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Abstract

The work presented in this thesis focuses on the research area of human-machine
interaction, in particular the interaction between people and robots. If robots are to
be introduced into the human world as assistants to aid a person in the completion of
a manual task two key problems of todays robots must be solved: The human-robot
interface must be intuitive to use and the safety of the user with respect to injuries
inflicted by collisions with the robot must be guaranteed. Accordingly this research
consists of two parts, the development of an intuitive visual human-machine interface
and the formulation and implementation of a control strategy for robot manipulators
which provides quantitative safety guarantees for the user.

The visual interface consists of a real-time visual eye gaze direction and facial
gesture recognition system. These functionalities are based on a visual 3D head pose
tracking system which requires only a monocular camera view and is completely
passive. The system tracks natural facial features such as the eye brows and the
mouth. Based on the image positions of the facial features the 3D head pose is
determined. Robust feature tracking and 3D head pose estimation is achieved by
employing probabilistic algorithms to integrate the correlation results of the vision
hardware with the geometric constraints, to track the changes in the appearance of
the facial features and to detect tracking failures.

The eye gaze tracking module uses the results of the 3D head pose estimation and
derives the eye gaze direction from the 3D model of the head which includes the eye
balls and the detection of the iris in the image. The gaze direction in combination
with the 3D head pose allows the detection of the eye gaze point of the person.
The facial gesture recognition detects characteristic motion patterns in the output
of the face tracking system. It allows the robust detection of motion gestures such
as nodding and shaking the head.

Safety guarantees for the user of a assistant robot are of paramount importance.
The proposed control scheme for robot manipulators restricts the torque commands
of a position control algorithm to values that comply to preset safety restrictions.
These safety restrictions limit the potential impact force of the robot in the case of
collision with a person. Such accidental collisions can occur with any part of the
robot and therefore the impact force not only of the robot’s hand but of all surfaces

is controlled by the scheme.

The integration of the two subsystems visual interface and safely controlled robot
allows the safe and intuitive interaction between a person and the robot. As an
example application the system is programmed to retrieve gaze-selected objects from
a table and to hand them over to the user on demand. All actions of the robot are
controlled by gestures.
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Naming Conventions

Throughout the thesis, I use a uniform naming convention for mathematical
symbols. Small Roman letters (for example. a, b, c) denote scalar values, bold small
letters (for example. a,b,c) are used for vectors, and capital letters (for example.
A, B, C) are used for Matrices. Greek letters are used for variable notations, which
may not be consistent with other notations in other areas. In general, small Greek
letters (for example 0, 7) are used for scalars, capital Greek letters (for example.
©,1I) for vectors and capital roman letters for matrices. In general, the dimension

of every variable is denoted when it is introduced (for example. © € IR?).
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Chapter 1

Introduction

Since the beginning of electronic computers in the early 1950s, the interaction be-
tween computers and their users has grown considerably. The first digital computers
were programmed by punchcards. Users had to wait for hours to get the output of
their program which would allow them to modify and debug their program. The
invention of the von Neumann machine architecture combined with the progress in
semi-conductor circuits improved the program execution process so programs could
be immediately run by the user and their results could be examined immediately.
Today, computer users have a set of applications accessible through graphical user
interfaces that they can use to provide particular services such as word processing
or spreadsheet calculations.

1.1 The interfaces of the future

Generally, ease of the interaction with computers has always been associated with
a reduction of the abstraction required by the user to obtain desired information or
results. In essence, people wish to describe tasks to the computer using an efficient
interaction mode which is intuitive and requires the minimum of learning. These
ideas have led to today’s graphical user interfaces (GUIs) in which the technical
details are hidden from the user by symbols and procedures whose meanings are
intuitively understandable, or at least easy to learn. The goal of human-machine
interfaces are computer systems that allow the user to interact in completely intuitive
ways.

1.1.1 Natural interaction

The most natural and intuitive form of interaction for people is the interaction with
other people. It appears sensible to predict that future generations of computers
and computerised machinery will allow the user to interact with the computer not
only with keyboard and mouse but in similar ways as people interact with one and

1
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another. Users could simply tell a computer what they want it to write, to display,
to change in a document, which information to retrieve or what commands to send.

This vision of natural interaction with computers can be found in various flavours
in many science fiction environments, for example in Arthur C. Clarke’s “2001: A
Space Odyssey” and in Gene Roddenberry’s “Star Trek”, both published in 1964. In
particular the robots of the future, as they are the most articulated and life-like of
all computerised machines, are imagined by many people to be able to interact with
a people in natural ways, for example in Isaac Asimov’s “I, Robot” and countless
others. Although this is only fiction, it indicates that people believe that a natural,
intuitive interaction is the optimal form of communication with machines.

1.1.2 Interaction with machines

A development that started with the advent of cheap microcomputers is the evolution
of devices and machines controlled by computers. This includes not only industrial
manufacturing machinery, but also various kinds of household appliances such as
dishwashers, washing machines, refrigerators and microwaves. Also motor vehicles
have become increasingly computerised. Computer assisted car navigation is now a
standard component in motor vehicles, and automobile manufacturers are developing
advanced computer systems for visual lane tracking [Kosecka et al. 1998] [Lee et al.
1998}, collision warning and visual systems to automatically read speed limit signs
on the side of the road [Dickmanns 1999}, to detect driver fatigue [Heinzmann and
Zelinsky 1997]. Motor vehicles are consumer products with huge market volumes
which allow the development of technology products using cutting edge research
results.

Also, as computer systems become cheaper over time it will become economically
viable to include more sophisticated computer systems in various consumer products
such as interactive TV sets that also provide access to the Internet, multi-player
games and other interactive datacast contents. As more consumer products become
computerised with increasing levels of functionality, the technology will become more
complicated to use. The question of how people should interact with such systems
will arise. The first off-the-shelf solutions to network private homes and to control
virtually any computerised appliance are pushing into the market. A speaker of SUN
Microsystems which actively pursues this market has said “One of the challenges in
the networked home is to keep things simple for the consumer”!. Products of this kind
will be technically and economically feasible in the near future but the appropriate
human-machine interface technology is yet to be developed.

'http://www.java.sun.com/features/2000/01/homegateway.html
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1.1.3 Communication channels

The development of natural interaction systems for computers and computer con-
trolled machinery depends on improvements in two key areas, the extension of the
available communication channels and the inclusion of implicit information in the
interaction. People use bilateral known contexts in their conversations to make the
exchange of the new information more efficient. For example in a conversation about
a particular car a person may use the term ’the radiator’ and the conversation partner
will assume that this refers to the radiator of this particular car. However, today’s
computers are nescient to anything other than the most basic context information.

Presently, the main communication channels between a user and a computer are
the mouse and the keyboard. In some applications touch-screens are being used
to replace the mouse. Speech recognition for word processing applications is now
available?, but the market share of speech recognition systems is still small.

The dominant communication channel between the computer and the user is the
computer screen. It presents all information for the user in form of text, images,
graphs or video. Limited information is provided by sound in today’s computer
systems. Force feedback systems in input devices have been used in telerobotics for
a considerable time and recently have become available as haptic interaction devices
for virtual worlds®.

To allow natural interaction computers must be able to replicate the same com-
munication channels that people use between one and another. For many applications
natural speech recognition is the major communication channel between the user and
the computer. Besides speech, gestures are an important communication channel for
humans. For human-machine interaction deictic gestures (pointing) are of the high-
est interest. Deictic gestures refer to an entity in a given context. People use two
different modes for pointing, arm/hand/finger and eye gaze. Arm/hand/finger point-
ing is explicit and occurs quite deliberately while a person’s gaze fixates on an area
or object of current interest. Depending on the scale of the environment one or the
other mode can be preferable. Gaze fixation can be favourable in close-up/desktop
situations, however, for larger scale environments, such as controlling a crane on a
construction site, arm/hand/finger pointing is the preferred communication channel.

1.1.4 Physical interaction

Another mode of interaction which is particularly important for human-robot inter-
action is physical interaction. The user of a robot should be able to guide or stop
a robot manipulator by simply pulling or pushing the robot. This ability can be
important in teaching a robot what to do, or what not to do. There are many other

2For example ViaVoice http://www.software.ibm.com/speech/index.html and Naturally
Speaking http://www.dragonsystems.com.
3See for example Sensable Technologies http://www.sensable. com.
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situations where people use physical interaction when completing a task, and people
would expect a robot to be able to understand the same sorts of physical interaction
patterns.

Among those devices that may become feasible in the mid-term future are robots
that work together with humans. Such robots could assist a person to perform a
particular task or complete subtasks autonomously [Khatib 1999].

1.1.5 Traditional approaches

Robotics research in the past 30 years has been polarised into two basic philosophies
in terms of the autonomy of robots. Although both directions have been driven
by the idea to extend the application areas of robots beyond repetitive tasks, their
approaches to reach this goal have been quite different. While most academic re-
searchers have focused on the development of fully autonomous robots that could
perform variable tasks without human intervention, the industry oriented researchers
devised telerobotic systems which require an operator to initiate each and every ac-
tion of the robot from a remote control post.

Teleoperated robots are used for hazardous tasks in nuclear facilities [Perret 1998],
servicing of live power line [Penin et al. 1998], fire fighting [Schraft et al. 1999],
bomb disposal and in mines after accidents and in inaccessible places such as in pipe
inspection applications?, deep sea® and Mars exploration®.

Despite the initial high hopes, autonomous systems have never really left the
research labs and have not made their way into real world applications. Deriving
sensible actions from the available sensor information in low-structured environments
has proved to be a much harder task than was anticipated a few decades ago. In
the area of mobile robots limited success has been achieved. Today autonomous
mobile robots are used for meal distribution on hospitals [Engelberger 1989], for
floor cleaning tasks in airports and train stations, for in-house mail delivery in offices
[Schweitzer et al. 1998] and luggage transportation in hotels [Graf and Weckesser
1998]. The autonomy of robot manipulators dispatched into real-world applications
appears to be limited to making small adjustments in the location of welding seams
in arc welding applications [Barborak et al. 1999] [Sicard and Levine 1989].

This situation has lead to the idea of teams consisting of a humans and robots
working cooperatively on the same task. In this scenario, a person provides the
sensory and the reasoning capabilities while the robot assistant provides precision,
strength and endurance. Various names for this kind of human-robot cooperation
systems have emerged including human-friendly robots, personal robots, assistant
robots and symbiotic robots.

“For example see http://www.roboprobe.com/
SFor example see http://www.brooke-ocean.com/ and http://www.makai.com/
5For example see NASA /JPL website at http://mpfwww. jpl.nasa.gov/MPF/index.html
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1.1.6 Humanoid robots

Closely related to the idea of human-friendly robots is the development of humanoid
robots. Although the idea of humanoid robots is not new, the interest in this topic
sharply increased in 1997 after the motor vehicle manufacturer Honda presented the
results of 10 years of confidential R&D, the humanoid robot P3. The P3 humanoid
walks on uneven ground, climbs stairs, pushes a trolley and steps back when it is
being pushed [Hirai et al. 1998]. The predominant motivation of giving a robot
an anthropomorphic shape is that the human form is the most efficient shape for
operation in environments designed for humans, and therefore the robot must have
the ability to interact with people. Honda’s commitment to develop the P3 and its
successors shows that Honda anticipates that humanoid and human-friendly robots
could be technically feasible and that they have a strong market potential. What
is desirable for household appliances is absolutely crucial for human-friendly robots:
An interface that allows people to interact with this technology in a natural and
intuitive way.

1.1.7 Safety issues

The transition from the control of physically passive computers and appliances to
dynamic interaction with a robot brings up another issue. As mentioned previously,
human-friendly robots will require the ability to physically interact with persons for
a variety of tasks. The concept of humans and robots sharing the same workspace is
orthogonal to the current workplace philosophy. Presently we protect humans from
robots by isolating robots in work cells that automatically shut down if a person
enters. The concept of humans and robots sharing workspaces requires a radical
redefinition of the control strategies that are used to guide today’s robots.

The controllers of industrial robots are designed to provide high stiffness and
high path tracking accuracy while moving at high speeds”. Even though such char-
acteristics would also be desirable for a human-friendly robot, other characteristics
are much more important. The highest priority in the control of any kind of human-
friendly robot is to prevent any of the robot’s actions causing any harm to people.
All executable tasks of a robot must be subject to this restriction. This logic was
captured by Isaac Asimov in the first law of his famous & Laws of Robotics in 1960
(see Appendix A).

Stiffness and tracking accuracy at high speeds are characteristics that are con-
tradictory to the goal of not harming a person under any circumstances. These
traditional goals of robot control systems must be abandoned as the primary goals
and a new philosophy for the control of such systems is required which is compatible
with the safety requirements for human-friendly robots. The physical danger posed

"Examples for such systems can be found on all websites of robot manufactures, for example
http://www.abb.com or http://www.kuka.com.
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by autonomous motion of the robot must be addressed in such a philosophy. So-
lutions that expand on the idea of physically making it impossible for the robot to
harm a person by building robots that are light weight, weak and flexible can render
the robot useless for most tasks. Therefore, the second goal of such a philosophy
must be to realise robotic systems that still have the ability to perform real tasks.
The implementation of a control system for a human-friendly robot must achieve
both goals otherwise the robot would be either dangerous or useless. Only then
people will be comfortable to work with such systems, and manufacturers might be
willing to produce themS8.

Natural human-computer interfaces and a control philosophy that can guarantee
the safety of humans are the technical prerequisites for the development of human-
friendly robots. This thesis is directed at making a contribution in both these areas.

1.2 Research objectives

The goal of this thesis is to explore new ways of human-robot interaction which
could be desirable and useful. The ultimate goal of human-machine interfaces is to
allow a person to interact with machines in the most intuitive, natural and efficient
way possible. This requires robots to use human communication channels to allow a
person to use the robot with a minimum of training.

An inevitable side effect of this development is that machines become more an-
thropomorphic. Even without a humanoid shape a machine could appear to be
anthropomorphic simply by being able to communicate with a person in a human-
like way. However, the aim of this work is not to create human-like machines. As
a matter of fact I do not see any advantages in undertaking such an endeavour nor
do I believe that society would like human-like machines to come into existence in
the present or in the medium future. The ultimate goal are highly sophisticated
machines which assist people, that are easy to use and which allow people to expand
their own capabilities or to become more independent.

In this relatively new research area which has more unsolved problems than solved
ones my work focuses on two aspects: Computer vision systems that allow machines
to detect the eye gaze and facial gestures of the operator and robot manipulator
control schemes for safe human-robot interaction. These two building blocks are
integrated to create a robot manipulator system that allows a person to pick up or
put down objects by simply looking at the object or the place where it should be put
down. The actions of the robot are invoked by facial gestures such as nodding and
shaking the head. The vision system must therefore be able to determine the eye

8In retrospective it appears that the great work that has been done on systems for autonomous
highway driving has never really stood a chance to get implemented by car manufacturers because
of the unresolvable legal liability issues connected to such systems, for example who would be
respousible in an accident situation?
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gaze direction in 3D and to recognise facial gestures of the user in real-time. When
prompted the robot approaches the operator to receive or deliver an object. These
hand-over actions facilitate the same mechanism used by humans and require the
robot to “feel” the grip of the operator. Since there can not be any barriers between
the robot and an operator for such interactions, the robot must be controlled in a
way that makes safety guarantees possible.

To verify the applicability of the approach the system was implemented on the
WAM? robot. Although the overall system is operational and can be used by anybody
to move objects in the robots environment, the aim has not been to develop a system
with performance characteristics applicable to any particular real-world problem.
The system rather is a proof of concept for human-robot interaction systems. In
almost any imaginable real application the inclusion of natural language recognition
is necessary to create a truly intuitive interaction system.

1.3 Contributions

The main contributions of this research work are in the area of real-time 3D head pose
tracking with a monocular camera and in devising a control philosophy and algorithm
for a robot manipulator that satisfies safety criteria for human-robot interaction. The
contributions are summarised below:

¢ Human-machine interfaces:

— A vision-based system to simultaneously measure 3D head pose and 3D
eye gaze direction from a monocular camera view.

— A non-intrusive method to head and eye gaze tracking which does not re-
quire head gear, markers, restricted head motion or infrared illumination.
The system allows full natural head motion.

— A real-time 3D head pose estimation system based on feature locations
and probabilistic inclusion of tracking reliability of the individual features.

— An analysis of the practical accuracy and robustness of the well known
alignment algorithm proposed by [Huttenlocher and Ullman 1990].

— An extension of the alignment algorithm with the following improvements:

* Consistent results for noisy feature location measurements
* Reduced errors for the resulting pose estimate in noisy measurements
* Improved robustness of the overall head pose

— Measures to improve the robustness and the efficiency of facial feature
tracking and recovery from tracking failures.

9WAM stands for Whole Arm Manipulator built by Barrett Technology.
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— An experimental validation of all proposed vision algorithms.
e Human-friendly robot control:

— A formulation of a novel safety concept that allows safe operation of a
robot manipulator with a person in the robot’s work space.

— A control strategy for manipulators which limits the potential impact
force of the manipulator with static obstacles.

— An implementation of the proposed impact force limitation scheme on a

real robot manipulator.

— An experimental validation of the proposed control method.
¢ Human-robot interaction:

— The integration of the described components into a working system.

— A human-friendly robot system that allows human-robot interaction both
visually and through physical contact.

— A system that allows a non-expert to interact with a robot manipulator in
a natural and intuitive way while the system guarantees safety constraints.

— An experimental evaluation of the system and proof of feasibility of safe
human-robot interaction.

1.4 Application areas

The research results of this thesis have a variety of applications in many areas pre-
viously mentioned, although the time horizons are quite different. Non-intrusive
head and eye tracking systems are reaching a maturity level now that makes this
technology applicable to real-world problems in an efficient and cost-effective way.
Companies specialising in this technology are now appearing and are offering a vari-
ety of systems. One of them, Seeing Machines, is selling a system closely related to
the work presented in this thesis (see Appendix B). Considering that this research
area attracted serious attention only in the mid 1990’s the time to market has been
relatively short.

The development in the area of human-friendly robots is considerably slower. and
the research in this area has a longer history than the gaze tracking area ([Karwowski
et al. 1987], [Etherton and Sneckenberger 1988], [Milgram et al. 1993]). As a general
comment systems developed in various labs around the world appear to be far from
deployment to any real-world applications (including the system presented in this
research) [Johannsen 1995], [Khatib 1999], [Luh and Hu 1999]. These systems should
be regarded as proofs of concept that particular aspects of such systems can be
realized. Generally, the systems lack robustness, safety, speed and the ability to
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react to rather unstructured environments and to understand context information
to allow for efficient deployment. The medium and long term prospects of this
technology are subject of debates in industry and academia. The topic has attracted
considerable attention in the recent years [Brooks et al. 1998], [Cheng and Kuniyoshi
2000]. Although there is no guarantee that this technology can reach maturity in the

coming decades the effort to probe for possibilities to create such systems is definitely
worthwhile.

1.4.1 Head pose and 3D eye gaze tracking

There is an innumerable number of applications for visual human-machine inter-
face systems ranging from desktop computer and interactive multimedia devices, to
safety applications in the motor vehicle industry and human measurement systems
for the animation and advertising industries. Other applications include more con-
venient and richer interfaces for support systems for disabled persons and interfaces
to intelligent home appliances. For most applications it is crucial that the person is
able to interact naturally with the system, in particular that the head motion is not
restricted artificially and no visual markers need to be worn by the user.

Safety applications

Operator inattention warning systems have potential applications in the transporta-
tion sector, for example in heavy trucks, trains and aeroplanes. Also control post
situations, such as power plants, chemical production plants, nuclear facilities and air
traffic control rooms are potential application areas. Here, the detection of fatigue
and inattention of the operator increases the safety level of the overall system since
human error has shown to be a significant source of accidents. Such safety systems
could monitor the gaze of the person to verify that the person notices warning sig-
nals, detect operator inattention to the main process (for example the road in heavy
trucks), detect fatigue indicators in the behaviour of an operator and recognise if the
operator has actually fallen asleep.

Human performance measurement

A persons gaze is of major interest in many psychological experiments. This includes
basic academic research concerned with reaction times to visual and acoustic stimuli
and the way people look at objects, pictures and video sequences. Human perfor-
mance measurements are also conducted for the ergonomic designs of cockpits for
cars, trucks and aeroplanes. A related application area are training systems. For
example pilots undergo regular training sessions in flight simulators where a variety
of critical situations are simulated. Gaze tracking systems could be used here to
verify the reactions of pilots.
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Advertisement validation

Successful marketing is an important success factor for many mass market prod-
ucts. However, little is known about how consumers actually look at advertisements.
Gaze tracking systems could provide valuable information about where exactly con-
sumers look while viewing an advertisement. This information could be used in the

production stage of an advertisement to improve its effectiveness.

Interfaces for the disabled

Visual interfaces could allow people with disabilities, in particular paralysed people,
to use computerised machines such as telephones, TV set, desktop computers or steer
a wheel chair [Bergasa et al. 1999].

General desktop computer interface

With the advent of cheap web cams for desktop PCs, a gaze tracking system could
be used as new input device. The obvious application for a gaze tracking system
would be as a replacement or supplement to the mouse. Also this system could
be used as an interface to virtual reality applications such as computer games and
low bandwidth teleconferencing systems [Saulnier et al. 1995] [Sengupta et al. 2000]
[Feng et al. 2000].

1.4.2 Gaze and gestures for robot control

Human-robot interfaces are another area of application for visual interfaces. Al-
though human-friendly robots are still far from being applicable to any real-world
problem, the development of natural interfaces as well as safety precautions in their
control are prerequisites to such systems. Human-friendly robots could be used
in both home and office environments to aid the humans in performing simple daily
tasks. Another application area that has attracted some attention is the construction
industry. Various construction machines could be computerised allowing a skilled
worker to coordinate the actions of a number of machines in tasks ranging from
transport of material and control of cranes [Miiller et al. 2000] and excavation ma-
chines [Cohen et al. 1996] to cooperatively carry and deploy construction material
[Khatib 1999] [Kim and Zhang 1998] [Luh and Hu 1999] [Hayashibara et al. 1999].

Helping hands for the disabled

One application that may be realisable relatively soon is in the area of support
systems for disabled and elderly people. This is because even though such systems
may appear to be too cumbersome and too slow for efficient use by an able person,
such machines can make a huge difference to a disabled person. Helping hands
could be used by disabled people in a similar way to the experiment conducted
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with the system proposed in this thesis. The robot assistant could be used to move
various objects in the environment. The robot could also be used to utilise the
infrastructure designed mainly with able persons in mind such as lift buttons and
traffic light buttons. Robotic arms could help elderly people to get in and out of
their beds and bath tubs. Such simple capabilities would allow them to live in their
homes by themselves longer and more independently.

Home and office robots

Robots helping out in homes and offices are a long way away from commercialisation.
Although autonomous vacuum cleaners, lawn mowers, floor cleaning machines, mail
delivery robots are reaching maturity now, robots with manipulators are considerably
more difficult to control, mainly due to the much more sophisticated tasks. However,
if such systems are to be build in the future they will require both natural human-
robot interfaces and safety measures which guarantee safe operation at all times.

Humanoid robots

Humanoid robots are probably the furthest away from commercial use. As mentioned
previously, the main purpose of humanoid robots is to be used in environments
designed for humans and thus they have to be able to work in the vicinity of humans.
Human-friendly robots could be used as assistants in construction, production and
office environments.

1.5 Organisation of this thesis

This first chapter sets the scene for motivating the research in the areas of face
and gaze tracking and safe control of robot manipulators and explains their relation
in the context of human-friendly robots. The remaining chapters of this thesis are
organised in the following way.

Chapter 2: Previous work

Chapter 2 reviews the research areas of visual human-machine interfaces and safety
measures in human-robot coexistence. This chapter also gives an account of the
different ways in which human-robot interaction systems and visual human-robot
interfaces can operate.

The overview of human-machine interfaces categorises the systems reported in
the literature according to their functional and algorithmic blocks rather than their
overall functionality. The different functions of face-related visual interfaces such as
head pose tracking, eye gaze tracking and facial gesture recognition are discussed.
Most algorithms developed in this area and those imported from other areas - such
as general detection of 3D pose of rigid and articulated objects - are applicable to
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more than one functional block of visual interfaces. The discussion seeks to elucidate
the interwoven pattern of algorithms and their applications.

The developments of human-friendly robots depends largely on two key aspects,
the guarantee of safe operation and interfaces that allow the efficient use of such
systems. Few systems have been developed that address these key aspects, but
interest in the area recently has sharply increased and many research projects are on
their way. Published results concerned with safety strategies and visual interfaces
are reviewed.

Chapter 3: Face tracking

The feature based face tracking system developed in this research is described in this
chapter. The system consists of three layers which extract the 3D head pose of a
user from a monocular camera view. The lowest layer performs image correlations
to find and track facial features such as the eyes, the mouth and the eye brows. The
second layer merges the correlation results with geometric constraints provided by
the 3D model of the face of the third layer. The third layer estimates the 3D pose
of the head based on the robust image positions of the facial features.

Chapter 3 focuses on the first two layers which are concerned with robust feature
tracking in monocular images. The actual feature tracking is performed in the first
layer. However, this layer is not able to detect or recover from the loss of features,
nor can it tolerate temporary occlusions of features or initialise when no feature posi-
tions are known. These issues are addressed in the second layer by mechanisms such
as Kalman filters to integrate the tracking results with the geometric constraints
between the features, the exploitation of the strain exerted on these geometric con-
straints, efficient tracking of changes in the appearance of the facial features and
the balancing of resources spent between the position and the appearance tracking
according to the tracking status.

Experiments demonstrate how the mechanisms achieve robust feature tracking,
including feature position initialisation and feature appearance tracking.

Chapter 4: 3D head pose estimation

The third layer of the system estimates the 3D head pose of the user which is required
to generate the 2D constraints for the second layer and to derive the 3D eye gaze
position. The basis for the 3D pose estimation is an improved version of the alignment
algorithm developed by Huttenlocher and Ullman [Huttenlocher and Ullman 1990].
An analysis of the accuracy and sensitivity of the original algorithm is presented
which leads to improvements in these two crucial aspects. The introduction of a
sensitivity model for fast estimation of the sensitivity of an estimate allows the
integration of the results from multiple feature triplets into a single 3D pose result

with a low systematic error and low sensitivity.
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Simulations and experiments using a robotic mannequin head verify the validity
of the approach. The implementation of all three layers is experimentally validated
on real image sequences with a person performing large and rapid head motions.

Chapter 5: Eye gaze and gesture recognition

Two additional modules based on the data derived by the face tracking system com-
plete the visual human-machine interface: An eye gaze detection system and a facial
gesture recognition system. The eye gaze estimation system provides a deictic com-
munication channel that allows the user to reference objects and locations in the
environment. The chapter also presents an experimental evaluation of the perfor-
mance of the eye gaze tracking and gesture recognition modules.

The gesture recognition system consists of two layers, a preprocessing layer which
detects characteristic constellations of the head pose parameters at each instance and
a temporal matching layer that detects the temporal patterns in the output of the
first layer.

The combination of the two modules forms a powerful visual interface for human-
machine interaction. The interface uses the same communication channels that are
also used in inter-human communication. Untrained users can control any device
connected to the visual interface after only a few minutes.

Chapter 6: Human-robot coexistence

This chapter formulates a set of rules for the behaviour of human-friendly robots
which define a framework which guarantees the safety of the human operator. It is
particularly important to agree on a division of the responsibilities in the interac-
tion between the human and the robot. Such a division is presented which allows
for the development of behavioural rules for a human-friendly robot. The chapter
presents a definition of the basic restrictions on the autonomous actions of a human-
friendly robot. Also a control architecture is presented which incorporates the safety
behaviour of the robot.

Chapter 7: Safe robot control

Chapter 7 derives a formulation from the discussion in the previous chapter in terms
of control constraints for a robot manipulator. The impulsive impact force is iden-
tified as the crucial system parameter for pre-collision safety and an model for the
impulsive impact force is derived. Based on this model a control constraint for the
robot is defined which is then transformed into the motor torque space. The chapter
discusses the conditions for the appearance of poles in the impact force model. This
is crucial because the control constraints are undefined if the impulsive impact force
model has a pole at a particular point. Finally, the proposed formulation of the
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control constraints are verified in a simulation of a 2DOF robot manipulator. The

simulation shows that impact force control can be successfully implemented.

Chapter 8: Implementation and experiments

Chapter 8 presents implementation details and experimental results of the control
scheme on a robot manipulator. The hardware platform is the WAM arm (Whole
Arm Manipulator). This entirely cable driven 4DOF manipulator is well suited
to human-robot interaction experiments because of its kinematic design, hardware
safety features and light weight mechanical design. The safety scheme developed
in the previous chapter is augmented with a position controller to allow the robot
to move in a goal oriented manner. An outline of the software architecture used
in the implementation is also presented. The implementation is tested at three
different eXperimental levels, passive, externally generated motion, ego-motion and
collision with a static obstacle. The experiments show that the impulsive impact
force limitation controller has been successfully implemented.

Chapter 9: System integration

This chapter shows how the previously described components of human-friendly
robots, the visual interface and the safe robot control scheme, can be used to create
robotic systems that allow non-experts to interact with a robot safely and in a nat-
ural and intuitive way. The system presented allows a person to control the robot
with eye gaze and facial gestures only. The robot is able to retrieve objects from the
environment or to put objects down in positions the user identifies by simply looking
at them. The robot is also able to hand objects over to the user or the receive objects
from the user.

The results of an interaction experiment are presented which demonstrate all
functionalities of the system. It shows the details of the sensory data used to drive
a finite state machine which represents the system state and generates all robot
commands according to the gesture commands of the user.

Chapter 10.1: Conclusions

This chapter reviews the various aspects of the work presented in this thesis and
places the results in the context of the state of the art in the area of visual interfaces
and human-friendly robots. This thesis represents one of the first attempts in this
new research area. A discussion of the wide range of possible further directions in
the ongoing development of human-friendly robots is presented.



Chapter 2

Related Work

This chapter reviews previous work in the areas related to this research. It pro-
vides a road map for visual human-computer interfaces and human-friendly robot
control/human-robot interaction. The review categorises the different approaches
and goals of the previous work. The review is followed by a discussion of the specific
results that have been achieved in the visual human-computer interface area and the
human-friendly robot control area respectively. This is followed by a review of the
first attempts to build visual interfaces to allow a person to interact with a robot
naturally and intuitively. The chapter ends with a summary.

2.1 Road map

Visual human-computer interfaces have had three major development thrusts; sys-
tems and methods concerned with face, hand and whole body tracking. The hand
and body tracking systems are discussed only briefly since the work in this thesis
is concerned with face tracking only. Figure 2.1 gives an overview over the various
aspects and functions of hand and body tracking systems. While hand tracking is re-
lated to face tracking in the sense that the detailed configuration of a body part over
time is of interest, the work done on human body tracking is primarily concerned
with the gross posture of the whole human body. No significant work has been done
on integrating the three areas. One of the main reasons for this lack of integration
of these obviously related areas is the problem of acquiring images of appropriate
resolution. If the whole body of a person has to fit into an image, the image areas
which contain the hands and the head of the person have insufficient resolution for
most hand and head pose tracking systems.

Some work has been reported which track the head and the hands of a person
in upper torso image sequences, but no hand or head poses are extracted [Wren
and Pentland 1998], [Wu et al. 2000]. [Hongo et al. 2000] reported a system that
uses multiple cameras, a wide angle scene camera and multiple cameras for the face
and the hands respectively. The system recognises directional gestures of the face

15
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Figure 2.1: Categorisation of human-centred visual computer interfaces

(nodding etc.) and shape gestures of the hands (such as holding two fingers up),
but the technology can simultaneously determine the upper torso, head and hand
postures.

The categorisation shown in Figure 2.1 is based on sub-functionalities of visual
human-machine interfaces. One of the future challenges will be to integrate the
systems from the different areas and create interfaces that allow the tracking of the
body, hand and head postures. The various sub-functions of each of the three areas
shown in the outer ring are closely related, and most systems integrate more than
one of those sub-functionalities. A detailed description of methods and algorithms
of the hand and full body tracking systems are presented in Section 2.2.7.

Visual interfaces which are concerned with the tracking of human faces have dif-
ferent sub-functions as shown in Figure 2.1. The sub-functions are basic building
blocks to a desired overall function. For example 3D head pose estimation can be
based on feature tracking [Gee and Cipolla 1994] [Matsumoto and Zelinsky 2000]
or different variants of face detection algorithms such as 3D model fitting |[Zhang
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and Kambhamettu 2000] [Wu and Toyama 2000], view based face detection methods
[Pappu and Beardsley 1998] or exploitation of symmetry [Jacquin and Eleftheriadis
1995). Alternatively, sub-functions which depend on other sub-functions may implic-
itly include them. View based systems [Pappu and Beardsley 1998] perform both,
detection and pose estimation, in a single step and do not execute a separate face
detection step. Most of the reported systems are no more than proof-of-concept
systems and often the sub-functions that are required for initialisation are not im-
plemented. Instead, a system may require the user to select the features in the first
frame of a sequence so that the system can track the features motion in subsequent
frames [Gee and Cipolla 1994]. Therefore, care is required when functionalities of
different systems are compared.

The proposed categorisation of visual interfaces using sub-functions is one possi-
ble method. A categorisation could also be made with respect to the algorithms and
methods used to achieve the functionality of the system. One algorithm can be used
for a number of different sub-functions in different areas. For example the skin colour
detection algorithm [Yang and Waibel 1996] is widely used for the detection of faces
in head tracking systems, for the detection of hands in hand pose estimation systems
and in the detection of the face and hands in body pose tracking systems. The re-
sulting interweaving of algorithms and their applications is more complex than in the
case of the categorisation along sub-functions. Accordingly, Section 2.2 is structured
according to the sub-functions shown in Figure 2.1. Table 2.1 provides and overview
of the relation between the functional blocks and the algorithms and methods used
to implement the functions.

2.2 Visual human-computer interfaces

Visual human-computer interfaces have attracted considerable attention in the aca-
demic community in recent years. Some of the pioneering work in the face and
head pose tracking area was done by [Azarbayejani et al. 1993] and by [Gee and
Cipolla 1994]. The first non-intrusive eye gaze tracking system using neural net-
works was reported by [Baluja and Pomerleau 1994a].

These early systems had shortcomings since they were the “first shots” at the
respective problems. The feature based face tracking systems of Azarbayejani and
Gee could not recover from feature tracking errors which are inevitable with any
feature tracking method. This lack of robustness caused unrecoverable (and in Gee’s
system undetectable) failure if the person moved too fast, turn his/her head too far
from the camera or simply stepped out of the image and then returned. Gee’s system
also required the user to manually select the facial features in the first frame. Baluja’s
gaze tracking system used an artificial neural network to analyse the raw pixel values
in the image region containing one eye of the user. This system could not tolerate
head motion. However, all three systems were capable of real-time operation, an
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Table 2.1: Overview of the algorithms and their applications
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Figure 2.2: Categorisation of safety measures in robotics
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important characteristic which has not been matched by many later systems, which
is impressive considering the much lower computing power available at the time.

The area of visual human-computer interaction now attracts much attention,
not only in the academic community, but also in the computer vision industry?.
The important subareas of visual human-computer interfaces are discussed in the
following subsections.

2.2.1 Face detection

The detection of faces in still images and image sequences is one of the basic sub-
functions of face-centred visual interfaces. It is required for almost all further pro-
cessing stages. As in all visual feature detection methods, a tradeoff has to be made
between missed occurrences and false detections of the feature. Different applications
have significantly different requirements for the two error modes.

Appearance based

One straight forward method to detect faces is image correlation, that is, comparing
small apriori known images of faces with the input images. Systems with a bank of
fixed templates were reported in the early 1990’s [Brunelli and Poggio 1993], but their
performance was unsatisfactory as they had low robustness with respect to different
orientations and scaling of the faces in the image. However, this method is still used
today as an initialisation stage for other face tracking systems such as face tracking
systems [Matsumoto and Zelinsky 2000]. In such systems missed occurrences of
faces are not critical since the detection is performed on a continuous video stream.
Therefore misses in some frames do not degrade the overall system performance
noticeably. This method has also been used in combination with the estimation of
head pose [Pappu and Beardsley 1998]. The use of deformable templates is a variation
of the fixed template method and has been applied to individual sub-features such
as the eyes and the mouth (see Section 2.2.2).

Another variation of template matching is the use of eigenspaces [Sung and
Poggio 1994]. The eigenspace approach assumes that all face patterns occupy a small
parameterisable sub-space in the high-dimensional image space. In the training stage
a representation of this sub-space, called the canonical face representation, is gener-
ated from a small number of face patterns. Clusters of face patterns are represented
by their principal components, or eigenvectors, as multi-dimensional Gaussians. In
the detection stage the cluster model is used to calculate the distance vector of a
given image to the model. [Sung and Poggio 1998] uses a Mahalanobis like distance
function. The resulting distance vectors serve as input to a multi-layer perceptron.
The perceptron is trained with the distance vectors from the face and non-face pat-
terns. In the face detection stage the system performs an exhaustive search of the

1See Appendix B for an overview on the commercially available face/gaze tracking systems.
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image. For each region the distance vector is calculated and then classified by the
perceptron as a face or a non-face pattern. To allow for different scalings of faces
the processed regions are scaled to 19 x 19 pixels (the size of the training images)
and are normalised with respect to brightness and contrast. The system achieved
rates of missed occurrences between 3.7% and 20.1% for two sets of images with
different quality. Although this is a good result compared to other template based
methods, it requires a huge number of finely cropped face images for the training
of the perceptron. The canonical model was generated from over 1000 face images
and the perceptron was trained with over 47000 face images. The computation times
required in the detection stage has not been reported by [Sung and Poggio 1998].
However, the system reported by [Rowley et al. 1995] which processed a 320 x 200
pixel image in 24s on a SPARC 20 claims that it is 50 times faster than the system
reported by [Sung and Poggio 1998].

Today purely template based face detection methods are only used in special
applications such as initialisation for face tracking systems. For general face detection
tasks their performance, both accuracy and computing time, are not competitive
compared to other methods. Template matching methods are also restricted with
respect to the orientation of the head in the image. Most systems only consider
frontal face views without head rotation and therefore are not able to detect faces
from other angles.

Neural networks

A number of face detection systems based on neural networks have been reported.
Sung’s system described in the previous section used a neural network to classify dis-
tance vectors derived from the eigenspace model. Other systems have been reported
that use the raw pixel intensities (brightness and contrast normalised) as input to
neural nets [Rowley et al. 1998], [Duta and Jain 1998] and [Feraud et al. 2000].
[Rowley et al. 1995] used face images 20 x 20 pixels in size as the input to a neural
network. The neural net contained 3 different types of hidden nodes: 4 that are
connected to 10 x 10 pixel sub-windows, 16 which look at 5 x 5 pixel sub-windows
and 6 overlapping 20 x 5 pixel sub-windows of the region to be analysed. These
sizes were chosen to allow the neural network to specialise in the detection of facial
features such as eyes, pairs of eyes, the mouth and so on. The system also arbitrated
between different networks which had different topologies and were trained differ-
ently. The achieved accuracy and processing times in tests using the training images
as test images were better than those reported by [Sung and Poggio 1998]. A similar
approach was also reported by [Feraud et al. 2000]. This system used a variation of
neural networks called the Constrained Generative Model (CGM). During learning
each non-face example is constrained to be reconstructed as the mean of the n nearest
neighbours of the nearest face example. In effect, the neural net learns the projec-
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tion P of a point z of the input space on the set of faces sub-windows. The resulting
distance is a measure of the likelihood that the sub-window contains a face. The
system feeds the regions to be examined through several stages of increasing com-
plexity and in the final stage through the CGMs. Different CGMs are provided for
different viewing angles. This improves the generality, however, 2 frontal view CGMs
and 2 side view CGMs can still not cover all viewing angles, in particular rotation
around the vertical and optical axes. The results of the CGMs are post-processed
by another neural network with arbitrates between the CGM results and determines
the final result. The system provided similar accuracy as the system by [Sung and
Poggio 1998] but took only 1s of computation time on a DEC Alpha. [Duta and
Jain 1998] reported a system that used the algorithms of the two systems described
above in addition to a third NN based algorithm and merged their individual results
to achieve a slightly better result than each individual systems.

The approach to incorporate not only one but many algorithms into a system to
exploit as many characteristics of the face as possible is taken by a number systems
that are discussed in this chapter. [Triesch and von der Malsburg 2000] is one of the
first attempts to formalise the integration of multiple visual cues.

Neural network based systems suffer from the same shortcomings as the template
and view-based systems. The detection of faces in different scales and head poses can
not or only with large computational complexity achieved. Furthermore, the training
of those systems requires many (at least many hundreds) preprocessed face patterns
that have been manually cropped from images. The requirement for an exhaustive
search of unknown images also adds to the computation time requirements.

Structural models

Shape models and invariants are based on the assumption that certain geometric
constraints hold for all faces and for all head poses. Although it may not appear that
shape models and invariants are closely related, they really are two sides of the same
coin. Image invariants are mathematical representations of geometric relationships
between features of an object in an image. Invariants are generally used to verify a
hypothesis about the location (and possibly the pose) of an object in an image or
derive additional information such as 3D parameters. See [Pinto-Elias and Sossa-
Axuela 1998] for example. A typical setup is to use filters to detect eyes and mouth
regions in the image separately [Saulnier et al. 1995]. The invariants suggest that
there can only be two eyes for each face and the mouth must be on the line which
is perpendicular to the connection between the eyes and intersects it in the middle
between the eyes [Shakunaga et al. 1998]. Such constraints are commonly used in
facial feature detection systems (see Section 2.2.2). Shape models implicitly represent
invariants of the features captured in the model. The goal of the model matching
algorithm is to fit the shape model in a way that the implicit invariants are best
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satisfied, or to reject the hypothesis that the image contains a face in the selected
region [Pinto-Elias and Sossa-Axuela 1998]. Image invariants and shape models
capture the structure of faces and use structural evidence to localise faces.

Models and invariants can be divided into two major classes: 2-dimensional and
3-dimensional models/invariants. To verify a hypothesis about the occurrences of
faces based on feature localisation 2D invariants can be used [Shakunaga et al. 1998].
Such 2D invariants can also by used to derive 3D information without a 3D model.
[Gee and Cipolla 1994] derived the 3D facial normal from 2D feature locations. The
face detection system described by [Yokoyama et al. 1998] used a contour model to fit
an elliptical model to the face, using the symmetry invariant of frontal face images.
Elliptical models that exploit local symmetry have been used by [Brunelli and Poggio
1993] and [Jacquin and Eleftheriadis 1995] for face localisation. The iterative nature
of these algorithms means that they have a high computational complexity, and are
therefore generally used as a sub-function in conjunction with other techniques. For
example, in conjunction with skin colour segmentation [Yokoyama et al. 1998].

Invariants and 3D models have been used for both face detection [Elagin et al.
1998] and head pose estimation [Wu and Toyama 2000]. The system reported by
[Elagin et al. 1998] used a 3D model of the face consisting of a graph in which
each node represents a facial feature identified by its response to a Gabor filter. The
edges are the geometric relationship between the nodes. [Elagin et al. 1998] use hand
crafted graphs, called bunch graphs, which are derived from a number of graphs of
different persons. Bunch graphs representing different head poses are correlated over
the whole image to detect faces. A similar approach was described by [Pramadihanto
et al. 1998]. This system used a flexible graph of Gabor filters to ensure geometric
consistency of the features in a detected face after an initial stage that detects the
individual features. [Maurer and von der Malsburg 1996] describe a system that uses
a automatically generated, rigid network of Gabor filters for face tracking.

The work described in this thesis is closely related to the systems described in the
previous paragraph since it also uses a 3D model of filter responses of facial features
to detect the face and head pose. However, unlike previously reported systems, our
system is able to acquire the face pose robustly in real-time and initialise the feature
and head pose tracking.

The system described by [Wu and Toyama 2000] uses a different model. Instead
of generating a graph were the nodes correspond to unique facial features, they
generate a head model with Gabor filter responses on regularly placed points on an
elliptical head model. The resulting general head model, which captures a 360° view
of the head, can then be matched on input images to localise faces and determine the
head pose. The drawback of such general models is that they allow only approximate
estimates. Errors of 20° are reported. Well initialised feature graph models provide
accuracies in the range of 1° to 3° [Matsumoto and Zelinsky 2000].

In conclusion shape models and invariants have been applied with only limited
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success to the face detection problem. They require exhaustive searches of the images
and are not competitive in comparison to other techniques. However, these methods
have been applied successfully to the feature and head pose tracking problems.

The work described in this thesis uses a structural model to detect the position
of the face in the image. Our system achieves a high performance in face detection
due to two key characteristics: The feature detection is based on a simple correlation
method (see Chapter 3) which allows 6000 feature searches per second and the use
of a flexible model based on probabilistic methods to exploit the partial detection of
facial features.

Skin colour

Skin colour detection is the most widely used algorithm today to detect faces in im-
ages. Colour information has been long used to segment regions in images containing
objects of interest [Ohta et al. 1980] [Swain and Ballard 1991]. The effectiveness of
this method applied to the detection of human skin in colour images became apparent
through the work of [Yang and Waibel 1995]. The key idea was to consider images in
a brightness-normalised colour space (for example HUV or HSI) instead of the nor-
mal RGB representation. Skin coloured pixels occupy only a small region in the pure
colour spaces, and can therefore be detected reliably. Yang and Waibel developed a
simple model of the distribution of skin colour in the UV space which allowed the
transformation of a colour image into a grey scale image where the brightness of each
pixel represented the likelihood that the pixel was human skin. This method can
be augmented to automatically accommodate for the slight differences between the
skin colour of different people [Yang and Waibel 1996]. [Yang et al. 1998] describes
how this method also works effectively on persons from different races such as Asian,
African American and Caucasian, even though the brightness of their respective skin
regions differs significantly.

This method is effective in detecting skin coloured regions with a small compu-
tational overhead, and real-time performance can be easily achieved. However, a
face is not necessarily the only skin coloured surface in an image. It is well known
that wooden surfaces and clothes of particular colours occupy the same region in
the pure colour space and therefore can not be distinguished from skin by this al-
gorithm. Therefore skin colour segmentation is usually followed by other methods
which take into account motion [Yang and Waibel 1996], eye blinking [Schwerdt and
Crowley 2000], the size and shape [Cai and Goshtasby 1999] [Heinzmann et al. 1998]?,
image invariants [Terrilon et al. 1998], wavelet correlation [Kumar and Poggio 2000},
or the local symmetry [Sun et al. 1998].

In general, skin colour detection is a cheap and reliable preprocessor for face

21t should be noted here that although I am the first author of this paper, this particular system
was developed by Dr. Yoshio Matsumoto with whom I had the pleasure to work with.
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tracking. The method has now become popular in the areas of face/hand detec-
tion/tracking.

2.2.2 Facial feature detection and tracking

In most applications the detection of the face is only the first step. For many ap-
plications such as head pose tracking, eye gaze estimation, 3D head model building,
facial expression recognition and face recognition a more detailed analysis of the face
is required. The system must extract facial features such as the eyes, the eye brows,
the mouth and so on. The previous section argued that face detection and facial
feature detection are strongly related. Face detection can be achieved by detect-
ing facial features and assembling the results into a coherent face structure using a
model or invariants [Pinto-Elias and Sossa-Axuela 1998], [Shakunaga et al. 1998],
[Elagin et al. 1998], [Pramadihanto et al. 1998]. This method is used in the research
presented in this thesis.

On the other hand, facial features can be detected based on the results of the face
detection by exploiting the correspondence between a correlation kernel of the face
and individual facial features [Matsumoto and Zelinsky 2000] or by examining the
“holes” in the skin area of the face which are a result of the different colour of the eyes
[Cai and Goshtasby 1999] [Heinzmann et al. 1998]. Whether the top-down or the
bottom-up approach is favourable depends on the constraints of the application. In
face tracking applications the head pose changes only slightly from frame to frame,
and therefore the motion of the facial features can be easily detected. If the facial
features can be tracked, therefore the location of the face can be determined. For
applications that require the detection of a face in a single frame the top-down
approach is faster because the rough search for the whole face quickly restricts the
area in which feature detectors are to be used. However, if computational complexity
is not important, for example in off-line indexing applications [Feraud et al. 2000], a
bottom-up approach can be used.

Many of the algorithms used in the detection of faces which treat the face as a
single entity could also be used for the detection of facial features.

Appearance based

Similar to face detection, template matching is the most straightforward method to
localise facial features. The facial feature tracking system reported in [Matsumoto
and Zelinsky 2000] used brightness normalised correlation of pixel intensity templates
to detect and track features such as the corners of the eyes, the eyebrows and the
corners of the mouth. In this system, the approximate locations of the facial features
were determined by using a low-resolution facial template and the correspondence
of the feature locations with that template. At the approximate feature locations
individual, high resolution templates were correlated with the image to derive and
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then track the exact feature locations. When the system detects a tracking failure,
it switches back into the face searching mode with the low-resolution face template.

[Pappu and Beardsley 1998] described a system that used intensity gradient direc-
tion correlation instead of brightness normalised intensity correlation. Each element
of the templates contained the direction of the gradient of the intensity at the loca-
tion of the corresponding pixel. The correlation function summed up the difference
of the gradient directions of the template and the region. Since the gradient does
not depend on the absolute image intensity the resulting corresponding measure is
also normalised for brightness.

The previous section described the use of eigenspaces to detect faces. The same
technique can also be used to detect individual features. For each feature a eigentem-
plate is generated from several canonical views of the feature. The work described
by [Shakunaga et al. 1998] used eigentemplates to detect feature candidates in im-
ages and post-processed the result by exploiting the geometric structure of the facial
features.

A variation of template based methods is the wavelet convolution. [Maurer and
von der Malsburg 1996] described a system that used Gabor wavelets to detect and
track facial features. Each feature is described by a jet, a vector of Gabor filter
responses at an image location. The system uses Gabor wavelets of 4 orientations
and 8 frequencies. Therefore each jet is described by 32 complex numbers. The
detection of a feature is achieved by calculating the filter responses at an image
location and comparing it with the response of the original feature. The distance
function of two jets is the dot product of the two filter response vectors. Because the
displacement is calculated by the phase shift between the wavelet responses of the
different wavelengths, subpixel accuracy can be achieved. However, the maximum
translation between two consecutive frames is limited by half the wavelength of the
wavelet with the lowest frequency.

This technique has proven to be successful® in this application domain. Other
systems using Gabor wavelets have been reported by [Pramadihanto et al. 1998] and
[Elagin et al. 1998]. Haar filters are a variation of the Gabor filter and have been
used by [Kumar and Poggio 2000] to achieve similar results.

All appearance based methods described above use brightness independent lo-
calisation algorithms. The system described in this thesis uses pixel (colour) inten-
sity templates to detect and track facial features similar to the system reported in
[Matsumoto and Zelinsky 2000]. However, due to the limitations of the hardware vi-
sion system, the correlation is not brightness normalised. Section 3.3.4 describes the
problems associated with this fact and the additional algorithms that are required
to achieve robust feature tracking and overcome this limitation.

3 A company called EyeMatic has been spun off using this technology. See http://www.eyematic.
com/ for more information.
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Neural networks and genetic algorithms

The face detection system described in Section 2.2.1 reported by [Rowley et al. 1995]
and [Rowley et al. 1998] used a neural network (NN). The topology of the NN was
chosen such that parts of the network specialise in detecting certain facial features
such as the eyes and the mouth. Although this particular system does not detect
individual features, this technique can also be used to detect the location of facial
features.

The system described by [Pinto-Elias and Sossa-Axuela 1998] uses a genetic al-
gorithm to “learn” the representation of facial features in terms of Hu’s invariants
{Hu 1962]. The invariants are calculated with respect to the moments for each loca-
tion in the image. Results of tests on 240 images showed a detection rate of 100%,
with a false detection rate of approximately 7%.

Skin colour

As stated earlier, the results of skin colour detection indicate not only the location
of the face in the image, but also hints at the location of facial features. The eyes,
the eye brows and the mouth can be segmented in the image since they are non-
skin coloured. This fact can be used to detect the location of these features when
combined with a geometric model of the facial feature locations.

The work described by [Sun et al. 1998] first performed a detection of facial fea-
tures without classifying them, merged the result with detection of facial symmetry
and finally matched a fuzzy model to the combined bitmap to detect and classify
individual features. A similar approach was described by [Cai and Goshtasby 1999].
This system tried to match multiple templates corresponding to different head poses
to a skin colour detection bitmap in order to detect individual features.

The skin colour maps are used for the detection of facial features rather than
for tracking features. The computation of the skin colour map and the respective
feature locations is expensive compared to correlation methods and only yields a
approximate position estimate. However, it provides a robust way to initialise facial
feature tracking systems as described in [Heinzmann et al. 1998].

Infra-red illumination

An active method to detect facial features that should be reviewed is the exploitation
of the retro-reflectivity of the human eyes through infra-red (IR) illumination. This
effect is also known as the red-eye effect in photography which occurs when a flash
light that is close to the optical axis is used. The basic idea is to switch a set of
IR-LEDs on and off in synchronisation with the camera frames. The activation state
of the LEDs is toggled at each vertical sync of the camera. In effect the video stream
contains frames with alternating IR illumination. While the pupils appear dark in
the frames without IR illumination, through the retro-reflectivity effect the pupils
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are bright in the frames with IR illumination. The flickering of the pupils can be
easily detected using image subtraction. This technique is robust under changing
illumination conditions and it requires few computational resources. For this reason
basically all commercial eye gaze tracking systems use IR illumination technology
(see Appendix B).

Publications describing this technology date back more than 10 years, [Tomono
et al. 1989] and [Hutchinson et al. 1989]. However, recent attention has been drawn
towards the method through the Blue Eyes project at IBM’s Almaden Research
Center [Morimoto et al. 1998], [Morimoto et al. 1999] and [Morimoto and Flickner
2000].

Hough transformation

In 1962 P.V.C. Hough patented a method to detect patterns in digital images [Hough
1962]. The Hough transformation has become one of the standard computer vision
algorithms to detect shapes such as lines, circles, ellipses or arbitrary shapes in
images. The core idea is to use a voting scheme to accumulate evidence in the
image that supports the hypothesis that a parametrisation of the shape appears at a
particular image location. For a discussion of the variations of Hough transformation
algorithms refer to [Kassim et al. 1999). |

The Hough transformation for the detection of circles and ellipses are of particular
interest to detect the iris. The contrast between the iris and the eye white is a strong
feature and can be detected reliably. However, usually the top and bottom of the iris
are occluded by the eye lids, so only two arcs on the left and right are visible. The
Hough transformation is well suited to exploit this evidence and derive the location
and parametrisation of the circle or ellipse. This method has been used successfully in
non-intrusive gaze tracking systems such as [Klingspohr et al. 1997] and [Matsumoto
and Zelinsky 2000].

The Hough transformation does have significant memory requirements to store
the discrete voting space. The voting space for a circle of unknown radius is 3-
dimensional (x, y of centre and radius) and 5-dimensional for an ellipse (x, y of
centre, major and minor radius and the angle of major axis). To date, this method
appears to be the most robust method to detect the location of the iris and allows
for real-time operation [Matsumoto and Zelinsky 2000].

Heuristic filters

Until recently, real-time performance was not easy to achieve for facial feature track-
ing systems. The detection methods have to be efficient to allow calculations at
video frame rate. This situation has led to the development of simple heuristic
filters that were able to operate in real time. The system described by [Gee and
Cipolla 1994] which pioneered head pose estimation used two simple heuristics to
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track the eyes and the mouth. The eye tracker simply searched for the darkest
pixel in a window around the previous detection. Since the eye is surrounded by
skin this heuristic works reasonably well but is inaccurate since eyelashes can also
produce black pixels. The method works reasonably well while the head faces the
camera. The mouth was tracked using an edge detector. All the tracking filters had
to be positioned by hand at the beginning of the sequence. The system described by
[Saulnier et al. 1995] used similar heuristics that were implemented as dedicated soft-
ware modules for each type of facial feature. The eye gaze tracking system described
by [Baluja and Pomerleau 1994b] also used a heuristic filter to detect the location
of the eye. This method detects bright spots within dark areas. This solution was
tailored to a particular setup where the user sat in front of a desktop computer with
a light source mounted below the monitor which created a reflection on the cornea.

The recent increase in computer speed has made such approaches obsolete. Other
methods which require higher computational resources such as brightness normalised
correlation, skin colour detection and the Hough Transformation provide higher re-

liability and robustness with respect to projective deformation and rotation of the
features.

Summary

This section reviewed the principal techniques for facial feature detection and track-
ing and showed the close relationship to many face detection techniques. Often face
and facial feature detection go hand in hand to achieve robust results. The choice
of algorithm depends highly on the application and real-time requirements of the
system. While the skin colour based methods are reliable and efficient if the whole
image has to be considered (for example for facial feature tracking initialisation and
model building), the tracking of facial features in real-time can be achieved most effi-
ciently with template correlation or Gabor jet convolution methods. The robustness
of systems can be increased by combining different methods, for example combining
skin colour, facial symmetry and geometric constraints [Sun et al. 1998].

2.2.3 3D head pose estimation

Head pose estimation is an essential part of many visual human-machine interaction
systems such as low-bandwidth video conferencing, face recognition, computer games,
character animation and virtual world interfaces. The 3D head pose is sometimes
referred to as the gaze direction, implicating that a person is generally looking where
the user’s nose is pointing. This is only an approximation of the persons true gaze
direction and the term gaze direction is inappropriate. In this thesis the term head
pose refers to the 3D translational and rotational state of the head. The term eye
gaze direction is used to refer to the 3D gaze vector which originates in the centre of
the eye ball and points through the centre of the pupil.
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The various methods that are used to derive the head pose of a person can be
classified into two significant approaches. The first approach considers the head
as a single feature in the image and exploits the appearance of the face to derive
the head pose. The second approach considers the head to be a conglomeration of
facial features and derives the head pose from the geometric relationships between
individual features.

Appearance based methods

The system proposed by [Pappu and Beardsley 1998] used intensity templates to
detect the head pose of a person. In the initialisation stage a 3D ellipsoidal model is
manually fitted to a single image of the person to be tracked. The texture from the
image is then mapped onto the ellipsoidal model and then by rotating the resulting
textured ellipsoid a 11 x17 matrix of views that represent the head with different head
orientations around the horizontal and around the vertical axes is generated. The
synthetic views are then matched against the live image at a sub-sampled resolution
of 32 x 32 pixels. A trade-off must be made between the accuracy of matching and
the number of synthetic views. The granularity of the resolution which influences the
computational resources required. The use of an 3D ellipsoidal model of the head
introduces distortions in the synthetic views, in particular for prominent features
such as the nose. The system can not tolerate changes in depth or rotations around
the z-axis of the head. The reported processing speed was 6Hz. The accuracy of the
system was not reported but it is reasonable to assume that it had a similar accuracy
as the system by [Wu and Toyama 2000] who reported an accuracy of approximately
10°.

The approach taken by [Wu and Toyama 2000] differs only slightly from [Pappu
and Beardsley 1998]. It also assumes a 3D ellipsoidal model of the face, but instead
of using straight image texture, the elements of the model are the response of Gabor
filters. To achieve close to real-time performance, the search space for head poses is
discretised in a similar way to that suggested by [Pappu and Beardsley 1998]. The
reported processing speed was 3-5Hz. The achieved accuracy varied strongly with
different persons and whether the person being tracked was used to generate the
original head model. The average errors around each individual axis differed from
5.7° to 70.5°.

The technique reported by [Basu et al. 1996] differs significantly from the appear-
ance models above. It utilised an extension of the method proposed by [Black and
Yacoob 1995] which is based on optical flow to track the motion of a planar surface.
Since optical flow is a relative measure of motion between frames, convergence over
time can not be guaranteed. After a sufficiently long tracking sequence offset errors
emerge. To reduce this drift effect the motion of the model can be found by min-
imising the difference between the actually observed flow field and a synthetic flow
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field generated by rotating the face model. [Black and Yacoob 1995] used a planar
face model which yielded poor convergence. Better results have been achieved with
the extended 3D ellipsoidal model of [Basu et al. 1996]. The system described by
[Zhang and Kambhamettu 2000] uses a more precise model that described the shape
of a human head by using extended superquadrics. This system also extended the
optical flow method to detect partial occlusions of the face and disregard the flow in
the occluded areas.

The advantages of optical flow based systems compared to appearance based
systems is that all 6 rigid motion parameters of the head can be detected and that
no discretisation of the pose space is required. The major disadvantage is the drift
error which accumulates over time. It should be noted that in all the reported work
the experimental test sequences were no longer than several hundred video frames.

The system reported by [Malciu and Preteux 2000] combined optical flow and
appearance based methods. It used a model similar to the extended superquadric
model of [Zhang and Kambhamettu 2000] with texture mapping. The head motion
is first estimated by the optical flow field. The resulting pose is used as the starting
point for an optimisation process which minimises the difference between the ob-
served view and the appearance of the model projected into the image plane. By
merging both results the drift problem can be eliminated as the texture mapping
always reset the model into the correct position. The system was tested with syn-
thetic test images. The reported accuracy in 90% of the images was better than 3°
in individual rotation angles and better than 8% for the depth measurement. The
speed of computation was not reported.

Feature based methods

The recovery of the head pose based on the constellation of facial features has at-
tracted much attention, particularly for head tracking applications. Feature based
approaches do not have inherent drift problems and the tracking of facial features
in image sequences is well within real-time capability of today’s computer systems.
The accuracy of feature based systems is generally better than that of appearance
based systems for comparable computation and image resolution restrictions. Fea-
ture based systems also cope better with changing scaling of the face and therefore
give the user greater freedom of motion.

The basic idea of head pose estimation in feature based systems is to match the
pose of an apriori known 3D model of the facial features to the 2D feature location
measurements in the image. If stereo cameras are used instead of a monocular system
the measurements are 3-dimensional. However, the underlying pose recovery problem
is similar although the actual calculations are quite different. The facial features are
modelled as point features and are characterised by the texture properties of the
area. The properties depend on the chosen feature detection method and could
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include the actual texture, the intensity gradient field or the response to Gabor
filters. The input to the head pose algorithm is the location of the point features,
which are often augmented by statistical measures of the uncertainty of the measured
points. Uncertainty measures are important to the robustness of the system. Visual
feature detection methods are never perfect and all fail from time to time, thus
providing incorrect results. Errors and measurement noise introduce inconsistencies
in the observed feature constellation and therefore in most cases a best fit between
the model and the measurements must be determined.

Depending on the input (monocular or stereo) and the perspective model cho-
sen (affine projection or perspective projection) a closed form solution exists for the
model fitting problem or an iterative search approach must be used. The closed
form solution is derived from an overconstrained system and the resulting pose min-
imises the discrepancies between the measured feature positions and the positions
predicted by the 3D model. Iterative solutions for the model fitting problem are
computationally expensive. However, iterative solutions are suitable for continuous
tracking applications when the change in head pose between consecutive frames is
small. In real-time systems that run at 30/60Hz this is a feasible solution since
head motions will be limited. An iterative search in the 6-dimensional state space
of the head pose without prior knowledge of the approximate head pose should be
considered as impractical.

In many cases by making certain restrictions allow the derivation of a closed form
solution for the head pose. These restrictions can apply to the number of features
[Gee and Cipolla 1994], [Shimizu et al. 1998] or require all features to lie within a
plane [Maurer and von der Malsburg 1996].

The first approach that used a restricted number of features was reported by
[Gee and Cipolla 1994]. The system uses 4 facial features, the two pupils and the
corners of the mouth which can be assumed to lie within a single plane. Two vec-
tors, the one connecting the pupils and the one connecting the centre of the two
mid-points of the eye and the mouth connections, are used to derive the facial nor-
mal in a closed form solution. Gee later extended this method by tracking more
features like the nostrils and the point between the eyebrows and used the RANSAC
algorithm to select three points which, fed through Huttenlocher’s alignment algo-
rithm [Huttenlocher and Ullman 1990], produced the head pose that best explained
the feature location of all features [Gee and Cipolla 1996]. Huttenlocher’s alignment
algorithm assumes affine projection (no depth forthshortening) and recovers the pose
of a model consisting of 3 points in a twofold ambiguity with a simple and efficient
closed form algorithm. A variation of the algorithm is used by [Shimizu et al. 1998].
The research presented in this thesis extends the original Huttenlocher algorithm.
The extensions are presented in Chapter 3 and address the two major drawbacks of
the original algorithm, it’s high systematic error for feature positions generated by
a perspective projection which is the case in all real images from a real camera and
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the output of the algorithm, the rotation matrix, is only valid if the feature coordi-
nates are the result of a noise-free affine projection. These characteristics hamper
the application of the original algorithm to real image data and make the extensions
presented in this work necessary.

The system described by [Maurer and von der Malsburg 1996] used more features,
but assumed that all features lie within a plane. A least squares method is used to
solve the resulting overconstrained equation system under affine projection. A similar
approach was used by [Shakunaga et al. 1998], however, this method does not require
the assumption that the facial features lie within a plane. An arbitrary number of
3D feature points without additional constraints can be used.

A stereo camera system that uses only a restricted number of features was re-
ported by [Xu and Akatsuka 1998]. Like Gee’s original system it used both eyes
and mouth corners to estimate the head pose. However, 3D measurements are ob-
tained from the stereo camera system. A closed form solution for the head pose is
obtained from 3 out of the 4 available 3D measurements. The reported accuracy of
the system indicated an average error of ~3° for each individual axis of rotation.
The translational error was not reported.

All the previous work discussed thus far have an important shortcoming; there is
no consideration of the tracking performance of the individual features in the head
pose estimation. As mentioned earlier on, every visual feature detection method
fails under certain conditions, for example when the feature surface normal is almost
perpendicular to the image plane. Failure to track a facial feature can cause random
head pose estimation results and ultimately complete tracking failure. Therefore,
robustness to partial tracking faults should be a significant consideration in the
design of face tracking systems if they are to be used in real-world applications.

One way to consider uncertainty for feature localisation results is to use an ex-
tended Kalman filter to estimate the head pose. This idea was first implemented
by [Azarbayejani et al. 1993] for head pose estimations and has previously been de-
scribed by [Clark and Kokuer 1992] and [Reinders et al. 1992] for the calculation
of general object orientations. Azarbayejani’s system uses an 18-dimensional state
vector that included the 3D translation and rotation, and the associated first and
second order derivatives. Although the relationships between the 2D measurements
from a monocular camera and the corresponding state parameters are not linear, a
local linearisation approximates the true relationships sufficiently well. The variance
of the measurements is derived from the correlation values of the brightness nor-
malised template correlation used for feature tracking. The reported accuracy for
the rotational state of the head was 2.4°. The same method has been used in other
head tracking systems [Saulnier et al. 1995]. These systems achieve near real-time
performance with a frame processing rate of 10Hz. The 18-dimensional extended
Kalman filter requires significant computational resources. However, it allows for
the inclusion of feature tracking confidences to be included into the calculation of
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the head pose.

An alternative solution to a Kalman filter has been proposed using a spring-
damper model [Matsumoto and Zelinsky 2000]. This system used stereo vision to
acquire 3D measurements for each facial feature. It connects the measurements and
the corresponding feature model points with springs whose strength is proportional
to the confidence of the feature detection. Then an iterative search process is used
to find a new model pose which balances the pull of the springs. In effect, features
which could be detected reliably influence the resulting pose of the head model more
than unreliably detected features. The system achieves real-time performance of 30
frames per second with a slightly higher accuracy than Azarbayejani’s Kalman filter
solution.

Summary

The appearance and feature based head pose detection methods differ significantly in
their performance profiles. Appearance based methods provide less accurate results
but require less apriori knowledge about the head pose. They are well suited for
single image processing and initialisation of feature based head tracking systems.
Optical flow methods suffer from drifting problems which can only be solved by
adding another module based on features or appearance. Therefore‘, optical flow
methods are not well suited as the sole method of pose estimation, however, they
can augment other methods. Feature based methods provide real-time performance
and high accuracy, however, they usually require an apriori known model of the
head. They also offer the possibility to incorporate multiple cameras to achieve
higher accuracy, which is not possible for optical flow based systems. In general
feature based methods offer significant advantages for real-time head pose tracking.

2.2.4 Eye gaze estimation

One of the driving forces behind the development of face tracking system is the goal
to allow machines to sense where a user is looking. It is not sufficient to consider
the head pose only, the orientation of the eyes must also be measured. The vision
based methods that measure the eye gaze direction of a person can be classified into
two main groups, use of corneal reflections and localising the iris with respect to
the centre of the eye ball. Systems of both categories have evolved from restrictive
laboratory based setups to complete unintrusive and unrestrictive systems. Early
systems required people to put their heads into fixation frames to suppress head
motions [Spindler and Chaumette 1997] and [Klingspohr et al. 1997]. The camera(s)
were mounted to point directly at the persons eye(s)*. With the miniaturisation
of camera technology it has become feasible for a person to wear the frame and the
camera. Most head mounted systems contain a magnetic motion tracker to determine

4Many systems consider only one eye since in general both eyes are pointing at the same target.
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the pose of the frame in space, while the cameras determine the orientation of the
eyes relative to the frame [I[wamoto and Tanie 1997]. Recently, a small number of
systems have been devised which not require the user to wear equipment and allow
natural user head motion [Matsumoto et al. 1999].

Non-vision based methods also exist to detect a persons gaze. One commercial
system uses contact lenses with tiny coils embedded. Users are required to wear the
lenses and keep their heads within a magnetic detection frame which measures the
motion of the coils in space.

Since the work presented in this thesis is focused on non-intrusive and non-
restrictive gaze tracking systems, the following overview concentrates on methods
that have been or can potentially be used in the same way.

Corneal reflection based systems

Section 2.2.2 described a method for facial feature detection using IR illumination.
A similar method can be used to not only localise the pupil but also to derive the
orientation of the eye ball. The IR illumination does not only create a bright pupil, it
also creates a reflection on the cornea of the eye, referred to as glint. The displacement
between this corneal reflection and the bright pupil in the image directly corresponds
to the orientation of the eye ball in space. Therefore, by observing only the bright
pupil and the corneal reflection and with apriori knowledge of the eye ball shape and
the distance between the camera and the eye, the eye gaze vector can be determined
[Hutchinson et al. 1989).

This method has been used in head fixation systems [Spindler and Chaumette
1997], wearable head frame systems and, in a limited way, in unconstrained head
motion systems [Hutchinson 1993]. To achieve a good noise to signal ratio with this
method, a high resolution image of the eye is required since the distances between
the pupil and the corneal reflection are generally only a fraction of the eye diameter.
In an unconstrained head motion system the camera must be mounted in front of the
user and use a large focal length to achieve high resolution images. However, since
the eye must remain in the camera’s view, the motion of the user’s head is restricted
to only a few centimetres. To allow reasonable head motion an active camera system
must be used [Morimoto and Flickner 2000]. ‘

In the image the bright pupil is usually much larger in size than the corneal
reflection. In frontal views of the eye the position of the corneal reflection can not
be determined since it is overlaid with the much larger bright pupil. This problem
is solved by using not only the coaxial illumination for the pupil, but also one or
two off-axis IR-sources which create additional reflections which can also be detected
precisely [Morimoto and Flickner 2000] .

The corneal reflection method is used by nearly all commercial systems (see Ap-
pendix B). Most commercial systems use non-head mounted cameras so the user
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is not required to wear any head gear. The elegant aspect of the corneal reflection
method is that the head pose is not required for fixed camera systems. The orienta-
tion of the head does not influence the measurements of the system. The drawback
of this method is that only small translational head motions are tolerated. Motions
along the optical axis of the camera can also cause problems as the scaling of the
eye in the image and the geometric relation between the eye and the environment
changes. Obviously such head motion can not be detected since the 3D head pose is
unknown. To use the system effectively users must keep their heads steady to about
+5cm [Hutchinson et al. 1989]. Systems that use frames or head gear are suitable for
laboratory experiments but are too intrusive for general human-computer interac-
tion. The corneal reflection method is popular because the technique works robustly
under varying illumination conditions, it requires few computational resources and

no head pose measurement is required.

Eye ball position based systems

People have the capability to easily estimate where another person is looking. The
only cues available to humans are the 3D head pose and the location of the iris relative
to the surrounding facial features. These cues can also be used by a computer vision
program to determine the 3D gaze direction of a person. However, these cues are
much more subtle and are subject to variations in appearance due to changes in
illumination and head pose. They require sophisticated feature detection and pose
estimation algorithms that are designed for robust operation in varying conditions.
Obviously, such systems require more computational resources than corneal reflection
systems. However, recent advances in computation speed are making such methods
possible.

The requirements for a passive 3D eye gaze tracking system depend on the restric-
tions that are imposed. If the head can be mechanically fixed, the 3D gaze tracking
problem can be reduced to finding the mapping between the image location of the
iris and the 3D gaze direction [Klingspohr et al. 1997]. The method used to detect
the iris is the circular Hough transform. A simple calibration procedure can be used
to determine the 3D head pose which is implicitly contained in the mapping. This
system used a linear interpolation between the eye gaze direction to the corners of a.
monitor in front of the person to find the gaze point. Although this model does not
take into account that the iris is moving on the surface of a sphere, it’s accuracy is
reported to be in the order of 2.3° at a frame rate of 1Hz. This method is unsuitable
for applications other than laboratory experiments.

A system with similar restrictions using a different processing method was re-
ported by [Baluja and Pomerleau 1994b], [Baluja and Pomerleau 1994a]. The re-
ported work was the first eye gaze detection system that did not use corneal re-
flections or a head frame. One of the eyes was located by a heuristic filter which
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located a bright spot within a dark surrounding. This filter was tailored to a setup
which consisted of a desktop computer with a light source mounted below to create
a bright reflection on the cornea’®. The raw pixel values were used as inputs to a
neural network which derived the orientation of the eye. The reported accuracy of
the system was 1.7° for an eye image area of up to 20 x 40 pixels at a frame rate
of 10Hz. This accuracy was achieved by passing the gaze direction generated by the
neural network through a 2D lookup table with static correction values. Although
the system tolerated small movements of the head, the 3D head position could not be
determined by the system and therefore translational head motion introduced errors
in the gaze vector calculation.

The only way to achieve robustness to head motions in completely passive visual
eye gaze tracking systems is to also measure the head motion. Measurements of
the head pose and the image location of the iris allows the calculation of the gaze
direction, independent of rotational and translational head motions. This philosophy
has been pursued in this thesis. The reported work and the successor stereo system
developed by [Matsumoto and Zelinsky 2000] are the only systems to date that have
implemented this technique. The head model includes the position of the centre of
the eye balls and their radius. The measurement of the head pose therefore yields the
3D position of the eyes. The image location of the iris allows for the calculation of a
ray from the camera centre through the sphere of the eye. The intersection of this ray
and the 3D position of the eye ball determines the 3D eye gaze direction. The system
described in [Matsumoto and Zelinsky 2000] uses a circular Hough transformation
to determine the location of the iris. The reported accuracy of the gaze direction is
better than 3°. The system runs at full video frame rate (30Hz).

Summary

Two classes of eye gaze detection systems have emerged thus far. The corneal reflec-
tion method has the following advantages:

¢ Robustness to changes in illumination
e Precise measurements
e Few computational resources

e The measurement of the head pose is not required.

These advantages have made the method successful in the commercial area since
the alternative method requires complex vision algorithms to achieve similar results.
However, the corneal reflection method also has the following drawbacks:

5This reflection was not used in the same way as in corneal reflection systems. This work raises
the question to what extent the neural network learnt to associate the location of the reflection to
the iris position to derive the eye gaze direction.
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e High resolution images of the eyes are needed

Head pose/facial gestures can not be recovered

e Change in the distance of the eye to the camera can not be determined and
give rise to erroneous results in the eye gaze point

e Narrow camera view angles allow for limited lateral head movement

e No estimate of the gaze direction is possible if the eyes are occluded

Since IR illumination is required implementation on existing web-camera tech-
nology is not possible

The restriction of the head movements can partially compensated for by a pan/tilt
camera. However, due to the narrow view angle and the limited frame rate of normal
cameras fast head motions can not be compensated for. This solution does not
address the problem of accounting for the distance between the camera and the eye.
Overall the corneal reflection method does not provide the level of flexibility needed
for human-robot interfaces. In applications such as interfaces to digital datacasting
appliances for video telephony/conferencing, computer games and virtual worlds, the
head pose is a crucial piece of information.

These shortcomings in the corneal reflection were starting point of the develop-
ment of the visual interface described in this thesis.

2.2.5 Facial gestures

The recognition of facial gestures, such as nodding and shaking the head, has received
modest attention. Gesture recognition is a typical pattern recognition problem.
In every performance of a gesture the timing and facial feature motion parameter
amplitudes differ slightly from other performances of the same gesture.

This kinship to natural speech recognition was recognised by [Darrell and Pentland
1993] who devised a gesture recognition system for facial expressions and hand ges-
tures. They used a dynamic time warping algorithm which is widely used in natural
speech recognition [Sakoe and Edelmann 1980]. However, this method requires con-
siderable computational resources and only two gestures could be detected in real
time [Darrell et al. 1995]. Unlike words, cyclic gestures do not have a precisely de-
fined number of cycles making them difficult to recognise. For example, a nodding
gesture typically consists of 2 to 4 cycles of up-down motion. The same problem
occurs with the continuous dynamic programming method presented by [Nishimura
and Okaa 1996] and later by [Wu et al. 1998] because both are based on a predefined
series of measurement vectors.

In my masters research thesis [Heinzmann 1996] I developed a gesture recognition
system that is based on the decomposition of the gesture into atomic actions, sections
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of limited variability in the parameter flow. The method used finite state machines
to model and recognise gestures. This algorithm is not only efficient (12 different
gestures are distinguished at 30Hz sampling rate) but also provides the ability to
model gestures with variable cycle numbers as well as the differences in gesture
performances. A similar concept has been used by [Hong et al. 2000] for the detection
of face and hand gestures and by [Kawato and Ohya 2000] to recognise nodding and
head shaking gestures.

The recognition of spatio-temporal gestures is straight forward and has satisfac-
tory error rates. Most errors are introduced through failures of the head tracking.
Recognition methods based on the finite state machines have proven to be efficient
and are sufficiently accurate to model facial gestures. The system described in my

masters research has been reused in the human-robot interface described in this
thesis.

2.2.6 Other face-related issues

Other issues related to face-centred visual interfaces are discussed here to round of
the description of the functional blocks. However, the work presented in this thesis
does not touch on these areas, but is important to face and facial feature tracking
technology.

Face recognition

The recognition of faces for identification purposes has been the most active area of
research in visual interfaces for many years. The body of work published in this area
is too diverse to review. Overviews on the different approaches have been presented
in [Brunelli and Poggio 1993] and [Chellappa et al. 1995]. Face recognition is related
to the three previously discussed functional blocks: Face detection, feature detection
and 3D head pose estimation. Obviously the location of the face has to be initially
determined. Many face detection algorithms require the detection of the location
of key features in the face to fit a model to the image or to extract characteristic
parameters. If the system does not expect the person to look directly into a camera
at a known point in time, it is necessary to track the persons head pose to determine
when the person is in a favourable position for the recognition process to begin.

Facial expression recognition

The recognition of facial expressions has attracted considerable amount of attention.
In some earlier publications the term facial gestures has been incorrectly used instead
of the term facial ezpression. Facial expressions do not have a time component and
are defined only by deformations of the facial surface. The recognition of facial
expressions requires a deformable model of the face in the form of either a deformable
feature mesh or deformable templates of the face. The detection of facial expressions
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is an important function for applications such as video conferencing, virtual world
access and character animation.

Past work published in this area has used optical flow [Mase 1991}, full-face tem-
plates [Darrell et al. 1994], eigenspace full-face templates [Ohba et al. 1998] and
deformable feature templates [Black and Yacoob 1995] to detect different facial ex-
pressions. The system described in [Tao and Huang 1998] used a full face model
composed of deformable patches. Intensity edges have been used to measure the fine
details of the deformations of facial features [Saulnier et al. 1995], [Ohta et al. 1998],
[li Tian et al. 2000a] and [li Tian et al. 2000b]. The analysis of facial actions (fa-
cial muscle contractions) and their relation to emotion such as happiness, sadness,
surprise etc. has been termed as Facial Action Coding System (FACS) [Ekman and
Friesen 1975], [Ekman and Friesen 1978]. FACS is the basis of many classification
methods in the systems described above.

3D model building

Most face tracking systems use hand crafted models. This is convenient for laboratory
experiments as it reduces the complexity of the problem and the measured accuracy
does not depend on the accuracy of the model acquisition stage. Hand crafted models
also can be tweaked to yield the best performance and therefore the results tend to
be better.

Face models have two aspects to them: Geometry and appearance. It is possible
to learn one of these aspects assuming the other aspect is known or both aspects
must be learnt by the system. Learning can be performed in a dedicated model
acquisition stage before the tracking or it can be performed online during tracking.
The two stage approach is usually preferred since it offers the possibility of asking
the user to manually identify facial features or to fit a general face model to an image
[Rowley et al. 1998], [Pinto-Elias and Sossa-Axuela 1998].

The system described in [Sengupta and Ohya 1998] and [Sengupta et al. 2000]
used a regression method and assumed an affine geometry to determine depth maps
from multiple monocular images to build a 3D model of the head without apriori
knowledge. The resulting model is then texture mapped with the input images and
was then used to generate animations of the face.

The approach presented by [Feng et al. 2000] uses an apriori geometric model of
an average face consisting of feature points connected with spring loaded elements.
Using a series of monocular images the model is adapted to a particular person. The
derived model is then texture mapped with information from the input sequence for
animation purposes. A similar system using stereo cameras and projective geometry
was reported by [Nagel et al. 1998]. An apriori known average face model is adapted
according to the results from the 3D stereo camera measurements.

In general the use of a predefined model requires the system to solve the difficult
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problem of finding the correspondence between the model features and the image
features.

Lip tracking

The mouth is a highly deformable facial feature. While the eyes can only rotate and
open/close, the mouth can be brought into a multitude of different configurations.
Lip motion is an important feature for applications such as character animation and
teleconferencing. It is also used in speech recognition, in conjunction with the audio
processing, resulting in a higher recognition rates. This is desirable for applications
such as automatic indexing systems for digital media archives, automatic production
of movie subtitles and automatic protocol systems in a video conference system.

Earlier systems used simple 2D models based directly on the appearance of the
mouth region in the image [Coianiz et al. 1995] [Colombo and Bimbo 1996]. Today
more complex 3D models are used to model the lip shape [Basu et al. 1998b]. Since
the lips do not provide a high contrast with respect to the surrounding skin, ear-
lier systems used coloured lipstick [Saulnier et al. 1995] or reflective markers [Basu
et al. 1998b]. With increasing computational resources and the refinement of visual
algorithms artificial markers are no longer required. Most 3D lip model systems
use the analysis-through-synthesis approach to fit the projection of the 3D model to
the observed 2D shape [Matthews et al. 1998], [Revéret and Benoit 1998] and [Basu
et al. 1998a].

Lip tracking systems that allow users to move freely, and in particular move their
heads around, require a face tracking system to reliably obtain images containing the

mouth. Therefore, many lip tracking systems are built upon a face tracking system
[Saulnier et al. 1995).

2.2.7 Non-face related issues in human-centred visual interfaces

Although this thesis entirely focuses on face-centred interfaces, two other important
directions of development in the visual human-machine interface sector should be
examined.

Besides the face of a user, the hands are also of interest. Hand gestures are
used extensively to enhance the understanding of the spoken language. Hearing and
speaking impaired people communicate entirely through sign language. Hands are
also an intuitive way to interact with virtual environments. For those reasons the
tracking of hands and hand gesture recognition has received considerable attention.

The other main direction of development in visual interfaces is the tracking of the
body pose. This includes arms, legs, torso and head positions, but usually excludes
the hand pose, eye gaze or facial expressions. A variety of sensor based systems have
been developed for this application. They are used mainly in commercial animation
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applications. The academic research in this area has been focused on visual solutions
which removed the need for artificial markers attached to the person’s limbs.

Hand tracking

Hand tracking is probably the most difficult problem in human-machine interfaces.
Although the skin colour detection method provides a reliable segmentation of the
hand [Zhu et al. 2000] [Imagawa et al. 1998] [Yang and Ahuja 1998], the recovery
of the hand pose is hampered by the uniform colour of the hands resulting in low
contrast features, the partial occlusions caused by many hand poses, and the high
bandwidth of hand motions.

However, for many applications it is not necessary to recover the precise pose of
the hand. One important application of hand tracking is the recognition of spatio-
temporal hand gestures [Black and Jepson 1998] [Marcel et al. 2000]. Spatio-temporal
gestures also play an important role in the recognition of sign language [Yang and
Ahuja 1998]. Deictic (pointing) gestures are also of interest in many real-world
interface systems [Wu et al. 2000], and to command a robot [Sato and Sakane 2000].
To recognise deictic hand gestures it is sufficient to derive the 3D orientation of the
hand, but not necessarily the position of each finger. Hand tracking systems have
also been used as interfaces to desktop computer as a replacement for the mouse
[Maggioni 1993] [Maggioni 1995]. The setup of such systems requires the mounting
of the camera above the hand (for example on the ceiling) and the hand is assumed to
be approximately parallel to the image plane. In such a restricted case the 2D shape
analysis of the skin coloured region in the image is sufficient to recognise a range
of different gestures [Triesch and von der Malsburg 1996] [Segen and Kumar 1998]
[Sato et al. 2000]. Eigenspaces have also been used to classify the hand pose from
2D edge images [Moghaddam and Pentland 1997].

The reconstruction of the precise 3D configuration of the hand from 2D images
is much more difficult. The system described by [Heap and Hogg 1996] used a
point distribution model to derive the 12 unknowns required to define the pose
of their 12 DOF model. A two-step iterative approach was reported by [Wu and
Huang 1999] which derives the palm orientation first and then recovers the state
of the individual fingers in the second step using a kinematic model of the hand.
An analysis-through-synthesis approach has been reported in [Shimada et al. 1995]
which tried to determine the 3D pose by altering the configuration of a 3D model
until it best fits the observed 2D silhouette.

Human body tracking

The third mayor thrust in visual human-machine interfaces is concerned with full
body pose estimation systems. This topic has been an active research areas since the
early 1980’s [Hogg 1983] since it has obvious applications in surveillance and char-
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acter animation area. Given the fact that with comparatively simple background
subtraction and shape tracking methods such as snakes [Baumberg and Hogg 1993]
[Baumberg and Hogg 1994] reasonable results can be achieved with few computa-
tional resources. Todays systems can be divided into three classes according to the
resolution of estimation of the body pose.

Systems of the first class only detect the presence of one or more persons and
extract the silhouette. Systems based on shape similarities and snakes [Geiger and
Liu 1996), optical flow [Iketani et al. 1998], Hidden Markov Models and Kalman filters
[Rigoll et al. 2000] have been reported in this area. Various extensions have been
proposed to these schemes including multi-camera multi-person tracking [Utsumi
et al. 1998], tracking of interacting people with resolution of occlusion [McKenna
et al. 2000] and the detection of people who are carrying objects [Haritaoglu et al.
1999].

The second class of systems uses 2D models of the human body. The models
consist of multiple parts for the various body parts and are matched with the observed
silhouette. The “cardboard people” [Ju et al. 1996 are an extension of the facial
expression detection system based on optical flow [Black and Yacoob 1995]. The
model of the motion consists of ten rectangular parts which are linked by rotary
joints. The model motion is adapted to match the observed optical flow. Similar
models have been used by [Hu et al. 2000}, [Cham and Rehg 1999] and [Ioffe and
Forsyth 1999]. The “Pfinder” system uses a “blob” (ellipsoid) model to approximate
the silhouette which is adapted online to allow to track the torso and the limbs of the
person [Wren et al. 1996] [Wren et al. 1997]. The “Ghost” [Haritaoglu et al. 1998b]
and the W* system [Haritaoglu et al. 1998a] form a body tracking and body part
labelling system based on the silhouette. The system used a number of heuristics to
match a six-part model with the silhouette and then tracks the body parts according
to their appearance in the image.

Similar to the hand tracking, the recovery of the precise pose of the human body
is difficult due to the dexterity of the body and the occlusions that occur in many
body poses. For desktop interfaces the complexity of the task can be reduced by the
tracking of the upper torso, the arms and hands and the head [Wren and Pentland
1998], [Iwai et al. 1999]. For complete body tracking, more general methods are
required. The “Spfinder” system is an extension of Pfinder which uses stereo cameras
and 3D blob models [Azarbayejani et al. 1996a), [Azarbayejani et al. 1996b]. Using
stereo vision and a full body kinematic model consisting of ten moving parts, more
detailed body tracking was reported by [Munkelt et al. 1998]. A similar approach
was reported by [Zheng and Suezaki 1998]. Using a monocular camera image the
user must manually fit the 3D model to key frames. The system then interpolates
the motion of the model in the intermediate frames. An analysis-through-synthesis
approach was reported in [Delamarre and Faugeras 1999]. The system manipulates
a 3D model until a best fit with the silhouette in the images occurs. A system purely
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based on fitting silhouettes is described by [Brand 1999).

Similar to the hand tracking the human body pose tracking problem is still un-
solved. Systems can only derive approximate estimates with only a few assumptions
and minimal apriori knowledge [Azarbayejani et al. 1996a], [Wren et al. 1997]. If
more accurate approximations are required then more apriori knowledge is required
[Munkelt et al. 1998]. The other similarity to hand tracking systems is the wide
use of kinematic models which provide constraints about the possible motions of the
person in addition to the visual information derived from the images. Such addi-
tional constraints are particularly important for analysis-by-synthesis systems which
have to deal with a high-dimensional search space due to the dexterity of both hands
[Shimada et al. 1995] and body [Delamarre and Faugeras 1999].

2.2.8 Summary

In the previous section the various aspects of human-centred interfaces were dis-
cussed. Attention was given to face detection, facial feature tracking, 3D head pose
estimation, gaze estimation and gesture recognition since these are the areas this
thesis is concerned with. A wide range of related areas have also been described
briefly to allow the reader to put the research in face and gaze tracking into a larger
context.

The computer vision algorithms used for the various functions in visual human-
machine interfaces have been addressed in the sections describing the respective
functional blocks.

Of all the past work referenced in this chapter only one system covers more
than one of the three major areas of human-machine-interaction [Hongo et al. 2000].
All other systems are either dedicated head, hand or body tracking systems. Even
within the group of systems concerned with facial interfaces most systems are tailored
towards one function such as gesture recognition or gaze tracking. The area of
visual human-machine interfaces currently lacks integration of the various aspects
of visual interaction modes. The system presented in this thesis implements three
major functions, 3D head pose tracking, 3D eye gaze estimation and facial gesture
recognition which have not been tackled by other researchers. Our interface is used to
control a real-world system, a human-friendly robot manipulator. The manipulator
is controlled by gaze and gestures to pick up specific objects and hand them over to
the user.

2.3 Human-friendly robots

Since human-friendly robots is a relatively new research area many problems are still
open. As stated in Chapter 1, the idea behind human-friendly robots is to create
manipulator systems that are able to complete tasks in close collaboration with



2.3. HUMAN-FRIENDLY ROBOTS 45

humans, in particular in physical proximity of humans and in environments used by
and designed for humans. This is radically different to traditional robot applications
and gives rise to two mayor issues which must be addressed:

e The safety of the humans in the environment of the robot: If people and robots
are to share the same workspace, constraints must be placed upon the robots
actions to prevent injuries occurring to the user.

e To create interfaces that make human-friendly robots usable: Existing inter-
faces are too cumbersome to allow intuitive and efficient interaction between
robots and people.

Both both of these issues have attracted minor attention, however, the interest is
beginning to grow. Section 2.3.1 reviews developments in the area of safety strategies
for human-friendly robots and the issues related to the physical interaction between
robots and humans.

Visual interfaces are also well suited to natural interaction between robots and
humans. Section 2.4 describes past research work in this area.

2.3.1 Safety issues

The safety of humans in the environment of the robot is of paramount importance
and this issue must be addressed in a robotics system that is designed for physical
interaction with humans. The various approaches to achieve safety in traditional
robotic systems and interaction systems are illustrated in Figure 2.2.

Separation

The traditional approach used in industrial environments is to separate robots and
humans whenever the robot is active. This is achieved by physically isolating the
area in which the robot is located using barriers. In this case robots and humans
work in separate and designated areas. The human world and the robot world are
completely separated. .

Other safe-guarding methods include laser fencing and visual acoustic signals to
indicate the condition of the robot [Engelberger 1980], [Dhillon and Anude 1993].
Safety measures are tailored to industrial applications and are not suitable to such
human-friendly robot systems.

Sensors

A variety of sensors have been developed to prevent or detect collisions in robot
manipulators. The most common way to detect collisions is to use a combination of
force and torque sensors mounted in the wrist of the robot. These sensors are well
suited to detect collisions, however, they are restricted to detecting the collisions of
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the hand only and are therefore not suitable as general safety devices. A standard
way to achieve sensitivity on all surfaces of a robot is to use tactile sensors. Tactile
sensors can be incorporated into the path planning process to create passable paths
in unstructured environments [Cheung and Lumelsky 1988]. Various systems with
tactile sensors have been proposed [Hills 1982], [Howe and Cutkosky 1993]. A com-
mon problem with tactile sensors is that it is often difficult to mount the sensors
on the moving parts of the joints [Lozano-Pérez 1985]. Also, tactile sensors can not
prevent collisions but only detect them after they occur.

Non-contact proximity sensors can be used to detect collisions before they occur.
Infrared and ultrasonic sensors have been used to detect objects in the close proximity
of a robot manipulator [Graham and Millard 1991], [Lumelsky and Cheung 1993].
Capacitance based systems allow a good coverage of the robot with fewer sensors
[Novak and Feddema 1994], [Vranish and Chauhan 1990]. A variety of computer
vision approaches towards collision avoidance in robot manipulator systems have
been reported [Matthies and Elfes 1988]. However, the reliability of vision systems
is much lower than that of other sensor classes.

In general the reliability of collision avoidance systems decreases with their detec-
tion range. Vision and ultrasonic system have reasonable reach, but their reliability
is low. Systems with higher reliability such as tactile and capacitance based systems
can only detect objects in the close proximity and therefore restrict the robot to slow
motions and strong braking forces are required to avoid collisions.

In the context of human-friendly robots collision detection systems are a necessity
and collision avoidance systems are desirable. However, no sensor system exists that
can guarantee collision avoidance with sufficient reliability without imposing strong
restrictions on the speed of motion of the robot. This is why there is a tendency
to accept the possibility of a collision with a human and then aim to ensure that
collisions are harmless. Such non-sensor based solutions increase a robot’s safety
while not depending on sensors and also reducing the cost, complexity and weight
of the system [Morita et al. 1999] [Lim and Tanie 2000].

Mechanical safety measures

The most obvious mechanical safety measure is to use padding, it is simple and
effective. Padding of the robot arm with an deformable substance reduces the impact
forces markedly [Yamada 1997]. Padded systems ensure safe operation in human-
robot coexistence applications [Suita et al. 1995], [Morita et al. 1999]. The most
common problem with padding is covering the joints and the hand of the manipulator
such that no gaps appear in the padding and the robot is not restricted in its mobility.
In general padding is advantageous since it decreases the risk of injury in a collision
and should therefore be considered wherever possible.

Another important mechanical feature of human-friendly robots are enclosed sur-
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faces that prevent the user from getting body parts being caught between moving
parts of the robot. Industrial robots do not fulfil this criteria in most cases. To
increase rigidity robot arms are often constructed from several parts that move with
respect to each other. A good example for a manipulator with enclosed surfaces are
the Robotic Research arms and the Barrett Whole Arm ManipulatorS (WAM).

The weight of the manipulator arm is also of importance. A heavy arm produces
much higher impact forces at the same speed than a light weight robot. To allow
a human-friendly robot to move at reasonable speeds the arm needs to be light.
The choice of light materials such as aluminium, magnesium or even plastics where
possible is preferable. Such materials increase the power-to-weight ratio of the robot
and therefore, heavier objects can also be manipulated.

Compliance

Compliance protects the user from excessive forces during contact with the arm
and allows the user to override the actions of the robot to a certain extent. This is
physiologically important since a rigidly controlled arm can give users the impression
that they are not in control. Physical compliance can be achieved in two ways,
either by making the robot mechanically compliant through flexible elements in its
structure (passive compliance) or by a control method that provides compliance
(active compliance).

Passive compliance can be achieved by adding compliant elements in the joints. A
mechanical compliance adjustment system based on springs mounted inside the joints
has been reported in a human-robot interaction system [Morita et al. 1998], [Morita
et al. 1999]. A similar compliant effect can be achieved by using electro-rheological
(ER) fluid in clutches mounted between the actuator and the joint. ER fluid changes
is viscosity when a electric field is applied. Systems using ER clutches for human
safety have been reported [Arai et al. 1998], [Sakaguchi et al. 2000]. A different
approach towards human-safety through mechanical compliance is described by [Lim
et al. 1999]. Instead of making the robot itself compliant, the robot is mounted on a
spring and damper system that allows the whole manipulator to yield if a collision
occurs. In addition, the base is set on coasters which gives the robot compliance in
the horizontal direction [Lim and Tanie 1999] [Lim and Tanie 2000].

Two approaches have been proposed to achieve active compliance: force control
and impedance control. Force control [Raibert and Craig 1981}, [Craig 1986} is a
widely used control method in robotics research to allow the precise application of
forces by the robot. It provides a formalism to derive the joint torques required to
produce a desired force and torque at a given point on the robot using the dynamic
model of the manipulator. This formulation is valid only for situations in which
the robot has already established contact. This methodology does not incorporate

5See also http://www.barrett.com
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the means to control collision forces. The impedance control scheme proposed by
[Hogan 1984], [Hogan 1985] was developed for industrial applications that require the
control of response of the manipulator to external forces. One of the first applications
that were described was automatic deburring. Again, the formulation was designed
to control the resistance of the robot arm to external forces. Like force control this
method was not designed to control collision forces [Hsu and Fu 2000].

As described by [Morita et al. 1999], safety considerations can be split into two
distinct phases, pre-collision safety and post-collision safety. Non-contact sensors
and padding are mostly concerned with the pre-collision safety, allowing the robot to
move freely without posing a threat to the user. Tactile sensors, passive and active
compliance are concerned with the post-collision safety, limiting the forces the robot
can apply to a person in contact with the robot. The robot experiments described
by [Lim and Tanie 2000] show that compliance only reduces the post-collision safety,
while the initial collision force remains unchanged, and therefore the pre-collision
safety is not increased.

Collision force control

Active compliance control methods are not suitable (and were not intended) to pro-
vide the means to control and limit the collision force of the robot with people.
Padding and proximity sensors can reduce the collision forces and increase the pre-
collision safety, but they do not provide a quantifiable limitation either. To allow
quantitative control and limitation of the collision force a pre-collision safety control
paradigm is required.

A simple solution would be to limit the joint velocity of each joint. Such a limita-
tion would provide a maximum potential impact force for static obstacles. However,
the maximum impact force would probably be reached only in small subspace of
configurations, and therefore, if the resulting maximum impact force is considered
safe, the robot could move faster in other configurations without exceeding this limit.
The method is only a crude approximation which wastes much of the potential per-
formance of robot system. A similar approximation can be achieved by limiting the
robot’s kinetic energy [Li and Horowitz 1995]. However, this method also unneces-
sarily limits the performance of the robot.

The research reported in this thesis develops a control scheme that allows for the
quantitative limitation of the collision forces of a robot. Such a quantitative pre-
collision safety measure is essential for safe human-robot coexistence. The scheme
consists of a control command filter which ensures that command signals complies to
control constraints which guarantee the desired limitation. This architecture allows
the combination of the proposed control scheme with any position or force control
algorithm.

The issue of controlling the potential collision force of a robot should not be
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confused with what is known as impact control, where the primary concern is the
stability of the controller during the transition between free motion and the constraint
motion after contact with the environment has been established. This subject has
been addressed by many researchers during the past decade [Volpe and Khosla 1993],
[Mills and Lokhurst 1993], [Hyde and Cutkosky 1994], [Xu et al. 1995], [Tarn et al.
1996], [Sarkar et al. 1998]. '

2.3.2 Physical interaction

The ability to physical interact with the environment, in particular a human or
another robot, is considered to be a basic feature of human-friendly robots and the
topic has attracted much interest in recent times [Khatib 1999], [Wakita et al. 1998},
[Brooks et al. 1998]. A simple example of physical interaction between people that is
experienced on a daily basis is the passing of an object from one person to another. A
person passing an object will keep hold of the object until they can feel the receiving
person’s grip on the object. Only when the receiving person is applying forces to
the object which indicates that the receiving person is in control of the object, the
passing person releases the object. [Wakita et al. 1998] describe a system which
simulates this behaviour using a force/torque wrist sensor.

Another example of physical interaction that has attracted considerable attention
is cooperative carrying of objects [Khatib 1999], [Khatib et al. 1997]. This system
allows the cooperative manipulation of an object by multiple mobile manipulators
and humans. The idea is to let the robot(s) support the main weight of the object,
while the person applies small steering forces to the object to direct the motion of the
robot. This application of physical interaction requires the robot to be able to sense
and to distinguish the small steering forces from the strong gravitational and inertial
forces exerted by the object. Force/torque wrist sensors were used for this purpose.
Other cooperative carrying systems have been reported [Kosuge et al. 1998], [Kosuge
et al. 2000}, [Hirata and Kosuge 2000]. Non-mobile systems have also been reported
[Kim and Zhang 1998], [Luh and Hu 1999], [Xu and Zheng 1999].

The development of cooperative robot systems has focused on the control aspect
and they all depend on force/torque sensors. The robot is largely insensitive to
external forces away from the wrist which could be the result of a human attempting
to move the robot or of a collision with an object or a person. No consideration has
been given to the design of the control algorithms and architectures of these systems
to human safety, collision detection and limitation of the effects of possible collisions
with the robot other than the wrist.

The research presented in this thesis focuses on the development of a control
scheme which limits the potential impact force of the manipulator in a collision.
Such a quantitative safety guarantee which is not restricted to the robot’s hand only
but is valid for the whole manipulator arm is a crucial building block for human-
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friendly robots, in particular for their application in the real world. The scheme
proposed in this thesis also allows the detection of external forces acting on the
robot at any point. This is important for the detection of collisions with obstacles
and the identifying forces applied by the operator at any point of the robot. Using
this external force detection scheme the exchange of objects between a robot and a
human operator are possible. The robot’s actions such as opening and closing the
hand are triggered by forces applied by the operator through the object.

2.4 Visual human-robot interfaces

Besides the safety and control aspects the interface between humans and robots is
a crucial aspect of human-friendly robots. The robot must be able to communicate
in a human-like fashion, and therefore mimic human perception to a certain extent.
Vision is the most important sensor for humans and as stated earlier, humans ex-
change much information via this communication channel using gestures. To date
few visual human-robot interfaces have been reported in the literature.

Hand gesture interfaces

The GripSee system reported by [Triesch and von der Malsburg 1998] and [Becker
et al. 1999] consists of a stereo camera system and a 7TDOF robot manipulator set
up in a desktop environment. Various objects are placed on the table and the robot
can be command by hand gestures to pick up an object and put it into another place
on the table. The system expects two hand gestures for each operation, the first to
indicate the object and the grasping direction and second indicating the destination
location. This coding system which requires the user to memorise various hand
gesture commands is unnatural and therefore contravenes the original purpose of
visual interfaces which was to allow natural interaction.

Another hand gesture interface, called the Space-Mouse, was reported by [Kurpjuhn
et al. 1999]. This system allows a robot manipulator to be steered in Cartesian space
by performing different hand poses in front of a camera. The system only allows mo-
tion control of the robot. No direct interaction is allowed, the operator controlling
the robot could be in another room.

A similar visual control system is reported by [Terashima and Sakane 1999]. The
system uses an active desktop to control a manipulator. A 3D model of the robot
and it’s environment and various controls are projected onto the table surface. A
hand tracking system is employed to select which controls are activated and which
objects are selected. The active desktop system is similar to systems described by
[Wellner 1993] and [Maggioni and Wirtz 1991]. This system can also be regarded as
a telerobotic system with visual user interface.
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Body gesture interfaces

A visual interaction system for a humanoid robot was presented by [Cheng and
Kuniyoshi 2000]. The system tracks the face and hands of the user with a stereo
camera system and derives the approximate upper body pose. The humanoid robot
imitates the motions of the user. The integration of the vision system within the
structure of the robot closes this gap between the robot and the command post.
Therefore, the operator actually interacts with the robot. However, the interaction
is restricted to simple arm motions which do not provide the dexterity required to
manipulate objects. At the current stage of development the system does not allow
physical interaction such as the passing of objects between the robot and the user.

A gesture interface for mobile robots was reported by [Waldherr et al. 2000].
This system recognises four different arm motion gestures which allow the user to
control the actions of a mobile robot. The small gesture repertoire is sufficient to
command the robot to follow the user and to stop. More complex commands such
as “go to place X” are not possible. Similar to the humanoid robot described above,
the human-robot interaction is restricted to giving visual commands and observation
of the robot’s actions.

Desktop assistant systems

[Hayakawa et al. 2000] described a robot assistant system in a desktop environment.
Similar to GripSee [Triesch and von der Malsburg 1998] it uses a stereo camera
system and a manipulator. The system learns to associate visual observations about
the assembly status with explicit commands from the user. After the training the
system automatically issues the actions appropriate to aid assembly based on the
visual observations. The basic idea is not to have a visual interface between the
operator and the robot but rather between the assembly and the robot. The operator
is unable to issue certain robot commands via this visual interface or physically
interact with the robot.

2.4.1 Summary

A small number of visual interaction systems have been developed for human-robot
interaction. However, these systems like the active desktop control [Wellner 1993]
and the SpaceMouse [Kurpjuhn et al. 1999] are merely remote control interfaces. The
user and the robot are not sharing the same environment and therefore are not able to
refer to the same physical entities in the environment. The GripSee system [Triesch
and von der Malsburg 1998] and the desktop assistant robot [Hayakawa et al. 2000]
are examples of system that achieve interaction in a shared physical environment.
This is the direction of development which will ultimately lead to machines that
allow the cooperative completion of physical tasks between a human and a robot.
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The research reported in this thesis incorporates a visual interface which uses the
eye gaze of the user and facial gestures such as nodding and shaking the head. Both
the eye gaze and facial gestures are natural human expression modes and therefore
require no additional training. The system can pick up designated objects and hand
them over to the operator or put objects down in places determined by the user’s
gaze point. Since the gestures are natural the commands required for such operations
can be explained to a person in a few minutes. The manipulator itself is controlled in
a way such that the safety of the operator can be guaranteed. The system also allows
physical interaction with the person as previously described. It therefore incorporates
the two crucial requirements for human-friendly robots, a natural interface and the
ability to physically interact with a person in a safe way.

2.5 Summary

This chapter presented an overview on the important visual human-machine interface
modes, algorithms and methods used for the various sub-functionalities of interfaces.
The review focused in particular on face-centred interfaces, 3D head pose estimation,
eye gaze estimation and facial gesture recognition. Many different functions and
interaction modes have been implemented in the various systems. However, the
research area suffers from a lack of projects which have integrated the various results
and deployed them in real systems, thereby showing the practicality and efficiency
of the methods.

The area of human-friendly robots is relatively new and few results have been
published. The related area of cooperative object handling has received much more
attention and a number of these systems have been developed. The focus of the
work in these systems has been the control of the robot while human safety issues
have only been given scant consideration. These systems have no interaction modes
other than physical interaction through forces and torques applied to the wrist. The
few human-friendly robots with visual interfaces that allow the issuing of commands
through gestures again do not provide any other interaction modes such as physical
interaction. Again, human safety is largely ignored.

The popular safety strategies for human-friendly robots are mostly mechanical
solutions such as padding and passive compliance. Control strategies such as com-
pliance control have been used in a number of systems. However, since these con-
trol strategies have not been developed specifically with human-robot coexistence
in mind, none of the systems limit the collision forces in the case of contact with a
human. This crucial safety characteristic must be implemented in human-friendly
robots.

The research work described in this thesis incorporates a vision system that is
able to detect the 3D head pose of the user, the 3D gaze direction as well as facial
gestures. The visual interface is used to control a human-friendly robot by gestures
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to allow a person to pick up objects. The robot is controlled with a novel control
method that limits impact forces. The method also allows the detection of collisions
at any point of the robot’s surface. The robot is able to physically interact with the
user, without relying on force/torque sensors in the wrist.
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Chapter 3
Face Tracking

Chapter 2 presented a review of methods for tracking faces and facial features and
to derive the head pose. A visual face tracking and 3D head pose estimation system
is the prerequisite for the tracking of the 3D eye gaze and the recognition of facial
gestures. Both gaze direction and facial gestures are natural communication mediums
which are suitable for non-expert users to control machines and appliances. .

This chapter describes the visual face tracking system based on facial feature
localisation which has been developed in this research. The system determines both
the 3D head pose and the 3D gaze direction in real-time from a monocular video
stream. The system requires only a single external camera and the user is not
required to wear any specialised gear. Moreover, the system works with completely
natural faces and does not require visual markers or high contrast lipstick [Saulnier
et al. 1995].

The real-time capability of the system is achieved by the application of dedicated
vision hardware which uses Sum of Absolute Differences (SAD) correlation between
template bitmaps and the live images. Since the detection and tracking of individual
facial features with this method is unreliable, the system uses a probabilistic frame-
work with Kalman filters and a number of heuristic algorithms to integrate the raw
correlation results to yield a reliable and robust system.

The 3D head pose is calculated using the alignment algorithm proposed by
[Huttenlocher and Ullman 1990]. The algorithm uses a closed form solution for
the elements of the rotation matrix and the translation vector of a feature triplets
and is therefore efficient and suitable for real-time operation. However, a detailed
analysis presented in this chapter shows that the algorithm has two major drawbacks.
The solution has a high systematic error as a result of the differences between the
assumed affine projection and the perspective projection of real cameras. The output
rotation matrix is only a proper rotation matrix if the feature’s image coordinates
are a result of a precise affine projection.

Extensions to the original algorithm are presented which reduce the systematic
error and guarantee the output of a proper rotation matrix. These extensions are
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evaluated in case study with a geometric setup similar to the face tracking applica-
tion. The study showed that the new algorithm reduces the systematic error up to
75% for the rotation and 90% for the translation along the z-axis.

The proposed algorithms have been tested on real image data. To achieve a
precise and realistic evaluation of the system a mannequin robot was used. The
experiments showed that the system can acquire robust and accurate 3D head pose
estimates over a wide range of rotations.

Section 3.1 gives an overview of the architecture of the system; feature tracking,
measurement integration and 3D pose estimation. Section 3.2 describes the vision
hardware, the lowest of the three layers. Section 3.3 describes the middle layer which
consists of a network of Kalman filters and a number of heuristic algorithms. The
purpose of the middle layer is to integrate the unreliable correlation results and
exploit the known geometric constraints between the facial features. The output of
the middle layer are robust estimates of the feature’s positions. Section 4 describes
the algorithms used in the top layer, the 3D head pose estimation. Section 4.5
presents the experimental results with real image data from the mannequin robot.
Section 3.5 discusses the insights gained from the study of the robust tracking and
3D pose estimation problem in monocular image streams.

3.1 System Architecture

The system consists of three main layers shown in Figure 3.1. At the lowest level
the vision hardware performs bitmap correlation. The results are correlation values
for selected feature positions.

The results are processed by the second layer which utilises a 2D model and takes
the measured 3D head pose into account to merge the information to produce robust
estimates of the feature image positions. This layer is implemented using a network
of Kalman filters which is described in detail in Section 3.3. The estimated feature
positions determine the location of the hardware search windows for the next image
frame.

The 2D feature positions are used in the third layer to determine the 3D pose
of the head. The system derives the 3D head pose from multiple feature triplets to
allow robust estimates using the frontal and side views of the head. The head pose,
motion and feature appearance parameters are used by other modules such as the
gesture recognition and eye gaze detection module. The feature points of the 3D
model are projected back into the image plane to adapt the constraints of the 2D
model in the second layer. All three layers are synchronised by the frame clock and
execute at. 30Hz.
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Figure 3.1: Structure of the tracking system

3.2 Layer 1: Template correlation hardware

The lowest layer consists of a real-time vision system implemented in hardware.
When the research project commenced the Fujitsu Colour Tracking Vision (CTRV)
vision hardware provided outstanding vision processing performance. Most of the re-
search was done using a Motorola 68030/25MHz host CPU. The 68030 was upgraded
to a Pentium/200MHz at the end of the development. The limited computational
resources of the host CPU influenced many of the design decisions and enforced a
minimal computation cost requirement for all algorithms.

The CTRY system was developed at Tokyo University [Inoue et al. 1993] and later
commercialised and manufactured by Fujitsu. The system is an image correlation
system consisting of a colour real-time NTSC digitiser, a correlation device, 3 image
buffers and a NTSC output. The system is available as a VME or PCI board.
Both versions have been used at different stages of the research. The video signal
is digitised at a resolution of 640x480 pixels and stored in one of the image buffers.
While the next video frame is being digitised into another image buffer the correlation
device performs the desired image correlations. The correlation kernels are stored
in a dedicated image buffer. The kernel is 8x8 pixels in size, however, oversampling
factors of up to 7 can be specified to enlarge the image area, but not the number of
pixels correlated. The correlation function is the sum of absolute differences (SAD)
as shown in Equation 3.1.

7 7
D(sz,8y) = Z Z | it(z - Ma,y - my) —ig(T - Mg + Sz, - My + 8y) | (3.1)
z=0y=0

where (sz, sy) are the image coordinates of the correlation and 4;(z, y) is the intensity
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of the correlation kernel and if(z,y) is the intensity of the pixel in the previous
digitised frame.

The system is able to track features as they move across the image by calculating
the distortion D between the template and the live image in a grid of 8 x 8 positions in
the image moving the search window over the live image horizontally and vertically by
the oversampling factors m; and my in between correlations. The lowest distortion
value in the array indicates where the template fits the image best. By calculating
the distortion array in consecutive frames features can be tracked as they move across
the image. The system is able to track 600 features at video frame rate.

The image intensity used for the correlation is one of the red, green or blue
channels. If the system is used in colour mode it calculates the distortion for each
RGB channel separately. The sum of the three distortion values for one image
location is used as the colour distortion value as shown in Equation 3.2.

The performance of the system in the colour mode is reduced by a factor of 3,
corresponding to the increase in computational complexity, and therefore only 200
colour features can be tracked at video frame rate.

The software library also provides the option of using bigger correlation kernels
such as 16 x 16, 24 x 24 and 32 x 32 pixels and arbitrary sizes. This functionality
is generated by using multiple 8 x 8 kernels, so the number of features that can be
tracked at frame rate is reduced.

The good performance of the correlation device is a result of the simple SAD
correlation function. A drawback of this design is the sensitivity of the correlation
to changes in the illumination. If the intensity of the image changes the previously
recorded templates will no longer match the features in the image and the correla-
tion results generate unreliable feature positions. This problem often occurs in face
tracking applications under inhomogeneous illumination. As the head rotates the
features on different sides of the head are illuminated more or less and the feature
tracking becomes unreliable.

Once the feature tracking fails and the tracking window no longer contains the
feature (outside the 8 x 8 grid) the system is unable to recover the feature location,
even if it appears again at the nominal intensity. This can also occur due to the
temporary occlusions of a feature. Additional methods are required to realise robust
facial feature tracking. The second layer implements methods which permit reliable
and consistent feature localisation which is crucial for 3D head pose estimation.
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3.3 Layer 2: Kalman filter network

The vision hardware offers the capability to develop high performance vision based
systems that run in real-time. However, the basic template tracking paradigm is not
robust enough for applications such as human face tracking.

One of the main problems with tracking the features of a face is the change in ap-
pearance of the features during motion which can disappear completely if the person
turns his/her head sufficiently far. Two main classes of changes in the appearance of
feature can occur; the change in brightness caused by inhomogeneous illumination,
and the projective deformation of the feature. The deformations are caused by rota-
tions of the head around the body axis and the axis passing through the ears which
compress the projection horizontally and vertically respectively, and by tilting the
head which rotates templates in the image plane.

The changes in appearance of the tracked features result in a worsening of the
correlation result, particularly at the correct position. Therefore the risk increases
that the template matches best at a position that does not correspond to the correct
feature location. When the tracking window loses a feature the resulting measure-
ments for the feature become unpredictable. In such situations the correlation value
is significantly worse than during tracking the feature, and eventually the tracking
window “finds” a location in the image that shows similarities with the original fea-
ture and the tracking window locks onto the incorrect feature. In such situations it
is impossible to decide with a thresholding technique whether the tracking window
is tracking the wrong feature or the higher distortion is caused by the deformation
of the feature or a change in illumination.

In this situation apriori information about the geometric relationships between
the facial features can be used to detect inconsistencies in the feature position pattern
and to guide failed search windows back to their respective features. However, in
critical situations such as large head rotations nearly all the tracking windows return
increased correlation values. Therefore a geometry check can determine whether the
configuration is right or wrong in most cases, but it is not possible to confidently
distinguish between which windows are tracking the right feature and those which
are not.

The solution proposed in my earlier work [Heinzmann 1996], [Heinzmann and
Zelinsky 1997] was to integrate the results of the hardware tracking system with
a geometric model of the face in a probabilistic way. The basic idea was to keep
the system in a stable configuration with correct geometric relationships between
the search windows and low distortions. This method has has been reused in this
research and is described for completeness in Section 3.3.3. The major drawback
of this method is the tendency to remain in local minima where the distortion of
the geometric constraints is insufficient to trigger the relocation of falsely positioned
feature trackers to correct feature locations. This problem is resolved in the research
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presented in this thesis which augments the basic method with a number of proba-
bilistic algorithms which are described in Section 3.3.4. Also the integration of the
robust tracking layer with the 3D head pose estimation in the top layer supports
the basic correlation result integration by providing precise 2D geometric relations
between the individual facial features (see also Figure 3.1).

3.3.1 The basic idea

The geometric constraints between the facial features are modelled as 2D distance
vectors. The constraints spawn a 2D network with features as nodes and constraint
vectors as edges. The correlation results have to be merged with these geometric
constraints to derive robust position estimates. In unproblematic situations when all
features are matching well, it is sensible to allow the features to deform the network
in reasonable ways since it is likely that the deformation is a result of imprecise
3D pose estimation than a loss of the features. However, if some of the features are
matching badly it is probably because some of the search windows are not tracking
the correct feature anymore. In this situation the system should relocate the search
windows which have lost their features to a position derived from the well tracking
features. In these critical situations usually all features have increased distortions
and thresholding is not an adequate method to classify between tracking and lost
windows.

The method proposed in my Master’s research used Kalman filters to estimate the
feature positions from the two data sources, the correlation results and the geometric
constraints of the feature network. In effect, the Kalman filters arbitrated between
the feature positions suggested by the image correlation and by the geometric model
and derived estimates of the feature position while taking the correlation confidence
of each feature and all neighbouring features and their geometric relationship into
account.

The mathematical background of the Kalman filter can be found in numerous
references and therefore only a short description of the functionality of the filter is
presented. A good introduction to Kalman filters can be found in [Maybeck 1979].
The mathematical details of Kalman and related filters are described in [Bozic 1979].

3.3.2 The Kalman filter in a nutshell

The Kalman filter is a recursive linear estimator which is used in many real world
applications to merge the measurements of sensors and a predicted state derived from
a system model. It is used for the navigation of planes, missiles and mobile robots
where uncertain measurements from sensors which observe beacons or landmarks are
used to determine the position of the vehicle.

Figure 3.2 shows the computational cycle of the Kalman filter. In the first step
a prediction of the current state vector x(t) is calculated by multiplying system
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Figure 3.2: The computational cycle of the classical Kalman filter [Bozic79]

matrix A and the previous estimate x(¢). The system matrix defines the relation
of successive state vectors. In the second step a prediction for the input vector is
calculated from the state prediction vector by multiplying it with the observation ma-
trix C. The predicted input vector is subtracted from the measured input vector y (t)
to obtain the error vector. The filter gain matrix K(t) can then be calculated. In
the final step the predicted state vector is corrected by a correction vector calculated
from the gain matrix K(t) and the error vector. The result is the new estimate
for the state vector x(t). The relevant equations for the state estimation are given
below.

Estimator:
x(t) = Ax(t — 1) + K(t)(y(t) — CAx(t - 1)) (3.3)

Filter gain:
K(t) = Py (t)CY(CPy(t)Ct + R(t))™? (3.4)

Error covariance matrix:
P(t) = P1(t) - K(t)CPi(2) (3.5)
P (t) is the predicted covariance matrix,
Pi(t) = AP(t - 1)A* + Q(t — 1) (3.6)
R(t) is the observation noise covariance matrix and Q(t) is the system noise
covariance matrix.
3.3.3 Kalman filter network

Kalman filters have been previously applied to the face tracking problem. The
straightforward implementation using the Kalman filter is to compose the state vector
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from the head pose, velocity and acceleration parameters [Azarbayejani et al. 1993].
However, this results in a high dimensional system (Azarbayejani used a 18 dimen-
sional state vector). The computation required with such large matrices is far too
high for real-time systems. Various simplifications can be used which lead to small
errors but markedly reduce the calculation time. One way is to ignore the off diag-
onal elements of the covariance matrix if the correlation between the the variances
is weak. The work reported in my Master’s research used one Kalman filter for each
tracked feature. This effectively ignored the off diagonal elements and the dimen-
sion of the state vector is variable (proportional to the number of features). This is
similar to the method of the Variable State Dimension Filter (VSDF) described by
[McLauchlan et al. 1994]. However, the adaption of the state transition function to
changes in the feature network and inclusion of new features is simplified due to the
distributed computation and the simple repetitive structure of each element in the
network.

Each feature uses one Kalman filter to merge the feature position vector returned
by the vision system with the position prediction calculated from the reference fea-
tures. Figure 3.3 illustrates how the individual Kalman filters are interconnected
to form the facial feature network. As an example the three filters for the features
around the right eye are shown in the figure. The output from reference features is
directly used as input to the position estimation of other dependent features. The
position estimates based on the location of the reference features are merged (M) as
a weighted sum according to the variance of the position of the respective reference
feature.

Therefore, for each facial feature ¢ the following calculations must be performed.
First the position prediction p,, based on the position of the k reference features
with indices rj;, j = 1...k and the 2D connection vectors d;;(t) provided by the
3D head pose estimation layer are calculated. The variance p(ri;j,t — 1) of the error
of the position estimation of each reference feature is used to weight the contribution
of each reference feature to the position prediction py,.

k P(rijt—1)+di; (t) ) .
C N 2j=1 prit-1) . p(,t—1)—p(i,t —2)
Pm(i,t) = 5 : + = — (3.7)
Ej:l P(Tij,t—lj +p(7'1,]» - )
To accommodate fast motions of the face the prediction must consider the motion
of the feature observed in the previous video frames. Under the assumption of
constant velocity the second term adds a fraction of the motion observed in the
previous two calculation cycles to the predicted position. It is scaled by the error
variance p(r;j,t — 1) of the previous position estimate to suppress motions based on

low confidence measurements which can cause oscillations of the filter.

Because only the diagonal elements of the covariance matrix of p,, are consid-
ered and they are assumed to be equal, only one variance value ppy, represents the
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confidence of the x- and y-component of p,,.

P 1) = (it~ 1) + g

7=1 p(rij,t=1)

The position measurement is a result of the correlations of the various templates.
The lowest correlation value c;(3,t) is selected by the selection module (S) of all
correlations of all templates of feature ¢ and e the corresponding position p,(3,t) is
selected as the currently measured position of the feature. This position p,(3,t) is
later used in the arbitration of the Kalman filter. The corresponding variance ppy of
the measurement (again the off-diagonal elements are ignored and the two diagonal
elements of the covariance matrix are assumed to be equal) is calculated by an
empirically determined formula which transforms the raw correlation result cg into
a suitable range for the filter.

e5(cs(i,t)2—1)
1 4 e5les(it)?-1)

pps(i,t) = 2500

The maximum variance of 2500 corresponds to a standard deviation of 50 pixels
which in turn corresponds to the search window size used by the vision hardware.
Beyond this window the correlation result and the error variance are not related and
therefore, the transformation levels off at that point.

Now the filter gain k(i,t) is calculated in the standard way as

LN PPm (i, 1)
W6t) = o) + ppeliD)

Finally, the new position estimate p(i,t) for the facial feature and the error vari-
ance p(i,t) which again represents the diagonal elements of the covariance matrix is
calculated.

P(i,t) = Pm (i, t) + k(5,t) (Ps(i,t) — Pm (i, 1)) (3.8)

p(i,t) = (1 — k(i, 1)) ppm (3, 1) (3.9)

Here the calculation loop closes and the new position estimates p(3, t) of all features ¢
are forwarded to the 3D pose estimation layer. This higher layer then updates the
model pose and calculates the new relative displacement vectors d;; between the
facial features ¢ and j from the projection of the model into the image plane.

This setup allows deformations of the 2D feature net depending on the confidence
of the localisation of the various features. The links to a feature that can be localised
with a high confidence become stiffer and more difficult to deform while links to
features with high correlation results become soft and can easily be deformed by
the position measurements of a neighbouripg feature. This confidence dependent
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Figure 3.3: Part of the Kalman filter network

flexibility of the geometric relationships between the features is crucial during the
recovery of tracking failures using the position detection of only a few facial features.
Single high dimensional Kalman filter solutions, such as [Azarbayejani et al. 1993],
do not provide this flexibility. Although they work well under optimal conditions,
their ability to recover from tracking failures is poor because they require that all
feature positions must be determined at the same time to reinitialise the filter state
vector. They are not able to exploit the detection of only few facial features and
then recover the position of the remaining features successively.

3.3.4 Improved Robustness

Section 3.3.3 described the feature network used to integrate the tracking results of
individual features in a distributed way such that the positions of poorly tracking
features are estimated by using well tracking features in a probabilistic way. The
Kalman filter network provides good tracking and recovery performance under most
conditions. However, the major drawback of the method is a tendency to remain in
local minima. This effect can occur during the initial feature localisation after the
system starts or when some of the feature positions were lost during tracking due to
occlusions or deformations. Some of the feature trackers that are not tracking their
respective facial features may “find” different facial features with a similar appearance
as the correct feature. For example the eye corner and the eye brow and the line
between the lips and the shadow at the bottom of the nose have similar appearances
and the respective feature trackers can get “stuck” on the wrong feature. In particular
if a falsely tracked feature is not far from the true feature the corrections through the
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model estimate of the Kalman filter may not be strong enough to enforce a relocation
of the feature tracker.

This effect is worsened by the fact that the vision hardware performs the cor-
relation only within a search window which is double the size of the template. If
the correct feature is outside this window the correlation results do not indicate the
position of or direction to the correct feature. Therefore the limited size of the search
window must be artificial enlarged by placing multiple search windows into different
positions. ‘

Besides the limited size of the search windows the application of rigid SAD tem-
plate matching to the face tracking problem worsens the local minima effect of the
Kalman filter network. This is because the correlation result is sensitive to changes
in illumination and projective deformations and scaling of the features in the image
it is not possible to make a confident decision whether a worse correlation value is the
result of deformations of the correct feature or an indication that the feature tracker
is in a local minima and the wrong feature is being tracked. This blurred distinction
between correct and incorrect feature tracking makes thresholding impossible and
was one of the motivations for the use of the Kalman filter network. This effect
hinders the recovery of all features particularly when the conditions are not ideal.
This is the case for example when the face is not viewed frontally or the illumination
is inhomogeneous.

These problems have been solved in this research with a number of algorithms
which aim to increase the robustness of the tracking and speed up the recovery of lost
features, and in particularly ensure that the face tracking system is able to escape
local minima. These improvements include the following algorithms and methods:

e Multiple templates for each feature organised in a probabilistic transition net-
work

e Variance controlled allocation and localisation of area search windows

e Strain integrators in the feature links

3.3.5 Network of template

As stated in the previous section, the application of rigid and non-normalised tem-
plate matching to face tracking results can result in poor correlation values due
to deformations and brightness changes of the facial feature. Figure 3.4 shows the
change of appearance in the right mouth corner caused when a person turns to look
from left to right. Although the changes between two consecutive images are small,
none of the highlighted templates provide good correlation results for all poses. The
only solution to ensure that the correct feature is tracked robustly in various poses
of the head is to adapt the correlation template to projective and brightness changes
of the feature. However, the computational requirement increases linearly with the
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Figure 3.4: Change in appearance of the mouth area

number of correlation templates used for each feature. Since the vision hardware can
only perform a limited number of correlations per frame, a subset of kernels must
be selected for correlation in each frame and for each feature. The goal is to find a
small set of correlation templates for each frame which maximises the chance that
the best fitting template is an element of this set. Therefore a scheme is required
which exploits the structure of the transitions of the appearance of the features.
Assuming that each template represents the appearance of a feature in a particular
configuration and the transitions between the configurations are subject to physical
limitations this subset can be determined.

The basic idea of this method is that if the best matching template of all templates
for a particular features is known, then a probability value can be assigned to every
other template which indicates how likely a transition is from the current appearance
to another appearance. These transition likelihood values depend on the similarity

of the head pose under which the templates were recorded.

To exploit this structure in the transitions between the templates and to min-
imise the amount of templates that have to be correlated in each frame the transition
likelihood between certain templates is stored in a network as shown in Figure 3.5.
Each template is a node in the network and each link contains the likelihood of a
transition from the source template to the destination template. The transition like-
lihood values in Figure 3.5 are examples only. The values used in the actual system
are empirically set according to the head pose where the templates are recorded.
During the setup of the system templates are recorded in many different known head
orientations and the transition likelihoods from a template to the neighbouring tem-
plates are reciprocal to the angular distance between the templates. Neighbouring
templates are the templates which are closest to the current template in a partic-
ular direction in the head pose/image brightness parameter space. The sum of the

likelihood values of all transitions from a template equals 1.
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Figure 3.5: Correlation kernel network
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Algorithm 3.1 Correlation kernel selection: select (State, Size)

if Size==0 then
return §
end if
use Set Result(Template)=0, Set Buffer(Template, Probability)= 0
use BufferElement LastAdded=(CurrentTemplate, 1.0)
Result.add(Current Template)
Size-
while Size >0 do
for all LastAdded.LinkedTemplate do
if LinkedTemplate¢ Result then
if LinkedTemplateg Buffer then
Buffer.add(Linked Template, Link.prob-LastAdd.prob)
else if Buffer.prob(LinkedTemplate)<Link.prob-LastAdd.prob then

Buffer.replace(Linked Template, Link.prob-LastAdd.prob)
end if

end if
end for
LastAdded = Buffer.select _smallest _prob
Result.add(LastAdded)
Buffer.remove(LastAdded)
Size-
end while
return Result
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Figure 3.6: Example of the selection of templates
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5 | {1,2345) | {[7, 0.056], [6, 0.084]}
6 1{1,23.4,56] | {[7,0.056]}
7 [ {12,34,56,7) | )

Table 3.1: Evaluation states

There are no links from one node to itself because the transition likelihood values
refer only the likelihood of the change to a different appearance. The template which
represents the current appearance is always in the set of templates to be correlated
in each frame.

Algorithm 3.1 returns a set of templates of cardinality Size which includes the
template which represents the current appearance of the feature and the Size-1 tem-
plates with the highest product of transition likelihoods calculated from the current
template. Figure 3.6 and Table 3.1 illustrate the operation of the algorithm with an
example. Figure 3.6 shows part of a template network. The template ¢; represents
the current appearance of the feature. Only the forward transitions are drawn in the
figure for simplicity. In the first step the current template is added to the Result set
and the two neighbouring templates ¢ and t3 are added with their respective tran-
sition likelihood. Then the template t; is selected since 0.8>0.2 and added to the
Result set and its neighbour template t3 is added with the likelihood 0.8*0.7=0.56
and so on. Between steps 4 and 5 the likelihood of template ¢g increases from 0.06
to 0.084 because the path via template ¢5 has a higher likelihood than the path via
template t4 only. This example assumes that the Result set is allowed to contain 7
templates. If a smaller set is desired by the system the algorithm terminates when
the Result set has the correct cardinality.

If the links for each template are pre-sorted according to their transition like-
lihood, this breadth first search algorithm determines the set of features with the
highest transition likelihoods in O(n) where n=Size is the size of the set to be de-
termined. The algorithm is well suited for a real-time system since the computation
time is independent of the number of templates in the template network and the
limitations of the vision hardware enforces a upper limit on the sizes of the template
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Figure 3.7: Local minima situation

sets.

3.3.6 Area search windows

The Kalman filter network provides an improvement of the tracking robustness when
the tracking of some facial features fails. The position estimate provided by neigh-
bouring features is sufficient in such cases to guide the lost feature trackers back to
their respective facial feature. However, this algorithm depends on the prerequisite
that only a few of the features have been lost. If all features are lost neither the
vision system nor any neighbouring features are able to provide useful estimates for
the location of the features. This problem usually occurs at system startup time
or when complete tracking failures occur, for example when the person temporarily
leaves the image and later returns, or when the head is rotated far enough that all
features tracked by the system disappear. To kick-start the recovery process based
on the Kalman filter network a minimal number of facial features have to be localised
correctly by the system. After a complete tracking failure it is necessary to increase
the fixed search window size of the vision hardware.

Another tracking situation with a different characteristic also requires the en-
largement of the hardware search windows. As stated earlier lost feature tracker
tend to get trapped at image features that have a similar appearance as the correct
features. Because the correct facial feature is outside the hardware search window
the measured position p(2,t) is consistently set on the false feature. The reasonably
good correlation results of the false feature causes a high Kalman filter gain k(i,t)
and therefore, the estimated position py,(i,t) offsets the measured position py(z,t)
only slightly. If this offset is small enough and the false feature is still within the
hardware search window the system becomes trapped in a local minima. Figure 3.7
illustrates this situation. In this tracking situation it would be advantageous to en-
large the hardware search window such that the correct feature is within this enlarged
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search window. Unfortunately this tracking condition can not be reliably detected
and therefore it is difficult to determine if and to what extent an enlargement of the
search window is required.

Similar to the selection of the optimal set of templates for a feature to adapt to
changes in its appearance the area search for features is an optimal resource allocation
problem. Searching the entire image for features with slightly worsened correlation
results would solve the problem if unlimited computational resources are available.
In reality this brute force method is not efficient because the position estimates p(%, t)
often contain only moderate errors. Searching only the surroundings of the estimated
position requires less resources, but may not be sufficient if a complete tracking failure
has occurred. ‘

The variance of the feature position derived by the Kalman filter is a good indi-
cator to what extend the search window should be enlarged. If a complete tracking
failure occurs the variances of all feature trackers is markedly increased indicating
that no useful position estimate can be made and all image locations have similar
probabilities to contain the facial feature. During recovery when some features are
already found the variances decrease markedly for the identified features but also
for the other features because useful position predictions py,(%,t) can now be made.
In this case it is sufficient to search only in a moderate radius around the position
estimate p(i,t). If a feature tracker is trapped in a local minima and the correla-
tion value and variance pp(i,t) are increased only slightly it is sufficient to search
the vicinity of the search window. If the difference between the position predic-
tion py,(4,t) and the measured position p,,,(3,t) is large, the position estimate p(z,t)
is sufficiently far from the false feature such that the false feature would no longer be
within the hardware search window. The local minima situation would be resolved
by the Kalman filter network.

The variance pp(i,t) of the position estimate p(z,t) of feature 7 is used to de-
termine a probabilistic distribution of additional hardware search windows for each
feature 7 called area search windows. Inside the area search windows templates of
the feature are correlated. The position of each area search window is calculated in
polar coordinates with the current position estimate p(,t) as the origin. A random
angle a is determined from a uniform distribution. The distance d from the origin is
calculated as the absolute value of a random number from a normal distribution with
p = 0 and o2 = pp(i,t). Through the choice of a normal distribution the area search
windows are concentrated around the current position estimate p(i,t) while few area
search windows are located a greater distances. The difference in the probability
density decrease with increasing variance pp(i,t). If pp(i,t) is high, it indicates a
complete tracking failure and the area search windows are distributed uniformly over
the image. To avoid that area search windows overlapping the centre search window
(this area has the highest probability density) half the search window size sws is
added to d. For each area search window j of feature i the two random values o
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Figure 3.8: Probability density functions for the distribution of area search windows
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and d need to be determined.

a(i,j,t) = uniform[0°...360°]
sws

d(i,j,t) = |normal(0,pp(i,t))|+T

The search window size sws depends on the template size. In the current imple-
mentation the templates are 24 x 24 pixels in size with a resulting hardware search
window size of 48 x 48 pixels. The position of the centre of the area search window
in image coordinates is then

Psws (i 4, t) = (dcos @, dsina)’

If the area search window position is outside the image boundaries, new random
values for a and d are selected until a position within the image is found.

Figure 3.8a) shows the probability density plot for image locations around the
estimated coordinates exemplary for o = 30 before the overlap-adjustment. This
is a typical value for a situation where a feature tracker is not tracking the correct
feature but the model provides meaningful position predictions. For example, the
probability density can result in a distribution of area search windows as shown in
Figure 3.9b). The example distribution of area search windows in Figure 3.9a) is
typical when the correct feature is tracked and the standard deviation is in the range
of 0 = 5...10. Here the area search windows a concentrated around the estimated
position p(,t). In the case of a complete tracking failure the standard deviation is
typically in the range of o = 50...100 and all positions in the image have almost
the same probability to be selected for an area search window. Figure 3.9c) shows
an example for the resulting distribution of area search windows.

The probability density as a function of the distance d and the variance o is
plotted in Figure 3.8b). The plot shows how the probability density changes with
increasing variances. For high variances the distribution of area search windows

becomes almost even for the entire image.

If the result of an area search window indicates that the wrong feature has been
tracked it also implies that the current template in the template network which is
being used does not represent the appearance of the correct feature but the appear-
ance of a false feature. Therefore the currently used template is insignificant for
the selection of the templates to be used in the area search windows. Therefore, for
each area search window a template of the respective feature is selected randomly
where each template has the same probability. It is crucial not to restrict the set of
templates to be used in the area search windows.

From all the correlation results of the area search windows for one feature tracker
the best result ¢, is selected and it is compared with the best result ¢, from the tem-
plates correlated at the centre position p(z,t). Only if the result from the area search
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c)

Figure 3.9: Distribution of area search windows

73



74 CHAPTER 3. FACE TRACKING

window is better than the result from all centre templates ¢, < ¢, the position p,
where this result was achieved is used in the Kalman filter network. If the position is
swapped for the area search window it is necessary to consider this in the following
calculations of the Kalman filter network. Equation 3.8 and 3.9 are then replaced by

p(i,t) = ps(i,t)

pp(i,t) = pps(i,t)

Also, the previous position p(%,t — 1) is reset to ps(2,t) to nullify the motion term in
Equation 3.7 in the following iteration. This will account for the temporal disconti-
nuity in p(z, ).

3.3.7 Search window allocation

The previous two sections both described ways to gain the most information from
the limited computational resources. The allocation resources for centre templates
and area search windows for each feature 7 is based on the variance pp(i,t) of the
position estimate.

The vision hardware is capable of correlating 200 templates within a standard
size search window in each video frame. The face tracking system described in this
thesis typically uses 19 facial features, and therefore, each feature tracker can allocate
Ny = 10 search windows. The 10 windows must be divided into centre templates
which detect changes in the appearance of the feature (see also Section 3.3.5) and
area search windows which are required to recover from tracking failures.

Again, the variance pp(i,t) is a good indicator which type of correlation are
- required. Large values in pp(i,t) indicate that the feature tracker is likely to have
lost its feature, and therefore it is reasonable to allocate more area search windows.
Small variances indicate that the correct feature is tracked and the resources should
be spent to ensure that the feature is tracked robustly and changes in its appearance
are detected in time.

This simple but effective heuristic is expressed in the following allocation formu-
las. First the number of centre appearance change detection correlation windows n,
is determined and the remaining resources are allocated for n, area search windows.

n. — max (1,min (s [ e (1—0.01\/W)J))

At least one correlation window is allocated for the centre correlation to track the
feature which is currently the best guess of the system. Additionally, a number of
correlation windows which depend on the standard deviation of the current position
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Figure 3.10: Heuristic allocation of correlation windows

estimate are allocated to track changes in the appearance of the feature. Figure 3.10
shows a plot of the values of centre and area search windows. The remaining resources
are allocated for area search windows.

The techniques discussed so far are concerned with the allocation of scarce re-
sources for a particular vision processing application. However, these techniques
are well suited for vision applications other than face tracking and even non-vision
applications which involve multiple costly measurements of a process.

3.3.8 Strain integration

The strain integration mechanism specifically aims at avoiding the local minima
problem for feature trackers. This problem has been described in Section 3.3.6.
The Kalman filter is able to pull the feature trackers out of local minima if the
combination of high correlation results in the minima and large distance between
the local minima and the estimated position is sufficiently favourable. This is the
case in most situations. However, in some situations, particularly when all features
are tracking only marginally, the position estimate p,,(¢,t) from the network has a
high variance pp,(i,t) which is not strong enough to free individual trackers from
local minima. This is the drawback of the flexibility of the 2D feature network which
nevertheless is important in the earlier stages of the recovery process.

To allow high flexibility of the feature network a mechanism is required to identify
the remaining cases when feature trackers are trapped in local minima. The obser-
vation of the correlation results of the feature trackers over time makes it possible to
reach a robust decision about which feature trackers should be relocated. A number
of qualitative properties can be defined for such a relocation algorithm:

1. If the observed positions of two features are not consistent with the projected
model at least one feature must be relocated.
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Figure 3.11: The modules of the strain integration on links between feature trackers

2. The decision which feature tracker to relocate is made on the grounds of ob-
serving the worsening of correlation results over many frames which are above
the normal noise level, or because of only a few significantly worse correlation
results. In other words, the confidence in the decision which feature tracker to
relocate must be high.

3. Feature trackers which have higher position estimate variances pp(i,t) than
their neighbouring feature trackers are relocated to the predicted position p,,
of the better tracking neighbours.

4. If two neighbouring feature trackers have low position estimate variances pp(i, t),
then the discrepancy required for a relocation of one of them must be higher or
must be observed over a longer time than the discrepancy required to relocate
one of two feature trackers with high variances pp(i,t). It should be noted
that such situations can be caused by an error in the 3D head pose estimation
which result in erroneous projections of the feature positions. In which case the
feature trackers which have lost their features will be relocated earlier because
their position estimate variances are higher.

5. The number of links to neighbouring features should not affect the relocation
probability of a feature tracker.

6. The integrated strain decays over time if the link is no longer strained.

Integrating the strain in the links between features over time is used to detect
when feature trackers are trapped in local minima. Figure 3.11 shows the basic
concept of the algorithm. After each Kalman filter network cycle the strain

op = ||p(i1,t) — p(ia, t) — 1y, 12, )| (3.10)

between each pair of neighbouring feature trackers iy and iy is calculated as the
length of the error vector between the current link geometry and the link vector 1
derived from the projection of the 3D model. This corresponds to the first two
properties defined for the relocation mechanism. The fifth property requires the
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integration of the strain for each link rather than for each feature. Each link contains
two integrators d; and dp which integrate the strain directed towards the respective
feature according to Equation 3.11 and 3.12.

_ kG pp(i1, )
di(t) = ,\(dl(t—l)+(1 kin, 1)) t)5p) (3.11)

_ - pp(iz, t)
d(t) = A(dg(t—1)+(1—k(z2,t))pp(ih t)jpp(i2,t)5p) (3.12)

When one of the strain integrators d; reaches a predefined threshold dmax feature
tracker j is relocated with respect to the other feature. At the same time both
integrators d; and dy are reset to 0. This ensures that a badly tracking feature
tracker which is relocated several times can not trigger the relocation of a better
tracking feature tracker. This complies to the third property. The strain integration
algorithm is outlined in Algorithm 3.2.

Algorithm 3.2 Strain integration: integrate(d;,ds)
if d1 Z dma.x AND dl 2 d2 then
di=d2 =0
p(ilat) = p(iZ’ t) + l(i17i2,t)
else if dy > dpnaxAND dy > d; then

di=dy=0

p(i2’ t) = p(il') t) - l(ih i2, t)
end if
return

The fourth property is implemented in the factor (1 — k(2,t)) which reduces the
effective strain on a well correlating feature with high Kalman filter gain k(4,t). In
effect feature trackers with well correlating templates resist relocation better than
feature trackers with poorly correlating templates. In the extreme situation when
k(i,t) = 1 no strain can be accumulated for a feature tracker i. This corresponds to
a hypothetical situation where a feature has a correlation result of 0.

Finally, the sixth property is implemented in the decay factor 0 < A < 1 which
scales the integrated strain in each cycle. The decay factor must be sufficiently
high enough to allow the quick accumulation of real errors but low enough to allow
tracking noise to be tolerated without triggering the relocation of feature trackers.
The face tracking system presented in this thesis uses A = 0.98 and dpx = 30. Small
values in A result in no relocation if the discrepancy ép is not large enough. High
values result in relocations of correctly features due to noise. The situation with the
threshold value dpax is similar. Large values result in no relocations even if they
are required. Small values can result in the relocation of correctly tracking features.
The relocation of correctly tracking features is not a problem unless the relocation
interferes with the operation of the Kalman filter network due to the elimination of
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the motion term after a swap operation. This occurs particularly during fast head
motions where the geometric constraints change quickly and the motion term plays
an important role in the proper operation of the Kalman filter network. The value
for dmax must be chosen such that local minima are always detected and the resulting
relocations of correctly tracking features does not interfere with the Kalman filter
network. The values used in the face tracking system were determined empirically.

3.4 Experimental results

The facial feature tracking system was tested extensively on real image data. Gener-
ally, the system quickly picks up some of the features, and based on these locations,
all facial features. It tolerates temporal occlusions and the person frequently leaving
the image and returning. When all the facial features are picked up by the system
the tracking is reliable even during fast head motions. Features that get occluded
due to extensive head motions are recovered as soon as they reappear.

The experimental results presented in this section also incorporate the functions
of the third layer of the system (compare Figure 3.1) which is an integral part of
the system and provides important feedback to the two lower layers. However, the
experiments presented in this section focus on the functionalities of the second layer.

Figure 3.12 shows an image sequence of a person entering the camera view and
the progressive recovery of the facial features. The estimated position of each feature
is marked with a yellow virtual “pin” which indicates the location and the surface
normal.

Initially, none of the feature locations are known to the system. The image
sequence is displayed at 10 frames/s (i.e. the sequence lasts 1.8s). The first features
at the left! eye brow are picked up by the system in image 7 due to the ongoing
search with area search windows. Only 0.1s later in image 8 most of the features
around the left eye are recovered by the system. The remaining features around the
left eye, namely the outer eye corner and the outer end of the eye brow are pulled
towards the correct location by the Kalman filter net. Another 0.1s later in image 9
the strain integrators relocated the features around the right eye and the respective
features are recovered by the system. Also the centre feature of the mouth was
correctly localised. The remaining unrecovered features are the features on the left
and right side of the head. Their position is still estimated far too low in the image
due to a large rotation of the 3D model of the head around the x-axis (pointing
from ear to ear). When the subject is not visible in the image the feature tracking
produces random positions and the resulting head pose moves randomly. At the time
when the subject entered the image the 3D model was rotated around the x-axis.
The strong influence of the well tracking features on the 3D pose estimate slowly

1To make the reading more intuitive, left refers to the left side of the image, not the actual left
side of the person’s face.
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Figure 3.12: Progressive facial feature recovery image sequence
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reduces this error and the features along the ear lines are finally recovered by the
system in image 14. The pose of the head can be estimated much more precisely
and the features in the centres of the ears are recovered swiftly (image 17). The
recovery of all facial features took 1s from the time when the face was fully visible
in the video image. This result was achieved by the well-balanced interaction of the
various mechanisms of the second layer for robust feature recovery and tracking.

Figure 3.12 shows another image sequence from a typical tracking experiment ex-
tracted at a rate of one image per second. During the experiment the person rotates
the head to the left and to the right more than 45° demonstrating the robustness of
the online recovery from feature occlusion. Such large rotations also result in signif-
icant changes in the appearance of the features. The template network successfully
compensates for these changes. Many of the facial features disappear completely
during the sequence and must be recovered as soon as they reappear. This task is
performed by the Kalman filter network and the strain integrators which ensure that
reappearing features are localised correctly and their respective search windows do
not get caught in local minima.

After frame 12 the person leaves the image and returns in frame 16. Within
one second the system recovers the location of the facial features and continues
tracking. The recovery after complete tracking failures is performed by the area
search algorithm. Image 16 shows that after less than 10 frames almost all of the
features have been recovered by the system except for the features on the side of the
head. The sequence shows how effective the Kalman filter network and the strain
integration are in recovering remaining features as soon as a few features are found
by the area search windows.

3.5 Summary

This chapter presented the algorithms and techniques used for robust feature track-
ing in monocular video sequences. The system only uses natural features such as the
eyes, eye brows and the mouth. It does not require any artificial markers nor any
head gear and is therefore completely non-intrusive. The combination of real-time
feature localisation in hardware, the improvements of the robustness in the feature
localisation through inclusion of geometric constraints forms a robust real-time fea-
ture tracking system which can tolerate partial and complete tracking failures due
to temporary occlusions or the person temporarily leaving the image.

The face tracking system is based on an image correlation hardware which forms
the lowest layer of the architecture. This vision hardware allows the simultaneous
tracking of up to 200 colour feature at frame rate. Most of these resources however are
required to track changes in the appearance of the facial features and to enlarge the
limited size of the hardware search windows. Although the simple SAD-correlation is
not well suited to the requirements of the face tracking application the computational
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Figure 3.13: Feature tracking and recovery after partial and total occlusions
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resources and the algorithms of the second layer allow for the compensation of the
unreliable feature detection and tracking by the vision hardware.

The second layer of the system has the sole purpose of deriving robust image
positions of the facial features and utilises a number of algorithms to achieve this goal.
The Kalman filter network was reused from my Master’s research and integrates the
raw correlation results of the vision hardware with the geometric constraints. These
constraints are derived from an apriori known 3D mode! of the facial features. This
mechanism is integrated with Layer 3 which performs the 3D pose estimation and
provides the geometric constraints between the features. In fact the Kalman filter
network and the 3D pose estimation form a single measurement loop and Layer 2
can not function without the feedback provided by Layer 3. The problem of local
minima is solved by the integration of strain in the 2D constraints between the
features over time. This integration makes it possible to perform confident decisions
about which feature trackers have lost their facial feature and are trapped in local
minima. Once a poor feature tracker is identified with sufficient confidence it is
relocated to the position suggested by the Kalman filter based on the position of
well tracking neighbouring features.

Beside the inclusion of geometric constraints the second layer provides other
functions aimed at the robust tracking of the facial features. The changes in the ap-
pearance of the facial features is tracked by exploiting the structure of the transitions
between different appearances. This transition structure is represented by a network
of templates which are interconnected with transition likelihoods. It is possible to
find a small set of templates which cover the most probable transitions to a different
appearance of a feature.

The initialisation of the feature trackers and the recovery after tracking failures is
aided by a mechanism which artificially enlarges the fixed search window size of the
vision hardware. The allocation of the computational resources and the distribution
of the area search windows is based on the variance value of the Kalman filter po-
sition estimation. This variance value is an excellent indicator for how much of the
available computational resources should be taken away from the appearance track-
ing. Tracking feature appearances only makes sense if the features are tracked well.
Otherwise, the system uses more resources to recover the position of lost features.

The combination of all these algorithms provides rapid recovery times and robust
position estimates of the facial features. Due to these algorithms the system is able to
quickly recover the position of the facial features as soon as they appear in the image
and resolve local minima situations. The experiments show that the progressive
recovery of the features after a complete tracking failure requires approximately one
second after person reappears in the image. After this time the feature positions
and head pose are recovered and the system is fully operational. If a subset of the
features are lost due to extensive head rotations the recovery using well tracking
features is much quicker. Previously occluded features are recovered as soon as they
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appear while other features disappear from the camera view. The mechanisms of
the second layer allow for a continuous shift in the set of well tracking features and
therefore allow the subject to move freely. This robust facial feature tracking system
forms the basis of the 3D head pose estimation system implemented in the third
layer.
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Chapter 4

Head Pose Estimation

The recovery of the 3D pose of objects is one of the fundamental algorithms in
computer vision. For rigid objects a variety of solutions have been proposed [Gee
and Cipolla 1996], [Azarbayejani et al. 1993]. The spatial position of three features
describes the pose of a rigid object in space and a variety of algorithms has been
developed using feature triplets [Huttenlocher and Ullman 1990], [Shimizu et al.
11998]. Chapter 2 described a number of algorithms based on feature locations and
other visual cues.

There are two major classes of solutions, those assuming affine projection and
those assuming perspective projection of the object points. Although the perspective
projection is the more accurate model, the affine projection has various advantages
such as simpler calculations and is therefore better suited to real-time applications.
Also, the focal length does not need to be known if only the rotational part of the
pose is of interest. Instead of the four solutions produced by perspective projection
formulations the affine projection has only two solutions. For these reasons the
affine projection has been used [Maurer and von der Malsburg 1996], [Shakunaga
et al. 1998], [Shimizu et al. 1998], [Malciu and Preteux 2000].

The use of the affine projection can be justified by the relatively large distance of
the object from the camera compared to the small differences in depth of the features.
In such cases the differences between the solutions using the affine projection model
and the perspective model are negligible. As a rule of the thumb the ratio between
the distances should be at least 10:1 [Thompson and Mundy 1987][Costall 1993][Gee

~ and Cipolla 1994]. Some of the algorithms proposed to solve the three-point to
3D pose problem include [Ullman 1986], [Huttenlocher and Ullman 1990], [Grimson
et al. 1992}, [Alter 92] and [Cygnaski and Orr 1985]. The work of [Alter 92] also
presents an analysis of the numerical stability of previously described algorithms.
The work of [{Grimson et al. 1992] presents an error analysis of the Huttenlocher
and Ullman algorithm. Grimson derives bounds for the error in the final result
bounded by an e-circle around the correct position. The calculations of the error
propagation through the algorithms are complex and only approximate overestimates

85
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are derived. Grimson made no attempt to derive the systematic error introduced by
the assumption of affine projection nor did he try to improve the accuracy of the
algorithm.

The algorithm proposed by [Huttenlocher and Ullman 1990] was selected in this
research to derive the 3D head pose since it produces the two possible solutions of
the pose recovery problem, in contrast to the original formulation by [Ullman 1986]
which produces a solution with a fourfold ambiguity. Nevertheless, the algorithm
described by [Huttenlocher and Ullman 1990] suffers from a number of drawbacks:

e The algorithm requires precise image coordinates generated by an affine projec-
tion. The rotation matrix which is the output of the algorithm is not a proper
rotation matrix if the feature positions are corrupted by noise and perspective

deformations.

e The systematic error due to the perspective projection of real images is high.
In a typical setup which complies to the rule of thumb the angular error can
exceed 30°.

o The sensitivity of the 3D pose estimate is high for near-frontal views. Small er-
rors in the detection of the feature positions can result in large pose estimation
errors.

This chapter analyses the properties of the Huttenlocher algorithm and proposes a
number of extensions which solve all of the above problems. The basic alignment
algorithm is extended such that the resulting rotation matrix is always a proper
matrix and the error systematic error is reduced by 75%.

Common to all pose detection algorithms based on monocular images and fea-
ture triplets is the high estimation sensitivity for configurations where the plane of
features is close to parallel to the image plane. In control theory the term “sensi-
tivity” is widely used to describe the change in a parameter a as result of changes
in a parameter b. The sensitivity function s = d(a(b),a(b + Ab))/Ab describes the
fractional change in a according to a distance function d, due to changes in b, di-
vided by the fractional change in b [Anand and Zmood 1995]. This chapter proposes
a sensitivity model which quickly allows the calculation of the sensitivity of the pose
estimate. The integration of multiple feature triplets allow the pose of the head to
be determined with a low sensitivity irrespective of the current head pose.

4.1 Huttenlocher’s alignment algorithm

The formulation of the Huttenlocher’s alignment algorithm is stated here for com-
pleteness and can be found in [Huttenlocher and Ullman 1990]. The raw image



4.1. HUTTENLOCHER’S ALIGNMENT ALGORITHM 87

locations img(p;) are shifted in the image plane such that the new image coordi-
nates q; of p; coincide with the origin of the image plane.

q1 = img(p:)—img(p1) =0
q2 = img(pz) — img(p1)
q3 img(p3) — img(p1)

The top left 2 x 2 submatrix L of the rotation matrix R which describes the
orientation of the object conforms to the following equation.

L=Q -M1 (4.1)

where Q € IR>*? contains the image positions qz and qs in it’s columns and M €
IR?*2 contains the model points in it’s columns. Choosing e;,e; € IR? to be (1,0)

and (0, 1), k; and kg become
k1=_<111).(112> (4.2)
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f

In the following discussion it is assumed that the correct sign of the solutions for
c1 and co can be determined. Section 4.4 describes how this problem is solved in
the actual implementation. The complete homogeneous transformation M from the
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model triangle to the observed triangle is given by

m=| £ 4 (4.9)

0 0 01

4.1.1 Analysis of the accuracy and sensitivity

The size of the overall error and sensitivity to non-precise feature tracking depends
on a variety of parameters such as the focal length, the distance from the camera and
the geometry of the feature triangle. Grimson’s theoretical analysis provides only
approximate overestimates of the sensitivity of the algorithm which can exceed the
actual error up to three magnitudes [Grimson et al. 1992]. The application of the
algorithm in a real system with noisy measurements requires an understanding of the
relationship between the configuration of the model, the error and sensitivity of the
pose estimate. By understanding the weak points of the algorithm an opportunity
exists to develop improvements and compensation techniques. The improvements
derived from the performance analysis are presented in Sections 4.2 and 4.3.1.

Section 4.2 presents an analysis to gain a realistic impression of the algorithm’s
performance for face tracking applications. Some of the system parameters are set
to values similar to the face tracking case. The quality and quantity of changes in
those parameters is discussed where necessary. If not stated otherwise, the following
geometric parameter values are assumed:

e The distance of the plane containing all three features to the focal point equals
600mm.

e The focal length equals 45mm and the sensor contains 752 square pixels per

mm2 .

e The geometry of the feature points is p; = (0,0,0), p2 = (50,0,0) and ps =
(50,50,0). In the projection the distance between p; and ps and ps and p3
respectively is 281 pixels.

This geometric setup is illustrated in Figure 4.1. It should be noted that under
these assumptions the ratio between the maximum depth of the feature points in 3D
and the distance of the features to the focal point is %%9 = 12. A minimum of 10 is
assumed to be the lower bound such that the errors introduced by the assumption
of affine projection become negligible.

The feature triplet’s coordinate system origin is coincident with p;, the z-axis
points towards the focal point and the x- and y-axis are parallel to the x- and y-

direction in the image plane.
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Figure 4.1: Geometry and dimensions of the setup for the case study

4.2 Systematic Errors

The pose estimation algorithm assumes an affine projection of the model points p1,
P2 and p3 into the image plane. In reality the features are projected into the image
plane under perspective projection. The systematic errors caused by this discrep-
ancy are analysed in this section. This is based on the assumption that the feature
positions in the image are known precisely. An improvement to Huttenlocher’s align-
ment algorithm is presented which reduces the systematic angular error of the pose
estimate in our case study by 75% and the maximum translational error by 90%.

As a metric for the angular error between two spatial orientations the angle in the
equivalent angle-axis representation is used (as defined in [Craig 1986]). Two spatial
orientations represented by their rotational matrices R; and Ry can be aligned by
one rotation about an appropriate axis k. The norm A(R;, R2) between two spatial
orientations R; and Rj is defined as the angle of this rotation:

R R;! RiR;! RiR;Y)33—1
A(Ry, Ry) = arccos (( 1R )11 + (RuR; 2)2,2 + (RiR5 )33 . (410)
The columns of the rotation matrix generated by the original algorithm are guar-
anteed to be perpendicular because this is one of the properties used to synthesise
the solution. However, if feature positions are used which were generated by a per-
spective projection the column vectors of the rotation matrix are in general not of
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length 1. In that case the matrix is not a proper rotation matrix. The column
vectors have to be normalised to length 1 to allow the use of the matrix in further

calculations. This scaling operation preserves the orthogonality of the vectors.

In Appendix C.2 the closed form solution of the alignment algorithm is presented.
Even thought the algorithm is straightforward, the closed form solution is complex
and contains many parameters. The expressions for the systematic angular error
A(Ry, Ry) are highly complex which makes it difficult to draw conclusions about the
systematic error and limits the practical usability of the method for real-time object
tracking. The approximate overestimates derived by Grimson exceed the true error
up to three magnitudes and therefore are not suited for practical considerations.

The triplet p;p2ps is considered in a range of spatial orientations and the sys-
tematic angular error is calculated. The rotation about the z-axis 6, remains fixed to
0 since different values in 8, correspond to different orientations of the same model.
By redefining the orientation of the model 8, can always be made 0. The angular
error A(Ry, Ry) is plotted over the angles 6, and 6,. Since we are interested in rigid
body tracking where the plane in which three features may be arranged is not visible
from the rear only rotations between —5 and 7 are considered.

The angular difference between the correct spatial orientation R; and the orien-
tation Rg derived with Huttenlocher’s algorithm is plotted in Figure 4.2a) for 6, = 0.
The angular error varies strongly over the visible range of the model plane. The four
large humps are caused by errors in the estimation of the third elements of the first
two column vectors r; = %(lnlglcl)t and ry = %(llzlzzcg)t of the rotation matrix Ry,
corresponding to the z-component of the new x- and y-axis. Also, the scaling of the
projection which determines the displacement of the measured model position along
the optical axis is directly derived from the length of these vectors. Errors in the
z-component cause large errors in the depth estimate, for example with the geometry
of the face tracking case the depth error exceeds 100%. However, the discrepancy in
the length of the column vectors r; and r; is the key to the extension of the original
algorithm which significantly reduces the angular and translational errors.

If the feature image coordinates are generated by a true affine projection, the first
two column vectors have the same length. The depth parameter s in Equation 4.6
can be derived from either of the two column vectors. Thus, s scales both column
vectors to length 1. However, if the algorithm is used with feature image coordinates
generated by a perspective projection, the length of the first two column vectors will
be different in general. The two columns correspond to two different depth estimates

81 and 89.

81 = v l%l + l%l + C% = Irll (4.11)

s2 = i+ B+ =Ir (4.12)
S1 7& 82 (4.13)
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The correct scaling value § can not be determined from perspective data, § lies
between s; and s;. Simply choosing s = s, = max(s;, s2) as the normalisation
and depth estimation parameter in Equation 4.7 reduces the maximum error in the
depth estimate in the example geometry to less than 10%. The other scaling value
Sm obtained from the other column vector is ignored. With this modification the
measured depth is always less than or equal to the true depth, and with a much
reduced error.

Algorithm 4.1 Extended pose estimation : pose(q2, q3)
calculate L, k;, k2, ¢1, c2 and R according to formulas 4.1-4.5.
81 = Vl%l +l%1 +C%

S2 = \/lfz +13+4
set(m,n) € {1,2} such that s, > sp,
8 =8y
. l l
Cm = sign(cm)y/1 — mignz
if ¢, # 0 then
¢, = — bzt
Cm
end if
update R with ¢, and ¢,

r
T

calculate r3 to complete right hand coordinate system
return R

rp, =

Algorithm 4.1 outlines the extensions to the original algorithm. Scaling the
unused vector ry, to length 1 will generate a valid rotation matrix while the spatial
orientation corresponding to this rotation matrix is unchanged. However, a better
scaling value s allows a more accurate estimation of the z-component ¢= of ry,. This
change to the algorithm reduces the systematic angular error by 75% in the face
tracking application. Since the first two elements of the vector and the scaling are
already determined, only the third element ¢, can be recomputed such that r,, has
length 1. This recalculation changes the orientation of the column vector ry,,, and
therefore r, and r,, are no longer necessarily orthogonal. Since the ¢; and ¢y are
most affected by the distortion created by the perspective data, the third element
of r,, is recomputed such that r, and r,, are orthogonal again, and then r, is scaled
to length 1. The third column of the rotational matrix is generated according to the
original algorithm to complete the rotation matrix R.

Figure 4.2a) shows the angular error of the original algorithm using s; as the
scaling value and scaling ro accordingly. Figure 4.3a) shows the error derived by
the improved algorithm, but always setting s = s;. The angular error significantly
improved in the areas where s; > s2 only. In the areas where s; < sy the error
actually increased for some configurations. Figure 4.3b) shows the complementary
result, obtained from always selecting s; as the scaling value. The importance of
selecting the correct scaling value also for the spatial orientation estimate becomes
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b)

Figure 4.2: Systematic angular error (a) for Huttenlocher’s original algorithm and
(b) for s = max(s,, s2).
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Figure 4.3: Systematic error for (a) s = s; and (b) for s = s9
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Figure 4.4:

b)

Depth error for s = s; b) for s = max(s;,s2) (note the different scale).
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obvious. The areas where s; < sg is improved in a similar way as the previous plot
while the other configuration show increased errors. The two modifications yield
improved results in complementary areas.

It should be noted that the difference in scaling itself does not influence the
angular error, but it influences the following calculation steps. The angular error of
the complete algorithm is plotted in Figure 4.2b). The areas of low angular error from
the previous two plots are combined. The improvements to the algorithm reduces
the angular error of the estimate of the spatial orientation to about 25% compared
to Huttenlocher’s original algorithm.

Figure 4.5 shows the angular error of the original and the improved alignment
algorithm when the object is 2000mm away from the camera instead of 600mm. Since
the difference between an affine and a perspective projection is small the systematic
error is reduced. For both the original and the extended algorithm, the systematic
error is approximately halved for all configurations.

At an infinite distance of the object from the camera the projection becomes
affine. In this case the length of the first two columns of R generated by the original
algorithm is the same and both vectors are orthogonal, and therefore the steps in
the improved algorithm do not alter the result. The results of the original and the
improved algorithm are the same and the systematic error equals 0 for all configu-
rations!.

The only alteration in the improved algorithm which effects the calculation of the
distance d of the object from the camera is the selection of s from the first or second
column of R. The depth d = -5 is calculated from the focal length f and the scaling
factor s. In the geometry of the face tracking example the error in depth of the
original algorithm reaches more than 800mm (133%). This is shown in Figure 4.4a)
for s = s1. The plot for s = s; is of similar appearance but it is rotated by 90°.
Figure 4.4b) shows the depth error for s = max(s;,s2). Note the different scale in
z-direction of the plots. The maximum error is reduced to about 10% of the error
for the fixed selection algorithms.

The displacement of the feature triplet along the x- and y-axis is calculated
from the image position img(p;) of p1 and the scaling value s. These estimates
are therefore affected by the selection of the scaling value by the same factor as
the depth estimate. Thus, the error of the displacement along the x- and y-axis
is decreased proportional to the error in d by the improvements to Huttenlocher’s
original algorithm.

!Except where the projection degenerates to a line as discussed by Grimson.
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b)

Figure 4.5: Plot a) shows the systematic error of the original algorithm at a distance
of 2000mm over 6, and 6,. Plot b) shows the error of the extended algorithm.
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Figure 4.6: Feature velocity

4.3 Tracking Error Sensitivity

This section analyses the sensitivity of the pose estimate to tracking errors. All
feature detection algorithms are subject to noise and most do not have sub-pixel
accuracy, the sensitivity of the pose estimate to tracking noise is of major importance.
In the previous section it was assumed that the feature positions ip; in the image are
precisely known with sub-pixel accuracy to isolate the systematic error from other
artifacts. The sensitivity of the pose estimate to small tracking errors caused by
image noise, pixel quantisation and the oversampling of the templates is analysed in
different spatial orientations of the feature triplet.

A first glance of the situation is shown in Figure 4.6. It shows the derivative of
the feature image positions over the rotations of the model around 6, and 6, in the
face tracking example geometry as shown in Figure 4.1. For an orientation (0;,6,)
the corresponding feature velocity v is calculated as

where q; denotes the shifted feature image position of feature i for the the spatial
orientation (0z,6,). For (6,,0,) = (0,0) the motion of the projections of all feature
points equals 0, thus, if the feature plane is parallel to the image plane the projected
feature positions do not move initially when the object is rotated around either the x-

J(h ‘SQI

v(orvg ) — 60
z

= l

(4.14)
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or y-axis. With an increasing distance from (0,0) the features move with increasing
speed. ’

Therefore different orientations close to (65,6,) = (0,0) have almost identical
projections in the image plane. In other words, small changes in the measured
feature position of the image correspond to large changes in the spatial orientation.
Configurations in which the plane spawned by the feature triplet is parallel to the
image plane ( (6;,6y) ~ (0,0)) therefore result in high sensitivities of the pose
estimate. In fact, all pose recovery algorithms using monocular images and feature
points residing in a single plane suffer from this problem. The asymmetry of the
plot is a result of the perspective projection which causes slower motion in the image
plane of features which are further away from the camera.

To analyse the sensitivity of the pose estimate a tracking error vector e is con-
sidered which is added to the vector of the feature’s image positions.

e = (e:l:la €y1, €22, €y2, €13, eyS) (415)

Since the pose recovery algorithm shifts the image of p; to the origin, the effective
noise vector is ef.

€r = (0,0,ez2 — €r1,€y2 — €y1,€43 — €11,€Ey3 — eyl) (4-16)

Under the assumption of white noise in the close range of the correct position of a
feature the shifting effectively doubles the standard deviation of the noise in the 3rd
to 6th element. The sensitivity s, of the spatial orientation derived by the alignment
algorithm with respect to tracking errors for a pose W is defined as the length of the
vector of the differential quotients of the orientation distance function A.

limg_,o 3A(Pose(P(W)), Pose(P(W) +d(0,0,1,0,0,0)¢)

53 (W) = l%md_m %—,A(Pose(P(W)), Pose(P(W) +d(0,0,0,1,0,0)*) (4.17)
limg_,0 2A(Pose(P(W)), Pose(P(W) +d(0,0,0,0,1,0))
))

limg_,0 2 A(Pose(P(W)), Pose(P(W) + d(0,0,0,0,0,1)

where P(W) is the vector of the image positions after the projection of the model
into the image plane and Pose(P(W)) is the rotation matrix R recovered from these
image coordinates.

The rotational sensitivity s, over (6,6y) is plotted in Figure 4.7. Again, dif-
ferent values for 6, do not change the sensitivity of the estimate. The sensitivity
asymptotically approaches infinity when (6;,6,) — (0,0) since the derivative of the
feature position with respect to ; and 6, equals 0 at the origin. The plot shows
where the pose estimate will be robust and where large errors based on artifacts are
expected. At a distance of about 0.4rad from the origin the overall estimate error
per one pixel measurement error settles to approximately 0.01radians/pixel. Again,
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Figure 4.7: Rotational sensitivity s,

the slight asymmetry is caused by the effects of the perspective projection.

Figure 4.8 shows how the rotational sensitivity changes with the size of the model
triangle and the distance of the object from the camera. As expected the sensitivity
is larger for a smaller model. Figure 4.8a) is produced with a smaller triangle with
the corner points (0,0), (10,0) and (10,50). Interestingly, even though the model
triangle is reduced only horizontally, the sensitivity around the x- and y-axes is still
similar. The region around the origin where a high sensitivity to tracking errors can
be observed extends to a distance of about 0.8rad from the origin. Also the minimum
sensitivity level is significantly raised, from 0.01 to 0.04. The plot in Figure 4.8b)
shows the sensitivity function evaluated for the original feature triplet observed at an
increased distance of 2000mm. This reduces the size of the projection and therefore
increases the sensitivity. The effect is almost the same as in Figure 4.8a), both the
area of high sensitivity is enlarged to a similar extent and the minimum level is
raised by a factor of 4. At this distance the projection of the model parallel to the
image plane has the same area as the model that was used in Figure 4.8a), however,
the shapes of the two models are considerably different. These results show that the
sensitivity is correlated as expected with the size of the projection of the triangle but
it is only weakly correlated to the shape of the triangle. Even if one of the sides of
the triangle is considerably shorter than the other sides the shape of the sensitivity
retains the characteristic square cross section. Therefore, the pose estimate from
model triangles with a high aspect ratio have a sensitivity with respect to 6, and 6,
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Figure 4.8: Rotational sensitivity s, for a smaller triangle (a) and for the original
triangle at a distance of 2000mm
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which does not depend on the location of the shorter side and which is comparable
to a model triangle of similar size but which has a aspect ratio close to 1. This fact
will be exploited in the modelling of the sensitivity in Section 4.3.1.

The sensitivity s; of the pose estimate with respect to the translation measure-
ments is less critical than the sensitivity s, with respect to the rotational parame-
ters 0; and 6. This is because s; does not have any poles. The derivation of the
translation vector d is shown in Equation 4.8. The x- and y-components of d are
calculated from the image coordinates of p; scaled by the scaling value s. The z-
component is calculated from the focal length and the scaling value s. Due to the
common dependency on the scaling value s, only the translation along the z-axis, the
reciprocal value of s multiplied by the focal length, is considered for the translational
sensitivity s;.

Since translations of the 3D-model along any spatial axis change the location
of the projections of the features, no configurations exist that can cause high sen-
sitivities of the translational parameters to tracking errors. Figure 4.9a) shows the
translational sensitivity s; for the original model triangle at a distance of 600mm.
Even in the most sensitive configurations the error in the depth estimate per pixel
tracking error is less than 1%. Figure 4.9b) shows the sensitivity plot of the model
triangle rotated 45° around the z-axis. The sensitivity for the resulting triangle is
almost constant with small values. Further rotation around the z-axes raises the
quadrants which have a low sensitivity in Figure 4.9a) further with respect to Fig-
ure 4.9a) and lowers the other quadrants. This trend reverses at a rotational angle
of 180° and returns to the configuration in Figure 4.9a) at a rotational angle of 360°.
Therefore, the exact shape of the plot depends strongly on the triangle geometry
and general predictions are not possible. However, it is clear that the translational
sensitivity does not have poles and is comparably small and therefore not of concern
to the performance of the alignment algorithm in a real application.

4.3.1 Sensitivity Model

The high sensitivity of frontal views is a problem for all monocular three-point al-
gorithms. This problem results from the properties of the projection (see also Fig-
ure 4.6) and therefore no changes to the algorithm without additional input data
are possible which will overcome this problem. To build an algorithm which takes
the sensitivity of the pose estimate into account it is necessary to provide a method
to calculate the sensitivity of the observed pose efficiently. If the sensitivity of the
measured spatial orientation is known it is possible to weight the result to provide
a more robust end result. As discussed previously the closed form solution of the
algorithm is complex and it’s derivative is not suited to real-time calculation. Even
the numerical estimation of the differential quotient in Equation 4.17 requires the
calculation of eight complete pose estimates. This section describes an approxima-
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b)

Figure 4.9: The sensitivity s; of the depth estimate for the normal model triangle
and a 45° rotated triangle
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tion model for the rotational sensitivity s, which allows for fast computation of the
sensitivity.

The results in Figures 4.6 and 4.8 show that the sensitivity is almost invariant
to 90° rotations in the (6z,6,) plane. Also, s, is almost invariant for constant 6 in
the sections where |6,| < |0z| and for constant 6, in the sections where |0;| < |0;|.
Therefore, one cross section along one of the major axes of the rotational sensitivity
plot provides sufficient information to approximate the sensitivity of all other poses.
This cross section is defined as the constrained sensitivity function

se(6z) = sr(R(65,6, = 0,6, = 0)) (4.18)

If s. is known, the sensitivity for other poses can be approximated by s, according
to the properties discussed above.

34(0z,0y,0;) = sc(max(|0z],(0y])) (4.19)

Figure 4.10a) shows the rotational sensitivity over 6, and the distance d of the
model to the camera for 8, = 0. The plots obtained from this and other triplet
geometries resemble the class of functions

dav
Uc(0m, d) = |0—v cw + C (4.20)
2|
The parameter set u, v, w,c of o, for a particular model triangle can be calculated
from four points in the plot in Figure 4.10a). Figure 4.10b) shows the result of the
approximation of s, with o..

The reduction of s, to o, can be reversed using the same arguments. This yields
the approximation function o, which allows a fast computation of the sensitivity of
a model triangle in a measured configuration (0z,6y,0,,d).

0a(0z,0y,0.,d) = oc(max(|0z],|6y]), d) (4.21)

The general solution of u,v,w, ¢ for a particular model triangle can be obtained
from four sensitivity values s; — s4 at the angles 6; = {a1, a2} and the distances
d = {d1,d2} with the Formulas 4.22-4.25.

_ S9 — 81 d; -1
u = In (— pop 34) (ln dz) (4.22)
_ ~1
v = —In (—u) (ln 9—2-) (4.23)
83 — 81 aq
_ a2
w = eB. 8182 — 8283 + $183 — 87 (4.24)
—8S4 + 83 — S1 + S2
- —8184 + 8283 (4.25)

—84 + 83 — 81 + 82
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Figure 4.10: True sensitivity (a) and the approximation (b)
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where
_ S92 — 84 _ 82 — 81
a = 53 — 51 Q2—33_84,
g3 = (lna;lndyln(—q;) —lnaglnd) In(—¢;) — InazInd; In(—g2) +
d -1
In oy Ind; In(—g2)) (ln 22 —1>
(o 4] d2

This parameterisation of the approximation function o, for a particular model tri-
angle has to be calculated only once when the model is generated. During tracking
the simple function o, of the sensitivity model is used to provide estimates of the
sensitivity in the real-time face tracking system.

Figure 4.11a) shows the plot of the true sensitivity of a modified model triangle
with the corner points (0, 0), (100, 0) and (100, 25). The smaller model causes a faster
increase of the sensitivity for increasing d and 6, approaching 0. Figure 4.11d) shows
the ratio 75 = Z= between the real rotational sensitivity s, and its approximation o,.
Except for large sensitivity values in s, the error of the approximation is less than
15%. For 6, close to 0 the error increases. The sensitivity values themselves in this
area and their derivatives are so large that the uncertainty of the estimated pose
is much more critical than a more precise approximation of the sensitivity. The
asymmetry about positive and negative values of 8, of the real sensitivity becomes
obvious in this figure since the approximation is symmetric. It should be noted that
the exact shape of the error ratio r; for a given triangle also depends on the choice
of a3 2 and dy 2.

The transition area where the sensitivity starts to increase towards the pole at
the origin is the most crucial aspect of the shape of s, for pose tracking applications.
In comparison the approximation accuracy for 8, close to 0 is of minor importance.
The discrepancy between s, and o, in the important areas can be minimised by
choosing angles for a;2 which are significantly different from 0 as well as realistic
distances dy 2. The values used in the two examples were

a; = 0.5rad d; = 600mm
as = 1.5rad ds = 2000mm

4.3.2 Sensitivity and Spatial Orientation Error

The rotational sensitivity is only a measure for the initial error growth when the
measured feature positions drift away from their projected position. The growth of
the error is not linear with the size of the error. In particular for near frontal views
the second derivative of the angular error has high absolute values. It can be argued
that the effective error in the spatial orientation is much smaller than suggested by
the high sensitivity.

Figure 4.12 and 4.13 shows the rotational error A(W;, W;) as defined in Equa-
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Figure 4.11: True sensitivity (a) and the error ratio (b)
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tion 4.10 over the feature position measurement errors in x- and y-direction for
various spatial orientations of the example model triplet. Since W; is the spatial
pose calculated from the accurately projected feature positions and W5 is the pose
calculated from the noisy feature positions, the systematic error is not included in the
figures. The directions of the systematic error and the error introduced by noise are
generally not aligned. Depending on the direction of the noise error vector (ez,ey)
the two errors may add up or cancel out. Cancellation occurs if the position measure-
ment error points towards the position where the feature would appear in an affine
projection. Addition occurs if the position measurement error points away from the
position where the feature would appear in an affine projection. In all plots only the
position of qg is affected by the tracking error, the image positions of q; and qs are
still known accurately to limit the number of variables in the plot to two.

Figure 4.12a) shows the rotational error for (6, 6,) = (0.0,0.0) and Figure 4.12b)
for (6z,6y) = (0.0,0.3). As expected the plot for the frontal view shows the highest
errors. In the vicinity of the origin the error increases sharply. The increase in error in
the almost frontal view 4.12b) is initially much slower but continues to grow steadily
even for larger deviations from the origin. Figure 4.13a) shows the rotational error
for (6z,0,) = (—0.8,0.6) and Figure 4.13b) for (6;,6,) = (1.2, —1.4). For non-frontal
views the error is in general much smaller than for the two frontal views. The speed
of the increase is only a fraction of the increase for frontal views. Figure 4.13b)

shows that the speed of increase can depend considerably on the direction of the
error vector.

4.3.3 Effect on the face tracking system

For the head pose estimation the features are located using image correlation. To
reduce the computational cost the feature templates are correlated with an oversam-
pling factor of 3. Even if the image correlation can always detect the position closest
to the correct position of the respective feature in the image, the accuracy can only
be +2 pixels. This variation corresponds to an angular pose error of 0.215 rad in
Figure 4.12a), but only 0.02 rad in Figure 4.13a).

This large effective error for typical feature localisation noise levels requires the
inclusion of the sensitivity into a real 3D pose estimation system. A pose estimation
system should never rely on the pose estimate derived from a feature triplet which
is close to parallel to the image plane. Therefore a system must use multiple feature
triplets in different planes and use the pose estimates from triplets which are currently
non-parallel to the image plane. This insight led to the development of the multi-
triplet estimation system described in the following section.
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Figure 4.12: Effective pose estimate errors (a) for (6,,6,) = (0.0,0.0) and (b) for
(02,6,) = (0.0,0.3)
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Figure 4.13: Effective pose estimate errors (a) for (0;,6,) = (—0.8,0.6) and (b) for
(0:,6y) = (1.2,—-1.4)
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Camera

Figure 4.14: Multiple solutions

4.4 Multi-triangle pose estimation

The pose recovery of a feature triplet under affine projection has a twofold ambiguity.
The two spatial orientations R; and R, that generate the same feature image posi-
tions under affine projection differ by a reflection about a plane parallel to the image
plane. In the discussion of the systematic errors it was assumed that this ambiguity
can be resolved and the correct solution R for the pose could be determined. The
key idea to solve this problem is to use at least two feature triplets which spawn
non-parallel planes. Both triplets generate two solutions, of which only one solution
is consistent with both triplets. This solution is the correct pose R of the object.
This idea is illustrated in Figure 4.14. The blue and green feature triplets are fixed
within one coordinate frame and the six features belong to the same rigid object.
The dashed triangles correspond to the second solution of the pose estimation. The
two solution with respect to the object coordinate frame could be:

solution 1 (0z,6,,0;) = (0.2,0.4,-0.1) solution 1 (6,0y,0;) = (0.0, 0.3, -0.2)
solution 2 (0, 60,,0;) = (0.6,-0.2,0.1) solution 2 (8,,60,0.) = (0.2,0.4,-0.1)

In this case only the first solution from the blue triplet and the second solution
from the green triangle can be combined such that a consistent pose of both triplets
results. However, the systematic error discussed in Section 4.2 prevents, even without
measurement noise, the two solutions for the pose corresponding to the real pose to
match perfectly. Instead, a combination of solutions from the two triplets with the
smallest distance under the angular metric A defined in Equation 4.10 needs to be
selected. The remaining problem is to determine a spatial orientation R from the
two slightly different solutions which considers the sensitivity of the estimate of each
triangle.
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A straight forward solution to the problem is to weight the solutions according to
their sensitivity. The equivalent angle-axis formulation allows interpolation between
the two spatial orientations R, and R, from the two triplets which have the smallest
angular distance. The interpolation R is generated by rotating R, only a fraction of -
the angle A(Ry, Ry) between R; and R, around the equivalent axis k.

R=EAR (ﬁl, Ry, —2r(F2) A(R1,§2)) B (4.26)
3r(R1) + sr(R2)

However, this operation does not use the available information in an optimal
way. The sensitivity is a good measure of the overall error that can be expected
from a particular pose estimate. But different components of the pose estimates
have different individual sensitivities. It is intuitively observable that rotations in
the feature plane can be easily detected in the frontal view, whereas rotations about
the x- and y-axis prove to be difficult. For this reason the rotation about the z-
axis was ignored in the sensitivity analysis. The definition of individual sensitivities
for each of the rotational components facilitates the synthesis of a better spatial
orientation R from multiple feature triplets.

The metrics Az, Ay and A, for the rotations about the three individual axis are

defined as the absolute angular distance between their respective spatial orientations
R1 and R2.

Az(Ri,R;) = |Rotz(EAR(Ry, Ry, A(Ry, Ry)))| (4.27)
Ay(Ri,Ry) = |Roty(EAR(R:, Ry, A(R1, R2)))| (4.28)
AZ(RlaRZ) = |R0tz(EAR(ﬁlaR27A(ﬁh-ﬁ?)))l (429)

Similarly to these metrics, the sensitivity of the individual rotations is defined
analogous to Equation 4.17 where the overall distance A is replaced with Agy ,
respectively. Equation 4.30 defines the sensitivity s; for the rotation about the x-
axis, the sensitivities for the y- and z- axis are defined similarly.

limg—, 3A¢(Pose(P (M), Pose(P(M) + d(0,0,0,1,0,0))
limg_, Az (Pose(P (M), Pose(P(M) + d(0,0,0,0,1,0))

limg_,0 Az (Pose(P (M), Pose(P(M) + d(0,0,1,0,0,0)*)
(4.30)
limg—0 3 Az (Pose(P(M), Pose(P(M) + d(0,0,0,0,0,1))

As expected the shape of the sensitivity of the rotation around the x- and the
y-axis resembles the shape of the overall sensitivity and can be approximated in
the same way. The sensitivity of the rotation around the z-axis is almost constant
over the range where the feature plane is visible. The sensitivity only increases for
orientations where the feature plane is almost perpendicular to the image plane.
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Figure 4.15 shows the sensitivity of the x- and z-rotations.

The individual components of the spatial orientation R which describe the overall
pose of the object can now be derived. Each rotation Rot,(R), Roty(f%) and Rot,(R)
about the three axis are defined as the weighted average of the two respective ro-
tations in R; and Rg with the sensitivity as weights. Equation 4.31, 4.32 and 4.33
define the rotation around the x-axis, y- and z-axis.

Rotz(R1) , Rotg(R2)

ROtz(R) — 3:::(Rll) 331(R2) (431)
wm) 1 (k)
Roty (R1) Rot, (R2)
Rot,(R) = sv(Rll) syl(Rz) (4.32)
(B T )
B Rot.(R1) + Rot,(R2)
ROtz (R) = Sz(Rll) 3z1(R2) (433)
(B TR

To evaluate the sensitivity improvement of this extension the original feature
triplet and an additional triplet of the same shape rotated 45° around the y-axis are
considered. This configuration is similar to the head pose application where a triplet
in the facial plane and others on the side of the head can be used. Figure 4.16a)
shows the overall rotational sensitivity of the pose estimate derived from the two
combined triplets. The sensitivity pole in the origin has been eliminated. Instead,
the sensitivity is almost uniform at a low level. The graph compares directly to
Figure 4.6b) which shows the sensitivity of the single triplet solution. Only two
small humps appear where the poles of the two triplets existed. The pole of the
additional triplet is at 45° as expected. The angle between the triplet planes must be
sufficiently large to achieve the eradication of the poles. For each spatial orientation
of the object at least one of the triplets must provide a robust estimate.

Figure 4.16 shows the systematic angular error of the pose derived from the
combined triplets. 1t shows a similar error level to those shown in Figure 4.2b).
Note that the systematic error is not a criteria for the interpolation between the two
spatial orientations. The goal of the combination of two estimates is the elimination
of the sensitivity pole for frontal views. The systematic error can be used in the
weighting of the merging process. However, since the systematic error is 0 for frontal
views it would counter the weighting derived from the sensitivity and thus, would
defeat the purpose of merging the two poses. Therefore a systematic error that does
not increase through the combination of two triplets meets the expectations since a
lower sensitivity is achieved at the same time.

The new algorithm can be extended to more than two feature triplets. For n fea-
ture triplets T = {T}...Ty} the set R = {R;... R,} of solutions has to be deter-
mined such that the distances A(E-,Rj) between the individual solutions is mini-
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Figure 4.15: Sensitivity of the rotation around the x-axis (a) and the z-axes(b)
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Figure 4.16: Overall pose estimate error
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Figure 4.17: Overall sensitivity
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mal. This is computationally expensive for large n. In the presence of strong noise a
unique solution may not exist. In this case triplets need to be selected that provide
the most reliable tracking results. Equations 4.31, 4.32 and 4.33 must be extended
to interpolate between n measurements.

n Rotzsﬁ,.'!
Roty(F) = ——t=(®) (4.34)
T - n 1 .
)
n R.Otzdﬁ{!
~ =1 sy(R.')
ROty(R) = —E—ﬁ———l—— (435)
=1 sy (R)
n RotzSﬁi!
~ =1 s,(R.')
ROtz(R) = 2:"—1 (436)
-

The n-plane pose algorithm is outlined in Algorithm 4.2. It facilitates the im-
proved triplet pose estimation algorithm, the sensitivity model for the individual
rotation parameters and the sensitivity-weighted n-plane pose interpolation method.

Algorithm 4.2 Multi-plane pose estimation : pose_n-plane(T)
for all T; € T do
Calculate orientations R; = pose(T;) according to Algorithm 4.1

Calculate sensitivities S; = { sz sy 3, ) according to Equation 4.17.
end for
Calculate R according to Equation 4.34, 4.35 and 4.36
return 1~2

4.5 Experimental evaluation

The improvements of Huttenlocher’s algorithm proposed in the previous sections
were developed specifically to provide better performance in real implementations,
in particular with the application to 3D head tracking. The improved pose estimation
algorithm forms the third and top layer in the face tracking system. It uses an apriori
known 3D feature point model with 19 facial features and three feature triplets to
estimate the head pose robustly. The projection of the 3D feature point model in
the image plane is used to update the geometric constraints in the second layer.

This section describes the experimental evaluation of the proposed system with
real image sequences of a human head model.

4.5.1 Experimental setup

It is crucial in the evaluation of such techniques to use real data. Computer animated
faces were used by [Basu et al. 1996] provide accurate knowledge of the head pose but
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they do not provide realistic image noise. Measurement devices such as the Polhemos
pose tracker used by [Azarbayejani et al. 1993] have accuracies in the order of the
vision system and are therefore not suited for proper evaluation of the performance
of head pose estimation systems.

The system described in this chapter was tested with the MARITA-system (Man-
nequin Robot for Investigation of Tracking Accuracy) and is shown in Figure 4.18a).
MARITA consists of a mannequin head mounted onto a cable driven high perfor-
mance pan-tilt-device. The device has two degrees of freedom which rotate the
mannequin head around its vertical axes and tilt the head for- and backward. Rota-
tions about the z-axis (facial normal) are not possible, however, the estimation error
of this parameter can be measured nevertheless. In fact the transformation from the
X-Y Euler angles of the mechanism to the Z-Y-X Euler angles used for the internal
pose representation causes small rotations about the z-axis.

The pose of the MARITA system can be controlled with an accuracy greater than
0.1° and therefore allows to test the performance of the pose estimation algorithm
under realistic conditions.

4.5.2 Features

The human face contains a number of features with different properties which make
them more or less valuable for the face tracking application. Generally a suitable
feature contains a high-contrast texture which is unique at least in the vicinity of
the feature. If similar textures occur at all they should be spatially separated to
avoid problems in the feature identification. A good feature also does not change its
appearance drastically in different head orientations and it does not get occluded by
other features such as the nose or hair.

Features with high-contrast textures are the eyes, the eye brows and the hairline.
The eyes have the disadvantage that they change in appearance considerably when
they are closed during blinking. The same is true for the corners of the eyes. The
irises also move with respect to the head when the person looks around. If they are
used in the 3D pose estimation this fact can cause significant errors and they are
therefore not used for this purpose in this system. The hairline and the eye brows
do not change their appearance even when the head is rotated. However, similar
textures can usually be found in their close vicinity. Corners in the hairline and the
ends of the eye brows do reduce this problem slightly. The nose is not a good feature
although it is a prominent feature in the human face. The only high contrast texture
can be found at the nostrils which become occluded when the person lowers the head
slightly. The mouth also is not an easy feature to track. The contrast between the
facial skin and the lips is small for many people, also the shape of the mouth can
change considerably. When the mouth is opened the teeth and the tongue become
visible which are occluded otherwise. In summary, the best features are the corners
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Figure 4.18: MARITA-system (a) and view from the vision system (b)
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of the eyes and the eye brows followed by features on the hairline and the mouth.

To track the pose of the mannequin head a set of 19 features were selected
manually, including 6 features in each eye area, 3 features in the mouth area and 2
features in each ear area. The small white crosses in Figure 4.18b) mark the centre
of the tracked features. Not all 19 features were used for pose estimation since only
three feature triplets are used to derive the head pose. The other features provide
more clues for the two lower layers to improve the overall tracking performance and
make the system robust to noise and partial occlusions.

The lines in the figure indicate the feature triplets of which one is parallel to the
facial plane and one triplet is located on each side of the head. Only the features
at the corners of the triangles are actually used for the pose estimation. With this
selection of features and model triangleé the spatial orientation of the head can be
measured by at least two triplets for a wide range of spatial orientation of the head.

4.5.3 Mannequin tracking results

For the performance evaluation of the vision system, both the MARITA controller
and the vision system were controlled by a supervisory program. The supervisory
program moved the head into different positions and sampled the head pose measured
by the vision system over a period of 500 frames for each head pose. During these
measurements the mannequin head was motionless.

The parameters used to evaluate the performance are the bias (mean error) be-
tween the correct pose and the measured pose and the standard deviation of the
head pose sample during the 500 measurements. These parameters closely relate to
the systematic error and the sensitivity.

The spatial orientations used in the evaluation process are located on a grid in
the (0, 0,) space evenly spaced with 0.1 rad, ranging from —0.5 to 0.5 rad for 6, and
—0.3 to 0.3 rad for 8,. Overall 77 spatial orientations of the head were evaluated.
All values are the raw pose estimation results. The values have not been scaled and
biased to fit the correct values (such as [Azarbayejani et al. 1993]) and no filter was
applied since the variance of the raw estimates is one of the performance parameters.

Figure 4.19a) shows the bias of the rotation about the x-axis and Figure 4.19b)
the respective standard deviation. The area in the standard deviation plot where
6y € [-0.5...0.2] the standard deviation is close to 0 which indicates reliable feature
tracking and therefore accurate pose estimates. Only a few of the values in the
—0.5 row contain large errors. The sections of the plot which contains larger errors
correspond to configurations of the head where the feature tracking failed. The areas
which show high values can be seen in Figure 4.19b). The tracking failures are mainly
partial failures where some of the features on the hairline were lost. The estimate of
the rotation around this axis is highly dependent on correct localisation of the feature
triplets on the side of the head because the side triplets have a lower sensitivity for
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b)

Figure 4.19: Bias (a) and standard deviation (b) of Rot,
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a)

Figure 4.20: Bias (a) and standard deviation (b) of Rot,,
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b)

Figure 4.21: Bias (a) and standard deviation (b) of Rot,
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bias standard deviation

Rot,  1.691° 5.543°
Rot, —3.050° 3.794°
Rot, 1.560° 2.969°

Table 4.1: Parameter estimation analysis

this axis. These features could not be localised properly for rotations around the
y-axis larger than 6, > 0.2 due to the inhomogeneous lighting conditions. Hence,
the rotation around the x-axis could not be determined reliably. In configurations in
which the template tracking provided stable results over all 500 frames the standard
deviation was 0.045 rad (2.57°) on average. The mean absolute bias of Rot, for
spatial orientations with successful feature localisation (68%) was 0.10479 rad (6.0°).

The results from the estimates of the rotation around the y- and z-axis are plotted
in Figure 4.20 and Figure 4.21. These estimates show much smaller errors. The
standard deviation is close to 0 in the same area as in Figure 4.19b) which shows
that the different pose parameters are affected in a similar way by tracking errors.
For large head rotations around the y-axis a (>30°) the feature localisation failed
resulting in abrupt changes in the magnitude of the error. The mean absolute bias
of Rot, is 0.06699 rad (3.8°) for 75% of configurations and 0.04075 rad (2.3°) for
74% in Rot,. The standard deviation plots for Rot, in Figure 4.20b) and Rot, in
Figure 4.21b) are almost identical to the plot of the standard deviation of Rot, in
Figure 4.19b). '

The overall angular distance A between the correct and the measured spatial
orientation is 0.14098 rad (8.1°) for the 68% of the configurations when feature
localisation was successful. _

The Figures 4.22, 4.23 and 4.24 show the bias and standard deviation of the
estimates for the translation in the direction of the x-, y- and z-axes. The plots of
the standard deviations allow the same conclusions as the standard deviation plots
of the estimates of the rotational parameters of the head pose. The feature tracking
worked robustly for 6, € [—0.5...0.2] while the high values on the left side of the
plots indicate tracking failures. Both the x- and y-translations were well estimated
as expected, the mean absolute bias was 6.97mm and 14.08mm respectively in the
x- and y-direction. As expected from a monocular system, the error for the depth
measurement was one magnitude higher. On average the z-translation contains an
error of 60.04mm in the well tracking areas which corresponds to 10% of the overall
distance (600mm) of the head from the camera.

Figure 4.25 shows the trace plot for an experiment where the mannequin head
was continuously rotated into random orientations. The plots show both the correct
parameter value marked as a continuous line and the estimates in each frame as dots.
The estimates of the three rotational parameters have different characteristics as can
be seen from Table 4.1. It should be noted that all values represent the error of the
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b)

Figure 4.22: Bias a) and standard deviation (b) of the translation in x-direction
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b)

Figure 4.23: Bias a) and standard deviation (b) of the translation in y-direction
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b)

Figure 4.24: Bias a) and standard deviation (b) of the translation in z-direction
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Figure 4.25: Rot,, Rot, and Rot, over 6000 frames
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complete sequence in this experiment.

The bias of the error in Rot; is small with 1.691° while the standard deviation
is high with 5.543°. It is visibly larger than the standard deviation of the other two
parameters. The large standard deviation is a result of the difficult localisation of
features on the side of the head which are crucial for the calculation of Rot,. The
feature on the hair/skin boundary “slips” up and down along the hair line which
causes the strong variation in the estimate of Rot;.

However, these vertical oscillations of this particular feature only weakly affects
the estimate of Rot, which has opposite characteristics than the estimate of Rot.
The bias of Rot, is large with —3.050° which is visible in the plot. The standard
deviation is small with 3.794°. The high bias is a result of exaggerated negative
rotation estimates which were caused by the systematic feature localisation. Due to
the inhomogeneous illumination of the scene the frontal features were falsely localised
for large negative head rotations causing the systematic exaggeration of negative
Roty.

As stated previously, the transformation from the mechanical system to the inter-
nal representation of the spatial orientation causes small rotations in Rot,. Similar
to the results of the static pose estimation experiment this parameter was estimated
robustly. With a bias of 1.560° and a standard deviation of 2.969° the rotation
around the z-axes has the lowest error.

The results of the dynamic motion experiment confirm the accuracy results of
the static pose estimation experiments. Unless the feature localisation fails due to
the limitations of the fragile SAD template correlation of the vision hardware the
system provides accurate estimates even during rapid head motion.

4.5.4 Real-head tracking experiments

Figures 4.26 and 4.27 show an image sequence of a face tracking eicperiment with a
person displayed at 2 frames/sec. The green and red overlay triangles of the vision
system shows the three feature triplets used to derive the 3D head pose. Green
triangles indicate feature triplet which are visible and therefore used to some extent
in the estimation of the head pose while red triangles currently are not visible and
are ignored in the pose estimation. The centre triangle is spawned by the two eye
brows and the centre of the mouth while the two triangles on the side of the head
are spawned by an eyebrow, the edge of the hear line close to the ear and a corner
of the mouth. Note that the triangles are arranged in a way such that for the most
common head motions, rotations to the left and right, at all times at least two of the
triangles are visible to the camera. This is necessary to resolve the twofold ambiguity
of the alignment algorithm.

During this sequence the subject rotates his head more than +45° to the left
and right. For example, in images 8-12 the head is rotated to the right side and
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16 18

Figure 4.26: Tracking image sequence with pose triplets overlay (part 1)
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34 36

Figure 4.27: Tracking image sequence with pose triplets overlay (part 2)
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the right triangle turns red. The remaining two triangles are sufficient to continue
the 3D pose estimation which allows to recover the features of the hidden triangle
as soon as they reappear in image 13. In the following images the subject turns his
head to the left occluding the left side triangle which is marked red from image 16
to 22. Image 23 shows the transition between occlusion and recovery. The 3D head
pose indicates that the features on the left side of the head should have reappeared
and the triangle is marked green again. However, the respective features other than
the mouth corner have not been recovered yet. The top side of the triangle is visibly
offset from the head. In Image 24, only a fraction of a second later, the system has
recovered the temporarily occluded features of left feature triplet. The remaining
images show similar scenarios with large head rotations, for example image 29, and
with the subject looking up.

The experiment shows how the multi-triplet approach not only allows to resolve
the ambiguity of the pose estimation algorithm but also to continuously track and
estimate the 3D head pose during large head rotations. In frontal head views the
estimates of the centre feature triplet is subject to an increased sensitivity. This
problem is resolved by incorporating the estimates from the side triplets and therefore
the head pose can be estimated robustly for all head poses.

4.6 Summary

This chapter presented the algorithms and techniques used in the third layer of the
face tracking and 3D head pose estimation system. The purpose of the third layer
is to derive the 3D pose of the head from the 2D feature positions robustly deter-
mined by the second layer. The pose estimation is based on the 3-point alignment
algorithm of Huttenlocher and Ullman which provides a closed form solution with
only a twofold ambiguity. To address the problem of the systematic error caused by
the discrepancies between a perfectly affine projection and the noisy real perspective
projection a number of improvements to the original algorithm were presented which
reduce the systematic angular error by 75% and the translational error by 90% in the
geometry of the face tracking application. The varying sensitivity of the estimate
is modelled by an approximative model which provides real-time estimates of the
sensitivity. By incorporating multiple triangles into the head pose estimate not only
the twofold ambiguity of the pose is resolved but also the resulting pose estimate has
a low sensitivity for all spatial orientations of the head.

The proposed algorithms were implemented in the face tracking application for
performance evaluation. Over a wide range of spatial orientations the system pro-
vides robust and accurate estimates. The limitations of the system’s performance for
larger rotations are a result of the failed feature localisation in the hardware layer.
Overall the face tracking system represe<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>