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Abstract 

 Industrial robots are delivering more and more manipulation services in 

manufacturing.  However, when the task is complex, it is difficult to programme a robot 

to fulfil all the requirements because even a relatively simple task such as a peg-in-hole 

insertion contains many uncertainties, e.g. clearance, initial grasping position and 

insertion path. Humans, on the other hand, can deal with these variations using their 

vision and haptic feedback. Although humans can adapt to uncertainties easily, most of 

the time, the skilled based performances that relate to their tacit knowledge cannot be 

easily articulated. Even though the automation solution may not fully imitate human 

motion since some of them are not necessary, it would be useful if the skill based 

performance from a human could be firstly interpreted and modelled, which will then 

allow it to be transferred to the robot.   

 This thesis aims to reduce robot programming efforts significantly by 

developing a methodology to capture, model and transfer the manual manufacturing 

skills from a human demonstrator to the robot. Recently, Learning from Demonstration 

(LfD) is gaining interest as a framework to transfer skills from human teacher to robot 

using probability encoding approaches to model observations and state transition 

uncertainties. In close or actual contact manipulation tasks, it is difficult to reliabley 

record the state-action examples without interfering with the human senses and 

activities. Therefore, wearable sensors are investigated as a promising device to record 

the state-action examples without restricting the human experts during the skilled 

execution of their tasks.  

 Firstly to track human motions accurately and reliably in a defined 3-

dimensional workspace, a hybrid system of Vicon and IMUs is proposed to compensate 

for the known limitations of the individual system.  The data fusion method was able to 

overcome occlusion and frame flipping problems in the two camera Vicon setup and 

the drifting problem associated with the IMUs.  The results indicated that occlusion and 

frame flipping problems associated with Vicon can be mitigated by using the IMU 

measurements. Furthermore, the proposed method improves the Mean Square Error 

(MSE) tracking accuracy  range from 0.8˚ to 6.4˚ compared with the IMU only method.  
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 Secondly, to record haptic feedback from a teacher without physically 

obstructing their interactions with the workpiece, wearable surface electromyography 

(sEMG) armbands were used as an indirect method to indicate contact feedback during 

manual manipulations.  A muscle-force model using a Time Delayed Neural Network 

(TDNN) was built to map the sEMG signals to the known contact force. The results 

indicated that the model was capable of estimating the force from the sEMG armbands 

in the applications of interest, namely in peg-in-hole and beater winding tasks, with 

MSE of 2.75N and 0.18N respectively. 

 Finally, given the force estimation and the motion trajectories, a Hidden Markov 

Model (HMM) based approach was utilised as a state recognition method to encode and 

generalise the spatial and temporal information of the skilled executions. This method 

would allow a more representative control policy to be derived. A modified Gaussian 

Mixture Regression (GMR) method was then applied to enable motions reproduction 

by using the learned state-action policy. To simplify the validation procedure, instead 

of using the robot, additional demonstrations from the teacher were used to verify the 

reproduction performance of the policy, by assuming human teacher and robot learner 

are physical identical systems. The results confirmed the generalisation capability of 

the HMM model across a number of demonstrations from different subjects; and the 

reproduced motions from GMR were acceptable in these additional tests. 

 The proposed methodology provides a framework for producing a state-action 

model from skilled demonstrations that can be translated into robot kinematics and joint 

states for the robot to execute. The implication to industry is reduced efforts and time in 

programming the robots for applications where human skilled performances are 

required to cope robustly with various uncertainties during tasks execution.  

Keywords:  Manufacturing automation, Force based control, Motion Capturing 

(Mocap), Learning from Demonstration (LfD), surface Electromyography (sEMG).
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 Introduction 

1.1 Background and motivation 

Robots are an important resource in many industrial applications. They have 

replaced numerous dull, repetitive, dirty and dangerous manual manipulations. Robots 

have been implemented in manufacturing processes such as vehicle assembly [1][2] and 

polishing [3]. These task-specific processes are typically programmed off-line and 

manually by an engineer with the assistance of the Computer Aided Design (CAD) [4]. 

Due to the general skill shortage in manufacturing industry [5] and desire to increase 

productivity, robots that can augment and replicate human skills in more challenging 

environments are needed [5]. This means that the robots have to be upskilled to deal 

with more complex tasks such as performin delicate tasks (such as handling a soft 

component), higher-level task (such as making sequential decisions within a context), 

and interactive task with human operator (such as collaborative manipulations). To 

fulfil these increasing need of robotic applications, a new generation of the robot should 

be more flexible and human-driven designed [6]. 

The cost of deploying an automation system can be split into 20% to 25% for the 

robot, 20% to 30% auxiliary hardware, and 45% to 60% system integration [7]. A 

significant investment in effort and capitals are required to integrate the robots and 

sensors into the manufacutring workflow, however the resuse of the software from one 

application to another is very limited [7]. In general, the cost of installation and the 

supporting hardware/software infrastructures in a cell is normally up to 10 times of the 

cost of the robots. Therefore, an automation solution is more cost effective if the robot 

cell and program can be reusable. Programming a robot could take a long time and 

require programming skill. For large industries such as automotive and aerospace, the 

programs are required to be more adaptive to deal with complex task and increasing 

autonomy. For SMEs who have not adopted robotics in manufacturing, the reusability 

of the program is becoming even more important because the installation and 

infrastructure costs are unlikely to drop in the near future [7]. The increasing 

complexity of the manipulation tasks is soon making the automation solutions even 

harder to achieve by using the conventional robot programming method.  



2 

 

When a human expert is facing complex tasks,  most of the time, the decisions are 

derived from their tacit knowledge. In contrast to rule-based performance, tacit 

knowledge is difficult to articulate and difficult to model [8] but can be acquired 

through training.  Humans are adaptive to the variations by using predominantly visual 

and haptic feedback, even without knowing explicitly the exact mathematical or 

physical problems. For instance, a skilled operator can pick up a workpiece of any 

shape from anywhere on the table and assemble it in the right place with appropriate 

force.  The skills are embedded in the control policy which mapes the current state to 

the actions. For example, in the context of assembly task, the control policy maps the 

current reaction force and positions to the corrective motions. The capability to model 

such tacit control policies are useful to automate the process. 

Robot learning from demonstration (LfD) is such an approach to learn the control 

policies without too much programming effort. The concept is similar to an experienced 

worker trying to teach an apprentice. The experts will be demonstrating the task rather 

than explicitly explaining the rules behind their low level actions. The precise 

mathematical formulations of the task can be avoided using LfD allowing non-expert 

robot programmers to transfer their domain knowledge to the robot. A frequently used 

LfD framework is shown in Figure 1-1. In general, LfD contains three stages: 

demonstration, model, and reproduction.  The goal of LfD is to have a robot ‘watch’ a 

teacher’s demonstrations of the task to be performed [9];  The robot does not simply 

replicate one of the demonstrations rather a state-action policy is learned and computed 

by optimising the reward function from a small number of demonstrations with 

variations.  The LfD approach has been studied and applied on various robotic 

problems such as Peg-in-Hole (PiH) [10], Pick and Place [11] and ball sorting [12] 

which are closely related to the daily life manipulations. 
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Figure 1-1 The framework of transferring human skills to the robot learner via demonstration 

 In order to model the control policies, the human motions and haptic feedback 

need to be recorded. There are various technological solutions available in the market 

for human motion tracking performance. Wearable sensors [13] have gained the interest 

of researchers and developers because they are portable and non-intrusive to the natural 

motions. Among all the choices, photometry and Inertial Measurement Units (IMUs) 

based techniques are dominants for human motion tracking. The photometry technique 

relies on the cameras to record people’s movements and analyse them off-line. The 

current technology enables pose estimations of objects with the help of 3D camera or 

placing reflective markers on the subject’s body. Different from the camera-based 

approach, the IMUs does not need the line-of-sight and use freely in the space for body 

tracking. Some active application areas are rehabilitation [13], teleoperations [14] and 

entertainments [15].   

The LfD approach has been largely used for learning human kinematics, however, 

most contact-based manipulation problems are relying on force/haptic feedback. 

Therefore, it is more important to develop force based control policies for applications 

that require skills performance from the workers. To generate accurate haptic feedback, 

force-toque (F/T) sensing or tactile sensing devices are ideal choices. In manufacturing, 

the F/T sensor attached to the robot end effector generates force feedback to the robots. 

However, it would be impractical to mount an F/T sensor on the human operator whilst 

they are carrying out skilled tasks. Therefore, tactile gloves are often used to generate 

force feedback directly[16]. However, the touch feedback is still compromised by using 

the glove. As an alternative, an indirect method is to use the measurement of the muscle 

Human DemonstrationHuman Demonstration

Skills Encoding and 
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activations to indicate the level of the contact force. Wearable surface 

Electromyography (sEMG) is the device to measure the electrical activity of the muscle 

fibers during a contraction [16]. It has been used for gesture recognition [17], force [18] 

and pose estimations [19] and controlling prosthesis [20]. 

Based on the above context, this thesis aims to capture, model and transfer the 

manual manufacturing skills from a human demonstrator to the robot to reduce the 

associated programming efforts using the LfD framework. A hypothesis in this thesis is 

the wearable sensors for both human motion tracking and haptic feedback can be used 

to capture the skills of an operator and provide a model of the state-action policies 

required to control the robot.   

1.2 Problem statement  

To date, an accurate wearable human motion tracking system is usually based on 

photogrammetry. For example, a multi-cameras Vicon system [21] can be used to track 

objects with multiple reflective markers attached. To track an object in three 

dimensional space, the minimal requirement is two cameras; the accuracy can be 

improved with more cameras but the setup will be expensive. Although the accuracy 

might be enough for human motion tracking, occlusion is a problem when line-of-sight 

is unavailable. Inertial Measurement Units (IMUs) are promising alternative in free 

space motion tracking but they suffer from the drifting problem due to magnetic 

distortion [14]. 

The human motion tracking systems are more responsible to the gross motions and 

the kinematic based control. But the fine motions tend to rely on additional tactile 

feedback, which are difficult to measure. The F/T sensor is widely used for capturing 

haptic feedbacks, but its measurements are not easy to collect due to the sensor size and 

physical restriction of the fixtures, which often obstruct the physical interactions 

between the operator and the workpiece. One potential solution is to install a static F/T 

sensor however, if the application changes, F/T sensor has to be retrofitted into a 

different position. Therefore, this restricts the implementation of the LfD approach on 

industrial applications that require accurate and intricate manipulations. As an 

alternative, indirect measurements of haptic feedback using muscle activations can be 

potentially useful. However, muscle-force model is subject specific and can be 

challenging to build [22].  Supported by the study of anatomy, the researchers in 
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biomechanics have provided explicit muscle-force model using simulation approaches 

[23]. However, this method requires a long time to calibrate the individual subject’s 

model from the standard model and the setting up phase usually takes a long time. A 

data-driven approach might be more appropriate, but tuning of the non-parametric 

muscle-force model could be challenging. 

After gathering the motion and haptic data, the signals have to be decomposed to 

extract essential features of the given tasks especially those related to the tacit 

knowledge that are performed without conscious control. Researchers who are focusing 

on building explicit control policies using parametric models derived from physical or 

mathematical formulations face the problem of uncertainties, which is exacerbated 

when the task is more complicated with many states and actions.  To this end, the robot 

learning from demonstration approach tries to address uncertainties by constraining and 

modeling them through a small number of human demonstrations. The approach 

assumes that the meaningful features from the experts are encoded in the state-action 

policies since not all the teacher’s executions contribute to optimal solutions of the task. 

The challenges relate to how to derive control policies with generalisation capability 

and how suitable it is for the robot to reproduce the required performance.  

One of the common ways of demonstrating a task to a robot is through kinaesthetic 

teaching (i.e., human teaches the robot by holding the end-effector and all the data are 

recorded from the sensors on the robot). However this approach limits the ability to 

represent the underlying human skills reliably. Therefore, as oppose to this teaching 

method, the sensor-on-teacher approach has been chosen in this thesis because this 

approach allows the operator to demonstrate fine manipulation skills naturally during 

the demonstrations. The wearable systems used in this thesis become essential in this 

context. After demonstration step, extra efforts are needed to map the state-action 

policy from the teacher to the student [24]. Once the state-action policy has been built 

based on human skilled executions, the challenge relates to the transferring and 

deployment on the robot due to the correspondence issue in between the teacher and 

learner [25].   

Among all the mentioned challenges, the scope of this research is framed as the 

following: i) build a reliable wearable system suitable for tracking human operators 

during manual manipulation task demonstrations that require both haptic and pose 
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feedbacks; ii) verify the skill model reproducibility against unseen human 

demonstration episodes; iii) evaluate the robustness of the skill transfer framework on a 

different case study. The correspondence issue is outside the scope of the study, since 

the model is validated from the unseen human dataset. Four challenges to be addressed 

in this thesis are described in the following sub-sections. 

1.2.1 Reliable tracking of human motion with minimal interference 

Various wearable techniques have been proposed in the literature to enable human 

motion tracking. To achieve the aim of this research, the teacher should deliver his/her 

skill as reliable as possible with minimal interference. The user wearing mechanical 

trackers made from rigid or flexible goniometers are therefore considered inappropriate. 

These trackers directly measure the joint angles of the wearer. However, the installation 

of these body-based linkages is not trivial and requires extra efforts from the operator to 

get used to them. It is difficult to track the full body motions in multiple degrees of 

freedom as a result of these constraints. Additionally, the  fixture may obstruct user 

comfort thus, the data may not be representative of their actual motions. Vision based 

tracking removes those fixture and allows the subject to move in three dimensions 

without constraints. However, vision systems may lose tracking when the objects are 

occluded or partially occluded, for instance, when the operator moved his/her hand 

inside a hole, which makes the markers invisible from the camera. To date, miniature 

IMUs with embedded accelerometers, gyroscope and magnetometer are available, but 

they suffer from drifting problem and unreliable for long time usage. From the above, 

the tracking system needs to robustly record the human motion with reliable 

measurements and minimal interference, but the current technologies have their 

disadvantages as stated above.  

1.2.2 Skill capturing, encoding and generalisation 

The quality of LfD approach highly depends on the information provided by the 

demonstration dataset. This means a poorly composed dataset leads to a poorer learner 

performance. Ideally, a teacher should demonstrate optimal skills to the robot. However, 

the reality is teachers’ executions might be suboptimal [26] which means the sensing of 

the state and its corresponding action might not be sufficient or necessary for the robot 

to learn. One potential solution is to remove the irrelevant or unnecessary actions that 

do not contribute to the task. Another solution is to smooth and generalise the 

suboptimal solutions by multiple demonstrations or multiple teachers [24-25]. In 
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summary, the challenge in skills capturing, encoding and generalisation are the 

difficulties in deriving suitable and reusable policy due to the problems stated above. 

1.2.3 Muscle-force model based on sEMG measurement 

To generate haptic feedback without installing F/T sensors, wearable sEMG 

sensors are potentially useful [29]. sEMG driven muscle-force model has been 

developed for lower limbs [30] and upper limbs [31]. But most of the researchers are 

concerned with one degree of freedom movement [32][33]. This is because multiple 

degrees of motions make the modeling difficult. Normally, the muscle-force model is 

stationary and can be modeled using one Gaussian distribution within a short interval of 

isometric contraction. However, when the person moves to a different pose, muscle’s 

behavior changes [34]. Therefore, to collect haptic feedback from human, a dynamic 

muscle-force model with more than one degree of freedom would be required to 

represent complex manipulations.  

1.2.4 Evaluation of the motion productions based on the learned state-action policy 

Once the state-action policy model is available, the robot could reproduce the 

motions. The reproduced motion is the action after the learner’s perception of its state. 

Well-established policy helps the learner smoothly and accurately switching control 

strategies when the state transition happens. However, suboptimal solutions degrade the 

learner’s reproduction performance. In this thesis, applying the control policy onto the 

actual robot learner is beyond the scope of the study, therefore, regardless the 

correspondence problem; the challenge is to evaluate the performance of the policy 

from human demonstrations before transferring the model to a robot learner.   

1.3 Research aim and objectives 

This thesis aims to address the knowledge gaps with regards to capturing, 

modeling and transferring the manual manufacturing skills from a human demonstrator 

to the robot with the help of wearable sensors. The application domains are manual 

manipulations using forearm. To pursue this aim the following objectives are identified: 

1.3.1 To develop a wearable system that reliably track human motions 

To develop a hybrid system that reliably tracks the human body segments using 

photometrical and inertial-based wearable sensors with minimal interference of the 

process. This is because with a limited number of cameras and occlusion of the line-of-
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sight problem as stated in Section 1.2.1, the camera-based approach is accurate but not 

appropriate for tracking the subject in a complex environment. Drifting problem 

associated with IMUs makes it unsuitable for tracking over a long period. Therefore, a 

hybrid method that fuses the advantages from both systems is developed to track human 

forearm in a natural way, and the system performances are validated. 

1.3.2 To build state-action policy models from human demonstrations that relate to 

industrial manual manipulations. 

To understanding the tacit human skill in industrial manipulations, a well-

established state-action policy for human demonstrations is derived. An approach that 

can generalise across different executions and teachers to reproduce a smooth trajectory 

of actions based on the recognised states is developed and tested for Peg-in-Hole task 

(chapter 4) and drum beater winding task (chapter 6).  

1.3.3 To develop a muscle-force model to predict the forces generated from forearm 

muscle activations using wearable sEMG devices. 

To eliminate the need to install F/T sensor during demonstrations, an indirect 

method is developed based on muscle activation signals generated from sEMG sensors 

worn on the forearm to allow the force feedback to be collected. A dynamic muscle-

force model is built by mapping the sEMG signals to the known forces and the 

performance is validated for Peg-in-a-Hole task (chapter 5) and drum beater winding 

task (chapter 6). The case studies are briefly described in section 1.4. 

1.3.4 To verify and evaluate the robustness of the proposed framework. 

To verify the framework, the trained model is tested with additional samples, and 

evaluation metrics are applied to compare the results of various parameter 

configurations and different subjects. To evaluate the robustness of this framework, a 

second case study on drum beater winding task (chapter 6) was used. The results from 

the proposed indirect methodology for human-robot skill transferring are analysed and 

discussed. 

1.4 Case studies 

To meet the research objectives set out in this thesis, two cases were studied. 

Both of them are manual manipulations which dominantly rely on human forearm 

control. The first case study, as shown in Figure 1-2, is a Peg-in-Hole (PiH) insertion 
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task. This is a typical example used in the literature to demonstrate the robot’s 

capability to perform an industrial assembly task  under uncertainty that requires the 

teacher to demonstrate his/her tacit knowledge of the insertion skills [35].  The 

uncertainties of the PiH are mainly from the different peg clearances, the grasping 

strategy of the operators, and the different insertion paths. Compliant grippers [36] had 

been designed to constraint these, but they cannot eliminate all the variations. Therefore, 

active compliant control using multiple sensors becomes important to further adapt to 

the uncertainty. A hybrid approach is also promising, but the main focus of this work is 

learning the compliant control policy from the human demonstrations. Researchers 

have taught the robot PiH skills by guiding the robot arm [37]. The kinematic data are 

directly recorded and the F/T sensor is installed on the end effector. But these 

approaches do not capture the underlying human skills, therefore sensor on teacher 

approach is considered more suitable in this work. The human demonstrations might 

introduce more uncertainty such as the different experiment length, the different muscle 

groups and the different sensor placements. These require additional validation step and 

a careful calibration strategy.  

Figure 1-2 A peg-in-hole task. 

The second case study is a drum beater winding process where the operator 

winds synthetic yarn onto a spherical rubber attached to one end of a wooden stick to 

create the drum beater head. The skills required in this task have been found to be 

largely procedural[38], but maintaining tension while the geometry is changing is one 
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of the key skills required to accomplish the task.  Therefore, these tacit skills were 

demonstated and learned in this work. As shown in Figure 1-3, the operator is holding 

the beater head using her left hand and winding using her right hand. To simplify the 

case study, the left hand is assumed fixed and the right hand delivers the winding skill. 

In reality, the translation movements in the right hand are small and the dominant 

features are hand orientations. The main haptic feedback in this case study is the 

tension produced in the yarn. To measure the tension, a tension measurement unit was 

firstly designed and made. This device is not intended to be installed on the human 

body but it was used for building a muscle-tension model. Once the model is built, the 

teacher can demonstrate the winding task without having to use the tension 

measurement unit. The proposed LfD methodology was demonstrated and verified for 

both case studies. 

  

Figure 1-3 One frame of the winding process. 

1.5 Thesis structure 

An overview of the proposed methodology is shown in Figure 1-4. From left to 

right, the human demonstration (i.e., PiH task) was tracked, encoded and control policy 

was reproduced and evaluated. The details in each block are explained in the following 

chapters. The thesis structure is shown in  Figure 1-5.  
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Figure 1-4  An overview of the proposed methodology. 

Chapter 1 provides an overview of the research background, problems and 

motivation needed to understand the research gaps, and the approach undertaken to 

address them through four measurable objectives. 

Chapter 2 provides a literature review of the LfD, human motion tracking and 

muscle-force modeling using wearable sensors.  The research gaps pertaining to this 

thesis were identified from this chapter. 

Chapter 3 presents a robust and reliable hybrid method to track the human 

forearm motions using Vicon system with two cameras and IMUs. Research objective 

one (section 1.3.1) is addressed in this chapter. A low cost and automatic data-driven 

approach has been developed to align the IMU and Vicon local frames to improve 

tracking reliability. The proposed hybrid forearm tracking system has overcome drifts 

and occlusion issues associated with the individual system. 

Chapter 4 presents a method to build reproducible GMM-HMM state action 

policy models for industrial manipulation i.e. peg in a hole. A thorough evaluation of 

the time sequence motion reproduction were performed against further human 

experiments with an average accuracy less than 2.5 degree.  Research objective three 

(section 1.3.2) is addressed in this chapter. The expert skills for fine/dexterous task can 

be automatically encoded from and reproduced from the human demonstrations and 

proposed probabilistic encoding approach.  

Chapter 5 focuses on modeling the muscle-force relationship by using the 

TDNN in the PiH scenario.  Research objective two (section 1.3.2) addressed in this 
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chapter. A predictive force modelling approach has been proposed by using the sEMG 

signals. A Wearable framework has been proposed through offline mapping of muscle 

activations to the force measurements. A thorough evaluations on PiH process with a 

repeatability of 3 ± 0.5 N was achieved.  

Chapter 6 applies the methodology from chapter 4 and 5 to a beater winding 

task. Research objective two and three are addressed in this chapter. The contribution of 

this chapter is to apply the proposed skill transfer framework on a different industrial 

manipulation case study i.e. beater winding.   

 Research objective four is addressed from chapter 3 to chapter 6. It includes the 

verfications and validations on the built models, and evaluations on a different case 

study.  

Chapter 7 summarises the key contributions of this thesis and offers directions 

for future work. 
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Figure 1-5 Thesis structure 
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 Literature Review 

 This chapter reviews the existing literature and identifies the research 

challenges related to transferring the human skills using wearable devices to robots. 

Section 2.1 provides a review of the human motion tracking approaches, focussing on 

the state-of-the-art technologies to reliably and accurately track human motions and 

their applications. Section 2.2 focuses on the methods to build the sEMG-force model 

using the signal processing and the modeling techniques. Finally, section 2.3 provides a 

review on the human skills extraction and transferring by using the robot learning from 

demonstration approaches.  

2.1 Human motion tracking 

 Human motion tracking technologies enable the compliant movements to be 

recorded and analysed. A reliable and accurate motion capturing system is critical for 

the applications concerned in this thesis because the robot student has to reproduce the 

correct state-actions regarding its velocity or acceleration commands. Motion capture 

and analysis is a popular research field with many applications in areas such as, 

computer animations, rehabilitation, surveillance and human-machine interaction 

[39][40].  Figure 2-1 is an overview of the available tracking system where the human 

motions can be recorded using on-body and visual sensors [41]. 

 

Figure 2-1 An overview of the human motion tracking system [41]. 

 

 Mainly, motion capturing systems can be classified into three categories: visual 

based tracking, non-visual based tracking, robot-aided tracking. In visual based tracking, 
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both marker-free and marker based approaches have been investigated. In the marker 

free approach, the 2D and 3D cameras are directly used to monitor the actors’ motion 

and fit a model from the data points in the view. In the marker based approach, the 

actors need to wear obtrusive devices such as reflective markers or fixtures to assist 

motion capturing. Different from the visual based tracking, a non-visual based tracking 

uses systems such as Inertial Measurement Units, data gloves and acoustic sensors 

without requiring ‘line-of-sight’. In the robot aided tracking system, the human motions 

are tracked through the exoskeleton systems. In the following sections, various motion 

tracking systems have been reviewed in depth.  

2.1.1 Visual based tracking system 

 From the literature, the marker-based approach is mainly using reflective 

markers with more than one monocular camera [42]. A large amount of commercially 

available real-time motion tracking systems is marker-based which requires the 

operators to wear devices, which might obstruct the operator when carrying out skilled 

work. The marker-based tracking system can be passive, active or hybrid. In the passive 

case, the markers do not generate any light, only reflect the incoming light. In contrast, 

the active marker can produce light (i.e. infrared) that can be detected by the camera 

system.   

 Qualisys [43] as shown in Figure 2-2, and Vicon [44] as shown in Figure 2-3 

are commercial products which use passive markers. CODA [45] and Polaris [46] 

systems are the commonly used active visual tracking products. The advantages of the 

marker based system is due to the contact-less sensing, six degree-of-freedom (6 DOF) 

measurement, high sampling rates, multiple simultaneous segments tracking and high 

accuracy and precision measurements [47]. The accuracy of such system is dependent 

on various factors such as the resolution of the monocular camera, the size of 

measuring volume, the cameras configuration around the measurement volume and the 

accuracy of the extrinsic and intrinsic parameters computed from the calibration 

procedure for each camera [47]. Some researchers have evaluated and reported the 

marker based system accuracy in small working volumes [47].   
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Figure 2-2 Qualisys system with 5 camera configuration [43]. 

 

Figure 2-3 An operating Vicon system [44]. 

 Yang et al. [48] used a Vicon MX system with five F40 cameras to measure the 

bone deformation in a 400×300×300 mm3 volume.  In the optimal conditions, a 

displacement of 20 μm had 1.2μm -1.8 μm absolute error. 

 Liu et al. [49] used the Qualisys ProReflex-MCU120 (658×500 pixels, CCD) 

cameras to measure the micro displacements of teeth.  The field of views was 68.18 

mm ×51.14 mm, and the accuracy of displacements was ±1.17%, ±1.67% and ±1.31% 

in axis wise terms. The corresponding standard deviations were ±1.7μm, ±2.3 μm and 

±1.9 μm. The measurements range from 20μm to 200μm. 

 Windolf et al. [50] systemically evaluated a five Mcam-60 cameras (1012×987 

pixels, CMOS) Vicon system. The experiment used an 180×180×150 mm3 volume to 

capture small magnitude biomechanical motion. The samples were collected in 294 

positions according to a 7×7×6 grid with 30mm uniform spacing. Each measurement 
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was compared with an XYZ scanner with 15  μm  linear encoder accuracy. The 

evaluations were conducted for various variables such as camera positions, manual 

versus scanner based dynamic calibration, accuracy outside the calibration volume and 

marker size. The optimal set of variables achieved an overall accuracy of 63 ± 5μm.  It 

was concluded that the main factors are the camera placements, the marker size (larger 

markers increase the accuracy) and lens filtering to sharpen the target edge. Also, the 

accuracy in the calibrated volume was significantly larger than un-calibrated volume. 

 For larger working volume, a six-camera Vicon system with a 6.8×3.8×3.8 m3 

calibrated volume has been evaluated for static positional accuracy [47]. The true 

ground measurements were provided by a highly accurate laser tracker: Leica Absolute 

Tracker AT901B. According to Windolf et al [50], the cameras were deployed in the 

optimal placements such that at least two cameras were available at any point of the 

volume for triangulation. A systematic approach had been proposed to evaluate the 

measurements in the dense space over a large volume using large markers of diameter 

38.1mm; the effects of the calibration artifact in the system accuracy. It was found that 

the mean errors in the active and passive calibration approaches were 1.48mm and 

3.95mm respectively (the maximum errors were 4.03 mm and 7.15mm respectively).   

 The manipulations studied in this thesis had a working volume from middle to 

large size (range from half metre to a couple of metres). In this range, Vicon systems 

are extensively used in the applications such as gait analysis [51], rehabilitation [52], 

animation in the entertainment [53] and improving tracking accuracy in robotics [54]. 

 Yang et al. [52] proposed a cost-effective and portable system for motion 

analysis and post-stroke impairment assessment, using a single camera. The reason of 

using single camera was that the system did not require three-dimensional tracking. The 

markers were attached to the human upper limb. The results showed that the proposed 

decision support system had the capability to offer stroke survivors and clinicians an 

affordable, accurate, and precise assessment method suitable for home healthcare. 

 Lee et al.[44] used a twelve cameras system for real-time control of three-

dimension avatars in the computer games and virtual environments. They proposed an 

approach by obtaining a large dataset of candidate human motions, which was 

sufficient for exploitation of the real-time control strategies for the avatars. They 
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showed the flexibility of the approach by using four different applications and 

evaluated the avatar motions with the recorded human motion. 

 Schmidt et al. [55] proposed a protocol that can measure the free rotations of the 

wrist and elbow movements in three-dimensional space.  The method can be used for 

diagnosis and treatment of disorders in the upper extremities. The experiment setup as 

shown in Figure 2-4 was intuitive and suitable for reducing the influence of the skin 

movements because the markers were rigidly fixed on the plate. More importantly, this 

setup can also be used for analysing the manual manipulation works such as assembly 

and polishing tasks. 

  

Figure 2-4 A protocol for tracking human upper extremities using Vicon  [55].  

 For lower extremities, the marker-based approach has been used for gait 

simulation using AnyBody Modeling system [56]. As shown in Figure 2-5, 15 markers 

were installed on both legs to reconstruct the gait motions.  They can be used jointly 

with other sources of measurements i.e. force plate on the ground and muscle activation 

levels. The simulation system generates comprehensive analytical results for clinicians. 
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Figure 2-5 Marker placements in the lower extremities [56]. 

 The marker-based approach can be accurate, but it has some disadvantages: (1) 

the marker can displace during movement; (2) the markers can become removed from 

the skin; (3) the skin can move and introduce noise to the data; (4) The body landmarks 

can vary in between subjects so that they make the measurement unreliable. Therefore, 

the following review of the marker-free approaches is necessary. 

 Nowadays, the tracking of moving objects can be highly accurate due to the 

high resolution of the camera with over a million pixels. The cameras are portable, and 

the parameters are easy to configure by the user. Therefore, this makes a 2D camera 

suitable for surveillance applications.  However, challenges arise when the computation 

of the 3D localisation with an optimal latency of the data is required. Also, due to the 

limited bandwidth for accurate data representation, high-speed cameras are required 

[57]. 

 Different from the marker-based method where the objects can be reliably 

tracked by the reference markers, the marker-free method typically uses 2D and 3D 

approaches that directly capture the object by fitting the models. In the 2D approach, 

the main research interest are focusing on identification of the explicit shape models by 

introducing prior knowledge of human body segments [58]. The active shape model 

[59] without using explicit shape model is also commonly used.  In 3D approach, 

model-based tracking e.g. stick figure [60] and volumetric modeling [61] are commonly 

used to overcome the self-occlusion and collision problems.  Feature-based tracking is 

another popular research area where global features [62][63] and local features [64][65] 

are utilised to be matched across images. 
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 Zhang el al. [66] tracked a 22-DOF human kinematic model by fusing multiple 

depth cameras.  They seamlessly registered multiple depth images from depth cameras 

into one single joint point cloud in which the pose estimation is derived. To track the 

high-dimensional human poses, particle filtering algorithm was employed.  The particle 

likelihood is computed based on the distance of each observed point to a parameterized 

human shape model. The results indicated that the proposed method is considerably 

more robust for unconstrained motions and under occlusions. 

 Shotton et al. [67] proposed a novel approach to predict the positions of the 

human joints by only using one depth camera (Kinect) without time information. The 

estimations of the joint positions were derived from a large training dataset which 

contains sufficient variations for the classifier to recognize body parts invariant to pose, 

body shape and occlusions, etc. The system ran at 200 frames per second and achieved 

highly accurate tracking performance by using both synthetic and real test data.  

 Ganaphathi et al. [68] proposed a marker-less tracking method for pose 

estimations of the whole human body segments using time-of-flight camera. The 

filtering algorithm first encoded the probability model of the articulated body parts by 

using Bayesian network; then the pose inference was done by given the current frame 

of the range images. They had evaluated the method by 28 real world sequence using 

ground-true values from maker based motion capturing system. 

 Sminchisescu et al. [69] presented a robust method for recognizing the 3D 

human pose from monocular video sequences by considering the joint limits, non-self-

intersection constraints, a search strategy guided by a rescaled cost-function covariance 

and robust image feature matching.  They demonstrated that the mentioned 

considerations were essential for reliable human motion tracking to overcome problems 

such as self-occlusion, model imperfection, and high dimensional features. 

 Agarwal et al. [70] proposed a learning-based approach for detecting 3D human 

body pose from monocular sequences. Neither explicit model nor prior labeling of the 

body parts was required by this method. The pose was detected by nonlinear regression 

method (Support Vector Regression) using histogram descriptors derived from the 

silhouette shapes. A 4-6 degree of the mean angular error was obtained in the walking 

sequences. 
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2.1.1 Non-visual based tracking systems 

 One of the disadvantages of the visual based tracking system is that it requires 

“line of sight.” Therefore, it is difficult to consistently and effectively monitor the 

operators’ movements during the manipulations in the ambient working environment 

with clutters. In this case, non-visual based tracking systems such as inertial, magnetic 

and ultrasonic systems are often used and are available as commercial products. Data 

gloves are also gaining more attentions due to the modern sensing techniques. 

 Inertial sensors have been extensively used in the sports industry, healthcare, 

navigation and human modeling in the augmented reality [71].  The data from the 

sensors can be wirelessly transmitted to the workstation for further processing. The 

biggest advantage of the inertial sensor is that there are no restrictions in the working 

areas so the operator can freely move about. However, the position and angle of the 

inertial sensor suffer from drifting due to the fluctuations of offsets and measurement 

noise [72].  Therefore, the main challenge of the inertial sensor design is to overcome 

the drifts. 

 Mtx is an Inertial Measurement Unit (IMU) that measures 3D orientation plus 

acceleration and angular velocity [73].  The newly designed Xsense MVN motion 

capture suit, as shown in Figure 2-6, is an easy-to-retrofit, cost efficient for full body 

tracking applications with the integration of several miniature Mtx sensors [73]. In the 

homogeneous earth-magnetic field, the individual sensor has 0.05° root-mean-square 

(RMS) angular resolution; ≤1.0° static accuracy; and 3° dynamic accuracy.   
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Figure 2-6 Single Mtx sensor (left) and Xsense motion capture suite (right) [73]. 

 Zhou and Hu [74][75] introduced a novel tracking strategy for human upper 

limb motion.  The upper limb motion was represented by using six joint variables 

which form a kinematic chain.  A simulation annealing approach was implemented to 

reduce the measurement error.  Furthermore, a Kalman filter based method was used to 

depress the noise in the measurements by using the on-board accelerometers and 

gyroscopes [76].  The experiment indicated a reduction of the drift and noise.  

 Yu et al. [77] installed IMUs to track the full human body motions of a skier 

and characterised ski turns and performance.  The goal of the research was to identify 

the optimal sensor installation locations. The validation results indicated that the 

proposed method could effectively evaluate the skier performance with minimal 

interference of the skier’s motion.  Moreover, it can be used for routine training of the 

professional skiers. 

 Sessa et al. [78] proposed a systematic approach to evaluate the performance of 

the IMU devices with a Vicon system.  They used Vicon as a ground true reference 

system and a Dynamic Time Warping (DTW) algorithm to solve the sensor 

misalignment issues. They used an Extended Kalman filter to estimate the tri-axes 

orientations. The proposed method enabled the comparisons of the different IMUs by 

using the same Vicon system as a reference. 

 Kang et al. [79] proposed a design and implementation of a real-time human 

body motion capture system using IMUs.  Each body segments were captured by a 

single IMU. A lie group setting was used to represent the kinematic tree of the full body 
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configurations. A golf swing motion was used in the simulation environment to validate 

the feasibility of the proposed approach. 

 Roetenberg et al. [80] used multiple IMUs to capture human motions for gesture 

recognitions.  In total, six different gestures were used, and data were collected from 

eleven participants. A Support Vector Machine (SVM) and Neural Network-based 

methods were implemented and compared on the same dataset. The results indicated 

the classification accuracies are satisfactory and the speed of gesture recognition was 

acceptable for interactive usage. 

 Qiu et al. [81] proposed a wearable sensor approach to capture human lower 

limbs as shown in Figure 2-7.  The goal was performance evaluation of the specific 

walking and stair ascent capabilities. The Denacit-Hartenberg (DH) convention was 

used to set up the kinematic chains when the foot stayed stationary on the ground and 

produced state constraints to reset the estimation error on the knee’s position. The 

method to solve the drifting problem when the IMU had to operate in the long term was 

developed. The Vicon system was used as the ground true reference measurements. The 

results were satisfactory and consistent for tracking of human lower limbs.  

 

Figure 2-7 Schematic plot of the human lower limbs. (a) Sensor attachment. (b) D-H models. [81] 

 The magnetic based motion tracking system requires the performer to wear an 

array of the magnetic receiver which tracks location with respect to a static magnetic 

transmitter. The advantages of this type of sensor are due to its high sampling rate, 

being invariance to occlusions and wearability, which make it suitable for virtual reality 

and motion capturing. However, the magnetic sensor also suffers from latency due to 
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the asynchronous nature of the sensor measurements and jitter when there are ferrous or 

electronic devices in the surrounding causing noise in the measurements. 

 One of the commercial products, as shown in Figure 2-8 is MotionStar produced 

by the Ascension Technology Corporation in the United States [82].  It has ±3.05 m 

translation range; ±180° for Azimuth and Roll, ±90° for Elevation in the angular range; 

static resolution (position) is 80 𝜇𝑚 at 1.52 m range; static resolution (orientation) is 

0.1 RMS at 1.52 m range. It uses direct current (DC) electromagnetic tracking 

technology, which generates less metallic distortion of the measurement than the 

alternating current (AC) electromagnetic tracking systems. Another system is 

LIBERTY from Polhemus [83].  The update rate is 240 frames per second per sensor. 

The latency is 3.5 ms, and the resolution is 38 𝜇𝑚 and 0.0012° orientation at 300 𝜇𝑚 

range, A method has been proposed in [84] to convert the magnetic sensor 

measurement to the human anatomical rotations. 

 

Figure 2-8 a wireless MotionStar system [82]. 

 Acoustic system uses a transmitter and receiver to collect sound wave signals. 

The flight duration of the ultrasonic pulse is timed and measured. It is widely used in 

medical applications but rarely used for motion capturing.  The drawbacks are: (1) large 

device is required because the efficiency of the acoustic transducer relies on the size of 

active surface area; (2) the frequency of the ultrasonic wave has to be low to improve 

the detection range, but this affects continuous measurements due to latency; and (3) 

“line of sight” is required by the acoustic system. 

 Data glove has been studied for analysing hand gestures since the late 1970s. It 

transduces the finger flexion and bending into electrical signals to estimate hand pose. 
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The device can be used for hand therapy due to the flexibility, ease to wear, accuracy 

and being lightweight. The principle of the glove is translating the amount of light that 

escape from the fiber optic cable to the amount of bending in the finger. Therefore, a 

recalibration is required for each user.  One commercial product is CyberGlove system 

with one CyberGlove unit (as shown in Figure 2-9). It has a serial connection to the 

host PC, a virtual simulator for the hand postures, and calibration software [85].  A 

PowerGove designed by Abrams-Gentile Entertainment operates with flat plastic strain 

gauge fibres that are coated with conductive ink along the sensor stripe. The degree of 

flex of the finger can be measured from the changes in the resistance when the finger 

bends. Another research introduced an approach to use materials of Lycra and Nylon 

blend on each of the five fingers. The repeatability test indicated average variations of 

2.96% in the hand gripping position [86]. 

 

Figure 2-9 A CyberGlove [85]. 

2.1.2 Robot-aided tracking system  

 The robot-aided tracking system uses exoskeletons (as shown in Figure 2-10) to 

enable a human to complete difficult tasks, i.e. lifting and moving heavy loads, and arm 

rehabilitations. In its early and simple form, Taylor [87] proposed a 2DOF robot arm 

wore by the patient to allow movements of a shoulder and elbow in a horizontal plane.  

He further proposed a five exoskeleton system to enable daily living operations. The 

results were validated against with the goniometer for arm pose identifications. Another 

early example of the exoskeleton system was “Handyman” with 10 DOF 

electrohydraulic arms [88][89].  Even though the system had potential for many 

applications, it is still not commonly commercial available due to weight, safety 

hazards [90] and limitations in the functional anatomy of the human arm.  Therefore, it 
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is unsuitable for the implementation scenarios of this work because the additional 

fixtures will make the operator uncomfortable while completing the manipulations.  

 

Figure 2-10 An example of a 5 DOF exoskeleton [91]. 

 In this section, motion tracking systems have been reviewed. Table 2-1 

summarises the literatures which fall into different categories. Among the choices, 

marker-based Vicon system and IMU system are more suitable candidates due to their 

accuracy and portability. Table 2-2 is a comparison of the two. Both systems are able to 

track human kinematic motions with sufficient angular accuracy (±3˚), but the 

measurements from Vicon are more reliable without drifts. The IMUs are more flexible 

and suitable for free space movements. Therefore, both limitations need to be addressed 

in a hybrid system will provide a more reliable solution. 

Table 2-1 A classification of the motion tracking systems. 

Human motion tracking 

Non-visual tracking Visual tracking Robot- 

aided 

tracking 
Inertial-based 

 

Magneti
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Other 
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[43] 

 

[66][67][68][69][

70][98][99][100] 

[58][59] [57] 

 

[87][88][8

9][90][91] 

 

Table 2-2 A comparison of the Vicon and IMU system 

 Vicon IMU 

Pros Tracking without drift More suitable for free space movements 

Cons Line-of-sight occlusion Tracking with drift 
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2.2 sEMG-force modelling  

 Electromyography signals are electrical activity of the muscle’s motor unit, 

which is produced during muscle contraction and controlled by the nervous system. The 

signal represents the physiological and anatomical properties of muscles. From the 

literature, both non-invasive and invasive electrode to collect the surface and 

intramuscular electromyography signals respectively [101]. Due to its simplicity, it is 

preferable to use surface EMG (sEMG) signal to record the intensity of the superficial 

muscle activities [102]. They have been applied in many applications, including 

prosthesis or rehabilitation devices, human machine interaction [106-107], 

entertainment and clinical/ biomedical. This section starts with the review of the 

existing signal processing techniques for sEMG feature extractions and recognition, 

followed by the state-of-art techniques to build sEMG-force models. Although sEMG is 

an important indicator of the muscle activation time and fatigue index which is useful 

for muscle rehabilitation [105], the muscle-force relation is the primary focus of this 

research because the model will be used to replace the role of the F/T sensor. 

2.2.1 sEMG signal processing and feature extraction 

 The raw sEMG signal contains various type of noise which makes it difficult to 

analyse, especially when movements with multiple DOF occur [106]. To effectively use 

it, an accurate signal processing is essential. When receiving sEMG signal, various 

background noises are recorded due to the presence of electronic equipment and 

physiological factors [101]. At the beginning of the section, an overview of the various 

noise sources and ways to overcome them are discussed. 

a) Noise sources 

 Different types of noise can be found in sEMG signals. Depending on the 

subjects, factors that have influence to the signal are: the individual skin formation, the 

blood flow velocity, the measured skin temperatures, the tissue structure, and the 

measurement positions, etc [101]. They influence the efficiency of the feature 

extractions and prevent the sEMG signal from practical usages. The amplitude range of 

the sEMG signal is 0-10 mV (+5 mV to -5mV) before amplification. It is important to 

characterise the electrical noise, which can be categorised into the following types: 

 The inherent noise in the electronic devices has frequency components from 0 Hz to 

several thousand Hz. The commonly used non-invasive electrode is made of silver 
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chloride. It has been found this material provides adequate signal-to-noise ratio and 

generates a stable electrical signal. When the electrode size becomes larger, the 

impendence decreases. But it is not preferable to have a very large electrode for 

practical reasons. A high impendence will decrease the signal-to-noise ratio, which 

degrade the quality of the signal. In general, the only way to eliminate the inherent 

noise is to use high-quality instruments [101]. 

 The movement of the cable connections in between the electrode and the amplifier 

and the interface between the skin surface and the electrode creates motion artifacts. 

Whenever muscle activates, the muscle fibers generate electrical activities [107].  

Noise occurs when the muscle, electrode, and skin move respect to each other. A 

conductive gel layer can help to improve the contact so that the movement artifact 

noise can be reduced. Another type of movement artifact is due to the different skin 

layers. The gel cannot reduce such noise, but it can be attenuated by skin 

preparations to reduce the skin impedance [109-111]. 

 The ambient noise mainly from electromagnetic radiations will affect the sEMG 

signals. It is almost impossible to eliminate noise from the ambient environment, 

which magnitude may be much greater than the sEMG signal. The noise is also 

called power line interference (PLI) with 50 Hz frequency. If the frequency contents 

are within the sEMG signal, it is important to remove it and its harmonics [110].  

Methods such as adaptive notch filter, FIR notch filter, IIR filter and Laguerre filter 

have been applied to attenuate the noise from PLI [101].  

 The sEMG signal is random in nature due to the firing rate of the motor units which 

in most cases, fire in the frequency range from 0 to 20Hz. This noise is unwanted, 

and the removal of the noise is essential. 

 In order to analyse the sEMG signal, the three factors that affect the signal 

quality need to be considered. Firstly, the causative factor which can be divided into 

two classes: 

 Extrinsic: The main factors are the electrode structure and placement [105].  For 

instance, the detection surface, shape of electrode, distance between electrode 

detection surface, location of electrode with respect to the motor units in the muscle, 

location of the muscle electrode on the muscle surface with respect to the lateral 
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edge of the muscle, and orientation of the detection surfaces with respect to the 

muscle fibres are the main factors in this category. 

 Intrinsic: This is due to the complex nature of the physiological, anatomical and 

biochemical structure of human being [111].  These factors are affected by the 

number of active motor units, fiber type decomposition, blood flow, fiber diameter, 

depth and location of active fibers and amount of tissue between the surface of the 

muscle and the electrode. 

 Secondly, the intermediate factors which are the physiological and the physical 

phenomena affected by one or more causative factors. Some reasons are behind these 

factors including, for instance, the band-pass filtering aspects of the electrode along 

with its detection volume, the superposition of action potentials in the detected sEMG 

signal, conduction velocity of the action potential that propagate along the muscle fiber 

membrane. The cross-talk [112] in between the muscle groups can be another cause.  

 Thirdly, the deterministic factors are the outcomes of the intermediate factors.  

The motor firing rate, the number of active motor units, motor firing rate, and 

mechanical interaction between muscle fibers have a direct impact on the recorded 

sEMG signal and the generated force. The amplitude, duration, and shape of the motor 

unit action potential can also be responsible to this relation. 

 To optimise the sEMG signal quality, two approaches are required: firstly, to 

enlarge the signal-to-noise ratio as much as possible; secondly, minimise the distortion 

of the sEMG signal caused by the unnecessary filtering. 

 During the processing stage, both half-wave and full-wave rectification [111] 

are commonly used.  The half-wave only retains the positive data and discard the 

negative data. The full-wave is preferred since the absolute value of each data point is 

used so that all the information is self-contained. 

b) Signal processing  

 Many literature have proposed advanced methodologies, including wigner-ville 

distribution (WVD), wavelet transform (WT), empirical mode decomposition (EMD), 

Independent component analysis (ICA), and higher-order statistics (HOS) for analysing 

the sEMG signal [101].  In signal processing, one of the most fundamental concepts is 

time-frequency analysis. The Wigner-Ville distribution (WVD) is one of the popular 
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methods for analysing sEMG signal. It has an excellent localisation property due to the 

high concentration in the instantaneous frequency and time of the signal. In [113], they 

used WVD to present the frequency ranges of the motor unit.  But the cross-term effect 

and noisy treated signal means it is not suitable for sEMG signal processing with multi-

component. 

 Wavelets transformation as an alternative to the Fourier transform method has 

gained more attentions. The wavelet transform has two forms: discrete and continuous. 

It can efficiently transform the signal with various resolutions in both time and 

frequency domains. The Discrete Wavelet Transform (DWT) has been implemented to 

analyse non-stationary sEMG signals, but it produces a high-dimensional feature vector 

[114].  

 The basic analytical expression for wavelet transform is presented in equation 

(2-1) below.  The wavelet corresponding to scale a and time location b is given by: 

𝜓(𝑎, 𝑏) =
1

√|𝑎|
𝜓(

𝑡−𝑏

𝑎
) ………………………..……………….(2-1) 

 Where 𝜓(𝑡)  is the “mother wavelet” which takes the form of a band-pass 

function. The factor √|𝑎| is to ensure the energy preservation. a and b are discretizing 

timescale parameters and each pair generate a different type of wavelet transform. 

 Successive low-pass and high-pass filtering in the discrete domain computes the 

general equation of DWT, is given below in equation (2-2): 

𝑥(𝑡) =  ∑ ∑ 𝑑(𝑘, 𝑙)2
𝑘

2∞
𝑙=−∞ 𝜓(2−𝑘𝑡 − 1)∞

𝑘=−∞ ………………..(2-2) 

 Where k is related to a as 𝑎 = 2𝑘; l is relate to b as 𝑏 = 2𝑘𝑙; and 𝑑(𝑘, 𝑙) is a 

sampling of 𝑊(𝑎, 𝑏) at points (𝑘, 𝑙). 

 Daubechies [115] analysed the non-stationary time series at many different 

frequencies by using wavelet transform.  The various types of wavelets functions have 

different time-frequency structures. Farge [116] considered the various factors that 

should be considered when selecting the wavelet function.  Guglielminotti and Merletti 

[117] showed a good energy localisation capability of the wavelet transform in the 

time-scale plane when the shape of the Motor Unit Action Potential (MUAP) is 

matched with the wavelet function.  Laterza and Olmo [118] used wavelet transform as 
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an alternative method to other time frequency representations to overcome the 

resolution problem.  The results showed that the WT is not affected by the cross term 

which is useful for dealing with multi-component signals. 

 The wavelet de-noising algorithm has been widely used in signal pre-processing 

stage for sEMG upper- and lower- limb movement recognitions over the past few years 

[119].  Phinyomark et al. [120] demonstrated that using wavelet de-noising algorithm 

can effectively remove the interference of random noises from sEMG signals (i.e. white 

Gaussian noise (WGN)).  They proposed a basic idea of a wavelet-based de-noising 

procedure. Five processing parameters needed to be selected: (1) the type of wavelet 

basis function; (2) the threshold selection rule; (3) the scale; (4) the threshold rescaling 

method, and (5) the thresholding function. Among the parameters, selection of the 

wavelet function types are of most critical and it needs to be justified based on the type 

of applications and characterisation of the signal. Five wavelet functions (db2, db5, 

sym5, sym8 and coif5) were compared in [120] and their performances were validated 

by using mean square error.  The results indicated that a scale level 4 provided the 

better performance when compared with other scale levels. Moreover, a fifth order of 

Coiflet function provided the best reconstruction for sEMG signal [121].  Jiang and 

Kuo [122] assessed four classical threshold estimation functions and demonstrated that 

the sEMG signal was invariant to the selection of the threshold estimation function. 

Kumar et al. [123] determined the muscle fatigue by using the Symlet function (sym4 

and sym5) with decomposition level 8 and 9. Hussain and Mamun [124] showed that a 

wavelet form with db45 showed the best contrast when they analysed the sEMG signal 

using both bi-spectrum and power spectrum compared to the other four wavelet forms 

(db2, Haar, sym4 and sym5) within the range 50 to 70 Hz. 

 A summary of the wavelet function with their families are listed in Table 2-3. 

Chowdhury et al. [101] concluded that analysing sEMG signal using Daubebchies’s 

function provides successful results.  They recommended using a db function (db2, db4, 

db6, db44 and db45) at decomposition level 4. Also they applied them to the raw sEMG 

signal from the right rectus femoris muscle during maximum walking speed. 
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Table 2-3 List of 324 wavelet function from 15 wavelet families [101]. 

 

 Higher order statistics (HOS) are defined as spectral representations of higher 

order cumulants of a random process. The spectral representation of HOS, such as 

moments and cumulants of the third order and above, are known as polyspectra or 

higher order spectra. To effectively process the sEMG signal, HOS is applicable 

because it is capable of deviation identification from linearity, stationarity or 

Gaussianity in the signal [125].  The advantage of HOS is due to the accurate phase 

reconstruction is possible in the HOS domain, while the second-order-statistics (SOS) 

is phase-blind [126].  In 2004, Shahjahan Shahid [127] proposed to use HOS for 

electromyography processing and characterization due to its advantages over SOS.  He 

modelled the bispectum of a time series signal as the output of a linear system for the 

purpose of identification and characterization of the given system using “Bispectrum of 

Linear System”. Also, HOS is useful for modelling nonlinear and non-Gaussian 

processes. Kaplanis [128] used HOS to characterize the Gaussianity of the sEMG signal 

by using the bicoherence index.  As a matter of the fact, the distribution of the sEMG 

signal is highly non-Gaussian at low and high levels of force, whereas the maximum 

Gaussianity is achievable at the mid-level of Maximum Voluntary Contraction (MVC). 

They used the HOS technique to extract new parameters (power spectrum median 

frequency) that could enhance the characterization of sEMG signal. In the literature, 

HOS has been widely applied for diagnosis of neuromuscular disorders, where the 

parameters, such as amplitude, spike duration, number of phases, number of turns, etc. 

should be taken into consideration. The HOS method is able to characterize and detects 

the non-linearity of the sEMG signal and estimate both the amplitude and phase 

information successfully.  Kanosue et al. [129] used HOS as an important signal 
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processing method for quality neuromuscular diagnosis to obtain information on 

innervation pulse trains and MUAPs characteristics.   

 Other methods have been proposed by various researchers for processing sEMG 

signal.  Some of the methods are briefly described here. 

 Karlsson and Nystrom [130] proposed a real-time system for electromyography 

signal analysis.  They aimed to develop a system for clinical use with the characteristics 

of graphics feedback, flexible parameter selection, and flexible addition processing and 

standard method. The short-time Fourier transform was proposed to produce a time-

frequency representation of a signal. The drawback of this method was the stationary 

assumption of the signal. In fact, myoelectric signals are non-stationary due to the 

inherent physiology of the organs even without voluntary change of muscle state. 

 Empirical mode decomposition (EMD) is a moderately new, data-driven 

adaptive technique for analysing the non-stationary and non-linear signals. EMD 

provides the underlying notion of instantaneous frequency and insight into the time-

frequency signal features. Huang et al. [131] firstly proposed EMG method as a sifting 

process that estimates intrinsic mode functions (IMFs).  The aim of EMD is to 

decompose a multi-component signal into a number of virtually mono component IMFs 

plus a non-zero-mean value of the residual component. Andrade et al. [132] firstly used 

EMD method for decomposing the electromyography signals into a set of IMFs.  

During the signal processing, EMD is useful to filter background activities due to the 

fact that it is a non-linear method that can deal with non-stationary data. Also it does 

not need the assumption of the basis function like the wavelet transform. Comparison 

results in between EMD method and several wavelet functions (db2, db3, and db4) 

showed the efficiency of the EMD approach.  However, the disadvantage is that 

computing IMFs takes a lot of time when compared to wavelets.  Another drawback of 

the EMD is that it is more sensitive to the presence of noise, and suffers a mode-mixing 

problem.  To accommodate this, Ensemble EMD (EEMD) was introduced to remove 

these side-effects [133]. 

 Independent Component Analysis (ICA) is another popular signal processing 

techniques.  As a statistical method, ICA assumes the original signal from the mixture 

of signals.  Comon [134], firstly proposed this approach for transforming an 

multivariate random vector into components that are statistically independent from each 
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other.  The ICA is feasible for signal decomposition of a sEMG signal into a number of 

independent components. Different types of ICA have been proposed in the literature, 

such as the Fast ICA, the joint Approximate Diagonalization of Eigen-matrices (JADE), 

and maximum likelihood algorithm. Among these choices, the Fast ICA is a very 

popular method due to its simplicity, satisfactory results and fast convergence. 

Nakamura et al. [135] reported that ICA is very useful for decomposing sEMG signal 

into MUAPs from different muscle sources. Furthermore, the Fast ICA outperformed 

the Principle Component Analysis (PCA) in discrimination of the MUAPs for sEMG 

signal decomposition. The fast ICA has problems in automatic decomposing sEMG 

signals, therefore, JADE algorithm [136] was proposed and proved to be more effective 

than the fast ICA method.  Garcia et al. [137] used JADE method to solve overlaps of 

MUAPs, and showed that this method is not affected by the added noise.  However, the 

drawback is the inter-channel delay. 

 In this section, various methods have been reviewed for sEMG signal 

processing. The key feature of these methods is to decompose the complex and noisy 

sEMG signal into its simplified forms with various information. The information might 

be the true sEMG signal in different level of details, Power Line Interference (PLI) due 

to signal-to-noise ratio and artefacts. Among the choices, the wavelet based 

transformation is chosen in this research due to its time and energy localisation property 

and implementation simplicity.  

c) sEMG features extraction 

 sEMG signal is often used for classifications, however, the raw signals are 

normally not suitable for this purpose, thus, features are used instead to improve the 

classification efficiency. Researchers have proposed different types of sEMG features 

as input to the classifier. To select the optimal features, various properties are 

considered, i.e. Classification accuracy, computation complexity and robustness [138]. 

There are mainly three types of features in different domains: time domain, frequency 

domain and time-frequency domain features. Time domain features are developed by 

Hudgins et al [139]. They used Mean Absolute Value (MAV), Slope Sign Changes 

(SSC), Mean Absolute Value Slope (MAVS), Waveform Lengths (WL) and Zero 

Crossings (ZC) for sEMG feature representations [140]. A careful selection of these 

“Hudgins features” as input provides a higher classification rate than the raw data [141]. 

Englehart et al. [142] compared the Time Frequency Domain features (TFD) with the 
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time domain “Hudgins features” in myoelectric signal pattern classifications.  The 

results indicated that the features based on Wavelet packet transform (WPT) were the 

most effective method with small classification error. The time-frequency domain 

features are effective feature sets especially for transient myoelectric signal pattern 

classification. But these features normally have high dimensionality and high resolution 

problem which require dimension reduction to complement the feature extraction [143]. 

Angkoon Phinyomark and Limsakul [140] concluded that features based on Mean 

Frequency (MNF), Median Frequency (MDF), Mean Power (MNP), Mean Peak 

Frequency (PKF), Time-to-peak Force (TTP), Spectral Moments, Frequency Ratio (FR), 

Power Spectrum Ratio (PSR), and Variance of Central Frequency (VCF) are generally 

not good in sEMG signal classification.   

 In [17], Karlik tested various time domain and time-frequency domain features 

with different machine learning algorithm for characterisation of sEMG signals for 

myoelectric control of human arm prosthesis.  The results indicated a near perfect 

recognition performance (95% to 98% rate of success).  Both Auto-regression (AR) and 

WT features give better results. But the feature computed from Auto-regression (AR) 

coefficients needs less computing resources. 

 In [20], Ma, Thakor and Matsuno  used a Nonnegative Matrix Factorisation 

(NMF) algorithm to control a prosthesis hand by using both time and time-frequency 

domain features.  Nine movement gestures as shown in Figure 2-11 are used for both 

offline and on-line recognitions. They concluded that for offline experiment, the time 

domain features are suitable for NMF, but the frequency domain ones may not be. The 

MAV and RMS features only perform well when the signal is zero mean, but WL 

features are generally robust for signal with either zero or nonzero mean. For online 

experiment, the performance is nearly 100% with minor misclassifications due to low 

activation strength levels. 

 In [144], two novel mean and median frequencies (MMNF and MMDF) 

features are presented for robust sEMG feature extraction and evaluated against sixteen 

existing features in noisy environment.  The results indicate that MMNF shows better 

recognition performance. Table 2-4 shows the commonly used sEMG feature extraction 

method. 
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Figure 2-11 Virtual prosthesis generated by the musculoskeletal modeling software (MSMS).  Nine 

gestures are demonstrated [20]. 

Table 2-4 Mathematical representation of commonly used sEMG features [101]. 
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2.2.2 Methods for sEMG-force modeling 

 In recent decades, the sEMG-force relationship has been extensively 

investigated. The estimation of the force generation from muscle activations is not only 

gaining interest in the biomechanical studies but also more and more in clinical 

applications  in which the information about the muscle force supports the physician’s 

decisions on diagnosis and treatment [145].  The sEMG signal is measuring the degree 

of the activations in the skeletal muscles, henceforth; it is highly correlated to the 

muscle force. However, due to the difficulties to directly measure the task related 

muscle activities without introducing noise factors mentioned in section 2.3.1, an 

accurate sEMG-force relationship has been investigated by many researchers. Both 

Disselhorst-Klug [145] and Staudenmann [146] discussed the problems associated with 

sEMG-force estimation and proposed solutions.  The prediction accuracy on the force 

amplitude is the main methodological issue. The stochastic nature of the sEMG signal 

which is a result of a series of constructive and destructive superimpositions causes the 

lack of prediction precisions. Novel methods such as multi-channel monopolar EMG 

and high-pass filtering or whitening of conventional bipolar EMG make the variable 

estimation easier and provide better estimation results. These methods are able to (1) 

reduce effects of phase cancellation, and (2) provide sufficient representation of the 

heterogeneous activities of motor units within a muscle. More importantly, highly 

accurate predictions of force are achievable even for minor force fluctuations that occur 

during an isometric and isotonic contraction. For dynamic contractions, the force 

estimations need to consider the muscle length and contraction velocities. Therefore, a 

valid force estimation requires sEMG amplitude prediction combined with modelling of 

the muscle contraction dynamics [146].  Concentric and eccentric contractions are two 

simple types of dynamic movements, but their sEMG-force relationships are different. 

If the same force applies, the myoelectric signal strength increased in concentric 

contraction compared to static isometric contraction, and it is lower in eccentric 

contraction. An example of elbow joint dynamic movement was a rhythmic flexion-

extension [141] performed in a decelerated and accelerated manner by the biceps and 

triceps, as shown in Figure 2-12.  
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Figure 2-12 Elbow joint angle changes as a function of time and sEMG activations during a 

rhythmic flexion-extension [141]. 

 In the literature, to model the sEMG-force relationship, both implicit and 

explicit methods have been implemented. The implicit model estimates the complex 

relationships between myoelectric signals and dynamic forces without any explicit 

function descriptions, whereas the explicit model predicts the force based on the 

phenomenological muscular models. A number of researchers have contributed in both 

direction of this muscle force modelling. 

 Savelberg and Herzog [147] proposed using an Artificial Neural Network (ANN) 

with back-propagation algorithm to predict dynamic tendon forces from 

electromyography signals. Tendon force and EMG signals are recorded for cat walking. 

The cross-correlation coefficients between the predicted and actual force ranged from 

0.72 to 0.98, which indicated that the ANN approach was a powerful technique to 

predict dynamic tendon force. 

 Loconsole et al. [91] proposed a sEMG-based method for on-line estimations of 

the torque and control of robot joints.  A light Exoskeleton was used as assistance to 

patients in the execution of functional tasks such as reaching with the impaired arm. 

Myoelectric signals from five individual muscles of the shoulder and elbow were 

recorded. The Mean Absolute Value (MAV) feature was extracted and the joint torque 

of the exoskeleton robot was collected as input and target dataset. The Time Delayed 

Neural Network (TDNN) was applied to modelling the dynamic and non-linear 

relationships. This approach showed the possibility to support patient movements 

during therapy. However, the approach was used for motion in one plane and validated 
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on one subject. Thus, it requires considerations with more degree of freedom and 

subjects. 

 Jali et al. [148] used ANN to model sEMG-torque relations through arm 

rehabilitation device.  The network composed of two layer feed-forward network and 

trained with back propagations. The experiment was conducted in one plane and 

the operator was asked to lift the dumbbell. The results indicated that the ANN can 

represent sEMG-torque relationship well for arm rehabilitation device control. 

 Apart from ANN, various machine learning algorithms have been implemented 

for sEMG characterizations. However, more papers are found in the field of sEMG-

based classification for myoelectric control compares to sEMG-force regressions. In 

principle, the algorithm for solving a classification or a regression problem has little 

difference. Karlık [17] compared a number of machine learning algorithms based on 

different features, including Nearest Neighbour Classifier, Multi-Layer Perception with 

Back-propagation, Fuzzy Clustering Neural Network, Linear Discriminant Analysis, 

Artificial Neural Fuzzy Inference System, Learning Vector Quantization Neural 

Network and Support Vector Machine. 

 Some literatures focused on pose estimations rather than force predictions, but 

in principle the methodology is interchangeable. Kwon et al. [149] proposed using 

ANN to estimate human motions to facilitate natural cooperation and safety of the 

human within human-machine cooperation systems. sEMG and joint angular velocity 

were used as input and target training dataset. The experiment results indicated 

acceptable results in flexion-extension of the limb in the 2D plane with normalised root 

mean square error (NRMSE) < 0.15 and correlation coefficient (CC) >0.9 under non-

contact condition. Zhang et al. [150] proposed a multiple input and single output 

autoregressive structure with exogenous input (ARX) model to represent the sEMG-

pose relationship.  Experiments were conducted on two subjects performing a single 

elbow flexion-extension movement, and the results showed improvements compared 

with previous studies with RMSE within 8.3% - 10.6%. 

 Different from the machine learning based implicit approach described above, 

the phenomenological based explicit model was implemented for human locomotion 

studies. Sartori et al. [151] demonstrated a comprehensive framework for an excitation 

primitive (XP)-driven musculoskeletal model. As shown in Figure 2-13, it contained 
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five components: (A) Musculotendon Kinematics; (B) Musculotendon Excitation-to-

Activation; (C) Musculotendon Dynamics; (D) Moment Computation and (E) Model 

Calibration. After calibration the model operates in open-loop. The excitation 

primitives were mapped to 34 individual Musculotendon Units (MTU) and went 

through the muscular-tendon dynamics model and generated toque commands to the 

individual joints. The human musculoskeletal geometry was scaled to match the 

individual subject’s anthropometry by using OpenSim software [152].  The MTU was 

modelled by the Hill-type muscle model [153], and the corresponding parameters such 

as maximum isometric muscle force, optimal fibre length, and maximum muscle 

contraction velocity can be found in [154], and other biomechanical parameters can be 

found in [30].  This approach was presented and validated with a comparison to the 

previous EMG-driven modelling approach in [155][156]. 

 

Figure 2-13 The schematic structure of the excitation primitive (XP)-driven musculoskeletal model 

[151]. 

 In this section, various methods for sEMG-force modeling have been reviewed.  

The machine learning based approach can be accurate after tuning the parameters and 

properly process the sEMG signal.  It is relatively easy to implement but lack of 

explicit descriptive functions.  The phenomenological based approach takes longer time 

to prepare but provides explicit explanations.  The learning based method is selected in 

this research due to its promising force estimation capability and implementation 

simplicity. 
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2.3 Robot learning from demonstrations 

 Learning from Demonstration (LfD) is an attractive research topic for many 

robotics applications. It defines a mapping between world state and action. This 

mapping is actually a policy which enables a robot to select an action based upon its 

current perception of the world state. It is challenging to develop these policies by hand 

due to the task complexity, and as a result machine learning approaches have been 

implemented. 

 Within LfD, the teacher plays an important role to demonstrate examples for 

policy learning [35].  The examples are defined as sequences of state-action pairs that 

are recorded during teacher’s demonstration of the desired robot behaviour [24]. This 

dataset is utilised by the LfD algorithm to derive policy that reproduces the 

demonstrated behaviour. Different from other approach such as Reinforcement 

Learning [157] in which the policy is learned from data acquired through exploration, 

the LfD approach derives a policy only in those states encountered, and for those 

corresponding actions taken, during the example executions [24]. 

 In this section, the review of the LfD approach is focussed specifically on 

robotic applications. The problem is segmented into two fundamental phases: gathering 

the examples, and deriving a policy from such examples. Argall et al. [24] established a 

structure for concretely placing the relevant works that applies LfD within the 

community. In general, they proposed a categorical structure for aiding comparative 

assessments among applications.  

 Although LfD is widely used in robotics, this thesis considers it as an important 

method for skills capturing and encoding. As mentioned in the introduction, the 

conventional robot programming will soon become impossible as the complexity of the 

skilled based task increases. Also, the knowledge from the non-robotic expert is 

required for control policy designs. Therefore, LfD is a potential tool for fulfilling such 

demands in which the state-action examples are learned. 

2.3.1 Challenges and problem definition 

 The traditional ways of learning a robotic control policy are through building a 

dynamic and mathematical model. But this approach depends heavily on the accuracy 
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of the world model. The model requires considerable expertise to develop, and 

approximation such as linearization is often introduced for computational tractability. 

However, the performance is often degraded because of this. Other approaches such as 

Reinforcement learning requires an agent to continuously interact with the environment 

and receive reward feedback given particular states. But exploration from scratch is 

often inapplicable for physical robot in the industrial environment. Furthermore, 

designing a reward function requires expert knowledge. 

 Due to these challenges, LfD offers many advantages for both leaner and 

teacher. Firstly, the formulations in LfD do not need expert knowledge of the domain 

dynamics, which removes the compromise of model simplifications. Secondly, it is 

more accessible for non-robotic expert (with knowledge of the process) to get involved 

in the design of the robot control policy. Lastly, it learns task specific constrains 

without initial explorations, which is suitable for practical implementations. 

 LfD is a subset of supervised learning. In supervised learning, the input data are 

labelled and the agent learns an approximation to the function which produces the 

input-target relationship. Within LfD, the training dataset composes the example 

executions of the task by teacher’s demonstrations (Figure 2-14, top). 

 According to [24], the LfD is formally defined as follows.  The state S and 

action A mapping in the world were defined by a probabilistic transition function 

𝑇(𝑠′|𝑠, 𝑎) . The states were assumed not fully observable, henceforth, instead the 

learner had access to the observed state Z, through the mapping 𝑀: 𝑆 → 𝑍. A policy 

𝜋: 𝑍 → 𝐴 selected the actions based on the observations of the world state. A single 

cycle of policy execution at time t was shown in the bottom of Figure 2-14. 
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Figure 2-14 Control policy derivation and execution [24]. 

 The action set A ranges from low-level motions to high-level motions. In the 

simulation environment, the state might be fully transparent, but in other applications, 

the states are not fully transparent and observable. Therefore Z is the observations from 

the sensors and used for representation of the real world states S. The teachers 

demonstrations 𝑑𝑗 = {(𝑧𝑗
𝑖, 𝑎𝑗

𝑖)} ∈ 𝐷  formally defines 𝑘𝑗  pairs of observations and 

actions where 𝑧𝑗
𝑖 ∈ 𝑍, 𝑎𝑗

𝑖 ∈ 𝐴, 𝑖 = 0,… , 𝑘𝑗 . The set D is demonstrated to the learner, and 

the LfD enable the learner to select an action based on the current state.   

 Many researchers have reviewed the LfD by categorisations. For example in 

Billard et al. [158] and Schaal et al. [159], the discussions concentrated on who, what, 

when and how to imitate for a robot learner. Argall et al. [24] focused on the 

formulations and techniques required to implement LfD system. Other useful related 

survey was [160] which provided a foresight of integration research from those 

studying imitation in humans and other animals, and those studying computer software. 

The discussion involved a diverse interdisciplinary field including animal behaviour, 

artificial intelligence, computer science, neuroscience, primatology, and linguistics. 

Another review presented in the chapter “Robot Programming by Demonstration” [158] 

highlighted the techniques for LfD approach and provided a comprehensive historical 

review of LfD. The focus of this section is to illustrate how the dataset within the LfD 

is composed and the recent techniques to derive policies and their corresponding 

applications. For the remainder of this section, the key design decisions for an LfD 

system will be discussed in 2.3.2. Methods for gathering demonstration examples will 

be presented in 2.3.3, followed by the core techniques for policy derivation 2.3.4 
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2.3.2 Design choices 

 All LfD applications share some common aspects. One of them is that the 

teacher demonstrates a desired behaviour. Another is that the learner provided with 

those demonstrations, and from them derives control policies to reproduce the 

behaviour. 

 However, some design choices need to be considered when developing a new 

LfD system. For example, the choices of a discrete or continuous action representation 

are determined by the application. Other choices might be dependent on the designer’s 

preference. But in general, these design choices have strong influence on how the 

learning problem is structured and solved. In this section, the most significant design 

choices are highlighted. A Peg-in-Hole task is presented as an example in which the 

robot is asked to (1) approach the hole (2) insert the peg and (3) extract the peg. 

a) Demonstration approach 

 In the context of the teacher’s demonstrations, two decisions must be made: the 

choice of the demonstration, and the choice of demonstration technique. These 

decisions are affected by factors such as the complexity of the robot and task. For 

instance, teleoperation is rarely used in humanoids with high degree of freedom, since 

the complexity of the motion is difficult to control through a joystick. 

i. The choice of demonstrator 

 To date, most LfD works use the human demonstrators, although some 

techniques also suggested the use of robotic teacher, hand-made control policies and 

simulated planners [24].  The choices of the demonstrator further break down into (1) 

who controls the demonstration and (2) who executes the demonstration. 

 For instance, consider a robot learning a PiH task, as described above. One 

approach could be a robotic teacher approach, insert and extract the peg using its own 

body. In this case, a robot teacher controls the demonstration and its body executes the 

tasks. An alternative approach could be a human teacher tele-operate the robot learner 

through the task of PiH. In this case, a human teacher controls the demonstration, and a 

robot learner executes the task. For example, the human teachers demonstrate a 

collaborative manipulation task, namely lifting an object by teleoperation [161].  The 

robot follower tried to learn the collaborative manner produced by the human. 
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Kormushev et al. [162] taught the robot an ironing task and a door-opening task via 

human kinaesthetic teaching.  Both the positioning and force profiles were learned and 

reproduced by a robot learner. From the above, the choice of demonstrator has a 

significant impact on the type of learning strategies that can be applied. Further 

discussion on the similarity between state and action spaces of the teacher and learner 

determines the types of the algorithm to process the data can be found in section 2.3.4. 

ii. Demonstration techniques 

 The demonstration technique is the strategy for generating dataset to the learner.  

One option is to perform batch learning, in which the policy is derived only once all the 

demonstration sequences are gathered. Alternatively, an interactive approach allows the 

policy to be updated incrementally as new demonstration sequences become available. 

Billard et al. [158] introduced a practical guidance of the incremental implementation 

of the probabilistic approach. The advantage of this approach was that the model 

parameters can represent the learned dataset so the old data can be removed and the 

model only updated from the new data. A hybrid of batch and incremental learning 

strategy was also presented where the model was initiated with batch learning and 

further adapted to the new demonstrations. If the time domain feature was not as 

important as the spatial feature, it was important to attenuate the time line in each 

demonstration so that there was no time shift in the spatial domain. A Dynamic Time 

Warping (DWT) [163] is a distance based approach to align multiple time series data in 

multiple dimension.  However, to enable such approach, a reference demonstration is 

required. According to Billard et al. [158], one can simply use the first demonstration 

as a reference signal or use the generalised  representation from the Gaussian Mixture 

Regression (GMR) of a set of demonstrations. 

b) Problem space continuity 

 It is important to consider the continuity of the state-action representation. In the 

PiH task, the environment can be represented by discrete state such as the chamfer 

crossing, one point contact, two point contact and line contact [164].  Alternatively, a 

continuous state could be represented by 3D positions of the robot’s end effector and 

the hole centre. Similarly, the discrete or continuous representations could be applied 

for the robot’s actions. 



46 

 

 In designing a domain, many factors affect the continuity of the problem space, 

such as the behaviour of interest, the set of the available actions and whether the world 

is simulated or real. The selection of the various policy derivation techniques heavily 

relied on the continuity of the given problem. 

 Different from the state-action continuity problem, LfD can be applied at a 

variety of action control level [24]: low-level actions for motion control, action 

primitives control, and complex behavioural actions for high-level control. The 

different level of control actions can be both discrete and continuous. An LfD 

framework is applicable in any of this control level therefore the continuity is a major 

determinant on the selected method. 

c) Policy derivation 

 The main consideration of the policy derivations are (1) the general technique 

used to derive the policy and (2) whether the performance can improve beyond the 

teacher demonstration. In this section, according to [24], a short summary is provided 

for the three core approaches to policy derivation, which were defined as mapping 

function, system model, and plans (as shown in Figure 2-15): 

 Mapping function: A direct approximation function mapping (π) from the 

robot’s state observations (Z) to actions (A) from dataset 𝐷 = [(𝑧′, 𝑎′)]. 

 System model: A world dynamics ( 𝑇(𝑠′|𝑠, 𝑎 )) is determined by the 

demonstration data, and possibly with a reward function (𝑅(𝑠)). A policy is 

then derived. 

 Plans: A sequence of actions is planned by learning the rules that associate 

with the pre-and post- conditions ( 𝐿({𝑝𝑟𝑒𝐶, 𝑝𝑜𝑠𝑡𝐶}|𝑎) ), and possibly a 

sparsified state dynamic model (𝑇(𝑠′|𝑠, 𝑎)). 
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Figure 2-15 Policy derivation methods. (a) An approximation to the state-action; (b) dynamic 

model of system and (c) a plan of sequenced actions [24]. 

 Considering the PiH example, a mapping function approach can be used derive 

the policy, for example the 3D orientation of the end effector, to an action which guide 

the robot to align the peg with the hole direction.  In the system model approach, a state 

transition model is learned first, for example taking the peg in the approaching state 

with the robot holding action results in the chamfer cross state.  Using the model, the 

learner knows the best action to take when given a state.  Finally, in the planning 

approach, the pre- and post-conditions of the executions are learned from the 

demonstrations. For instance, the insertion action needs the chamfer cross condition and 

peg inserted condition.  A planner uses this learned model to generate a sequence of 

actions that ends with robot goal state. 

d) Data limitations 

 The training samples from the demonstrations are intrinsically limited by the 

performers. In many cases, for example in the industrial manipulations, it is possible 

that the experienced manual worker performs in a suboptimal way when compared with 

the ability of the learner. For example, a human teacher cannot be physically as quick 

or accurate as a robot learner. Therefore, the performance of the learner is also limited 

by the policies derived from those demonstrations. Approaches such as reinforcement 

learning may be used to improve the existing model beyond what was provided by the 

demonstration dataset. 

2.3.3 Correspondence issue 

 Various techniques for executing and recording demonstrations are discussed in 

this section. As mentioned before, the LfD dataset is the state-action pairs recorded 
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during teacher executions of the desired behaviour. However, how they are recorded, 

and what platform the teacher uses for the execution, varies greatly across applications. 

Methods range from the sensor on the robot learner body which are passively tele-

operated by the teacher, to an external camera recoding a human teacher when he/she 

executes the behaviour with his own body. 

 In an ideal situation, to successfully implement LfD, the state and actions in the 

dataset should be usable by the learner. This requires the state and action from the 

teacher executions to be mapped directly to the leaner. However, in reality, it is almost 

impossible to have that direct mapping, as the learner and the teachers are likely to 

differ in their sensing or mechanics. For instance, a robot’s camera is not working the 

same as the human eye, nor will its gripper grasp the objects in the same manner as a 

human hand. The challenges arise from these differences are referred to as 

correspondence issues [165]. 

 The correspondence issues in the LfD are closely related to the two mapping in 

between the teacher and the learner: Recording Mapping and Embodiment Mapping  

The terminology used in this section is referred to [24]. 

 The recording mapping maps the teacher executions to the recorded executions. 

An identity 𝐼(𝑧, 𝑎) means the data recorded during teacher demonstrations are directly 

recorded in the dataset. Otherwise, some record mapping function will be required to 

encode teacher information. The embodiment mapping maps the recorded dataset to the 

leaner. An identity 𝐼(𝑧, 𝑎) means the recorded state-action pairs are exactly those that 

the learner would observe/execute. The embodiment mapping is important and it should 

be accurate as the real robot needs to physically execute what teacher showed. 

 Recalling the PiH example, a human teacher uses his own body to demonstrate 

the insertion technique, and a camera to record his motion. The human joint angle 

information needs to be extracted from the image data, henceforth, a recording mapping 

is needed. Furthermore, the physical embodiment of the human teacher is different 

from that of the robot; therefore, the actions from both embodiments need a mapping 

function as well.   

 To avoid the terminology confusions, the LfD framework can be split into two 

major categories: Demonstration and Imitation due to the differences in the mapping 

functions. 
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 In the demonstration case, there is no embodiment mapping issue at all which 

means what teacher has shown is exactly what happens on the robot. Two approaches 

are common in this case: Teleoperation and Shadowing. In teleoperation, the teacher 

operates the robot learner platform and uses the robot’s sensor to record the examples. 

This method provides the most direct way for information transfer from teacher to 

learner. A joystick is the most commonly used teach-in device for teleoperation. It has 

been applied in many fields of interest, including flying a robotic helicopter [166], 

object grasping [167][168], robotic arm assembly tasks[169], and navigation [170].  

Haptic device takes advantage of the joystick with additional force feedbacks. Calinon 

et al. [161] they used a haptic device to teach robot collaborative manipulation tasks.  

The proposed approach was generative and could be used to retrieve the tasks by 

reproducing the dynamics of the task, namely lifting an object and adapting to the 

human user’s hand motion. Soediono [12] taught the robot a ball balancing task, in 

which the human teacher demonstrated his skill to guide the ball to a designated hole by 

using haptic device. The robot was asked to reproduce the performance in a blind way 

by only relying on the force-torque sensing. Alternatively, kinaesthetic was another 

teleoperation approach wherein the human demonstrated the task by holding robot end 

effector. Kormushev et al. [162] used both haptic and kinaesthetic based approach to 

teach a robot an ironing task.  Tang [171] used the kinaesthetic approach to teach an 

industrial robot a PiH task. Abu-Dakka et al. [37] used the kinaesthetic based LfD 

approach combined with exception strategies to teach a robot a PiH task.  Various types 

and sizes of the hole and pegs were tested within the framework. In [172], as shown in 

Figure 2-16, a robot was taught to hit a ball with reproduction of a drive stroke (top) 

and topspin stroke (bottom), and the HOAP-3 humanoid robot was taught to feed a 

robotic doll. 
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Figure 2-16 An example of kinesthetic learning [172]. 

 In shadowing, the robot learner mimics the teacher’s demonstrations while 

recoding using its own sensors. The record mapping is not direct, because the state-

action during the demonstration is not recorded.  Instead, the robot records its own 

mimicking execution, so the teacher’s state-action examples are indirectly encoded 

within the dataset.  Different from passively tele-operated by the teacher, this method 

requires the robot to actively shadow the teacher.  Applications such as having a robot 

follow an identical platform robot teacher through a maze [173], follow a human 

teacher passing sequences of colored markers [174] and to mimic the trajectories 

determined from observations of human teacher executions [175]. 

 In imitation approach, the embodiment issue exists and indicates the presence of 

the mapping function to map the demonstrations recorded to the learner’s state-actions.  

Depending on whether the recording is identical or not, this approach can be further 

divided into two types: sensor on teacher, and external observation. 

 In the sensor on teacher approach, sensors are installed on the human body, and 

all the collected demonstrations are directly relating to the recorded executions.  This 

alleviates one potential source of the correspondence problem.  The advantage of this 

approach is that the teacher provides accurate measurements of the state-action pairs.  

However, it also requires specialized sensors, such as motion tracking suites or 

controlled environment with fixed cameras.  A review of those tracking techniques can 

be found in section 2.1. 

 When working with humanoid or anthropomorphic robots, the human teachers 

commonly use their own bodies to execute the task by using wearable sensors.  In 
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[176], drumming patterns recorded from a human joint angles were demonstrated to a 

30-DoF humanoid robot, and later in Nakanishi  et al. [177], walking patterns were 

studied to design a controller for natural human-like locomotion.  Calinon et al. [178] 

taught a humanoid robot various gestures by wearing the motion sensor on his body 

(left), and refining the movements by kinesthetic teaching (right) during robot 

reproduction, as shown in Figure 2-17.  Robot benefits from both human 

demonstrations and its own kinematic capabilities by using this teaching approach.  

Another approach by Aleotti and Caselli [179], a simulated human was controlled by 

the human teacher wearing sensors on his body, and then the simulated movements 

were mapped to a real robot arm. 

 

Figure 2-17 Human teacher teaches a humanoid robot by both sensor on body (left) and kinesthetic 

teaching (right) approaches. [178] 

 Different from sensor on body approach, the external observation approach 

relies on data recoded by sensors located externally to the executing platform, which 

means that a recording mapping exist. Since the actual state-action pairs from the 

human demonstration are not directly recorded, they must be inferred from the recorded 

data and extracted the useful state-actions for the robot learners.  Compared to the 

sensor on body approach, this approach is more general and is not limited by the 

overhead of specialised sensors and settings. 

 Visual based tracking is the predominant technique for this external observation 

approach.  In the early work [180], stereo vision was used to teach a robotic arm pole 

balancing task.  Nowadays, marker-based approach as discussed in section 2.1.1 is the 

most popular technique.  Marker based technique was applied to teach human motion 

and manipulation tasks [181][182]. In Pollard  and Hodgins [183], the motion 



52 

 

primitives and language expressions were integrated and learned for a humanoid robot.  

Both natural language module and motion primitives were represented in probabilistic 

model, so that a robot could infer the commands and plan his move by reading a 

sentence. Tang et al. [171] installed reflective marker on the object of holding, and 

taught an industrial robot a PiH manipulation task. Calinon and Billard [184] used a 

color-based stereoscopic vision system to track the 3D position of a marker placed on 

the teacher’s hand. 

 Other methods such as background subtraction was used to extract teacher 

motion from images [185].  Skeleton models produced by the depth cameras were also 

useful to extract the state-action pairs from a steam of images. The external sensing 

approach can be also used jointly with other systems such as force-sensing gloves for 

grasping teaching [186]. 

2.3.4 Policy derivations 

 The techniques to derive a policy from the demonstration data were discussed in 

this section. As mentioned from the beginning, three core approaches composed the 

LfD framework. It involved simply learning an approximation to the state-action 

mapping, or learning a model of the world dynamics. Alternatively, the planner can 

generate a sequence of action after learning a model of action pre- and pose- conditions. 

In all these learning techniques, it is desirable to spend less training time with minimal 

parameters tuning and require few training examples. 

a) Mapping function 

 The mapping function approach aims to calculate a function that approximates 

the state to action mapping for the demonstrated behaviour. The robot learner is able to 

generalise across all the training samples and reproduce the underlying control policy, 

which is usually unknown beforehand. 

 Many factors have influences on the details of the function approximations.  

These include whether the state or the action are continuous or discrete, whether the 

approximation function takes the data from the time of execution or from prior the time 

of execution, whether the learned dataset can be discarded or not, and whether the 

algorithm is online or offline. 
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 In general, this mapping approximation techniques fall into two categories: 

classification and regression, depending on whether the prediction outputs are 

continuous or discrete. 

i. Classification 

 Classification approach groups the similar input variables and classifies them 

into discrete classes. The input of the classifier is the state observations, and the outputs 

are the discrete robot actions. A summary of classification methods are applied at three 

action level (low-level actions, action primitives, and complex behaviours) is discussed 

in this section.  

 In the low-level actions, the basic commands include moving-forward or turning. 

Gaussian Mixture Models (GMMs) was used to control a car within a simulated driving 

domain using [187].  Bayesian network [188] and k-Nearest Neighbours (kNN) 

classifiers [189] were used to learn obstacle avoidance and navigation behaviours. 

 When motion primitives are recognized from the state, they are then composed 

or sequenced together to become a complete task. For example, Pook and Ballard [28], 

taught a robot egg flipping manipulation task. They classified primitive membership 

using kNN and then recognized each primitive from the demonstrated task via Hidden 

Markov Models (HMMs). HMMs have been applied in [190][191] to teach robot a 

basic assembly task and motor-skill tasks by identifying and generalizing upon the 

intention of the user. 

 Similar approaches have been applied on the high-level behaviours. The 

behaviours themselves are generally either handcrafted or learned prior to task learning. 

This means the learner knows what it is expected. Rybski and Voyles [192] represented 

gestures into eigenvectors, and within this framework, HMMs was used to classify the 

demonstrations into gestures for a box sorting task with a Pioneer robot.  Lockerd and 

Breazeal [193] used Bayesian likelihood method to select actions for a humanoid robot 

in a button pressing task, and Support Vector Machine (SVM) was used for a robotic 

ball sorting task [194]. 
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ii. Regression 

 Regression approaches map the state observations to the continuous action 

spaces, and most approaches to state-action modelling estimate a time dependent model 

of the trajectories. Modelling methods such as exploiting variants along the concept of 

spline decomposition [179] [195] or through an explicit encoding of the time-space 

dependencies [196], were effective and precise in the description of the actual trajectory.  

However, the explicit time dependency of those models requires additional time 

alignment process to handle spatial and temporal perturbations. As an alternative, 

modelling the intrinsic dynamics of motion was considered in other approaches [197] 

[198] [199].  These approaches had benefit that the system did not depend only on an 

explicit time variable and was able to reproduce actions with similar dynamics in 

unexploited areas which not covered by training. The state of the art approaches 

proposed so far are Hidden Markov Model (HMM) [172], Gaussian Mixture 

Regression (GMR) [200], Locally Weighted Regression (LWR) [201], Gaussian 

Process Regression (GPR) [202], and Dynamic Movement Primitive (DMP) [203]. 

GMR: Gaussian Mixture Regression, as introduced in [200], uses time as an explicit 

input variable, and the demonstrations are first aligned though DTW.  Then, the 

distribution of temporal and spatial variables {𝑡, 𝑥, �̇�}  is encoded using a Gaussian 

Mixture Model (GMM). At each time step, by given the current time step, a desired 

position �̂� and a desired velocity �̂̇� are retrieved by estimating 𝑃(𝑥, �̇�|𝑡). In [204], a 

generalization of the demonstrated trajectories is calculated by using GMR for a chess-

moving and a cup grasping tasks.  The optimal trajectory is generated by additionally 

considering the task and robot kinematic constrains. This method can reproduce smooth 

trajectories but require alignment through the demonstrations. Calinon et al. [205] 

extended the approach in [204] to a more generic procedure handling simultaneously 

constraints in task space and joint space by combining directly the probabilistic 

representation of the task constraints with a simple Jacobian-based inverse kinematics 

solutions.   In order to retrieve the dynamics of the task, some modifications are needed. 

Calinon et al. [161] extended the GMR by its analogous HMM.  The weighting 

function was no longer calculated based on position information only, but was replaced 

by the forward variable corresponding to the probability of partially observations of 

being in the current time step and current state.  
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LWR: Locally Weighted Regression is a memory based probabilistic approach [201].  

It can estimate the desired position �̂�  and desired velocity �̂̇�  at each time step. The 

influence of each data point is estimated by assuming a Gaussian kernel with fixed 

diagonal covariance matrix centred at the current point of interest. 

LWPR: Locally Weighted Projection Regression is an incremental regression 

algorithm that performs piecewise linear function approximation [201].  The algorithm 

does not require the storage of the training data and has proved to be efficient in solving 

high dimension problem. By detecting locally redundant or irrelevant input dimensions, 

the dimension of the input data is locally reduced by finding the local projections 

though Partial Least Squares (PLS) regression. 

DMP: Dynamic Movement Primitives approach was originally proposed by Ijspeert et 

al in [203].  The method allows a target to be tracked by modulating a set of mass-

spring-damper systems. The velocity is guaranteed to vanish at the end of the 

movement. A phase variable acts as a decay term to make sure the system is 

asymptotically converged to the end point. 

b) System models 

 The system model approach to learn a policy uses a state transition model of the 

world, T(s′|s, a), and from this derive the policy 𝜋: 𝑍 → 𝐴. This approach is typically 

formulated and structured within the Reinforcement Learning (RL) approach [24].  

T(s′|s, a) is derived from the demonstration data and additionally explorations with 

reward functions 𝑅(𝑠), which is either learned or defined by the user. The goal of RL is 

to maximize the cumulative reward over time. The accumulated future reward under the 

current policy 𝜋 given the current state s and action a is calculated based on the state 

value function V(s). The Value function maybe updated by using the Bellman equation 

in the following form: 

𝑉𝜋(𝑠) =  ∫ 𝜋(𝑠, 𝑎) ∫ 𝑇(𝑠′|𝑠, 𝑎)[𝑟(𝑠) + 𝛾𝑉𝜋(𝑠′)]
𝑠𝑎

……………..(2-3) 

 Where 𝑉𝜋(𝑠) is the state value under policy 𝜋  and given state s,  𝛾  is the 

discount factor for the future rewards. Unlike the function approximation approach, RL 

approach does not generalize state and every state must be presented with 

demonstrations. A comprehensive review of the RL approach can be found in [157].  

The design of the reward function is critical to implement RL in the practice to prevent 
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the agent from extensive explorations. Both hand engineered and learned approaches 

have been proposed in the literature. Kober  and Peter  [190] proposed a policy learning 

approach by weighting exploration with the returns for the motor primitives (PoWER) 

in swing-up and ball-in-a-cup applications. During the policy update, the key is to 

calculate the policy derivations. Peters and Schaal  [207] showed various popular policy 

derivation approaches in the robotics applications.  

c) Plans 

 Plan is an alternative to the mapping function approach in which the states are 

directly mapped to actions. The policy is represented as a sequence of the actions that 

lead from the initial state to the final goal state. Actions are often defined in terms of 

pre-conditions, in which the state must be demonstrated before the action can be 

performed, and post-condition, in which the state is the result from the action’s 

execution. Different from the other LfD approach, the plan is not only relying on the 

demonstrated samples but also depending on additional information in the forms of 

annotations or intentions from the teacher [24]. 

 In all, the robot learning from demonstration methods was reviewed in this 

section. Among the candidate choices, the mapping function techniques, which use the 

HMM based approach, are the most suitable to the context of this thesis. 

2.4 Summary and research gaps identification 

 In this chapter, various techniques have been reviewed for human motion 

tracking, sEMG-force modelling, and robot learning from demonstrations. In human 

motion tracking, advanced approaches including inertial and marker-based tracking are 

widely used. However, because they are both restricted to specific working conditions 

such as “line-of-sight” and drifts, it is preferable to have a hybrid system for human 

motion tracking. 

 The tactile and haptic force feedbacks are required to be collected alongside 

with the motion data. To remove the bulky Force Torque sensor, various sEMG-force 

modelling approaches have been reviewed. In fact, the sEMG signals are noisy which 

means the identification of the noise source and filtering strategies are particularly 

important.  The method needs to have good performance in time localisation property 

and maintain the most relevant information.   Among the choices, the Wavelet 

Transform is selected as a promising filtering technique. Two different approaches 
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(phenomenological modelling approach and learning based approach), have been 

review for building the relationship between the sEMG and the contact forces. The 

phenomenological modelling approach provides the explicit musculoskeletal model but 

takes longer time to prepare the parameters needed. The learning based approach is 

quick to prepare and the literatures indicates a good prediction performance in many 

application scenarios. Henceforth, the Time Delayed Neural Network which considers 

the time series natural of the dataset has been chosen as the modelling method. 

 The state-action examples which enable the learning of the human 

demonstrations need to be prepared from the previous procedures. In order to extract 

the skills from the demonstrated task and reproduce them on a robot learner, various 

policy derivation approaches have been reviewed. The case studies in this thesis belong 

to the category of solving regression problem in the mapping function. A HMM based 

algorithm is selected to encode and reproduce the dynamics of the manipulation tasks 

due to its generalisation capability and learning efficiency (easy to implement and 

quick to learn). The limitations of these LfD approaches are actually the limitation of 

the human demonstrations, in which situations including undemonstrated state, poor 

quality data and suboptimal or ambiguous demonstrations might occur. Therefore, 

experiments need to be properly designed to alleviate these issues followed with 

extensive result discussions. 

 From the above, the research gaps are identified as follow: 

 The existing motion tracking system had either ‘line-of-sight’ or drifting problem in 

free space motion tracking for long term use. A hybrid method is needed to produce 

reliable (±3˚) tracking performance. 

 The existing sEMG-modelling methods heavily focussed on gait analysis, whereas 

fewer studies are focusing on forearm manipulation tasks. In addition, no 

comparable results had been reported for modelling the sEMG-force relationship 

for industrial manipulations, therefore, investigations on how feasible and accurate 

to use the model free techniques to build such relationships are needed and 

evaluated with case studies. 

 The existing control policy for robotic applications requires interaction with the 

physical world; however it is not practical to learn the policy from scratch through 

some random trial and errors. Therefore, it is essential to capture the human skills 
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and derive the control policy as a seed or initialisation to guide the robot to explore 

and learn better policy. 

 These identified research gaps are systematically addressed in the thesis using 

two case studies, namely peg-in-hole and beater winding processes. 
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 A Robust Hybrid VICON and IMU System 

for Tracking Human Forearm Motions 

3.1 Introduction 

 A robust human motion tracking system is important for this research. This 

allows the subject to move in the working area with less constraints and deliver the 

skills in a more natural way. This chapter aims to address the research objective one to 

develop a wearable system that reliably tracks human motions for an appropriate length 

of demonstration time. The learning from demonstration framework can benefit from 

this since it reduces the errors introduced from the sensor measurements. To achieve 

this, the state of the art motion tracking system is first evaluated then a robust human 

forearm tracking system proposed and validated. 

 Tracking and understanding a static body posture of a human operator can be 

easily achieved and transferred to a machine if the kinematic information from body 

tracking is available [80].  However, compared to understanding static body postures, 

dynamic motion data can generate even more valuable knowledge for a machine/robot. 

These motion data can teach the robot the complexity and stochastic nature of the 

variations in the task if they are properly tracked. In order to track human body motions, 

various measuring techniques have been proposed in the literature. The user for 

instance wears mechanical trackers made from rigid or flexible goniometers. These 

trackers directly measure the joint angles of the wearer. However, installation of these 

body-based linkages is not trivial and requires extra efforts from the user to get used to 

it. It is almost impossible to track the full body motions in multiple degrees of freedom 

as a result of these constraints [73].  As alternatives, the vision-based and inertial based 

tracking systems are widely used for analysing human motions. However, both systems 

have limitations. The vision-based camera system cannot track objects while the line-

of-sight is occluded. The inertial-based system suffers from signal drifts due to the 

ambient magnetic field. 

 To better learn from human demonstrations, an accurate and reliable (as 

suggested in [208]) dynamic tracking of the human movements is required. In the 

literature, there is a lack of systematic methods to evaluate the performances of the 

Vicon and IMUs for Mocap and to fuse their data to compensate for their respective 
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disadvantages. Therefore, in this chapter, I have evaluated the Vicon system with an 

accurate tri-axis Coordinate Measuring Machine (CMM); then the Vicon system was 

used for evaluation of the IMU measurements. Three IMUs were used to track the 

human forearm with following segments: upper arm IMU, lower arm IMU and hand 

IMU. An adaptive method to align the IMU body frame with the Vicon object frames 

without fixing them on a reference platform (i.e. tripod) is also used in this chapter to 

achieve a fully wearable system. In order to take advantage of both systems, a novel 

method is proposed to use the Vicon system to periodically recalibrate the initial frame 

of the IMUs and use IMUs to fill in missing observations during any occlusions of the 

Vicon. This chapter provides a systematic way to evaluate and a methodology to merge 

the Vicon and IMU systems to achieve a reliable (±2˚) human forearm motion tracking. 

 In this chapter, firstly, the 2-camera Vicon system is evaluated by using a CMM. 

Secondly, the IMU and the Vicon body frames transformations were estimated. Thirdly, 

the IMUs were evaluated by using Vicon. In the end, a PiH and Pick-and-Place tasks 

were used to evaluate the proposed compensation approach. 

3.2 Methodology 

 To enable reliable and accurate dynamic motion tracking suitable for learning 

from demonstration of industry manipulation tasks, it is important to evaluate the 

tracking devices and to characterise their performances. The evaluation of the Vicon 

system requires a more accurate positioning system moving in multiple axes with the 

markers installed in clearly visible and stable positions. A CMM with tri-axial 

movements is appropriate for this requirement. The evaluation of the IMU requires a 

portable and lightweight tracking device without measurement drift. The Vicon system 

generates accurate pose measurements (±0.5mm) once calibrated; therefore, it is 

appropriate to evaluate the IMUs’ performance. In this section, a framework for the 

evaluation and orientation compensation of the combined Vicon-IMUs tracking system 

will be presented. As shown in Figure 3-1, the data comes from three sources: a CMM, 

the Vicon cameras, and the IMUs. The CMM is used to evaluate the x, y, and z position 

data from the Vicon. Then the Vicon was used to evaluate the orientation data from the 

IMUs. The measurements from the IMUs were used to compensate the pose observed 

from the Vicon system. The compensated measurements can be used for further 

anatomical calibration on human (not the main topic of this work) [209].  The accuracy 

depends on the human poses and is affected by the skin movements. The following sub-
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sections discuss this methodology in the following order: i) Vicon-CMM evaluation; ii) 

Vicon-IMU body frame alignment; iii) Vicon-IMU evaluation; and iv) Orientation 

compensation. 

 
Figure 3-1 The framework of the Vicon-IMUs evaluation and joint states compensation. 

3.2.1 Experiment setup 

 The devices used in this work are the two Vicon Bonita cameras with Tracker 

v2 software, an industrial CMM with an accuracy of 2.1μm, and three IMUs from X-

sense and Thalmic Labs.  The Vicon system is carefully calibrated using the active 

calibration T-wand with 8000 frames collected. The sampling rate of the Vicon and the 

IMUs are 100 Hz and 60 Hz respectively. The data is streamed in a synchronised way 

by using ROS approximate time synchroniser.   

a) Experiment setup for Vicon-CMM evaluation 

The experiment setup for x, y, z positioning evaluations of the Vicon are shown in 

Figure 3-2 where two Vicon cameras were symmetrically fixed above the work volume, 

and the working volumes of the CMM are drawn as well. The maximum single axis 

motion of the CMM is 1000 mm.  Here, a 1000×700×600 mm cube was defined as the 

evaluation volume. Starting from near camera side to the far end, 5 planes (P1, P2, P3, 

P4, P5) are sliced at 1mm, 10mm, 100mm, 500mm and 1000mm. The motions are 

either on single axis (x-axis), in plane (x, y axes) or 3 dimensional (x, y, z axes).  In 

each case, the CMM moves from P1 to P5 and the data was rcorded 5 times (N=5) at 

each plane. The markers are firmly fixed at the end of probing head. No alignment of 

the probing head and the marker plates are needed for position evaluation, since only 

Vicon Evaluation 

i) Multiple-axis movement 

ii) Incremental movement 

iii) Static poses 

 

 Body frames alignment  

(Algorithm 1) 

 

IMU evaluation 

Orientation compensation 

(Algorithm 2) 
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the relative moving distance will be compared. The reference frames are the starting 

frames of both CMM and Vicon system.   For single axis motion, the CMM only moves 

1000 mm at once from point A to point B. For two axes motion, the CMM moves 1mm, 

10mm, 100mm, 500mm and 1000mm from point E to point F. For three axes motion, 

the CMM moves 1mm, 10mm, 100mm, 500mm and 1000mm from point C to point D. 

The mean error (∑ 𝑒𝑟𝑟𝑜𝑟/𝑁𝑁
𝑖=1 ) and standard deviation (SD) of the error are used to 

evaluate the result. The uncertainty can be further evaluated using (
𝑆𝐷

𝑠𝑞𝑟𝑡(𝑁)
, 𝑓𝑜𝑟 𝑁 <

100). Note, the lighting condion and marker configuraton may have impact on the 

result. The lighting condition will either improve or decrease the calibration accuracy. 

The marker configuration will make some poses visible and some poses not visible to 

the cameras. The setup for Vicon-CMM evaluation avoids this problem by having a 

consistent lighting condition and marker configuration which always visible to the 

cameras. However, to make a more robust evaluation, further disuccison on these issues 

need to be addressed in the future work (section 7.3.1). 

 

Figure 3-2 Experiment setup for Vicon-CMM evaluation. Left: the actual setup.  Right: a 

schematic plot and annotation of the setup. 

b) Experiment setup for Vicon-IMU evaluation 

 The experiment setup for Vicon-IMUs evaluation is shown in Figure 3-3. Three 

markers with asymmetric arrangement were installed on the Vicon frame which had 

been rigidly attached to the IMU body. To evaluate the IMUs on 3 dimensional space, 

the operator moved both frames in a 3 dimension volume. In the first step, for each 

IMU, an incremental number of the data samples have been used for the IMU and 
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Vicon body frame transformation estimation. 10 discrete numbers are selected: 10, 15, 

20, 25, 30, 35, 40, 45, 50 and 55. 5 trials have been repeated for each case. In the 

second step, a sequence of movements that contain left-right waving, up-down tilting, 

and a “8” shape trajectory is used to emulate multiple axes rotations. This sequence was 

repeated 3 times and recorded for 300s (5min) for IMUs evaluations. 

 
 

 
Figure 3-3 Experiment setup for Vicon-IMUs evaluation 

c) Experiment setup for compensation method evaluation  

Finally, two simply case studies were used to evaluate the IMU-Vicon system. 

One is a peg insertion (PiH) task, the other is a pick-and-place task (PnP) task. Four 

subjects were asked to wear the devices as shown in Figure 3-5 and repeated the trial 5 

times. They are all male subjects who are researchers in the Intelligent Automation lab 

aged 25~30 years, the average height is 172cm and the weight is 75kg. They all have 

engineering degree and manufacturing automation expertise. Each trial contains 20 

repetions of the PiH or PnP movements. The Vicon data was used as a reference signal. 

The proposed Vicon-IMU compensation method was applied to the collected trial data 

(Vicon and IMU). The Vicon data was deliberately corrupted with flipping frames and 

occlusions. The index of the flipping frames were randomly generated and covered 5% 

of the dataset. The occlusions were generated by evenly splitting the dataset into 4 

subsets and masking 100 data points starting from each splitting node. Artificially 



64 

 

introducing flipping and occlusions allowed the proposed method to be evaluated 

against a known ground truth, which is the unaltered data. 

3.2.2 Vicon-CMM evaluation 

 In general, the Vicon tracking system has an accuracy of less than 0.5 mm for 

positional tracking and ±3° for orientation tracking [210]. But this value only gives the 

overall performance of the system regardless of the working volume and motion. The 

question considered here is whether more accurate tracking can be achieved within a 

constrained movement and workspace with minimal cameras. This would be very 

interesting for robotic assembly tasks where a little improvement of the accuracy and 

stability of the positioning system will increase the success rate. This is the motivation 

of this evaluation. However, a more systematic evaluation can use the ratio between the 

standard deviation of the position error and the length of the cuboid main diagonal. But 

the main focus in this section is to identify a working volume which more accurate than 

the claimed accuracy. Here, three situations were considered: 

 

 The static pose where the CMM stopped at several different locations in its 

workspace and the measurements were recorded statically for a short interval. 

 Multi-axis movement where the CMM moved in x, y, z-axis simultaneously. 

This is to simulate the manipulation task i.e. an assembly task is likely to be 

multi-axis. 

 An incremental movement where the CMM moved further away from the 

camera to explore the full working range. 

 The potential improvement of the Vicon system within a constrained working 

volume was evaluated by using the mean and the standard deviation of the error. If the 

mean error is less than 0.5mm and the standard deviation is small (<0.05mm), this 

means that the Vicon system can be even more accurate in that specific volume. 

3.2.3 Body frame alignment and Vicon-IMU evaluation 

 The reference frames of the IMUs need to be aligned with the Vicon system to 

allow their measurements to be combined. To achieve this, each IMU has been 

equipped with four Vicon markers as shown in Figure 3-4. The markers allow the 

position and orientation of the IMU to be tracked by the Vicon system once the 
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coordinates of the IMU reference frame has been aligned with the world coordinate 

(GV) of the Vicon system. All frames used are right-handed. The centre of the 

coordinate (VB) is calculated based on the positions of the markers. The four-marker 

arrangement used is not unique; the rule of thumb is to make sure asymmetric 

geometric arrangements. One example can be found in [47]. The IMU measurements 

were derived from its inertial frame (GS). Its z axis is defined by the magnetometer. 

The IMU body frame (SB) depends on the location of the on-board chips. It should be 

aligned with the IMU case, but minor misalignments might exist. Therefore, it is almost 

impossible to manually align the body frame calculated by the Vicon (VB) and the 

body frame of the IMU (SB). A calibration method would be needed to fine tune the 

alignment.  

 

 

 
Figure 3-4 Vicon and IMU body frames alignment. 

 This problem can be formalised as follows:  When the orientation measurements 

of the Vicon GVRVB ∈  R3 and IMU GSRSB ∈  R3 are given, the relative orientation 

between the Vicon body frame and IMU body frame SBRVB needs to be computed. This 

belongs to the AX = XB problem which has been described in [79][211]. All the 

measurements are represented in a form of quaternion (𝑞 =  𝑤 +  𝑥𝑖 +  𝑦𝑗 + 𝑧𝑘) where 

𝑥, 𝑦, 𝑧 𝑎𝑛𝑑 𝑤  are real numbers, and 𝑖, 𝑗, 𝑎𝑛𝑑 𝑘  are the fundamental quaternion units. 

The algorithm which has been modified and fitted to this particular problem is 

illustrated in 
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Table 3-1 

Table 3-1 Algorithm 1: IMU and VICON frame alignment. 

Input: GSRSB, GVRVB. 

Output: SBRVB 

1. Collect 50 [GSRSB, GVRVB] pairs. Initialise M = [] 

2. For all i such that 2 ≤ i ≤ 50 

3.  A = GSRSB [i-1]-1 * GSRSB [i] 

4.    ∅ = acos ((𝑇𝑟𝑎𝑐𝑒(𝐴) − 1)/2) 
5.   𝐿𝑜𝑔𝐴 = (∅ ∗ (𝐴 − 𝐴𝑇))/(2 ∗ sin (∅)) 
6.   B = GVRVB [i-1]-1 * GVRVB [i] 

7.   ∅ = acos ((𝑇𝑟𝑎𝑐𝑒(𝐵) − 1)/2) 
8.   𝐿𝑜𝑔𝐵 = (∅ ∗ (𝐵 − 𝐵𝑇))/(2 ∗ sin (∅)) 
9.  If abs (LogA.norm ( ) – LogB.norm ( ) < 0.01) where abs means absolute value, norm 

() means matrix norm. 

10.   Convert  𝐿𝑜𝑔𝐴 ∈ 𝑆𝑂(3) to 𝑤𝐴  ∈ 𝑠𝑜(3) 
11.   Convert  𝐿𝑜𝑔𝐵 ∈ 𝑆𝑂(3) to 𝑤𝐵  ∈ 𝑠𝑜(3) 
12.   M = M + 𝑤𝐵 ∗  𝑤𝐴

𝑇  

13.  Else M = M + [] 

14.  End if 

15. End for 

16. SBRVB = (MT * M)-1/2 * MT 

 

 After SBRVB has been calculated, the orientation measurements from the IMUs 

and the Vicon can be evaluated. Here, since the human forearm motion is of interest, 

multi-axis movements are required. 

3.2.4 Orientation compensation using Vicon and IMUs 

 As discussed in the introduction, a Vicon system might lose tracking of the 

object due to occlusions and the frames might flip suddenly depending on their relative 

position to the Vicon cameras. In addition, the ambient working environment might 

affect the local frames of the IMUs because the magnetic field measurements from the 

magnetometer can be biased. Hence, a frequent resetting of the origin is needed. 

Therefore, the setup shown in Figure 3-2 Experiment setup for Vicon-CMM evaluation. 

Left: the actual setup.  Right: a schematic plot and annotation of the setup.is proposed 

to overcome these problems. A similar setup can be found in [55].  The difference is 

that they put the markers directly on the skin rather than setting them up on a rigid 

structure to ensure the relative position of the markers is not affected by the muscle 

movement and hence derive measurements that are more reliable. As shown in the 

setup, multiple IMUs were used to track each rigid link of the human arm which 

allowed the pose of the manipulated object to be deduced. This requires additional 

anatomical calibration for sensor-on-body alignments. However, this approach requires 

extra human postures to be collected and affected by the skin moves [79]. The 
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armbands that are worn on the upper and lower arm contain a built-in IMU in the pod 

where the Vicon marker frame is attached. The GV refers to the global Vicon frame for 

all the Vicon body frames with the annotations H, L and U for hand, lower arm and 

upper arm respectively. The GS_U refers to the inertial frame of the upper arm IM. The 

GS_L refers to the inertial frame of the lower arm IMU. The GS_H refers to the inertial 

frame of the hand IMU. 

 
Figure 3-5 Setup for Vicon-IMUs compensation. 

 The algorithm to fuse the Vicon and IMU data is illustrated in Table 3-2. The 

inputs are: SBRVB, GVRVB, GSRSB from the body frame alignments and measurements 

from both the Vicon system and IMUs. One of the outputs is GVRGS ∈ R3, the Inertial 

frames of the IMUs. It is periodically calculated as shown in equation (3-1).  

GVRGS = GVRVB * (SBRVB)T * (GSRSB)T ……………………..…..(3-1) 

where 𝑆𝐵 ∈ [𝑈𝑝𝑝𝑒𝑟 𝑎𝑟𝑚 (𝑈), 𝐿𝑜𝑤𝑒𝑟 𝑎𝑟𝑚 (𝐿), 𝐻𝑎𝑛𝑑 (𝐻)] . GS(0)RGS(t) is calculated 

relative to the initial frame and converted to Euler angles according to equation (3-2). 

These angles enable the resetting of the IMU inertial frame by comparing them with a 

threshold value (1˚ in this chapter). 
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[
𝑟𝑜𝑙𝑙
𝑝𝑖𝑡𝑐ℎ
𝑦𝑎𝑤

] =  

[
 
 
 
 𝑎𝑟𝑐𝑡𝑎𝑛

2(𝑤𝑥+𝑦𝑧)

1−2(𝑥2+ 𝑦2)

arcsin (2(𝑤𝑦 − 𝑧𝑥))

𝑎𝑟𝑐𝑡𝑎𝑛
2(𝑤𝑧+𝑥𝑦)

1−2(𝑦+ 𝑧) ]
 
 
 
 

 ………………………………… (3-2) 

 

 The measurements from the IMUs can be transformed into the Vicon system 

world coordinates by calculating GVRGS * GStRSB * SBRVB. On the other hand, the 

measurement from the Vicon system needs to be checked by calculating VB(t-1)RVB(t) 

which inspects the inconsistency of the pose measurements. The subscription t in the 

bracket is the measurement from the current timestamp, whereas (t-1) is from the 

previous timestamp. If the frame flips or the data is not available, the measurement 

GVRVB will be replaced by the value from the IMUs ( RVB(t)
GV ) ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . At this point, by 

assuming that the IMUs are representing each body segment, the relative 

transformations can be calculated based on forward kinematics [79]. 

 By using the proposed method, GVRGS will not update until the next period of 

checking has occurred and both the IMU and the Vicon measurements are available for 

the same time stamp. This will correct the bias of the IMUs and keep tracking the body 

segments while the object is occluded or flipped from the Vicon cameras. 

Table 3-2. Algorithm 2: Vicon-IMU compensation method. 

Input: SBRVB, GVRVB, GSRSB 

Output: GVRGS, ( RVB
GV ) ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

For 𝑡 =  0: 𝑇 

 if t == 0 

  GVRGS(0) = GVRVB(0) * (SBRVB(0))-1 * (GS(0)RSB(0))-1 

 else 

  GVRGS(t) = GVRVB(t) * (SBRVB)-1 * (GS(t)RSB(t))-1 

  GS0RGS(t)  = (GVRGS(0))-1 * GVRGS(t) 

  if any roll, pitch or yaw > 1˚ 

   ( RVB(t)
GV ) ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  = GVRGS(t) * GStRSB(t) * SBRVB 

  else 

   ( RVB(t)
GV ) ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  = GVRVB(t) 

  end if 

  VB(t-1)RVB(t) = (GVRVB(t-1))-1 * (GVRVB(t)) 
  (roll, pitch, yaw) = quat2Euler (VB(t-1)RVB(t)) 

  if GVRVB(t) unavailable or any roll, pitch or yaw > 10˚ 

   GVRVB(t) = ( RVB(t)
GV ) ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

  end if 

 end if 

end For 
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3.3 Result analysis 

3.3.1 Evaluation of the Vicon with CMM 

 The 2-camera Vicon system claimed to have 0.5mm accuracy. This 0.5mm is a 

general performance which may improve if the working volume is constrained. To 

evaluate the accuracy of the Vicon system, targets were attached to a CMM which has 

2.1μm accuracy in all axes. A number of dynamic poses were evaluated by moving the 

single Z axis, both the XZ axes and the XYZ together. The CMM moving distance is 

equal to x, y and z axis with an incremental value. The total linear distance is equal to 

√𝑥2 + 𝑦2 + 𝑧2. By recording the initial position, the error is defined as: e = Total 

linear distance in CMM – object travel distance in Vicon. The results are shown in 

Table 3-3-3-5: 

Table 3-3 Evaluation of the Vicon with CMM in the X axis. 

Trials Axis 
CMM distance 

(mm) 

Total linear distance 

(mm) 
Mean Error (mm) SD (mm) 

5 X 1000 1000 0.132 0.022 

 

Table 3-4 Evaluation of the Vicon with CMM in X and Y axis. 

Trials Axis CMM distance (mm) Total linear distance (mm) Mean Error (mm) SD (mm) 

5 
X and 

Y 

1 1.414 -0.012 0.006 

10 14.142 0.054 0.006 

100 141.421 0.431 0.01 

500 707.107 1.542 0.03 

1000 1414.214 2.346 0.059 

 

Table 3-5 Evaluation of the Vicon with CMM in X, Y and Z axis. 

Trials Axis CMM distance (mm) Total linear distance (mm) Mean Error (mm) SD (mm) 

5 
X,Y, 

and Z 

1 1.732 0.004 0.005 

10 17.321 0.083 0.013 

100 17.321 0.194 0.015 

500 866.025 0.703 0.036 

1000 1536.229 1.121 0.058 

 

The main results are: 

 In the one axis case, the total moving distance is 1000 mm between the two 

extremes of the CMM measurement volume; the mean error is 0.132mm with a 

standard deviation 0.022 mm. The overall performance is better than the 

claimed accuracy. 
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 In the two-axes case, the accuracy degrades when the object moves further away 

from the camera. When the moving distance is 10mm, the mean error is 

0.054mm with a standard deviation 0.006 mm. But when the moving distance is 

100 mm, the mean error is 0.431mm with a standard deviation 0.01mm. This 

result is almost equal to the claimed accuracy. At a maximum distance of 

1000mm, the mean error is only 2.346mm with a standard deviation 0.059 mm, 

actually much worse than stated for the Vicon system. 

 In the three-axes moving case, the accuracy also degrades when the object 

moves further away from the camera. The difference is when the moving 

distance is 100mm, the Vicon system is still within the claimed accuracy. At the 

maximum distance, the mean error is 1.121mm with a standard deviation 

0.058mm. Again, this is worse than the stated accuracy of the system. 

From the above results, the mean error of the Vicon system is not as good as the 

claimed value in multiple axis movements when the object moves away from the 

cameras. Similar results were also indicated in [47], where the further the object is 

away from the camera the less accurate the system became.  In [212], they also 

discussed the improvement of the positioning accuracy by increasing the number of 

cameras used in any photogrammetry system. In general, by having more intersections 

from multiple cameras, the Vicon system can provide more reliable and accurate results. 

The 2-camera setup in this chapter is fixed and symmetrically placed, the performance 

of one diagonal movement is assumed to equal to another diagonal movement. The 

evaluation of the Vicon system was done with discrete positions, and the results are 

similar to the previous works. The results indicated that starting from the near camera 

side of the evaluation volume, more accuracies can be achieved when the object 

moving distance is less than 100mm. Therefore, by referring to the result in Table 3-3-

3-5, the measurements from the Vicon system used in this work can be more accurate 

(0.069 - 0.488mm) than the claimed accuracy if the working volumes are limited and 

close to the cameras. 

 However, the accuracy is not the only characteristic that makes the 2-camera 

Vicon system suitable for human motion tracking. Once the markers have been attached 

to the frame and fixed to the IMU body, tracking would be lost at some poses because 

the human body segments may occlude the markers. These missing information will 
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cause a problem for human posture tracking as it leaves a blank in the time series data. 

Also, the frame might flip when only partial view of the markers is available from the 

cameras hence confusing the correct tracking of the object orientation. An example in 

Figure 3-6 shows the motion data from the Vicon system that contains frames flipping 

and occlusion that cause abnormal peaks and missing data.  

 
Figure 3-6 An example of Vicon flipping and occlusion problem during motion tracking.  The data 

is represented in quaternion. 

3.3.2 Evaluation of the IMUs with Vicon 

a) Body alignment results 

 The body frame transformations VBRSB from the IMU inertial frames to the 

Vicon origin frame were estimated based on algorithm 1 (Table 3-1). The collected 

orientations contain enough valid data samples (at least 3 ) that allow them to be 

discriminated from each other. As described in section 3.2.1, an incremental number of 

valid pairs of the Vicon-IMU measurements were used for VBRSB estimation. The 

evaluation results are shown in Figure 3-7, Figure 3-8 and Figure 3-9 where the mean 

and standard deviation values are plotted for yaw, pitch and roll angle rotations from Z, 

Y, and X axis. The results show that as the number of the frames increase, the 

estimations tend to be more stable for all the IMUs: the mean and standard deviation 

have less variation and the error bar (standard deviation of the estimations) tend to be 

narrower. Therefore, a summary of all the IMUs estimation results from 55 frames were 

selected and shown in Table 3-6. From the results, even though the Vicon frame was 

manually aligned with the IMU body (not the inertial frame), none of the Vicon body 

frames were pre-aligned with the IMU body frames. The estimation indicated that the 

body frame of the lower arm IMU has a misalignment of [-3.44˚ ± 0.25˚, -3.66˚ ± 0.32˚, 

Flip

Occlusion
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1.28˚ ± 0.39˚] from the Vicon frame in roll pitch and yaw; the upper arm IMU has a 

misalignment of [-76.10˚ ± 0.09˚, 0.41˚ ± 0.15˚, -0.22˚ ± 0.23˚]; the hand IMU has a 

misalignment of [98.51˚ ± 0.89˚, -1.65˚ ± 0.73˚, 1.18˚ ± 0.17˚]. The results will be used 

for IMU evaluations in section 3.3.20 and Vicon-IMU compensations in section 3.3.3. 

 

 
 

 

 
Figure 3-7 Evaluation of the hand IMU- Vicon body frame alignment transformation. 
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Figure 3-8 Evaluation of the lower arm IMU- Vicon body frame alignment transformation. 
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Figure 3-9 Evaluation of the upper arm IMU- Vicon body frame alignment transformation. 

Table 3-6 Body frame alignment transformations in Euler angles.  

 yaw pitch roll 

Lower arm IMU -3.44 ˚ ± 0.25˚ -3.66˚ ± 0.32˚ 1.28˚ ± 0.39˚ 

Upper arm IMU -76.10˚ ± 0.09˚ 0.41˚ ± 0.15˚ -0.22˚ ± 0.23˚ 

Hand IMU 98.51˚ ± 0.89˚ -1.65˚ ± 0.73˚ 1.18˚ ± 0.17˚ 

 

b) Evaluation results 

 After calculation of the body frame transformations VBRSB for each IMU in 

section 3.3.2a), the IMUs can now be evaluated. The frames used in this section have 

been defined in Figure 3-5.  Three trials over a 300s interval each have been collected. 

In the beginning, the first frames from the first measurements of all the sensors were 

used as a reference. GS0RGS = (GVRGS0)
-1 * GVRGS is the transformation from the inertial 

frame from the first measurement to the current inertial frame of the IMUs. As a 

reminder, GVRGS is calculated based on equation (3-1). Since the Vicon world 

coordinate frame (GV) will not change, therefore, the GS0RGS of the IMUs were 

(°
) 

(°
) 
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calculated to evaluate how much they differ from one to another relative to GV. The 

Euler angles are interpreted in the yaw, pitch and roll order. 

 As shown in Figure 3-10, the measurements from IMU and Vicon are not 

directly comparable without frame alignment. Therefore, it is essential to use the body 

frame alignment transformations from section 3.3.2a). Figure 3-11shows the 

evaluations of the hand IMU on trial 1 for visualisation of the IMU inertial frame 

drifting problem. A smoothed curve and zero reference curves are also shown for 

comparison purposes. The most significant drifting occurs on the yaw angle. The sensor 

itself can cancel the drifting in pitch and roll angles oscillate around the zero reference, 

which indicates that, the drifting. The experiments were carried out according to the 

specific patterns defined in section 3.2.1. But from the statistics results across all trials 

in Figure 3-12, the histogram plots shows the distribution of the drifting error. From the 

plots, the different shapes of distributions indicate that the drifts are not predictable. For 

instance, the histogram in the yaw drifts in trial 1 is biased towards a positive angle. 

But histogram is biased to a negative angle in trial 2 and contains two peaks in trial 3. 

The unpredictable drifts apply on the lower arm and upper arm IMUs, as shown in 

Figure 3-13-3-16. Especially in Figure 3-13, the lower arm IMU tends to have stable 

inertial frame for the first 50s, but then the drifts become more significant. For the 

upper arm IMU, as shown in Figure 3-15, the yaw angle is stable for 20s, but then the 

drifts become worse. The drifts of the pitch and roll angles seem to periodically get 

back to zero, but again from the histogram in Figure 3-16, they are not predictable. 
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Figure 3-10 An example of IMU evaluation using Vicon without body frame alignment.  

 

 

 

Figure 3-11 The deviation of the hand IMU inertial frame after alignment for trial 1. 
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Trial 1 Trial 2 Trial 3 

   

   

   
Figure 3-12 Statistics of the inertial frame deviations for the hand IMU. 
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Figure 3-13 The deviation of the lower arm IMU inertial frame after alignment for trial 1.  

Trial 1 Trial 2 Trial 3 

   

   

   
Figure 3-14 Statistics of the inertial frame deviations for the lower arm IMU. 
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Figure 3-15 The deviation of the upper arm IMU inertial frame after alignment for trial 1.  
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Figure 3-16 Statistics of the inertial frame deviations for the upper arm IMU. 

 In conclusion, the IMU’s inertial frames keep changing in the ambient 

environment. The drifting problems for yaw angles are larger for all the IMUs used. 
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The drifts of the pitch and roll angles show some pattern, but they are not predictable 

and non-systematic. These make it difficult to track human body movements reliably 

with IMUs alone. Therefore, a reference system is needed to compensate the non-

systematic drifting issues of the IMUs. 

3.3.3 Implementation of the Vicon-IMU system 

 To validate the overall approach, four operators have been asked to wear the 

IMU sensors as shown in Figure 3-5.  In this section, two industrial manipulation tasks: 

a PiH assembly and pick-and-place task were used to discuss the performance of the 

proposed Vicon-IMUs system. 

 The results in Table 3-7-Table 3-9 show the performance of the proposed 

Vicon-IMU compensation method compared to the IMU-only method.  The Mean 

Square Error (MSE), as the performance indicator is calculated in between the 

reference Vicon signal and the measurements from either IMU-only or with 

compensation method.  The mean and standard deviation of the MSE across 5 trials are 

used to show the variation of the performance for each subjects. In all cases, the 

compensated measurements have smaller MSE than the IMU-only method.  A golf 

swing motion was tracked with ±3˚ angle accuracy [79].  Here we are aiming at a better 

tracking performance (±2˚). The maximum error in the compensation approach is 

1.89˚± 0.68˚ from the yaw angle of the lower arm IMU.  This error is smaller than the 

expected value.  The error in the IMU-only approach is much larger the expected value, 

therefore the motion tracking performance is unreliable.   

 Since the comparison of the results berween the four subjects by using the IMU-

only method is not applicable (too much un-systematic drifting), the measurements 

from the compensation method were used.  For PiH task, subject A has a larger error on 

the hand tracking and upper arm tracking, subject C has a larger error on the lower arm 

tracking.  For Pick and Place (PnP) task, subject C has a larger error on the hand 

tracking, subject A has a larger error on the lower arm tracking and subject B has a 

larger error on the upper arm tracking.  These indicate that tracking on the different 

subject contains variations in different body parts.  This is partially because the 

different types of IMUs behave differently. And more importantly, since the drifts in 

the IMUs are un-systematic, they influence the performance of the compensation 

method. For instance, at times, the occlusion is too long and hence the compensation is 
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not enough and not in-time when the Vicon system is recovered from the occlusion or 

flipping issue. In general, the tracking error after compensation is one magnitude 

smaller than the error with IMU only. In conclusion, the above results indicate that the 

proposed compensation method can improve the human motion tracking performance 

especially flipping and occlusions for some time. The longer the occlusion, the more 

estimation bias can present due to IMU drifts and environmental changes. For the 

applications used in this study, the occlusion time (1~2s) is not the predominant factors, 

therefore, futher discussion of the influence of the occlusion time will be addressed in 

the future work.  

Table 3-7 Evaluation of the proposed compensation method for the hand IMU 

a) PiH Hand IMU 

IMU only With compensation 

 Yaw Pitch Roll Yaw Pitch Roll 

Subject A 2.40˚± 0.75˚ 3.09˚± 0.60˚ 5.25˚± 1.13˚ 0.26˚± 0.07˚ 0.35˚± 0.15˚ 0.89˚± 0.33˚ 

Subject B 2.10˚± 1.97˚ 5.18˚± 6.55˚ 6.97˚± 7.17˚ 0.14˚± 0.09˚ 0.32˚± 0.16˚ 0.50˚± 0.28˚ 

Subject C 0.92˚± 0.22˚ 2.59˚± 1.35˚ 2.62˚± 0.46˚ 0.16˚± 0.05˚ 0.37˚± 0.11˚ 0.32˚± 0.20˚ 

Subject D 1.65˚± 0.55˚ 5.82˚± 3.89˚ 4.46˚± 1.28˚ 0.19˚± 0.08˚ 0.41˚± 0.35˚ 0.58˚± 0.19˚ 

 
b) PnP Hand IMU 

IMU only With compensation 

 Yaw Pitch Roll Yaw Pitch Roll 

Subject A 6.87˚±13.83˚ 3.07˚± 2.04˚ 13.77˚±23.80˚ 0.07˚± 0.02˚ 0.16˚± 0.06˚ 0.23˚± 0.13˚ 

Subject B 0.63˚± 0.09˚ 2.16˚± 1.49˚ 3.52˚± 2.39˚ 0.10˚± 0.07˚ 0.17˚± 0.13˚ 0.21˚± 0.16˚ 

Subject C 1.05˚± 0.58˚ 2.88˚± 0.84˚ 5.01˚± 2.18˚ 0.28˚± 0.20˚ 0.49˚± 0.73˚ 0.61˚± 0.59˚ 

Subject D 2.19˚± 3.19˚ 4.32˚± 6.61˚ 9.14˚± 11.45˚ 0.12˚± 0.07˚ 0.14˚± 0.14˚ 0.22˚± 0.07˚ 

 

 

Table 3-8 Evaluation of the proposed compensation method for the lower arm IMU 

a) PiH Lower arm IMU 

IMU only With compensation 

 Yaw Pitch Roll Yaw Pitch Roll 

Subject A 4.47˚± 1.32˚ 5.06˚± 1.88˚ 2.84˚± 0.60˚ 1.30˚± 0.47˚ 0.62˚± 0.21˚ 0.39˚± 0.18˚ 

Subject B 3.80˚± 1.13˚ 4.64˚± 1.60˚ 2.44˚± 0.93˚ 1.16˚± 0.48˚ 0.44˚± 0.18˚ 0.46˚± 0.19˚ 

Subject C 7.32˚± 3.30˚ 8.49˚± 2.29˚ 3.81˚± 0.94˚ 1.89˚± 0.68˚ 0.57˚± 0.21˚ 1.69˚± 1.05˚ 

Subject D 5.85˚± 1.50˚ 4.53˚± 2.02˚ 4.05˚± 1.05˚ 1.56˚± 0.51˚ 0.89˚± 0.32˚ 1.00˚± 0.20˚ 

 

 
b) PnP Lower arm IMU 

IMU only With compensation 

 Yaw Pitch Roll Yaw Pitch Roll 

Subject A 3.46˚±1.07˚ 1.67˚± 0.47˚ 1.78˚±0.52˚ 0.69˚± 0.22˚ 0.47˚± 0.30˚ 0.39˚± 0.19˚ 

Subject B 2.80˚± 1.12˚ 1.07˚± 0.41˚ 1.10˚± 0.35˚ 0.37˚± 0.09˚ 0.23˚± 0.08˚ 0.34˚± 0.10˚ 

Subject C 2.71˚± 0.92˚ 1.26˚± 0.55˚ 1.24˚± 0.31˚ 0.45˚± 0.13˚ 0.39˚± 0.09˚ 0.55˚± 0.30˚ 

Subject D 1.79˚± 0.47˚ 1.94˚± 0.62˚ 2.42˚± 1.23˚ 0.45˚± 0.24˚ 0.48˚± 0.23˚ 0.47˚± 0.08˚ 
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Table 3-9 Evaluation of the proposed compensation method for the upper arm IMU 

a) PiH Upper arm IMU 

IMU only With compensation 

 Yaw Pitch Roll Yaw Pitch Roll 

Subject A 2.07˚± 1.19˚ 3.77˚± 1.17˚ 1.37˚± 0.30˚ 0.40˚± 0.33˚ 0.03˚± 0.01˚ 0.12˚± 0.10˚ 

Subject B 2.63˚± 0.82˚ 6.29˚± 0.60˚ 1.75˚± 0.24˚ 0.13˚± 0.05˚ 0.06˚± 0.02˚ 0.05˚± 0.03˚ 

Subject C 3.81˚± 0.96˚ 8.09˚± 0.95˚ 1.47˚± 0.42˚ 0.06˚± 0.03˚ 0.01˚± 0.01˚ 0.06˚± 0.03˚ 

Subject D 6.93˚± 1.50˚ 9.52˚± 3.26˚ 3.21˚± 1.08˚ 0.08˚± 0.06˚ 0.04˚± 0.03˚ 0.12˚± 0.10˚ 

 
b) PnP Upper arm IMU 

IMU only With compensation 

 Yaw Pitch Roll Yaw Pitch Roll 

Subject A 9.37˚±2.90˚ 5.92˚± 1.49˚ 5.29˚±7.96˚ 0.14˚± 0.07˚ 0.05˚± 0.02˚ 0.11˚± 0.03˚ 

Subject B 9.25˚± 1.53˚ 5.27˚± 1.23˚ 5.76˚± 9.06˚ 0.38˚± 0.20˚ 0.15˚± 0.06˚ 0.19˚± 0.09˚ 

Subject C 8.74˚± 2.62˚ 6.46˚± 1.36˚ 5.25˚± 7.58˚ 0.25˚± 0.08˚ 0.12˚± 0.08˚ 0.16˚± 0.12˚ 

Subject D 11.21˚±3.66˚ 3.43˚± 0.31˚ 5.06˚±11.64˚ 0.33˚± 0.07˚ 0.13˚± 0.02˚ 0.23˚± 0.08˚ 

 

 

3.4 Conclusion 

 In this chapter, the objective is to evaluate the state of the art motion tracking 

system and improve their reliability to be used within an LfD framework to better 

transfer skills from human experts to machines. To achieve this, a combined 2-camera 

Vicon system with IMU inertia tracking has been successfully evaluated. A new data 

fusion method has been created that compensates for the known limitations of the both 

systems and improves their combined accuracy (±2˚ achieved) and robustness for 

tracking human tasks with minimum drifts. It has been demonstrated that the proposed 

compensation method generates continuous and more reliable joint transformation 

measurements. This system was implemented for tracking both a PiH as well as a Pick-

and-Place task. This work is important since it provides a more reliable tracking system 

for human body segments. Also, the proposed approach only requires a small number 

of cameras. In this case a 2-camera setup combined with commercially available IMUs 

was used to successfully track the two tasks. The cost of such a system is very much 

lower than the normally recommended higher number of camera setups. More 

importantly, the proposed approach can cope with occlusions which entirely camera 

based system cannot. 
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  This chapter has made an important contribution in providing a more reliable 

means to dynamically track human motions within the workspace. Together with the 

haptic feedback, the motion data will provide the important information required to 

enable human skills capture in fine manipulation tasks. The system will be used to 

capture motion data in the next chapter, where a method will be developed to encode 

the recorded measurements as probabilistic models that can be translated for robot 

executions. 
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 Encoding and Reproductions of the Human 

Skills from Demonstrations - A Peg in Hole Case Study 

4.1 Introduction 

 Most of the time, tasks contain both gross and fine motions. Gross motions can 

be captured using the proposed motion tracking techniques in chapter 3, whereas fine 

motions are often required in close or actual contact manipulation situations. Contact 

between components introduces uncertainties, and robots require Force/Torque (F/T) 

feedback to detect changes in contact conditions. Geometrical uncertainties are one of 

the primary sources of the uncertainties. It is difficult for a robot to become adaptive to 

these because the contact bodies might deform which would invalidate the existing 

model [213]. Also, it is almost impossible to create a sufficiently accurate geometry 

model for every single contact configurations; therefore, a readily generalisable method 

is needed to cope with a wider range of situations. 

 Compared to robots, humans can adapt to these uncertainties easily. Close 

contact manipulation tasks can be classified as skill-based tasks, which are harder to 

extract and generalise so that a robot can understand and use it to inform its control 

strategy. An important reason why humans are good at performing manipulation tasks 

is that we have strong haptic feedback. This is a key indicator that capturing the force 

interactions during manual contact manipulation will be instrumental for transferring 

some of the tacit knowledge from human experts to a robot.  

 In this chapter, the aim is to address the research objective two, which is to 

build state-action policy models from human demonstrations that relate to industrial 

manual manipulations. To achieve this, the force information is measured by fixing the 

F/T sensor on the work piece. The human operator wore the IMU-Vicon system 

introduced in chapter 3 and the hand motions were recorded accordingly. The state-

action policy was derived based on the demonstrated subject’s skills. A PiH task which 

requires tacit skills to align the peg with the hole and gradually sliding the peg into the 

hole task is used as a case study. This task is chosen because the subject can be easily 

trained to be a skilful operator and the motion and force signals are relatively simple 

which contain repetitive patterns. Since individual subject might show different skills in 

completing the task, the generalisation capabilities of the model were evaluated against 
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different demonstrations and various subjects. The methodology is described in section 

4.2. Results analysis is presented in section 4.3 and conclusions are presented in section 

4.4. 

4.2 Methodology 

 In order to encode the skills during fine motions, a methodology is proposed in 

this section. The operators were asked to demonstrate the PiH task according to the 

experiment setup in 4.2.1. The sample skills were encoded by a novel probabilistic 

encoding method in 4.2.2. The method was mainly built based on the Gaussian Mixture 

Model (GMM) and Hidden Markov Model (HMM) which are detailed in section 4.2.2d) 

and 4.2.2f) respectively. The reproduction of the skills was addressed by Gaussian 

Regression Model (GMR) in 4.2.3. The related uncertainties in this chapter are listed as 

follow: i) different data filtering strategy. ii) selection of reference signal for 

demonstration misalignment. iii) data dimension reduction (c). iv) number of Gaussians 

in the Gaussian Mixture Model. v) the number of demonstrations. vi) generalisation 

across different subjects. vii) motion reproductions. The influence of these uncertainties 

are discussed in section 4.3. 

4.2.1 Experiment setup 

 The subjects involved in the experiment are postgraduate students in Intelligent 

Automation research lab with mechanical engineering training and are familiar with 

practical assembly tasks. The experiment setup is shown in Figure 4-1 where each 

subject performs the experiment in turn. The subject was asked to stand in front of the 

test rig, wearing the Vicon-IMU system as described in chapter 3. The PiH task 

contains relatively simple motions, and the hand pose introduces the dominant 

movement. Therefore, the operator was briefed to restrict the elbow and shoulder joint 

movements while he/she was doing the task and only use the wrist joint instead. Also, 

the subject was asked to hold the peg in the way shown in Figure 4-1 to reduce the 

variations introduced by different holding strategies. The 6 axis F/T sensor used in the 

experiment is ATi Gamma series. It is rigidly installed underneath the workpiece. The 

data acquisition rate is 200 Hz and synchronised by using ROS approximation timing 

synchronizer. The peg and hole diameters used in this case study were 16.0 mm and 

16.2 mm respectively. Six subjects (at the average age of 27) were asked to 

demonstrate the PiH skills and 10 trials were performed by each of them during the 
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experiment. They were asked to repeat the experiment a few times to familiarise 

themselves with the approach for consistency. Each trial contained approaching, 

insertion, extraction and resting phase lasting between 3-5 seconds. At the beginning, 

the initial approaching strategy for individual subject is not constrained by the same 

pose. Then, an alignment procedure is applied (as discussed in section 4.3.2) and the 

subjects are asked to repeat the experiments again. 

 

Figure 4-1 Experiment setup of the PiH process. 

4.2.2 Novel probabilistic skills encoding method  

 The proposed methodology for skill encoding is shown in Figure 4-2. The input 

signals used in this chapter are the 1st PCA of the force signal and the hand orientations 

{𝑓𝑝𝑐𝑎
1 , roll, pitch, yaw}. As shown in Figure 4-2, the methodology contains two levels. 

In the first level, models are built on individual subjects across various demonstrations.  

The GMR method is used to generate one single smooth curve which represents his/her 

model. In the second level, a generalisation model is further built based on the 

regression models from different subjects. This model represents skills across all the 

subjects. 
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 The skill encoding method is a key component of the LfD framework, and 

details are explained in this section. The input signals were firstly pre-processed, which 

includes filtering, Dynamic Time Warping (DTW) alignment, and PCA as described in 

subsection a), b) and c). Then, a skill extraction pipeline was implemented for encoding 

and decoding the pre-processed signals. A number of hidden states (each one accounts 

for a specific distribution of the samples) were learned and recognised. In this pipeline, 

a K-means algorithm was used to initialise the GMM. The GMM was then trained to 

estimate observation density for each state. A Bayesian Information Criterion (BIC) 

was utilised for the model selection where the candidate number of components was 

determined. The HMM then took the output from the GMM and further encoded the 

states into transition probabilities. Finally, the Viterbi algorithm [214] was used for the 

state recognition (decoding) with a given set of model parameters determined from the 

training model. After recognition, the operator interpreted the state during the process, 

and some of the parameters such as the transition matrix (a matrix that describes the 

probabilities of a state to transition to another state) could be refined after interpretation 

by the experts.   
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Figure 4-2 An overview of the methodology for skill encoding. 

 The HMM has been chosen as a general encoding structure to limit the 

assumptions made on the spatial-temporal nature of the data set. The time variables are 

implicitly represented by the state transition model using HMM and the Markov 

assumption assumes the current state contains all the information from the previous 

states. This reduces the model complexities. Here, a continuous HMM, with a full 

covariance matrix describing the distributions of the output variables was used. For 

implementation purpose, it was desirable that the operator should not have to 

demonstrate the task more than a few times (5~10). This compromise has led to more 

parameters to be estimated compared to the amount of training data required. 

 The Baum-Welch (BW) algorithm [215], an HMM extension of Expectation-

Maximization (EM) optimization algorithm, was used for the parameter estimation 

purpose. However, the algorithm cannot guarantee a global maximum and may become 

trapped in a local maximum of the likelihood function. Thus, the initialisations highly 

influence the model performance. Consequently, it is recommended to run K-means 

algorithm multiple times to guarantee a good convergence. 
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a) Data filtering strategy 

 The data from the F/T sensor, as shown in Figure 4-3, can be manually labeled 

into states (i.e. PiH phases namely approaching, insertion and extraction etc). As shown 

in Figure 4-3, the raw signal from the sensor contains noise. In this work, a Discrete 

Wavelet Transformation (DWT) is implemented as a filtering strategy as shown in 

equation (4-1),  

𝑋(𝑎, 𝑏) =  
1

√𝑎
∫ 𝛷 (

𝑡−𝑏

𝑎
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑥(𝑡)𝑑𝑡 ……………………………………… . .

∞

−∞
(4-1) 

 where a is a scaling factor, b is a time scaling factor, Φ is basis function, x(t) is 

time-series input data. DWT is a powerful tool for extracting time-frequency domain 

features from time series data. Compared with other feature extraction strategies in time 

and frequency domains, DWT has a good time localization property, which suits on-

line applications [45]. DWT splits the signal into an approximation and detail 

coefficients by passing it through complementary low- and high-pass filters. The 

approximation coefficients are further divided into a second-level approximation and 

detail coefficients. By repeating the process, one signal is broken down into many 

lower resolution components. Therefore, DWT can be used in the multi-resolution 

analysis where a different level of details will be reserved [216][217].   

The selection of the elemental orthonormal basis wavelet function depends on 

the application. Typically, a ‘haar’ wave is widely used due to its simplicity, and it is 

closely related to the Piece-Wise Aggregation (PWA) algorithm. PWA is a symbolic 

representation of time-series data [218]. It reduces the dimensionality by re-

representing the data by its average. However, DWT can be more useful than 

dimensionality reduction. By only allowing the basis function to change in time 

extension, but not the shape, both approximation and detail information of the original 

signal are preserved. Therefore, the signal can be de-noised by DWT. ‘Daubechies 10’ 

(db10) basis wavelet and the 6th level approximation of the original signals are chosen 

heuristically as the data filtering strategies. The shape of the force signal is smoothed 

after filtering. The reason behind this is to simplify the prediction because the wearable 

sEMG sensors cannot capture subtle force change caused by the muscle group. As 

shown in Figure 4-3 (the force along the z-axis contains the largest variations during 

the insertion phase). The spikes in the force signal were shown in the raw data are due 

to the initial contact and the large internal frictions when the operator is trying to react 
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and adjust his insertion angle. The features on the Fz profile are quite clear, but their 

shapes vary across subjects and demonstrations. The results will be shown in section 

4.3. Due to the clearance (see 4.2.1), the jamming occurred when the operator was 

trying to align the peg with the hole, but as long as the peg has inside the hole it would 

slide in. Therefore, some of the frictions happened after the peg alignments could be 

handled easily by the robot by attempting insertion in vertical axis without the human 

knowledge.  

 

Figure 4-3 Fz signal from F/T sensor.  The solid line is the filtered signal.  The dotted line is the 

raw signal.  The signal has been labeled into approaching, insertion, extraction and relax states. 

b)  Dynamic time warping (DTW) 

 It is unlikely that every demonstration was performed with the same time 

duration/length (data samples/sampling points). Even if two trials happen to have the 

same length, the underlying states may not align in the time domain. These misaligned 

signals can influence the results from GMM because it will have difficulties in 

producing a generalised representation of the data set. HMM can be also used for time 

series alignment, but DTW is used here due to its simplicity. It is a distance based 

approach to pre-process the data and then feed the output to the consequence steps. 

DTW was used in section 4.3.1 as a pre-alignment step. The algorithm is shown in 

Table 4-1. 

 

 

 

 

Approaching Extraction RelaxInsertion

Initial contact

Friction
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Table 4-1 Algorithm: DTW 

Input: S: Sequence of length n, Q: Sequence of length m. 

Output: DTW distance. 

1. Initialise D (i, 1) = iδ for each i 

2. Initialise D (j, 1) = iδ for each j 

3. For all i such that 2 < i < n do 

4.   For all j such that 2 < j < m do 

5.   𝐃(𝐢, 𝐣) = 𝐝(𝐢, 𝐣) + 𝐦𝐢𝐧 {

𝐃(𝐢 − 𝟏, 𝐣)
𝐃(𝐢 − 𝟏, 𝐣 − 𝟏)

𝐃(𝐢, 𝐣 − 𝟏)
 

6.        End for 

7. End for 

8. Return D (n, m) 

9. [p,q] = Backtracing ( D ), where p, q are the indices of aligned signals 

10. S_aligned = S (p) 

11. Q_aligned = Q (q) 

 

c) Principle component analysis (PCA) 

 PCA is a method to un-correlate the variables of a given signal and reorder them 

regarding their importance. PCA can also be used for data dimensionality reduction. 

Considering an M-dimensional dataset X = 𝑋1, 𝑋2… , 𝑋𝑛, where n is number of samples, 

the PCA will project all the observations based on their Eigen vectors and Eigen values 

to full or lower dimensions. The equation is shown in equation (4-2), where x is the 

observations, h is the latent states, Λ is a mixing matrix with dimension 𝑀 ×  𝑁 (𝑁 ≤

𝑀)  that defines the rules of projection, and 𝜖  is a M dimensional zero-mean 

multivariate Gaussian noise vector with diagonal covariance matrix 𝛹 = 𝜎2𝐼, where I 

is a  𝑀 ×  𝑀 matrix. Defining the model parameters to be 𝜃 = (𝛹, 𝛬), equation (4-3) 

can be derived by integrating out the factors. In PCA, only the co-variance between the 

variables are considered and re-ordered from the most important component to the least 

important component. As a consequence, the data dimensionality is reduced and new 

dataset is re-ordered based on their importance. The solution of the PCA can be found 

by Eigen decomposition of the covariance. Taking the limit of 𝜎 →  0 of 𝑝(ℎ|𝑥, Λ, 𝜎), it 

is a delta-function at ℎ =  𝛬𝑇𝑥, which is the projection from x to principle components 

ℎ. In this chapter, the PCA has been applied to the 6 axis force signals and the 1st PCA 

of the force vector (𝑓𝑝𝑐𝑎
1 ) which contains 98% percent of the information is used to 

represent the contact force. 

𝑥 =  𝛬ℎ +  𝜖 ………………………………………………………………… .. (4-2) 

𝑝(𝑥|𝜃) =  ∫ 𝑝(ℎ|𝜃)𝑝(𝑥|ℎ, 𝜃)𝑑ℎ = 𝑁(0, 𝛬𝛬𝑇 +  𝛹)…………………… . ..(4-3) 
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d)  Gaussian mixture model (GMM) 

 After DTW and PCA, a dataset of N data points of dimensionality D, 𝑋 =

{𝑥 𝑡}𝑡=1
𝑁   with 𝑥𝑡 ∈ 𝑅

𝐷  was modelled by a multivariate Gaussian mixture of K 

components as described in equation (4-4). 

𝑝(𝑥 𝑡) =  ∑𝜋𝑘𝒩(𝑥 𝑡; 𝜇 𝑘, 𝛴𝑘)

𝐾

𝑘=1

 

= 
1

√(2𝜋)𝐷|𝛴𝑘|
𝑒−

1

2
(𝑥𝑛−�⃗⃗� 𝑘)

𝑇𝛴𝑘
−1(𝑥𝑛−�⃗⃗� 𝑘)………………………… . . … . . ……. (4-4) 

 where 𝜋𝑘 ∈ Π is the prior probability of the Gaussian component k, and 

𝒩(𝑥 𝑡; 𝜇 𝑘, Σ𝑘) is the D-dimensional Gaussian density of component k. 𝜇 𝑘, Σ𝑘  are the 

mean and covariance matrices of the multivariate Gaussian k. 𝜋𝑘 , 𝜇 𝑘, Σ𝑘 were estimated 

using the Expectation Maximization (EM) algorithm. GMM could be considered as a 

model with latent variables, where K is the total number of component to represent the 

data set. The EM algorithm estimates the Maximization Likelihood parameters of a 

model with latent variables. Consider a model with variables x, latent variables h and 

parameters 𝜃. The idea of EM is to repeat the Expectation and Maximization step in 

each timestamp, where the Expectation step predicts the distribution over the hidden 

states 𝑞(ℎ) =  𝑝(ℎ|𝑥, 𝜃𝑡−1) where ℎ =  {ℎ𝑘}𝑘=1
𝐾  by fixing the model parameters and the 

Maximization step optimizes the parameter by fixing 𝑞(ℎ). 

e)  Model parameters selection 

 The optimal number of components K in the GMM model is not known 

beforehand. A method that evaluates the trade-off between optimizing the model’s 

likelihood (a metric of how well the fitting is) and minimizing the number of 

parameters to estimate is needed. Even though this number can be learned heuristically, 

a formalized approach is preferred.   

 In order to select the optimal number of components K, a Bayesian Information 

Criterion (BIC) [219] is used after GMM in the benchmarking stage using equation (4-

5). 

𝑆𝐵𝐼𝐶 = −𝐿 +
𝑛

2
𝑙𝑜𝑔(𝑁)…………… .…………………………………… . .. (4-5) 

 Where L is the log-likelihood of the model, n is the number of free parameters 

required for a mixture of K components with a full covariance matrix, i.e. 𝑛 =
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(𝐾 − 1) + 𝐾 (𝐷 +
1

2
𝐷(𝐷 + 1)). N is the number of D-dimension data points. The first 

term of the equation measures how well the model fits the data, while the second term 

has two parts: the number of parameters to estimate in the transition matrix and the 

observation densities. 

f)  Hidden markov model 

 A Hidden Markov Model [214] uses a mixture of multivariate Gaussians to 

describe the distributions of the observations. The temporal variations are also 

encapsulated in the transition probabilities. Let x denote the hidden state of an HMM at 

time t; the model can be written in equation (4-6). 

𝑝(𝑥1:𝑇 , ℎ1:𝑇|𝜃) =  ∏ 𝑝(ℎ𝑡|ℎ𝑡−1, 𝜃)𝑝(𝑥𝑡|ℎ𝑡, 𝜃)
𝑇
𝑡=1 …………………… ..  (4-6) 

 Let {Π = p(𝑥0), 𝑇 = 𝑝(ℎ𝑡|ℎ𝑡−1, 𝜃), 𝐸 = 𝑝(𝑥𝑡|ℎ𝑡 , 𝜃)} be the initial guess of the 

state’s distribution, the transition probabilities between the states or components and 

the multivariate data distribution respectively. {𝜇 𝑘, Σ𝑘}𝑘=1
𝐾 is returned from the GMM 

and is directly used for initializing the HMM. The prior state distribution Π can also be 

suggested by the GMM. Therefore, the HMM only needs to estimate the state transition 

probabilities T and refine the parameters of Π and E. The Baum-Welch algorithm is 

used to estimate those parameters [215]. 

4.2.3 Motion reproduction  

 After GMM/HMM encoding, a Gaussian Mixture Regression was applied to 

reproduce a smooth trajectory, which is inferred from the generalized model. For a D-

dimension variable 𝑥  ∈  𝑅𝐷, the means and covariance matrices given by GMM/HMM 

encoding for component k are given by 𝜇 𝑘𝑋
𝐻 ,  and Σ𝑘𝑋

𝐻 . The regression is done along the 

time index. The means and covariance matrices of the set of observations {𝑡, 𝑥 𝑡} with 

dimension (D+1) were computed. Here, only the time-indexed means and covariance 

matrices were estimated because the rest of the means and covariance matrices 

{𝜇 𝑘𝑋
𝑅 ,  Σ𝑘𝑋

𝑅 } have already been estimated using: 

𝜇 𝑘
𝑅 = {𝜇 𝑘𝑡

𝑅 , 𝜇 𝑘𝑥1
𝐻 , 𝜇 𝑘𝑥2

𝐻 , … , 𝜇 𝑘𝑥𝐷
𝐻 } 

 Σ𝑘
𝑅 = (

 Σ𝑘𝑡
𝑅  Σ𝑘𝑡𝑋

𝑅

 Σ𝑘𝑋𝑡
𝑅  Σ𝑘𝑋

𝐻 ) 
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 The GMR then estimates the generalised trajectory by computing 𝐸[𝑝(𝑥𝑡|𝑡)] 

and the covariance is calculated by 𝐸[𝑐𝑜𝑣(𝑝(𝑥𝑡|𝑡))]  as shown in equations (4-7-4-10): 

𝑥 𝑑(𝑡) =  ∑ 𝛽𝑘(𝑡)𝑥 𝑘
𝑑(𝑡) ……………………………… .………𝐾

𝑘=1  (4-7) 

𝛽𝑘(𝑡) =  
𝜋𝑘𝒩(𝑡;�⃗⃗� 𝑘𝑡

𝑅 , Σ𝑘𝑡
𝑅 )

∑ 𝜋𝑖𝒩(𝑡; �⃗⃗� 𝑖𝑡
𝑅 , Σ𝑖𝑡

𝑅 )𝐾
𝑖=1

………………………………… . . …… (4-8) 

𝑥 𝑘
𝑑(𝑡) =  𝜇 𝑘𝑋 +  Σ𝑘𝑋𝑡

𝑅  Σ𝑘𝑡
𝑅 −1(𝑡 − 𝜇𝑘𝑡)………………………… .. (4-9) 

Σ𝑥𝑥,𝑘
𝑑 = Σ𝑥𝑥,𝑘 − Σ𝑥𝑡,𝑘(Σ𝑡𝑡,𝑘)

−1
Σ𝑡𝑥,𝑘……………………… . . ……. (4-10) 

 To better explain the GMR, the following symbol representation is used: 

[
𝜉𝐼

 𝜉𝑂
] represents the input variables and output variables. [

𝜇𝐼

 𝜇𝑂
] represents the input and 

output mean values. [ Σ
𝐼

 Σ𝑂𝐼
Σ𝐼𝑂

 Σ𝑂
] represents the covariance matrix for input and output 

variables. The target orientations 𝜉𝑑 and Σ𝜉𝜉
𝑑  are then estimated by equation (4-11) and 

(4-12). 

𝜉𝑑 = ∑ 𝛽𝑘(𝜉)(𝜇𝑘
𝑂 + Σ𝑘

𝑂𝐼(Σ𝑘
𝐼 )−1 (𝜉𝐼 − 𝜇𝑘

𝐼 ))…………………𝐾
𝑘=1  (4-11) 

Σ𝜉𝜉
𝑑 = ∑ 𝛽𝑘

2(𝜉)(Σ𝜉𝜉,𝑘 − Σ𝜉𝑡,𝑘(Σ𝑡𝑡,𝑘)
−1
Σ𝑡𝜉,𝑘)

𝐾
𝑘=1 ……………… .. (4-12) 

4.3 Result analysis 

 The skills encoding results are shown and discussed in this section. As shown in 

Figure 4-4, the force and hand motion signals shared similar patterns. However, even 

though the operator was trained to deliver such repetitive skill pattern, there are 

variations in the hand pose and force profiles in the different states (i.e. approaching, 

insertion. etc). Misalignments in the time line also occurred in the demonstrations. The 

proposed skills encoding methods need to address these variations therefore 5 out of 10 

trials were selected as training samples, the rest of the trials were used as testing 

samples. After selection of the trials, the skills encoding results from individual subject 

are discussed in sections 4.3.1a)-b). Then the recognised states are explained in section 

4.3.1.c). The evaluations of the results across different subjects are discussed in section 

4.3.2. Finally, the motion reproduction results using the GMR are discussed in section 

4.3.3. 
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Figure 4-4 10 trials of demonstrations from subject B. The yaw angles (left) and the 1st PCA of 

force (right) are plotted for visualisation. 

4.3.1 Skills encoding for individual subject --- level 1 encoding 

 By using the proposed skills encoding method, each person’s skill was encoded, 

and the results are shown in Figure 4-6 - Figure 4-11.  Figure 4-5 shows the BIC plot 

against the number of hidden states (𝑁ℎ) from a demonstration by Subject A. As shown 

in the plot,  when the number of the states increased beyond four, the overall 

performance did not improve by much. A model with four states were selected because 

it was very close to the optimal, therefore represents a good compromise to reduce the 

number of parameters to estimate.  The same method was applied to the rest of the 

subjects, which may have a different optimal number of states. 

 

Figure 4-5 BIC plot for subject A. 

 The generalisation results across different trials for each subject are shown in 

Figure 4-6 - Figure 4-11 and Table 4.2 - Table 4.7. The solid curves are the trajectories 

reproduced by GMR. The ellipse is the visualisation of the 2 × 2 covariance matrix 

representing the covariance in between the time and the variables. Here, the variables 

are [𝑓𝑝𝑐𝑎
1 , roll, pitch, yaw]. From the results, a number of findings can be summarised 

below: 
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i. The force variations in each state were different. For instance, in the 1st PCA of 

force signal by subject A, the Gaussian ellipse for state 1 (0.113) was narrower 

than the other states.  This shape indicated that subject A was applying more 

consistent force with fewer variations in state 1.  But, later as the subject left 

state 1, the variations in the force applied increased, which indicated that subject 

A was working in a consistent manner.  This means the skills in the later states 

were complicated and harder to generalise for subject A.  However, the situation 

changed in case of subject B where the variations in state 3 (1.196) were smaller 

for the 1st PCA of the force signal.  This indicated that state 3, in this case, are 

more certain/controlled than the other states.  Subject B was working more 

repetitive at state 3.  For subject C, the variations started with a bigger value 

(7.2698) then a smaller value in the middle and a bigger value in the end.  For 

subject D, the variations started with a small value (0.209) then a bigger value at 

state 2, a smaller value at state 3 and 4 and a bigger value in state 5.  For subject 

E, the variation started with a bigger value (27.154) then a smaller value in the 

middle and a bigger value in the end.  For subject F, the variation started with a 

smaller value (1.723), then a bigger value in the middle and the end.  In general, 

all subjects seem to demonstrate different levels of control or consistency cross 

the different states. 

ii. The hand pose variations in each state were different. The hand pose was the 

composition of the yaw, pitch and roll values. The overall variations in the hand 

poses were small which indicate that the operator was performing the task in a 

very consistent manner. This indicated that in the fine manipulations, hand 

positions should not change much and the force based control is more useful. 

The first state encoded the uncertainties of the initial orientation of the hand 

from the time the peg initially contacted the hole and started sliding. The 

uncertainties in each state were different depending on the subjects. However, 

the overall trend of the hand pose variations was small at the beginning, bigger 

in the middle state and smaller in the last state. This indicated that the subject 

demonstrates more sophisticated movement in the middle of the state where the 

frictions were overcome by adjusting the peg angles. 

iii. A small variation in 𝑓𝑝𝑐𝑎
1 did not mean a small variation in hand pose. This 

variance can be confirmed by the result in subject A. In subject A, the operator 
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was trying to align the peg with the hole (transition from state 2 to state 3) and 

encountered small resistence force.  Therefore, the force signal contained little 

variation in state 3 (3.755), but its yaw variance (0.0082) was larger than the yaw 

variance in state 2 (0.005).    

 In conclusion, the individual subject demonstrated a consistent pattern in the 

PiH task but with variations in the various state of subject’s performance. Different 

operators showed some consistency in the force and motion patterns but the variations 

in the same state (i.e. insertion) are different.  The less variations in state 1 (except 

subject D) indicated that people were performing a similar initial strategy in the 

chamfer crossing step. More uncertainties were generated and controlled by the 

operators in the rest of the states.  Those uncertainties are necessary for the robot to 

learn the skills and reproduce reliable control for complex tasks. 
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Table 4-2 Skills encoding for subject A.  State variances result 

 State 1 State 2 State 3 State 4 

1st PCA of force signal(N) 0.113 10.770 3.755 14.4934 

Yaw (degree) 0.11 0.29 0.47 0.04 

Pitch (degree) 0.01 0.05 0.28 0.09 

Roll (degree) 0.02 0.07 0.06 0.04 

 

 

Figure 4-6 Skills encoding for subject A.  Gaussian and GMR plots. 
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Table 4-3 Skills encoding for subject B.  State variances result 

 State 1 State 2 State 3 State 4 

1st PCA of force signal(N) 3.450 12.34 1.1967 13.963 

Yaw(degree) 0.08 0.59 0.12 0.05 

Pitch(degree) 0.06 0.2 0.09 0.06 

Roll(degree) 0.40 0.2 0.06 0.02 

 

 

Figure 4-7 Skills encoding for subject B. Gaussian and GMR plots. 
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Table 4-4 Skills encoding for subject C.  State variances result 

 State 1 State 2 State 3 State 4 

1st PCA of force signal(N) 7.2698 5.6936 5.951 11.6 

Yaw(degree) 0.06 0.30 0.14 0.17 

Pitch(degree) 0.06 0.14 0.05 0.06 

Roll(degree) 0.04 0.33 0.09 0.11 

 

 

Figure 4-8 Skills encoding for subject C. Gaussian and GMR plots. 
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Table 4-5 Skills encoding for subject D.  State variances result 

 State 1 State 2 State 3 State 4 State 5 

1st PCA of force signal(N) 0.209 7.622 1.822 1.533 12.604 

Yaw(degree) 0.01 0.09 0.11 0.19 0.04 

Pitch(degree) 0.29 0.09 0.10 0.09 0.07 

Roll(degree) 0.03 0.05 0.08 0.11 0.01 

 

 

Figure 4-9 Skills encoding for subject D. Gaussian and GMR plots. 
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Table 4-6 Skills encoding for subject E.  State variances result 

 State 1 State 2 State 3 

1st PCA of force signal(N) 27.154 3.9 8.866 

Yaw(degree) 0.07 0.09 0.02 

Pitch(degree) 0.31 0.35 0.05 

Roll(degree) 0.34 0.08 0.01 

 

 

Figure 4-10 Skills encoding for subject E. Gaussian and GMR plots. 
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Table 4-7 Skills encoding for subject F.  State variances result 

 State 1 State 2 State 3 State 4 

1st PCA of force signal(N) 1.723 14.103 12.737 17.643 

Yaw(degree) 0.01 0.29 0.21 0.04 

Pitch(degree) 0.01 0.05 0.03 0.01 

Roll(degree) 0.02 0.07 0.12 0.017 

 

 

Figure 4-11 Skills encoding for subject F.  Gaussian and GMR plots. 
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a)  Changing of the reference signal  

 In order to align the timeline across different demonstrations, one trial had to be 

selected as a reference. The selection of the reference signal was currently heuristically 

decided. In this section, results from subject A were used for discussion purpose. 

Results in Table 4-8 (Model 1–5) showed the variations by choosing different 

demonstration from the 5 trials as the reference signal. The results indicated that the 

reference signal had an impact on the statistics in each state. The 1st PCA of force 

signal in Model 1, 4 and 5 started with small variances in state 1 (0.113 N, 0.19 N, 0.24 

N). Model 2 and 3, on the other hand, had larger variations in state 1 which is not 

preferred because from practical point of view the initial state of the robot can be well 

defined with small variation. These results indicated that by selecting different 

reference signal, the skills may change even for the same subject. When these skills are 

transferred to the robot, the robot would behave closer to the reference model. There 

are ways to select the reference signal. One can simply use the first trial as the reference 

signal and assume the rest of the trials come in sequence. Also, the new reference signal 

can be generated by applying the GMR to the learned sequences. Therefore, the new 

tests will be aligned to this new reference. As alternative, the reference signal that 

generates a model, which contains fewer uncertainties in the initial state, can be 

selected. Therefore, model 1 is chosen for subject A. 

 In this section, skills encoding results by selecting different reference trials were 

discussed. Subject A was used as an example. The discussion provided a way to justify 

the trial that needed to be selected. The reference signal should produce smaller 

variations in the initial state. 
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Table 4-8 skills encoding result by choosing different reference signal from subject A.  Values are 

standard deviations in each state. 

 State 1 State 2 State 3 State 4 

Model 1 

1st PCA of force signal(N) 0.113 10.770 3.755 14.4934 

Yaw (degree) 0.11 0.29 0.47 0.04 

Pitch (degree) 0.01 0.05 0.28 0.09 

Roll (degree) 0.03 0.07 0.06 0.04 

Model 2 

1st PCA of force signal(N) 11.524 3.806 1.256 21.139 

Yaw (degree) 0.26 0.52 0.05 0.05 

Pitch (degree) 0.03 0.25 0.04 0.11 

Roll (degree) 0.04 0.05 0.06 0.03 

Model 3 

1st PCA of force signal(N) 8.962 3.62 2.11 14.747 

Yaw (degree) 0.22 0.39 0.23 0.03 

Pitch (degree) 0.01 0.09 0.16 0.09 

Roll (degree) 0.03 0.04 0.08 0.03 

Model 4 

1st PCA of force signal(N) 0.19 10.321 3.922 16.344 

Yaw (degree) 0.13 0.36 0.46 0.03 

Pitch (degree) 0.01 0.06 0.29 0.10 

Roll (degree) 0.02 0.06 0.07 0.04 

Model 5 

1st PCA of force signal(N) 0.24 10.678 2.996 22.11 

Yaw (degree) 0.12 0.35 0.49 0.06 

Pitch (degree) 0.01 0.05 0.27 0.08 

Roll (degree) 0.02 0.07 0.06 0.04 

 

b)  Changing the number of demonstrations 

 The model generalisation performance is discussed in this section by varying 

the number of demonstrations involved. The results, as shown in Figure 4-12, from 

subject B and C were used for discussion purpose. Log-likelihood is used for evaluating 

the model performance.  From the results, the generalization performance of the model 

improves with the number of demonstrations. Especially when only one demonstration 

was used for training, the model could not fit the data from the rest of the 

demonstrations (it only fits the data to some degree with low log likelihood). On the 

other hand, for subject B, when the number of demonstrations increased to 4, the model 

showed good generalisation capability on the 5th demonstration. But the same result 

was not shown in subject C. Therefore, the learned model could gradually increase its 

generalisation capability as long as the demonstrations were reasonably consistent. 

After identification of the demonstrations with good consistency, the learned model can 
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be used to select the trials with similar consistency from the new demonstrations. This 

method can also be used to select the reference signals as discussed in section 4.3.1a).  

 

Figure 4-12 Model generalization across different demonstrations for subject B (left) and C (right) 

c)  Interpretation of the individual skills  

 The previous results showed skills encoding results for individual subject. 

However, what is happening in each state was unclear. In this section, the results from 

individual subject was first compared, and then the states were interpreted. 

 The results in Table 4-9 stored the mean variance of the states for each variable 

for individual subject. Subject D had the least variation in the 1st PCA of force signal, 

subject E had the least variation in the yaw angle, subject C had the least variation in 

the pitch angle, and subject E had the least variation in the roll angle. In general, subject 

D was showing the best performance in applying force with 𝜎𝑚𝑒𝑎𝑛 = 4.758 𝑁. This 

result indicated that he was performing the task in a more repetable way. Subject A, B 

and C were showing similar 𝜎𝑚𝑒𝑎𝑛  in applying force. Subject E and F had larger 

variations in the force applied with 𝜎𝑚𝑒𝑎𝑛 = 13.311 𝑁 𝑎𝑛𝑑 𝜎𝑚𝑒𝑎𝑛 = 11.551 𝑁 

respectively. The 𝜎𝑚𝑒𝑎𝑛 in all hand pose was small which indicated that the subjects 

were performing very repetitive movement while inserting the peg. 

 Although different subject shows differences in performing the task, there are 

common features across all the subjects as shown  in Figure 4-6 - Figure 4-11. The PiH 

can be classified into three major phases wherein the first phase the operator attempted 

to insert the peg from the hole chamfer and sliding the peg into the hole. This motion 

led to the dominant pressing down force (Fz) and the slope curvature in the plot. In the 

second phase, the peg was already inside the hole, but the lateral angles still needed to 
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be adjusted (wobbling movement) so that the peg was well aligned with the hole. In 

phase three,  as the peg had already been aligned with the hole, the operator reduced the 

force and guides the peg into the hole. The same pattern could be observed in all 

demonstrations.  The difference was some phases contain two states. For example, 

states 1 and 2 were accounting for the phase 1 in subject A, B, and C.   

 In conclusion, the generalised trajectories from all the subjects contained the 

same phase. However, each phase might have a different number of states. The human 

operator can interpret the phase; however, it is difficult to explain the meaning of the 

hidden states further. More in-depth human factor analysis could be performed to 

interrogate the hidden information behind each state.  For LfD, the probabilistic models 

contain the knowledge to transfer human skills to robot control, even without fully 

interpreting the meaning of each state. 

Table 4-9 Skill encoding comparison results between subjects.  Values are average standard 

deviations. 

 Subject 

A  

Subject 

B 

Subject 

C 

Subject 

D 

Subject 

E 

Subject 

F 

1st PCA of force signal(N) 7.283 7.737 7.63 4.758 13.311 11.551 

Yaw (degree) 0.24 0.21 0.13 0.09 0.06 0.14 

Pitch (degree) 0.11 0.10 0.07 0.08 0.24 0.02 

Roll (degree) 0.04 0.08 0.12 0.05 0.04 0.06 

 

4.3.2 Model generalisation across subjects --- level 2 encoding 

 In this section, the results from model generalisation across all the subjects are 

shown in Figure 4-14-Figure 4-17. The BIC result in Figure 4-14 indicated more states 

to encode the task. k = 5 was selected, and the results are shown in Figure 4-16 and 

Figure 4-17. When k = 5, the state contained considerable overlap which indicated 

more confusion at the cross sections of the two states. Therefore, the situation when k > 

5 was no longer considered. The explanation of the overlapping of the Gaussian is that 

the different skills are encoded into similar Gaussians. Also, since the IMU-Vicon 

system needs to reinstall from one subject to another, it is likely that the sensor position 

will vary between subjects. Therefore, the larger variations in the hand pose are 

anticipated (as shown in Table 4.10 and Figure 4-16). This will lead to the difficulties 

for the robot to learn because the behaviour contained more uncertainties. The 

reconfiguration of the IMU-Vicon system could be resolved by asking the subject to 

start with a pose where the peg is placed vertically on the flat surface and held firmly 
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by fingers as shown in Figure 4-13 with the hand  assumed as a rigid body. Then the 

orientation measurements needed to use this pose as an origin. After this process, the 

variations left were only different movement strategies by the subjects. The results, as 

shown in Table 4.11 and Figure 4-17, indicated that after the alignment procedure, the 

variations in the force profiles did not change, however, the variations in the pose 

trajectories were smaller than before. Therefore, the alignment procedure had improved 

the model generalisation process. The model generalisation performances across 

different subjects by gradually increasing the number of the participants are shown in 

the results in Figure 4-15. As shown in the figure, when the model was built from 

demonstrations by one subject, it may fail to model the demonstrations by other subject. 

When more subjects were involved, the model tended to fit better. 

 

Figure 4-13 Initial hand pose by placing the peg vertical on the flat table. 

 The capabilities to generalise the PiH task across all the subjects are discussed 

in this section. The result contained more states because individuals tended to have 

different ways of completing the task. Since initially the subject was not asked to start 

from the same pose as suggested, the results showed larger variations in the hand pose. 

A method to compensate this variation was proposed, where the results showed a better 

performance. The results also showed the generalisation capability of the model by 

increasing the number of subjects used for training the model. The level 2 encoding 

proposed in this section provided the possibilities to expand the skills knowledge base. 

However, as shown from the results, the model contained more complexity compared 

with the individual model. The advantage is the model could adapt to situations that are 
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more complex. The disadvantage is the model might lead to a failure to complete the 

task because of uncertainties. The next section will evaluate the ability of the model to 

reproduce motions for the robot. 

 

Figure 4-14 BIC plot for all subjects. 

 

 

Figure 4-15 Model generalisation performances across different subjects 
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Table 4-10 Skills encoding from all subjects (k = 5).  State variances result 

 State 1 State 2 State 3 State 4 State 5 

1st PCA of force signal(N) 5.596 13.443 0.433 17.301 12.273 

Yaw (degree) 7.03 6.43 7.6 4.28 6.83 

Pitch (degree) 1.09 4.15 3.25 2.48 0.01 

Roll (degree) 1.72 6.43 6.59 9.40 1.95 

 

 

Figure 4-16 Skills encoding from all subjects (k = 5). Gaussian and GMR plots. 
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Table 4-11 Skills encoding from all subjects after alignment (k = 5).  State variances result 

 State 1 State 2 State 3 State 4 State 5 

1st PCA of force signal(N) 22.4559 15.2192 5.7816 9.3314 20.7683 

Yaw (degree) 0.14 8.59 0.25 0.11 0.54 

Pitch (degree) 0.18 0.17 0.25 0.10 0.17 

Roll (degree) 0.25 1.66 0.32 0.22 1.07 

 

 

Figure 4-17 Skills encoding from all subjects after alignment (k = 5).  Gaussian and GMR plots. 
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4.3.3 Motion reproduction for robot 

a) Explicit time sequence based motion reproduction 

 From the previous sections, the probabilistic models were learned from the 

individual subject and extended to all the subjects. This section illustrates how the robot 

can use the learned probabilistic models to reproduce the motion command by using 

explicit time sequence. The model had not been applied to the real robot because the 

human teacher and robot learner have different kinematics. For evaluation purpose, an 

identical physical mapping from human to the robot is assumed so that human 

demonstrations data could be used to evaluate the model ability to generate the motion 

path based on the force signals. Five test data sets from the same subject were used as 

simulation signals. The model produced from subject B is used for discussion in this 

section (The summarised results are shown in Appendix A). The input signal 𝜉𝐼 =

{𝑡, 𝑓𝑝𝑐𝑎
1 } are the time sequence and the 1st PCA of the force signal. The output signals 

are 𝜉𝑂 = {𝑟𝑜𝑙𝑙, 𝑝𝑖𝑡𝑐ℎ, 𝑦𝑎𝑤}. The influence of t and 𝑓𝑝𝑐𝑎
1  on the desired 𝜉𝑂 trajectories 

are discussed in this section. The simulated hand motion was generated from 𝜉𝐼 and 

compared with the true 𝜉𝑂  signal. The mean square error (MSE) and regression 

coefficient (R) values were used for evaluating the estimation performance. 

 From the results in Table 4-12, the following findings can be made: 

i. Using time sequence only approach, the model could reproduce smooth motion 

trajectories.  The MSE were 1.19±0.66 degree for yaw, 16.40±11.59 degree for 

pitch and 2.71±1.49 degree for roll. The R are 0.9945±0.0071 for yaw, 

0.9869±0.0059 for pitch and 0.0473±0.0261 for roll. Since the time variable is 

fixed (due to DTW alignment) for all cases, the reproduced results were 

actually the mean values of the hand motions from the training model. The 

small MSE and large R indicated that the generalised trajectory from the 

learned model was close to the new test samples.  

ii. The time and force sequence could reproduce smooth trajectories. The 

predicted 𝜉𝑂 trajectories for each trial were different from time sequence only 

model because of the influence of the force signal (see Figure 4-18-Figure 4-22, 

the Blue solid line represents the target signal.  The green dotted line 

represents the estimation signal generated from t and f.  The red dashed line 

represents the predicted signal generated from t). The MSE were 1.10±0.72 
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degree for yaw, 23.54±23.44 degree for pitch and 1.76±0.69 degree for roll. 

The R were 0.9935±0.0038 for yaw, 0.9735±0.0283 for pitch and 

0.9923±0.0047 for roll. The small MSE and large R indicated that the 

reproduced trajectory based on the time and force sequences were close to the 

new test samples. 

iii. The Gaussians have defined the boundaries for the hand motions. This can be 

confirmed in trial 1, 3 and 4. The pitch angles from the test demonstrations 

were outside the scope of the training model. But the reproduced motions were 

within the Gaussian boundaries.  The advantage of this boundary is that the 

robot will not move to unexpected area that had not previously been 

demonstrated by a human. Similarly, the robot cannot deal with uncertainties 

that have not been captured during training (outside of the Gaussian plots). 

This is the reason why a larger error was found on pitch angle estimations in 

Figure 4-20 suggesting the model cannot accurately predict the motion 

trajectories.   

Table 4-12 Motion reproduction results for subject B.  5 trials were used.  The influences of the 

input variables are compared by using MSE and R values. 

 

Trial 

Input 

Variable 

Yaw (degree) Pitch (degree) Roll (degree) 

MSE(degree) R MSE(degree) R MSE(degree) R 

 

1 

[t] 2.32 0.9818 17.25 0.9824 2.99 0.9834 

[t,f] 2.16 0.994 10.28 0.987 1.16 0.992 

 

2 

[t] 1.07 0.9979 6.93 0.9967 1.66 0.9959 

[t,f] 0.40 0.9976 8.39 0.9943 2.19 0.9927 

 

3 

[t] 0.54 0.9978 2.58 0.9824 5.14 0.9887 

[t,f] 0.58 0.9963 1.15 0.9911 2.68 0.9969 

 

4 

[t] 1.01 0.9982 25.74 0.9865 1.40 0.9959 

[t,f] 1.49 0.9881 50.77 0.9259 1.71 0.9848 

 

5 

[t] 1.00 0.9966 29.44 0.9863 2.34 0.9978 

[t,f] 0.87 0.9917 47.12 0.969 1.05 0.9953 

 

All 

[t] 1.19±0.63 0.9945±0.007 16.40±11.58 0.9869±0.005 2.69±1.49 0.9923±0.006 

[t,f] 1.10±0.69 0.9935±0.003 23.54±23.44 0.9735±0.028 1.76±0.69 0.9923±0.004 
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Figure 4-18 Motion reproduction result for trial 1.  
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Figure 4-19 Motion reproduction result for trial 2. 
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Figure 4-20 Motion reproduction result for trial 3. 
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Figure 4-21. Motion reproduction result for trial 4. 
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Figure 4-22. Motion reproduction result for trial 5. 

 

(N
) 
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b) Motion reproduction by using extended GMR 

 The discussion in the last section assumed the demonstrations were pre-aligned 

by the DTW, and the weights were computed based on {𝑡, 𝑓𝑝𝑐𝑎
1 } only. The advantage of 

this assumption is skills model can be learned regardless of the time variations, but it 

requires the trials are pre-aligned in time domain. To release this constraint, the time is 

implicitly encoded in this section. An extended version of GMR (GMRa) is proposed 

by modifying the weights computation, which are defined in equation (4-11). 

𝛽𝑖(𝜉𝑡) =  
𝛼𝑖,𝑡

∑ 𝛼𝑘,𝑡
𝐾
𝑘=1

………………………………………… .… .. (4-11) 

 with 𝛼𝑖,𝑡 = (∑ 𝛼𝑘,𝑡−1
𝐾
𝑘=1 𝑎𝑘,𝑖)𝑁(𝜉𝑡; 𝜇𝑖, Σ𝑖) , 𝑎𝑘,𝑖  is the transition probability 

being in the state K. 𝛼𝑖,𝑡 is the forward variable (defined recursively through the HMM 

representation) corresponding to the probability of partially observing the sequence 

{𝜉1, 𝜉2, … , 𝜉𝑡} of length t and of being in the state i at time t, where 𝜉𝑡 = {𝑓𝑝𝑐𝑎
1 , 𝑞, �̇�}𝑡. 

This method had the advantage of encapsulating robustly the sequential nature of the 

data. Also, since angular velocity information was also available during the 

reproduction, from the current 𝑓, 𝑞  and �̇� , a task-level proportional-derivative 

controller similar to a mass-damper system could be computed to reach the desired 𝑞 

and �̇�. The angular acceleration �̈� command in task space was determined by: 

�̈� = (�̇�𝑑 − �̇�)𝑘𝑣⏞      
�̈�𝑣

+ (𝑞𝑑  −  𝑞)𝑘𝑝⏞        
�̈�𝑝

……………………………….  (4-12) 

 where �̇�𝑑 is the desired angular velocity derived from the GMRa, and 𝑞𝑑 is the 

desired angle derived from the GMRa. In general, the idea is to allow the robot to 

follow the model dynamics but not moving away from the learned model. The �̈�𝑣 term 

follows the learned motion but tends to move away from the demonstrations after a few 

iterations or in some new unexplored situations. The �̈�𝑝 term allows the robot to follow 

the learned model by commanding the robot to move to the closest point of the 

generalized trajectory. Therefore, the explicit time sequence is excluded and the joint 

distribution to be learned is 𝑃(𝑓𝑝𝑐𝑎
1 , 𝑞, �̇�). 

 In this section, the results from subject B are used for discussion purpose. The 

results are showed the 1st PCA component of the force profiles from the 5 testing data 

trials in section 4.3.3a). The force profiles used in this section contains detail about the 

velocity and acceleration, which were not used in the previous sections. As shown in 
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the Figure 4-23, the force profiles contained time variations. The model generalization 

capability across different trials is shown in Figure 4-24. The results indicated that the 

training models gradually generalised across the new test datasets. Figure 4-25 - Figure 

4-29 showed the reproduction results by benchmarking the kv and kp parameters of the 

spring-damper controller. Note the results in the figure cannot directly be compared 

with the figures in the last section because the time variable is not explicitly learned in 

the GMM. Therefore, the corresponding statistical results are summarised in Table 4-13 

for comparison. From the results: 

i. The reproduced trajectories followed the target trajectories as demonstrated by 

subject B.  This result indicates that though the time variations exist, the GMRa 

model could sufficiently generate corresponding motion commands for the robot 

to reproduce.  

ii. The reproduced motions tended to follow the learned model captured by the 

Gaussian distributions. As shown in trials 1 and 4, although the target motions 

deviated from the learned model, the reproductions mainly stayed in the Gaussians. 

This behaviour is due to the �̈�𝑣 and �̈�𝑝 terms. 

iii. The small MSE and large R are shown in Table 4-13which indicated good model 

reproduction performance. In general, the pitch and roll results in this section are 

better than section 4.3.3.4.3.3 where explicit time variable was used. The yaw 

angles are slightly worse. 

iv. The selections of the kv and kp parameters vary across trials. The values used here 

are constant and selected by exhaustive search. In reality, these control gains need 

to be adjusted online. 
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Figure 4-23 Five testing force profiles. 

 

Figure 4-24 Model generalization across trials for subject B. 
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Figure 4-25 Motion reproduction for trial No.1 
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Figure 4-26 Motion reproduction for trial No.2 
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Figure 4-27 Motion reproduction for trial No.3 
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Figure 4-28 Motion reproduction for trial No.4 
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Figure 4-29 Motion reproduction for trial No.5 
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Table 4-13 Motion reproduction results for subject B.  a) with implicit time encoding b) with 

explicit time encoding from.  5 trials were used.  The influences of the input variables are 

compared by using MSE and R values. 

a) 

Trial Kv Kp Yaw (degree) Pitch (degree) Roll (degree) 

MSE(degree) R MSE(degree) R MSE(degree) R 

1 0.5 0.01 4.87 0.9687 1.55 0.9648 1.18 0.9971 

2 0.5 0.01 2.01 0.9967 1.06 0.9971 1.26 0.9968 

3 0.3 0.01 2.58 0.9904 0.82 0.9833 1.77 0.9802 

4 1.0 0.03 0.60 0.9986 1.94 0.9913 0.86 0.9936 

5 0.7 0.01 1.05 0.9942 1.32 0.9912 1.21 0.9934 

All 0.6 0.01 2.28±1.60 0.9897±0.012 1.32±0.4 0.9855±0.012 1.26±0.28 0.9922±0.007 

 

b) 

 

Trial 

Input 

Variable 

Yaw (degree) Pitch (degree) Roll (degree) 

MSE(degree) R MSE(degree) R MSE(degree) R 

1 [t,f] 2.12 0.994 10.26 0.987 1.16 0.992 

2 [t,f] 0.40 0.9976 8.37 0.9943 2.19 0.9927 

3 [t,f] 0.57 0.9963 1.15 0.9911 2.64 0.9969 

4 [t,f] 1.49 0.9881 50.77 0.9259 1.71 0.9848 

5 [t,f] 0.87 0.9917 47.12 0.969 1.05 0.9953 

All [t,f] 1.10±0.57 0.9935±0.003 23.55±23.44 0.9735±0.028 1.76±0.47 0.9923±0.004 

 

4.4 Conclusion 

 In this chapter, the research objective three (to build state-action policy models 

from human demonstrations that relate to industrial manual manipulations) has been 

addressed. The human skills for PiH process were captured by using the IMU-Vicon 

system (chapter 3) and F/T sensor. A novel probabilistic encoding method was 

proposed to encode the skills from the PiH task. The data were first encoded by using 

the proposed GMM-HMM based method into probabilistic models. The recognized 

states were then interpreted statistically and descriptively. The results showed that 

different subject adopted a different approach to complete the task. This difference was 

reflected on the timeline and variations in each state. The proposed method showed its 

capability to encapsulate all these uncertainties into a probabilistic models and a 

generalized trajectory can be reproduced based on GMR. Furthermore, the method 

provided the ability to generalize the model across different subjects by the level two 

encoding which is another encoding layer on the individual models. 

 After the skills had been encoded and generalised, the motion reproduction 

using the models were evaluated using further test from the same subjects. To simplify 

the validation process, robot was not used because the inverse kinematic solver and the 
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transformations from the human hand to the robot end effector were not available. The 

performance of the model to reproduce motions on unseen testing scenarios was 

evaluated from the same subject by assuming the robot generates these additional trials. 

Two schemes were compared for reproductions. In section 4.3.3a), GMR with explicit 

time was used. In section 4.3.3b), a modified GMRa using forward variable from HMM 

was applied. The results showed that the reproduced motion trajectories were within the 

learned Gaussian models and the estimations were close to the target trajectories with 

some exceptions when the uncertainties were not previously demonstrated. Also, the 

reproduced trajectories generated from the GMRa have smaller variations.    

 In this chapter, the influence of the force signal has been discussed, and the 

model results from motion trajectories have been validated. However, for practical 

applications such as polishing or bolt assembly, it is unlikely to have a place to install a 

F/T sensor as shown in Figure 4-1. In addition, holding an F/T sensor to accomplish a 

task might skew the underlying skills, therefore a more flexible method to collect the 

haptic feedbacks is important to generalise the force based skills encoding method in 

this work. To achieve this, in the next chapter, a sEMG-driven model is developed to 

estimate the contact forces in the PiH task using the wearable sEMG sensors. 
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 Muscle-Force Modeling using Wearable 

sEMG sensors - A PiH Case Study 

5.1 Introduction 

 The skills in the peg insertion task has been learned and encoded in chapter 4. In 

manufacturing, the Force and Torque (F/T) sensor attached to the robot end effector 

generates force feedback to the robots. However, it would be impractical to mount an 

F/T sensor on the human operator whilst they are carrying out skilled tasks. 

 Despite the mentioned difficulties, surface Electromyography (sEMG) can 

provide valuable information about the muscle activation, which can be closely related 

to the generated force [91]. The advantages of using wearable sEMG sensors are that it 

has minor interference of the operator and the signal is closely related to the actual 

contact forces. However, the sEMG-force model needs to deal with variations from the 

noisy signals, joint positions and different subjects etc. Therefore, this chapter will 

investigate how well a sEMG signal collected from a human operator’s forearm can be 

mapped to the force response at the point of assembly. If the force information can be 

reliably predicted from the level of the muscle activations, this would have significant 

benefits as the human operator can wear the sensors easily and perform assembly tasks 

without the need for process specific instrumentation or restrictions caused by such 

instrumentation. 

 The main contribution of this chapter is the method to build the muscle-force 

model with the aim to address research objective three, which is to develop a muscle-

force model to predict the forces generated from the forearm muscle activations using 

wearable sEMG devices. A Peg-in-Hole (PiH) assembly task was used as in chapter 4. 

It contained relatively simple motions so that the non-linear mapping from sEMG to 

force can be reliably modelled within the context. To avoid direct F/T sensor 

installation during the actual demonstration, a generic test rig was designed to 

decompose the hand poses in the PiH task prior to model training. Then, the data from 

the actual PiH were used to evaluate the model generalisation performance. The 

proposed method of mapping sEMG to force signal is described in section 5.2. The PiH 

experiment setup and protocol are explained in section 5.2.1, and the results are 

analysed in section 5.3. 
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5.2 Methodology 

 In order to measure the contact forces using sEMG sensors for Learning from 

Demonstration, a methodology is proposed in this section. To simplify the model, 

motion primitives were defined and a test rig has been designed. The model built from 

simple motion is assumed close to the actual PiH task and verified. Since the 

predominant force in the PiH is in vertical axis, the three primitive motions (A, B and C) 

capture the pressing down motion by activating different group of muscles. In section 

5.2.1, the operators were firstly asked to perform the defined primitive motions then 

demonstrate the actual PiH in the same workspace defined in the experiment setup. The 

sEMG-force model is implicitly learned by time delayed neural network (TDNN) as 

discussed in section 5.2.2. The related uncertainties in this chapter are listed as follow: i) 

different data filtering strategy; ii) data dimension reduction; iii) different muscle 

groups (two sEMG armbands are used for measuring upper and lower arm muscle 

group activations); iv) changing of environment conditions; v) different calibration 

primitive pose; vi) different assembly clearance (loose, middle and tight). The 

variations in building primitive motion models are addressed in section 5.3.1. The 

actual PiH samples were then used to evaluate the model built from primitive motions 

and to select the most accurate primitive motion in section 5.3.2. 

5.2.1 Experiment setup 

 In this section, the experiment setup of this chapter is explained. The input data 

were collected from the two sEMG armbands (one for upper arm muscle group and the 

other for lower arm muscle group) with 8 channel sensors each to record the muscle 

activations and the Vicon-IMU system to track the hand motions. The target data were 

collected from the F/T sensor. The approximate synchronisation algorithm in ROS 

platform synchronised the sEMG signal and the F/T signal. The sampling rate was 200 

Hz. Since the hand motion was relatively slow and almost static in this case study, it 

was not necessary to up sample and synchronise with the F/T signal. It was simply 

updated in its thread, and the most recent value was used in the synchronizer thread. 

 Four subjects (from age 25 ~ 27) were invited to the experiment. All of them 

were male researchers from Intelligent Automation lab and trained to be familiar with 

the experimental protocols. To begin with, the wearable Vicon-IMU system needed to 

start from approximately the same pose to minimise the uncertainty of the initial pose. 
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This could be any natural pose. The sEMG sensors needed to warm up to allow the 

electrode to attach firmly onto the skin. The operator was asked to wear them and wait 

for 2 minutes before starting the experiments. The F/T sensor was rigidly installed on 

the MOTOMAN end effector. The test rig and the hole frame were also rigidly attached 

to the F/T sensor. The position of the setup, as shown in Figure 5-1, allowed the 

operator to accomplish the task in a comfortable way. The experiments procedure is 

detailed as following: 

 

Figure 5-1 Experiment setup for PiH.  The operator is wearing two sEMG armbands to record the 

muscle activations.  A Vicon-IMU system is installed on the hand for tracking hand motions.  An 

F/T sensor is statically installed to record the reference contact force signal. 

1. In order to calibrate the muscle activations against the F/T sensors. The operators 

were asked to wear the sEMG sensors and stood in front of the test rig in a fixed 

position as shown in Figure 5-2A). After the warming-up stage, the operator started 

pressing on using pose A with their thumb and index fingers in the contraction and 

relaxing pattern for 25 seconds. The completion time of this pattern can be different. 

The force generation level should not exceed the maximum actual PiH execution 

(20N). The value can be selected by finding the peak values in the force signals on z 

axis. This experiment data were recorded in the morning for all four subjects. Two 

trials with at least ten contractions and relaxing were collected for training and a 

further trial was used for testing. 
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A) 

 

B) 

 

C) 

  

Figure 5-2 A test rig for muscle-force calibration. 

2. The operators were asked to repeat the experiment one on pose B and C. This 

experiment aimed to evaluate the methodology on a different hand pose as shown in 

Figure 5-2(B, C). In this case, pose B was pressing on the left node and pose C was 

pressing on the right node. 

3. In order to evaluate the generalisation of the model by changing the time of 

operation, the operators were asked to wear the same setup and repeated experiment 

2 times in the afternoon (6 hours later). The model built from experiment one will 

be used to evaluate against the data from experiment three. 

4. The operators were asked to perform the actual PiH skills by starting from the hole 

chamfer. Full insertion was not necessary because most of the haptic feedbacks 

were related to the corrective motions to align peg and hole. Two completions of 

the PiH contained insertion and extraction phase is shown in Figure 5-3. Each 

completion time can be different. Each trial included at least ten PiH completions 

and lasted for about 25 seconds. Two trials were recorded for testing the model built 

from the test rig (from steps 1-2). 
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Figure 5-3 Illustration of the insertion and extraction phase in PiH. 

5. In order to evaluate the generalisation capability of the approach on different peg 

clearance and fit. The operators were asked to repeat experiment 4 for additional 

two different pegs.  The nominal diameter of the hole was 16.2 mm. In total, three 

pegs that form loose, middle and tight tolerances with the hole were used, as shown 

in Figure 5-4. The tighter tolerance means more resilient force on the feedback 

which potentially produces more strong correlation of the sEMG and force signals. 

 

Figure 5-4  Pegs of different dimensions.  The loose, middle and tight clearances are 0.2mm, 0.1mm 

and 0.05mm respectively.  

5.2.2 Modelling method 

 The method of mapping from sEMG to force signals is explained in this section. 

In this research the insertion phase was emphasised as it provided the most valuable 

information for the PiH task. The variability introduced in this task was mainly from 

the noisy sEMG signals, electrode placements, different subjects and the training 

parameters.   

Tight: 16.15mm

Middle: 16.10mm

Loose: 16.00mm
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 To address these varitions, a method is proposed as shown in Figure 5-5. Firstly, 

a rectification strategy that converts the negative sEMG signals to positive was applied. 

Secondly, data filtering strategies for both sEMG and F/T sensor data were developed. 

Then, the signals were re-represented in the time domain; data was split based on the 

states of interest, i.e. the insertion, and extraction phases of the assembly. Thirdly, 

normalisation was applied to make the data-set scale invariant followed by a Principal 

Component Analysis (PCA) which was used to further reduce the dimensionality of the 

data set. After the previous pre-processes, a Time Delay Neural Network (TDNN) was 

implemented for regression (mapping) purpose. The training inputs and outputs were 

the raw sEMG (emg) and F/T (𝑓𝐹/𝑇) data, which have been pre-processed before the 

training session. The stages of this methodology are elaborated in the following sub-

sections.  

 

Figure 5-5 An overview of the proposed sEMG-force modelling method. 

a) Data rectification and filtering 

 The data from the F/T sensor, as shown in Figure 5-6, can be labeled into states 

(e.g. PiH phase). However, from the sEMG data, it was not a trivial task to identify 

when the insertion phase happened due to noise. Therefore, the sEMG and force signals 

were sampled at the same sampling rate (200 Hz) so that every state could be labelled 

by referring to the force signal.   

 As shown in Figure 5-6, the raw signals from both of the sensors contained 

noise, but the sEMG signals were noisier (bottom). This was due to the stochastic 

behaviour of the sEMG signals. They contained information from the actual muscle 
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activations, the power line interference and the influence from the different group of 

muscles etc. The Discrete Wavelet Transformation (DWT) was implemented as a 

filtering strategy for the F/T signal in chapter 4. In this chapter, DWT was also used to 

de-noise the sEMG signals from various sources. ‘Daubechies 10’ (db10) basis wavelet 

and the 6th level approximation of the original signals were chosen heuristically as the 

data filtering strategies. The results are shown in Figure 5-6; the sEMG envelope data 

(solid line) is positive. This is because the negative component of the signal was 

changed to positive in the rectification process. The mean, integration and wavelet 

transform can then be calculated based on the rectified signal. 

 

Figure 5-6 Filtered Fz data (top) and sEMG data with its envelope from one of the electrodes 

(bottom). 

b)  Data normalisation and PCA 

 Normalization is a critical pre-processing stage for the sEMG signals for 

comparison between different muscles or individuals. Instead of comparing the absolute 

muscle activities levels, a percentage of changes to a reference signal is used. There are 

a few approaches to normalise the sEMG signals. In [220], the most popular method 

was illustrated. In this chapter, the peak or mean activation normalisation was used and 

implemented by the standard zero mean normalization algorithm. The reason behind 

this was that the muscle activities levels are not directly comparable, but the activation 

patterns and their corresponding force torque datum are of interest. The equation is 

Approaching PiH Extraction Relax

Initial contact

Friction
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shown in equation (5-1), where z is the original data after normalisation, µ is the mean, 

and σ is the standard deviation of the signal. 

𝑧 =
(𝑥−𝜇)

𝜎
………………………………… (5-1) 

 Then, a PCA is implemented [221][222][5].  In this chapter, PCA is used to un-

correlate the variables of a given signal and reorder them regarding their importance, 

i.e.to reduce the data dimensionality. In PCA, only the co-variance between the 

variables (8 channels of sEMG data due to the MYO armbands used, see section 5.3.1.b) 

were considered and re-ordered from the most important component to the least 

important component. Consequently, the data dimensionality was reduced and the new 

dataset was re-ordered based on their importance. 

c) Time delayed neural network (TDNN) 

 From the literature, explicit models can be built by investigating the non-linear 

relationship of Musculotendon Dynamics [22]. However, there is lack of research of 

using a data-driven approach to predict the force response during an assembly process 

from sEMG signals. The data-driven method is considered in this chapter due to its 

simplicity and generalization capability across applications. The techniques to find the 

mapping from the sEMG signals to the force signals are complex for unconstrained 

motions because the model parameters vary when the joint positions change. It has 

been reported in [22] that the accuracy of mapping or predicted force signals from 

sEMG varies across different tasks with different degrees of freedom. This means a 

task-specific model should be generated for different applications. Therefore, by 

constraining the motion into a fixed workspace, it should be easier to obtain a reliable 

model. 

 Neural Network (NN) is a widely used function approximator with the aim of 

minimising the error of the network compared to a validation set. Each artificial neuron, 

as a computational unit, will calculate the weighted sum ∑ 𝑤𝑗𝑥𝑗𝑗 , where x is individual 

input, w is weight. If the summation is greater than a threshold value, it will make a 

decision such as true or false. Therefore, an NN is essentially a decision making tool 

that weighs up the evidence. The detail explanation of the NN is not of the main topic 

here, see [10-11] for details. A typical structure of NN may vary according to the 

applications. The conventional feed-forward network with back propagation 

optimization is widely used [147].  However, in order to model the dynamics of time 



137 

 

series data, network structures allow feedback (time delay or recurrent) with multiple 

layers are considered more advanced (accurate) but more complex to train. 

 To achieve this, in this chapter, we used a TDNN with two hidden layers as 

shown in Figure 5-7. i stands for the i th element of the sEMG signal. t, t-1, and t-2 

annotate the time step of the data. The activation functions used for hidden layers are a 

sigmoid and linear line for the output layer. The architecture contained a hidden layer 

with a non-linear sigmoid kernel and a layer with a simple linear regression based on 

previous hidden layer’s outputs. Training a neural network is not a trivial task. If not 

properly trained, there is a risk of fitting a model without any real meaning. Over-fitting 

is a known problem when the model becomes too complex and loses its generalization 

capabilities. However, some strategies can be used to overcome this issue such as cross-

validation, Bayesian regularization [56] and early stopping. The selected training 

strategies are shown in section 5.3.1a). 

 

Figure 5-7 TDNN architecture. 

5.3 Result analysis 

 The sEMG-force model was firstly built for pose A, and then it was built on 

pose B and C. Then the best model for the individual subject was applied on the actual 

PiH. The input variables are sEMG, 1st PCA of the force signal and the hand motions 

{𝑒𝑚𝑔, 𝑓𝑝𝑐𝑎
1 , 𝑎𝑛𝑑 𝑞}. The signals from the F/T sensor were used to evaluate against the 

estimated signals. The 1st principle component of the tri-axial force signals from PCA 

contained 98% of the force information and was used as the reference to simplify the 

modeling process. 

Inputs

sEMG{i}(t)

sEMG{i}(t-1)

sEMG{i}(t-2)
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Outputs
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 For model validations on the various calibration poses, the selection of the 

filtering and TDNN training strategies are discussed in section 5.3.1. The influence of 

PCA is discussed in section 5.3.1.b, followed by the model evaluations on the different 

muscle groups and environment conditions in section 5.3.1c) and section 5.3.1d) 

respectively. Finally, model validation for the actual PiH executions is discussed in 

section 5.3.2 where the effects of the calibration pose and peg clearances are discussed. 

5.3.1 Model selection for calibration pose 

 The pressing down movement on the muscle-force calibration test rig was 

considered as the primary element in the PiH task. Therefore, the model was trained for 

this movement by mapping the sEMG signals to the contact force (pose A). The two 

other poses (pressing down in pose B and C) on the same test rig were used to verify 

the model. The effects of the filtering strategy, network training parameters, PCA, 

muscle groups and experiment time on the model are discussed. 

a) Selection of the filtering and TDNN training parameters 

 The sEMG signals from the armbands were noisy, but they contain useful 

information to build the muscle-force model. Therefore, a filtering strategy was 

important to effectively use the sEMG signals. The model performance could be 

degraded by either remaining or removing too many details in the signals. On the other 

hand, the training parameters including the number of time delays (𝑁𝑑) and hidden 

units (𝑁ℎ) also had an effect on the model predictions. Therefore, a benchmark was 

needed to address these parameters. 

 As shown in Figure 5-8, the benchmark results from subject A were used as an 

example. Three trials from the pressing down experiment on node A in the morning 

were recorded. Two of them were used for training, and one of them was for testing. 

The x-axis is 𝑁ℎ , the y-axis is 𝑁𝑑 , and the z-axis is the MSE performance. 𝐷𝑙  is the 

wavelet decomposition level. From the results: 

 The regression coefficients indicate a good model prediction performance (0.970, 

0.974 and 0.968 in a, b and c). But the MSE has larger variations (10.70 N, 9.63 N 

and 15.74 N in a, e and i). 

 The best result for this particular data set was using ‘db5’ as wavelet basis function 

with 𝐷𝑙 = 5. 𝑁ℎ = 2 and 𝑁𝑑 = 10. The MSE = 9.64 N and the R = 0.974. 
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 Most of the plots indicated a clear trend that the increasing the hidden units do not 

lead to a better model. For instance, in a) and b), the number of hidden units 

increased from 1 to 3, but the MSE increased. This indicated that a simple Neural 

Network structure was a suitable model. 

 Most of the plots indicated a clear trend that the increasing the number of time 

delays improved the model performance. However, starting from  𝑁𝑑 > 5 , the 

improvement tended to be smaller. This result indicated that the standard Neural 

Network without time delays is not suitable. But there is an appropriate sliding 

window size and 𝑁𝑑 = 10 seemed to be a common choice. 

 A summary of the parameter benchmark for all the data collected from experiment one 

and two are shown in Table 5-1-  

 

Table 5-3. The results indicated that it was necessary to address these parameters first 

since the model performances depended on the dataset. However, the results in Figure 

5-8 showed that the performances were close to each other. Therefore the optimal 

parameter set might not be the most important considerations. From the summary 

results, a simple network structure with 𝑁ℎ equals to 1 or 2 with 𝑁𝑑 equals to 10 or 15 

was found to be optimal. This result confirmed the conclusion based on the 

performance plots shown in Figure 5-8. More importantly, the simple network structure 

indicated that the predictions were superposition of the linear functions with time 

delays by multiplying their corresponding weights. The selected model parameters were 

used in the subsequent discussions. 
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a)  

 

b) 

 

c) 

 
d) 

 

e) 

 

f) 

 
g) 

 

h) 

 

i) 

 
Figure 5-8 Benchmark of the parameter selections for the data from subject A. 

Table 5-1 The benchmark results for pose A. 

 Wavelet Decomposition level Number of time delay Number of hidden units 

Subject A db5 5 15 2 

Subject B db5 5 15 1 

Subject C db6 4 10 1 

Subject D db6 5 10 2 

 

Table 5-2 The benchmark results for pose B. 

 Wavelet Decomposition level Number of time delay Number of hidden units 

Subject A db5 4 15 2 

Subject B db6 5 10 2 

Subject C db5 5 10 2 

Subject D db6 4 15 1 
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Table 5-3 The benchmark results for pose C. 

 Wavelet Decomposition level Number of time delay Number of hidden units 

Subject A db6 5 10 1 

Subject B db5 5 15 2 

Subject C db6 4 15 2 

Subject D db5 5 10 1 

 

b) Influence of PCA 

 The purpose of using PCA in this chapter was to reduce the dimension of the 

dataset, especially the F/T data and the 16 channels of the sEMG signals from the two 

armbands. As explained in the methodology, the dominant force component for the PiH 

task was the pressing down force as the z-axis force dominated the signal. Using PCA, 

the dominance of the z-axis force together with the information from the other axes of 

forces were considered. The dimension of the sEMG signal was 16, but not all the 

muscle activations were necessary for the PiH task. Therefore, potentially the PCA can 

help to reduce the dimension of the input variable while training the model. The results 

discussed in this section are the dataset truncated with and without 2% of PCA 

reduction from experiments one and two. 

 The following results are summarised in Table 5-4: 

 The results from model predictions for subject A improved when using PCA for 

pose A and C. The MSE with PCA and without PCA in pose A were 9.49 N and 

12.40 N respectively. The MSE with PCA and without PCA in pose C were 3.58 N 

and 11.16 N respectively. This indicates that for pose A and C, the PCA reduced 

some of the unnecessary details in the input variables so that the overall 

performance was better than without PCA. The results in pose B indicated that the 

MSE (12.87 N) after PCA was slightly worse than without PCA (11.36 N). 

However, the R was larger which meant the predictions were closer to the target 

signal.  

 The results from subject B did not have the same performance as subject A. All the 

MSE and R showed that the model built with PCA was not as good as the model 

built without PCA. For instance, the MSE and R were 6.72 N and 0.972 respectively 

with PCA, and the MSE and R were 3.42 N and 0.982 respectively without PCA. 
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These results indicated that the PCA was not the necessary step for the dataset from 

subject B. 

 The results from subject C had a better performance in pose B after PCA. The MSE 

was smaller, but the R value was almost the same. The results for pose A and C 

showed the opposite in the MSE performance. 

 The MSE in the model performance built from subject D after PCA were all smaller 

than the model built without PCA. But the R was almost the same. 

 In general, the low MSE and high R indicated that the prediction accuracy was 

acceptable and reasonably good across all the subjects. The best MSE and R was 

2.19 N and 0.985 respectively for subject C in pose C. 

  In general, the model showed the capability to predict the force signal 

accurately for different postures and subjects. The PCA can improve the results for 

most of the dataset, but the improvements were not significant. However, even though 

not shown in the table, the training time with PCA was shorter than without PCA. 

Therefore, PCA was an optional step in the training process if the training efficiency is 

important. 

Table 5-4 A summary of the result with and without PCA. 

 Pose A Pose B Pose C 

 With PCA Without PCA With PCA Without PCA With PCA Without 

 PCA 

MSE(N) R MSE(N) R MSE(N) R MSE(N) R MSE(N) R MSE(N) R 

Subject A 9.49 0.975 12.40 0.974 12.87 0.973 11.36 0.958 3.58 0.982 11.16 0.979 

Subject B 6.72 0.972 3.42 0.982 7.58 0.973 5.66 0.978 3.43 0.978 2.44 0.986 

Subject C 6.88 0.978 5.86 0.972 4.62 0.98 7.88 0.982 3.34 0.978 2.19 0.985 

Subject D 3.05 0.980 3.27 0.985 4.76 0.980 6.67 0.982 4.03 0.974 5.52 0.981 

 

c) Influence of the muscle groups 

 The activations of two groups of muscles were recorded during the experiments: 

the biceps and triceps in the upper arm, and extensors and flexors in the lower arm. The 

focus of this section is on the contributions of the muscle groups on the contact force. 

This was because different subject might use slightly different muscles to execute the 

PiH task. Also, the placement of the sEMG sensor might vary when a different person 

reinstalled it on his/her arm. Thus the recorded muscle group activations might not be 

the same. In this section, the dataset from three poses was used to discuss the 

differences in activations of the muscle groups. The results from Table 5-5-Table 5-7 

summarised the model performances for the different muscle groups.  The whole 
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dataset (𝑒𝑚𝑔, 𝑓𝑝𝑐𝑎
1 , 𝑎𝑛𝑑 𝑞) contains all the input variables. Here five different models 

were analysed and discussed here: lower arm with motion data (L_M), upper arm with 

motion data (U_M), motion data only (M), the whole arm with motion data (W_M) and 

the whole arm only (W).  The purpose of adding motion only data is to investigate 

whether a model can be built only based on the hand movements (no muscle activations 

information).   The findings are discussed below: 

Table 5-5 A summary result of the influence of the muscle group in pose A. 

Pose A Lower arm(motion) Upper 

arm(motion) 

Motion only Whole 

arm(motion) 

Whole arm 

 MSE(N) R MSE(N) R MSE(N) R MSE(N) R MSE(N) R 

Subject A 14.29 0.959 14.06 0.976 248.20 0.143 12.40 0.974 8.89 0.975 

Subject B 5.74 0.971 3.37 0.983 10.5 0.965 3.42 0.982 5.89 0.973 

Subject C 14.88 0.951 6.28 0.971 24.46 0.894 5.86 0.972 9.12 0.971 

Subject D 5.93 0.968 3.77 0.981 14.17 0.929 3.27 0.985 3.16 0.983 

 

 In pose A, the best model performance was from the whole arm model for subject 

D.  The MSE was 3.16, and the R was 0.983.  This result indicated that the model 

built from the muscle outperformed the model built from the muscle with hand 

motions.  However, the improvement was not significant for subject D.  The 

following are the detail discussions for individual muscle groups: 

o The L_M model for all the subjects was not as good as the model built 

from the W_M model.  For instance, the MSE and R were 14.29 N and 

0.959 respectively for subject A’s L_M model. However the MSE and R 

were 12.40 N and 0.974 respectively for subjects A’s W_M model.  Within 

the L_M, subject B had the best performance with MSE and R equal to 

5.74 N and 0.971 respectively. 

o The U_M models for subjects A, C, and D were not as good as the model 

built from the W_M.  Subject B had a slightly better performance on his 

U_M model.  The previous had MSE and R equal to 3.37 N and 0.983 

respectively, and the latter had MSE and R equal to 3.42 N and 0.982. 

o The hand motion data cannot produce an acceptable model in all subjects.  

The best result was in subject B where the MSE was 10.5 N, and the R was 

0.965. 

o The whole arm models had varying performances when they compared 

with the W_M model.  Subject A and D had better performance on their 

whole arm only model.  Subject B and C’s models had better performance 
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with W_M model.  Since the operators were asked to press down on 

calibration node A, the hand motion contained small rotation movements. 

The results indicated that the dataset from subjects A and D contained 

fewer hand rotations than the dataset from subject B and C.  In another 

word, when subject A and D were performed the calibration tasks, their 

hands were almost static, so that the hand motions contributed a little on 

the model performance. 

Table 5-6 A summary result of the influence of the muscle group in pose B. 

Pose B Lower arm(motion) Upper arm(motion) Motion only Whole arm(motion) Whole arm 

 MSE(N) R MSE(N) R MSE(N) R MSE(N) R MSE(N) R 

Subject A 21.6 0.930 18.36 0.962 106.94 0.696 11.36 0.958 26.20 0.940 

Subject B 11.68 0.965 6.06 0.980 101.00 0.782 5.66 0.978 8.20 0.971 

Subject C 14.64 0.960 12.88 0.978 133.46 0.542 7.88 0.982 4.76 0.979 

Subject D 17.53 0.955 7.13 0.980 41.18 0.877 6.67 0.982 4.69 0.982 

 

 For pose B, the best model performance was from the whole arm model for 

subject D.  The MSE was 4.69 N, and the R was 0.982.  This result indicated that 

the model built from the muscle outperformed the model built from the muscle 

with hand motions.  The MSE was smaller, but the R-value remained the same.  

The following is the detailed discussions for individual muscle groups: 

o The L_M model for all the subjects was not as good as the model built 

from the W_M model.  For instance, the MSE and R were 21.6 N and 

0.930 respectively for subject A’s L_M model. However the MSE and R 

were 11.36 N and 0.958 respectively for subjects A’s W_M model.  In the 

L_M models, subject B had the best performance with MSE and R equal to 

11.68 N and 0.965 respectively. 

o The U_M models for all subjects were not as good as the model built from 

the W_M models.  Subject B had a slightly better R on his U_M model.  

The previous has MSE and R equal to 6.06 N and 0.980 respectively, and 

the later had MSE and R equal to 5.66 N and 0.978. 

o The hand motion could not produce sufficient information to build a 

reasonable model.  The best result was from subject D with MSE equal to 

41.18 N and R equal to 0.877. 

o The model built from the whole arm only model outperformed the W_M 

models for subject C and D.  This indicated that the features from muscle 
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activations were sufficient to build an accurate muscle-force model. The 

hand motion does not help to improve the model performance. However, 

the results from subject A and B were contradictory and suggested that the 

hand motions are useful for building the model in pose B 

Table 5-7 A summary result of the influence of the muscle group in pose C. 

Pose C Lower arm(motion) Upper 

arm(motion) 

Motion only Whole 

arm(motion) 

Whole arm 

 MSE(N) R MSE(N) R MSE(N) R MSE(N) R MSE(N) R 

Subject A 15.71 0.964 14.44 0.972 84.3 0.02 11.16 0.979 3.18 0.983 

Subject B 3.62 0.976 2.94 0.981 18.59 0.876 2.44 0.986 2.75 0.980 

Subject C 3.50 0.975 3.84 0.984 92.88 0.164 2.19 0.985 2.77 0.982 

Subject D 5.48 0.961 8.14 0.976 45.55 0.599 5.52 0.981 2.97 0.982 

 

 In pose C, the best model performance was from the W_M model for subject C. The 

MSE was 2.19 N, and the R was 0.985. This result indicated that the model built 

from the muscle with hand motions outperformed the model built from the muscle 

only. The following were the detail discussions for individual muscle groups: 

o The L_M model for all the subjects was not as good as the model built 

from the W_M model. For instance, the MSE and R were 15.71 N and 

0.964 respectively for subject A’s L_M model. However the MSE and R 

were 11.16 N and 0.979 respectively for subjects A’s W_M model. In the 

L_M models, subject C had the best performance with MSE and R equal to 

3.50 N and 0.975 respectively. The MSE in subject D was almost the same 

with the W_M model, but worse than the whole arm only model. This 

indicated that the hand motion degraded the lower arm model performance. 

o The U_M models for all subjects were not as good as the model built from 

the W_M. Subject B had the best result on his upper arm model. The MSE 

and R equal to 2.94 N and 0.981 respectively. 

o The hand motion could not produce sufficient information to build a 

reasonable model in all case. The best result was from subject B with MSE 

equal to 18.59 N and R equal to 0.876. 

o The model built from the muscle activation only outperformed the model 

with hand motion for subject A and D. The improvement indicated that the 

sEMG signals were the predominant components for building muscle-

force model. The hand motions were not necessary for these two datasets. 

On the other hand, subject B and C had similar performance with and 
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without using motion data. This indicated that the hand motions almost 

had no effect on the model training. The reason of this indication was that 

the operators used static hand pose, which contained little variations.  

 In conclusion, the training results from the different muscle groups indicated 

that all the subjects were using both groups of muscles to execute the pressing down 

movements for three different poses studied. This is because the model built from either 

lower arm and upper model cannot outperform the whole arm model. Even though 

reasonable model accuracy was achievable in both models, the whole arm model 

always provides improvement. The hand motions were negligible if the operator did not 

have sufficient movements in the training samples. This happens in the experimental 

dataset for pose C. However, in pose A and B, the hand motions contributed to model 

improvements due to the movements in the hand motion samples. Therefore, the 

muscle activations had strong correlation with the force generations, and if the 

calibration primitives (e.g. pose A, B, and C) contained hand movements such as angle 

tilting; the training model should consider the hand motions as additional important 

features.  

d) Influence of environment conditions 

 The test data from the previous discussions were from two trials in the morning. 

In this section, to test the repeatability of the experimental setup, the experiments were 

performed in the afternoon. The purpose of this discussion is to show the generalisation 

capability of the training model by changing when the experiment was performed. The 

sEMG sensors were fixed in the same positions by marking on the arm. However, some 

misalignment might occur due to the reinstallations. The results are shown in Table 

5-8-Table 5-10 and explained as following: 

 In pose A, the model performances on the testing calibration trials in the PM were 

close to the model in the AM. For instance, the model performances for subject B in 

PM (trial2) had MSE and R equal to 6.55 N and 0.979 respectively. It was slightly 

worse than the results in the AM.  On the other hand, the model performances for 

subject D in PM (trial2) had MSE and R equal to 2.96 N and 0.982 respectively. It 

was slightly better than the results in the AM. 
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Table 5-8 A summary of the results for different experiment time in pose A. 

Pose A AM PM (Trial 1) PM (Trial 2) 

 MSE(N) R MSE(N) R MSE(N) R 

Subject A 8.89 0.975 17.62 0.961 10.74 0.973 

Subject B 5.89 0.973 4.76 0.985 6.55 0.979 

Subject C 9.12 0.971 6.41 0.969 4.38 0.977 

Subject D 3.16 0.983 4.18 0.981 2.96 0.982 

 

 In pose B, the model performances on the testing calibration trials in the PM 

showed a good prediction accuracy on subject C and D. For instance, the MSE and 

R for subject C in PM (trial 1) were 4.62 N and 0.981 respectively, which were 

better than the evaluation results from AM. However, the model prediction 

performances from PM for A and B were worse than the performances from AM. 

Table 5-9 A summary of the results for different experiment time in pose B. 

Pose B AM PM (Trial 1) PM (Trial 2) 

 MSE(N) R MSE(N) R MSE(N) R 

Subject A 11.36 0.958 8.37 0.965 14.34 0.959 

Subject B 5.66 0.978 10.23 0.972 9.05 0.965 

Subject C 7.88 0.982 4.62 0.981 4.27 0.982 

Subject D 6.67 0.982 3.42 0.984 4.31 0.985 

 

 In pose C, the model predictions for the PM were similar to the predictions from 

AM. For instance, the MSE and R for subject C in PM (trial 1) were 2.60 N and 

0.981 respectively while the MSE and R for subject C in AM were 2.77 N and 0.982 

respectively. 

 

Table 5-10 A summary of the results for different experiment time in pose C. 

Pose C AM PM (Trial 1) PM (Trial 2) 

 MSE(N) R MSE(N) R MSE(N) R 

Subject A 3.18 0.983 3.46 0.976 3.05 0.978 

Subject B 2.75 0.980 2.64 0.961 2.48 0.972 

Subject C 2.77 0.982 2.60 0.981 2.86 0.974 

Subject D 2.97 0.982 2.06 0.981 2.67 0.974 

 

 The results discussed here showed the model repeatability capabilities at 

different experiment times. The similar prediction accuracy in the PM compared with 
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the performance in the AM indicated that the methodology was repeatable. However, in 

some of the cases, the performances had degraded. This was because the sensors were 

retrofitted and might have misalignment with the original positions. Also even though 

the operator was asked to execute the calibration experiments by standing in the same 

position with the same hand pose, he/she might still introduce some misalignments in 

the postures. In general, the models built from different poses and subjects were 

transferable to a different execution time and were able to reproduce similar prediction 

performances. 

 In conclusion, this section has systematically evaluated the proposed model 

selection strategy for building the muscle-force model. Firstly, the filtering strategy and 

TDNN training parameters addressed the appropriate level of smoothing in the sEMG 

signals and the network structures. The results suggested a simple network structure is 

sufficient. Secondly, the PCA was used to reduce the dimensions of the input signals. 

The results indicated that the improvement of the model using PCA was not significant. 

But if the training efficiency was concerned, PCA could help to accelerate the training 

process for a noticeable time (at least 30s). Thirdly, the contributions of the different 

muscle groups were discussed. The results indicated that in order to build a 

comprehensive model for all the postures used in the experiments, both the upper arm 

and lower arm muscle groups should be used. The results also indicated that the motion 

data in the dataset were not as important as the muscle activations, but if the operator’s 

hand motion contained noticeable variations, it would help to improve the model 

performance otherwise, it might degrade the model performance. Lastly, the 

experiments had been executed at different times of the day. The results indicated that 

the model was capable of generalising to these new datasets in PM with similar 

accuracy in AM. An example of the model-force predictions is shown in Figure 5-9; the 

testing calibration data was from subject D in PM. The prediction performance is 

representative of the other results henceforth it was used for visualization purpose. 

From all the discussions above, the model is transferable and produces reasonable 

accurate prediction results (with MSE and R range from 4.69 N– 11.36 N and 0.979 – 

0.982 respectively). 
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Figure 5-9 An example of the muscle-force predictions results.  

5.3.2 Model validation on the actual Peg-in-Hole demonstrations 

 In section 5.3.1, the proposed muscle-force modelling approach had been tested 

and evaluated on the test rig in which the muscle activations had been mapped to the 

corresponding force for three calibration poses. The test rig was used as a general 

purpose calibration setup because different hand pose variations could be applied on the 

nodes. Three calibration poses had been defined as a close form of the PiH primitives 

(section 5.2.1). The model generalisation and prediction accuracy are evaluated against 

the actual PiH dataset in this section. The input variables were the sEMG signals (emg) 

from the two armbands and hand motion (q). The output signal generated from the 

model built from calibration poses and the target signal is from the 1st PCA of the F/T 

sensor (𝑓𝑝𝑐𝑎
1 ). 

 The main focus of this discussion is the influence of the calibration poses and 

the peg clearances on the model performances. They are discussed in section 5.3.2a), 

and section 5.3.2b) respectively. 

a) Influence of the calibration pose 

The model built from the three pressing down poses (A, B and C) were evaluated 

against the PiH samples for all the subjects, in this section. MSE and R were the 

performance metrics. From Table 5-11-Table 5-13, the following results are found: 

 For the assembly with loose clearance, the MSE from model with pose B contained 

larger MSE error compared with the other poses. Also the R values in pose B were 

smaller. This indicated that the estimations from the pose B’s model were not 

appropriate for PiH task. In the worst case, the MSE was 134.54 N and R was 0.817. 

Pose C always has better performances. The best MSE was 22.81 N, and the best R 

(N
) 
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was 0.909. This indicates that the force estimations from pose C were closely 

related to the contact forces in PiH executions. Pose A had the best MSE and R 

(17.54 and 0.932 respectively). Also, though the MSE were no better than pose C, 

the R was better. This indicated that pose A was more suitable than pose C since the 

shape of the prediction curves is closer to the target. 

 For the assembly with middle clearance, the pose B had the worst model prediction 

performance with MSE equal to 159.33 N and R equal to 0.840. This indicated that 

the pose B was not suitable for contact force estimations. Pose C had better 

performance in MSE, but the R were better in pose A. This result indicated that the 

shape of the predictions in pose A was closer to the targets, but the pose C had 

better prediction accuracy. 

 For the assembly with tight clearance, the results were similar to the discussions in 

the loose and middle clearances. The pose B was not suitable for PiH task. Pose A 

had better R performance and pose C had better MSE performance. 

 From the results, it was clear that both poses A and C could generate reasonable 

results for the PiH task. The model predictions for tight clearance in subject A and pose 

A, and the model predictions for tight clearance in subject A and pose C are shown in 

Figure 5-10-Figure 5-11. The target signal contained an insertion, extraction, and 

approaching phases. The focus was only the insertion phase because the approaching 

phase did not have force measurement and the extraction phase did not require force 

based control. Therefore, the phases with larger error were approaching and extraction 

phase in which the estimations could not follow the target well. This caused the 

degraded MSE and R. The actual predictions from the insertions contained some error 

in the peak. This might be caused by the missing detail of the sEMG signals. In general, 

the prediction results were close to the actual forces in the insertion phase with R 

ranges from 0.838 to 0.951.  

Table 5-11 Result summary for loose clearance assembly. Models were built from different poses 

A, B and C. 

 Pose A Pose B Pose C 

 MSE(N) R MSE(N) R MSE(N) R 

Subject A 17.54 0.875 31.05 0.838 27.06 0.909 

Subject B 66.90 0.916 40.81 0.861 22.81 0.876 

Subject C 37.99 0.926 84.55 0.856 33.57 0.893 

Subject D 56.00 0.932 134.54 0.817 35.57 0.869 
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Table 5-12 Result summary for middle clearance assembly. 

 Pose A Pose B Pose C 

 MSE(N) R MSE(N) R MSE(N) R 

Subject A 20.88 0.881 63.04 0.840 24.89 0.879 

Subject B 53.19 0.938 159.33 0.845 25.91 0.904 

Subject C 49.37 0.951 57.25 0.886 31.13 0.915 

Subject D 35.99 0.933 125.0 0.859 34.01 0.898 

 

Table 5-13 Result summary for tight clearance assembly. 

 Pose A Pose B Pose C 

 MSE(N) R MSE(N) R MSE(N) R 

Subject A 52.50 0.935 166.46 0.872 28.90 0.855 

Subject B 58.26 0.950 102.30 0.882 29.91 0.898 

Subject C 66.90 0.916 104.02 0.886 31.28 0.922 

Subject D 42.40 0.953 126.55 0.865 30.13 0.911 

 

Figure 5-10  Prediction result using pose A performed by subject A for tight clearance. 

 

Figure 5-11 Prediction result using poses C by subject A with assembly tight clearance. 

 

(N
) 

(N
) 
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b) Influence of the assembly clearance 

 Three scenarios with different assembly clearances were used to evaluate the 

model performances. From the results, there was no clear trend that the changing of the 

assembly clearance would significantly change the model performances. For instance, 

in the estimations from subject A in pose A, the MSE were 17.54 N, 20.88 N and 52.50 

N respectively when the peg diameters increased.  However, the same trend did not 

repeat for subject B. In general, the R for model built using pose A was better in 

different clearances, which indicated that the model built from this pose was producing 

close enough contact forces. Pose C was also a good candidate for predicting the 

contact force due to its lower MSE. 

 In summary, in Section 5.3.2, the model built from section 5.3.1 had been 

evaluated against the actual PiH process. The results indicated that the insertion phase 

of the PiH process could be reliably and accurately predicted by using the simplified 

calibration poses. If accuracy was the main focus, pose C was the most appropriate 

posture for muscle-force calibration. The model performance had been verified on the 

different subjects and the different clearances. They showed that the proposed 

methodology was capable of generating the specific muscle-force model by using 

generic calibration test rig.    

5.4 Conclusion 

 In this chapter, research objective two (to develop a muscle-force model to 

predict the forces generated from the forearm muscle activations using wearable sEMG 

devices) has been addressed. The model will be used to replace the force sensor to 

avoid the need to measure the force signal in-situ, which may be difficult to achieve.  A 

methodology has been proposed to map the muscle activations from the arm to the 

contact forces in the peg insertion process. This process contained the skills in which 

the operator needed to provide compliant peg motions by sensing the contact force and 

controlling the hand motions. It was shown that the hand motions were not the main 

predominant features to build the model compared with the sEMG signals.  

 A calibration test rig had been used for general purpose calibration of the 

muscle-force relations. Three pressing down poses had been tested and evaluated by 

different subjects and for different muscle groups. The experiments were executed at 

different time of the day to evaluate the influence of the environment conditions. The 
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results from the test rigs showed that the sEMG signals could be reliably and accurately 

mapped to the contact forces (MSE = 2.91 N and R = 0.985 in the best case in pose C). 

Further to these results, the model had been evaluated by using the actual PiH process. 

Different subjects and clearances had been considered. The results indicated that not all 

the data from the poses were relevant to the PiH task. The model from pose C showed 

the capability to generalise across different clearances with reasonable accuracy (MSE 

= 2.91 N and R = 0.985 in the best case). The testing dataset contained approaching, 

insertion and extraction phase, and the model could only produce accurate results for 

the insertion phase. This was because the extraction and the approaching phases were 

not considered in the test rig models. The small errors in the insertion phase were due to 

the missing features of the sEMG signals. The features might not be captured during 

sampling or has been filtered due to wavelet decompositions. The signals were not able 

to capture all the corresponding features that generated the exact contact forces.  

 The proposed methodology for sEMG-force modelling removes the need for the 

installation of the F/T sensors on the actual task demonstration site. However, for the 

model to be reliable, indicating that the primitive motions need to be carefully selected 

and the demonstrations it requires building test rig and defining calibration poses to 

build the sEMG and force signals off-line. The poses should reflect the primitive 

motions during the task (the press downing motion in the PiH case). So far, the 

proposed learning from demonstration framework using wearable sensors has been 

applied on the peg insertion assembly task. In the next chapter, the framework will be 

verified and evaluated using a beater winding task. 
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 Indirect Method of Human-Robot Skill 

Transfer - A Drum Beater Winding Case Study 

6.1 Introduction 

 In Chapter 4 and 5, the proposed methodology has been applied in the Peg in 

Hole case study. In this chapter, the aim is to address the research objective four, which 

is to verify and evaluate the robustness of the proposed framework. To achieve this, the 

beater winding case study is chosen and discussed in this chapter. 

 Within the chapter, a systematic framework to learn the winding policy from 

multiple expert demonstrations is presented. This chapter starts with introducing the 

research methodology and detailed rationales on the Tension Measurement Unit (TMU) 

design, the sEMG-force model, the HMM based skills encoding method, and the GMR 

based motion reproduction method, as shown in section 6.2. The detailed description of 

the experimental setup is presented in section 6.3.1. The evaluation of the TMU, the 

accuracy of the sEMG-force model, and the motion reproduction capability are 

discussed in section 6.4. Human demonstrations are used to validate the model built. 

6.2 Case study background 

 Beater construction [226] for percussion musical instruments is mostly 

procedural; however, within the winding section of construction, a combination of 

procedural and tacit knowledge is used. This tacit knowledge is seen in utilisation and 

modulation of tension while winding the yarn around the beater head. The task is 

shown in Figure 6-1, where the right-hand changes the head pose, with different angles 

deviating from the vertical line, and the left hand performs a circular motion roughly in 

one plane. Procedural knowledge can be easily communicated and written down; Tacit 

knowledge, on the other hand, reflects accumulated experiences, ways of knowing and 

cannot be easily expressed [227]. This tacit skill is relatively difficult to maintain and 

replicate by another trainee. The current operator is due to retire with no possibility for 

replacement. Therefore, an automatic solution of this winding process is being 

investigated as a potential alternative to ensure the business is sustainable in the near 

future.  



155 

 

 

Figure 6-1 Manual drum beater winding process. 

 The closest automated flexible yarn winding technology in the literature is for 

cricket ball winding [228]. This technology cannot meet the particular quality standard 

due to the fundamental geometrical constraints. In order to replicate the flexibility of 

the current manual process, the automation solution should be delivered in active 

compliant motion scenario using computer control [229].  Due to the complexity of the 

process, no passive compliant mechanism will work. Therefore the research from 

Human Factors (HF) becomes of most interest [230]. 

 In order to understand the process and the skills that required, an HF 

investigation was performed (in a related research carried out in EPSRC Centre for 

Innovative Manufacturing in Intelligent Automation) to understand the manual work  

using a hierarchical task analysis (HTA) and a task decomposition (TD) [38].  HTA is a 

method for the logical deconstruction of the physical and cognitive components of a 

task [231].  In [38], the winding task is systematically decomposed into a structure of 

overall goal, sub-goals, and operations. A TD was then applied to the HTA to extend 

the data, which breaks the operations from the HTA down further into some categories 

relevant to the research requirement [231].  These included; the identification of the 

sensory cues used by the operator, their associated decisions, actions, performance 

levels (which applies Rasmussen’s Skill, Rule, Knowledge (SRK) framework 

[232][233]), critical values, the cause of process variations, likely errors and error 

correction.  A snapshot of the full TD for “wind appropriate number of vertical winds” 

is shown in Table 6.1. Full TD is in Appendix C. 
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Table 6-1 Example Task Decomposition of Beater Construction [38] 
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Although a high proportion of rule and knowledge based operations were found 

in the HF study [230], the key instances of tacit knowledge identified were the tension 

maintained on the yarn during winding and the compliant winding motion demonstrated 

by the human operator.  Both hands contributed to maintaining the level of tension. The 

left hand adaptively changed the angle of the beater head while the right hand 

accomplished the winding motion. As shown in Figure 6-1, the angle of the beater head 

is changing continuously and is important to maintain the alignment of the winding 

around the beater head to achieve a spherical shape. Also it is important to prevent yarn 

from slipping as well as compactness for sound quality by maintaining tension. To 

simplify the model, the left hand is assumed fixed in one angle, and only the right-hand 

accounts for the winding process (generating motions and maintaining yarn tension). 

Since the winding process is mainly repetitive circular motion in a single plane, the 

orientation contributed mostly to the movements. In addition to motion data, the sEMG 

signals were used in this chapter to build the muscle-tension model.   

6.3 Methodology 

The complete methodology has shown in Figure 6-2, where emg is sEMG signal, 

𝑓𝑟𝑎𝑤 is the raw output from TMU, 𝑓𝑟𝑎𝑤 is the actual tension, 𝜃𝑠𝐸𝑀𝐺−𝑓𝑜𝑟𝑐𝑒 is the model 

parameter learned off-line, (𝑞 ̇ , 𝑞) are the orientation measurements, 𝜋 is the derived 

policy, �̂� is the evaluation measurements from additional test. First, a TMU is designed 

to measure the yarn tension during continuous winding without interfering with the 

hand motion. The sensor readings were calibrated using known force using spring load. 

An off-line sEMG-force (muscle-tension) model was built to indirectly indicate the 

tension to sEMG mapping, after calibration with the TMU. The off-line model is built 

following the methodology in chapter 5 where a calibration test rig is used. Then the 

kinematic data and the muscle activations were measured on-line for the actual winding 

process. The samples from multiple demonstrations allow the winding skills to be 

encoded as probabilistic tension models and the corresponding policy to be derived. In 

the end, the motions were reproduced for new trials and evaluated against with the 

reference signal, by assuming the identical physical systems of the human teacher and 

robot learner.  
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Figure 6-2. An overview of the proposed methodology.     

 In the off-line model training step, firstly, the selection of the basis function and 

the level of decompositions (Dl) needed to be evaluated (an example of well-filtered 

sEMG signals plotted with other signals is shown in Figure 6-3) for filtering the raw 

signals. Also, the appropriate training parameters including the number of time delay 

(𝑁𝑑) and hidden units (𝑁ℎ) for the TDNN need to be selected. Secondly, the PCA can 

reduce the dimension of the training data set, thus reducing the overall training time, 

but too much reduction will degrade the model performance. Therefore, the influence 

of PCA has to be considered carefully. Thirdly, it is unclear which group of muscle 

contributes more to the model. Therefore, the influence of the number and position of 

the sEMG sensors need to be established. Fourthly, the operator might have to work at 

different times of the day; it was not clear whether the model is sensitive to the 

environment condition. Lastly, the model built from the test rig required validation on 

the actual beater winding data. In the on-line validation step, individual subject is asked 

to perform the winding task several times. The sample trials were encoded for learning 

the skill models and validated in the reproduction step by using testing trials. 
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Figure 6-3 One example of filtered signals from sEMG, IMU and 𝒇𝒓𝒂𝒘from tension measurement 

unit after normalisations. Note, the output is sensor reading and unitless. 

6.3.1 Experiment setup 

 In this section, the experiments were designed to build muscle-tension model 

and skill transfer model. As shown in Figure 6-4, two sEMG sensors with 8 channels 

each were used to measure the muscle activation in the human lower arm and upper 

arm. One Vicon-IMU system was used for hand pose tracking. The tension 

measurement unit was used to imitate the actual beater winding process and produced 

tension measurements during simple winding pose around the roller (in one plane). The 

sampling rate of the sEMG sensors are 200 Hz. The sampling rate of the load cell is 

400 Hz. The sampling rate of the Vicon-IMU system is 60 Hz. The sEMG and tension 

signals were synchronized by using ROS approximate synchronizer algorithm. The 

sampling rate of the synchronized signals is 200 Hz. The hand motion was slow and 

does not require high sampling rate. Therefore, the synchronizer did not consider the 

timestamps from the Vicon-IMU. The pose signals were stored independently from the 

signals after synchronisation. At each timestamp, the synchronizer grabbed the sEMG 

and tension measurements, the most up to date pose data were assigned. This method 

minimises the time shifting of the sEMG and the tension readings. To evaluate the 

proposed methodology, 4 operators from Intelligent Automation lab have attended the 

experiments as follows. They were age from 25~27 and had engineering and 

manufacturing expertise.  

 TMU calibration by pulling a spring load in the horizontal direction. The 

pulling force is gradually increasing by 0.5N until the breaking point (13N) of 

the yarn achieved. 
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 Replace the left hand by using a fixture with a dummy roller to minimise the 

disturbance of the left-hand movements as shown in Figure 6-5. Holding the 

yarn and keeping it intense with the right hand; then wind 20 cycles on the 

roller. Three trials were collected for training, and one trial is collected for 

testing. 

 Repeat experiment two 6 hours later in the same day and then evaluate the 

muscle-tension model build from experiment 2. Two trials with at least 15 

windings were collected for testing. 

 Install the beater head onto the robot end effector and bring it close to the 

dummy roller to minimise the variation of the arm poses when performing 

winding as shown in Figure 6-6. Two trials with at least 15 trials have 

collected for verification of the model built from experiment two. Since the 

F/T sensor contains 3 axes of measurements, in order to make the prediction 

results comparable, the force composition has applied in the following:𝑓𝐹/𝑇 =

 √𝑓𝑥
𝐹/𝑇2 + 𝑓𝑦

𝐹/𝑇2 + 𝑓𝑧
𝐹/𝑇2 . The Mean Square Error (MSE) and Regression 

Coefficient (R) of the 𝑓 and 𝑓𝐹/𝑇are the performance evaluation metric. 

 Perform two trials of beater windings for learning skills by policy derivation 

and evaluating the policy performance. Each one contains 15 winding cycles. 
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Figure 6-4  Experiment setup. 1) Signal conditioner. 2) Tension measurement unit. 3) Vicon-IMU 

system. 4) The White sEMG sensor on the lower arm. 5) Black sEMG sensor on the upper arm. 

 

Figure 6-5  Experiment 2.  The operator is winding on the tension measurement unit by using a 

fixed dummy roller. 
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Figure 6-6  Experiment 3.  The operator was winding the drum beater head with his left hand fixed 

(held statically by the robot) as in experiment 1. 

6.3.2 Tension measurement unit design 

 In order to build the off-line model, a tension measurement unit (TMU) was 

designed. However, measuring tension in a continuous winding process is a challenge. 

One design has been proposed in our previous work [234], where a handheld sensor 

was developed by using a miniature load cell and a tweezer-like mechanism. The 

design aimed to measure the tension on the yarn directly during winding. However, 

since the sensor body parts are 3D printed and the frictions corrupt the signals, the 

design has been refined in this chapter. In this section, the development of a tension 

measurement unit is explained. As shown in Figure 6-7, the design procedures are split 

into 5 blocks. 
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Figure 6-7  Sensor design methodology. 

 

 Sensor design requirements: the first consideration is the sensing range. The 

choices of the transducers are plenty, but without considering the sensing range, the 

sensor might not be able to give sufficient readings. The selection standard of this range 

depends on the tension at the breaking point of the yarn. The second consideration is 

that the yarns are flexible. Therefore, the measurement unit should keep the yarn in 

tension so that the reading reflects the real tension measurements. The third 

consideration is the direction of the winding process. It changes with time; therefore, 

the design should allow the operator to pull the yarns in multiple directions. The fourth 

consideration is the sensing elements. They should be as rigid as possible to assure the 

repeatability of the readings.  The fifth consideration is the frictions, which should 

remain low in the system. 

 Transducer selection: according to the requirements, the sensor has to be in the 

right sensing range and applicable for tension measurements. A load cell can provide 

downward force readings on one end. The transducers on the load cell are the strain 

gauges with a Wheatstone bridge connection. Among the different bridge connections, 

a full bridge with 4 active strain gauge sensing elements can generate the measurements 

with the most sensitive reading and temperature compensations. A roller is essential to 

allow the yarns to run smoothly. Therefore, a full bridge load cell with a roller head is 

considered as the sensing bodies designs.  

Sensor design requirements:

1) Transducer sensing range.

2) Suitable for yarn tension measurement.

3) Changing directions of the winding process.

4) Rigid bodies.

5) Low friction.

Sensor design requirements:

1) Transducer sensing range.

2) Suitable for yarn tension measurement.

3) Changing directions of the winding process.

4) Rigid bodies.

5) Low friction.

Sensor selectionSensor selection Roller selectionRoller selection Substrate selectionSubstrate selection
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 Roller selection: the main concern in this part of design is the size and the 

number of the rollers. A big roller is not necessary, but a small one might not be able to 

hold the yarns securely. The diameter of the roller should be slightly larger than the 

height of the load cell, and the groove depth should be enough for the yarns to run 

through without slipping. The number of the rollers used was 4. One was used for 

sensing; two were fixed as dummy sensors to assure the magnitude of the readings and 

the tension calculations. An additional dummy roller was also needed to change the 

direction of the yarns. 

 Substrate selection: the load cell and the sensing roller needed to be installed 

on a rigid body to assure the repeatable measurements. This required a rigid substrate. 

Additionally, the dummy rollers needed to be installed on a detachable wall because 

they should not generate weight to the load cell and the direction of the yarns should be 

fixed.  

 Sensor assembly and calibration: the selected parts were assembled, and the 

sensor readings were calibrated against with known force. 

 Calibration of the sensor can be done by pulling the yarn in one end using 

spring load. The reading from the spring load is the true tension for the current sensor 

measurements. By gradually pulling the yarn, the tension increases. At each time where 

the spring load stopped, the tension was recorded 5 times to estimate the actual value. 

The maximum tension should be within the breaking point and covered the full range of 

the yarn strength. After this process, the characteristic of this TMU was evaluated. The 

calculation of the tension is shown in equation (6-1) and the schematic plot is shown in 

Figure 6-8. 

𝐹3 + 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 = 𝐹2 

                               (𝐹1 + 𝐹2) × 𝑐𝑜𝑠𝜃 + 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 = 𝐹4 …………………..(6-1) 

 where 𝜃 is the angle between 𝐹1 𝑎𝑛𝑑 𝐹3. If friction is ignored and 𝜃 = 180°, 

𝐹2 = 𝐹3. The advantage of having those dummy rollers is that the direction of  𝐹3 is 

allowed to change. Now, 𝐹4 = 𝐹1 + 𝐹2. Since 𝐹1 = 𝐹2, therefore, 𝐹4 = 2 × 𝐹3.   

 This tension measurement setup allows the operator to perform winding on a 

dummy roller 3 while tension is measured at sensor roller, F4. The whole process 
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should keep the yarn in tension, assuming low friction the tension in F3 can be 

calculated from F4. 

 

Figure 6-8  Schematic plot of the sensor design. 

 The sensor is shown in Figure 6-9. The load cell was rigidly bolted on the 

aluminum beam with the base. An aluminum adaptor plate was installed on one end of 

the load cell with a roller bolted. The other three dummy rollers were bolted on one 

piece of Medium-Density Fibreboard (MDF) which was also bolted to the base frame. 

 

Figure 6-9  Sensor after manufacturing.  View 1(left) and View 2(right). 

 The calibration results and fitted sensor-tension relations are shown in 

Appendix D. The fitting function is: 

F4 
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𝑦 = 4.73𝑥 +  8.38 ……………………………… (6-2) 

 After the design of the sensor, calibration data was collected to train the muscle-

tension (sEMG-force) model. As a result, an adaptive control policy from multiple 

human demonstrations was derived by taking the inputs from haptic tension feedback 

and the hand motions, in order to reproduce the compliant movements in the manual 

beater winding process. 

6.3.3 Off-line sEMG-force modelling 

 The sEMG-force modelling method contains three steps, involving the: 1) data 

rectification and filtering due to the noises sEMG signals, 2) principle component 

analysis (PCA) to reduce the variable dimensions and training time, and 3) employment 

of the time delayed neural network (TDNN) for  non-linear function approximation. 

Details can be found in Chapter 5.2.2. Different from the PiH case study, the motion 

primitive for the winding process is cyclic movement which contains small variations 

in the absolute positions and large variations in the hand orientations. Henceforth, the 

input signals are {𝑒𝑚𝑔, 𝑞} and the output signal is 𝑓𝑟𝑎𝑤. ‘Daubechies 6’ (db6) basis 

wavelet and the 4th level approximation of the original signals were chosen 

heuristically as the data filtering strategies. Each armband has 8 channels of sEMG 

signals. PCA was applied to the 8 channels sEMG signals to reduce the dimensions. 

The Time Delayed Neural Network was then applied to find the relationship between 

the sEMG and the force measurement from TMU. After calibration on the test rig, the 

model needs to be validated on the actual winding process where the actual reference 

force measurement is given by the composed force vector, which will be explained in 

the experiment setup section.  

6.3.4 Policy derivation and motion reproduction 

 The dataset was composed as a set of data points 𝑥 = (�̇�, 𝑞, 𝑓). Different from 

PiH task, the winding process is a cyclic process. It is possible to decompose the 

complete winding process into one unique cycle with many repetitions. In each cycle, 

the winding can be roughly classified into two distinct states:  forward winding and 

backward winding. However human cannot generate a unique winding pattern over and 

over again. Therefore, it is important to model the state transition within each cycle of 

winding which requires more states to represent the different cycles. Also, it is 

important to model the state transitions in between the cycles because the end of the last 
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cycle means the upcoming of the next cycle. Therefore, the training dataset should 

contain more than one cycle and remain the nature of the state transitions in between 

the cycles.  

 The Hidden Markov Method (HMM) is suitable of learning the episodic 

behaviour by encoding the state transitions. It learns a joint probability model 𝑃(�̇�, 𝑞, 𝑓) 

with K state, where the output was the Gaussian distribution of each state that 

representing the locally correlation between different variables. The parameters of the 

model is {Π, 𝑇, 𝜇, Σ} learned through Baum-Welch algorithm [215], where h is the 

hidden component, Π = p(ℎ0), 𝑇~𝑝(ℎ𝑡|ℎ𝑡−1, 𝜃), and (𝜇, Σ)~𝑝(𝑥𝑡|ℎ𝑡 , 𝜃). {Π, 𝑇, 𝜇, Σ} 

can be initialised by using K-mean algorithm followed by Gaussian Mixture Model. 

This step will accelerate the HMM training process and learn the inherent time 

dynamics in the dataset. As a remainder, the different variables of the dataset and 

associated model are labelled separately as: 

[𝑥
𝐼

𝑥𝑂
] =  [

𝑞
𝑓

�̇�

], [𝑥
𝐼′

𝑥𝑂
′] =  [

�̇�
𝑓

𝑞

]………………………....………..……(6-3) 

[
𝜇𝑖
𝐼

𝜇𝑖
𝑂] =  [

𝜇𝑖
𝑞

𝜇𝑖
𝑓

𝜇𝑖
�̇�

], [
Σ𝑖
𝐼 Σ𝑖

𝐼𝑂

Σ𝑖
𝑂𝐼 Σ𝑖

𝑂 ] =  

[
 
 
 
 Σ𝑖

𝑞 Σ𝑖
𝑞𝑓

Σ𝑖
𝑓𝑞 Σ𝑖

𝑓

Σ𝑖
𝑞�̇�

Σ𝑖
𝑓�̇�

Σ𝑖
𝑞�̇� Σ𝑖

�̇�𝑓 Σ𝑖
�̇�
]
 
 
 
 

…….……(6-4) 

[
𝜇𝑖
𝐼′

𝜇𝑖
𝑂′
] =  [

𝜇𝑖
�̇�

𝜇𝑖
𝑓

𝜇𝑖
𝑞

], [
Σ𝑖
𝐼′ Σ𝑖

𝐼𝑂′

Σ𝑖
𝑂𝐼′ Σ𝑖

𝑂′
] =  

[
 
 
 
 Σ𝑖

�̇� Σ𝑖
�̇�𝑓

Σ𝑖
𝑓�̇� Σ𝑖

𝑓

Σ𝑖
�̇�𝑞

Σ𝑖
𝑓𝑞

Σ𝑖
�̇�𝑞 Σ𝑖

𝑞𝑓 Σ𝑖
𝑞
]
 
 
 
 

………..(6-5) 

 where the state variables are absolute angles  (𝑞𝑦𝑎𝑤, 𝑞𝑝𝑖𝑡𝑐ℎ, 𝑞𝑟𝑜𝑙𝑙) ∈ 𝑞, angular 

velocity �̇�, and tension f. The upper case I and O represents input variable and output 

variables. In these two different set of variables, tension f is always used as one of the 

inputs, while the angle q and �̇� are used interchangeably to estimate 𝑞�̇� and 𝑞𝑑. 

 During the reproductions, at each time step the current observations 𝑥 =

(�̇�, 𝑞, 𝑓) is used to define a weight factor 𝑤𝑖, representing the impact of the i-th state: 

                               𝛽𝑖(𝑥𝑡) =  
𝛼𝑖,𝑡

∑ 𝛼𝑘,𝑡
𝐾
𝑘=1

  ………….. ………………..(6-6) 
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with 𝛼𝑖,𝑡 = (∑ 𝛼𝑘,𝑡−1𝛼𝑘𝑖
𝐾
𝑘=1 )𝒩(𝑥𝑡; 𝜇𝑖, Σ𝑖), 

 Where 𝛼𝑖,𝑡 is the forward variable (calculated recursively from HMM 

representation) corresponding to the probability of partial observations 𝑥 =

{𝑥1, 𝑥2, … , 𝑥𝑡} of length t being in state I at time t. 

 A target angle �̂� and angular velocity �̂̇� are estimated through GMR as: 

𝑞𝑑 = ∑ 𝛽𝑖(𝑥)(𝜇𝑖
𝑂 + Σ𝑖

𝑂𝐼Σ𝑖
𝐼(𝑥𝐼 − 𝜇𝑖

𝐼)),𝐾
𝑘=1  …………………….(6-7) 

𝑞�̇� = ∑ 𝛽𝑖(𝑥) (𝜇𝑖
𝑂′ + Σ𝑖

𝑂𝐼′Σ𝑖
𝐼′(𝑥𝐼

′
− 𝜇𝑖

𝐼′)) ,𝐾
𝑘=1  ………………..(6-8) 

 From the current position and velocity of the system, an impedance controller 

similar to a mass-damper system is computed to reach the desired angle �̂� and angular 

velocity �̂̇�.  Then the acceleration control command in the task space is defined as: 

�̈� = (�̂̇� −  �̇�)𝑘𝑣
⏞      

�̈�𝑣

+ (�̂� –  𝑞)𝑘𝑝
⏞      

�̈�𝑝

  ………………………………….(6-9) 

𝑞�̇� = �̇�𝑡−Δ𝑡 + Δ𝑡�̈�𝑡, 𝑞𝑡 = 𝑞𝑡−Δ𝑡 + Δ𝑡�̇�𝑡 ………………………..(6-10) 

 Where 𝑘𝑣 and 𝑘𝑝 is the control gains. In equation (6-9), �̈�𝑣 allows the learner to 

follow the dynamic, and �̈�𝑝prevents the learner deviating from the unlearned situation 

and remaining in the existing context if any perturbation occurs. 

6.4 Result analysis 

6.4.1 Muscle tension model training 

 In this section, a muscle tension model is built based on the muscle activations, 

hand poses, and the tension measurements. The Mean Square Error (MSE) and 

regression coefficients were used as performance metrics. MSE is the error between the 

prediction and the sensor reading. Regression coefficient (R) indicates the similarity in 

between the prediction and the target. 

a) Selection of the filtering and TDNN training parameters. 

 In this section, to address the filtering and training parameters, the dimension of 

the training data sets are not reduced.  Both sEMG sensors were used for training.  The 

wavelet functions were chosen from [‘db4’, ‘db5’ and ‘db6’].  The levels of 

decompositions were chosen from Dl = {4, 5 𝑎𝑛𝑑 6}. The 𝑁𝑑  was chosen from 𝑁𝑑 =
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{0, 0: 5, 0: 10 and 0: 15} . 𝑁ℎ  was chosen from 𝑁ℎ = {1,2 𝑎𝑛𝑑 3} . The results from 

subject A (Table 6-2 summarised the rest of the subjects) are used as an example and 

shown in Figure 6-10.  In each plot, one pair of wavelet basis function and the level of 

decomposition were chosen.  The plot shows the MSE performance by varying the 

number of the hidden units and the number of time delays for TDNN.  The results 

indicate: 

 The best choice of the basis function and the level of decomposition are ‘db5’ and 4 

respectively.  𝑁ℎ = 2, 𝑁 = [0: 15], MSE = 0.046N, and R = 0.88. 

 The worst choice of the basis function and the level of decomposition are ‘db4’ and 

6 respectively.  𝑁ℎ = 2, 𝑁𝑑 = [0: 5], MSE = 0.059N, and R = 0.70. 

 There is not much improvement by selecting a larger 𝑁ℎ.  Even though the best 

results indicate 𝑁ℎ = 2, 𝑁ℎ = 1 seems acceptable across all the results.  Also, all 

the plots indicate a worse performance when 𝑁ℎ = 3. 

 The factor 𝑁𝑑  has influence on all the results.  Increasing 𝑁𝑑  will improve the 

performance in most situations (e.g. when ‘db5’ and Dl = 4, and ‘db6’ and Dl = 6 

are chosen).  

 From the results above, they indicate that to achieve a reasonable model, one 

need to select the filtering and training strategies properly. If the sEMG signals are over 

filtered with a larger decomposition level, it will remove too many essential details for 

learning the model.  On the other hand, unnecessary details will corrupt the signal and 

lead to a degraded model.  During the inspection of the benchmarking, the selection of 

the wavelet basis does not have major impacts on the model prediction performance.  

Henceforth, one can heuristically select the appropriate wavelet functions.  The same 

strategy applies to the rest of the subjects.  Summarised results are shown in Table 6-2 

where the training parameters are selected for all the subjects after benchmarking.  

From the results: 

 ‘db5’ wavelet function is suitable for both subject A and B. ‘db6’ wavelet function 

is appropriate for both subject C and D.  ‘db4’ is not an appropriate basis function. 

 The 4th level decomposition applies on all the subjects. This indicates that further 

reduction of the level of details will degrade the model prediction accuracy.  
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 𝑁ℎ  is small in all cases.  𝑁ℎ = 1  seems a good choice.  𝑁𝑑 = [0: 15]  for both 

subject A and B, and 𝑁𝑑 = [0: 10] for both subject C and D.  Different from the 

standard neural network with 𝑁𝑑 = [0], a TDNN considers using a sliding window 

from the past to predict the current output value.  The variations in 𝑁𝑑 indicate that 

the data beyond the optimal sliding window size degrade the prediction 

performance. 

 In conclusion, the MSE and regression results in the best case (MSE = 0.046N 

and R = 0.88) suggest that the prediction is close to the target signal.  The results 

indicate a simple network structure and the model is a weighted superposition of linear 

systems with a number of time delays.  This might because the winding task is 

relatively simple, and the muscle activations provide sufficient information to build the 

reasonable muscle-tension model. 
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Figure 6-10  Benchmark for parameters selections for subject A. 
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Table 6-2 A summary of the benchmarking results across subjects. 

 Wavelet Decomposition level Number of time delay Number of hidden units 

Subject A db5 4 15 2 

Subject B db5 4 15 1 

Subject C db6 4 10 1 

Subject D db6 4 10 1 

 

b) Influence of Principle Component Analysis (PCA) 

 PCA can reduce the dimension of the data set and potentially reduce the amount 

of training time. The filtering and training parameters were selected from the results in 

the last section, and they will be applied to the rest of the result discussions. In this 

section, two scenarios are tested where the raw training data was processed without 

PCA and with PCA (1% reduction). 1% is heuristically selected to show the influence 

of the data dimension reductions. Because training without PCA consumes much more 

time than using PCA, the training time when 100 iterations reached was used. In all 

cases, the model training with PCA took less than 100 steps. As shown in Table 6-3:  

 PCA will improve training efficiency. It only took 2 seconds to complete training 

with PCA; but in the worst case, it took 25 seconds to finish 100 iterations for 

subject A.   

 The MSE and regression coefficient results indicate that the predictions with PCA 

are less accurate than the predictions without PCA.  But the MSE (0.03N, 0.01N, 

0.02N and 0.02N for subject A, B, C and D) and R (0.04, 0.026, 0.013 and 0.033 for 

subject A, B, C and D) differences are small. The results indicate applying PCA 

will reduce the accuracy, but the effect is small. 

Table 6-3 Model training performance with and without PCA. 

 With PCA (99%) Without PCA 

 MSE(N) R Time (s) MSE(N) R Time(s) 

Subject A 0.08 0.840 2 0.05 0.880 25 

Subject B 0.05 0.929 1 0.04 0.955 11 

Subject C 0.09 0.943 1 0.07 0.956 14 

Subject D 0.08 0.927 2 0.06 0.960 21 

 

c) Influence of muscle groups 

 Two groups of muscles are considered in the experiment: the biceps and triceps 

in the upper arm, and extensors and flexors in the lower arm. It is unclear which group 

of muscle contributes more to the model. In this section, models from the individual 
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muscle group data were trained. The same training parameters addressed from section 

6.4.1.a) were used here. The data recorded are the hand motions and muscle activations 

for the whole arm.  As shown in Table 6-4, the models are: Lower arm muscle with a 

hand motion (L_M), upper arm muscle with a hand motion (U_M), hand motion only 

(M), whole arm muscle with hand motion (W_M) and whole arm muscle only (W).  

From the results: 

 In all cases, the prediction results from the W_M model show better performance. 

The most accurate model is built from subject B where the MSE is 0.04N, and R is 

0.955. This indicates that the training model can accurately and reliably estimate the 

tensions measured by the tension measurement unit.  

 The model built from the L_M is slightly less accurate than the model built from the 

whole arm with the hand motion. For instance, subject D has an MSE equal to 

0.07N in the L_M while his W_M model has MSE = 0.06N; Subject C has the same 

performance in his L_M model. 

 The U_M model does not have the same level of accuracy compared with the L_M 

model.  For instance, subject D has R = 0.88 in his U_M model while the R value in 

the L_M model equals to 0.95. This means the L_M model provides more valuable 

force information than the U_M model. 

 The motions only model M has the least accuracy and none of them are close to the 

best model in W_M which indicates that hand motion is insufficient to learn the 

model.  The model prediction performances from the W model are slightly worse 

than the W_M model (in the worst case, the difference in MSE is 0.05N). This 

indicates that it is essential to have muscle activations to predict the tension force. 

However, hand motion data are also important since they help to improve the model 

performance, even though M alone cannot achieve reasonable accuracy.  

 From the above, the results indicate that the hand motion data are essential to 

building the tension model. This is because the motion data have clear features to 

differentiate the internal winding states. The muscle activations further improve these 

features and lead to a more accurate model. For this winding application, the muscle 

groups from the lower arm have more contributions to the final muscle-tension model. 

Therefore, the sEMG sensor installed on the upper arm can be potentially removed. 
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Table 6-4 Results summary on the influence of the muscle groups. 

 L_M U_M M W_M W 

 MSE(N) R MSE(N) R MSE(N) R MSE(N) R MSE(N) R 

Subject A 0.08 0.840 0.11 0.813 0.12 0.790 0.05 0.880 0.10 0.85 

Subject B 0.04 0.958 0.11 0.929 0.14 0.899 0.04 0.955 0.05 0.93 

Subject C 0.09 0.956 0.15 0.880 0.22 0.820 0.09 0.956 0.08 0.950 

Subject D 0.07 0.950 0.13 0.884 0.19 0.81 0.06 0.960 0.07 0.932 

 

d) Influence of the environment condition 

 Each subject repeated the experiment in two different times as described in the 

experiment setup with a fixed sensor location. The wearable sensors placements are 

assumed unchanged, and the operator is following similar pattern of winding. The 

discussion in this section aims to evaluate the effect of the environment condition 

(mainly when the experiment performed) on the built model. One trial of data is 

selected as testing data in AM, two trials of data are used as testing data in PM. As 

shown in Table 6-5, the MSE and R values from PM are slightly worse than AM in 

some of the cases. For instance, the testing data performed by subject C from trial 1 in 

the PM had MSE = 0.14N while in the AM he had MSE = 0.09N. In subject B and D, 

the MSE and R values are close.  These results indicate that the model built from 

training data in the AM is still valid in the PM. 

Table 6-5 Result summary on the influence of the different experiment time.  AM represents a time 

in the morning.  PM represents a time in the afternoon. 

 AM PM (Trial 1) PM (Trial 2) 

 MSE(N) R MSE(N) R MSE R 

Subject A 0.05 0.880 0.14 0.847 0.20 0.840 

Subject B 0.04 0.955 0.09 0.937 0.04 0.961 

Subject C 0.09 0.956 0.14 0.890 0.09 0.923 

Subject D 0.06 0.960 0.23 0.951 0.24 0.954 

 

6.4.2 Model validation on actual beater winding 

 In this section, each subject is asked to perform the actual beater winding to 

evaluate the model built from the test rig.  As shown in Figure 6-6, the actual drum 

beater was firmly attached to the F/T sensor which is installed on the robot end effector. 

The reason of doing this is that the pose of the beater head can be easily adjusted close 

to the roller winding experiment. The subject was asked to perform a similar pattern of 

the winding by keeping the arm pose steady. The target signal is 𝑓𝐹/𝑇 after 

compositions as mentioned in experiment 4. In order to compare with the targets, the 

predictions need to project onto the actual force according to the linear relationship in 
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equation (6-2).  Two trials with at least 15 windings were used for evaluation purpose, 

and the average MSE and R values of these two trials are shown in Table 6-6: 

 Subject A has the smallest MSE = 0.28 N, while subject D has the larger R = 0.90 

but largest MSE = 0.55N. This means that the shape of the predictions from subject 

C is linearly closer to the actual force signal, but they are less accurate.  One reason 

of this is that the overall shapes of the predictions are slightly shifted upward or 

downward due to the fact that the actual winding process has misalignment with the 

roller winding. In another word, the subject was not exactly following the same 

pattern in the actual winding when he was performing the roller winding. 

Table 6-6 Results summary for the actual beater winding process. 

 MSE(N) R 

Subject A 0.28 0.890 

Subject B 0.31 0.834 

Subject C 0.30 0.91 

Subject D 0.55 0.90 

 

6.4.3 Skills encoding and motion reproduction 

 The yarn tension plays a major role in the winding process. Direct measurement 

of the tension is challenging because it is difficult and impractical to install a sensor to 

dynamically measure the tension in between the small gap between the beater head and 

the hand. In the previous section, the muscle-tension model was built to predict the 

tension from indirect test rig measurements. The model allows the operator to wear the 

sEMG sensors and the Vicon-IMU system to demonstrate the task freely without 

physical obstructions. 

 In this section, the winding skills are encoded by following the proposed 

method in section 6.3.4.  Firstly, the HMM based approach was applied to capture the 

skills and decompose them into states representations.  Since the winding process is 

mainly cyclic motion (as shown in Figure 6-1) which contains two main phases: 

forward and backward winding.  Therefore, at least two states are expected. However, 

since the subject would not repeat exactly the same winding pattern in each cycle, some 

variations in each phase are expected.  Due to the repetitive nature, the number of states 

is limited to five, which was heuristically derived from all the subjects’ executions and 

fixed for all the subjects. 
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 The main concern of this section is to use the probabilistic encoding of the skills 

and reproduce compliant hand motions from the predicted tension profiles. The quality 

of the reproduced trajectories is evaluated by additional testing winding trials from the 

same 4 subjects.  The motions in these trials are considered as the optimal target 

motions. MSE and R are used as performance metrics. 

 To begin with, a benchmark of the control gains kv and kp (as introduced in 

section 6.3.4) were selected to control the reproduction process. These two parameters 

acted as a spring-damper system to smoothen the reproduced trajectories. They helped 

to trade off the control signals between the system dynamics and the system error. 

 From the results in Table 6-7, the values of kv and kp, and the corresponding 

best reproduction results from the motions in the test trials are listed. For conciseness, 

Figure 6-11-Figure 6-14 plot the tension-motion relationship for one complete winding 

cycle by subject A-D. A summary of model performances for all subjects is shown in 

Table 6-7. They indicate that: 

 The optimal control gains were different in between subjects. The same pair of 

parameters does not repeat. This indicates that the reproduction strategy has to be 

changed according to these gains so that they adapt to the different input signals 

from the new testing trials.  

 For subject A, the MSE for yaw, pitch, and roll are 1.14, 0.57 and 0.86 in degree. 

The R are 0.75, 0.77 and 0.87. The reproduction of the tension-motion relations is 

shown in Figure 6-11.  From the results, the new winding data is within the 

modeled Gaussian distributions. The reproduction attempts do not follow exactly 

the target trajectory which means the learner is trying to reproduce the motion in a 

different manner. However, the MSE error and R values indicate that the 

reproductions are following the dynamics of the winding process and respond to 

tension measurements in an adaptive manner. 

 For subject B, the MSE for yaw, pitch, and roll are 11.46, 8.60, and 11.46 in degree. 

The R are 0.870, 0.653 and 0.697. The reproduction of the tension-motion relations 

is shown in Figure 6-12.  From the results, the new winding data is not within the 

modeled Gaussian distributions. The performance of the reproduction attempts are 

not as good as subjects A, but the R value (0.87) in yaw is higher and the MSE 

(0.20) is smaller. This indicates that the training and testing sets have similar yaw 
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angle patterns. But the degraded pitch and roll angle reproductions indicate that the 

testing set contains larger data variations compared with the training set. 

 In subject C, the MSE and R are better than subject B. The reproduction of the 

tension-motion relations is shown in Figure 6-13. The roll angle contains the largest 

error (MSE = 5.73 in degree) in the motions, but the overall reproductions are 

following the target in a good accuracy. The reproductions contain larger error in 

the yaw and pitch an angle, which indicates that the learned model is not capable to 

fully reproduce the motions given the new data inputs. 

 For subject D, from the results in Figure 6-14, the reproductions are following the 

target motions with a small MSE (8.02, 3.44, and 8.02 in degree). The small R value 

(0.54) in the pitch angle indicates that the shape of the reproductions has shifted 

from the target. The reason of this contradictory result is that the pitch variations in 

the hand motions are small. 

Table 6-7 Skills encoding and reproduction results for the beater winding process. 

   Yaw (degree) Pitch (degree) Roll (degree) 

 Kv Kp MSE(degree) R MSE(degree) R MSE(degree) R 

Subject A 1.5 0.1 1.14 0.750 0.57 0.770 0.86 0.870 

Subject B 1.0 0.03 17.19 0.870 8.59 0.653 11.46 0.697 

Subject C 1.5 0.08 2.86 0.940 4.01 0.75 5.73 0.80 

Subject D 1.7 0.1 8.02 0.772 3.44 0.54 8.02 0.72 

 

 In conclusion, the learned models from the different human demonstrations 

show the capability to generate state-action policies to reproduce the compliant 

motions. But the reproduction performances of the individual axis of motions do have 

variations. The better axis of reproductions relates to good demonstration samples 

which generalises the unseen motions. For instance, if the state-action policies built 

from the demonstrations generalise across the training and actual winding processes 

like subject A, the reproductions will be better. One source of uncertainties during 

reproduction is the error of the sEMG-force model. Since tension is considered as an 

important variable in the input signals, the accuracy of the tension estimations will 

degrade the generalisation capability of the training model. Another source of 

variations is the inconsistency of the human demonstrations. This is because even 

though the operator demonstrates a general winding process but he/she cannot 

guarantee that he/she maintains a similar pattern of the winding motions in each cycle. 
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These variations were partially solved by HMM; however, some of the unwanted 

variations are not avoidable during demonstrated trials. This is one of the reasons why 

human executions are somewhat suboptimal which may lead to suboptimal state-action 

policies to the learner. 
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Figure 6-11 Motion reproduction results for subject A 
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Figure 6-12 Motion reproduction results for subject B. 
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Figure 6-13 Motion reproduction results for subject C. 
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Figure 6-14 Motion reproduction results for subject D. 
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6.5 Conclusion 

 In this chapter, the research objective 4 (to verify and evaluate the robustness of 

the proposed framework) has been addressed. The aim is to measure the human 

motions and haptic feedbacks by using the wearable sensors and then extract and model 

the skills to allow motion reproductions in the new situations. The methodology for 

encoding the human skills has been evaluated on the beater winding task. Different 

from PiH task, the winding task is predominantly episodic cyclic movements. The 

states by nature come in sequences and are more complex than the PiH in hand motions 

which the modelling technique has to deal with. Also the primitive sEMG-force model 

needs specific design of the test rig to imitate the simplified winding process. it would 

be impossible to directly measure the yarn tension during demonstrations without 

altering the task executions. 

 To achieve an indirect modelling of sEMG and tension, first, the optimal 

parameters of the filtering strategy and TDNN were addressed by running a benchmark. 

The benchmark was running based on the test rig namely a tension measurement unit. 

The achieved best results for MSE and R are 0.04N and 0.955 respectively.  The results 

of evaluations of the actual beater windings after building the muscle-tension model 

indicate that the built model is capable of estimating the actual winding process. The 

worst MSE is 0.55,N and the best regression coefficient is 0.90. Henceforth, the model 

enables the operator to demonstrate the whole task without using the dedicated F/T 

sensor or TMU once the muscle has been calibrated. The skills are then extracted and 

modeled by using the proposed method in Chapter 4, and the results indicate that a 

better state-action policy (with MSE for yaw, pitch, and roll equal to 1.14, 0.57 and 0.86 

in degree) is achievable based on the current perception of the tension and the hand 

poses if the demonstrations generalise across the training and actual winding processes. 
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 Conclusions and Future Work 

7.1 Summary 

 There is increasing demand for deploying robots in manufacturing industry 

beyond traditional repetitive high volume production. However, the conventional 

programming methods that require expert knowledge to solve a specific problem are 

difficult to reuse in another application and time consuming, which increases the cost of 

developing automation solutions. In modern applications, robots are required to deliver 

more complex skills such as compliant behaviours during human-robot interactions and 

fine motion control in assembly tasks. These skills are currently specific tacit domain 

knowledge of the human operator. This thesis aimed to reduce the robot programming 

efforts significantly by developing a methodology to reliably capture, model and 

transfer the tacit fine/dexterous manufacturing skills from a human demonstrator to the 

robot.  To achieve this research aim four research challenges needed to be overcome.   

 The first challenge involves reliable tracking of human motion with minimal 

interference. To overcome the challenge, a hybrid wearable Vicon and IMU system has 

been developed to overcome the limitations of each system. The proposed system has 

been demonstrated to be able to compensate for the missing markers information and 

unsystematic drift in the IMUs. This work was covered in Chapter 3 of this thesis.   

 The second research challenge is the difficulties in deriving suitable and 

reusable policies after the skills capturing, encoding and generalisation. The control 

policy should be generated with a limited number of demonstrations with potentially 

degraded dataset to suit industrial applications. Thus, the second research objective was 

to build state-action policy models from human demonstrations that relate to manual 

industrial manipulations. This work was described in Chapter 4 and Chapter 6 of this 

thesis, namely for Peg in Hole (PiH) and drum beater winding tasks respectively. 

 The gross motions can be tracked by using the Vicon-IMU system; however, the 

force patterns are also important in most manipulations such as the case studies 

discussed in this thesis. It is often difficult, if not impossible to install a FT sensor in 

situ, to measure the force profile during demonstrations. This leads to the third research 

challenge where the haptic feedback were required to be recorded with the minimal 

interference of the task. The third research challenge was, therefore, to develop a 
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muscle-force model to predict the forces generated from forearm muscle activations 

using wearable sEMG devices. The muscle activations provided useful contact force 

information but were noisy. The signals had to be pre-processed and the effects of 

various factors that were essential to achieving good model predictions were 

investigated. This work was described in Chapter 5 and Chapter 6 of this thesis for the 

PiH and winding tasks respectively. The calibration primitives for muscle-force model 

were built prior the task demonstrations and validated on the actual PiH and winding 

tasks. Once the forces were recorded along with the motion trajectories, the skills 

model could be built.  

 The fourth research challenge related to the evaluation of the motion 

reproductions ability based on the learned state-action policy. To simplify the 

validation process, the motions were reproduced on new testing trials by assuming that 

the human and the robot systems were physically identical. This work was addressed in 

Chapter 5 and Chapter 6 of this thesis.   

7.2 Contributions to knowledge 

 In this section, the main contributions from this research are summarised in 

Table 7-1 (pre-mentioned in Chapter 1.5).   

Table 7-1 A summary of the research objectives, novelties, and achievements. 

Research objectives and 

publications 

Contributions and novelties Achievements 

To develop a wearable 

system that reliably tracks 

human motions. 

Y.C. Zhao, Y.M. Goh, N. 

Lohse, L. Justham, M.R. 

Jackson, “A Robust Hybrid 

VICON and IMU System for 

Tracking Human Forearm 

Motions,” submitted to IEEE 

Transactions on Sensors, 

under review. 

 A quick and automatic data-

driven approach to align the 

IMU and Vicon local frames. 

 A reliable forearm tracking 

system in free space 

movements (the actual 

working volume depends on 

the number of cameras 

available) without drifts and 

occlusion issues by using the 

proposed Vicon-IMU system. 

 Systematically evaluated the 

Vicon system against the CMM, 

and identified a more accurate 

working volume (MSE<0.5mm).  

 Compensated the unsystematic 

error from the IMUs using the 

Vicon system and achieved 

unbiased orientation tracking 

with less than 2˚ accuracy. 

 Overcame the occlusion issue of 

the photometric based Vicon 

system using IMU. 

To develop a muscle-force 

model to predict the forces 

generated from the forearm 

 Design of test rigs to collect 

task-specific contact force 

measurements by using 

 Model predictions (The worst 

model with MSE=11.16 N and 

R=0.979 for the PiH, and 
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muscle activations using 

wearable sEMG devices. 

Y.C. Zhao, A. Al-Yacoub, Y. M. 

Goh, L. Justham, N. Lohse and 

M.R. Jackson, “Surface EMG-

based Force Torque 

Prediction in a Peg-in-hole 

Assembly Context for Human 

Tacit Knowledge 

Interpretation,” submitted to 

IEEE Transactions on 

Systems, Man, and 

Cybernetics, under review. 

sEMG driven models without 

installing the bulky F/T 

sensors during 

demonstrations. 

 A methodology that allows 

the operator to perform task 

demonstrations without 

interference by wearing 

sEMG sensors.  

 The design of test rigs to 

calibrate the sEMG signals to 

predict the contact and 

tension forces in the PiH and 

beater winding operation. 

MSE=0.55N and R=0.90 for the 

winding task) were achieved and 

reported in the primitive 

calibration tasks. A simple 

model structure with multiple 

times delays was essential to 

build the muscle-force relations. 

 Verified the model performance 

by controlling the parameters 

involving the training strategies, 

the experiment time, subjects, 

data dimension reductions and 

the muscle groups. 

 Evaluated the proposed 

methodology in both PiH and 

winding tasks. Good force 

predictions were achieved using 

the selected primitive models, 

with some variabilities observed 

for different subjects and 

factors. 

To build state-action policy 

models from human 

demonstrations that relate 

to industrial manual 

manipulations. 

Y.C. Zhao, A. Al-Yacoub, Y.M. 

Goh, L. Justham, N. Lohse, 

M.R. Jackson, “Human 

Assembly Skill Capture A 

Hidden Markov Model 

Analysis of Force and Torque 

Data in Peg-in-Hole 

Assembly,”  IEEE 

International Conference on 

Systems, Man, and 

Cybernetics (SMC), Budapest, 

2016. 

 Built the skill based GMM 

models for difficult-to-

automate industrial 

manipulations for the robot to 

learn from. 

 The enhanced motion 

reproductions were achieved 

using encoded skills through 

simple probabilistic 

inference. The model is 

flexible to be reprogrammed 

if the skill changes.  

 The probabilistic models have 

been built for both PiH and 

winding tasks. The strategies in 

the skills were encoded by the 

state transition and probability 

distribution models. 

 The generalised trajectories 

have been learned and 

generated across all the 

demonstrations with variations 

for all the subjects. 

 The force based motion 

reproductions were controlled 

by a PD controller and 

evaluated against new 

demonstration trials. 

 A good motion reproductions 

performance was achieved for 

the testing trials within the 
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demonstrated behaviours.  

To verify and evaluate the 

robustness of the proposed 

framework. 

Y.C. Zhao, T. Johnson, Y.M. 

Goh, L. Justham, N. Lohse, 

M.R. Jackson,” A Sensor 

Design and Data Analysis for 

Automatic Drum Beater 

Winding (2014)”, 

International Conference on 

Engineering Design (ICED), 

2014. 

 The framework is repeatable 

and transferrable to a 

different application. 

 Both the sEMG-force modeling 

and the human skills encoding 

and reproductions methods were 

evaluated for the PiH and 

winding tasks. 

 The model was verified against 

a number of selection criteria 

and proven transferrable to 

different applications, with 

identification and evaluation of 

the suitable primitive motions to 

train the models.  

 

 There are limitations in each part of the work to achieve the research objectives. 

Firstly, the Vicon-IMU system is promising in tracking free body movements without 

drifts and occlusions, but due to the limited number of cameras, the operator may be 

invisible from the vision system for a long time. This causes a problem since the IMU 

drifts cannot be compensated in time. Therefore, if long-term usage is of concern, the 

free space movements are actually limited in the working volume specified by the 

number of cameras.  

Secondly, to mitigate the interference of the bulky F/T sensor during the task 

demonstrations, the calibration primitives were designed to simplify the sEMG-force 

model. However, the choice of this test rig needs to reflect the underlying skills of the 

actual manipulations. Therefore, the model is restricted by the specific task and careful 

design of the test rig is required. 

  Thirdly, the state-action policies derived from the human demonstrations reflect 

the individual skill’s model, but the choice of a good trial is currently based on 

heuristics. Similarly, the generalisation of control policy by considering different 

subjects is currently achieved by adding another encoding layer based on the mean 

values from the Gaussian mixture regressions. However, this method is only well suited 

for the demonstrations without too many variations. In reality, this is not always the 

case since the different operator may demonstrate the skills differently. A 

rationalisation step could be introduced to assess which models are more 
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appropriate/optimal by defining the objective function. The case studies discussed in 

this work contain relatively simple trajectories, which reduced the model complexity.  

Fourthly, the evaluations of the proposed methods for both case studies assumed the 

test data were generated from the real robot; however, the robot will have different 

kinematic embodiment. The assumption used in this work was because the focus of the 

thesis is to understand the human skills rather than implementation on the physical 

robot. 

7.3 Future work 

 Much has been accomplished in this very challenging area of skills encoding 

and transferring to reduce the robot programming efforts, and some work remains to 

drive this topic forward. This section presents a number of possible topics arising from 

the research in this thesis. 

7.3.1 Evaluations on the Vicon and IMU system 

 The Vicon system was evaluated using a CMM and the working volume had 

been identified from the results, however, a more systematic approach can be applied 

by plotting the error standard deviations along the diagonal distance. Thus the 

evaluation can be extended to include an error map [47], which is more informative 

than the current approach used for identification of the working volumes. Also the 

effects of lighting and different marker configurations need further discussions. 

 The proposed algorithm for the local frame calibration of the IMU and Vicon 

systems can be extended to other applications which is compatible to solve the AX=XB 

problem such as the robot hand-eye calibration. One of the interesting topics is to 

estimate the transformation from the marker object frame to the robot end effector 

frame. This transformation is usually unknown if the CAD model is unavailable or the 

object tool has been reattached to the end effector. Furthermore, since the robot and the 

Vicon systems establish a close chain, the transformation 𝐻𝑉
𝑅  (global Vicon frame in 

the robot base frame) can be determined accordingly. Due to the measurement and 

estimation uncertainties from both systems, an error map can then be plotted by 

exploring the full working volume. The values in the sub-map can be calculated using 

the MSE by comparing with the whole map. Another topic is to implement the 

anatomical alignment [235] by using the proposed method.  This is particularly useful 

when the wearable sensors are not pre-aligned with the body segment frames. Several 
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standard human body gestures such as T pose are required to be performed by the 

human. Furthermore, the impact of the occlusion time for the proposed hybrid approach 

needs further discussions. 

7.3.2 Generalising the sEMG-force model from multiple primitives 

  The model built in this work was from individual calibration tests (for dominant 

motion identified in the manual task). Different task related primitives can be 

performed by the human operator to better represent the actual task execution. The 

primitive with the best model prediction accuracy was selected to predict forces in the 

actual task. However, this method does not include the rest of the models, which maybe 

correlated with the task to some extent. Therefore, a potential way to improve these 

models is to generate weights to produce better predictive models. By doing this in each 

prediction time step, all the models will generate their current belief of the actual values 

of the contact force. These forces multiplied by the weighting parameters will produce 

the generalised force.   

7.3.3 Learning human impedance behaviour using sEMG 

 When the skills are captured and learned from the demonstrations, the 

impedance behaviour of the human bodies can also be learned using the same data 

samples. One of the interesting topics is to teach the robot the compliant behaviour 

when human is collaborating with another human. A simple task is to lift some load 

from the work floor and deliver it to a target position [236].  Even though the task is 

simple, the impedance behaviour is difficult to transfer to the robot to perform at the 

same level. Part of the behaviour has already encoded in the demonstrations, but extra 

efforts can be done by designing spring-damper like controller. The sEMG signals can 

be directly used to map the desired end effector path alongside with the F/T 

measurements. They can also be indirectly used to indicate the feeling of the human 

operator. This is important since once the robot is operating online with the human, it 

needs to know whether the human is feeling comfortable with the current control policy 

or not. Then the robot can improve its performance by adjusting the control parameters 

by using the sEMG signals. To achieve this, a sEMG driven reward function needs to 

be designed. One candidate metric is to use the normalised intensity of all the muscle 

groups. This feature is invariant to the sensor placement but may not be invariant to 

different operation time. 
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 Another research topic is to learn short-term impedance behaviour during 

manipulation and transfer it to the robot. The idea behind this is that the human body 

segments are not rigid and therefore are suitable for the task with compliance. As a 

starting point, a ball hitting task can be learned by building the control policy (𝑠𝐸𝑀𝐺 →

𝑝𝑜𝑠𝑒 ) based on the model free approach [237] and transfer it to robot controller 

(𝑚𝑜𝑡𝑜𝑟 → 𝑝𝑜𝑠𝑒). 

7.3.4 Generalise the constraints from different demonstrations 

 One of the difficulties of deriving the control policy is the generalisation across 

multiple demonstrations. The demonstrations can be considered as skill sets  for robots 

to learn a generalised control policy from the task specific constraints [196][238]. The 

approach proposed in this work was to use the mean values from the GMR to represent 

the generalised control policy for one subject. Another layer of encoding can be added 

if generalisations from the different subjects are required. This method is promising if 

the sample trajectories are close to each other which is the case in this work, when the 

subjects have been carefully selected and trained. But if the behaviour is too different, 

further research is required. One promising direction is to learn the potential based 

value functions, which represent the multiple objectives in a potential map with 

attractors and repellors. The learned models from the GMM-HMM-based approach can 

be used to generate such map and guide the derivations of the control policies.  

 Apart from the task related constraints, the physical constraints in the robot joint 

space needs to be considered. This is because human is demonstrating in the task space, 

but the robot has kinematic constraints encoded in the Jacobian matrix. Therefore, the 

reproduction needs extra care in sending commands in the robot joint space [204].  A 

pseudoinverse Jacobian method with optimization in the null space [205] is used to 

follow a desired path in Cartesian task space while keeping the motion in joint space as 

close as possible to the demonstrated trajectories.  This method is useful for physically 

implementation of the learned model on the robot, which will be discussed next. 

7.3.5 Implementation on the physical robots 

 This is a natural extension of this work. The skills have been well defined and 

captured from the task domain but in human embodiment. To evaluate the performance 

of the learned policy on the real robot is attractive from both understanding the human 

skills and extending the robot capabilities point of views. Before executions, 
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preparations are required. Firstly, the workspace has to be well defined. The 

transformation from the global Vicon frame to the robot base frame is important since 

the human is operating in the Vicon frames but the robot is required to reproduce the 

trajectories in the robot base frame. After all the frames have been fully defined, the 

robot can start testing the learned policy. It is interesting to test the skill model from the 

different subjects on the robot to evaluate its performance; also, it is appealing to test 

the generalised model across all subjects as well. 

7.3.6 Continuous learning with reinforcement learning 

 Reinforcement learning (RL) is a promising approach to learn complex tasks. 

Although it is not feasible to run large amount of simulations (such as playing the Atari 

games [239] or playing the game of the Go [240]) in the robotic applications, RL has 

been extensively used in the various applications [241].  One critical requirement is 

defining the exploration strategies for the robot. This is important since learning from 

simple trial-and-error from scratch is time-consuming. Also, random exploration is 

often not preferred in the real implementations for safety and space constraints 

considerations. These are undesired for the manufacturing applications. However, by 

learning and defining some task constraints using the human demonstrations will solve 

this problem. On one hand, this can help to reduce the learning time by defining a 

smaller exploration area. On the other hand, the robot behaviour is predictable during 

the learning period. Therefore, the results from this work can be used as an initialisation 

program for a robot to execute continuous learning policy in a more complex 

environment. 

7.3.7 Learning contextual knowledge from a sequence of tasks 

 This is an important extension of this work since the focus was to learn one task 

at a time. In reality, the robot is required to execute a sequence of tasks. For instance, it 

may pick up a workpiece from the table, assemble it to another workpiece and move to 

the next work piece. The decision on which task should be taken can be manually 

coded by the programmer if the sequence is mostly procedural. However, if the 

sequence needs soft decisions and the order of the executions may change dynamically, 

the task level control is desired. The RL based approach is also promising for learning 

such contextual knowledge [242], therefore this is another direction of this work when 

all the skills for the specific tasks have been learned. 
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Appendix A - Motion Reproduction results for PiH 

Experiment 

This Appendix shows the additional comparison results for the motion 

reproductions in chapter 4. Results from subject A, C, D, E and F are summarised in the 

tables below: 

Table A-1 Summarised results for subject A. a) implicit time reproduction b) explicit time 

reproduction 

 

Table A-2 Summarised results for subject C. a) implicit time reproduction b) explicit time 

reproduction 

 

a) 

Trial Kv Kp Yaw (rad) Pitch (rad) Roll (rad) 

MSE(rad) R MSE(rad) R MSE(rad) R 

1 0.3 0.03 0.0032 0.9958 0.0005 0.9977 0.0023 0.7767 

2 0.3 0.1 0.002 0.9964 0.0004 0.9947 0.0007 0.8543 

3 0.7 0.1 0.0005 0.9965 0.0011 0.9819 0.0033 0.6981 

4 0.5 0.1 0.0006 0.9942 0.001 0.9870 0.0037 0.4835 

5 0.3 0.08 0.0006 0.9942 0.001 0.9870 0.0037 0.4835 

All 0.42 0.082 0.0015±0.001 0.9963±0.001 6e-

04±0.001 

0.9905±0.006 0.0024±0.001 0.5954±0.277 

b) 

 

Trial 

Input 

Variable 

Yaw (rad) Pitch (rad) Roll (rad) 

MSE(rad) R MSE(rad) R MSE(rad) R 

1 [t,f] 0.0081 0.9792 0.0010 0.9823 0.0007 0.9106 

2 [t,f] 0.0066 0.9880 0.0015 0.9875 0.0001 0.9778 

3 [t,f] 0.0027 0.9936 0.0007 0.9894 0.0007 0.8396 

4 [t,f] 0.0033 0.9853 0.0019 0.9730 0.0016 0.6771 

5 [t,f] 0.0027 0.9779 0.0018 0.9843 0.0013 0.4033 

All [t,f] 0.0047±0.002 0.9848±0.006 0.0014±0.001 0.9833±0.0064 0.00008±0.001 0.7617±0.2

29 

a) 

Trial Kv Kp Yaw (rad) Pitch (rad) Roll (rad) 

MSE(rad) R MSE(rad) R MSE(rad) R 

1 0.3 0.1 0.0045 0.9959 0.0002 0.9912 0.0029 0.9919 

2 1.7 0.1 0.0032 0.9853 0.0006 0.9859 0.0024 0.9834 

3 0.3 0.1 0.0049 0.9671 0.0060 0.9858 0.0035 0.9716 

4 0.3 0.1 0.0014 0.9885 0.0031 0.9949 0.0023 0.9786 

5 0.7 0.1 0.0018 0.9788 0.0011 0.9854 0.0021 0.9584 

All 0.66 0.1 0.0031±0.001 0.9831±0.010 0.0022±0.002 0.9887±0.004 0.0026±6e-

4 

0.9768±0.012 
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Table A-3 Summarised results for subject D. a) implicit time reproduction b) explicit time 

reproduction 

 

Table A-4 Summarised results for subject E. a) implicit time reproduction b) explicit time 

reproduction 

 

b) 

 

Trial 

Input 

Variable 

Yaw (rad) Pitch (rad) Roll (rad) 

MSE(rad) R MSE(rad) R MSE(rad) R 

1 [t,f] 0.0011 0.9802 0.0013 0.9848 0.0006 0.9919 

2 [t,f] 0.0005 0.9956 0.0006 0.9948 0.0008 0.9905 

3 [t,f] 0.001 0.9821 0.0090 0.9813 0.0041 0.9810 

4 [t,f] 0.0005 0.9914 0.0058 0.9906 0.0004 0.9944 

5 [t,f] 0.0008 0.9847 0.0041 0.9713 0.0011 0.9844 

All [t,f] 0.0001±0.001 0.9868±0.006 0.0042±0.003 0.9846±0.009 0.0014±0.002 0.9885±0.006 

a) 

Trial Kv Kp Yaw (rad) Pitch (rad) Roll (rad) 

MSE(rad) R MSE(rad) R MSE(rad) R 

1 1.5 0.1 0.0002 0.9974 0.0007 0.9961 0.0002 0.9980 

2 0.7 0.1 0.0001 0.9988 0.0009 0.9979 0.0001 0.9988 

3 1.7 0.03 0.0007 0.9927 0.0005 0.9815 0.0024 0.9868 

4 1.7 0.1 0.0022 0.9924 0.0019 0.9912 0.0003 0.9892 

5 0.3 0.03 0.0004 0.9964 0.0011 0.9985 0.0001 0.9962 

All 1.18 0.072 7e-4±8e-4 0.9955±0.0029 0.001±5e-

4 

0.993±0.0071 6e-

4±0.001 

0.9938±0.0054 

b) 

 

Trial 

Input 

Variable 

Yaw (rad) Pitch (rad) Roll (rad) 

MSE(rad) R MSE(rad) R MSE(rad) R 

1 [t,f] 0.0002 0.9966 0.0007 0.9903 0.0004 0.9850 

2 [t,f] 0.0004 0.9976 0.0007 0.9957 0.0004 0.9945 

3 [t,f] 0.0049 0.9828 0.0015 0.9604 0.0006 0.9858 

4 [t,f] 0.0006 0.9988 0.0027 0.9960 0.0001 0.9945 

5 [t,f] 0.0007 0.9950 0.0025 0.9875 0.0017 0.9697 

All [t,f] 0.0014±0.002 0.9941±0.0065 0.0016±9e-

4 

0.9860±0.0148 6e-4±6e-4 0.9859±0.0102 

a) 

Trial Kv Kp Yaw (rad) Pitch (rad) Roll (rad) 

MSE(rad) R MSE(rad) R MSE(rad) R 

1 0.3 0.1 0.0008 0.9504 0.0067 0.9766 0.0048 0.9474 

2 0.3 0.1 0.0007 0.9695 0.0111 0.9307 0.0009 0.9695 

3 0.3 0.06 0.0002 0.9901 0.0004 0.9978 0.0003 0.9537 

4 0.5 0.1 0.0043 0.9168 0.0276 0.8435 0.0015 0.9788 

5 1.7 0.1 0.0001 0.9966 0.0003 0.9985 0.0016 0.9345 

All 0.62 0.092 0.0012±0.002 0.9647±0.032 0.0092±0.011 0.9494±0.065 0.0018±0.002 0.956±0.

017 
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Table A-5 Summarised results for subject F. a) implicit time reproduction b) explicit time 

reproduction 

 

 

 

 

 

 

 

b) 

 

Trial 

Input 

Variable 

Yaw (rad) Pitch (rad) Roll (rad) 

MSE(rad) R MSE(rad) R MSE(rad) R 

1 [t,f] 0.0011 0.8716 0.0026 0.9631 0.0072 0.7554 

2 [t,f] 0.0002 0.9881 0.0006 0.9933 0.001 0.9223 

3 [t,f] 0.0004 0.9884 0.0006 0.9916 0.0006 0.9605 

4 [t,f] 0.0014 0.919 0.0084 0.9195 0.0008 0.8781 

5 [t,f] 0.0004 0.9944 0.0008 0.9893 0.0008 0.9477 

All [t,f] 6e-4±4e-4 0.9523±0.0547 0.0026±0.0033 0.9714±0.0315 0.0021±0.0028 0.8928±0.

083 

a) 

Trial Kv Kp Yaw (rad) Pitch (rad) Roll (rad) 

MSE(rad) R MSE(rad) R MSE(rad) R 

1 0.3 0.1 0.0005 0.9902 0.0001 0.9830 0.0005 0.9866 

2 0.7 0.1 0.0002 0.9987 0.0005 0.9540 0.0041 0.8511 

3 0.3 0.1 0.0013 0.9974 0.0002 0.9946 0.0003 0.9921 

4 0.3 0.1 0.0004 0.9962 0.0001 0.9939 0.0001 0.9936 

5 1.7 0.1 0.002 0.9870 0.0007 0.9739 0.0018 0.9260 

All 0.62 0.092 8e-

4±0.003 

0.9939±0.0323 3e-

4±0.021 

0.9799±0.0653 0.0014±0.0

027 

0.9499±0.015

6 

b) 

 

Trial 

Input 

Variable 

Yaw (rad) Pitch (rad) Roll (rad) 

MSE(rad) R MSE(rad) R MSE(rad) R 

1 [t,f] 0.0019 0.9857 0.0001 0.9766 0.0009 0.9670 

2 [t,f] 0.0028 0.9751 0.0002 0.9773 0.0008 0.9631 

3 [t,f] 0.002 0.9897 0.0004 0.9914 0.0009 0.9759 

4 [t,f] 0.0025 0.9855 0.0003 0.9768 0.0016 0.9490 

5 [t,f] 0.0009 0.9769 0.0005 0.9838 0.0004 0.9783 

All [t,f] 0.002±7e-

4 

0.9826±0.0063 3e-4±1e-4 0.9812±0.0065 9e-4±4e-4 0.9667±0.0117 
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Appendix B - Matlab Program (Human skills encoding using 

GMM-HMM approach) 

%%% Time based HMM GMR encoding demo for chapter 4 -- force without 

time 
close all; 
clear all; 
clc; 
%% parameters 
model = []; 
model.nbStates = 5; %Number of components in the GMM 
model.nbVarPos = 3; %Dimension of position data (here: x1,x2) 
model.nbVarOrient = 0; 
model.nbVarforce = 1; %Dimension of force data (here: f1,f2) 
model.nbDeriv = 2; %Number of static&dynamic features (D=2 for [x,dx], 

D=3 for [x,dx,ddx], etc.) 
% model.nbVar = model.nbVarPos * 

model.nbDeriv+model.nbVarforce; %Dimension of state vector 
model.dt = 1; %Time step (without rescaling, large values such as 1 

has the advantage of creating clusers based on position information) 
nbSamples = 5; %Number of demonstrations 
nbData = 200; %Number of datapoints in a trajectory 
model.dt = 0.1; %Time step 
model.sub_name = 'subject B'; 
time_flag = 1; 
%% load marked data in 

curser %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
load('curser_B.mat'); 
[input,target] = 

prepare_Data_PiH('sEMG_FT_PiH_subjectB_ft_message.csv','','','','sEMG_

FT_PiH_subjectB_orange_imu.csv',1); 
%% optional smooth the input 

signal %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% for i = 1:3 
% input_smoothed(i,:) = 

smooth([1:length(input)]',input(i,:),0.05,'rloess'); 
% end 
input_smoothed = input; 
data = [PCA_plus(target(:,:),0,1);input_smoothed]; 
%% normalization or scaling 

data %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
normalization_flag = 0; 
%%  training data prepare from curser 

selection %%%%%%%%%%%%%%%%%%%%%%%%%%% 
[tmp_data]=training_data_prepare_PiH(data,pih_curser_B(1:10),normaliza

tion_flag); 
%% resampling 

data %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Data = []; 
s = []; 
Data_hmm = []; 
for n = 1:nbSamples 
    s(n).Data = spline(1:size(tmp_data.data_cell{n},2), 

tmp_data.data_cell{n}, 

linspace(1,size(tmp_data.data_cell{n},2),nbData)); %Resampling 
    s(n).Data = [s(n).Data; 

gradient(s(n).Data(2:end,:))/model.dt]; %Velocity computation 
    s(n).nbData = size(s(n).Data,2); 
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    Data = [Data s(n).Data]; 
    Data_hmm(:,:,n) = s(n).Data; 
end 
%%%%% GMM training and generalization across 

demons %%%%%%%%%%%%%%%%%%%%%% 
loglik = []; 
for m = 1:nbSamples 
    idx = [1:nbData*(m-1)+nbData]; 
    model = init_GMM_kbins(Data(:,idx), model,m); 
    model.Trans = zeros(model.nbStates); 
    for i=1:model.nbStates-1 
        model.Trans(i,i) = 1 - (model.nbStates / nbData); 
        model.Trans(i,i+1) = model.nbStates / nbData; 
    end 
    model.Trans(model.nbStates,model.nbStates) = 1.0; 
    model.StatesPriors = zeros(model.nbStates,1); 
    model.StatesPriors(1) = 1; 
    %Parameters refinement with EM 
    model = EM_HMM(s(1:m), model); 
    for j = 1:nbSamples 
        [F,obslik] = mhmm_logprob({s(j).Data},  model.StatesPriors,  

model.Trans, model.Mu, model.Sigma); 
        loglik(m,j) = F; 
    end 
end 
figure;bar3(loglik'); 
%% Nonlinear force profile retrieval 
currF = s(2).Data(1,:); 
currPos = s(2).Data(2:4,1); %Current position (initialization) 
currVel = [0; 0;0]; %Current velocity (initialization) 
currAcc = [0; 0;0]; %Current acceleration (initialization) 
kP_max = 10; 
kv = 1/model.dt; 
%% Reproduction loop 
[reprData.mu,reprData.sigma] = 

impedence_control(currPos,currVel,currF,kP_max,kv,model); 
%%%%% plot traning data results  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
figure('position',[10,10,1300,500]); 
%% Plot GMM 
subplot(1,3,1); hold on; axis off; title('GMM'); 
plot(Data(2,:),Data(3,:),'.','markersize',8,'color',[.5 .5 .5]); 
plotGMM(model.Mu(2:3,:), model.Sigma(2:3,2:3,:), [.8 0 0],.5); 
set(gca,'Xtick',[]); set(gca,'Ytick',[]); 
subplot(1,3,2); hold on; axis off; title('GMM'); 
plot(Data(1,:),Data(2,:),'.','markersize',8,'color',[.5 .5 .5]); 
plotGMM(model.Mu(1:2,:), model.Sigma(1:2,1:2,:), [.8 0 0],.5); 
set(gca,'Xtick',[]); set(gca,'Ytick',[]); 
%% Plot GMR 
subplot(1,3,3); hold on; axis off; title('GMR'); 
plot(Data(2,:),Data(3,:),'.','markersize',8,'color',[.5 .5 .5]); 
plotGMM(reprData.mu(1:2,:), reprData.sigma(1:2,1:2,:), [0 .8 0], .1); 
plot(reprData.mu(1,:),reprData.mu(2,:),'-','linewidth',2,'color',[0 .4 

0]); 
set(gca,'Xtick',[]); set(gca,'Ytick',[]); 
%% reproduction on new 

trajectories %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
[GMM_data_new]=training_data_prepare_PiH(data,pih_curser_B(11:20),norm

alization_flag); 
nbSamples = 5; 
Data_new = []; 
s_new = []; 
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Data_hmm_new = []; 
for n = 1:nbSamples 
    s_new(n).Data = spline(1:size(GMM_data_new.data_cell{n},2), 

GMM_data_new.data_cell{n}, 

linspace(1,size(GMM_data_new.data_cell{n},2),nbData)); %Resampling 
    s_new(n).Data = [s_new(n).Data; 

gradient(s_new(n).Data(2:end,:))/model.dt]; %Velocity computation 
    s_new(n).nbData = size(s_new(n).Data,2); 
    Data_new = [Data_new s_new(n).Data]; 
    Data_hmm_new(:,:,n) = s_new(n).Data; 
end 
for i = 1:nbSamples 
    currF = s_new(i).Data(1,:); 
    currPos = s_new(i).Data(2:4,1); %Current position (initialization) 
    currVel = [0; 0;0]; %Current velocity (initialization) 
    currAcc = [0; 0;0]; %Current acceleration (initialization) 
    [reprData_new.mu(:,:,i),reprData_new.sigma(:,:,:,i)] = 

impedence_control(currPos,currVel,currF,kP_max,kv,model); 
end 
%% generate attractor path from learned GMM 

plotregression %%%%%%%%%%%%%%%% 
colorlist = [[0 0 0];[1 0 1];[0 1 1];[1,0,0];[0 0 1]]; 
for i = 1:nbSamples 
    figure; 
    for kk =1:3 
        h2 = []; 
        subplot(3,1,kk);hold on 
        %     xlabel('Time(s)','fontsize',16); 

ylabel(y_label{i},'fontsize',16); 
        p1 = plot(s_new(i).Data([1],:),reprData_new.mu([kk],:,i), '--

','LineWidth', 2, 'color', [colorlist(1,:)]); 
        p2 = plot(s_new(i).Data([1],:),s_new(i).Data([kk+1],:), '-

','LineWidth', 2, 'color', [colorlist(2,:)]); 
        h2 = [h2,p1,p2]; 
        legend([p1,p2],'Reproduction','Target','Location','NorthEast'); 
        plotGMM(model.Mu([1,kk+1],:), model.Sigma([1,kk+1],[1,kk+1],:), 

[.8 0.0 0],0.4); 
        ax = gca; 
        ax.XLabel.FontName = 'Times New Roman'; 
        ax.XLabel.FontWeight = 'bold'; 
        ax.XLabel.FontSize = 16; 
        ax.XAxis.FontWeight = 'bold'; 
        ax.XAxis.FontName = 'Times New Roman'; 
        ax.YLabel.FontName = 'Times New Roman'; 
        ax.YLabel.FontWeight = 'bold'; 
        ax.YLabel.FontSize = 16; 
        ax.YAxis.FontWeight = 'bold'; 
        ax.YAxis.FontName = 'Times New Roman'; 
        set(gca,'FontSize',12,'FontName','Times New 

Roman','FontWeight','bold'); 
        axis tight; 
    end 
    if i==1 
        title(['Skills encoding for', 

model.sub_name],'FontSize',16,'FontName','Times New 

Roman','FontWeight','bold') 
    end 
end 
figure; 
p1 = plot(s_new(1).Data([1],:),'-','LineWidth', 2, 'color', 

[colorlist(1,:)]);hold on 
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p2 = plot(s_new(2).Data([1],:),'--','LineWidth', 2, 'color', 

[colorlist(2,:)]); 
p3 = plot(s_new(3).Data([1],:),'.','LineWidth', 2, 'color', 

[colorlist(3,:)]); 
p4 = plot(s_new(4).Data([1],:),':','LineWidth', 2, 'color', 

[colorlist(4,:)]); 
p5 = plot(s_new(5).Data([1],:),'-.','LineWidth', 2, 'color', 

[colorlist(5,:)]); 
legend([p1,p2,p3],'Force 1','Force 2','Force 

3','Location','NorthEast'); 

  
end 

  
function [reprData,expSigma] = 

impedence_control(currPos,currVel,currF,kp_max,kv,model) 
%% Reproduction loop 
nbVarOut = 3; 
diagRegularizationFactor = 1E-8; %Optional regularization term 
expSigma = zeros(nbVarOut,nbVarOut,200); 
for t=1:200 
    %% Keep trace of the motion 
    reprData(1:3,t) = currPos; 
    reprData(4:6,t) = currVel; 
    %% Compute the influence of each Gaussian 
    for j=1:model.nbStates 
        B(j,t) = gaussPDF([currF(t);currPos], model.Mu(1:4,j), 

model.Sigma(1:4,1:4,j)); 
    end 
    if t ==1 
        h(:,1) = model.StatesPriors(:).*B(:,t); 
        [h(:,1)] = normalise(h(:,t)); 
    else 
        m = model.Trans' * h(:,t-1); 
        h(:,t) = m(:) .* B(:,t); 
        [h(:,t)] = normalise(h(:,t)); 
    end 
    %% Compute the desired position and desired velocity through GMR 
    targetPos=[0;0;0]; targetVel=[0;0;0]; 
    for j=1:model.nbStates 
        MuTmp_pos(:,j)=(model.Mu(2:4,j) + ... 
            

model.Sigma(2:4,[1,5:7],j)*inv(model.Sigma([1,5:7],[1,5:7],j)) * 

([currF(t);currVel]-model.Mu([1,5:7],j))); 
        targetPos = targetPos + h(j,t) .* MuTmp_pos(:,j); 
        targetVel = targetVel + h(j,t) .* (model.Mu(5:7,j) + ... 
            model.Sigma(5:7,[1:4],j)*inv(model.Sigma([1:4],[1:4],j)) * 

([currF(t);currPos]-model.Mu([1:4],j))); 
    end 
    pos_target(:,t) = targetPos; 
    vel_target(:,t) = targetVel; 
    for i=1:model.nbStates 
        SigmaTmp = model.Sigma(2:4,2:4,i) - 

model.Sigma(2:4,[1,5:7],i)/model.Sigma([1,5:7],[1,5:7],i) * 

model.Sigma([1,5:7],2:4,i); 
        expSigma(:,:,t) = expSigma(:,:,t) + h(i,t) * (SigmaTmp + 

MuTmp_pos(:,i)*MuTmp_pos(:,i)'); 
    end 
    expSigma(:,:,t) = expSigma(:,:,t) - targetPos*targetPos' + 

eye(nbVarOut) * diagRegularizationFactor; 
    %% Acceleration defined by mass-spring-damper system (impedance 

controller) 
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    for j=1:model.nbStates 
        LL_max(j) = gaussPDF([model.Mu(1,j);model.Mu(2:4,j)], 

model.Mu(1:4,j), model.Sigma(1:4,1:4,j)); 
        LL_min(j) = gaussPDF([currF(t);currPos], model.Mu(1:4,j), 

model.Sigma(1:4,1:4,j)); 
    end 
    LL_max = log(LL_max); 
    LL_min_ = log(LL_min); 
    ind = []; 
    for k = 1:length(LL_min_) 
        if LL_min_(k)==-Inf 
            ind = [ind,k]; 
        end 
    end 
    LL_min_(ind) = []; 
    kp(:,t) = kp_max*(max(LL_max)-log(sum(LL_min)))/(max(LL_max)-

min(LL_min_)); 
    currAcc = (targetVel-currVel).*kv + (targetPos-currPos).*kp(:,t); 
    %%Update velocity 
    currVel = currVel + model.dt*currAcc; 
    %% Update position 
    currPos = currPos + model.dt*currVel; 
end 
end
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Appendix C – Complete Human Factor Analysis Results for Beater Winding 

This Appendix provides a complete human factor analysis (Task decomposition) for the beater winding process: 
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Figure C-1 Full task decomposition analysis for beater winding process 
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Appendix D – Sensor Calibration Table for Tension 

Measurement Unit 

This Appendix provides the experiment records for the Tension Measurement Unit 

calibrations. Full Wheatstone bridge is used to generate load cell readings. 

Table D-1 Sensor calibration table for TMU 

Spring load (N) 

Sensor reading 

Mean Std 1 2 3 4 5 

0 8389938 8389871 8389951 8389931 8389904 8389919 31.85122 

0.5 8393124 8392797 8393487 8393084 8393417 8393182 278.1379 

1 8395314 8395177 8395406 8395770 8395564 8395446 229.2841 

1.5 8397983 8397274 8397535 8397385 8397843 8397604 300.9917 

2 8399632 8399908 8399424 8399226 8399940 8399626 307.7986 

2.5 8401408 8401885 8401478 8401357 8401419 8401509 214.3252 

3 8404504 8404243 8404342 8404632 8403862 8404317 294.669 

3.5 8407065 8406766 8407271 8406830 8406899 8406966 203.5994 

4 8408386 8408534 8408927 8409111 8409321 8408856 390.7924 

4.5 8411258 8411667 8411035 8411256 8411461 8411335 238.8876 

5 8414536 8414669 8414938 8414865 8414863 8414774 166.4082 

5.5 8416908 8416948 8417600 8417091 8417630 8417235 353.2999 

6 8419566 8419942 8419830 8420625 8419986 8419990 390.8071 

6.5 8422385 8422175 8422502 8421920 8422476 8422292 244.273 

7 8424581 8424447 8423921 8424521 8424808 8424456 327.8945 

7.5 8426205 8426632 8426388 8426255 8426475 8426391 171.9288 

8 8428433 8428192 8428087 8428770 8428288 8428354 265.1349 

8.5 8430672 8430879 8430369 8430035 8430404 8430472 320.878 

9 8432784 8433050 8433022 8433175 8432649 8432936 213.8843 

9.5 8434805 8435385 8435636 8435075 8435344 8435249 318.081 

10 8436733 8436488 8436389 8436424 8437122 8436631 305.5106 

10.5 8440799 8439715 8440133 8440052 8440132 8440166 393.4879 

11 8443272 8442992 8442542 8443340 8443489 8443127 373.4595 

11.5 8444489 8444485 8444731 8444716 8444415 8444567 145.7813 

12 8446441 8446015 8446091 8446847 8446380 8446355 329.917 

12.5 8449047 8449060 8449076 8449183 8449025 8449078 61.4874 

13 8451067 8451362 8451851 8451544 8451492 8451463 285.0275 

The mean values are plotted in Figure D- (y-axis is scaled sensor readings). 

From the results, the raw data contains some noise but follows a linear trend. Therefore, 

a linear curve is fitted, and it indicates a strong linear relationship between the sensor 

reading and the tension. 



230 

 

 

Figure D-1 Sensor reading plots against reference tension. 


