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The Self-Organizing Map (SOM) is a neural network model that performs an ordered projection of a 
high dimensional input space in a low-dimensional topological structure. The process in which such 
mapping is formed is defined by the SOM algorithm, which is a competitive, unsupervised and 
nonparametric method, since it does not make any assumption about the input data distribution. The 
feature maps provided by this algorithm have been successfully applied for vector quantization, 
clustering and high dimensional data visualization processes. However, the initialization of the network 
topology and the selection of the SOM training parameters are two difficult tasks caused by the 
unknown distribution of the input signals. A misconfiguration of these parameters can generate a 
feature map of low-quality, so it is necessary to have some measure of the degree of adaptation of the 
SOM network to the input data model. The topology preservation is the most common concept used to 
implement this measure. Several qualitative and quantitative methods have been proposed for 
measuring the degree of SOM topology preservation, particularly using Kohonen's model. In this work, 
two methods for measuring the topology preservation of the Growing Cell Structures (GCSs) model are 
proposed: the topographic function and the topology preserving map. 

1. Introduction 

Nowadays there are many research areas that generate large 
volumes of information of high dimensional nature, which require 
data mining tools to extract behavior models through the data 
analysis [1]. Data mining is defined as the process of extracting 
information that resides implicitly in the data. Several techniques 
are included under this discipline, their main purpose being extract­
ing useful information and knowledge present in databases char­
acterized by a high dimension, size or complexity, excluding, in this 
way, the use of manual analysis techniques. Usually, data mining 
first stage consists of building simplified global overviews of 
datasets, generally in a graphical form [2]. Neural networks are 
one of the models commonly used in data mining. These models 
stand out from the rest by their suitability for solving problems 
associated with datasets with a priori unknown statistical distribu­
tion. The neural network model most widely used in this area is the 
Self-Organizing Map (SOM). SOM fits well in the exploratory data 
analysis since its main purpose is the visualization and analysis of 
nonlinear relations implicit in multidimensional data [3]. The SOM 
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model generates similarity maps of the input data, transforming 
nonlinear statistical relationships of multidimensional patterns in 
simple geometric relationships on a low-dimensional graph, which 
usually looks like a two-dimensional mesh of nodes. In addition, 
SOM networks compress information while preserving the most 
important metric and topological relationships associated with the 
data set. In this way, the SOM network is a simplified model of the 
data space. These properties make SOM an ideal model for exploita­
tion in several visualization techniques of multidimensional infor­
mation [4-7]. All of them are based on exploring different features 
related to the knowledge learned by the network. 

The SOM model most widely known is that proposed by 
Kohonen [8]. This network generates a mapping of the input 
space (dataset M), which is usually multidimensional, in the two-
dimensional output mesh of the network (lattice A of N neural 
units). Each output unit has an associated vector, usually known 
as synaptic vector, with the same dimension as M. The neurons in 
the output layer are organized in a discrete two-dimensional grid, 
which establishes the neighboring connection architecture 
between them. The SOM algorithm determines the method of 
creating the input space mapping. This is an iterative process of 
training that adapts the synaptic vectors values of the network to 
perform a particular task. During SOM learning phase, a set of 
input vectors e M are presented to the network in an iterative way. 
For each input pattern, the best matching unit is computed (the 
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one with the synaptic vector closest to the input pattern) and the 
synaptic vector of the winner and all neurons that belong to its 
neighborhood area are modified slightly, making it closer to that 
input. The purpose of this adaptation process is to map similar 
input patterns into neighbor output units, as well as neighbor 
output units map only similar input patterns. Informally, this can 
be the definition of topology preservation [9], which shows the 
quality of the simplified model and the degree of success in the 
choice of the neighborhood connection architecture of the output 
layer neurons. A misconfiguration in the SOM output layer 
topology or an improper tuning of the network training para­
meters can result in erroneous feature maps. Therefore, it is 
necessary to create tools to evaluate the quality of trained 
networks in order to validate their subsequent exploitation. 

Several qualitative and quantitative methods for measuring 
the topology preservation degree of SOM have been proposed in 
the literature, in particular using Kohonen's self-organizing fea­
ture map model, as the quantization error [3], the topographic 
error [10], or the topographic product [11]. None of these 
approaches use the dataset itself for measuring, so if the manifold 
is nonlinear, as in many practical applications of SOM, none of 
these methods can distinguish a correct folding in the network 
due to a fold in a nonlinear data set from one due to a topological 
error between M and A [12]. Some methods that explicitly take 
into account the structure of the dataset have been proposed for 
Kohonen's SOM, such as the topographic function or the con­
nectivity strength matrix. Villmann et al. presented in [12] the 
topographic function to measure the topology preservation grade 
for Kohonen's model. While the information provided by this 
function quantifies the volume of topology preserving violations, 
it does not provide enough information about the seriousness of 
the same. Tasdemir and Merényi [13] introduced a new visualiza­
tion scheme to represent data topology superimposed on 
Kohonen's SOM grid: the connectivity strength matrix. This map 
can help to analyze the weightiness of the topology violations of 
the network graphically but, a priori, it does not provide quanti­
tative information about the volume of infractions. 

In Kohonen's SOM the lattice of the output layer has to be pre-
specified at the beginning of the training process and it remains 
static during all the adaptation steps. Sometimes it is not possible 
to decide a priori the neighborhood connection architecture that 
fits well with the structure of the dataset. In some cases even 
knowing the input data space, it is not viable to configure an 
appropriate architecture, e.g. when the input space consists of 
several separate regions of positive probability density. These 
situations can cause Kohonen's model to fail providing perfectly 
topology preserving maps. To overcome the static architecture of 
Kohonen's model, several incremental SOM have been proposed. 
The Incremental Grid Growing (IGG) [14], Grid Growing SOM 
(GGSOM) [15], Growing SOM (GSOM) [16], Growing Neural Gas 
(GNG) [17] and Growing Cell Structures (GCSs) [18] are some of 
the best known incremental SOM. IGG y GSOM models preserve a 
regular two-dimensional neighborhood grid at any moment 
during the self-organizing process, ensuring that topological 
relations can be easily examined by plotting the neurons and 
the connections of the map in 2-D. However, in both models the 
number of neighboring units associated with a neuron is limited 
(similar to Kohonen's model), which can lead to low degrees of 
topology preservation in certain cases. GGSOM architecture 
maintains a regular grid neighborhood connection in the output 
layer, with a fixed dimension, which may increase during the 
adaptation process of the network. As it does not ensure a 
dimension equal to two in the output layer, this model cannot 
be used to generate 2D maps to visually analyze the network. 
GGSOM and GSOM models do not implement any mechanism for 
eliminating neurons and connections in the output layer during 

the training process, so it can generate low levels of topology 
preservation if the input space consists of separate clusters of 
data. On the other hand, GCS and GNG models incorporate 
insertion and removal of neurons and connections in the output 
layer of the network. GNG does not ensure a fixed size of the 
neighborhood connection topology of the output layer, allowing 
the existence of different dimensions according to the character­
istics of the input data. This usually makes this model better 
suited to the properties of any input space, but has the disadvan­
tage of not being able to generate two-dimensional output layer 
maps to analyze the intrinsic information of the network. The GCS 
model ensures a particular dimension in the neighborhood con­
nection topology. For a neighborhood connection factor d=2, 
output layer of the network exhibits a two-dimensional nature 
that can be exploited in the visualization processes of multi­
dimensional input spaces. Neuron insertion and removal, and the 
capability of projecting multidimensional information in two-
dimensional maps have made GCS a model particularly interest­
ing within the field of self-organizing maps. 

GCS network architecture consists of connected units compos­
ing d-dimensional hypertetrahedron structures linked between 
them. The interconnection scheme defines the neighborhood 
relationships. Thus for example, for d=2, the GCS output layer 
exhibits a structure whose connections are established by a 
system of triangles. During the learning process, new neurons 
are added in those areas of the map where a heuristic measure 
determines that they inadequately represent their corresponding 
areas in the input space. Also, neurons located in areas of the 
input space with low or null probability density are periodically 
removed from the map. This can lead to the division of the output 
layer into two or more isolated meshes of neurons. In this way, 
the adaptation algorithm does explicitly represent clustering of 
the input data by removing connections between the clusters in 
the structure. Insertion and removal of units are performed in 
such way that the original architecture structure is maintained 
(i.e., every node must always be a member of at least one 
triangle). Using the method proposed in [19] by the authors of 
this paper, the GCS two-dimensional output layer can be plotted 
in a two-dimensional graph (the topographic map) giving a way 
to make use of this model in visualization techniques of high 
dimensional information. Usually, the flexibility of the output 
layer lattice in the GCS network provides better degrees of 
topology preservation than Kohonen's model. 

In this work it is proposed to combine two methods to 
measure the topology preservation of the GCS model: the topo­
graphic function and the topology preserving map. Both techni­
ques used separately do not give a complete vision of topology 
transgressions, but in combination they offer the possibility of 
quantifying the average number of neurons that generate viola­
tions and qualify their severity. In this paper, an adaptation for 
calculating the topographic function for the GCS model has been 
made. Moreover, the connectivity strength matrix map generation 
(topology preserving map) for the GCS model is proposed, in order 
to complement the information that the topographic function 
does not provide. 

The remaining of the paper is organized as follows: Sections 
2 and 3 describe the topographic function and the topology 
preserving map for GCS networks, respectively. The experiments 
and results are discussed in Section 4 and finally, conclusions are 
established in Section 5. 

2. The topographic function in GCS 

The output layer in GCS network is organized by neurons that 
exhibit neighborhood connections forming d-dimensional structures. 



Normally, factor d takes value 2, thus these structures have the shape 
of a triangle. As in Kohonen's model, each output neuron i has 
associated a synaptic vector, w¡, with the same dimension that the 
input patterns (M c Rd and w¡ e Rd). In a GCS trained network, the 
synaptic vectors of the N neurons of the output layer (A) represent the 
prototype vectors of the training patterns. Each neuron ieA has a 
receptive field for which the best matching unit is bmu, known as the 
Voronoi region (V¡), where the synaptic vector w¡ is the kernel point. 
Each neuron represents those training patterns that are within its 
Voronoi region. 

The neighborhood connections of the GCS output layer define 
the connectivity matrix C\p of the A network 

( Í, if i and / are connected in A 

C\p describes the lattice of A and is used to obtain the symmetric 
square matrix DA. This matrix will keep the distance between 
each pair of neurons i and j , understood as the minimum number 
of neighborhood connections that separate i and j according to 
C[p. As a result of the removal of neurons during the weight 
adaptation process of the network, the neighborhood lattice of the 
output layer in the GCS network can divided into two or more 
isolated meshes. In this case, when calculating DA, the distance 
between two neurons that belong to two separate meshes is 
theoretically co. 

In addition, a new connectivity matrix can be defined based on 
the characteristics of the dataset. Each input pattern has an 
associated bmu and a second bmu, this being the last neuron of 
the output layer whose synaptic vector is the second one most 
similar to the pattern (by means of Euclidean distance). With the 
concept of bmu and second bmu a new connectivity matrix C[f' 
can be generated, which will reflect how the output neurons 
should be connected using the knowledge inherent to M: 

This new connectivity matrix reflects what is known as the 
induced Delaunay triangulation [12]. Ó$® matrix is used to 
calculate the symmetric square matrix DM, which will keep the 
distance between each pair of neurons i and j , understood as the 
minimum number of neighborhood connections that separate i 
and j according to the lattice established by Cjfl Neighborhood 
connection established by the induced Delaunay triangulation 
(CSf15) may result in a structure composed of several separate 
meshes. As in the case of the DA matrix, when DM matrix is 
calculated, the distance between two neurons located in two 
disconnected meshes is theoretically co. 

Using DM y DA distance matrices, the topographic function <PA 

[12] can be defined for GCS network as 

n/NT,ieAfi(k) k>0 
<(/<)= i < ( l ) + < ( - l ) k = Q, (3) 

IVNEieA/idO '<<0 

where 

fi(k) = #\j\DA(ij) > k;DM(i,j) = 1} j=í,...N 

fi(-k) = #\j\DA(i,j) = \;DM(i,j)>k} j '= l , . . . ,N . (4) 

The expression #{.} denotes the cardinality of the set, and k is 
defined in the range [1. . .N-1]. A GCS network has a perfect 
topology preservation if ^ ( 0 ) = 0. In the range of positive values 
of k, ^(k) function calculates the mean number of neighboring 
units per neuron that should exhibit a direct neighbor connection 
in A, but present a higher distance than k. On the other hand, in 
the range of negative values of k, <^(k) function determines the 
mean number of neighboring units per neuron that are direct 
neighbors in A, but should be at a distance greater than |fc|. The 
topographic function can be drawn in the (-N...N) range, giving 
a graphical fast evaluation tool to measure the topology preser­
ving quality in a trained GCS network. 

The topographic function defined by Eq. (3) has the disadvan­
tage that it does not accurately reflect the relevance of the 
topology violations with respect to the input data space, as the 
connectivity matrix Cjf does not weigh how many input vectors 
may be causing the infringement. For this reason, the topology 
preserving map is proposed in this work as a complementary 
measure to address this problem. 

3. GCS topology preserving map 

When d=2 architecture factor is used, the GCS output layer 
neurons are organized in groups of interconnected triangles, 
forming a bi-dimensional mesh that can be projected in the 
plane. In [18], Fritzke presents a drawing method based on a 
physical force analogy that works reasonably well when the input 
space is low-dimensional (2D or 3D), but is not guaranteed to 
produce planar drawing. Delgado et al. [19] proposed a new 
approach for avoiding this restriction in order to embed the GCS 
output layer structure in the plane, independently of the dimen­
sion of the input space, for the case d=2. The resulting graph is 
known as the topographic map, which shows the output neurons 
and the neighborhood connections, ensuring that neighbor units 

appear near in the map and neighborhood connections do not cross 
each other. Topographic map provides the basic support to imple­
ment different visualization methods of multidimensional infor­
mation, similar to those generated using Kohonen's network [19]. 

The GCS topographic map and the dataset can be used to 
produce a graph that reflects the degree of topology preservation, 
equivalent to the one proposed in [13] for Kohonen's network. This 
map will reflect the neurons of the output layer that should be 
direct neighbors on A as well as the strength of these connections, 
according to the dataset structure M, i.e., how strong each pair of 
neurons should be connected on the basis of information provided 
by the input space. If the GCS network is perfectly topology 
preserving, only the immediate neighbors in A should be con­
nected. Otherwise, connections may exist between neurons, which 
are not immediate neighbors in A. In order to be able to detect 
violations of the topology preservation, it is necessary to generate 
in parallel the topographic map of the network to visualize the 
connections that really exist in the lattice A. 

First of all, the cumulative adjacent matrix CAD] is calculated, 
where CADJ(ij) will keep the number of training patterns 
for which i is the bmu and j is the second bmu. In a second 
step, the connectivity strength matrix, CONN, can be obtained as 
CONN(ij) = CADJ(ij) + CADJ(J,i), that shows how strongly two 

Í
1, if i is bmu and j is second bmu for some input pattern 

1, if j is bmu and i is second bmu for some input pattern vi,jeA(i,j =\,.. .,N). (2) 

0, otherwise 



neurons must be connected in the basis of the dataset 
structure. 

In the topology preserving map, neurons are placed in the 
coordinates calculated for the topographic map of the network 
[19]. Between each pair of neurons i and j with CONN(i,j) > 0, a 
line connecting them is included. The strength of connections is 
reflected by the thickness of the line, and is calculated as 

line width (¡J) = 

1 ¡i-a > C0NN(ij) > 0 
2 fi > CONN(ij) > fi-a 
3 fi + a> CONN(ij) > fi 
4 CONN(ij)>fi + a. 

(5) 

where ¡i represents the mean value and a the variance of the 
strengths of all connections in CONN. Value 1 is associated with 
the weakest line and 4 with the strongest one. In addition, 5 levels 
of gray are used to reflect the local strength of the connections for 
each neuron, associating high values with dark tones and low 
values with clear. A dark line between two neurons i and j will 
indicate that there exists a high volume of data for which i is bmu 
and j the second bmu or vise versa. 

Lines connecting units in the topology preserving map, which 
are not direct neighbors in the lattice defined by A are considered 
topology violations. Usually local violations tend to arise, that is, 
fine and clear gray lines connecting units that belong to the same 
isolated cluster of neurons. Serious violations will be represented 
by strong dark lines connecting units of separate clusters accord­
ing to A. 

4. Experiments and discussion 

To evaluate the potential of combining the two methods 
exposed previously in this paper, this section presents four 
experiments conducted with two datasets. In both cases the input 
space, M, consists of vectors distributed in several clusters. These 
experiments show the usefulness of the two methods to deter­
mine the quality of a trained GCS network, thus providing an 
objective criterion to analyze the number of clusters present in 
the input space, and a robust base to select the GCS network that 
best fits with an input space from a set of networks trained with 
the same dataset. 

The first dataset consists of eleven normally distributed clouds 
of two-dimensional data points (small light gray dots in Fig. 1). 
This dataset was generated artificially from eleven centroids, 
producing 178 points normally distributed around each one. 

The second is a real-world dataset, formed by a group of four-
dimensional pixels selected from a scene registered by the multi-
spectral optical sensor onboard the QuickBird satellite, with a 
spectral resolution of four bands: blue (450-520 nm), green 
(520-600 nm), red (630-690 nm) and near infrared (760-
900 nm). It consists of 1460 pixels distributed over seven land 
cover categories as follows: 61 vectors of dark-ways, 91 of dark 
vegetation, 299 of light vegetation, 187 of dark mixed, 411 of 
mixed, 96 of bright ways and 315 of bright soil. Fig. 2a shows a 
projection of this dataset using only blue and near infrared bands. 
Fig. 2b depicts in graphical format the mean value of the four 
spectral bands for each of the seven groups of land cover 
categories. 

Two GCS networks have been trained with each data set: 
without and with removal of neurons. For the two GCS networks 
without removal of units, the ending of the training phase has 
occurred when a predetermined number of neurons in the output 
layer of the network has been achieved (100 units for the two-
dimensional dataset and 200 for the multispectral one). On the 
other hand, obtaining a predetermined minimum number of 

Fig. 1. Eleven separate regions in the 2-dimensional plane. Input data visualization 

isolated clusters of neurons in the output layer has been the 
ending condition of the training phase for the two networks with 
removal of units (eleven for the two-dimensional dataset, and 
seven for the multispectral one). 

In GCS networks without removal of units, the topology 
preserving map can be analyzed jointly with some of the topo­
graphic maps that make available the visualization of clusters in 
the dataset. In this work the well known U-map proposed for 
Kohonen networks [4-5], adapted to the GCS model [19] has been 
used. U-map shows an overview of the potential number of 
clusters present in the input space, and provides the necessary 
information to determine those connections on the topology 
preserving map, which correspond to topology violations in the 
network. 

In all the experiments, the modification of the training algo­
rithm for GCS network described in [20] has been used, in order to 
achieve a physical interpretation of the learning parameters 
related to the removal of output units. In addition, given that 
the two networks trained with the same dataset have different 
number of output neurons, with the aim of comparing both 
topographic functions, a normalization of X-axis coordinates has 
been carried out in these graphs, transforming values in the range 
(-N...N) to the range (-1 . . .1) . The definition, description and 
values of the GCS training parameters used in all experiments are 
detailed in [19]. For the two GCS networks without removal of 
units, a neuron removal factor ¡i=Q (relative normalized prob­
ability density estimation value) has been used, and ¡i=0.0006 for 
the two networks trained with the removal of units. 

4.1. Two-dimensional data set 

Using this data set, a GCS network without removal of units 
has been trained until 100 neurons have been obtained in the 
output layer. Given that this is a two-dimensional input space, the 
input vectors and the output neurons have been projected 
directly on the plane. Fig. 3a shows the input vectors (small light 
gray dots), the output neurons (small black dots) and the 
neighbor connections (lines connecting neurons). In general, 
neurons in the output layer have been distributed around the 
eleven clusters of data on the input space. However, there are 
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Fig. 2. QuickBird multispectral data set. (a) Input data visualization using the blue and near infrared spectral bands and (b) spectral signature mean values for the seven 
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Fig. 3. Eleven separate regions in the 2-dimensional plane. GCS network without removal of units, (a) Visualization of the input data (light gray dots) and the network 
projection (black dots and neighbor connection lines) using the two component values of the synaptic vectors, (b) U-map, (c) topographic function and topology preserving 
value for k—0, (d) topographic map and (e) topology preserving map. 

connections between neurons that represent different clusters of 
data as well as neurons placed in areas of the input space without 
any vector. The grouping of neurons around the clusters of data is 
validated by the U-map of the network (Fig. 3b). It clearly exhibits 
the presence of eleven clusters (the groups of neurons in dark 
tones). This network consists of a single mesh of neurons in the 
output layer, so the information displayed by the U-map advances 
the low adaptation quality of the network to the input space. The 
topographic function (Fig. 3c) reveals that a small number of units 
should be direct neighbors but have a slightly higher distance in A 
(it quickly falls to 0 for positive values of fe), whereas the 
asymptote that emerges for negative values of k indicates that 

there are several units in A that should not belong to the same 
neighborhood mesh (those that do not identify any pattern and 
those that identify patterns belonging to different input clusters). 
In this network there exists an average of about 0.5 neighbors per 
neuron that should not be connected directly or indirectly, i.e., 
they should not belong to the same neighborhood mesh. The 
topology preserving map has been generated (Fig. 3e) for evalu­
ating the relevance of the violations identified by the topographic 
function. On comparing the topology preserving map with the 
topographic map (Fig. 3d) it is illustrated that there exist 
neighborhood connections in A that should not exist (those that 
do not exist in the topology preserving map). Moreover, 



Fig. 4. Eleven separate regions in the 2-dimensional plane. GCS network with removal of units (11 isolated clusters), (a) Visualization of the input data (gray dots) and the 
network projection (black dots and neighbor connection lines) using the two component values of the synaptic vectors, (b) topographic map, (c) topology preserving map 
and (d) topographic function and topology preserving value for k—0. 

comparing the topology preserving map with the U-map, some 
strong dark lines connecting units that belong to separate clusters 
of neurons indicating serious topology preserving violations can 
be located. On this basis, it can be concluded that the transgres­
sions observed in the topographic function for negative values of 
k correspond to serious violations of the topology preservation, so 
this network would not be an accurate model of the input space. 

Using the same dataset, a GCS network with removal of units 
has been trained, using as ending adaptation condition to obtain 
at least eleven isolated clusters of neurons in the output layer. 
Finally, the trained network has 71 neurons distributed in eleven 
separate clusters. Fig. 4a shows the 2D training vectors repre­
sented by small light gray dots, the output neurons by small black 
dots and the neighbor connections by lines connecting neurons. 
This figure shows that this network is better suited to the input 
space than the network trained without removal of units. The 
topographic function (Fig. 4d) reveals that there are very few 
direct neighbors that should be to a slightly higher distance (it 
quickly falls to 0 for negative values of fe), suggesting that 
internally each cluster of neurons is well suited to the corre­
sponding input subspace. Furthermore, the asymptote that 
emerges for positive values of k indicates that there exists an 
average of 0.45 neighbors per neuron that should be connected in 
A, but theoretically they distance co, i.e., there exist neurons 
belonging to separate clusters that should be connected according 
to intrinsic information of the input space. Analyzing the topology 
preserving map (Fig. 4c) it can be observed that there are only a few 
fine and clear lines (slight topology violations) connecting units that 
belong to a different cluster (Fig. 4b), suggesting that the transgres­
sions identified by the topographic function are produced by a small 
number of input vectors. Therefore, this GCS network could be 
considered a good accurate model of the input space. 

Evaluating the value of the topographic function (fc=0) 
obtained with both GCS networks shows the improvement in 
the network of eleven clusters in contrast with the network of 100 
neurons. In addition, analysis of the relevance of violations using 
the topology preserving map has shown that the network of 
eleven clusters is better suited to the topology of the input space 
than the network of 100 neurons. 

4.2. QuickBird multispectral data set 

When a GCS network is trained using a two-dimensional or 
three-dimensional input space, the information provided by the 
training vectors and the network can be projected in a two-
dimensional o tree-dimensional graph (as corresponds). This map 
can be used to visually analyze the quality of adaptation of the 
network to the input space, as discussed in the previous subsec­
tion in Figs. 3a and 4a. However, when the input space consist of 
vectors with more than three components, it is not possible to 
generate a graph that includes all the information of M and A. 
There exists the possibility of projecting M and A using only two 
or three components, but in many cases, the resulting graph does 
not display correctly the data or the network. For this reason, it is 
necessary to use other techniques to facilitate the analysis of the 
input space and the adaptation quality of the network. This is the 
case of the real-world dataset discussed in this subsection. It is a 
four-dimensional input space consisting of 1460 pixels extracted 
from a multispectral image captured by the multispectral optical 
sensor onboard the QuickBird satellite. As was stated at the begin­
ning of this section, this data set has been constructed selecting 
characteristic pixels of seven land cover categories (Fig. 2). 

Using this input space, a GCS network has been trained 
without removal of units, until obtaining 200 neurons in the 
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Fig. 5. QuickBird multispectral data set. GCS network without removal of units, (a) U-map, (b) topographic function and topology preserving value for k—0, (c) topographic 
map and (d) topology preserving map. 

output layer. To analyze the adaptation quality of the trained 
network, U-map (Fig. 5a), topographic function (Fig. 5b) and 
topology preserving map (Fig. 5d) have been generated. U-map 
displays the presence of several clusters (the groups of neurons in 
dark tones), indicating that this network has a poor degree of 
topology preservation since it is composed by a single mesh of 
neurons. This information is confirmed by the asymptote of the 
topographic function for negative values of k (in A there exists an 
average of about 0.5 neighbors per neuron that should not be 
connected directly or indirectly, i.e., they should not belong to the 
same neighborhood mesh). The topographic function falls quickly 
for positive values of fe, indicating that a small number of units 
should exhibit a direct neighborhood connection but present a 
slightly higher distance in A. Comparing the topology preserving 
map (Fig. 5d), which represents the neighborhood connections 
that should exist in the network according to M, with the 
topographic map (Fig. 5c), which shows the real neighborhood 
connections in A, the presence of a high volume of neighboring 
neurons in A that should not belong to the same mesh can be 
observed, indicating serious topology preserving violations. As 
result of this analysis, it can be concluded that this network has a 
low topology preserving grade. 

Using the same dataset, a GCS network with removal of units 
has been trained, until at least seven isolated clusters of neurons 
have been obtained. The trained network has 61 neurons dis­
tributed in seven separate clusters, as shown in the topographic 
map (Fig. 6a). The topographic function (Fig. 6c) shows that each 
cluster of neurons fits well with the cluster of data that it 
identifies (it quickly falls to 0 for negative values of k). On the 

other hand, the asymptote that emerges for positive values of k 
indicates that there are some neurons in A belonging to separate 
clusters that should be directly connected. The topology preser­
ving map (Fig. 6b) shows the lightness of these violations, as they 
are caused by a tiny number of input vectors (only three thin and 
light gray lines appear connecting units that belong to separate 
clusters). 

Quality results obtained with the GCS network trained with 
removal of units are clearly better than those achieved with the 
network formed by a single mesh of neurons. The topographic 
function value in fc=0 for the network of seven clusters signifi­
cantly improves the value obtained for the network of 200 
neurons. Furthermore, analyzing the topology preserving maps, 
the relevance of violations detected by the topographic functions 
has been qualified concluding that GCS network of seven clusters 
is better suited to the topology of the input space than the 
network of 200 neurons. 

5. Conclusions 

In this paper, a new technique based on the integration of 
information provided by two methods for quantifying and quali­
fying the topology preservation of the GCS network model has 
been proposed. Both measures used in conjunction provide a 
powerful validation tool for a quick evaluation of the trained 
network quality. 

The topographic function offers a clear view of the quality of the 
trained network. For positive values of k it displays the mean 
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Fig. 6. QuickBird multispectral data set. GCS network with removal of units (7 isolated clusters), (a) Topographic map, (b) topology preserving map and (c) topographic 
function and topology preserving value for k—0. 

number of neighboring units per neuron that should exhibit a direct 
connection in A, but present a distance greater than k in the 
network. For negative values of k it shows the mean number of 
neighboring units per neuron that should not be directly connected. 

As stated throughout the paper, the topographic function 
detects and quantifies the topology preserving violations, but it 
does not reflect the seriousness of the transgressions. On the 
other hand, the topology preserving map used along with the 
topographic map shows clearly those neurons that are generating 
topology violations, as well as the relevance of the same, com­
plementing the restrictions of the topographic function. 

The two datasets used in the experiments have shown that 
when the input space consists of vectors grouped in separate 
clusters, GCS networks usually present better topology preserva­
tion value when removal of units is used, since it eliminates those 
neurons located in areas of the input space with low probability 
density. This is one of the most important advantages supplied by 
the GCS model compared with that of Kohonen's. 

The volume of violations provided by the topographic function 
along with the detailed evaluation of each output neuron dis­
played in the topology preserving map makes both graphs present 
a complete view of the quality of a GCS trained network with 
regard to the topology preservation. 

From the results obtained in this study, the automation of the 
ending condition of the training in a GCS network is planned as 

the future line of work. Based on the information provided by 
both measures of topology preservation, the adaptation process 
will terminate when an acceptable grade of quality is achieved in 
the network. This will simplify the selection of the best number of 
clusters of neurons that will result in the GCS network that best 
fits to the input space. 

References 

[1] V. Cherkassky, Filip Mulier, Learning from Data: Concepts, Theory and 
Methods, John Wiley & Sons, Inc, 1998. 

[2] J.W. Tukey, Exploratory Data Analysis, Addison-Wesley, Reading, MA, 1977. 
¡3] T. Kohonen, Self-Organizing Maps, third ed., Springer, Berlin Heidelberg New 

York, 2001. 
[4] A. Ultsch, H.P. Siemon, Kohonen self-organizing feature maps for exploratory 

data analysis, in: Proceedings of the International Neural Network, Dordrecht, 
The Nederlands, 1990. 

[5] M.A. Kraaijveld, J. Mao, A.K. Jain, A non linear projection method based on 
Kohonen's topology preserving maps, IEEE Transactions on Neural Networks 
6 (3) (1995) 548-559. 

[6] D. Merlk, A. Rauber, Alternative ways for cluster visualization in self-
organizing maps, in: Proceedings of the Workshop on Self-Organizing Maps 
(WSOM'97), Espoo, Finland, 1997, pp. 106-111. 

[7] M. Rubio, V. Giménez, New methods for self-organizing map visual analysis, 
Neural Computation and Applications 12 (2003) 142-152. 

[8] T. Kohonen, Self-organized formation of topologically correct feature maps, 
Biological Cybernetics 43 (1982) 59-69. 

[9] T. Martinetz, K. Schulten, Topology representing networks, Neural Networks 
7 (3) (1994) 507-522. 



[10] K. Kiviluoto, Topology preservation in self-organizing maps, in: Proceedings 
of the International Conference on Neural Networks (ICNN'96), vol. 1, 1996, 
pp. 294-299. 

[11] H. Bauer, K. Pawelzik, Quantifying the neighborhood preservation of self-
organizing feature maps, IEEE Transactions on Neural Networks 3 (1992) 
570-579. 

[12) T. Villmann, R. Der, M. Herrmann, T. Martinetz, Topology preservation in self-
organizing feature maps: exact definition and measurement, IEEE Transac­
tions on Neural Networks 8 (2) (1997) 256-266. 

[13) K. Tasdemir, E. Merényi, Data topology visualization for the self-organizing 
map, in: Proceedings of the European Symposium on Artificial Neural Net­
works (ESANN'06), Bruges, Belgium, 2006, pp. 277-282. 

[14) J. Blackmore, K. Miikkulainen, Incremental grid growing: encoding high-
dimensional structure into a two-dimensional feature map, in: Proceedings 
of the IEEE International Conference on Neural Networks (ICNN-93), 1993, 
pp. 450-455. 

[15) H. Bauer, T. Villmann, Growing a hypercubical output space in a self-
organizing feature map, Technical Report TR-95-030, ICSI, Berkeley, 1995. 

[16) A. Hsu, I. Saeed, S. Halgamuge, Dynamic self-organizing maps: theory, 
methods and applications, Studies in Computational Intelligence 1 (2009) 
363-379. 

[17) B. Fritzke, A growing neural gas network learns topologies, in: Advances in 
Neural Information Processing Systems, vol. 7 (NIPS'94), MIT Press, Cam­
bridge, 1995, pp. 625-632. 

[18) B. Fritzke, Growing cell structures—a self-organizing network for unsuper­
vised and supervised learning, Neural Networks 7 (9) (1994) 1441-1460. 

[19) S. Delgado, C. Gonzalo, E. Martínez, A. Arquero, Visualizing high-dimensional 
input data with growing self-organizing maps, Lecture Notes in Computer 
Science 4507 (2007) 580-587. 

[20) S. Delgado, C. Gonzalo, E. Martínez, A. Arquero, Improvement of self-
organizing maps with growing capability for goodness evaluation of multi-
spectral training patterns, geoscience and remote sensing symposium 
(IGARSS'04), IEEE International 1 (2004) 564-567. 

Consuelo Gonzalo received the Sciences degree from 
the University of Salamanca, in 1986, and the Sciences 
Ph.D. Degree from the Complutense University of 
Madrid (Spain), in 1989. 

She is currently an Associate Professor of Depart­
ment of Architecture and Technology of Computer 
Systems, at the Computer School (Technical University 
of Madrid, Madrid, Spain). Her main research interests 
are in the area of Remote Sensing and include the 
fields of Fusion Images and Artificial Neural Networks 
for the processing, analysis and interpretation of 
remotely sensed data. Moreover she is working on 
the parallel computation of this kind of algorithms. 

Estibaliz Martinez received the Ph.D. in Chemistry 
Sciences from the Complutense University, Madrid, 
Spain, in the July of 1989. 

She is currently an Associate Professor of Depart­
ment of Architecture and Technology of Computer 
Systems, Computer School, Polytechnical University 
of Madrid, Madrid, Spain. She teaches courses at the 
University in Digital Design, VLSI Technology and 
Remote Sensing. Her research interests concern the 
area of the Remote Sensing Image Processing and 
include the use of Neural Networks Algorithms, 
Genetic Algorithms and Fuzzy Logic for the analysis 
and interpretation of remotely sensed data. In addi­

tion, her research areas are in the applications of remote sensed data management 
and their access through client-server architectures. 

Soledad Delgado received the B.S Degree in computer 
science from the Technical University of Madrid, Spain, 
in 1990 and the M.S Degree in computer science from 
the Carlos III University of Madrid, Spain, in 2000, and 
the Ph.D. Degree in computer science from the Tech­
nical University of Madrid, Spain, in 2010. 

She is currently Assistant Professor of Department of 
Organization and Structure of Information, Technical 
University of Madrid, Spain. Her research interests 
include neural networks, pattern recognition, explora­
tory data analysis, image classification and remote 
sensing. 

Águeda Arquero received the Ph.D. Degree in Chem­
istry Sciences from Autónoma University of Madrid 
(Spain) in the January of 1983. 

She is currently an Associate Professor of Department 
of Architecture and Technology of Computer Systems, 
Computer School, Polytechnical University of Madrid, 
Madrid, Spain. Her current research interests in remote 
sensing image processing area include field targets 
radiometric measurements and later processing, analysis 
of remotely sensed data using Neural Networks Algo­
rithms, Genetic Algorithms and Fuzzy Logic. Other 
research interests are synthesis and spectral character­
ization of new materials. She is AET's member. 


