ๋ฆฌ ๊ธฐ๋ฐ˜ ์žฌ๊ตฌ์„ฑ ๋ฐ ๋ถ„์„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2021. 2. ์ด์ œํฌ.In computer graphics, simulating and analyzing human movement have been interesting research topics started since the 1960s. Still, simulating realistic human movements in a 3D virtual world is a challenging task in computer graphics. In general, motion capture techniques have been used. Although the motion capture data guarantees realistic result and high-quality data, there is lots of equipment required to capture motion, and the process is complicated. Recently, 3D human pose estimation techniques from the 2D video are remarkably developed. Researchers in computer graphics and computer vision have attempted to reconstruct the various human motions from video data. However, existing methods can not robustly estimate dynamic actions and not work on videos filmed with a moving camera. In this thesis, we propose methods to reconstruct dynamic human motions from in-the-wild videos and to control the motions. First, we developed a framework to reconstruct motion from videos using prior physics knowledge. For dynamic motions such as backspin, the poses estimated by a state-of-the-art method are incomplete and include unreliable root trajectory or lack intermediate poses. We designed a reward function using poses and hints extracted from videos in the deep reinforcement learning controller and learned a policy to simultaneously reconstruct motion and control a virtual character. Second, we simulated figure skating movements in video. Skating sequences consist of fast and dynamic movements on ice, hindering the acquisition of motion data. Thus, we extracted 3D key poses from a video to then successfully replicate several figure skating movements using trajectory optimization and a deep reinforcement learning controller. Third, we devised an algorithm for gait analysis through video of patients with movement disorders. After acquiring the patients joint positions from 2D video processed by a deep learning network, the 3D absolute coordinates were estimated, and gait parameters such as gait velocity, cadence, and step length were calculated. Additionally, we analyzed the optimization criteria of human walking by using a 3D musculoskeletal humanoid model and physics-based simulation. For two criteria, namely, the minimization of muscle activation and joint torque, we compared simulation data with real human data for analysis. To demonstrate the effectiveness of the first two research topics, we verified the reconstruction of dynamic human motions from 2D videos using physics-based simulations. For the last two research topics, we evaluated our results with real human data.์ปดํ“จํ„ฐ ๊ทธ๋ž˜ํ”ฝ์Šค์—์„œ ์ธ๊ฐ„์˜ ์›€์ง์ž„ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ฐ ๋ถ„์„์€ 1960 ๋…„๋Œ€๋ถ€ํ„ฐ ๋‹ค๋ฃจ์–ด์ง„ ํฅ๋ฏธ๋กœ์šด ์—ฐ๊ตฌ ์ฃผ์ œ์ด๋‹ค. ๋ช‡ ์‹ญ๋…„ ๋™์•ˆ ํ™œ๋ฐœํ•˜๊ฒŒ ์—ฐ๊ตฌ๋˜์–ด ์™”์Œ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , 3์ฐจ์› ๊ฐ€์ƒ ๊ณต๊ฐ„ ์ƒ์—์„œ ์‚ฌ์‹ค์ ์ธ ์ธ๊ฐ„์˜ ์›€์ง์ž„์„ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ํ•˜๋Š” ์—ฐ๊ตฌ๋Š” ์—ฌ์ „ํžˆ ์–ด๋ ต๊ณ  ๋„์ „์ ์ธ ์ฃผ์ œ์ด๋‹ค. ๊ทธ๋™์•ˆ ์‚ฌ๋žŒ์˜ ์›€์ง์ž„ ๋ฐ์ดํ„ฐ๋ฅผ ์–ป๊ธฐ ์œ„ํ•ด์„œ ๋ชจ์…˜ ์บก์ณ ๊ธฐ์ˆ ์ด ์‚ฌ์šฉ๋˜์–ด ์™”๋‹ค. ๋ชจ์…˜ ์บก์ฒ˜ ๋ฐ์ดํ„ฐ๋Š” ์‚ฌ์‹ค์ ์ธ ๊ฒฐ๊ณผ์™€ ๊ณ ํ’ˆ์งˆ ๋ฐ์ดํ„ฐ๋ฅผ ๋ณด์žฅํ•˜์ง€๋งŒ ๋ชจ์…˜ ์บก์ณ๋ฅผ ํ•˜๊ธฐ ์œ„ํ•ด์„œ ํ•„์š”ํ•œ ์žฅ๋น„๋“ค์ด ๋งŽ๊ณ , ๊ทธ ๊ณผ์ •์ด ๋ณต์žกํ•˜๋‹ค. ์ตœ๊ทผ์— 2์ฐจ์› ์˜์ƒ์œผ๋กœ๋ถ€ํ„ฐ ์‚ฌ๋žŒ์˜ 3์ฐจ์› ์ž์„ธ๋ฅผ ์ถ”์ •ํ•˜๋Š” ์—ฐ๊ตฌ๋“ค์ด ๊ด„๋ชฉํ•  ๋งŒํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ๋‹ค. ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์ปดํ“จํ„ฐ ๊ทธ๋ž˜ํ”ฝ์Šค์™€ ์ปดํ“จํ„ฐ ๋น„์ ผ ๋ถ„์•ผ์˜ ์—ฐ๊ตฌ์ž๋“ค์€ ๋น„๋””์˜ค ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ๋‹ค์–‘ํ•œ ์ธ๊ฐ„ ๋™์ž‘์„ ์žฌ๊ตฌ์„ฑํ•˜๋ ค๋Š” ์‹œ๋„๋ฅผ ํ•˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ธฐ์กด์˜ ๋ฐฉ๋ฒ•๋“ค์€ ๋น ๋ฅด๊ณ  ๋‹ค์ด๋‚˜๋ฏนํ•œ ๋™์ž‘๋“ค์€ ์•ˆ์ •์ ์œผ๋กœ ์ถ”์ •ํ•˜์ง€ ๋ชปํ•˜๋ฉฐ ์›€์ง์ด๋Š” ์นด๋ฉ”๋ผ๋กœ ์ดฌ์˜ํ•œ ๋น„๋””์˜ค์— ๋Œ€ํ•ด์„œ๋Š” ์ž‘๋™ํ•˜์ง€ ์•Š๋Š”๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋น„๋””์˜ค๋กœ๋ถ€ํ„ฐ ์—ญ๋™์ ์ธ ์ธ๊ฐ„ ๋™์ž‘์„ ์žฌ๊ตฌ์„ฑํ•˜๊ณ  ๋™์ž‘์„ ์ œ์–ดํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ๋จผ์ € ์‚ฌ์ „ ๋ฌผ๋ฆฌํ•™ ์ง€์‹์„ ์‚ฌ์šฉํ•˜์—ฌ ๋น„๋””์˜ค์—์„œ ๋ชจ์…˜์„ ์žฌ๊ตฌ์„ฑํ•˜๋Š” ํ”„๋ ˆ์ž„ ์›Œํฌ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ๊ณต์ค‘์ œ๋น„์™€ ๊ฐ™์€ ์—ญ๋™์ ์ธ ๋™์ž‘๋“ค์— ๋Œ€ํ•ด์„œ ์ตœ์‹  ์—ฐ๊ตฌ ๋ฐฉ๋ฒ•์„ ๋™์›ํ•˜์—ฌ ์ถ”์ •๋œ ์ž์„ธ๋“ค์€ ์บ๋ฆญํ„ฐ์˜ ๊ถค์ ์„ ์‹ ๋ขฐํ•  ์ˆ˜ ์—†๊ฑฐ๋‚˜ ์ค‘๊ฐ„์— ์ž์„ธ ์ถ”์ •์— ์‹คํŒจํ•˜๋Š” ๋“ฑ ๋ถˆ์™„์ „ํ•˜๋‹ค. ์šฐ๋ฆฌ๋Š” ์‹ฌ์ธต๊ฐ•ํ™”ํ•™์Šต ์ œ์–ด๊ธฐ์—์„œ ์˜์ƒ์œผ๋กœ๋ถ€ํ„ฐ ์ถ”์ถœํ•œ ํฌ์ฆˆ์™€ ํžŒํŠธ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋ณด์ƒ ํ•จ์ˆ˜๋ฅผ ์„ค๊ณ„ํ•˜๊ณ  ๋ชจ์…˜ ์žฌ๊ตฌ์„ฑ๊ณผ ์บ๋ฆญํ„ฐ ์ œ์–ด๋ฅผ ๋™์‹œ์— ํ•˜๋Š” ์ •์ฑ…์„ ํ•™์Šตํ•˜์˜€๋‹ค. ๋‘˜ ์งธ, ๋น„๋””์˜ค์—์„œ ํ”ผ๊ฒจ ์Šค์ผ€์ดํŒ… ๊ธฐ์ˆ ์„ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ํ•œ๋‹ค. ํ”ผ๊ฒจ ์Šค์ผ€์ดํŒ… ๊ธฐ์ˆ ๋“ค์€ ๋น™์ƒ์—์„œ ๋น ๋ฅด๊ณ  ์—ญ๋™์ ์ธ ์›€์ง์ž„์œผ๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ์–ด ๋ชจ์…˜ ๋ฐ์ดํ„ฐ๋ฅผ ์–ป๊ธฐ๊ฐ€ ๊นŒ๋‹ค๋กญ๋‹ค. ๋น„๋””์˜ค์—์„œ 3์ฐจ์› ํ‚ค ํฌ์ฆˆ๋ฅผ ์ถ”์ถœํ•˜๊ณ  ๊ถค์  ์ตœ์ ํ™” ๋ฐ ์‹ฌ์ธต๊ฐ•ํ™”ํ•™์Šต ์ œ์–ด๊ธฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์—ฌ๋Ÿฌ ํ”ผ๊ฒจ ์Šค์ผ€์ดํŒ… ๊ธฐ์ˆ ์„ ์„ฑ๊ณต์ ์œผ๋กœ ์‹œ์—ฐํ•œ๋‹ค. ์…‹ ์งธ, ํŒŒํ‚จ์Šจ ๋ณ‘์ด๋‚˜ ๋‡Œ์„ฑ๋งˆ๋น„์™€ ๊ฐ™์€ ์งˆ๋ณ‘์œผ๋กœ ์ธํ•˜์—ฌ ์›€์ง์ž„ ์žฅ์• ๊ฐ€ ์žˆ๋Š” ํ™˜์ž์˜ ๋ณดํ–‰์„ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. 2์ฐจ์› ๋น„๋””์˜ค๋กœ๋ถ€ํ„ฐ ๋”ฅ๋Ÿฌ๋‹์„ ์‚ฌ์šฉํ•œ ์ž์„ธ ์ถ”์ •๊ธฐ๋ฒ•์„ ์‚ฌ์šฉํ•˜์—ฌ ํ™˜์ž์˜ ๊ด€์ ˆ ์œ„์น˜๋ฅผ ์–ป์–ด๋‚ธ ๋‹ค์Œ, 3์ฐจ์› ์ ˆ๋Œ€ ์ขŒํ‘œ๋ฅผ ์–ป์–ด๋‚ด์–ด ์ด๋กœ๋ถ€ํ„ฐ ๋ณดํญ, ๋ณดํ–‰ ์†๋„์™€ ๊ฐ™์€ ๋ณดํ–‰ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ๊ณ„์‚ฐํ•œ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ๊ทผ๊ณจ๊ฒฉ ์ธ์ฒด ๋ชจ๋ธ๊ณผ ๋ฌผ๋ฆฌ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์ด์šฉํ•˜์—ฌ ์ธ๊ฐ„ ๋ณดํ–‰์˜ ์ตœ์ ํ™” ๊ธฐ์ค€์— ๋Œ€ํ•ด ํƒ๊ตฌํ•œ๋‹ค. ๊ทผ์œก ํ™œ์„ฑ๋„ ์ตœ์†Œํ™”์™€ ๊ด€์ ˆ ๋Œ๋ฆผํž˜ ์ตœ์†Œํ™”, ๋‘ ๊ฐ€์ง€ ๊ธฐ์ค€์— ๋Œ€ํ•ด ์‹œ๋ฎฌ๋ ˆ์ด์…˜ํ•œ ํ›„, ์‹ค์ œ ์‚ฌ๋žŒ ๋ฐ์ดํ„ฐ์™€ ๋น„๊ตํ•˜์—ฌ ๊ฒฐ๊ณผ๋ฅผ ๋ถ„์„ํ•œ๋‹ค. ์ฒ˜์Œ ๋‘ ๊ฐœ์˜ ์—ฐ๊ตฌ ์ฃผ์ œ์˜ ํšจ๊ณผ๋ฅผ ์ž…์ฆํ•˜๊ธฐ ์œ„ํ•ด, ๋ฌผ๋ฆฌ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์‚ฌ์šฉํ•˜์—ฌ ์ด์ฐจ์› ๋น„๋””์˜ค๋กœ๋ถ€ํ„ฐ ์žฌ๊ตฌ์„ฑํ•œ ์—ฌ๋Ÿฌ ๊ฐ€์ง€ ์—ญ๋™์ ์ธ ์‚ฌ๋žŒ์˜ ๋™์ž‘๋“ค์„ ์žฌํ˜„ํ•œ๋‹ค. ๋‚˜์ค‘ ๋‘ ๊ฐœ์˜ ์—ฐ๊ตฌ ์ฃผ์ œ๋Š” ์‚ฌ๋žŒ ๋ฐ์ดํ„ฐ์™€์˜ ๋น„๊ต ๋ถ„์„์„ ํ†ตํ•˜์—ฌ ํ‰๊ฐ€ํ•œ๋‹ค.1 Introduction 1 2 Background 9 2.1 Pose Estimation from 2D Video . . . . . . . . . . . . . . . . . . . . 9 2.2 Motion Reconstruction from Monocular Video . . . . . . . . . . . . 10 2.3 Physics-Based Character Simulation and Control . . . . . . . . . . . 12 2.4 Motion Reconstruction Leveraging Physics . . . . . . . . . . . . . . 13 2.5 Human Motion Control . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.5.1 Figure Skating Simulation . . . . . . . . . . . . . . . . . . . 16 2.6 Objective Gait Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.7 Optimization for Human Movement Simulation . . . . . . . . . . . . 17 2.7.1 Stability Criteria . . . . . . . . . . . . . . . . . . . . . . . . 18 3 Human Dynamics from Monocular Video with Dynamic Camera Movements 19 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.3 Pose and Contact Estimation . . . . . . . . . . . . . . . . . . . . . . 21 3.4 Learning Human Dynamics . . . . . . . . . . . . . . . . . . . . . . . 24 3.4.1 Policy Learning . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.4.2 Network Training . . . . . . . . . . . . . . . . . . . . . . . . 28 3.4.3 Scene Estimator . . . . . . . . . . . . . . . . . . . . . . . . 29 3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.5.1 Video Clips . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.5.2 Comparison of Contact Estimators . . . . . . . . . . . . . . . 33 3.5.3 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.5.4 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4 Figure Skating Simulation from Video 42 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.2 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.3 Skating Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.3.1 Non-holonomic Constraints . . . . . . . . . . . . . . . . . . 46 4.3.2 Relaxation of Non-holonomic Constraints . . . . . . . . . . . 47 4.4 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.5 Trajectory Optimization and Control . . . . . . . . . . . . . . . . . . 50 4.5.1 Trajectory Optimization . . . . . . . . . . . . . . . . . . . . 50 4.5.2 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5 Gait Analysis Using Pose Estimation Algorithm with 2D-video of Patients 61 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.2.1 Patients and video recording . . . . . . . . . . . . . . . . . . 63 5.2.2 Standard protocol approvals, registrations, and patient consents 66 5.2.3 3D Pose estimation from 2D video . . . . . . . . . . . . . . . 66 5.2.4 Gait parameter estimation . . . . . . . . . . . . . . . . . . . 67 5.2.5 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . 68 5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 5.3.1 Validation of video-based analysis of the gait . . . . . . . . . 68 5.3.2 gait analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.4.1 Validation with the conventional sensor-based method . . . . 75 5.4.2 Analysis of gait and turning in TUG . . . . . . . . . . . . . . 75 5.4.3 Correlation with clinical parameters . . . . . . . . . . . . . . 76 5.4.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.5 Supplementary Material . . . . . . . . . . . . . . . . . . . . . . . . . 77 6 Control Optimization of Human Walking 80 6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.2.1 Musculoskeletal model . . . . . . . . . . . . . . . . . . . . . 82 6.2.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.2.3 Control co-activation level . . . . . . . . . . . . . . . . . . . 83 6.2.4 Push-recovery experiment . . . . . . . . . . . . . . . . . . . 84 6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 7 Conclusion 90 7.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91Docto

    Design and analysis of series elasticity in closed-loop actuator force control

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2000.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 119-123).by David William Robinson.Ph.D

    Human skill capturing and modelling using wearable devices

    Get PDF
    Industrial robots are delivering more and more manipulation services in manufacturing. However, when the task is complex, it is difficult to programme a robot to fulfil all the requirements because even a relatively simple task such as a peg-in-hole insertion contains many uncertainties, e.g. clearance, initial grasping position and insertion path. Humans, on the other hand, can deal with these variations using their vision and haptic feedback. Although humans can adapt to uncertainties easily, most of the time, the skilled based performances that relate to their tacit knowledge cannot be easily articulated. Even though the automation solution may not fully imitate human motion since some of them are not necessary, it would be useful if the skill based performance from a human could be firstly interpreted and modelled, which will then allow it to be transferred to the robot. This thesis aims to reduce robot programming efforts significantly by developing a methodology to capture, model and transfer the manual manufacturing skills from a human demonstrator to the robot. Recently, Learning from Demonstration (LfD) is gaining interest as a framework to transfer skills from human teacher to robot using probability encoding approaches to model observations and state transition uncertainties. In close or actual contact manipulation tasks, it is difficult to reliabley record the state-action examples without interfering with the human senses and activities. Therefore, wearable sensors are investigated as a promising device to record the state-action examples without restricting the human experts during the skilled execution of their tasks. Firstly to track human motions accurately and reliably in a defined 3-dimensional workspace, a hybrid system of Vicon and IMUs is proposed to compensate for the known limitations of the individual system. The data fusion method was able to overcome occlusion and frame flipping problems in the two camera Vicon setup and the drifting problem associated with the IMUs. The results indicated that occlusion and frame flipping problems associated with Vicon can be mitigated by using the IMU measurements. Furthermore, the proposed method improves the Mean Square Error (MSE) tracking accuracy range from 0.8หš to 6.4หš compared with the IMU only method. Secondly, to record haptic feedback from a teacher without physically obstructing their interactions with the workpiece, wearable surface electromyography (sEMG) armbands were used as an indirect method to indicate contact feedback during manual manipulations. A muscle-force model using a Time Delayed Neural Network (TDNN) was built to map the sEMG signals to the known contact force. The results indicated that the model was capable of estimating the force from the sEMG armbands in the applications of interest, namely in peg-in-hole and beater winding tasks, with MSE of 2.75N and 0.18N respectively. Finally, given the force estimation and the motion trajectories, a Hidden Markov Model (HMM) based approach was utilised as a state recognition method to encode and generalise the spatial and temporal information of the skilled executions. This method would allow a more representative control policy to be derived. A modified Gaussian Mixture Regression (GMR) method was then applied to enable motions reproduction by using the learned state-action policy. To simplify the validation procedure, instead of using the robot, additional demonstrations from the teacher were used to verify the reproduction performance of the policy, by assuming human teacher and robot learner are physical identical systems. The results confirmed the generalisation capability of the HMM model across a number of demonstrations from different subjects; and the reproduced motions from GMR were acceptable in these additional tests. The proposed methodology provides a framework for producing a state-action model from skilled demonstrations that can be translated into robot kinematics and joint states for the robot to execute. The implication to industry is reduced efforts and time in programming the robots for applications where human skilled performances are required to cope robustly with various uncertainties during tasks execution
    • โ€ฆ
    corecore