66 research outputs found

    Topics in Machining with Industrial Robot Manipulators and Optimal Motion Control

    Get PDF
    Two main topics are considered in this thesis: Machining with industrial robot manipulators and optimal motion control of robots and vehicles. The motivation for research on the first subject is the need for flexible and accurate production processes employing industrial robots as their main component. The challenge to overcome here is to achieve high-accuracy machining solutions, in spite of the strong process forces required for the task. Because of the process forces, the nonlinear dynamics of the manipulator, such as the joint compliance and backlash, may significantly degrade the achieved machining accuracy of the manufactured part. In this thesis, a macro/micro-manipulator configuration is considered to the purpose of increasing the milling accuracy. In particular, a model-based control architecture is developed for control of the macro/micro-manipulator setup. The considered approach is validated by experimental results from extensive milling experiments in aluminium and steel. Related to the problem of high-accuracy milling is the topic of robot modeling. To this purpose, two different approaches are considered; modeling of the quasi-static joint dynamics and dynamic compliance modeling. The first problem is approached by an identification method for determining the joint stiffness and backlash. The second problem is approached by using gray-box identification based on subspace-identification methods. Both identification algorithms are evaluated experimentally. Finally, online state estimation is considered as a means to determine the workspace position and orientation of the robot tool. Kalman Filters and Rao-Blackwellized Particle Filters are employed to the purpose of sensor fusion of internal robot measurements and measurements from an inertial measurement unit for estimation of the desired states. The approaches considered are fully implemented and evaluated on experimental data. The second part of the thesis discusses optimal motion control applied to robot manipulators and road vehicles. A control architecture for online control of a robot manipulator in high-performance path tracking is developed, and the architecture is evaluated in extensive simulations. The main characteristic of the control strategy is that it combines coordinated feedback control along both the tangential and transversal directions of the path; this separation is achieved in the framework of natural coordinates. One motivation for research on optimal control of road vehicles in time-critical maneuvers is the desire to develop improved vehicle-safety systems. In this thesis, a method for solving optimal maneuvering problems using nonlinear optimization is discussed. More specifically, vehicle and tire modeling and the optimization formulations required to get useful solutions to these problems are investigated. The considered method is evaluated on different combinations of chassis and tire models, in maneuvers under different road conditions, and for investigation of optimal maneuvers in systems for electronic stability control. The obtained optimization results in simulations are evaluated and compared

    Trajectory optimization based on recursive B-spline approximation for automated longitudinal control of a battery electric vehicle

    Get PDF
    Diese Arbeit beschreibt ein neuartiges Verfahren zur linearen und nichtlinearen gewichteten Kleinste-Quadrate-Approximation einer unbeschränkten Anzahl von Datenpunkten mit einer B-Spline-Funktion. Das entwickelte Verfahren basiert auf iterativen Algorithmen zur Zustandsschätzung und sein Rechenaufwand nimmt linear mit der Anzahl der Datenpunkte zu. Das Verfahren ermöglicht eine Verschiebung des beschränkten Definitionsbereichs einer B-Spline-Funktion zur Laufzeit, sodass der aktuell betrachtete Datenpunkt ungeachtet des anfangs gewählten Definitionsbereichs bei der Approximation berücksichtigt werden kann. Zudem ermöglicht die Verschiebeoperation die Reduktion der Größen der Matrizen in den Zustandsschätzern zur Senkung des Rechenaufwands sowohl in Offline-Anwendungen, in denen alle Datenpunkte gleichzeitig zur Verarbeitung vorliegen, als auch in Online-Anwendungen, in denen in jedem Zeitschritt weitere Datenpunkte beobachtet werden. Das Trajektorienoptimierungsproblem wird so formuliert, dass das Approximationsverfahren mit Datenpunkten aus Kartendaten eine B-Spline-Funktion berechnet, die die gewünschte Geschwindigkeitstrajektorie bezüglich der Zeit repräsentiert. Der Rechenaufwand des resultierenden direkten Trajektorienoptimierungsverfahrens steigt lediglich linear mit der unbeschränkten zeitlichen Trajektorienlänge an. Die Kombination mit einem adaptiven Modell des Antriebsstrangs eines batterie-elektrischen Fahrzeugs mit festem Getriebeübersetzungsverhältnis ermöglicht die Optimierung von Geschwindigkeitstrajektorien hinsichtlich Fahrzeit, Komfort und Energieverbrauch. Das Trajektorienoptimierungsverfahren wird zu einem Fahrerassistenzsystem für die automatisierte Fahrzeuglängsführung erweitert, das simulativ und in realen Erprobungsfahrten getestet wird. Simulierte Fahrten auf der gewählten Referenzstrecke benötigten bis zu 3,4 % weniger Energie mit der automatisierten Längsführung als mit einem menschlichen Fahrer bei derselben Durchschnittsgeschwindigkeit. Für denselben Energieverbrauch erzielt die automatisierte Längsführung eine 2,6 % höhere Durchschnittsgeschwindigkeit als ein menschlicher Fahrer

    Automotive Tyre Fault Detection

    Get PDF

    Fast and Safe Trajectory Optimization for Autonomous Mobile Robots using Reachability Analysis

    Full text link
    Autonomous mobile robots (AMRs) can transform a wide variety of industries including transportation, shipping and goods delivery, and defense. AMRs must match or exceed human performance in metrics for task completion and safety. Motion plans for AMRs are generated by solving an optimization program where collision avoidance and the trajectory obeying a dynamic model of the robot are enforced as constraints. This dissertation focuses on three main challenges associated with trajectory planning. First, collision checks are typically performed at discrete time steps. Second, there can be a nontrivial gap between the planning model used and the actual system. Finally, there is inherent uncertainty in the motion of other agents or robots. This dissertation first proposes a receding-horizon planning methodology called Reachability-based Trajectory Design (RTD) to address the first and second challenges, where uncertainty is dealt with robustly. Sums-of-Squares (SOS) programming is used to represent the forward reachable set for a dynamic system plus uncertainty, over an interval of time, as a polynomial level set. The trajectory optimization is a polynomial optimization program over a space of trajectory parameters. Hardware demonstrations are implemented on a Segway, rover, and electric vehicle. In a simulation of 1,000 trials with static obstacles, RTD is compared to Rapidly-exploring Random Tree (RRT) and Nonlinear Model Predictive Control (NMPC) planners. RTD has success rates of 95.4% and 96.3% for the Segway and rover respectively, compared to 97.6% and 78.2% for RRT and 0% for NMPC planners. RTD is the only successful planner with no collisions. In 10 simulations with a CarSim model, RTD navigates a test track on all trials. In 1,000 simulations with random dynamic obstacles RTD has success rates of 96.8% and 100% respectively for the electric vehicle and Segway, compared to 77.3% and 92.4% for a State Lattice planner. In 100 simulations performing left turns, RTD has a success rate of 99% compared to 80% for an MPC controller tracking the lane centerline. The latter half of the dissertation treats uncertainty with the second and/or third challenges probabilistically. The Chance-constrained Parallel Bernstein Algorithm (CCPBA) allows one to solve the trajectory optimization program from RTD when obstacle states are given as probability functions. A comparison for an autonomous vehicle planning a lane change with one obstacle shows an MPC algorithm using Cantelli's inequality is unable to find a solution when the obstacle's predictions are generated with process noise three orders of magnitude less than CCPBA. In environments with 1-6 obstacles, CCPBA finds solutions in 1e-3 to 1.2 s compared to 1 to 16 s for an NMPC algorithm using the Chernoff bound. A hardware demonstration is implemented on the Segway. The final portion of the dissertation presents a chance-constrained NMPC method where uncertain components of the robot model are estimated online. The application is an autonomous vehicle with varying road surfaces. In the first study, the controller uses a linear tire force model. Over 200 trials of lane changes at 17 m/s, the chance-constrained controller has a cost 86% less than a controller using fixed coefficients for snow, and only 29% more than an oracle controller using the simulation model. The chance-constrained controller also has 0 lateral position constraint violations, while an adaptive-only controller has minor violations. The second study uses nonlinear tire models on a more aggressive maneuver and provides similar results.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/169729/1/skvaskov_1.pd

    Theoretical framework for In-Car Navigation based on Integrated GPS/IMU Technologies

    Get PDF
    In this report the problem of vehicular navigation based on the integration of the global positioning system and an inertial navigation system is tackled. After analysing some fundamental technical issues about reference systems, vehicle modelling and sensors, a novel solution, combining extended Kalman filtering with particle filltering, is developed. This solution allows to embed highly non-linear constraints originating from digital maps in the position estimation process and is expected to be implementable on commercial hardware platforms equipped with low cost inertial sensorsJRC.G.6-Digital Citizen Securit

    Benelux meeting on systems and control, 23rd, March 17-19, 2004, Helvoirt, The Netherlands

    Get PDF
    Book of abstract

    Physics-Based Probabilistic Motion Compensation of Elastically Deformable Objects

    Get PDF
    A predictive tracking approach and a novel method for visual motion compensation are introduced, which accurately reconstruct and compensate the deformation of the elastic object, even in the case of complete measurement information loss. The core of the methods involves a probabilistic physical model of the object, from which all other mathematical models are systematically derived. Due to flexible adaptation of the models, the balance between their complexity and their accuracy is achieved

    Fault estimation algorithms: design and verification

    Get PDF
    The research in this thesis is undertaken by observing that modern systems are becoming more and more complex and safety-critical due to the increasing requirements on system smartness and autonomy, and as a result health monitoring system needs to be developed to meet the requirements on system safety and reliability. The state-of-the-art approaches to monitoring system status are model based Fault Diagnosis (FD) systems, which can fuse the advantages of system physical modelling and sensors' characteristics. A number of model based FD approaches have been proposed. The conventional residual based approaches by monitoring system output estimation errors, however, may have certain limitations such as complex diagnosis logic for fault isolation, less sensitiveness to system faults and high computation load. More importantly, little attention has been paid to the problem of fault diagnosis system verification which answers the question that under what condition (i.e., level of uncertainties) a fault diagnosis system is valid. To this end, this thesis investigates the design and verification of fault diagnosis algorithms. It first highlights the differences between two popular FD approaches (i.e., residual based and fault estimation based) through a case study. On this basis, a set of uncertainty estimation algorithms are proposed to generate fault estimates according to different specifications after interpreting the FD problem as an uncertainty estimation problem. Then FD algorithm verification and threshold selection are investigated considering that there are always some mismatches between the real plant and the mathematical model used for FD observer design. Reachability analysis is drawn to evaluate the effect of uncertainties and faults such that it can be quantitatively verified under what condition a FD algorithm is valid. First the proposed fault estimation algorithms in this thesis, on the one hand, extend the existing approaches by pooling the available prior information such that performance can be enhanced, and on the other hand relax the existence condition and reduce the computation load by exploiting the reduced order observer structure. Second, the proposed framework for fault diagnosis system verification bridges the gap between academia and industry since on the one hand a given FD algorithm can be verified under what condition it is effective, and on the other hand different FD algorithms can be compared and selected for different application scenarios. It should be highlighted that although the algorithm design and verification are for fault diagnosis systems, they can also be applied for other systems such as disturbance rejection control system among many others

    Mobile Robots Navigation

    Get PDF
    Mobile robots navigation includes different interrelated activities: (i) perception, as obtaining and interpreting sensory information; (ii) exploration, as the strategy that guides the robot to select the next direction to go; (iii) mapping, involving the construction of a spatial representation by using the sensory information perceived; (iv) localization, as the strategy to estimate the robot position within the spatial map; (v) path planning, as the strategy to find a path towards a goal location being optimal or not; and (vi) path execution, where motor actions are determined and adapted to environmental changes. The book addresses those activities by integrating results from the research work of several authors all over the world. Research cases are documented in 32 chapters organized within 7 categories next described
    corecore