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Abstract 
 
This paper presents an artificial immune system 
(AIS) which produces artificial immune networks 
that are meaningful, of a bounded size and dynamic 
over a very large number of data presentations. 
This behaviour had proved elusive up to this time 
but has now permitted the application of the AIS to 
situations requiring continuous learning. It also 
removes the need to decide when to stop training 
an AIS. The new version of the algorithm is 
described, and results are presented for analysis of 
static and dynamic versions of a trivial two-
dimensional data set and Fisher’s Iris data. It is 
argued that the changes made from previous 
versions of the “resource limited” algorithm are in 
keeping with the goals of remaining true to the 
immune system analogy and making the system as 
simple as possible. 

1 INTRODUCTION 
The human immune system is a complex natural defence 
mechanism that recognizes and responds to the presence of 
foreign substances (pathogens). The response elicited 
depends on the previous experience of the immune system 
in question. Invaders that display antigens (features of 
pathogens) that have been experienced previously elicit a 
more rapid and more powerful response. This flexibility 
enables the immune system to remove a huge variety of 
infections, many of them novel to the immune system in 
question. This ability to learn and respond to a wide variety 
of similar but different pathogens has roused the interest of 
Artificial Intelligence researchers who wish to learn from, 
emulate and exploit artificial immune systems.  
There are several competing theories as to how the human 
immune system achieves the adaptability and flexibility that 
allows it to function so effectively. The existence and 
participation of the bone marrow, B-cells and T-cells in the 
process is beyond dispute. The ways in which these entities 
reproduce, clone and mutate is still a fertile field of study 
for immunologists. Computer scientists have for many 
years used evolutionary computing as a stock in trade (see 

Goldberg 1989), and thus understand something of how to 
deal with simulations of simple versions of these types of 
activity. The added interest of the immune system is in the 
mechanism that makes it so effective and so rapid in 
adapting, more rapid than organism level evolutionary 
adaptation.  
Of the various mechanisms suggested, the  network theory  
(see Jerne 1974, Perelson 1989), still very contentious in 
immunology circles, stands out as a tractable and familiar 
way to try to improve upon the performance of the standard 
genetic algorithm. AI has often resorted to networks of one 
type or another as mechanisms that can be made to exhibit 
emergent behaviour in a reliable, comprehensible and 
visually presentable way. Thus we have been working with 
models of immune systems based on network structures 
with B-cells as the primary unit (see Timmis et al. 1999, 
Timmis et al. 2000 and Timmis et al. 2001).  

2 REAL AND ARTIFICIAL IMMUNE 
SYSTEMS 

At this point a brief summary of some of the relevant terms 
and how they apply to real and artificial immune systems is 
appropriate: 
i) Pathogen: for the biological immune system a 

pathogen is usually a foreign body such as a virus, 
bactaerium, fungus or other parasite. For an 
artificial immune system a complete data item 
represents a pathogen. 

ii) Antigen: a real antigen is a substance which elicits 
a response from lymphocytes. These are often 
toxins or proteins which are characteristic of 
particular types of pathogen. In the artificial 
immune system a field within a data item with a 
particular value is comparable; as it is particular 
values in particular fields which stimulate the 
nodes in an artificial  immune system. 

iii) Lymphocytes: are the white blood cells in the real 
immune system which are responsible for the 
destruction of pathogens. B-cells and T-cells are 
two types of lymphocyte. In our artificial immune 
system B-cells are not represented individually, 
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but gathered together using the concept of the 
artificial recognition ball (ARB) as is described 
below (see section 2.4). 

iv) Innate versus adaptive immunity: innate immunity 
does not change throughout the lifetime of the 
individual and relies on different mechanisms from 
adaptive immunity which is what we are 
concerned with and wish to emulate in our 
artificial immune systems. 

2.1 INITIAL INNOCULATION 
The adaptive human immune system is primed at a very 
early stage in various ways including from the mother‘s 
milk and via vaccinations. For the human these very early 
additions to the immunological repertoire often mean the 
difference between life and death. Clearly the ability to 
bootstrap the immune system before any dangerous 
pathogens are missed is an essential feature of any immune 
system. Fortunately the effects of failure in AI systems tend 
to be less drastic than in the human body, but nonetheless 
the sensitivity of any immune system, real or artificial, to 
its initial pre-programmed repertoire is of the utmost 
importance. If it is necessary to pre-program with a very 
large number of antigens, and the system is not capable of 
dealing with antigens significantly different from those in 
the initial innoculation then this is not satisfactory. In fact 
the less that is necessary to begin with, the better.  

2.2 PRIMARY RESPONSE 
The primary response of an immune system is provoked 
when an antigen not previously encountered is detected. 
The bone marrow will generate a large number of B-cells, 
in the expectation that some of them will be able to deal 
with the infection, and will thus take over the production of 
more and more effective antibodies. After the response has 
cleared the infection, some of the more effective B-cells 
produced will remain in the body ready to respond the next 
time a similar infection occurs. 
This part of the process is recognized as a learning phase in 
which previously unseen patterns are stored for later recall. 
The way in which the B-cells that remain in the system are 
maintained, and do not die off is of fundamental importance 
and is where the network theory provides one of several 
possible answers. 

2.3 SECONDARY RESPONSE 
The secondary response is the response elicited when a 
familiar antigen is detected. Those B-cells already present 
in the body which are well adapted to dealing with the 
antigen will reproduce very rapidly to deal with the 
infection. 
The secondary response can be seen as the recall phase in 
the artificial immune networks presented. 

2.4 THE IMMUNE NETWORK THEORY 
The immune network theory proposes that the B-cells in the 
body interact with each other to maintain the immune 
memory. The mechanism proposed is that B-cells which are 
capable of recognising similar (but not necessarily 
identical) pathogens are also capable of recognising and 
stimulating each other (see Farmer et al. 1986). Thus a 
dynamic feedback mechanism can maintain parts of the 
immunological memory which are not frequently 
stimulated. Clearly however not all B-cells have sufficient 
stimulation to survive indefinitely and thus some will die 
out.  
In the human immune system T-cells both perform a 
surveillance role and interact with B-cells which 
complicates the mechanism somewhat. In our artificial 
immune system the role of T-cells is currently ignored.  
In the real immune system there are very large numbers of 
identical B-cells to deal with each type of infection. In an 
artificial system such repetition can be coded without 
representing all the identical cells individually. Fortunately 
the concept of a recognition ball which represents a region 
of antigen space that is covered by a particular type of B-
cell can replace the repetition of individuals (Perelson 
1989). 
So our AIS consists of a network of artificial recognition 
balls which are linked together if they are close to each 
other in antigen space. Pathogens (data items) can be 
considered to be points in this antigen space, and thus 
proximity can be defined as a simple distance function. 
When a data item is presented to the network the node 
which is the most stimulated produces clones of itself, some 
of which are mutated to increase the diversity of the 
network‘s recognition capabilities. The stimulation level of 
each node is calculated based upon its reaction both to the 
data items and to those nodes to which it is connected (see 
section 4.1). Thus nodes which are severely mutated into 
remote regions of the antigen space (and thus sparsely or 
totally disconnected) will not survive unless they match 
data items which are not presently covered by the network 
in which case they will expand its repertoire. 

3 BACKGROUND  
In a previous publication (see Timmis et al. 2001) we 
presented a resource-limited version of the AIS as a step 
toward a continuous learning version of the AIS presented 
in (see Timmis et al. 1999, Timmis et al. 2000). This 
previous work was motivated by the need for an AIS that 
did not rely on the arbitrary selection of the number of 
times that a data set should be presented to it, and the 
realisation that any AIS that did require such control was 
not a good model of a biological immune system. There 
were however several problems with the solution that we 
proposed: 
i) the mechanisms which governed the resource 

allocation were centralised in a very artificial way, 



which was contrary to the distributed nature of the 
original AIS 

ii) there was no “inertia” effect bound to the resources. 
Thus an ARB could gain or lose all of its resources 
in one pass through the network, which is quite 
unlike the biological immune system which takes 
time to build up immunity and time to lose it again. 

iii) The nature of the calculations performing the 
resource allocation required the normalisation of the 
stimulation levels, which lead to some inelegant, 
lengthy and unnecessarily complex calculations after 
every iteration 

iv) After several passes through the data set in question 
the network would begin to degenerate and fail to 
represent some of the data items 

v) The algorithm did not lend itself to a genuinely 
continuous mode of operation as resource allocation 
was performed after each pass through the data set. 
This required an epoch-based (synchronous update) 
approach which creates a variety of problems if the 
network is to be used in a continuous mode. 

After several attempts to modify the resource allocation 
mechanism it became clear that these problems were quite 
severe and were leading to a complex and arbitrary set of 
solutions. Thus a different approach was taken based on a 
simpler mechanism used after every data item presented. 

4 THE SSAIS 
This new approach lead to the self-stabilising artificial 
immune system (SSAIS) presented here. Artificial 
recognition balls (ARBs) are still used as the basic 
component of the network, and they are still linked together 
in the same way. The network affinity threshold is also 
calculated in the same way and serves the same purpose as 
in the original systems. The SSAIS differs from the 
resource limited artificial immune system (RLAIS) in 
several ways. The most important difference is that there is 
no fixed quantity of resources to be distributed centrally 
between the ARBs. The concept of resources is still present, 
but in an altered form. In the RLAIS the resources were 
allocated to ARBs by order of and in proportion to 
stimulation level. In the SSAIS resources are dealt with 
locally by each ARB. An ARB increases its own resource 
allocation each time it registers the highest stimulation for 
an incoming data item. The ARB increments its resource 
holding by adding its current stimulation level. 
Additionally, each time a data item is presented the 
resource level of every ARB decays geometrically. The 
balance between the decay of the resource level and the 
occasional boost received when an ARB “wins” is quite 
robust, and results in more densely populated areas of the 
data space supporting larger numbers of ARBs and more 
sparsely populated regions fewer ARBs. This results in 
emergent behaviour that is very similar to that of the 
original AIS and the RLAIS, but without the “one shot” 

constraint of the former and the normalisation, synchronous 
update and sorting requirements of the latter.  

4.1 THE STIMULATION FUNCTION 
In order to bound the growth of the resource level in any 
ARB (and thus in the network as a whole) it was necessary 
to bound the stimulation level. The simplest way to achieve 
this is to make a small modification to the ARB stimulation 
function. The stimulation function in previous systems (see 
Timmis et al. 2000) was made up of three components: 
i) An excitation factor, ps based linearly on the 

Euclidean distance to the current data item (p):  
ps = 1 – dis(p) 

ii) An excitation factor, ns based on the distance to 
the neighbours around the ARB: 

                        n 

ns = Σ 1 – dis(x) 
        x=0 

iii) A suppression factor, nn based on the distance to 
the neighbours around the ARB: 
                 n 

nn =  - Σ dis(x) 
            x=0 

In all equations the function dis(a) returns the Euclidean 
distance between the current node and the item a; and n 
represents the number of neighbours at the current node. 
These components are simply summed. The second and 
third components are based on the neighbours of the ARB, 
and there is no limit to the number of neighbours an ARB 
can have. This poses a problem in the form of the potential 
for unbounded growth. Two variants on this stimulation 
function were experimented with. The first of which is the 
most obvious and is simply the same as above, but with 
parts ii) and iii) divided by the number of neighbours. This 
succeeded in bounding the growth of the resource levels in 
the network, but resulted in networks which had one 
extremely dense and active region and other totally static 
sections which were much less dense remainders of the 
original network created from the initialisation data. In 
order to examine this behaviour a second simpler function 
was used with surprisingly effective results. The neighbour 
suppression factor was discarded completely and only the 
excitation retained. This resulted in a simpler stimulation 
function made up of only two parts which are summed: 
i) An excitation factor, ps based linearly on the 

distance to the current data item:  
ps = 1 – dis(p) 

ii) A normalised excitation, ns factor based on the 
distance to the neighbours around the ARB: 
                       n 

ns = 1/n × Σ 1 – dis(x) 
                  x=0 



When used within the scheme presented here, this function 
yielded networks which attain a “dynamic stability” with all 
parts of the network producing some clones (see below), 
and varying their topology a little at a time, whilst retaining 
the overall structure and distribution throughout the data 
space. 

4.2 ALLOCATING RESOURCES 
In this version of the immune network algorithm, resources 
are simply recorded as a numerical value associated with 
each node. This number is used both to decide when to 
remove a node from the network (when the resources fall 
below a minimum threshold) and to decide how many 
clones to produce (more resources implies more clones). 
Whilst there is no longer a central notion of resource 
availability, it is still appropriate to think of the ARBs being 
limited by available resources. In this system the ARBs 
allocate their own resources only when justified by reacting 
the most strongly to a data item. The level of resources at 
an ARB that is not the most stimulated by data item (i+1) is 
geometrically decaying with each data presentation, thus: 

R(a)(i+1) = dr × R(a)(i) 

where R(a)(i) represents the level of resources present at 
ARB a after the presentation of i data items and dr 
represents the rate at which the resource level at an ARB 
decays. The level of resources at the ARB which is the 
most stimulated by data item (i+1) will be: 

 R(a)(i+1) = dr × (R(a)(i) + SL(a)(i+1)) 
where SL(a)(i+1) represents the stimulation level of ARB a 
(as defined in section 4.1) after the presentation of data item 
(i+1). Thus when an ARB is the most stimulated for an 
incoming data item it gives itself a boost in its resource 
level. These two conflicting effects balance to ensure the 
survival of ARBs that regularly have the highest 
stimulation level and the gradual demise of those that do 
not. The decay rate scalar dr provides an easy control over 
the size of the networks produced. The values used for dr in 
this work were 0.999 for the trivial data set and 0.9995 for 
the Iris data. Some initial experimentation with these values 
was undertaken which seemed to indicate that the value of 
dr is a sensitive control for the size of the population. 

4.3 POPULATION CULLING 
After each data item is presented to the network any ARBs 
that have resources less than a fixed threshold value (the 
mortality threshold) are removed from the population. The 
threshold value used in this work was 0.6 for all networks 
regardless of the data set in use. This was an arbitrary 
choice, and further work is required to ascertain the 
sensitivity and range of values for this parameter. The 
networks produced do not seem to be particularly sensitive 
to the threshold at which nodes are culled. The values for 
mortaility and the multiplier for the resource level for new 
clones are also arbitrary and require further investigation. 

4.4 CLONING MECHANISM 
The cloning mechanism for the SSAIS is slightly different 
from previous systems. When an ARB is the most active it 
is allowed to undergo cloning. The ARB produces clones at 
a rate which is proportional to the resource level at the 
ARB. The number of nodes produced is calculated as 
follows: 
nc = R(a)(i)/(mortality × 10) 
where mortality is the minimum resource level that a node 
can have before being culled. This is because each clone 
that is produced is assigned mortality × 10 resources from 
the ARB‘s pool of resources. As each clone is produced its 
data fields are mutated with a fixed probability (the 
mutation rate). The mutation rate was fixed throguhout this 
work at 0.1%. If the clone is mutated then it gives rise to a 
new ARB with mortality × 10 resources. If it is not mutated 
then the resources are returned to the parent ARB. The new 
clones are incorporated into the network and the processing 
of the data items continues. 

4.5 THE ALGORITHM 
Prior to the commencement of training the network an 
initial innoculation of ARBs must be provided. For the 
work presented here 10 ARBs were used to initialize the 
network for the trivial data set, and 30 ARBs were used for 
the iris data set. These numbers were used because they 
represent 20% of the number of items in each data set. The 
items from the data sets were simply every fifth one in 
whatever order they happened to be. Initial experimentation 
with different initial innoculations indicated no significant 
difference in behaviour when using different sub-sets of 
either data set. 
Thus bringing all the above elements together, we can 
summarise the continuous algorithm as follows: 
i) Innoculate the network with a random set of ARBs 
ii) present a data item to all the nodes 
iii) find the node with the highest activation 
iv) allow this node to increase its resource level 
v) deplete resources at all nodes 
vi) cull nodes with less than threshold resource level 
vii) allow highest activation node to clone 
viii) relink the network with new clones 
ix) return to ii) 

5 EXPERIMENTS AND RESULTS 
Results for two data sets in two different modes are 
presented. The first set of data consists of 50 two 
dimensional data items arranged in two clusters (see figure 
8a). This was designed as a development tool to allow 
simple visualisation of ARB positioning in a well 
understood data set. The second set of data is Fisher‘s 
famous Iris data (see Fisher 1936) which provides a well 



known benchmark data set with understood properties and 
some more challenging characteristics. The data consists of 
150 four dimensional data items belonging to three 
categories, each of which represents a variety of Iris. A 
principal component plot (see Everitt 1974) of the first two 
principal components is presented in figure 8b. Both data 
sets were presented to the AIS as continuous streams of 
data which wrapped around each time the end of the data 
set was reached. The first two experiments were carried out 
using 20% of the data items as an initial innoculation and 
thereafter presenting all the data items from the outset. This 
type of analysis will be referred to from here on as 
complete. The last two experiments took one of the clusters 
from each data set and used 20% of this reduced set as an 
initial population and then trained for 250,000 data item 
presentations to demonstrate initial stability. Then the 
remainder of the data set was introduced and the network 
trained for a further 750,000 presentations to demonstrate 
the new stable state with the increased repertoire. This type 
of analysis will be referred to from here on as incremental. 

5.1 COMPLETE ANALYSES 
The complete analyses were carried out over 1,000,000 data 
item presentations to demonstrate long-term stability. The 
networks settle to a quasi-steady-state much more rapidly. 

5.1.1 Trivial data 
The networks produced for the complete analysis of the 
trivial data set very rapidly settled down to two distinct 
clusters of ARBs with the occasional appearance and 
disappearance of small outlying clusters or singlets which 
were rapidly culled (see figure 1). The network was 
examined at a large number of points during training and 
seemed to vary very little, although the addition and culling 
of clones occurred throughout (see figure 2). 

Figure 1: The network produced for the trivial data set after 
30,000 data items have been presented 

The size of the network settled down to between 40 and 55 
quite rapidly. Variations in size and structure continued but 
did not vary the basic structure of the network after 
approximately 1000 data items had been presented and 
processed. Slight variations in size and structure are due to 
the stochastic nature of the network introduced by the 
cloning and mutation mechanism. 
 
 

 
 
 
 
 
 
 
 

Figure 2: Size evolution of the network running on the 
trivial data set 

The input space was densely populated in regions 
containing high densities of data throughout training. 
Regions of lower density outside the clusters of data were 
either devoid of ARBs, or supported small clusters of 1,2 or 
3 ARBs for brief periods. These appeared due to the 
mutation of clones from the two groups. 

5.1.2 Fisher‘s Iris data 
This data set provides an interesting test for any data 
analysis technique as it consists of one clearly separable 
class of data (the Setosa class), and two slightly 
intermingled classes (the Virginica and Versicolor classes). 
A conventional Principal Component Analysis plot of the 
data shows this quite clearly in figure 8b. The network 
produced by the SSAIS after 350,000 data item 
presentations is shown in Fig. 3. 
The evolution of this network was allowed to run on for 
1,000,000 data presentations in order to examine the long-
term behaviour of the network. The shape of the network 
was examined at various points and after about 100,000 
iterations there were no major alterations in structure with a 
separate group for the Setosa class and an elongated group 
for the other two classes. 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Network produced for the Iris data after 350,000 
data item presentations 

 
 
 
 
 
 
 
 
 
 

Figure 4: Size evolution of the network running on Fisher’s 
Iris data set. 

 The long-term evolution of the size of this network is 
shown in Figure 4. The trace shows very rapid growth 
initially followed by gradual growth until about 150,000 
iterations. Thereafter the network has a relatively stable size 
that varies by about 20 nodes either side of 120. This steady 
but dynamic behaviour is desirable as it indicates 
continuing introduction and maintenance of diversity within 
the network, whilst retaining reasonable coverage of the 
data space over a very long period. The enduring shape of 
the network can be seen in figure 5 which shows the final 
state of the network after 1,000,000 iterations. 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 5: Network produced for Iris data after 1,000,000 
data items have been presented. 

Thus the networks produced throughout training on the Iris 
data cover the data space well, and reflect the nature of the 
groupings in the data. 

5.2 INCREMENTAL ANALYSES 
The incremental analyses were carried out over 1,000,000 
data presentations in order to demonstrate the stability of 
the networks in their new configurations. Typically the 
behaviour of the networks settles down much more rapidly 
than this. 

5.2.1 Trivial data 
For the incremental analysis of the trivial data set the 
network was initialized with 5 of the 25 data items from the 
cluster close to the origin (see figure 8). The network was 
then trained for 250,000 data presentations with the 
members of only that cluster. The data being presented was 
then expanded to include the second group of data which is 
centred around the point (0.8,0.8). The size evolution of the 
network is shown in figure 6. 
The network size can be seen to stabilise at the beginning of 
training at a size of between 30 and 45 nodes whilst only 
the first cluster of data is being used. The second cluster of 
data is introduced after 250,000 iterations after which the 
network takes about 200,000 more iterations to begin to 
cover the new data cluster. Examination of the intermediate 
networks produced shows little development of the network 
into regions which cover the new data. This seems to be 
due to the relatively confined region which the network 
covers before the second cluster is introduced. This lack of 
diversity in the network makes it unlikely that any mutated 
clone with only a single mutated antigen will be close 
enough to the new data items to survive. Thus the chance 
generation of several clones into the same region is required 
in order for the colonisation of the newly populated region 



of input space to begin. Once a start has been made, the 
new region is rapidly covered quite effectively. This is 
shown by the increase in population size at 500,000 
iterations. See figure 9 for network evolution. 
 
 
 
 
 
 
 
 
 
 

Figure 6: Size evolution of the network running on the 
trivial data set with introduction of second cluster at 

250,000 iterations. 

5.2.2 Fisher‘s Iris data 
For the incremental analysis of Fisher‘s Iris data the 
network was initialized with 10 of the 50 Setosa class (see 
figure 8). The network was then trained for 250,000 data 
presentations with members of only that cluster. The data 
being presented was then expanded to include the other 
classes of data (Virginicas and Versicolors) which form a 
clearly distinct cluster. The size evolution of the network is 
shown in figure 7. 
 
 
 
 
 
 
 
 
 
 

Figure 7: Evolution of network size for incremental 
analysis of Fisher‘s Iris data. 

The network can be seen to have settled to a reasonably 
constant size of between about 70 and 110 when training on 
only the Setosa cluster (before 250,000 iterations). 
Subsequent to the introduction of the second cluster of data 
the network undergoes some fairly rapid changes. Initially 
there is a short period (between 250,000 and 300,000 
iterations) of decline in size of the network. Then there is a 
period of quite rapid growth until about 450,000 iterations 
after which the network settles down to a fairly steady size 
of between about 105 and 130 nodes. Prior to the 

introduction of the second group of data the network 
consists of a single highly connected cluster of nodes. Upon 
the introduction of the additional data the network spreads 
out into a more complex structure before several chunks 
split off from the initial cluster and reform into a second 
large highly connected cluster. The ultimate shape which 
the network assumes is very similar to that  produced by the 
complete analysis presented in section 5.1.2 (see figure 5). 
Snapshots of the network evolution throughout the 
incremental analysis are shown in figure 10. 

6 DISCUSSION 
The goal of this work was to create a genuinely stable, 
adaptive and continuous AIS. The changes that were 
introduced grew out of the realization that the shortcomings 
of the RLAIS (Timmis et al. 2001) stem from two 
fundamental problems: the nature of the resource allocation 
mechanism and the explicitly non-continuous nature of the 
epoch based update mechanism. The latter problem of 
assuming that there was an obvious point at which to stop 
presenting data items and perform an “update” was very 
simple to deal with. This just involved re-examining the 
algorithm and making sure that every operation could be 
carried out after the presentation of every data item. Most 
of the components of the system lent themselves readily to 
this approach, and as the resource allocation scheme was 
under scrutiny, problems with that aspect and the closely 
related problem of when and how much to clone were 
redesigned to fit the new regime. Successfully altering the 
resource allocation scheme required a little more thought. 
The fields of genetic algorithms and artificial life have 
taught many lessons about the nature of emergent 
behaviour in such systems, one of the most basic being that 
decentralization of control mechanisms usually leads to 
more interesting behaviour (see Johnson 2001). This led to 
the (now obvious) idea of devolving resource allocation to 
the ARBs, and adjusting the stimulation function to 
facilitate this. Thus now the only centralized function is that 
of choosing the winning ARB from the network. Finding 
the winner locally in the network would probably be 
possible, but unnecessarily complex and somewhat 
pedantic, especially as it could be argued that the bone 
marrow is a centralized controller of some importance in 
the biological immune system. Other mechanisms which 
allocate resources based on “local” winners were briefly 
examined and may be the subject of further research. 
The time lag between the introduction of a new region of 
input data and the network covering the new region of the 
data space is disappointing. This is especially evident in the 
incremental analysis of the trivial data set. It seems clear 
that this lag is primarily due to a lack of diversity in the 
network. The network is slow to regain the diversity 
required to cover the new region due to the mutation and 
cloning mechanism, which is likely to produce mutations 
with only one data field different from the parent ARB. 
Thus it seems that examining more effective cloning and 
mutation mechanisms for the primary response would be of 
great interest. These are likely to involve an artificial bone 



marrow that produces random antibodies when a poorly 
recognized pathogen is detected. 
Control of the size of the network is to some degree 
removed from the domain of the user of the SSAIS, but 
clearly not entirely. The number of ARBs with which the 
network is initialized provides an initial point from which 
the system can evolve and thus provides a short-term 
control although the mortality constant and decay rate are 
far more sensitive and control the long-term meta-dynamics 
of the networks. The mortality constant provides a very 
coarse control which is unlikely to be changed in practice. 
The decay rate however provides a much finer control over 
the size of networks produced. Precisely how the size of the 
network relates to the decay rate will vary depending on at 
least the density of the data points in the input space, and 
the frequency of repetition of similar items. With fixed data 
sets the latter of these is simply the number of items in the 
set. The former is hard to measure, and its effect harder 
still. Some type of automatic and dynamic control of the 
decay rate would be extremely useful and remove a 
potential fudge factor. 

7 FUTURE WORK 
A number of pieces of work will flow directly from this 
approach to the construction of artificial immune networks: 
i) The testing of the algorithm on some more 

complex data sets from the real world. This will 
enable some detailed comparisons with other 
techniques to be made, as well as to verify that the 
behaviour seen with the data sets presented here is 
repeatable. 

ii) Running the algorithm on a continuously varying 
data source rather than fixed data sets presented 
many times to examine the flexibility of the 
representations formed and the rate at which the 
networks can track varying input. 

iii) Creating an efficient and well engineered  
implementation of the algorithm. This will offer 
some performance increases, although 
performance has not proved to be a problem, as 
well as providing a stable software platform on 
which to base further experiments. 

iv) Examining more realistic and intelligent cloning 
and mutation mechanisms. There is evidence that 
biological immune systems employ some very 
well controlled and directed cloning and mutation 
mechanisms, none of which are exploited here (see 
Kepler et al. 1993). Significantly different and 
potentially more useful behaviour could be 
expected if some methods such as these were 
applied. 

 
 
 

8 CONCLUSIONS 
The algorithm presented here generates networks of a 
bounded size over an indefinite number of data 
presentations and updates. The networks produced are 
continually changing whilst retaining good coverage of the 
input space and some diversity via the mutation mechanism 
employed. No central control in the form of a resource 
allocator is required which holds true to the distributed 
nature of the networks under construction. The system also 
has the advantage of being conceptually simpler than the 
previous resource limited artificial immune system. The 
dynamic stability displayed is a better model of the immune 
system than previous work presented and shows great 
promise for applications requiring analysis of continuously 
changing data sets with minimal intervention in the learning 
process. 
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      Figure 8: a) Two-dimensional trivial data set 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 9:  Network evolution during incremental learning 
of trivial data set. Series evolves top left to bottom right.   

 
 
 
 
 
 
 
 
 

 
b) Principal component plot of Fisher‘s Iris data. Setosa 

     square, Virginica round, Versicolor triangular. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
      Shots taken at 250,000,300,000, 400,000 and 450,000 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10: Network evolution during incremental learning 
of Fisher‘s Iris data. Series evolves top left to bottom right. 
  
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Shots taken at 500,000, 550,000, 600,000 and 700,000 
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