4,704 research outputs found

    A combined measure for quantifying and qualifying the topology preservation of growing self-organizing maps

    Get PDF
    The Self-OrganizingMap (SOM) is a neural network model that performs an ordered projection of a high dimensional input space in a low-dimensional topological structure. The process in which such mapping is formed is defined by the SOM algorithm, which is a competitive, unsupervised and nonparametric method, since it does not make any assumption about the input data distribution. The feature maps provided by this algorithm have been successfully applied for vector quantization, clustering and high dimensional data visualization processes. However, the initialization of the network topology and the selection of the SOM training parameters are two difficult tasks caused by the unknown distribution of the input signals. A misconfiguration of these parameters can generate a feature map of low-quality, so it is necessary to have some measure of the degree of adaptation of the SOM network to the input data model. The topologypreservation is the most common concept used to implement this measure. Several qualitative and quantitative methods have been proposed for measuring the degree of SOM topologypreservation, particularly using Kohonen's model. In this work, two methods for measuring the topologypreservation of the Growing Cell Structures (GCSs) model are proposed: the topographic function and the topology preserving ma

    Advances in Self Organising Maps

    Full text link
    The Self-Organizing Map (SOM) with its related extensions is the most popular artificial neural algorithm for use in unsupervised learning, clustering, classification and data visualization. Over 5,000 publications have been reported in the open literature, and many commercial projects employ the SOM as a tool for solving hard real-world problems. Each two years, the "Workshop on Self-Organizing Maps" (WSOM) covers the new developments in the field. The WSOM series of conferences was initiated in 1997 by Prof. Teuvo Kohonen, and has been successfully organized in 1997 and 1999 by the Helsinki University of Technology, in 2001 by the University of Lincolnshire and Humberside, and in 2003 by the Kyushu Institute of Technology. The Universit\'{e} Paris I Panth\'{e}on Sorbonne (SAMOS-MATISSE research centre) organized WSOM 2005 in Paris on September 5-8, 2005.Comment: Special Issue of the Neural Networks Journal after WSOM 05 in Pari

    Self-Organizing Time Map: An Abstraction of Temporal Multivariate Patterns

    Full text link
    This paper adopts and adapts Kohonen's standard Self-Organizing Map (SOM) for exploratory temporal structure analysis. The Self-Organizing Time Map (SOTM) implements SOM-type learning to one-dimensional arrays for individual time units, preserves the orientation with short-term memory and arranges the arrays in an ascending order of time. The two-dimensional representation of the SOTM attempts thus twofold topology preservation, where the horizontal direction preserves time topology and the vertical direction data topology. This enables discovering the occurrence and exploring the properties of temporal structural changes in data. For representing qualities and properties of SOTMs, we adapt measures and visualizations from the standard SOM paradigm, as well as introduce a measure of temporal structural changes. The functioning of the SOTM, and its visualizations and quality and property measures, are illustrated on artificial toy data. The usefulness of the SOTM in a real-world setting is shown on poverty, welfare and development indicators

    Growing Self-Organizing Maps for Data Analysis

    Get PDF
    Currently, there exist many research areas that produce large multivariable datasets that are difficult to visualize in order to extract useful information. Kohonen self organizing maps have been used successfully in the visualization and analysis of multidimensional data. In this work, a projection technique that compresses multidimensional datasets into two dimensional space using growing self-organizing maps is described. With this embedding scheme, traditional Kohonen visualization methods have been implemented using growing cell structures networks. New graphical map display have been compared with Kohonen graphs using two groups of simulated data and one group of real multidimensional data selected from a satellite scene

    Somoclu: An Efficient Parallel Library for Self-Organizing Maps

    Get PDF
    Somoclu is a massively parallel tool for training self-organizing maps on large data sets written in C++. It builds on OpenMP for multicore execution, and on MPI for distributing the workload across the nodes in a cluster. It is also able to boost training by using CUDA if graphics processing units are available. A sparse kernel is included, which is useful for high-dimensional but sparse data, such as the vector spaces common in text mining workflows. Python, R and MATLAB interfaces facilitate interactive use. Apart from fast execution, memory use is highly optimized, enabling training large emergent maps even on a single computer.Comment: 26 pages, 9 figures. The code is available at https://peterwittek.github.io/somoclu

    Hierarchical growing cell structures: TreeGCS

    Get PDF
    We propose a hierarchical clustering algorithm (TreeGCS) based upon the Growing Cell Structure (GCS) neural network of Fritzke. Our algorithm refines and builds upon the GCS base, overcoming an inconsistency in the original GCS algorithm, where the network topology is susceptible to the ordering of the input vectors. Our algorithm is unsupervised, flexible, and dynamic and we have imposed no additional parameters on the underlying GCS algorithm. Our ultimate aim is a hierarchical clustering neural network that is both consistent and stable and identifies the innate hierarchical structure present in vector-based data. We demonstrate improved stability of the GCS foundation and evaluate our algorithm against the hierarchy generated by an ascendant hierarchical clustering dendogram. Our approach emulates the hierarchical clustering of the dendogram. It demonstrates the importance of the parameter settings for GCS and how they affect the stability of the clustering

    Fast training of self organizing maps for the visual exploration of molecular compounds

    Get PDF
    Visual exploration of scientific data in life science area is a growing research field due to the large amount of available data. The Kohonen’s Self Organizing Map (SOM) is a widely used tool for visualization of multidimensional data. In this paper we present a fast learning algorithm for SOMs that uses a simulated annealing method to adapt the learning parameters. The algorithm has been adopted in a data analysis framework for the generation of similarity maps. Such maps provide an effective tool for the visual exploration of large and multi-dimensional input spaces. The approach has been applied to data generated during the High Throughput Screening of molecular compounds; the generated maps allow a visual exploration of molecules with similar topological properties. The experimental analysis on real world data from the National Cancer Institute shows the speed up of the proposed SOM training process in comparison to a traditional approach. The resulting visual landscape groups molecules with similar chemical properties in densely connected regions

    The State of the Art in Cartograms

    Full text link
    Cartograms combine statistical and geographical information in thematic maps, where areas of geographical regions (e.g., countries, states) are scaled in proportion to some statistic (e.g., population, income). Cartograms make it possible to gain insight into patterns and trends in the world around us and have been very popular visualizations for geo-referenced data for over a century. This work surveys cartogram research in visualization, cartography and geometry, covering a broad spectrum of different cartogram types: from the traditional rectangular and table cartograms, to Dorling and diffusion cartograms. A particular focus is the study of the major cartogram dimensions: statistical accuracy, geographical accuracy, and topological accuracy. We review the history of cartograms, describe the algorithms for generating them, and consider task taxonomies. We also review quantitative and qualitative evaluations, and we use these to arrive at design guidelines and research challenges
    corecore