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ABSTRACT

VOLUME VISUALIZATION OF TIME-VARYING DATA USING PARALLEL, 
MULTIRESOLUTION AND ADAPTIVE-RESOLUTION TECHNIQUES

by

Sadaf Shams 

University of New Hampshire, December, 2006 

This paper presents a parallel rendering approach that allows high-quality 

visualization of large time-varying volume datasets. Multiresolution and adaptive- 

resolution techniques are also incorporated to improve the efficiency of the rendering. 

Three basic steps are needed to implement this kind of an application. First we divide the 

task through decomposition of data. This decomposition can be either temporal or spatial 

or a mix of both. After data has been divided, each of the data portions is rendered by a 

separate processor to create sub-images or frames. Finally these sub-images or frames are 

assembled together into a final image or animation. After developing this application, 

several experiments were performed to show that this approach indeed saves time when a 

reasonable number of processors are used. Also, we conclude that the optimal number of 

processors is dependent on the size of the dataset used.
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INTRODUCTION

A huge number of applications exist for volume visualization of static data sets 

like CT/MR scans, or time-varying data sets like pressure and temperature. Most of these 

are serial and work on stand-alone computers using full-data resolution. These 

applications may take up a large amount of time for rendering big datasets and are unable 

to take advantage of multi-processor machines or computer clusters. This problem can be 

solved by using volume visualization software that is capable of operating under parallel 

computing environments. Parallel computing allows the computing power of a large 

number of machines to be harnessed, which allows problems of much greater complexity 

to be solved at very low cost using existing resources. Parallel computing software, such 

as MPI[10] can achieve high processing speeds for large, distributed datasets without 

compromising quality. Also, the datasets for time-varying volume visualization can be 

very large and hence they might not fit into the memory of one processor. By dividing the 

data up over several processors for rendering we can reduce the memory demands on 

each processor.

We devised a parallel visualization technique for multiresolution and adaptive- 

resolution data. Resolution is an important factor to be considered since often it is 

sufficient to have an overall low-resolution visualization with the option of zooming into 

higher resolution when and where needed. It might also be the case that the data is too 

large for interactive visualization at full resolution and hence a lower resolution is needed 

for that purpose. Sometimes only a portion of the higher resolution is needed as the focus

1
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region and the rest can be viewed at a lower resolution as the context. This technique 

coupled with parallel visualization can increase efficiency and allow much larger data 

sets to be rendered interactively. Both spatial and temporal parallel visualization 

techniques have been implemented that include variations in both space resolution and 

time resolution. Furthermore, these parallel techniques have been modified to take into 

account adaptive-resolution data as well.

This project aims at speeding up the visualization process by providing a parallel 

rendering framework that allows distributing the processing and data over a cluster of 

machines or several processors of a multiprocessor system. Given a data set, its format 

and the number of processors available for computational purposes, this application 

performs fast, high-quality rendering by distributing the workload across processors. 

Each processor renders its own data portion and the results are then assembled together.

The goal of this project is to render data fast enough to allow for interactive 

visualization. The options to run the visualization using a single processor or multiple 

processors are both available since for small datasets visualization may be faster using a 

single processor if the time saved by parallel rendering is small compared to the 

compositing overhead of the parallel approach.

2
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CHAPTER 1

BACKGROUND AND RELATED WORK

1.1 Grid Visualization

Recently, there has been renewed interest in parallel visualization algorithms 

because of the availability of commodity computer clusters such as Beowulf [7] and the 

rapid rise of Grid Computing [12]. Shalf and Bethel [9] were among the first to present 

the vision of a grid-based visualization system. They state that the basic issue that 

prevents the grid from being used by current visualization systems is the nature of the 

existing visualization applications. These applications are designed to work on a serial 

system and cannot take advantage of the grid. Therefore the first step to take while 

moving to the grid-based system is to create applications that allow for parallel rendering. 

Brodlie et al [3] modified an existing visualization system IRIS Explorer, to allow it to 

work on the grid. They also demonstrated how this tool would be useful to scientists 

through two applications: the pollution dispersion visualizer and the PSE for elasto- 

hydrodynamic lubrication. Bhaniramka et al. [2] very recently developed the OpenGL 

Multipipe SDK called MPK. MPK is a toolkit that allows the creation of scalable parallel 

applications using OpenGL. It provides a flexible distribution approach by allowing users 

to choose from a range of decomposition strategies such as data decomposition, screen 

decomposition and eye decomposition.

3
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1.2 Load Distribution Issues

The first step to develop a parallel algorithm is to divide the tasks among various 

processors. Basically three types of parallel rendering techniques exist: sort-first, sort- 

middle and sort-last as identified by Molnar et al [8]. In each of these the sort from object 

space to screen space occurs at a different point.

The sort-first approach divides the screen up into portions and renders each 

portion separately. Eventually all rendered portions simply need to be pasted together on 

the screen. The Chromium System uses the sort-first approach to distribute rendering 

work to the different nodes in a cluster as discussed by Bethel [1]. Chormium is used to 

drive multi-projector displays on clusters of computers and it initially used sort first to 

distribute the graphics primitives over the nodes in the cluster before the transformation 

and lighting stages of rendering.

The sort-middle approach distributes the primitives between the 

transformation/lighting stage and the rasterization stage of rendering. Williams and 

Hiromoto [13] modified the Chromium system to use the sort-middle approach. 

Although, as discussed earlier, Chromium initially used the sort-first approach, network 

delays cause this approach to be inefficient. Hence William and Hiromoto [9] came up 

with a sort-middle approach that allows the Chromium system to have a ffame-rate that is 

twice as large as the frame-rate attained by the sort-first approach.

The sort-last approach divides the dataset into portions rendered separately and 

all sub-images are composited at the end. Cavin, Mion and Filbois [4] use the sort-last 

approach to visualize large datasets on commodity off-the-shelf (COTS) clusters. The 

data is divided up and distributed among different nodes for rendering. Then they use

4
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parallel compositing techniques to reduce the compositing overhead that has to be 

incurred for the sort-last approach.

The schemes described above are all based on spatial decomposition. Temporal 

decomposition schemes also exist. Bhaniramka et al [2] describe two temporal 

techniques: frame multiplexing and data streaming. In frame multiplexing, each 

processor is assigned a group of unique time steps to render. The division is such that all 

processors are kept busy and the frame generation rate matches the frame display rate. In 

data streaming, all processors work jointly on each time step. Each processor adds a little 

to the frame for one time step and then moves on to the next time step.

1.3 Parallel Rendering

The second step towards creating parallel applications is to develop a parallel 

rendering algorithm. For this purpose ray tracing has been the most popular algorithm 

since it can be conveniently altered to work on a parallel system. Ma et al. [6] were 

among the first who presented a divide and conquer ray-traced volume rendering 

algorithm. They used the existing volume ray-tracing scheme presented by Levoy [5] and 

modified it to break each ray into segments. Each segment is processed separately in 

parallel. Eventually all segments are combined together in the compositing step.

Some very recent studies have tried to add to the benefit of parallel rendering by 

using multiresolution techniques. Wang et al. [11] describe a parallel multiresolution 

volume-rendering framework that uses a wavelet-based time-space partitioning tree. Each 

processor has a copy of this tree and is pre-assigned data blocks from the tree to render. 

After all sub-images have been rendered, they are composited into the final image.

5
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CHAPTER 2

PARALLEL VISUALIZATION

Our application. STARVolume, supports parallel rendering and hence can take 

advantage of the resources available in a parallel computing environment. For spatial 

parallel rendering, STARVolume uses the sort-last approach discussed by Cavin, Mion 

and Filbois [3]. This approach allows huge datasets to be visualized at high speeds and it 

is possible to divide the workload equally among processors. For temporal parallel 

rendering, STARVolume uses frame multiplexing discussed by Bhaniramka et al [1] 

since that allows each time step to be needed by only one processor. Ray tracing is used 

for rendering since it is inherently parallel in nature and can take effective advantage of 

the parallel computing environment. Our parallel ray tracing algorithm was based on the 

approach discussed by Ma et al. [5],

STARVolume’s parallel visualization component is comprised of three basic 

modules. The data division module specifies how the data is divided among the different 

processors. The Renderer module allows each thread/processor to render a certain portion 

of the data. The Assembly module encapsulates the conversion of sub-images into a final 

image or frames into an animation. Next we discuss the application architecture, followed 

by the three modules.

6
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2.1 Application Architecture

Figure 1 shows the basic architecture. A number of processors are available and 

one processor acts as the controller. The controller divides data and sends portions of it to 

other processors for rendering. When the other processors are done, they send back the 

images to the controller for assembling.

Controller

Renderer Renderer Renderer

Figure 1: Basic architecture

2.1.1 Test Data

We use two different data sets to demonstrate our algorithms. To show the 

temporal decomposition algorithms, we use time-varying magneto-hydrodynamics data 

(MHD) produced by numerical simulation. This data was generated from research into solar 

wind activity done at the Space Science Center at the University of New Hampshire. The 

simulation records many physical attributes, such as particle velocity, current density, magnetic 

field, and pressure.

To show the spatial decomposition approach, we used a static 3D dataset where 

each byte represents the density of a point of the MR scan of human head and brain.

2.1.2 Temporal Decomposition

Figure 2 shows the output when using the MHD pressure data at the lowest 

resolution (98*28*28). This shows the first time step. The data source that this 

application uses has data arranged in a space-time tree of varying resolutions. The

7
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application starts by using the lowest resolution data from the tree and the user can jump 

to higher resolutions in space or time by using the appropriate resolution buttons on the 

GUI. Through this scheme, the user gets both fast renderings at low resolutions and high- 

quality renderings using high resolution. It also provides the user with a lot of flexibility 

in terms of features that are important (time or space). For instance, if time is less 

important, the user can choose to view the data at the lowest time resolution but higher 

space resolution.

Applications Places Desktop Thu May 2S, 1:39 PM

nM M ^M M iM M lilfliTilMlllliilliiillM'liir¥frr'T"i81IlgllMi llg liirilllii liMlllWBlM 1BllilMWMTiin
Elle Edit ffiifWow QoeK £>oli Help Menu

Pause l |  Redraw |  Hetot j Stream Renderer ■ T  |pre»«uw.t«j *~[

Higher

Gpatlal

Figure 2: GUI and output (time)

2.1.3 Spatial Decomposition

Figure 3 shows the output of this application using spatial decomposition of the 

MR scan data comprised of 84 slices of 128 * 128 bytes. The visualization of this data 

with this parallel algorithm appears to be exactly the same as that of the existing serial 

approach; the user can see no difference.

8
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i6 visual iTPf

Rotate

Figure 3: GUI and output (space)

2.2 Data Division

The first module of this application is the data decomposition module. We can 

either divide the data on the temporal domain only or on the spatial domain only or a 

combination of both. Temporal division can be used for volumes that have more than one 

time step. For mixing temporal and spatial division, two possibilities exist: spatial 

distribution within each time step or spatial distribution over time. We have implemented 

temporal only and spatial only divisions and these are described below.

2.2.1 Temporal Division

2.2.1.1 Temporal Division of Uniform Resolution Data

Temporal decomposition is usually very efficient because data for different time 

steps often exists in different files. Each processor can be assigned the responsibility to

9
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render a different set of files. Unlike spatial decomposition, we do not need to break up a 

single file between processors. Hence the preprocessing step requires less work. It is 

possible for different time steps to be placed on different processors. Hence in this case 

very large datasets that do not fit in the memory of one processor can be rendered by 

placing only a few time steps out of the total time steps on each computer.

Each frame represents a time step and these frames have to be displayed in 

sequence to generate the animation. Figure 4 shows how the time steps are divided 

among processors. In this case there are nine time steps and time steps 1,4,7 are assigned 

to the first processor, time steps 2,5,8 to the second processor and time steps 3,6,9 to the 

third processor. The first processor displays frame 1 and then starts work on frame 4. By 

this time the second processor has completed rendering frame 2 so it displays this frame 

and starts work on frame 5. Similarly now the third processor is done with frame 3 and it 

displays it and starts work on processor 6. Hopefully, the first processor should now be 

done with frame 4 and hence frame 4 is displayed. This cycle continues in a similar 

manner. Ideally, there would be an initial time lag to generate the first frame but after that 

all frames should be ready before they are needed and hence can be displayed without 

any lag.

Figure 4: Time/frame decomposition

10
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2.2.1.2 Temporal Distribution of Adaptive-Resolution Data

The division described above ensures that all processors have equal work to do if 

all time steps are of the same resolution. This is not the case for adaptive-resolution data. 

If one time step is of higher resolution while another one is of lower resolution or if 

resolutions vary within each time step, this scheme may not be very efficient. In this case, 

new schemes are required that assign time steps to each processor taking into account the 

resolutions of these time steps so that the processors assigned low resolution data get 

more time steps while the ones assigned high resolution data get fewer time steps. Figure 

5 shows this kind of decomposition. The first processor is assigned the high resolution 

frame 1. Since it takes longer to generate the high resolution frames, processor 2 is 

assigned the next three consecutive low resolution frames. After that, processor 1 gets the 

fourth frame. In total processor 1 gets three high resolution frames to work on and 

processor 2 gets six low resolution frames, so that work is divided more equally between 

the two processors.

Figure 5: Multiresolution time/frame decomposition

2.2.2 Spatial Division

2.2.2.1 Spatial Distribution of Uniform Resolution Data

11
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The spatial option divides one data file (a single time step) into portions so that 

each portion can be rendered separately as displayed in figure 6. A number of methods 

exist for partitioning the data. We have chosen to partition it along the z-axis so that each 

processor gets a fixed number of slices to render. This is a relatively easy and efficient 

approach. It makes reading the data from the file very efficient when slice order equals 

storage order since each slice is contiguous in the file and its starting seek point in the file 

is easily determined. Also, this technique allows for efficient compositing as well if the 

slice order is the same as storage order. Since a very clear front-to-back ordering can be 

established, the ray segments can be combined without any additional mappings.

Distributed Processing

1 •5

3 4

1 3  4 2

r n r n r  n r  n

Figure 6: Data decomposition 

An attempt has been made to divide data as equally as possible but this cannot be 

achieved at all times. If the number of processors available is not a multiple of the data 

slices, equal sized data portions cannot exist. To resolve this issue some processors may 

receive a little more or less data at times. If the data has uniform resolution, dividing it 

equally by slice ensures that all processors finish up at almost the same point in time and 

hence any one processor would not cause the compositor to wait.

The algorithm that can be used to accomplish almost equal data division is 

described below.

s: number of slices

12
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n: number of processors 

Pi - Pn: processors available

Processor # of Slices

Pi-Ps%n: Ls/nJ+1

P(s % n) + 1 — Pn- L s / n J

As an example, if  we have 31 slices and 5 processors, this algorithm assigns 7 

slices to the first processor and 6 slices to all the others. For the 34 slices/5 processor 

example, it assigns 7 slices to the first four processors and 6 slices to the last one. This 

algorithm ensures that the number of slices assigned to each processor would not differ 

by more than one.

When the data is divided into portions that do not overlap, a naive solution for 

most volume rendering algorithms could result in boundary artifacts appearing while 

compositing. For example, a black stripe could appear at the boundary of each sub-image 

in the final composited image. This problem occurs since the opacity and color 

calculations do not take place at the boundary where the data division occurs. Hence we 

need to have a small overlap of data among adjacent data sets to remove this artifact. 

Before compositing, these extra/duplicated slices of data are removed to prevent the 

image from being stretched due to the addition of extra slices.

2.2.2.2 Spatial Distribution of Adaptive-Resolution Data

For adaptive-resolution data, rather than dividing the data into equal portions, 

workload needs to be divided equally among the processors. Spatial adaptive-resolution

13
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data sets have certain portions (blocks) that have high resolution while others that have 

lower resolutions. Dividing this kind of a data set equally by spatial extent would mean 

that processors working on low-resolution portions would complete their work before 

those working on high-resolution portions and would sit idle after that. To resolve this 

issue, the processors that are assigned high-resolution blocks should be assigned fewer 

blocks than those assigned low-resolution blocks or a good mix of low-resolution and 

high-resolution blocks should be assigned to each processor so that they complete their 

work at almost the same time. Detailed techniques for implementing this approach are 

discussed in section 5.

2.3 Rendering

The data portion passed to the renderer is a three-dimensional array of data. Each 

element of the array may represent any data field such as tissue density or temperature. 

One common volume rendering algorithm is described below. This algorithm based on 

ray tracing is currently being used but it should be simple to use other rendering 

algorithms instead to produce similar results. For the ray-tracing algorithm, first each 

element is converted into a voxel. Next each voxel is classified by assigning opacity to it. 

A transparent voxel has the opacity of zero while a completely opaque voxel has the 

opacity of one. High opacities are assigned to those voxels that should be visible and low 

opacities are assigned to those that should be hidden. Classification is done using lookup 

tables and transfer functions that map the scalar data to opacity. Next shading/lighting is 

done which calculates a color for each voxel. The standard Phong shading equation has 

been used for this purpose. A gradient vector is calculated for each voxel that is then used 

to compute the direction in which light is reflected from a voxel. Finally a set of parallel

14
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rays is cast from the eye to the voxels and the voxel values are projected to the view 

plane to produce a two-dimensional image dataset. During this process, the different 

processors do not need to communicate with each other so there are no communication 

overheads or network delays. The VolPack library functions (http://www- 

graphics.stanford.edu/software/volpack/) have been called for classification, shading and 

some other well-known rendering procedures.

2.3.1 Temporal Rendering

For temporal rendering, each processor generates the final image for its own time 

step. This image represents a frame of the animation. Unlike spatial rendering, this does 

not generate partial images but each image is complete in itself and is ready to be 

displayed. Figure 7 shows the filmstrip generated for the animation that shows how 

pressure changes over time. Six processors are used in this case and each picture in this 

strip is rendered by a separate processor.

15
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Figure 7: Time frames with 6 processors
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2.3.2 Spatial Rendering

Figure 8 shows the results of rendering when the data is divided into two portions 

and two threads are created, one for rendering each portion of the data. Thread 1 

produced the right side of the head while thread 2 produced the left side. In these partial 

renderings some of those features are visible that would not be present in the final image. 

For instance the image on the right shows the interior of the brain. The compositor would 

eventually hide this information when it realizes that some other thread has produced an 

opaque image that lies in front of the brain segment.

Figure 8: Partial images with 2 processors 

Figure 9 shows the partial images when the data is divided into four portions. 

Each thread renders 21 slices of data in this case.

Figure 9: Partial images with 4 processors

2.4 Assembly

The results from the different processors need to be assembled together before 

displaying them. For temporal division this involves a simple sequencing of frames while 

for spatial decomposition, we need more complex compositing algorithms.
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2.4.1 Temporal Sequencing

For displaying animation, frames need to be presented sequenced according to 

increasing time. When a processor has completed its time step, it simply adds the image 

to the pool of frames and moves on to the next time step assigned to it. In this pool of 

frames the time steps can come in any order depending on processor speed and the 

division of time steps among the processors. The sequencing step starts by picking up and 

displaying the frame for the first time step from the frame pool and then it increments the 

time and looks for and displays the frame for this new time from the frame pool. This 

cycle continues until all frames are displayed. Figure 10 shows the frame sequencing 

process. There are three processors and each processor is given three frames to render. 

Once each processor is done rendering its frame, it sends it to the frame pool. This 

diagram shows a situation where perfect synchronization has been achieved; as soon as 

frame 1 is displayed, frame 2 is ready, and as soon as frame 2 has been displayed, frame 

3 is ready.

Figure 10: Frame sequencing
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There are issues that may arise with this scheme. It is possible that if one 

processor slows down for some reason, a particular frame may arrive late and the 

animation has to wait for it. In this situation it would seem as if  the speed of the 

animation is fluctuating. Sometimes the ffame-rate is very fast and at times it slows down 

and then speeds up again. To resolve this problem some time lag can be introduced at the 

start to make sure that there are always enough frames in the pool to avoid any wait. 

Inconsistent frame-rates can also occur with multiresolution and adaptive-resolution data. 

In this case the frame generated from higher resolution data may take more time to 

display (due to larger image size for instance) than the frame with smaller resolution, 

again creating animations that are not very smooth. To resolve this problem, time lags 

can be introduced so that each frame takes a fixed time to display and this fixed time can 

be set to the time needed by the highest resolution frame to display.

This sequencing phase is very easy to implement and has very little additional 

overhead unlike the huge overhead of the compositing phase needed by spatial 

decomposition.

2.4.2 Spatial Compositing

Once each thread has completely processed its own data portion, the sub-images 

are collected by the main thread and composited together into one final image. The image 

compositing process merges all separate ray segments obtained from the different 

threads. The colors and opacities of each of the sub-images are merged together to render 

a final image. When all sub-images are ready they are composited in a front-to-back 

order. The compositing is currently done by the main thread after all the other threads
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finish and hence might impose some overhead. But the overall structure of the application 

allows for a shift to more efficient parallel compositing techniques.

Figure 11: Boundary artifacts when compositing 10 sub-images

The boundary artifacts displayed in figure 11 were visible when using 10 

processors with a naive compositing approach. In this approach the data was divided into 

disconnected portions and the sub-images produced by each portion were composited 

without any editing. The new approach for removing this artifact uses data with shared 

slices and removes the extra slices before compositing.

While compositing, boundary lines of each sub-image are visible if  the data is 

divided into discrete portions. For instance figure 12 shows the first three slices go to 

processor 1, the next three slices go to processor 2 and the last three slices go to processor 

3. This kind of division shows the boundaries of the sub-images.

- >  4- < -

Figure 12: Data division that causes boundary artifacts
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To resolve this problem, we need to have overlapping data boundaries. Each 

processor reads one extra slice at the start and one slice at the end. Later after assigning 

opacities and colors to all slices; it drops these extra slices. The first and the last 

processor are two exceptional cases. The first processor reads only one extra slice at the 

end while the last processor reads only one extra slice at the start. Figure 13 shows this 

division for the 9-slices, 3-processors example. Processor 1 gets four slices, processor 2 

gets five slices while processor 3 gets four slices.

Figure 13: Data division that prevents boundary artifacts

In general the following formulas can be applied, assuming that n is the number 

of processors and s is the number of slices that each processor would get with no overlap 

(s =3 in table 1). When using this approach the composited image displays no boundaries 

and looks the same as the image generated without using parallel rendering.

Processor First Slice Last Slice
Pi 0 s +1
P i( i = 2 to n-1 ) ( i - 1 )  * s -1 (i * s) + 1

P„ ( i - 1 )  * s -1 i * s

Table 1: Data division that causes boundary artifacts
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CHAPTER 3

MULTIRESOLUTION VISUALIZATION

In addition to parallel visualization, another technique that can be used for 

efficient rendering of time-varying data is multiresolution visualization. To implement 

multiresolution visualization we usually convert the data to lower resolution levels. For 

time-varying data, we can either use space-resolution or time-resolution. Consider the 

example of a data set with 100 time steps (1,2... 100) where each time step has 

dimensions 256*256*256. A lower space resolution for this data could be 100 time steps 

(1,2. ..100) where each time step has its dimensions cut down to 128*128*128. Here the 

dimensions of each time step are changed. Whereas a lower time resolution for this data 

would be 50 time steps (1,3,5...99) where each time step has dimensions 256*256*256. 

Here the number of time steps has changed.

3.1 Space Resolution

Using lower space resolution enables efficient rendering by decreasing the time it 

takes to render each time step since each time step now has smaller dimensions. Low- 

resolution data sets render much faster since less I/O needs to be done for reading the 

smaller data sets and less computation needs to be done to render smaller data. While 

rendering, the lowest resolution level is often used for the initial view. Although this
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decreases the quality of the image, the rendering is faster. During the interaction, a user 

can identify an interesting region of the data and “zoom” into that region to display it at 

higher resolution. This increases the quality of the image but may slow down the 

animation if  the small spatial extent of the view does not offset the higher resolution of 

the data.

Performance analysis using different resolution levels was conducted on a single

processor machine. Pressure data was used with original resolution of 392 * 112 * 112. 

Two lower resolutions were created using this data. This was done by generating a 

multiresolution hierarchy based on a wavelet transformation to produce lower resolution 

data and error, which is stored on the disk in a directory tree. For our discussion, we label 

the three resolution levels as follows:

High (original): 392 * 112 * 112

Medium: 196 * 56 * 56

Low: 98 * 28 * 28

Figure 14 shows the average time it took to render a frame using the three 

resolution levels (on a test machine with specifications listed in table 3). Rendering the 

high resolution (original) took 55.7 seconds; the medium resolution took 6 seconds while 

the low resolution took only 1.4 seconds. This shows that using the medium resolution 

saved around 49.7 seconds, while using the low resolution saved 54.3 seconds.
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Multi Resolution Visualization

55.7

Time
(seconds)

High Medium Low

Resolution Level

■ High
□  Medium
■  Low

Figure 14: Rendering time per frame using 3 space resolution levels

Figure 15 shows the difference in quality between the images generated by the 

three resolution levels. We can observe that although the time saved is huge, the quality 

compromised might be acceptable for less important regions. So it would be best to use 

one of the lower resolution levels as default visualization and jump up to higher 

resolution for important/interesting regions.
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Low Resolution

Medium Resolution

High Resolution

Figure 15: Difference in quality between low, medium and high resolutions
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3.2 Time Resolution

Using a different time resolution means increasing or decreasing the number of 

time steps that are rendered. Whereas when using space resolution we can only decrease 

the resolution down from the original, when using time resolution we can increase the 

resolution as well. Also, decreasing time resolution can be done on the fly while 

decreasing space resolution requires pre-processing. Consider an experiment that 

generates 10 frames at 2-second intervals. This experiment would have 10 time steps 

labeled 0,2,4... 18 where the labels represent the time in seconds when the result was 

generated. The original resolution of this data is 10 since there are 10 time steps. To 

decrease the time resolution of this data we can simply discard every other time step to 

get 5 time steps labeled 0, 4, 8 ... 16. Another approach is to average several time steps 

by using a wavelet transform and use this average instead of the original time steps. This 

loses less information than simply discarding half the data. For increasing the time 

resolution, we can interpolate between every two time steps to get a new time step. This 

would generate 20 time steps labeled 0,1,2,3... 19. In this case time step 1 for instance has 

been calculated by interpolating between the values in time step 0 and 2. Figure 2 

summarizes this.

Time Resolution # of Frames Labels of Frames
High 20 0,1,2,3...19
Medium (original) 10

OOofo
'

Low 5 0 ,4 ,8  ... 16

Table 2: Example with 3 levels of time resolutions
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Decreasing the time resolution would help speed up the rendering since fewer 

frames need to be rendered and this can be done through our application by specifying a 

time increment. For instance the time increment would be 4 for the example discussed 

above.

Increasing the time resolution helps obtain a smoother animation because it 

calculates the intermediate time steps that are not present in the original data. Also, we 

can save disk space by storing fewer time steps and calculating the intermediate time 

steps by interpolating between the existing ones. For the example above, time resolution 

can be increased in our application by specifying an increment of 1.

As the time resolution is increased beyond the original resolution, less I/O is 

needed but more CPU time is needed to compute the missing time step values. Using the 

original or lower time resolutions increases the I/O demands while decreasing CPU 

workload. A good balance of I/O and CPU workload is needed to reach an acceptable 

computation time, obtain a smooth animation and use disk space efficiently.

Time Resolution: I/O verses Computation

2.5 

2

Time 15 
(seconds) \

0.5 

0
I/O Computation

Figure 16: Time taken for I/O-intensive verses computation-intensive rendering
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Test Machine Specifications
vendor id Genuinelntel
cpu family 15
model 2
model name Intel(R) Pentium(R) 4 CPU 2.40GHz
cpu MHz 2399.916
cache size 512 KB
total memory 514116kB

Table 3: Test machine specifications

Figure 16 shows that it takes 1.4 seconds on average to render a time step (on the 

machine with specifications listed in table 3) that needs to be read in from a file while it 

takes 2.1 seconds to render a time step that has to be calculated by using the two 

surrounding time steps. This increase in time might be acceptable when the user has 

limited space or is interested in a smoother animation.

These numbers represent the case where data is located on the local machine and 

would not necessarily hold true if the data is being accessed remotely. Remote access 

might be used because the local machine does not have enough space or because the data 

is being shared rather than replicated for every user. If data is being accessed remotely, 

then I/O would take longer and computation would be relatively faster. In this case 

interpolating could make more sense than reading each time step in.
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CHAPTER 4

ADAPTIVE-RESOLUTION VISUALIZATION (SPATIAL 
PARALLEL)

Decreased rendering time can also be achieved by using adaptive-resolution data. 

We only discuss spatial adaptive-resolution here. Whereas in multiresolution, the 

resolution (dimensions) of the whole data set is changed to a lower one, for adaptive- 

resolution, portions within a data set can exist at different resolution levels. Hence 

interesting portions can be viewed at a higher resolution while uninteresting ones can be 

viewed at lower resolution levels to speed up rendering. Figure 17 shows the image 

generated using an actual adaptive-resolution data set where portions of interest have 

higher resolutions (more grid cells) and others have lower resolutions. The portion on the 

top left comer is rendered at a low resolution since it is simply empty space and very 

little information is lost by converting it into lower resolution. While the bottom right 

portion of the image is rendered at higher resolution since that portion is interesting and 

more information could be lost by converting it to a lower resolution.
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Figure 17: Adaptive-resolution data

This section discusses how we can effectively render adaptive-resolution data sets 

using the spatial parallel approach, so that we can benefit from both parallel visualization 

and adaptive-resolution.

4.1 Adaptive-resolution Data Format

For parallel visualization of spatial adaptive-resolution data, we use the MHD pressure 

data. The goal of this project was not to create the AR Data therefore for temporary use 

we created our own dummy AR Data Representation. This adaptive data set has portions 

(blocks) with three different resolutions:

High = (392* 112* 112);

Medium = (196 * 56 * 56);

Low = (98 * 28 * 28).

The user needs to create a data description file that shows how to divide the data 

up into portions (blocks) of different resolution. Figure 18 shows the format of this file. 

The first line of this file specifies the total number of blocks. Each of the remaining lines
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gives the starting and ending x, y and z values and the resolution for that block. The 

resolution can have one of the following three values:

high = “/” 

medium = “/s” 

low = “/s/s”.

Total Number of Blocks
Block- 1-Start-X Blockl-Start-Y Blockl-Start-Z Block-1-End-X Block-l-End-Y Block-l-End-Z Resolution

Figure 18: Data format

Figure 19 shows an example data description file and a visual representation of 

the data blocks. The example uses 392 * 112 * 112 data that is divided into 8 equal 

portions (blocks) where each portions has dimension of 196 * 56 * 56. These portions are 

block-based rather than slice-based because regions of importance often exist as blocks 

so it makes more sense to use blocks for adaptive-resolution. The first row in the data 

represents the total number of blocks (i.e., 8). The second row represents block 1 in the 

picture and has x values from 0 to 198, y values from 0 to 55 and z values from 0 to 55. 

This block should be rendered at high resolution. The third row represents blocks 2 with 

starting values (196, 0, 0) and ending ones (391, 55, 55). This block should be rendered at 

medium resolution. The rest of the rows represent blocks 3, 4, 5, 6, 7 and 8 in a similar 

manner.
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z =  111

x = 0

y = 0
x = 391

z = 0

y = 111

8
0 0 0 195 55 55 Uj»

196 0 0 391 55 55 “/s”
0 56 0 195 111 55 “/s/s”
196 56 0 391 111 55 “/s/s”
0 0 56 195 55 111
196 0 56 391 55 111 “/s”
0 56 56 195 111 111 “/s/s
196 56 56 391 111 111 “/s/s

Figure 19: Example data description file

This data description format provides the user with a lot of flexibility in terms of 

portions that are important and should be viewed at higher resolution than others. The 

user can either use an error-based approach to come up with the appropriate resolution 

and dimensions for each block or can estimate these values based on previous experience 

with this data.

After the data description file has been read in, the main processor uses it to 

distribute the data amongst the other processors. Each of the other processors renders its 

own data portions and returns the results back to the main processor which then 

composites these results into a final image. Similar to spatial parallel visualization, this
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application also has the three basic components: data division, rendering and 

compositing. These three components are discussed next.

4.2 Data Division

In case of adaptive-resolution data, the data-description file has already divided 

the data into distinct blocks that have different resolutions. Hence, in this case the data 

division component only needs to decide which blocks to assign to a particular processor. 

Figure 20a shows the data divison approach that we used for spatial parallel visualization. 

This approach divides the data into equal portions according to the number of processors 

available. In this case, each processor gets only one data block and each block is of 

almost equal size. In the case of adaptive-resolution data sets, the data description file 

might have more or fewer blocks than the processors available. If the number of 

processors is more than number of blocks, the blocks can be subdivided or the rest of the 

extra processors can be ignored. If the number o f processors is less than the number of 

blocks, we need to decide which blocks to assign to each processor. Assigning an equal 

number of blocks is not a good solution since low resolution blocks can be rendered 

much faster than high resolution blocks. To resolve this issue, the processors that are 

assigned high resolution blocks should be assigned fewer blocks than those assigned low 

resolution blocks or a good mix of low and high resolution blocks should be assigned to 

each processor so that they complete their work at almost the same time.
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Distributed Processing

1 ■7

3 4

1 3 4

a: Uniform resolution data decomposition

Adaptive Resolution Data

Adaptive-resolution data decompositionb:

Figure 20: Data decomposition options

Therefore for adaptive-resolution data, rather than dividing the data into equal 

portions based on blocks, workload needs to be divided equally among the processors as 

displayed in figure 20b. In this figure, blocks 9 and 10 have a low resolution therefore 

they need less work and are therefore assigned to a single processor. Because blocks 1 to 

8 are high resolution, they are assigned in pairs to each of the remaining processors.

We have devised the following algorithm to take into account adaptive-resolution 

while dividing data among threads. This algorithm divides the data into blocks based on 

resolution. Each block has a consistent resolution and this resolution is represented by the 

number of cells in that block. Counting the total number of cells in the data and dividing 

them by the number of processors give the number of cells each processor should render. 

But we can’t allocate that exact number to each processor since we want each processor 

to have a block of consistent resolution. Therefore we try to allocate blocks so that the 

total number of cells that a processor gets is almost equal to the optimal number of cells 

per processor. This can be done by sorting the blocks according to the cell count of each 

block in descending order. Next the shuttle algorithm is used where one block is assigned
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to each processor first in forward order starting from the first processor to the last 

processor. The remaining blocks are assigned in backwards order from the last processor 

to first processor. If there are still more blocks the shuttle algorithm is initiated again. 

This algorithm continues until there are no more blocks to assign. As soon as a processor 

is assigned the optimal number of cells or more, it is removed from the list.

# of Processors: i 
Processors: pi...pi

Blocks: B l, B2, .... Bn 
Resolutions: R l, R 2 ,.... Rn 
Cell Count: C1,C2 ... Cn

Total number of cells: X (x=i... n) Cx 
optimal_cells_perjprocessor: X (x=i... n) Cx / i

Cell Count Algorithm:

sort_blocks_by_cellcount_descending();

while( m oreblocks)
{

current_processor = processor_list.get_next(); 
currentblock = get_next_block_from_sorted_blocks();

assign_block_to_processor( current_processor, current block);

if( current_processor.cellcount >= optimal_cells_per_processor) 
processor_list.mark_processor_full( current_processor );

}
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B1

B2 

B3

B4

Figure 21: Adaptive-resolution data segmented into 8 blocks

Applying this algorithm to the data in figure 21 works as follows. The first step is 

the calculation of total cell count as displayed in table 4.

Blocks B1 B2 B3 B4 B5 B6 B7 B8
Cell Count 1 4 16 4 1 4 16 4

Table 4: Adaptive-resolution data blocks and their cell counts

Next, the total number of cells is calculated and then cells per processor are 

calculated by dividing this total by the number of processors as displayed in figure 22.

# of Processors: 4 
Processors: p l...p4

Total number of cells: 50 
_______cells per processor: 50/4 = 12.5 (round off to 13)_______________

Figure 22: Calculating optimal number of cells per processor
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After this, blocks are sorted by cell count and assigned processors in 

forward/backward cycles, removing processors that get 13 or more cells. This is 

displayed in table 5.

Blocks B3 B7 B2 B4 B6 B8 B1 B5
Cell
Count

16 16 4 4 4 4 1 1

Processor PI P2 P3 P4 P4 P3 P3 P4
Processor
Status

removed removed

Table 5: Sorted adaptive-resolution data blocks with assigned processors

Each processor is assigned the number of cells listed in table 6 at the end of the 

algorithm, which is not optimal (12 or 13 would have been optimal) but is the best that 

could have been done keeping resolution consistent within each block.

Processor Number of cells assigned Blocks assigned
PI 16 B3
P2 16 B7
P3 9 B2, B8, B1
P4 9 B4, B6, B5

Table 6: Blocks and number of cells assigned to each processor

Also, this is better than the number of blocks that would have been assigned by 

the equal data division approach as displayed in table 7. For instance, equal data block 

division would only assign 2 cells to processor PI. The numbers in the division of
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(16,16,9,9) is much closer to the optimal number 13 than the ones in the division of 

(2,8,32,8).

Processor # of cells assigned by cell count algorithm 
(equal work division)

# of cells assigned by slicing 
algorithm (equal data division)

PI 16 2
P2 16 8
P3 9 32
P4 9 8

Table 7: Comparison of equal work division and equal data division approach

After the data has been divided by the main processor using this cell count 

algorithm, each processor is passed the information regarding the portions it needs to 

render. Next each processor renders the data blocks assigned to it. This rendering step is 

discussed in the next section.

4.3 Rendering

In case of normal spatial parallel visualization, each processor receives one data 

portion to render and the processor returns the results for that portion to the main 

processor. In the case of adaptive visualization, each processor receives multiple data 

portions to render since the data description file for adaptive data may have more blocks 

than the number of processors available. In this case a processor renders the blocks 

assigned to it one by one and returns the results to the main processor as each block is 

done.

Other than that, the rendering techniques for adaptive visualization are similar to 

that of normal spatial parallel visualization. The image in figure 23 shows the results of
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rendering the data described in figure 19. In this case we have eight partial images 

generated as a result of block wise data division. Images 1, 3, 5 and 7 have been 

generated from high resolution data since they have a lot of important information. 

Images 2, 4, 6 and 8 have been rendered from medium resolution data since these mostly 

have empty space with a small portion of interesting region at one comer. After 

rendering, these partial images need to be composited together to form the final image.

Figure 23: Partial images generated for each data block using data in figure 19

4.4 Assembly

Once all the partial images have been generated and returned, the main processor

needs to composite them into one image. Unlike normal spatial data, adaptive spatial data

requires compositing even if  we have only one processor, since a single processor might

be rendering multiple blocks of different resolutions.

Also, the subimages generated may be of different sizes since the data for them

had different resolutions. To understand this, we need to differentiate between virtual

dimensions and actual dimensions of a data portion. 196 * 56 * 56 is the virtual

dimension of each block shown in figure 19, since this represents the dimensions of each
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block at high (original) resolution. But in reality the data blocks exist in different 

resolutions and hence have different numbers of data points in them. The total number of 

these actual data points make up the actual dimensions. Hence in this example the actual 

dimensions for high resolution blocks would be 196 * 56 * 56, for medium resolution 

blocks would be 98 * 28 * 28 and for low resolution blocks would be 49 * 14 *14. Since 

these dimensions are different for each block, the number of points that need to be 

composited within each subimage also differ.

To overcome this problem, we expand each subimage to its virtual dimensions. 

An efficient approach would be to set the virtual dimension to the dimension of the 

largest subimage. For instance if  no subimage has a resolution greater than medium, then 

the dimensions for medium could be set as the virtual dimensions for compositing. These 

expanded partial images can then be easily composited since they now have the same 

number of points/cells in them. Figure 24 illustrates this expansion process.
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Figure 24: Expansion of partial images of different resolutions

Once all partial images have been expanded, they need to be ordered for 

compositing. This ordering can be determined by assigning IDs to each block during the 

data division phase. The approach we used to assign ids was to start from the block at (0, 

0, 0) co-ordinates and assign it an ID of 1. Then pick up the next block in the x direction 

and assign it an ID of 2. In a similar manner IDs are assigned to all the blocks in the x 

direction until there are no more. After that again start from x = 0 but with the next y 

block and this process continues until the whole y dimension is covered. Then again start 

from x=0 and y=0 with the next z block and continue this processes until all blocks have 

an ID. Figure 25 shows the IDs assigned using this process to blocks for a data set that 

has 8 blocks. For composite time ordering each partial image gets the ID corresponding 

to its data block.
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Figure 25: IDs assigned to each block for composite time ordering

Similar to the spatial parallel approach, boundary artifacts were observed during 

compositing in adaptive visualization too. These boundary artifacts are displayed in the 

first image in figure 26. This image was generated using a data set with eight blocks. 

These boundary artifacts occurred because the data was divided into disconnected 

portions and the sub-images produced by each portion were composited without any 

editing. To remove this artifact we can use a boundary sharing approach similar to the 

one discussed earlier in section 3.4.2. There is some added complexity in this case 

because we divide data by blocks rather than slices. For slicing we had to share the first 

and the last slice of each portion only but for blocks we need to share slices on each side 

of the block. For instance a block at the center of the data would need to share 6 slices 

(left , r ig h t, f ront , back , top , bottom) while the top right comer block might need to 

share only 3 slices ( bottom , left , back ). A simple algorithm can be used to determine 

which sides need to be shared. The sides of a data block that coincide with that of the 

actual data are ignored and the rest are shared.
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Figure 26 shows how the boundary artifacts are removed by sharing x, y and z 

slices. The first image is generated without any boundary sharing. The boundary lines of 

the eight blocks are obvious in this image. The second image is generated when the x 

slice is shared by all blocks. This removes the x boundary artifact. The third image is 

generated when the y slice is shared too in addition to the x slice. This removes the y 

boundary artifact. Finally the last image removes the z boundary artifact by sharing the z 

slice as well. The final image generated now has no boundary artifacts.
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X Sharing

X and Y Sharing

X, Y and Z Sharing

Figure 26: Resolving boundary artifacts by sharing x, y and z slices
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During boundary sharing, further complexity arises due to the existence of 

multiple resolutions in an adaptive-resolution data set. Since each block may have a 

different resolution, the shared slice needs to adapt its resolution to the block it is a part 

of. We need to expand the resolution of a slice if  it is going to be shared by a higher 

resolution block or contract the resolution if needs to be shared with a lower resolution 

block since the resolution within a block must be consistent for rendering. Therefore the 

same shared slice might exist as a lower resolution for one block and as a higher 

resolution for an adjoining high resolution block.

Once boundary sharing has been enabled, the partial images can be easily 

composited together. Figure 27 clarifies how the partial images contribute to the final 

composited image. The images in the first column are the partial images generated by 

rendering each block of the adaptive-resolution data. The second column shows the 

images in column one composited in pairs. The images in the second column are 

composited again in pairs to generate the images in the next column and so on. The final 

column shows the composited image for all 8 blocks.
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1 1 and 2

Figure 27: Compositing ordered images

Next we compare the quality of adaptive-resolution images to that of a uniform

resolution image. Figure 28 shows three images generated using a dataset divided into

eight blocks. The first image in this figure is a uniform resolution image since all blocks

in this case had high resolution. The next two are adaptive-resolution images. The second

image was generated from four blocks of medium resolution and four blocks of high

resolution while the third image was generated from 4 blocks of low resolution and 4

blocks of high resolution. We can notice a slight blur at the tail (right end) of the

adaptive-resolution images. These blurry portions are generated from the medium or low

resolution data blocks while the rest of the image uses high resolution data. We observe

little difference in quality, especially between the first and the second images, although
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the rendering time of the adaptive-resolution images was much less than that of the 

uniform resolution image. Figure 29 shows that it took 78.9 seconds to render the 

uniform resolution image while it took 51.5 seconds to render the medium/high 

resolution image and 46.2 seconds to render the low/high resolution image. Thus if good 

resolution choices are made, going for adaptive visualization may increase efficiency in 

terms of time with very little compromise on quality.

High Resolution (Uniform)

Medium/High Resolution

Low/High Resolution

Figure 28: Adaptive-resolution image compared to uniform resolution image

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Performance: Adaptive vs Uniform 
Resolution

Seconds 40

80
70
60
50

30
20
10
0

High Medium/High Low/High 
Resolution Resolution Resolution 
(Uniform)

Figure 29: Adaptive-resolution performance verses uniform resolution performance

Next, we compare the quality of adaptive-resolution images when good and bad 

choices for block resolutions are made. Figure 30 shows three images where the first 

image is a uniform resolution image, and the second and third images are adaptive- 

resolution images. We can observe by comparing the second and third images that the 

second image has a much better quality (looks closer to the uniform resolution image) 

than the third image. Even though both of these images take almost the same amount of 

time to render (figure 31) since each has four blocks of high resolution and four blocks of 

medium resolution, the choice of blocks gives one image a much better quality than the 

other. The second image was generated by rendering blocks 2,4,6,8 at a medium 

resolution and rest at high resolution and since the blocks 2,4,6,8 have mostly empty 

space and very little data of importance, the quality of the image is not reduced greatly.
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The third image was generated by renderering blocks 1,3,5,7 (important portions) at 

medium resolution and less important ones at high resolution hence the quality is greatly 

reduced. This shows that the choice of resolutions for different data blocks greatly 

impacts the success of adaptive-resolution visualization.

High Resolution (Uniform) 
All high resolution blocks

High/medium Resolution
Good choice of high-resolution blocks

High/medium Resolution
Bad choice of high-resolution blocks

Figure 30: Adaptive-resolution images: Different choices of high-resolution blocks
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Peformance: Good vs Bad Adaptive Resolution 
Choices

80 

60

Seconds 40

20 

0
High Resolution High/Medium High/Medium

(Uniform) Resolution Resolution
Good Choice Bad Choice

Figure 31: Adaptive-resolution: Different choices of high-resolution blocks
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CHAPTER 5

PERFORMANCE ANALYSIS

The goal of this research is to enable interactive visualization of huge datasets. 

To enable interactive visualization we devised temporal/spatial parallel visualization 

techniques, multiresolution techniques and adaptive-resolution techniques. The 

performance of multiresolution and adaptive-resolution techniques could easily be tested 

on a single processor machine and we saw improvement in terms of rendering time when 

these techniques were used. The performance of spatial parallel visualization could be 

tested on a multiprocessor machine and that showed some performance improvement too. 

But temporal parallel visualization did not show much improvement on a multiprocessor 

since it is very I/O intensive and I/O created a bottleneck. Therefore, we decided to 

enable temporal parallel visualization to run on a cluster of machines that would allow 

parallel I/O.

The cluster that we used is called Zaphod. Zaphod is a Beowulf cluster located in 

the Research Computing Center (RCC) of the Institute for the Study of Earth, Oceans, 

and Space (EOS) at UNH. The specifications of this cluster are listed in figure 32. The 

figure shows that this cluster has 160 compute nodes were each node (machine) has a 

dual processor. The system uses RAID storage to enable parallel I/O. For networking it 

can either use Gigabit Ethernet or Myrinet. For our experiments we used a maximum of
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40 compute nodes and for inter-process communication between these nodes we used 

Myrinet.

To enable our code to work on this cluster, we had to replace our threads with

processes and use inter-process communication in place of memory sharing. For setting

up processes and inter-process communication, MPI was used. Wikipedia

(www.Wikipedia.org) defines MPI as follows:

The Message Passing Interface (MPI) is a computer communications protocol. It 
is a de facto standard for communication among the nodes running a parallel 
program on a distributed memory system. MPI implementations consist of a 
library of routines that can be called from Fortran, C, C++ and Ada programs.
The advantage of MPI over older message passing libraries is that it is both 
portable (because MPI has been implemented for almost every distributed 
memory architecture) and fast (because each implementation is optimized for 
the hardware on which it runs).

160 compute nodes:

processors: dual Qpteron 246

memory: 4 GB

storage: 120 GB, single disk

2 head nodes fo r interactive access:

processors: dual Qpteron 250 

memory: 4 GB

storage: 2.7 TB RAID5 storage

6 post-processing and storage nodes:

processors: dual or quad Qpteron

memory: up to 16 GB

storage: 12 TB SCSI/SATA RAID storage

Networking:

Gigabit E thernet (all nodes)

M vrinet (storage nodes & 122 com pute nodes)

Figure 32: Specifications of Zaphod (cluster) 
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The skeleton code main.cpp in figure 33 shows how processes were created for 

parallel Temporal Visualization using MPI on the cluster. In this code, M PIC om m size  

returns the number of processors in the variable numprocs and MPIjComm rank returns 

the id of the current process in the variable my id. Then process 0 works as the Controller 

Node for parallel temporal visualization that picks up the images once they are generated 

and all other processes work as Renderer Nodes that generate those images.

#include <mpi.h>

int main(int argc, char *argv[])
{
int numprocs; 
int myid;
MPI_Status stat;

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numprocs); 
MPI_Comm_rank(MPI_COMM WORLD, &myid);

if(myid == 0)
{

parallelTemporalVisualizationWithinControllerNode()
}
else
{

parallelTemporalVisualizationWithinAllRendererNodes();
}

MPI_Finalize(); 
return 0;

1____________________________________________________________

Figure 33: main.cpp: Creating processes using MPI for parallel temporal visualization
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Next, we used the batch script displayed in figure 34 to run this code on Zaphod. 

The line “#PBS - l  nodes=4: ppn=2" means that we want 4 nodes with 2 processors per 

node. This means that our program main.cpp will create 8 processes.

#!/bin/bash

# Define qsub command options here. Each line
# processed by PBS/TORQUE begins with "#PBS"
#
#PBS -1 nodes:=4:ppn=2:myri 
#PBS -1 walltime=00:01:00

cd $PB S O W  ORKDIR
mpiexec ./main______________________________________________________________

Figure 34: main.cpp: Creating processes using MPI for parallel temporal visualization

After submitting the job, the images generated are stored in ppm image files. The 

user can either open these files to view the images or use a simple openGL program to 

read and display these images.

After enabling and testing parallel temporal visualization on Zaphod, the program 

was run with the number of nodes ranging from 1 to 40 for performance evaluation 

purposes. For these experiments we used a total of 40 frames; therefore a maximum of 40 

nodes were used. Even though each node in the case of Zaphod is a multiprocessor, we 

expect only one processor of the node to be fully utilized since our code is not 

multithreaded. Figure 35 shows the results using the original (high resolution) dataset. 

When a single node was used (serial visualization) it took around 986 seconds to generate 

40 frames. As the number of nodes was increased (parallel visualization) the rendering
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speed also increased. In the case when 40 nodes were being used, each node rendered a 

single frame only and the total rendering time dropped down to 28 seconds.

High Resolution

1200

1000 -

800 -

600 -

400 -

200 -

Number of nodes (machines)

Figure 35: Parallel temporal visualization: 40 high resolution frames

Even though we saw a significant improvement in terms of time, the results are 

still not very good in terms of interactive rendering. This is the best that can be done 

using the pure temporal approach, to further speed up the visualization we can enable 

parallel spatial visualization within each node and since each node in this system is a 

multiprocessor this should further speed up the visualization of each frame. We can also 

combine adaptive-resolution or multiresolution techniques with parallel visualization to 

further increase the rendering speed. Figure 36 and 37 show the results when parallel 

temporal approach is mixed with the multiresolution approach. Figure 36 shows the 

results for the medium resolution data. In this case, when 40 nodes are used, the 

rendering time (for 40 frames) drops down to 5 seconds.
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Medium Resolution

140

120 -

100

80 - 
60 -

40 -

Number of nodes (machines)

Figure 36: Parallel temporal visualization: 40 medium resolution frames

Figure 37 shows the results when low resolution is used and here the rendering 

time (for 40 frames) further dropped down to 0.9 seconds when 40 nodes were used.

Low Resolution

16 -
14 -

(» 1 2 - 
■o c o o 
0) co

10 -

1 2 3 4 5 10 20 40

Number of nodes (machines)

Figure 37: Parallel temporal visualization: 40 low resolution frames
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Table 8 summarizes these results. We started off with the Single Node/High 

resolution approach which took 986 seconds for 40 frames and after using a mix of the 

parallel temporal approach and multiresolution approach, we improved the rendering 

time to 0.9 seconds for 40 frames which allows for interactive visualization.

Single Node (Serial Approach) 
(Time in seconds to render 40 
frames)

Multiple Nodes(Multiple 
Appraoch)
(Time in seconds to render 40 
frames)

High Resolution 986 28
Med Resolution 116 5
Low Resolution 16.7 0.9

Table 8: Summary of performance analysis
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CHAPTER 6

CONCLUSIONS

We have implemented (temporal and spatial) parallel visualization techniques for 

time-varying (temporal and spatial) multiresolution data that can work on shared memory 

multiprocessors.

We have also devised parallel rendering techniques for adaptive-resolution data. 

For this we used the cell-count algorithm. This enables spatial adaptive-resolution data to 

be rendered effectively using parallel visualization. Also, for the cell-count algorithm 

block-wise spatial data division was implemented instead of slicing.

Next we enabled the temporal parallel visualization module to run on Zaphod 

(Cluster). The data was distributed temporally over the different nodes of the cluster. The 

goal of this task was to allow interactive visualization of large data sets by distributing 

work among the nodes. The performance analysis showed that mixing the temporal 

approach with the multiresolution approach did indeed result in interactive visualization.

We discovered that moving to the parallel and adaptive/multiresolution 

visualization systems is a challenging task. There are several issues that must be taken 

into consideration. First, we need to carefully analyze performance to determine the 

degree of parallelism needed for a particular task. Next, it is difficult to conclude what 

mix of spatial/temporal data division would present the most efficient solution.
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Furthermore, it needs to be determined whether a dataset is large enough to justify the use 

of parallel or low-resolution rendering. Also, in case of spatial decomposition, the time 

saved by parallel rendering must exceed the time lost due to compositing. If these issues 

are resolved then a considerable amount of efficiency gain can be achieved through the 

use of parallel visualization and adaptive/multiresolution systems.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LIST OF REFRENCES

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[1] Bethel E. Wes, White Paper: Sort-First Distributed Memory Parallel 
Visualization and Rendering with OpenRM Scene Graph and Chromium, R3vis 
Corporation, page 10-14 July, 2003.

[2] Bhaniramka P., Robert P. C.D., and Eilemann S. OpenGL Multipipe SDK: A 
Toolkit for Scalable Parallel Rendering, IEEE Visualization, page 119-125 October, 
2005.

[3] Brodlie K.,Duce D.,Gallop J. Sagar M., Walton J. and Wood J. Visualization 
in Grid Computing Environments, IEEE Visualization, page 155-162 October, 2004.

[4] Cavin X., Mion C, and Filbois A. COTS Cluster-based Sort-last Rendering: 
Performance Evaluation and Pipelined Implementation, IEEE Visualization, page 111- 
118 October, 2005.

[5] Levoy, M. Display of Surfaces from Volume Data., IEEE Computer Graphics 
and Applications (May 1988), 29-37.

[6] Ma K., Painter J.S., Hansen C.D. and Krogh M.F. A Data Distributed, Parallel 
Algorithm for Ray-Traced Volume Rendering, Proceedings of the 1993 Symposium 
on Parallel Rendering, page 15-22,1993.

[7] Merkey, P., Beowulf Project Overview,
<http://www.beowulf.org/overview/index.html>, Beowulf.org, 2004-2005.

[8] Molnar, S. Eyles J., and Poulton. J. PixelFlow: High-Speed Rendering Using 
Image Compositon, Proceedings of SIGGRAPH 97, pages 231-240, August 1992.

[9] Shalf, J. and Bethel, E.W. 2003. The Grid and Future Visualization System 
Architectures, IEEE Computer Graphics and Applications 23, 2, 6-9.

[10] University of Tennessee, MPI-2: Extensions to the Message-Passing 
Interface, <http://www-unix.mcs.anl.gov/mpi/standard.html>. University of 
Tennessee, Knoxville, Tennessee, 1997.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.beowulf.org/overview/index.html
http://www-unix.mcs.anl.gov/mpi/standard.html


[11] Wang C., Gao., Li L., Shen H.W A Multiresolution Volume Rendering 
Framework for Large-Scale Time-Varying Data Visualizations, The Eurographics 
Association, 2005

[12] Wikipedia, Grid Computing, <en.wikipedia.org/wiki/Grid computinq>. 
Wikimedia Foundation, Inc., November 2006.

[13] Williams J.L. and Hiromoto R.E. Sort-Middle Multi-Projector Immediate- 
Mode Rendering in Chromium, IEEE Visualization, page 103-110 October, 2005.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


	University of New Hampshire
	University of New Hampshire Scholars' Repository
	Winter 2006

	Volume visualization of time-varying data using parallel, multiresolution and adaptive-resolution techniques
	Sadaf Shams
	Recommended Citation


	tmp.1520441287.pdf.0vOS2

