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Chapter 1: Introduction

For several decades, model-based methods have enjoyed significant popularity in re-

search into robotic bipedal locomotion [56, 58, 40, 22, 57, 6]. These methods are

usually physically principled and benefit from a high degree of interpretability, which

make them attractive solutions to engineers seeking easily understandable and modifi-

able control algorithms. However, robotic bipedal locomotion is known to be a dynamic

and unstable phenomenon which is difficult to describe in simple physical terms due

to complicated contact dynamics. Engineers must therefore choose a tradeoff between

models which may be closer to physical reality but suffer from slower-than-real-time

execution speeds, or simpler models which are cheap to execute but may fail to describe

reality accurately outside of some narrow band of behavior.

A recent alternative to model-based control methods for robotic control problems,

known as model-free deep Reinforcement Learning (RL), has come into prominence

within the last decade [35, 34, 32, 5, 61, 52, 26, 28, 60]. Rather than make use of a

reduced-order, physically principled model of the robot for control, it learns a control

policy through interaction with a full-order simulation of the entire robot, which is then

deployed on the real robot. Engineers must specify the desired behavior through the use

of a reward function, which the control policy will attempt to maximize through trial

and error over the course of months or even years of simulated experience. Thanks to

advances in computing hardware and deep learning, this process can take as little as a
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few hours.

Further, the practical problem of conceiving of useful reward functions which train

a control policy to accurately encapsulate the desired behavior remains hard. While

simple reward functions are usually preferred, rewards which are not sufficiently speci-

fied may result in the policy learning physically unrealistic [54] or dangerous behaviors.

On the other hand, complex reward functions may accurately capture a certain behavior

without necessarily yielding insight into how to design reward functions which enable

different behaviors. For example, creating a reward which teaches a robot to walk may

not be easily modified to teach the robot how to skip.

In Chapter 3, we describe a probabilistic reward framework which allows us to create

reward functions to learn the entire spectrum of 2-beat and 4-beat bipedal gaits. We are

able to successfully train policies which can learn to stand, walk, run, hop, gallop, and

skip, and even learn policies which can learn all behaviors and smoothly interpolate

between them in real-time. This work was published in the International Conference on

Robotics and Automation (2021) and nominated for the Best Paper award.

In Chapter 4, we explore the limits of the approach introduced in Chapter 3 by train-

ing a policy to ascend and descend stairs in the real world despite being completely blind

(no exteroceptive input). By providing the policy the proprioceptive state of the Cassie

robot and training it on hundreds of thousands of interactions walking over randomized

staircases under randomized dynamics (while asking it to maximize the reward function

introduced in Chapter 3), we can successfully learn such a policy with no fundamen-

tal alterations to the approach. This work was published in the Robotics: Science and

Systems (2021) conference.
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Chapter 2: Background

2.1 Reinforcement Learning

Reinforcement learning is a machine learning paradigm that seeks to train agents to max-

imize an expected reward through trial-and-error [50]. Reinforcement learning problems

are often formalized as an agent interacting with a Markov decision process (MDP) in

order to learn a behavior to maximize expected returns. This problem is typically pre-

sented in a manner in which an agent receives a state st at timestep t from the MDP,

which the agent acts on based on its policy π(at|st). The MDP’s transition function

receives the agent’s action at and returns the next state st+1 and reward rt based on the

action taken. The policy is often a stochastic policy, in which case it is a function π(a|s)

which takes in a state s and outputs the parameters of a distribution, usually the mean

and standard deviation of a normal distribution. The reward r = R(s, a) is a scalar

signal that expresses how good a particular state-action pair is. The agent’s goal is then

to find an optimal policy that maximizes expected return J(π),

J(π) = Eπ

[
T∑
t=0

γtrt

]

where T is the horizon of an episode, and γ ∈ [0, 1] is the discount factor.
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2.2 Proximal Policy Optimization (PPO)

An effective solution to many RL problems is the family of policy gradient algorithms,

in which the gradient of the expected return with respect to the policy parameters is com-

puted and used to update the parameters through gradient ascent. PPO is a model-free

policy gradient algorithm which samples data through interaction with the environment

and optimizes a “surrogate” objective function. PPO introduces a modified objective

function that adopts clipped probability ratios which forms a pessimistic estimate of the

policy’s performance [43]. It also addresses the problem of excessive policy updates by

restricting changes that move the probability ratio,

rt(θ) =
πθ(at|st)
πθold(at|st)

too far away from 1. The probability ratio is a measure of how different the current

policy is from the previous policy (the policy before the last update). The smaller the

ratio the greater the difference. The “surrogate” objective function is then modified into

the clipped objective:

L(θ) = Et
[
min

(
rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât

)]

where ε is a tunable hyperparameter that increases or decreases the bounds which con-

strain the probability ratio rt(θ). Clipping the probability ratio discourages the policy

from changing too much and taking the minimum results in using the lower, pessimistic

bound of the unclipped objective. Thus any change in the probability ratio rt(θ) is
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included when it makes the objective worse, and otherwise is ignored [43]. This can

prevent the policy from changing too quickly and leads to more stable learning.

2.3 RNNs for Control Problems

RNNs have been successfully applied to many control domains using reinforcement

learning, often resulting in performance superior to feedforward networks. [47] shows

that using deep recurrent Q networks (DRQN) instead of conventional feedforward Q

Networks in UAV navigation results in less collisions and more energy-efficient perfor-

mance [47]. [20] also use DRQNs for Atari games, finding that DRQNs with a single

observation are a viable alternative to DQNs with a history of states, and that DRQNs are

more robust to partial observability that non-memory based agents. It has been shown

that RNNs can store and recollect information for arbitrarily long amounts of time [23],

as well as perform system identification as noted in [21] and further explored in [35].

Furthermore, RNNs can do so through gradient descent, without hand-tuning of hyper-

parameters, in contrast to feedforward networks which require access to hand-picked

fixed window of state histories [62].

Thus, while RNNs have been shown to be extremely successful in achieving supe-

rior performance to feedforward networks on a variety of robotic control tasks, some

even on hardware [35], they have not yet been demonstrated for the task of real-world

robotic bipedal locomotion. This task differs significantly from other control tasks, such

as robotic arm manipulation, due to the significant underactuation of the system and

complicated contact dynamics.
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2.4 Dynamics Randomization

Dynamics randomization [35] [52] is the practice of randomizing physics parameters

of the simulated environment in the hopes that training agents on a variety of possible

dynamics will lead to better performance in the real world. [52] leverage this technique

to learn quadruped locomotion from scratch in a physics simulator and then deploy the

learned controller into hardware, while [35] use a similar system to train a robotic arm

to manipulate objects in the real world. They improve the robustness of control policies

by simulating latency as well as physical properties such as mass, joint center of mass,

joint damping, and other similar parameters of the environment.

More formally, using notation from [35], the objective is to train a memory-based

agent to perform manipulation tasks under the conditions set by the real world dynam-

ics p∗(st+1|st, at). However, sampling from these dynamics is not very time-efficient.

Instead, the agent is trained across a wide range of possible dynamics by using a set of

dynamics parameters µ, sampled from a multivariate uniform distribution, to parameter-

ize the simulation dynamics p̂µ(st+1|st, at), so the objective is reframed as attempting

to maximize the expected return over the distribution of dynamics parameters ρµ.

2.5 Motion Synthesis

The practice of synthesizing locomotion behaviors has been studied in a variety of fields.

In character animation, kinematics-based approaches (i.e., those using motion capture

data) are commonly used to synthesize locomotion [29] [42] [59], with some newer

approaches using deep learning [63] to train neural networks to solve problems like
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adapting realistically to varying ground geometries [24] [48] or blending several types of

actions into one realistic body motion [49]. Physics-based character animation, wherein

the pose of a character is controlled through the application of torques and motions are

simulated using a physics engine, has also come into prominence in recent years [3],

though is notably more difficult to use effectively for complicated motions [17] when

compared to kinematics-based methods.

Approaches which use reinforcement learning to synthesize locomotion bear heavy

similarities to the aforementioned methods used in character animation. Much recent

work uses trajectory-matching reward functions to train policies to imitate some ref-

erence trajectory (akin to a motion capture) while subjecting the policies to simulated

physics, resulting in policies that behave realistically while imitating some reference

trajectory [7] [36] [61] [37] [45]. Reinforcement learning has also been used for synthe-

sizing locomotion without the use of reference trajectories, but these approaches often

place little emphasis on subjective quality of behaviors, resulting in behaviors which

maximize some objective while producing policies which are often inefficient, infeasi-

ble or unsafe to execute in the real world, and not usually visually pleasing [11] [54].

Methods which do prioritize physically realistic behavior without using a reference tra-

jectory exist [19] [53] [26], but their reward functions are specific to single behaviors

and are not trivial to extend to other behaviors.
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Chapter 3: Sim-to-Real Learning of All Common Bipedal Gaits via

Periodic Reward Composition

3.1 Introduction

Using reinforcement learning (RL) to learn all of the common bipedal gaits found in

nature for a real robot is an unsolved problem. A key challenge of learning a specific

locomotion gait via RL is to communicate the gait behavior through the reward function.

In general, a specific gait can be viewed as a dynamic process that has a characteristic

periodic structure, but is also able to flexibly adapt to moderate environment distur-

bances. This suggests two considerations when designing a gait reward function. First,

the reward must be specific enough to produce the desired gait characteristic when op-

timized. Second, to account for the fact that there is uncertainty about the exact details

of a gait in the context of specific terrain and dynamic conditions, the reward should not

be overly constraining.

The common use of reference trajectories to specify gait-specific rewards, e.g., [63,

49, 61, 36? ], partly addresses the first consideration above, but mostly ignores the

second. In particular, a reference trajectory only captures a small part of the variation

needed to realize a gait characteristic under varying conditions. Thus, attempting to

adhere to such a trajectory can prevent learning a characteristic gait that is more ro-

bust and/or efficient, not to mention that deriving feasible reference trajectories for a
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Figure 3.1: In this chapter, we present a reward design framework which makes it easy
to learn policies which can stand, walk, run, gallop, hop, and skip on hardware. We
condition the reward function based on a number of gait parameters, and also provide
these parameters to the LSTM policy, which outputs PD joint position targets and PD
gains to the robot.

particular desired gait can be very challenging in the first place.

Reference-free approaches to specifying reward functions for locomotion are often

highly underspecified, for example, those used in the OpenAI Gym [11] locomotion

benchmarks. With this starting point, achieving a specific gait characteristic requires

iterations of heuristic reward-function adjustments, based on observed RL performance,

until arriving at a desired behavior. This approach can be tedious when it works and is

unreliable as a general framework. Other reference-free approaches structure the reward

around a specific type of locomotion behavior [26] without being easily extended to

other behaviors.

The first contribution of our work is to present a principled framework for designing
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Figure 3.2: A series of images showing a neural network policy controlling Cassie and
continuously transitioning from hopping to galloping to walking. We present a simple
reward design paradigm which makes use of probabilistic intervals to apply cost func-
tions at specific times, allowing policies to learn all common bipedal gaits exhibited by
animals in nature.

reward functions that can naturally capture all of the periodic bipedal locomotion gaits.

We are motivated by the fact that all common bipedal gaits can be defined by periodic

swing phases (foot swinging in the air) and stance phases (foot planted on the ground)

for each foot [16]. A fundamental distinction between swing and stance phases is the

complementary presence and absence of foot forces and foot velocities for a given foot.

We can create principled reward functions based on this observation by using the mag-

nitudes of foot forces and velocities such that during a swing phase, forces are penalized

while velocities are allowed, prompting the policy to learn to lift the foot. Thus, our

framework describes gaits as a sequence of periodic phases, each of which rewards or

penalizes a particular measurement of the physical system. Our hypothesis is that this

framework will allow for a more natural specification of reward functions that suffi-

ciently constrain RL to learn the desired gait characteristics, while allowing for flexible

adaptation to specific environmental disturbances.

Our second contribution is to demonstrate this framework for sim-to-real RL of all
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common bipedal gaits, including walking, running, galloping, skipping, and hopping,

without using a motion capture dataset or reference trajectories. We train policies for

each of these behaviors in simulation and successfully demonstrate them on hardware.

Further, by providing the framework’s gait parameters as a command input to the policy,

we are able to learn a multi-gait policy which can hop, gallop, run, and walk.

3.2 Learning Bipedal Gaits with Periodic Reward Composition

3.2.1 Reinforcement Learning Framework

We formulate our problem in the framework of reinforcement learning (RL) [51], for

which we assume basic familiarity. The world is modeled as a discrete-time Markov

Decision Process (MDP) with continuous state space S, continuous action space A,

transition function T (s, a, s′), and reward function R(s, t). Here T (s, a, s′) gives the

probability density over the next state s′ after taking action a in state s, and R(s, t) gives

the non-stationary reward for being in state s at time step t.

A control policy is a possibly stochastic mapping π(a | s) from states to actions,

which dictates behavior. Given a policy the expected T -horizon discounted return is

given by J(π) = E
[∑T

t=0 γ
tR(St, t)

]
, where γ ∈ [0, 1] is a discount factor and St is a

random variable representing the state at time twhen following policy π under transition

dynamics T . The goal of RL is to learn a policy π that maximizes J(π) based on trial-

and-error training experience in the world. In this work, we follow a sim-to-real RL

paradigm where training is done in simulation to identify a policy, which is then used in
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the real-world.

3.2.2 Periodic Reward Composition

Since our framework is targeted toward periodic behaviors, we index time via a cycle

time φ variable, which repeatedly cycles over a normalized time period of [0, 1] at dis-

crete time steps rather than increasing monotonically. Accordingly, the non-stationary

reward function R(s, φ) is periodic and defined in terms of φ rather than absolute time.

As motivated in the introduction, our framework specifies rewards in terms of com-

positions of rewards on periodic intervals. We define the reward as a biased sum of n

reward components Ri(s, φ), where each component Ri(s, φ) captures a desired char-

acteristic of the gait during a particular phase.

R(s, φ) = β +
∑
i

Ri(s, φ)

Each reward component Ri(s, φ) is a product of a phase coefficient ci, a phase indicator

Ii(φ), and a real-valued phase reward measurement qi(s) (e.g. norm of a foot force).

Ri(s, φ) = ci · Ii(φ) · qi(s)

The phase coefficient ci is a scalar whose sign determines the effect that the phase mea-

surement qi(s) has on the total reward during cycle times when the reward component is

active. The phase indicator function Ii(φ) is a binary-valued random variable denoting

whether the target phase is active or not at cycle time φ. In this work, the distribution
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of each Ii is described by random variables Ai and Bi representing the start and end

times of the period respectively. Since Ai and Bi represent intervals on a cycle, we use

Von Mises distributions (approximations of the wrapped Normal distribution) described

by the parameter tuple (ai, bi, κ), which gives the means ai and bi and shared variance

parameter κ. The distribution of the binary phase indicator Ii(φ) is then simply:

P (Ii(φ) = x) =


P (Ai < φ < Bi) if x = 1

1− P (Ai < φ < Bi) if x = 0

(3.1)

where P (Ai < φ < Bi) = P (Ai < φ)(1− P (Bi < φ))

Ai ∼ Φ(2πai, κ) and Bi ∼ Φ(2πbi, κ)

Φ is the Von Mises distribution

Note that this formulation allows for uncertainty about the exact start and end of each

phase to be captured via the variance parameter κ of the Von Mises distributions. This

has a smoothing effect on the reward function at phase boundaries, which we have found

to usefully encourage more stable and consistent learning. While we could directly use

this probabilistic reward function R(s, φ) for RL training by sampling from the reward

distribution at each step, we instead apply RL to the deterministic expectation ofR(s, φ).

E [R(s, φ)] =
n∑
i

ci · E[Ii(φ)] · qi(s) + β
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Figure 3.3: The circular intervals of two phases, swing and stance, are shown on a polar
plot. The expected sum of the phase indicators and phase coefficients for foot force
Cfrc(φ) is shown below.

Due to the linearity of expectations, for any policy π the expected cumulative return

J(π) is the same regardless of whether we use stochastic rewards or their expectations.

3.2.3 Describing Bipedal Gaits

For simplicity, we begin by describing repeatedly lifting and placing a single foot, or

equivalently, cycling between swing and stance phases with our framework. As our

phase reward measurements, we select the norm of foot force qfrc(s) and the norm of

foot velocity qspd(s). During the swing phase we want to penalize foot forces and ignore

foot velocities, so we choose cswing frc = −1 and cswing spd = 0. Similarly, we choose

cstance spd = −1 and cstance frc = 0 to penalize foot velocities and ignore foot forces during

the stance phase. We constrain the swing and stance phases to follow immediately after

one another and together last the entire cycle time by defining a ratio r ∈ (0, 1) and

setting the intervals for both phases such that the swing phase lasts length r, while

the stance phase lasts length 1 − r and starts directly afterwards. Finally, by choosing
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a common scale κ, we can define the indicator functions Ifrc(φ) and Ispd(φ) by using

Equation 3.1.

For convenience, we define Cfrc(φ) and Cspd(φ) as the expected sum of the product

of all the phase indicators and phase coefficients for the swing and stance phases:

E [Cfrc(φ)] = cswing frc · E[Iswing frc(φ)]

+cstance frc · E[Istance frc(φ)]

E [Cspd(φ)] = cswing spd · E[Iswing spd(φ)]

+cstance spd · E[Istance spd(φ)]

Refer to Fig.3.3 for a visual explanation of the phase start and end times, φ, and the

expected value of Cfrc. For more complicated behaviors, we find that visualizing Cfrc(φ)

can be useful for understanding how the reward function changes over the cycle to guide

the learning of a particular behavior.

Putting the force and speed components together, the expected overall reward for

repeatedly lifting and placing a single foot is

E [Runipedal(s, φ)] = E [Cfrc(φ)] · qfrc(s)

+E [Cspd(φ)] · qspd(s)

Bipedal gaits are behaviors where the left and right feet both follow the same se-

quence of phases described above, but offset relative to each other in phase time. For

instance, in a walking behavior the timings of the swing and stance phases are shifted

apart by half of the period length (one leg in swing, the other in stance), while a hopping



16

behavior is one where both feet synchronously enter the swing and stance phases. To

expand the simple behavior of lifting and placing a single foot into the full spectrum

of bipedal gaits, we need only introduce two cycle offset parameters θleft, θright which

define the exact timing shift between the identical sequence of behavioral phases for

the left and right feet, and differentiate between the norms of left and right foot forces,

qleft frc(s), qright frc(s) and norms of left and right foot velocities qleft spd(s), qright spd(s).

The expected overall reward for a bipedal behavior is

E[Rbipedal(s, φ)] = E[Cfrc(φ+ θleft)] · qleft frc(s)

+E[Cfrc(φ+ θright)] · qright frc(s)

+E[Cspd(φ+ θleft)] · qleft spd(s)

+E[Cspd(φ+ θright)] · qright spd(s)

(3.2)

Introducing θleft, θright for two phase behaviors allows us to define reward functions

for walking, galloping, and hopping. Additionally, by using four phases rather than two

in each component, we can derive a skipping reward function, as shown in Fig. 3.4.

3.3 Method

Network Architecture and Action Space: For all policies, we use a Long Short-Term

Memory neural network [23] with two recurrent hidden layers of size 128 each, and a

simple linear output projection of size 30, corresponding to 10 desired joint positions,

and 10 sets of PD gains, as seen in Fig. 4.1. The desired joint positions are added to a

set of constant offsets corresponding to a neutral standing position, such that an output
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Figure 3.4: Plot of the expected value of the force phase coefficient for each foot for
some example bipedal gaits. In hopping there is a |θleft − θright| ≈ 0 shift between the
left and right feet. For walking and running, |θleft − θright| ≈ 0.5, with transitional shifts
resulting in galloping. Four phases are necessary for describing skipping, as well as a
|θleft − θright| ≈ 0.5 shift between the left and right feet. The shaded region between the
phase coefficient plots show the hybrid phases from combining the left and right foot
behaviors together.

vector of zeroes results in a standing pose. Similarly, the P gains and D gains are also

summed with a fixed ’neutral’ set of gains. The policy is evaluated at 40Hz, and the

robot’s PD controllers are run at 2000Hz. A similar system is used in [61] and [46],

though without PD gain deltas.

State Space: To prevent the reinforcement learning environment from becoming a

non-stationary Markov decision process, some information about the periodic reward
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function must be present in the state provided to the policy. Specifically, the policy must

receive some sort of encoding of the current cycle time φ, an encoding of the cycle offset

parameters, θleft, θright, and information about the start and end times of the phases of the

phase reward components.

In order to encode the current cycle time φ and the cycle offset parameters θleft, θright,

we condition the policies on two clock inputs:

p = {sin (2π(φ+ θleft)) , sin (2π(φ+ θright))}

To encode information about the start and end times of the phases into the state, we

derive a vector of ratios from the sequence of phase timings; each ratio represents the

proportion out of the total period that a phase occupies. For instance, a phase j with

start time ai,j=0.3 and end time bi,j = 0.7 should occupy 40% of the total period time

(plus or minus some uncertainty); thus, we can derive a ratio rj = 0.4. Each phase’s

ratio is calculated and provided to the policy.

Thus, the policy’s input consists of:

Xt =


q̂, ˆ̇q robot state

ẋdesired, ẏdesired desired velocity

r, p phase ratios and clock inputs

Where q̂, ˆ̇q are estimates of the pelvis orientation, rotational velocity, joint positions

and joint velocities. ẋdesired and ẏdesired are speed commands randomized during training,

and manually controlled by the user during evaluation.
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Single Behavior Reward Formulation: We use the set of reward components from

Rbipedal defined in Equation 3.2 to learn single-gait policies. In addition, we also use a

variety of auxiliary cost components to further constrain the path of viable exploration

towards stable locomotion and facilitate successful sim-to-real transfer as well as com-

mand the policy to match a desired orientation, forward speed, and sidespeed. These

rewards do not need to vary as a function of time, and can be seen as a special case of

the reward component framework, wherein the random variable ci has only one phase,

and thus one possible value (in this case, −1, to show that we wish to penalize these

quantities qi for the entire period).

Rcmd(s) = (−1) · qẋ(s)

+ (−1) · qẏ(s)

+ (−1) · qorientation(s)

Rsmooth(s) = (−1) · qaction diff(s)

+ (−1) · qtorque(s)

+ (−1) · qpelvis acc(s)

E[R(s, φ)] = E[Rbipedal(s, φ)] +Rsmooth(s)] +Rcmd(s) + β (3.3)

Where qẋ and qẏ are measures of error between the commanded velocity and the

actual pelvis velocity, and qorientation is the negative exponent of quaternion difference

between the pelvis orientation and an orientation which faces straight, which can be

used to change the heading of the robot. qpelvis acc is a cost for aggressive pelvis motion,
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which helps reduce noise in the state estimator, while qaction diff is a cost for aggressive

actions and qtorque is an overall joint torque cost to encourage efficient motions. For

general policies which can learn and transition between a continuum of bipedal gaits,

we specify additional reward terms which are discussed in Section 4.4.

Multi-Behavior Reward Function:

When learning the continuum of 2-beat gaits, we find that policies often learn to

stutter rather than hop with their feet together, which is not observed when training

hopping standalone. To combat this, we introduce a hop symmetry term, a cost which

becomes active when the cycle offsets of both legs match closely and punishes large

distances between the feet in the sagittal and transverse planes, errsym,

qhop sym(s) = 1− exp(−errsym exp(−5 |sin(2π(θleft − θright))|))

To learn a standing behavior in addition to the rest of the 2-beat gaits, the reward

function must be modified to reflect our wish for the policy to remain very still when

commanded. First, we define the standing region of gait parameter space as one where

the swing-to-stance phase ratio is close to 0.

We define ω = (1 + exp(−50(rswing − 0.15)))−1, which is a coefficient close to one

during normal locomotion (when the swing and stance ratios are in the range [0.35, 0.7],

and close to zero during standing (where the swing phase ratio is close to zero). Now

we define an additional standing cost, which applies an additional action difference cost

and a foot symmetry cost (similar to the hopping symmetry) when the command inputs
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are in the standing region.

qstanding cost(s) = 1− exp(−((errsym) + 20qaction diff(s)))

Now we define the full reward for a generic policy which includes standing:

E[Rmulti(s, φ)] = 0.400 · E[Rbipedal(s, φ)]

+ 0.300 · E[Rcmd(s)]

+ 0.100 · E[Rsmooth(s)]

+ 0.100 · (ω − 1) · qstanding cost(s)

+ 0.100 · (−1) · qhop sym(s)

+ 1

Quantity qi Detail
qleft/right frc 1− exp(−ω‖raw foot frc‖22/100)
qleft/right spd 1− exp(−2 · ω‖raw foot spd‖22)
qẋ 1− exp(−2 · ω|ẋdesired − ẋactual|)
qẏ 1− exp(−2 · ω|ẏdesired − ẏactual|)
qorientation 1− exp(−3 · (1− ((quatactual)

T (quatdes))
2)

qaction diff 1− exp(−5 · ‖at − at−1‖)
qtorque 1− exp(−0.05 · ‖τ‖)
qpelvis acc 1− exp(−0.10 · (‖pelvisrot‖+ ‖pelvisacc‖)

Table 3.1

Where ẋactual and ẏactual are the current forward and lateral speeds of the pelvis.

quatactual and quatdes are the actual pelvis orientation and the desired pelvis orientation, in
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quaternion format. at is the current timestep’s action, and at−1 is the previous timestep’s

action. τ is the net torque applied to all joints across the robot. pelvisrot is the rotational

velocity of the pelvis, and pelvisacc is the translational acceleration of the pelvis. Note

that certain terms are multiplied by ω, signifying that these terms should not be respected

by the policy when ω ≈ 0 (i.e., the policy is somewhere inside the standing region of

the gait parameter space), to prevent the policy from (for example) attempting to match

a desired speed while standing. The choice of 1 − exp(−|x|) as a kernel function was

influenced by a desire to have a reward bounded by 0 and 1.

Dynamics Randomization: In order to facilitate successful sim-to-real transfer, we

use dynamics randomization [35] [52] to expose the policies to a wide variety of possible

real-world dynamics. Specifically, we randomize the execution rate of the policy, the

mass and damping of the joints, the friction of the ground, the slope of the ground, and

joint position encoder noise. Details on the ranges and distributions used to randomize

these parameters can be found in Table 4.3. These parameters are randomized at the

beginning of every rollout during training and remain constant throughout each rollout.

Parameter Unit Range
Joint damping Nms/rad [0.3, 4.0]× default values
Joint mass kg [0.5, 1.5]× default values
Ground Friction – [0.35, 1.1]
Ground Slope rad [−0.03, 0.03]
Joint Encoder Offset rad [−0.05, 0.05]

Table 3.2: The ranges for randomization of several dynamics parameters during training.
We use a uniform distribution over the given ranges for all listed parameters.

Proximal Policy Optimization: To train our policies, we use a common model-

free reinforcement learning algorithm known as Proximal Policy Optimization (PPO)
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[43]. More specifically, we use the recurrent adaptation described in ??, which samples

batches of trajectories from a replay buffer, rather than batches of individual timesteps.

In our case, we use a recurrent critic with exactly the same dimensions as the actor with

the exception of the final linear output vector, which in the case of the critic is a scalar.

We use a fixed exploration action noise, with standard deviation e−1. In addition, we

incorporate a mirror loss term [1] into our policy gradient algorithm with the aim of

achieving more symmetric locomotion behavior.

3.4 Experimental Results

Training Details. Policies were trained using PPO with a batch size of 32 trajectories

of up to 300 timesteps each, a learning rate of 0.0001 for both the actor and critic, a

replay buffer of 50,000 samples, and 4 epochs per iteration. Training was terminated

after 150,000,000 samples, which took between 24 and 36 hours per policy. We use

the cassie-mujoco-sim [2] simulator, based on MuJoCo [55], to simulate Cassie during

training.

Single-Gait Policy Results. We found that it was straightforward to use the proba-

bilistic framework to train policies to learn standalone gaits, such as hopping, walking,

running, or even skipping. These behaviors can be learned simply by holding the values

of ratios r and cycle offset parameters θleft, θright to be constant throughout training (we

refer the reader to Fig. 3.4 for examples of gait specifications). Videos of single-gait

policies which learn skipping hopping, and walking can be found in our submission

video.
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Multi-Gait Policy Results By keeping the cycle offsets fixed and varying the phase

ratios over some range during training, we are able to train policies that can learn to

hop with more or less time in the air, and policies that can transition from walking

to running. However, learning to transition between gaits by varying both the cycle

offsets and phase ratios during training appears to be a challenging learning problem:

policies which are trained in this fashion can end up asymmetrically walking instead of

hopping, or learn other undesirable behaviors that resemble a fusion of all the different

commanded gaits. To avoid these issues, we introduce additional reward terms called

transition penalties to further distinguish each of the desired behaviors from each other

during training. Transition penalties are behavior-specific costs which are only active

when specific behaviors are being commanded. For hopping, which is commanded

when cycle offsets are very close to each other, we activate a cost for constraining the

feet positions to be close together. Similarly, by adding another transition penalty for

standing, we can train a generic controller to transition between all steady state two-beat

gaits and standing in place. Full details of the reward function for generic controllers

are described in detail in section 3.3.

Outdoor Experiments We demonstrate the robustness of policies learned with our

approach in a variety of outdoor experiments, shown in our submission video 1. Given

that the robot is effectively blind to the external world, the behaviors we observe in

response to disturbances are surprisingly robust. We show the multi-gait policy hopping

on and off a sidewalk, walking with one foot elevated on a curb, and running over small

bumps in its path. The policy is also shown smoothly transitioning between all of the 2-

1youtu.be/4DnxV9lko U

https://youtu.be/4DnxV9lko_U
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Figure 3.5: Comparison between the mean measured simulation ground reaction forces
(GRFs) in newtons and the corresponding expected values of Cfrc over multiple policies.
When the expectation is close to -1, the policies refrain from applying foot forces. When
the expectation is close to 0, the policies apply foot forces.

beat gaits while moving forward on a crowned road, and while turning in a small circle

on a turf field. We also show a multi-gait policy descending down 5 steps of stairs while

in a running gait. In the staircase and sidewalk tests, we observe the foot slipping off of

small ledges and being compliant to the slope of the ground. This indicates a priority on

force profile, as opposed to position only.

3.5 Conclusion

In this chapter, we introduced a probabilistic reward framework which allows for learn-

ing of all of the common bipedal gait behaviors observed in animals. This framework

requires no reference trajectories, enabling policies to explore a rich space of possible

interaction with the world during training without artificial constraints to some arbitrary

trajectory through space. We showed that not only are we able to train policies to learn

all common bipedal gaits individually, including walking, running, hopping, galloping,
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and skipping, but also that we can learn all 2-beat behaviors on single policies and tran-

sition between them continuously, even while in motion. Some questions which remain

unanswered include how easily this framework might be applied to the space of possible

quadrupedal gaits, or other bipedal morphologies. A modified version of this framework

could also be applied to aperiodic motions to learn one-off behaviors.
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Chapter 4: Blind Bipedal Stair Traversal via Sim-to-Real Reinforcement

Learning

4.1 Introduction

In order to be useful in the real world, bipedal and humanoid robots need to be able

to climb and descend stairs and stair-like terrain, such as raised platforms or sudden

vertical drops, which are common features of human-centric environments. The ability

to robustly navigate these environments is crucial to getting robots to work with and

alongside humans safely. Achieving this level of robustness on a bipedal platform is

no easy task; while other platforms such as quadrupedal robots benefit from inherent

stability due to multiple points of contact with the ground at a given time and the ability

to stop and stand like a table, bipedal robots such as Cassie rely entirely on dynamic

stability (essentially always existing in a state of falling). On stair-like environments,

this is especially apparent due to the difficulty of recovery from missteps with only two

legs.

By contrast, robots with quadrupedal morphologies have been able to use proprio-

ception alone to negotiate stairs [28, 9], and hexapedal robots have even been able to

use open-loop control to ascend and descend stairs [31]. While planar bipedal robots

have been shown to be able to reject disturbances like large unexpected dropsteps [33],

the vast majority of approaches seeking to enable such robots to negotiate stairs in the
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Proprioceptive Data PD Targets

Figure 4.1: In this chapter, we investigate the limits of blind bipedal locomotion. We
present a training pipeline which produces policies capable of blindly ascending and
descending stairs in the real world. These policies learn proprioceptive reflexes to reject
significant disturbances in ground height, resulting in highly robust behavior to many
real-world environments.

real world require either accurate vision systems [18, 4, 30] or operation in a carefully

controlled laboratory environment [12, 41, 14], meaning the robot is localized through

a known start location or the stairs are designed in tandem with robot morphology.

However, robots must be able to operate outside of controlled laboratory conditions

and handle the massive variety of conditions in the real world. This goal is not com-

patible with a complete reliance on exteroceptive sensors such as RGB and depth cam-

eras for accurate terrain estimation, which introduce fragility to real world conditions

[15]. For instance, cameras may be unreliable if exposed to occlusion, fog, or varying
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lighting conditions. Further, integrating a state-of-the-art computer vision system into

a high-speed controller is technically difficult, especially on a computationally limited

platform like a mobile robot. For practical purposes, underlying controllers should be

as robust as possible while relying on as little information about the world as possible.

Ideally, a bipedal robot should be able to traverse as much of the entire breadth of human

environments as possible using proprioception, while relying on exteroceptive sensing

for further efficiency and high-level planning (and being robust to mistaken perception).

This begs the question: how robust can a blind bipedal robot be?

Reinforcement learning (RL) based approaches have begun to show significant promise

at robust real-world legged locomotion [28, 60]. Unlike optimization or heuristic-based

control methods which rely on prescribed ground contact schedules or force-based event

detection, RL can produce control policies which learn proprioceptive reflexes and

strategies for dealing with unexpectedly early or late contact and rough terrain through

exposure to a variety of disturbances during training. However, the limits of this ap-

proach are unclear and prior work has not been demonstrated on the scale and variety of

disturbances involved in stair-like terrain.

In this work, we show that robust proprioceptive bipedal control for complex stair-

like terrain can be learned via an existing RL framework with surprisingly little mod-

ification. In particular, the only adjustment needed is the terrain randomization used

during training, where we define a distribution over upward and downward going stairs

including variation in height, width, and slope of the contact planes. Learning on this

distribution allows for blind locomotion up and down unknown stairs as well as han-

dling more general stair-like terrain characteristics, e.g. logs, curbs, dropoffs, etc. The



30

learned controller is demonstrated in simulation and a variety of real-world settings. To

our knowledge, this is the first demonstration of its kind and suggests the continued

exploration into the limits of robust proprioceptive bipedal control.

4.2 Reinforcement Learning Formulation

We follow a sim-to-real reinforcement learning (RL) approach for learning bipedal lo-

comotion and assume basic familiarity with RL [51]. In the general RL setting, at each

discrete time step t the robot control policy π receives the current state st and returns

an action at, which is applied and results in a transition to the next state st+1. The state

transition dynamics are unknown to the robot and are governed by a combination of en-

vironmental conditions, such as terrain type, and the robot dynamics. In addition, during

learning, each state transition is associated with a real-valued reward rt. The reward is

governed by the application goals to encourage the desired behavior during learning.

The RL optimization objective considered in this work is to learn a policy through inter-

action with the environment that maximizes the expected cumulative discounted reward

over a finite-horizon T . That is, find a policy π that maximizes: J(π) = E
[∑T

t=0 γ
tRt

]
,

where γ ∈ [0, 1] is the discount factor and Rt is a random variable representing the re-

ward at time t when following π from a state drawn from an initial state distribution.

For complex environments, RL typically requires large amounts of training experi-

ence to identify a good policy. Further, for biped locomotion, the training will involve

many falls and crashes, especially early in training. Thus, training from scratch in the

real-world is not practical and we instead follow a sim-to-real RL paradigm. Train-
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ing is done completely in a simulation environment, with dynamics randomization (see

below), and the resulting policy is then used in the real-world.

In the remainder of this section, we detail the specific sim-to-real RL formulation

used in this work, which follows the work in Chapter 3 on learning different biped gaits

over flat terrain. Surprisingly, only minimal changes were required to enable policy

learning for the much more complex stair-like terrains of this paper1 In particular, the

only major modification required was the randomized domain generation of stair-like

rather than mostly flat terrain as discussed later in Section 4.3; no novel stair-specific

reward terms were needed.

4.2.1 State Space

The state st that is input to the control policy at each time step includes three main com-

ponents. First, the state contains information about the robot’s instantaneous physical

state, including the pelvis orientation in quaternion format, the angular velocity of the

pelvis, the joint positions, and the joint velocities. The second component of st is com-

posed of command inputs, which come from a human operator. These commands are

subject to randomization during training to give the policies a wide breadth of experi-

ence attempting to traverse stairs over a variety of speeds and approach angles. Details

of this randomization can be seen in Table 4.1.

The third component includes two cyclic clock inputs, each corresponding to a leg

1This was only discovered after a careful ablation analysis of our first success on stair-like terrain,
which originally included seemingly necessary modifications to prior work, such as more complex reward
functions and state features.
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Command Probability of Change Range
Forward Speed 1/300 [-0.3m/s, 1.5m/s]
Sideways Speed 1/300 [-0.3m/s, 0.3m/s
Turn Rate 1/300 [-90deg/s, 90deg/s]

Table 4.1: At each timestep, each command input to the policy is subject to a 1/300
probability of being altered. When this occurs, a new command is sampled from a uni-
form distribution parameterized by the rightmost column. Given that maximum episode
length is 300 discrete timesteps, this means each command will change once on average
per episode.

of the robot, p:

p =

 sin (2π(φt + 0.0))

sin (2π(φt + 0.5))
(4.1)

Here φt is a phase variable which increments from 0 to 1, then rolls back over to 0,

keeping track of the current phase of the gait. The constant offsets 0.0 and 0.5 are phase

offsets used to make sure that the left and right legs are always diametrically opposite

of each other in terms of phase during locomotion.

4.2.2 Action Space

The output action at of the control policy at each time step (running at 40Hz) is an 11

dimensional vector with the first 10 entries corresponding to PD targets for the joints,

each of which are fed into a PD controller for each joint operating at 2KHz. Prior work

has found it advantageous to learn actions in the PD target space rather than directly

learning the higher-rate actuation commands [38].

The final dimension of at is a clock delta δt (refer to 4.2.1 for information on clocks),
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which allows the policy to regulate the stepping frequency of the gait. Intuitively, this

allows the controller to choose an appropriate stepping frequency for a particular gait,

command, and terrain. Specifically, the phase variable φ in the state representation

(Section 4.2.1) is updated at each timestep t by,

φt+1 = fmod(φt + δt, 1.0). (4.2)

This delta is bounded in a way such that the policy can choose to regulate the gait cycle

between 0.5x and 1.5x the nominal stepping frequency (which is approximately one gait

cycle every 0.7 seconds). While this component is included in the control policy action,

it does not appear to have a large impact on performance and the learned policy does not

vary δt much in response to disturbances. We suspect that future ablation analysis will

show that it is not important for performance on the real robot.2

4.2.3 Reward Function

We use the method introduced in Chapter 3 to specify our reward function. To briefly

review this method, we desire a reward framework which allows for penalizing the pol-

icy for large magnitudes of some quantities of the environment at certain times, while

permitting those quantities to be large at other times. We designate foot forces and foot

velocities as two such quantities; punishing foot forces incentivizes the policy to lift the

foot, while punishing foot velocities incentivizes the policy to place the foot. We add

additional cost terms on top of these foundational reward terms, including a cost in-

2We leave this as a hypothesis here, since we have not had the resources to perform an ablation study.
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centivizing the policy to match a translational velocity and orientation. We also employ

costs which encourage smooth actions, energy efficiency, and to reduce pelvis shakiness.

As in Chapter 3, we do not rely on expert reference trajectories to learn behaviors.

Reward Function

To briefly review the approach taken in Chapter 3, we wish to take advantage of the

complementary nature of foot forces and foot velocities during locomotion to construct

a reward function which will punish one and allow the other, and vice versa, at key inter-

vals during the gait. We use a probabilistic framework to represent uncertainty around

the timings of these intervals. More specifically, we make use of a binary-valued ran-

dom indicator function Ii(φ) for each quantity qi which we wish to penalize at some

time during the gait cycle. This indicator function is likely to be 1 during the interval

in which it is active, and likely to be 0 during intervals in which it is not active. The

distribution of this binary-valued random function is defined via the Von Mises distri-

bution; for a more comprehensive description, see [45]. In addition, rather than use the

actual random variable in the reward we instead opt to use its expectation for more stable

learning; see Fig. 4.2 for a plot of this expectation.

Our full reward function is as follows;

R(s, φ) = 1− E[ρ(s, φ)] (4.3)

Which is to say, our reward is the difference of a bias and the expectation of a

probabilistic penalty term ρ(s, φ) as described in Chapter 3. See Table 4.2 for detailed
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information on the exact quantities and weightings used.

Weight Cost Component
0.140 1− E[Ileft force(φ)] · exp(−.01‖Fl‖)
0.140 1− E[Iright force(φ)] · exp(−.01‖Fr‖)
0.140 1− E[Ileft velocity(φ)] · exp(−‖vl‖)
0.140 1− E[Iright velocity(φ)] · exp(−‖vr‖)
0.140 1− exp(−εo)
0.140 1− exp(−|ẋdesired − ẋactual|)
0.078 1− exp(−|ẏdesired − ẏactual|)
0.028 1− exp(−5 · ‖at − at−1‖)
0.028 1− exp(−0.05 · ‖τ‖)
0.028 1− exp(−0.1(‖pelvisrot‖+ ‖pelvisacc‖))

Table 4.2: The cost terms which are summed together to compose the expected penalty,
E[ρ(s, φ)]. Terms involving an expectation of a variable Ii(φ) vary over the course of
the gait cycle, with the goal of penalizing foot forces and foot velocities at key intervals
to teach the policy to lift and place the feet periodically in order to walk. Other terms
exist for the sake of commanding the policy to move forward, backwards, or sideways,
or turn the robot to face a desired heading. Finally, the remaining terms exist to reduce
shaky behaviors which are unlikely to work well on hardware.

We define Fl and Fr as the vectors of translational forces applied to the left and right

foot, and vl and vr similarly as the vectors of left and right foot velocities. To maintain

a steady orientation, an orientation error εo is used, which is equal to,

εo = 3(1− q̂T q body)
2 + 10

(
(1− q̂T q l)

2 + (1− q̂T q r)
2
)

(4.4)

where q l and q r are the quaternion orientations of the left and right foot, q body is the

quaternion orientation of the pelvis, and q̂ is a desired orientation (for our purposes,

fixed to be always be facing straight ahead).
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The quantities ẋdesired and ẏdesired correspond to a commanded translational speed,

while ẋactual and ẏactual are the actual translational speed of the robot. The term pelvisrot

represents the angular velocity while pelvisacc represents translational acceleration; these

terms are used in the cost component to reduce the shakiness of locomotion behavior.

The terms at and at−1 refer to the current timestep’s action and the previous timestep’s

action, and their use in the cost component is to encourage smooth behaviors. The term

τ is the vector of net torques applied to the joints, and its use in the cost component is

intended to encourage energy efficient gaits.

Figure 4.2: By alternatingly punishing foot forces during a ’stance’ phase to teach the
policy to lift the foot, and punishing foot velocities during a ’swing’ phase to teach the
policy to place the foot on the ground, we can construct a foundation on which to learn
simple walking behavior. Following in the path of previous work, we define these cyclic
coefficents as random indicator functions of the phase, and take their expectation.

4.2.4 Dynamics Randomization

In order to overcome any modeling errors that may be present in our simulated Cassie

environment, we randomize several important quantities of the dynamics at the begin-

ning of each episode during training as in previous work [34] and Chapter 3. These
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randomized parameters are listed in Table 4.3.

Parameter Unit Range
Joint damping Nms/rad [0.5, 3.5]× default values
Joint mass kg [0.5, 1.7]× default values
Ground Friction – [0.5, 1.1]
Joint Encoder Offset rad [−0.05, 0.05]
Execution Rate Hz [37, 42]

Table 4.3: To prevent overfitting to simulation dynamics and facilitate a smooth sim-
to-real transfer, we employ dynamics randomization. The above ranges parameterize a
uniform distribution for each listed parameters. Damping, mass, friction, and encoder
offset are randomized at the beginning of each rollout, while execution rate is random-
ized at each timestep to mimic the effect of variable system delay on the real robot.

4.2.5 Policy Representation and Learning

We represent the control policy as an LSTM recurrent neural network [23], with two

recurrent hidden layers of dimension 128 each. We opt to use a memory-enabled net-

work because of previous work demonstrating a higher degree of proficiency in handling

partially observable environments [? ] [34] [45]. For ablation experiments, involving

non-memory-based control policies, we use a standard feedforward neural network with

two layers of dimension 300, with tanh activation functions, such that the number of

parameters is approximately equal to that of the LSTM network.

For sim-to-real training of the policy, we use Proximal Policy Optimization (PPO)

[43], a model-free deep RL algorithm. Specifically, we use a KL-threshold-termination

variant, wherein each time the policy is updated, the KL divergence between the updated

policy and the former policy is calculated and the update is aborted if the divergence is
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Figure 4.3: In order to ensure robustness over a variety of possible stair-like terrain, we
randomize a number of parameters when generating stairs at the start of each episode in
simulation. These parameters include the number of stairs, the height of each stair, the
length of each stair, the length of the landing atop the stairs, and the slope of the ground
immediately before and after the stairs.

too large. During training, we make use of a mirror loss term [1] in order to ensure

that the control policy does not learn asymmetric gaits. For recurrent policies, we sam-

ple batches of episodes from a replay buffer as in [45], while for feedforward policies

we sample batches of timesteps. Each episode is limited to be 300 timesteps, which

corresponds to about 7.5 seconds of simulation time.
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4.3 Terrain Randomization

Previous work on applying RL to Cassie has either trained on flat ground [60] [45] or on

randomized slight inclines [Chapter 3]. Other work in applying deep RL has investigated

employing a curriculum of rough terrains which become increasingly difficult as training

progresses [28]. For the purpose of simplicity, we find that training on interactions with

a randomized staircase without a curriculum is sufficient to learn robust behavior.

To this end, we train on a plane whose incline is randomized at the beginning of each

rollout in the pitch and roll axes. This incline is between -0.03 radians and 0.03 radians.

As part of the dynamics randomization, ground friction is randomized, increasing the

potential difficulty of the environment. The starting position of the stairs are randomized

at the beginning of each rollout, such that the episode can start with the policy already

on top of the stairs, or with the stairs up to 10 meters in front of the policy. This is

done in order to ensure that the policy is able to see lots of experience on flat or inclined

ground, as well as on stairs.

The dimensions of the stairs are randomized within typical city code dimensions,

with a per-step rise of between 10cm and 21cm, and a run of 24cm to 30cm. The

number of stairs is also randomized, such that each set of stairs has between 1 and 8

individual steps. A small amount of noise (± 1cm) is added to the rise and run of each

step such that the stairs are never entirely uniform, to prevent the policy from deducing

the precise dimensions of the stairs via proprioception and subsequently overfitting to

perfectly uniform stairs.
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4.4 Results

We trained four groups of policies, each containing five policies initialized with different

random seeds. First, we trained a group of simple LSTM policies with stair terrain

randomization; these are referred to in this section as Stair LSTM. To investigate the

importance of memory, we trained a group of feedforward policies also with stair terrain

randomization; we denote these Stair FF. We also trained a group of policies without

stair terrain randomization, and denote these Flat Ground LSTM, to investigate the

importance of the terrain randomization introduced in this work. The final group was

trained with a simple additional binary input informing the policy whether or not stairs

were present within one meter of the policy, referred to here as Proximity LSTM, in

order to investigate the benefit of leaking information about the world to the policies.

Each policy was trained until 300 million timesteps were sampled from the virtual

environment, simulated with MuJoCo [55]. Our selection of hyperparameters for the

PPO algorithm includes a replay buffer size of 50,000 timesteps, a batch size of 64

trajectories for recurrent policies, and a batch size of 1024 timesteps for feedforward

policies. Each replay buffer is sampled for up to five epochs, with optimization termi-

nating early if the KL divergence reached the maximum allowed threshold of 0.02. We

clear our replay buffer at the start of each iteration. We use the Adam [27] optimizer

with a learning rate of 0.0005 for both the actor and critic, which are learned separately

and do not share parameters.

4.4.1 Simulation
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Figure 4.4: The learned policies exhibit a high degree of blind robustness to a variety of
stair-like terrain, and can reliably ascend and descend stairs of typical dimensions found
in human environments.
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4.4.1.1 Probability of Successfully Ascending and Descending Stairs

To understand the importance of memory and terrain randomization, we evaluate three

groups of policies on the task of successfully climbing and descending a set of stairs

in simulation. We compare the performance of Stair FF, Stair LSTM, and Flat Ground

LSTM policies on this task.

Specifically, we run 150 trials testing how often a policy is successfully able to climb

a set of stairs with five steps, each with a tread of 17cm and a depth of 30cm (a typical

real-world and relatively mild stair geometry). This should give us an estimate of how

reliably each group of control policies can climb a flight of stairs that it approaches

blindly. Success is defined as reaching the top of the flight of stairs without falling. We

also apply this procedure for descending stairs, running 150 trials on stairs with the same

dimensions, and record the rate at which each group of policies can reach the bottom

without falling.

The results of these tests for three different training conditions is shown in figure

4.5. We note that the Stair LSTM policy has the highest overall probability of success.

Nevertheless, the probability of success is dependent, in large part, on approach speed.

The policies experience higher rates of failure at low speeds, where they may lack the

momentum to propel themselves past poorly chosen foot placements. They also experi-

ence higher rates of failure at high speeds, possibly due to the more dynamic nature of

high-speed gaits.

The Flat Ground LSTM policies, having never seen stair-like terrain during train-

ing, are unable to compensate and experiences a high rate of failure for both ascent
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Figure 4.5: We evaluate the probability of successfully climbing and descending stairs
without falling as a function of commanded speed between 0.25 m/s and 1.5 m/s over
150 trials. For Stair LSTM policies, there seems to be an optimal approach speed for
climbing stairs and a separate optimal descent speed. Stair FF policies do not attain high
performance, implying that memory could be an important component of the learned
behavior. Flat Ground LSTM policies, having never encountered stairs in training, are
virtually unable to climb stairs while finding some success in descending stairs without
falling over.



44

and descent. The Stair FF policies, despite encountering stairs during training, are un-

able to learn an effective strategy for handling stairs, implying that memory may be an

important mechanism for robustness to stair-like terrain.

4.4.1.2 Energy Efficiency Comparison

To understand the consequences of training with terrain randomization, we also com-

pare the cost of transport between Flat Ground LSTM policies, Stair LSTM policies,

and Proximity LSTM policies. The cost of transport (CoT) is a common measure of

efficiency of legged robots, humans and animals. It is the energy used per distance,

normalized by weight to be unitless. It is defined as

CoT =
Em

Mgd
, (4.5)

where Em is the energy used by the motors, M is the total mass of the robot, g is the

gravitational acceleration and d is the distance traveled. The energy used by Cassie is

calculated using positive actuator work and resistive losses via

Em =

∫ T

0

(∑
i

max(τi · ωi, 0) +
ωmax
i

Pmax
i

τ 2i

)
dt. (4.6)

Here τi is the torque applied to motor i and ωi is its rotational velocity. We use two

parameters to define the resistive losses in terms of torque, Pmax
i is the maximum input

power and ωmaxi is the maximum speed of motor i. The results of testing steady state

CoT at 1 m/s on flat ground can be seen in Table 4.4. These calculations of CoT do
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not include the overhead power draw from computation and control electronics so they

should not be used to compare between robots, only between control policies.

Policy Group Mean CoT Std. CoT
Proximity LSTM (stairs) 0.47 0.0086
Stair LSTM 0.46 0.0323
Proximity LSTM (flat) 0.39 0.0257
Flat Ground LSTM 0.38 0.0205

Table 4.4: Locomotion efficiency as measured by cost of transport (CoT) for walking
at 1 m/s over flat ground in simulation between three groups of policies over all five
random seeds. We note that policies not trained on stair terrain randomization tend to
learn more energy efficient gaits, though some energy efficiency can be recovered by
providing the stair-trained policies with a binary stair presence/absence input.

We find that Flat Ground LSTM policies learn the most energy efficient gaits for

walking on flat ground. Stair LSTM policies learn less efficient flat-ground gaits in

order to be robust to stairs; however, the stair proximity input to the Proximity LSTM

can help to recover some of this lost energy efficiency by allowing the learned controller

to switch between a stair-ready gait and a more energy efficient, flat-ground gait.

4.4.2 Behavior Analysis

To understand the strategy adopted by the policy, we can benefit from taking the perspec-

tive of experimental biology.We specifically look at the behavior as the robot contacts

the first step up or down after walking along flat ground. First we will analyze the swing

leg motion to understand how the robot places its foot on step ups and step downs. Once

the swing foot contacts a step up or down, the force applied by the foot on the ground

during stance phase can be modulated to better prepare the robot for future steps. We
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analyze how the ground reaction force and total impulse varies in the case of step ups

and step downs.

4.4.2.1 Swing Foot Motion

To understand the change the stair terrain makes in the foot swing path we compare the

result of a Flat Ground LSTM policy and a Stair LSTM policy when they encounter a

drop step. The foot swing path during a drop step lets us see where the policy would

place the foot if it had encountered a step up or a step down. Fig. ?? shows the foot swing

path of these two policies relative to the ground. We can see that the Stair LSTM policy

takes a much higher step compared to the Flat Ground LSTM policy which gives it

additional clearance so it can step up onto a large step. A second interesting observation

is the steeper path of the swing foot for the Stair LSTM policy. The swing foot only

moves forward 14 cm while it is in the height range where it may encounter the front

face of a step up. We hypothesize this is a strategy that prevents the foot from stubbing

the toe too hard on the front face of a stair and causing the robot to trip forward.

A second viewpoint to understand leg swing motion is to look at the leg swing re-

traction. In humans and in bipedal birds it is observed that the swing leg is swung

backwards, relative to the body, towards the ground near the end of stance [39, 13].

This has the benefits of reducing the velocity of the foot relative to the ground and thus

reducing the impact [10] as well as improving ground height disturbance rejection by

automatically varying the leg touchdown angle [44].

Our training procedure does not explicitly incentivize the policy to exhibit these leg
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Swing foot paths for the stair trained policy and the flat ground policy overlaid on ex-
ample step ups and step downs.

The leg angle between the robot body and the swing foot as the foot descends toward
touchdown.

Figure 4.6: A comparison of the swing foot motion of the Stair LSTM policy and the
Flat Ground LSTM policy while locomoting at 1.0 m/s. There is a significant change in
the leg swing policy as a result of training on randomized stairs. The most significant
changes are higher foot clearance, a steeper foot descent and a faster leg angle retraction
rate.
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swing retraction behaviors, but we do see them emerge as shown in Fig. ??. This figure

shows the angle of the swing foot relative to the body between the peak of leg swing and

contact with the maximum step down. The Stair LSTM policy has a faster leg retraction

rate compared to the Flat Ground LSTM policy. With only this data we cannot say if

this retraction profile is optimal or even if it is the cause of the improved performance

on stairs. However, the fact that there is a significant change in the leg retraction profile

as a result of training on stairs is an interesting observation.

4.4.2.2 Ground Reaction Forces

Once the robot’s foot has touched down its control authority is limited due to the under-

actuated nature of bipedal locomotion. However, the robot still has a significant amount

of control through the ground reaction force. To understand how the Stair LSTM policy

reacts to a 10 cm step up or down we plot the horizontal and vertical ground reaction

forces in the sagittal plane in Fig. 4.7. At the beginning of stance there is a large spike

in force that dwarfs the normal forces during stance. The force value during this spike

is largely defined by the tuning of the simulation contact model so it is not of primary

interest to understanding the behavior of the policy. The first interesting thing we see in

subplot A is that the maximum nominal leg force is held relatively constant which is a

predicted result of a well adjusted leg swing policy [8]. Second we see that the magni-

tude of the second hump in the double humped ground reaction forces is increased in the

step down and decreased in the step up. In the horizontal forces (subplot B) we see an

oscillating signal where the oscillations match the frequency of policy evaluation. We
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Figure 4.7: The ground reaction forces and cumulative impulses of a Stair LSTM policy
when it encounters varying ground height. The peak vertical force (A) after the impact
remain roughly equivalent while the force in the second half of stance is modulated. The
horizontal force (B) shows oscillations that match the frequency of the learned policy
execution rate. This may be the policy controlling the body’s attitude. The total vertical
impulse (C) shows the expected result of a larger impulse stepping up and a smaller one
stepping down. The horizontal impulse (D) shows a result that is predicted by leg swing
retraction. When stepping down the foot is shifted backwards relative to the body which
results in net acceleration forward which is shown here by a positive horizontal impulse.
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hypothesize that this is the policy working to control the attitude of the pelvis. Prioritiz-

ing body attitude over forward velocity would be similar to the explicit priorities during

single stance in Virtual Model Control [25]. The lower two subplots (C and D) show the

cumulative impulse in the vertical and forward directions throughout the stance phase.

We can see that the step up applies a larger vertical impulse and the step down a smaller

vertical impulse. This agrees with the intuition that the robot should apply a smaller

vertical impulse to lower itself down a step compared to lifting itself up a step. The

horizontal impulse tells us if the robot speeds up or slows down in the forward direc-

tion during the stance phase. We see that the step down results in a significantly larger

forward impulse and the step up reduces the vertical impulse very slightly. This aligns

with the predicted behavior from a well tuned swing leg retraction policy.

4.4.3 Hardware

The recurrent policies transferred to hardware without any notable difficulties. We were

able to take the robot for a walk around a large university campus using a randomly

selected Stair LSTM policy and attempt to climb the staircases we came across. We

observed robust and error-correcting behavior, as well as successful and repeatable stair

ascents and descents. In addition, we noted robustness to uneven terrain, logs, and curbs,

none of which were modeled in training. The policy was similarly robust to inclines and

deformable terrain, demonstrated by a walk through a wet grass field and up a small hill.

These experiments can be seen in our submission video 3, and a still image of one such

3[Web link to submission video: youtu.be/MPhEmC6b6XU]

https://youtu.be/MPhEmC6b6XU
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experiment can be seen in Fig. 4.4.

In addition to testing one-off terrains all over the university campus, we ran ten trials

ascending stairs, and ten trials descending stairs on an outdoor real-world staircase. We

recorded an 80% success rate in ascending stairs using the selected Stair LSTM policy,

and a 100% success rate in descending stairs. A full video of this trial can be seen in our

attachment to this submission. We note that the learned behavior is robust to missteps,

and can quickly recover from mistakes, though the policy is not completely infallible

and will fall if it makes a particularly egregious error. This experiment can be seen in

our supplemental video 4. The blind, proprioceptive learned strategy appears to rely on

a solid stair face; evaluating policies on slatted stairs in simulation resulted in a much

higher failure rate, pointing to the limits of such an approach. Even when explicitly

included in training, slatted stairs tended to trip up policies on ascent. By contrast, stairs

with randomly inclined steps (e.g., ones where each step had a unique pitch and roll

orientation) did not seem to be difficult for ascent or descent. Likewise, approaching

and ascending stairs at an angle did not seem to be an issue for policies.

4.5 Conclusion

In this work, we have motivated the desirability of a highly robust but blind walking

controller, and demonstrated that such a blind bipedal walking controller is capable of

climbing a wide variety of real-world stairs. In addition, we note that producing such a

controller requires very little modification to the training pipeline in Chapter 3, and in

4[Web link to supplemental video: youtu.be/nuhHiKEtaZQ]

https://youtu.be/nuhHiKEtaZQ
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particular no stair-specific reward terms; simply adding stairs to the environment with no

further information is sufficient for learning stair-capable control policies. An important

requirement of this learned ability appears to be a memory mechanism of some kind,

probably due to the partially observable nature of the task of walking through unknown

terrain while blind. In future work, it will be interesting to investigate how vision can

be most effectively used to improve the efficiency and/or performance of a blind bipedal

robot. Further, this work has demonstrated surprising capabilities for blind locomotion

and leaves open the question of where the limits lie.
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[57] Miomir Vukobratović and Branislav Borovac. Zero-moment point—thirty five
years of its life. International journal of humanoid robotics, 1(01):157–173, 2004.

[58] Eric R Westervelt, Jessy W Grizzle, and Daniel E Koditschek. Hybrid zero dynam-
ics of planar biped walkers. IEEE transactions on automatic control, 48(1):42–56,
2003.

[59] Pierre-Brice Wieber and Christine Chevallereau. Online adaptation of reference
trajectories for the control of walking systems. Robotics and Autonomous Systems,
54(7):559–566, 2006.

[60] Zhaoming Xie, Glen Berseth, Patrick Clary, Jonathan Hurst, and Michiel van de
Panne. Feedback control for cassie with deep reinforcement learning. In 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 1241–1246. IEEE, 2018.

http://incompleteideas.net/book/the-book.html
http://www.roboticsproceedings.org/rss14/p10.html
http://www.roboticsproceedings.org/rss14/p10.html
https://ieeexplore.ieee.org/abstract/document/6386109
https://ieeexplore.ieee.org/abstract/document/6386109
https://www.worldscientific.com/doi/abs/10.1142/S0219843604000083
https://www.worldscientific.com/doi/abs/10.1142/S0219843604000083
https://ieeexplore.ieee.org/document/1166523
https://ieeexplore.ieee.org/document/1166523
https://ieeexplore.ieee.org/abstract/document/8593722


59

[61] Zhaoming Xie, Patrick Clary, Jeremy Dao, Pedro Morais, Jonanthan Hurst, and
Michiel van de Panne. Learning locomotion skills for cassie: Iterative design and
sim-to-real. volume 100 of Proceedings of Machine Learning Research, pages
317–329. PMLR, 2020.

[62] Wenhao Yu, Jie Tan, C. Karen Liu, and Greg Turk. Preparing for the Unknown:
Learning a Universal Policy with Online System Identification. In Proceedings of
Robotics: Science and Systems, Cambridge, Massachusetts, July 2017.

[63] He Zhang, Sebastian Starke, Taku Komura, and Jun Saito. Mode-adaptive neural
networks for quadruped motion control. ACM Transactions on Graphics, 37(4):1–
11, 2018.

http://www.roboticsproceedings.org/rss13/p48.html
http://www.roboticsproceedings.org/rss13/p48.html

	Introduction
	Background
	Reinforcement Learning
	Proximal Policy Optimization (PPO)
	RNNs for Control Problems
	Dynamics Randomization
	Motion Synthesis

	Sim-to-Real Learning of All Common Bipedal Gaits via Periodic Reward Composition
	Introduction
	Learning Bipedal Gaits with Periodic Reward Composition
	Reinforcement Learning Framework
	Periodic Reward Composition
	Describing Bipedal Gaits

	Method
	Experimental Results
	Conclusion

	Blind Bipedal Stair Traversal via Sim-to-Real Reinforcement Learning
	Introduction
	Reinforcement Learning Formulation
	State Space
	Action Space
	Reward Function
	Dynamics Randomization
	Policy Representation and Learning

	Terrain Randomization
	Results
	Simulation
	Behavior Analysis
	Hardware

	Conclusion

	Bibliography

