3,018 research outputs found

    Topological summaries for Time-Varying Data

    Get PDF
    Topology has proven to be a useful tool in the current quest for ”insights on the data”, since it characterises objects through their connectivity structure, in an easy and interpretable way. More specifically, the new, but growing, field of TDA (Topological Data Analysis) deals with Persistent Homology, a multiscale version of Homology Groups summarized by the Persistence Diagram and its functional representations (Persistence Landscapes, Silhouettes etc). All of these objects, how- ever, are designed and work only for static point clouds. We define a new topological summary, the Landscape Surface, that takes into account the changes in the topology of a dynamical point cloud such as a (possibly very high dimensional) time series. We prove its continuity and its stability and, finally, we sketch a simple example

    Neural networks for time-varying data

    Get PDF
    This paper reviews some basic issues and methods involved in using neural networks to respond in a desired fashion to a temporally-varying environment. Some popular network models and training methods are introduced. A speech recognition example is then used to illustrate the central difficulty of temporal data processing: learning to notice and remember relevant contextual information. Feedforward network methods are applicable to cases where this problem is not severe. The application of these methods are explained and applications are discussed in the areas of pure mathematics, chemical and physical systems, and economic systems. A more powerful but less practical algorithm for temporal problems, the moving targets algorithm, is sketched and discussed. For completeness, a few remarks are made on reinforcement learning

    Volume visualization of time-varying data using parallel, multiresolution and adaptive-resolution techniques

    Get PDF
    This paper presents a parallel rendering approach that allows high-quality visualization of large time-varying volume datasets. Multiresolution and adaptive-resolution techniques are also incorporated to improve the efficiency of the rendering. Three basic steps are needed to implement this kind of an application. First we divide the task through decomposition of data. This decomposition can be either temporal or spatial or a mix of both. After data has been divided, each of the data portions is rendered by a separate processor to create sub-images or frames. Finally these sub-images or frames are assembled together into a final image or animation. After developing this application, several experiments were performed to show that this approach indeed saves time when a reasonable number of processors are used. Also, we conclude that the optimal number of processors is dependent on the size of the dataset used

    Abstract visualization of large-scale time-varying data

    Get PDF
    The explosion of large-scale time-varying datasets has created critical challenges for scientists to study and digest. One core problem for visualization is to develop effective approaches that can be used to study various data features and temporal relationships among large-scale time-varying datasets. In this dissertation, we first present two abstract visualization approaches to visualizing and analyzing time-varying datasets. The first approach visualizes time-varying datasets with succinct lines to represent temporal relationships of the datasets. A time line visualizes time steps as points and temporal sequence as a line. They are generated by sampling the distributions of virtual words across time to study temporal features. The key idea of time line is to encode various data properties with virtual words. We apply virtual words to characterize feature points and use their distribution statistics to measure temporal relationships. The second approach is ensemble visualization, which provides a highly abstract platform for visualizing an ensemble of datasets. Both approaches can be used for exploration, analysis, and demonstration purposes. The second component of this dissertation is an animated visualization approach to study dramatic temporal changes. Animation has been widely used to show trends, dynamic features and transitions in scientific simulations, while animated visualization is new. We present an automatic animation generation approach that simulates the composition and transition of storytelling techniques and synthesizes animations to describe various event features. We also extend the concept of animated visualization to non-traditional time-varying datasets--network protocols--for visualizing key information in abstract sequences. We have evaluated the effectiveness of our animated visualization with a formal user study and demonstrated the advantages of animated visualization for studying time-varying datasets

    ICASE/LaRC Symposium on Visualizing Time-Varying Data

    Get PDF
    Time-varying datasets present difficult problems for both analysis and visualization. For example, the data may be terabytes in size, distributed across mass storage systems at several sites, with time scales ranging from femtoseconds to eons. In response to these challenges, ICASE and NASA Langley Research Center, in cooperation with ACM SIGGRAPH, organized the first symposium on visualizing time-varying data. The purpose was to bring the producers of time-varying data together with visualization specialists to assess open issues in the field, present new solutions, and encourage collaborative problem-solving. These proceedings contain the peer-reviewed papers which were presented at the symposium. They cover a broad range of topics, from methods for modeling and compressing data to systems for visualizing CFD simulations and World Wide Web traffic. Because the subject matter is inherently dynamic, a paper proceedings cannot adequately convey all aspects of the work. The accompanying video proceedings provide additional context for several of the papers
    corecore