
ABSTRACT VISUALIZATION OF LARGE-SCALE TIME-VARYING DATA

by

Li Yu

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

Computing and Information Systems

Charlotte

2012

Approved by:

Dr. Aidong Lu

Dr. William Ribarsky

Dr. Jianping Fan

Dr. Kalpathi Subramanian

Dr. Wei Chen

Dr. Yanqing Sun

ii

c©2012
Li Yu

ALL RIGHTS RESERVED

iii

ABSTRACT

LI YU. Abstract visualization of large-scale time-varying data. (Under the direction
of DR. AIDONG LU)

The explosion of large-scale time-varying datasets has created critical challenges

for scientists to study and digest. One core problem for visualization is to develop

effective approaches that can be used to study various data features and temporal

relationships among large-scale time-varying datasets.

In this dissertation, we first present two abstract visualization approaches to visual-

izing and analyzing time-varying datasets. The first approach visualizes time-varying

datasets with succinct lines to represent temporal relationships of the datasets. A

time line visualizes time steps as points and temporal sequence as a line. They are

generated by sampling the distributions of virtual words across time to study tem-

poral features. The key idea of time line is to encode various data properties with

virtual words. We apply virtual words to characterize feature points and use their

distribution statistics to measure temporal relationships. The second approach is

ensemble visualization, which provides a highly abstract platform for visualizing an

ensemble of datasets. Both approaches can be used for exploration, analysis, and

demonstration purposes.

The second component of this dissertation is an animated visualization approach to

study dramatic temporal changes. Animation has been widely used to show trends,

dynamic features and transitions in scientific simulations, while animated visualiza-

tion is new. We present an automatic animation generation approach that simulates

iv

the composition and transition of storytelling techniques and synthesizes animations

to describe various event features. We also extend the concept of animated visual-

ization to non-traditional time-varying datasets - network protocols - for visualizing

key information in abstract sequences. We have evaluated the effectiveness of our

animated visualization with a formal user study and demonstrated the advantages of

animated visualization for studying time-varying datasets.

v

ACKNOWLEDGMENTS

This dissertation would not have happened without the help, inspiration, and en-

couragement of many people along the way.

First and foremost, I want to thank my advisors: Prof. Aidong Lu. I am very

fortunate to have the privilege to be her graduate student. Over the last several

years, she have always been ready for guidance not only in my research but also in

life. Several of those late nights helping with my research paper will remain forever

unforgettable. Her support went beyond the role as my advisors and I couldn’t have

asked for more.

I am honored to have Professors William Ribarsky, Jianping Fan, Kalpathi Subra-

manian, Wei Chen and Yanqing Sun serve on my PhD Committee. They provided

helpful comments to improve this manuscript. In particular, I would like to thank

Prof. Wei Chen for guiding me into the world of computer graphics and visualization

and serve on my committee remotely from Zhejiang University. I am grateful to Prof.

William Ribarsky, Kalpathi Subramanian and Jianping Fan for their ideas and help

during my PhD study. Prof William Ribarsky and Kalpathi Subramanian helped me

to build more background ideas on visualization and visual analytics and taught me

how to do research and write research papers.

This research is supported by DHS Center of Excellence - Natural Disasters, Coastal

Infrastructure and Emergency Management (DIEM), DOE DE-FG02-06ER25733,

and NSF 0633150.

Last but not least, I would like to thank my family. My parents’ encouragement

vi

and supports are the backbones of my constant struggle from frustration to empow-

erment.

vii

TABLE OF CONTENTS

LIST OF FIGURES x

LIST OF TABLES xiv

CHAPTER 1: INTRODUCTION 1

1.1 Motivation 1

1.2 Overview 2

1.3 Contribution 4

CHAPTER 2: BACKGROUND 5

2.1 Time-varying Visualization 5

2.2 Feature Extraction 10

2.3 Temporal Trend Analysis 11

2.4 Ensemble Visualization 13

2.5 Animation 15

CHAPTER 3: Applications 20

3.1 Time-varying Volumetric Data 20

3.2 Coastal Circulation and Storm Surge Model 21

CHAPTER 4: DESIGN AND GENERATION OF TIME LINE 27

4.1 Introduction 27

4.2 Generation of Virtual Words 30

4.3 Creation of Time Lines 42

4.4 Time Line Visualization 46

4.5 Results 54

viii

4.6 Discussion 62

4.7 Conclusions 70

CHAPTER 5: ENSEMBLE VISUALIZATION 71

5.1 Introduction 71

5.2 Approach 72

5.3 Visual Clutter Reduction 75

5.4 Acceleration For New Member Insertion 78

5.5 Conclusion 83

CHAPTER 6: ANIMATED VISUALIZATION 85

6.1 Introduction 85

6.2 Approach 88

6.3 Results and Discussions 103

6.4 Conclusions 107

CHAPTER 7: EVALUATION OF ANIMATED VISUALIZATION 109

7.1 Introduction 109

7.2 Evaluation 112

7.3 Conclusion 134

CHAPTER 8: VISUALIZATION OF PROTOCOL 135

8.1 Introduction 135

8.2 Related Work 137

8.3 Construction with Real Legos 139

8.4 Automatic Construction of 3D Digital Legos 143

ix

8.5 Integrated Lego System 150

8.6 Evaluation 156

8.7 Discussion 168

8.8 Conclusion and Future Work 171

CHAPTER 9: CONCLUSIONS and FUTURE WORK 172

9.1 Conclusions 172

9.2 Future Work 173

REFERENCES 175

x

LIST OF FIGURES

FIGURE 1: Sample data rendering 21

FIGURE 2: Sample surge results 24

FIGURE 3: June particle traces 25

FIGURE 4: Alex particle traces 26

FIGURE 5: Virtual word concept 28

FIGURE 6: Approach pipeline 29

FIGURE 7: 2D scale space 31

FIGURE 8: SIFT feature descriptor 32

FIGURE 9: Volume pyramid and 3D SIFT feature descriptor 35

FIGURE 10: Selection of feature points 36

FIGURE 11: Different features 40

FIGURE 12: Different clustering numbers 41

FIGURE 13: Virtual-words locations 42

FIGURE 14: Test case time lines 44

FIGURE 15: Long virtual words 48

FIGURE 16: Parallel time lines 50

FIGURE 17: Hybrid time lines 51

FIGURE 18: Multi-scale visualization of synthetical datasets 53

FIGURE 19: Multi-scale time lines 55

FIGURE 20: Time lines of three datasets 56

FIGURE 21: Storm surge time lines 57

xi

FIGURE 22: Air quality time lines 59

FIGURE 23: Time histogram 65

FIGURE 24: Time activity curves 66

FIGURE 25: Storyboard 67

FIGURE 26: Local window visualization 68

FIGURE 27: Single member visualization 74

FIGURE 28: Ensemble visualization sample result 75

FIGURE 29: Ensemble visualization sample result 2 76

FIGURE 30: Storm surge groups 77

FIGURE 31: Visual clutter reduction example 78

FIGURE 32: Visual clutter reduction example 2 79

FIGURE 33: Acceleration: closest location 80

FIGURE 34: Acceleration: closest average 81

FIGURE 35: Acceleration: thresholds 82

FIGURE 36: Failed cases of ensemble acceleration 83

FIGURE 37: Example representation of narrative structure 86

FIGURE 38: Example of event graph 88

FIGURE 39: Construction of event graph 92

FIGURE 40: Hurricane event graphs 95

FIGURE 41: Event graph of two narrative structures 95

FIGURE 42: Transition examples 101

FIGURE 43: Example renderings from animation results 106

xii

FIGURE 44: System interface 113

FIGURE 45: Back surge 118

FIGURE 46: Irene path 119

FIGURE 47: Task 1 122

FIGURE 48: Task 2 122

FIGURE 49: Task 3 124

FIGURE 50: Task 4 125

FIGURE 51: Task 5 127

FIGURE 52: Task 6 128

FIGURE 53: Results of completion time 129

FIGURE 54: Results of accuracy 131

FIGURE 55: Example protocols 140

FIGURE 56: Example results of protocols 142

FIGURE 57: Digital Lego block 145

FIGURE 58: Generation process of primitive pieces 146

FIGURE 59: Primitive designs 148

FIGURE 60: Generation process of content surface 149

FIGURE 61: Woo and Lam Pi 3 protocol 150

FIGURE 62: Lego system interface 152

FIGURE 63: Interaction examples 153

FIGURE 64: Example of merging 153

FIGURE 65: Experiment examples 154

xiii

FIGURE 66: Example results of security protocols 156

FIGURE 67: Different primitive styles 156

FIGURE 68: Results of multiple choice questions 159

FIGURE 69: Interface of experiment 162

FIGURE 70: Identification questions 164

FIGURE 71: Results of experiment 1 and 2 166

FIGURE 72: Data analysis of experiment 1 166

FIGURE 73: Memorization questions 167

FIGURE 74: Data analysis of experiment 2 169

xiv

LIST OF TABLES

TABLE 1: Quantitative results 61

TABLE 2: Insertion results 82

TABLE 3: Task completion time 129

TABLE 4: Task accuracy 131

TABLE 5: Notations of symbols 140

TABLE 6: Results of likert-scale questions 159

CHAPTER 1: INTRODUCTION

1.1 Motivation

Large-scale time-varying data visualization has become a necessary component of

many science and engineering research fields, which are of great scientific interest as

well as immense social-economic impact [128]. For example, models of storm surge

and inundation can be used in applications ranging from hindcasts and forecasts of

tidal circulation, forensic studies in the aftermath of hurricanes, to planning of new

hurricane protection systems. Recently, visualizations of storm surge simulations are

used to track nearshore oil spill movement in the Gulf of Mexico (adcirc.org/oilspill).

Scientific studies often require strong visualization tools to assist scientists to ex-

plore and analyze large-scale time-varying datasets. Current visualization techniques

provide many effective approaches to studying a single dataset and it is acceptable

to use a single dataset method to explore a small amount of datasets by visualizing

each of them. However, the traditional methods are not efficient for investigating

large-scale simulations. Even though some approaches allow users to take snapshots

for later comparison or switch datasets during visualization, the limitation of the hu-

man perception system only allows us to visually compare and track several objects

at the same time [138]. The increasing complexity of simulation datasets and various

temporal relations also compound the challenges of Large-scale time-varying studies,

2

which may otherwise contribute to new scientific discoveries.

The research work delivered in this dissertation is motivated by the fact that new

visualization techniques are required to assist the analysis of such large-scale time-

varying datasets. The fundamental problem is to design suitable visualization plat-

forms for studying various data features and temporal relationships, ranging from

photo-realistic 3D structures to abstract high-dimensional statistics.

1.2 Overview

This dissertation focuses on exploring large-scale time-varying datasets with ab-

stract visualization approaches. The main purpose of abstract visualization is to

represent various temporal relationships at different scales visually.

The main challenge comes from the variations of data features that range from

static object shapes to temporal events, which are hard to describe or measure. Our

approaches are generally built with feature extraction and event detection techniques,

which are essential to interpret large-scale simulation datasets and reduce data sizes.

Two main visualization platforms are designed for visual data exploration, compar-

ison, and representation. With these visualization integrate data analysis method,

scientist can gain more insights on the temporal relationship instead of focusing on

individual time steps.

In this dissertation, we present two main abstract visualization frameworks as fol-

lows:

1. Time Line:

The first framework is to generate succinct time lines to represent various tem-

3

poral relationships at different scales. A time line visualizes time steps as points

and temporal sequence as a line. They are generated by statistically sampling

of the distributions of data features across time.

Chapter 4 describes the core of this approach. We use virtual words, in the

form of high-dimensional vectors, to encode diverse data features of scientific

simulation. The virtual words of time-varying datasets are generated through

sample collections at feature locations and the statistics of virtual words are

used to measure temporal relationships. We demonstrate the usages of time

lines on several exploration and visualization tasks in real-life applications.

Chapter 5 presents an approach of ensemble visualization, which provides a

highly abstract platform for visualizing an ensemble of time-varying datasets.

A set of combined time lines are visualized and clusters are reduced with special

care. The visualization of an ensemble provides a quick approach to identify

interesting and abnormal events.

2. Animated Visualization:

The second component of this dissertation is an animated visualization ap-

proach to study dramatic temporal changes. Animation has been widely used

to show trends, dynamic features and transitions in scientific simulations, while

animated visualization is new. Different from animation sequences that are

generated by concatenating snapshots from individual time steps, an animated

visualization allows users to visualize a time-varying dataset with an animation

and adjust the focused regions, durations, and features interactively.

Chapter 6 presents an automatic animation generation approach that simulates

4

the composition and transition of storytelling techniques.

Chapter 7 describes our evaluation of the animated visualization approach with

a formal user study. The results demonstrate the advantages of animated visu-

alization over interactive visualization for studying time-varying datasets.

Chapter 8 extend the concept of animated visualization to non-traditional time-

varying datasets - network protocols - for visualizing key information in abstract

sequences. A digital Lego approach is described to use both static visualization

and animated visualization to study network security protocols. The effects of

our animated Lego visualization in studying and understanding security proto-

cols.

1.3 Contribution

This dissertation explores several approaches for visualizing large-scale time-varying

datasets. We focus on the topic of abstract and efficient representation of time-varying

datasets. By taking advantage of feature extraction and statistics analysis techniques,

important temporal relationships and features of a large-scale dataset can be revealed.

The main contributions of this dissertation are the following:

1. A time line visualization approach to generate meaningful lines representing

temporal relationships of one or an ensemble of large-scale time-varying datasets.

2. An animated visualization approach to explore time-varying datasets with an

algorithm to generate semantic animations as digital stories.

3. Evaluation of the presented abstract visualization approaches over traditional

techniques.

CHAPTER 2: BACKGROUND

Time-varying data visualization [79] is an active research topic for the past decade.

Researchers have been using volume rendering algorithms, hardware accelerating tech-

niques to accelerate the visualization in the early year. We first introduce some

research work in visualizing time-varying dataset from different aspects in the follow-

ing section. Then we discuss about research area close to the methods used in this

dissertation.

2.1 Time-varying Visualization

2.1.1 Multi-variate Analysis

Large-scale datasets are normally multi-variate and multi-dimensional, finding the

correlation between different variables becomes an essential step to visualize and

analyze the data. Jeffrey et al. utilized various temporal curves, clustering and

segmentation to organize data, capture temporal behaviors and explore correlations

in time-varying multivariate data [126]. Wang et al. measured information flow in

the data and used time plot and circular graph to visualize the information transfer

for an overview of information transfer relations among the variables [140]. Chen

et al. used a sampling-based approach to create a static volume classification that

summarizes the correlation in multivarite datasets [30]. Yuan et al. proposed a vi-

sual analytics framework to explore seismic event catalog data with satellite imagery

6

data [160]. Blaas et al. presented an interactive tool to enhance the usability of Par-

allel Coordinates with linked views and GPU acceleration for the exploration of large,

multi-timepoint volumetric data sets and also preserving spatial context of the volu-

metric data [20]. Glatter and Huang developed a textual pattern matching approach

for specifying, identifying general temporal patterns and allowing uncertainty to be

used in the specification of patterns of interest, particularly ones that are temporal

and multivariate in nature [63, 64]. Walker et al. presented a novel coupling of parallel

coordinates with spherical coordinates to visualize the vector and multi-dimensional

data. They enhanced visual perception, and represented vector data in a more nat-

ural spatial domain [136]. Aigner et al. proposed a technique called STZ that is

capable of displaying quantitative data and qualitative abstractions of time-oriented,

multivariate data. It used a combined representation of different visual encodings,

whereas spatial position is used to encode the quantitative data and color-coding is

used to display the related qualitative abstractions. They also evaluated their work

by performing a user study which shows the composite representation were faster,

particularly for more complex tasks [7].

2.1.2 Rendering

Better rendering of time-varying datasets will help enhance the perception as well

as rendering the evolution of the data. Jankun-Kelly and Ma generated static transfer

functions for time-varying data by merging several transfer functions over time [77].

Woodring et al. simulated the chronophotography technique to depict time-varying

data features using a high dimensional direct rendering method [153]. Hsu et al.

7

depicted temporal behaviors using image-based methods and use illustrative visu-

alization techniques to effectively present the evolution of 3D flow in a single 2D

image [73]. Shi et al. proposed a multivariate visual analytics system by computing

local and global properties of path lines of a 4D dataset describing relevant features

of them and applying several information visualization techniques [122]. Akiba et al.

proposed an approach that allows simultaneous classification of the entire time series

and discuss interactive classification by exploring options for simultaneous rendering

of the time series based on the time histogram [9].

2.1.3 Interactive Analysis

Interactive visual analysis also becomes important during the exploration and vi-

sualization of the dataset. A good interactive technique will help scientists to observe

interesting patterns and events faster and easier. Kehrer et al. presented a system to

do interactive visual analysis of two heterogeneous parts of scientific data [85]. Keefe

et al. presented an interactive framework for exploring spacetime and form-function

relationships in experimentally collected high-resolution biomechanical data sets [83].

Akiba and Ma developed an multi-view interface visualizing time-histogram, correla-

tion between variables and spatial domain rendering to efficiently visualize large-scale

dataset and support interactive analysis and exploration [10]. Sanyal et al. described

a tool named Noodles which uses coordinated view of ribbon and glyph-based uncer-

tainty visualization to visualize ensemble uncertainty [115].

8

2.1.4 Visual Design

Better visual designs could help user to gain better insights of the data. Bruckner

and Moller uses sampling and spatio-temporal clustering techniques to generate a

concise overview for the visual exploration of parameter spaces [27]. Balabanian et

al. proposed temporal compositors that created a temporal characteristic for the

spatially overlapping voxels to condense several time-steps into a single image [16].

Hoshi and Rheingans evaluated the effectiveness of their illustrative techniques by

conducting a user study. They compared the ability of subjects to visually track

features using snapshots, snapshots augmented by illustration techniques, animations,

and animations augmented by illustration techniques. The results indicated that

the use of illustration-inspired techniques provides a significant improvement in user

accuracy and the time required to complete the task [82]. Fischer et al. designed

a visualization technique called ClockMap for effective visualization of hierarchical

time-series data. It combined a circular nested treemap layout with a circular glyph

representation for time-series data [54]. Jang et al. used the functional representation

approach for time-varying data sets and developed an efficient encoding technique

utilizing temporal similarity between time steps [75].

2.1.5 Acceleration

Chiueh and Ma proposed a parallel pipelined renderer for time-varying volume data

in 1997 [31]. Shen used a temporal hierarchical index tree structure [119] and Time

Space Partitioning Tree [120] to store and render volume dataset. But due to the

increasing size and dimension of time-varying datasets, processing, rendering time

9

and interactivity create challenges during the analysis and visualization of the data.

These techniques became impractical. Several other techniques have been proposed

for visualization and comparison purposes [126, 6, 81].

Tikhonova et al. used RAF(Ray Attenuation Functions) to generate compact rep-

resentation of volume data and explored transfer function space in a coherent manner

without accessing the original 3D data [129]. Du et al. proposed a structure called

space-partitioning-time (SPT) tree to achieve efficient volume rendering with higher

re-use rate and more details [46]. Shen et al. developed a TSP tree to capture spatial

and temporal coherence of the time-varying data for fast rendering [121]. Wang and

Chiang presented a method using Persistent Time-Octree (PTOT) indexing struc-

ture for isosurface extraction and view-dependent filtering from large time-varying

fields [139]. Wan et al. presented a new metric to measure the importance of vol-

ume datasets and automatically adjust the number of samples to produce temporally

coherent sampling patterns [137]. Yu et al. pointed out that in-situ visualization is

a promising direction for accelerating high-performance supercomputing and scien-

tific discovery by performing a case study of in situ data processing and visualization

strategies in a massively parallel environment [156]. Wang et al. proposed a method

to compress a given large time-varying data set using an octree. The compression

started with spatial partitioning and temporal grouping, which took into account

domain knowledge that scientists provide. This solution significantly reduced the

amount of data transferred and efficiently used the limited graphics memory [142].

10

2.2 Feature Extraction

Feature extraction methods are applied to the original time-varying datasets to ac-

celerate analysis process. We use volumetric SIFT algorithm to select feature points

for 3D datasets. The SIFT algorithm was originally proposed in image processing

community to detect and describe local features in images. It has been applied

successfully to different applications, such as object recognition [92], point track-

ing [88], panorama creation [26], medical imaging [102], and knowledge-assisted vi-

sualization [101]. Some approaches of feature tracking are also related to this topic,

since they can provide the frame-to-frame correspondence between objects-of-interest

to reveal the temporal trend of a time-varying dataset. The tracking information

can be further studied to detect significant data changes. Currently, most feature

tracking approaches are based on pre-defined feature models or user-specified regions-

of-interest. The matching of data features is generally achieved by the following two

mechanisms. First, based on selected regions-of-interest for feature tracking, either

data features are matched based on their corresponding positions [123] or topological

features are tracked using high dimensional geometries [78]. Critical points of geom-

etry models have also been studied in many applications [62, 124, 47, 57]. Second,

feature attributes, such as position and size, are derived from data models and used

to measure data changes. For example, Samtaney et al. [114] introduced several evo-

lutionary events and tracked 3D data according to their feature attributes. Banks

and Singer [17] used a predictor-corrector method to reconstruct and track vortex

tubes from turbulent time-dependent flows. Reinders et al. [109] matched several at-

11

tributes of features and tracked feature paths based on the motion continuity. Verma

and Pang [134] proposed comparative visualization tools for analyzing vector datasets

based on streamlines. Post el al. [105] provided a good survey of flow visualization,

which includes many feature-based approaches. We extend the design of feature de-

scriptors to a set of independent local data properties. More importantly, we derive

our concept of virtual words from feature descriptors as representative key local data

properties.

2.3 Temporal Trend Analysis

Extracting the temporal changes from the dataset can be beneficial and help users

to better understand the underlying structure. A lot of work has been done in this are.

Woodring and Shen designed a global time view spreadsheet, which grouped similar

activities that are clustered using wavelet transform along time [151]. Lee and Shen

presented an algorithm called SUBDTW to identify trends appear and vanish in mul-

tivariate time-varying data [89]. Wang et al. presented an importance-driven method,

which derived an importance curve for each data block based on the formulation of

conditional entropy from information theory and clustered importance curves to vi-

sualize temporal trends [141]. Woodring and Shen also utilized temporal clustering

and sequencing, creating a corresponding transfer function, to find dynamic features

and describe the value range distributions over time in value space [152]. Janicke et

al. described a framework based on wavelet analysis to investigate variability climate

changes [76]. Turkay et al. proposed two novel and interactive visualization tech-

niques, temporal cluster view and temporal signatures, that enabled users to explore

12

and interpret the structural changes of temporal clusters [132]. Hao et al. introduced

automated peak-preserving smoothing and prediction algorithms, enabling a reliable

long term prediction for seasonal data. They also combined them with an advanced

visual interface to explore seasonal patterns with new visual interaction techniques

to incorporate human expert knowledge [67].

Mao proposed Lowbow (Locally weighted bag of words) algorithm for document

visualization using curves [98]. Typically a document is considered as a vocabulary

with a finite sequence. By treating a document as a discrete categorical time series

dataset and locally averaging a word histogram at different location in the document,

a local version of the global histogram can be obtained to describe local word distribu-

tion. In other words, the word histogram which is a high dimensional vector contains

a probability distribution over the vocabulary at one document location. By viewing

the histograms geometrically, Lowbow generates a smooth curve to summarize the

progression of the semantic and statistical trends within the document.

Similarly, Assa et al. presented human motions in succinct line drawings by se-

lecting key poses based on the analysis of a skeletal animation sequence [14]. Ward

and Guo borrowed the idea in text analysis and presented an approach to time-series

data visualization, creating multivariate data records out of short subsequences of the

data and then using multivariate visualization methods to display and explore the

data in the resulting shape space. They mapped each temporal N-gram to a glyph,

and then positioning the glyphs via PCA [144]. We modify the Lowbow algorithm

for time-varying data visualization to keep the advantages of Lowbow algorithms on

sampling data from distribution statistics.

13

Lu et al. proposed an interactive storyboard approach [94] for visualizing overall

data contents and relations of time-varying datasets. There are three main differ-

ences between our approach in Chapter 4 and the storyboard method [94]. First, the

storyboard method compares two time steps directly based on a set of pre-selected

features. Our approach compares two time steps based on the distribution of virtual

words. Since the virtual words are generated with the 3D SIFT algorithm, which

is invariant to feature transformation, our approach can better capture data charac-

teristics. Second, we adopt the mechanism of Lowbow to develop a statistical time

sampling method. Differently, as the storyboard approach compares volume datasets

directly, all the time steps from selected time ranges are involved. Third, the story-

board approach visualizes a time-varying dataset with a specially designed storyboard,

which selects representative time steps and embeds their snapshots into the time line.

Our approach explores several methods to compare different time ranges or data at-

tributes. In summary, since we represent local data properties by a set of meaningful

virtual words, our approach tends to be more intuitive. Our approach also provides

the flexibility for sampling time steps through a modified Lowbow algorithm, thereby

it is more efficient for data with a large number of time steps.

2.4 Ensemble Visualization

Ensemble visualization has been studied extensively during recent years due to

the growth of such simulation datasets. Because of the complexity of the ensemble

datasets, the research area covers a large portion in both scientific and informa-

tion visualization. Geo-spatial visualization, volumetric rendering, animation, multi-

14

variate, multi-dimensional data visualization, user interactivities are all included. We

discussed most of those work in the previous sections.

Techniques of visualizing multi-variate and multi-dimensional datasets have been

used extensively in ensemble visualization because of the similarities of the data prop-

erties. Thus, these techniques can be applied to the ensemble members directly. Due

to the rich information included in the ensemble dataset, a single representation is

obviously not sufficient. Interfaces of multiple, linked views of data can solve this

issue. Fuchs and Hause discussed relevant research works related to the visualization

of complex, multivariate data and provide a categorization of these techniques [56].

Anselin et al proposed a framework of dynamically linked windows, combining mul-

tiple representations of data on a map with traditional statistical graphics, such as

histograms, box plots, and scatterplots [12]. Xie et al. proposed an approach to define

quality measures for multivariate tabular data and presented several approaches to

visually map quality information with information visualization techniques such as

parallel coordinates and star glyphs [155].

Here we review several work of ensemble visualization that have been done. Short-

range ensemble forecasting runs on a daily basis is used to predict near future weather

patterns [1]. Gneiting and Raftery generated ensemble datasets which combine multi-

ple runs of simulation using perturbed parameters and variations on initial conditions

to make predictions on local weather [65]. Wilson et al. presented a general approach

for gaining key scientific insight from ensemble data through a collection of overview

and statistical displays [108, 107]. They proposed an interactive framework consisting

of a collection of overview and statistical displays to help understanding ensembles.

15

They used a collection of statistical descriptors to summarize the data, and displayed

these descriptors using variety of visualizations which are familiar to domain experts.

Phadke et al. proposed methods for visualizing ensembles: one pairwise sequential

animation technique that combines subsets of members using visibility control, and a

tinting technique that presents differences between members using screen space sub-

division and saturation tinting [104]. Talbot et al. proposed EnsembleMatrix, an

interactive visualization system that presents a graphical view of confusion matrices

to help users understand relative merits of various classifiers [127]. Sanyal et al.

described a tool named Noodles which uses coordinated view of ribbon and glyph-

based uncertainty visualization to visualize ensemble uncertainty [115]. Other than

these method which just shows simple features in their displays, we incorporate our

time line approach and generate more meaningful ensemble visualization. Also, we

are capable of displaying large number of analyzed members without occlusion.

The major problem with these work is that they do not provide a method to

address the porblems of clutter and occlusion, When the amount of ensemble grows,

they become impractical. Our methods provide a way to reduce the visual cluttering

and still be able to study the correlations between members and variables.

2.5 Animation

2.5.1 Animation in Visualization

Animation has several advantages comparing to traditional static presentations.

• Animation is able to help users to track desired features or events.

• Animation can direct user attentions to important objects.

16

• Animation is able to incorporate a story-telling style to describe the data prop-

erty narratively.

• Animation is exciting and engaging to users.

It’s been widely used in every aspect of education [125, 84], computer graphics,

and visualization. Many papers have performed experiments to support the idea that

animation is beneficial for both scientific and information visualization. Stasko et al.

did a series on how algorithm animations could assist learning [125, 84]. Initially the

result did not show significant benefits from animation. But later animation was found

useful when they changed the environment and materials and added interactions with

the animations.

Many visualization systems provide a certain degree of animation support, rang-

ing from recording keyframes to producing animations automatically. For example,

Akiba et al. [11] developed a template-based animation tool for volume visualization.

Gershon [61] presented methods for visualizing fuzzy data, including displaying a se-

ries of blurred images in an animation loop. Viola et al. [135] presented a method to

focus viewpoints automatically on features of a volumetric dataset. Other types of

animation include animation of 2D steady vector fields [90], animation of orthogonal

texture patterns for vector field visualization [15], and 3D interactive animation in

information visualization [112].

Animation has also been applied to enrich static visualization, providing animation

support to assist user change perspectives, highlight and track objects [95, 150, 37].

For example, Lum et al.[95] presented kinetic visualization, which visualized animated

particles over an object surface to enhance the visual perception. Correa and Sil-

17

ver [37] produced animations that highlighted data features by traversing the volume

along a path specified via transfer function. Woodring and Shen [150] highlighted ob-

jects in a volume dataset by applying animations with positional motions and opacity

variations. Also, Blumenkrants et al. [22] created narrative algorithm visualization

with the algorithm graph based on information like a central plot or a story. Results

of their study indicated that the narrative visualization appeared effective.

Different from previous approaches of animations, our approach in Chapter 6 gen-

erates animations automatically by simulating storytelling techniques and integrates

automatic composition algorithms to produce smoothly transitioned animations. Sim-

ilar to the multiresolution video method [53], our approach allows animation gener-

ation with different levels-of-detail. Our approach is also relevant to the algorithm

visualization method [22] on building narrative structures through tree search strate-

gies.

2.5.2 Storytelling in Visualization

Storytelling technique in visualization has been seldom studied. Gershon and

Page [60] discussed the usage of stories in information visualization, especially for

cases when data characteristics were abstract and could not be visualized in the form

of a picture in a satisfying way. Wohlfart and Hauser [148] presented a method to use

storytelling to represent a volume dataset through the processes of story authoring

and story telling. They demonstrated the potential of their approach with medical

visualization examples. Similarly, our approach in Chapter 6 can also use animations

to represent data information. Different from previous approaches, our approach ex-

18

ploits the automatic generation of animations for time-varying datasets through the

detection of event features and construction of narrative structures. Our approach

also allows semantic visualizations, which are more flexible and meaningful for domain

users.

2.5.3 Evaluation of Animation

Animations are used more often in information visualization area for visualizing

transitions between views and datasets, presenting overall data trend, and illustrat-

ing processes along the time, for example dynamic graphs and networks [52]. The

effectiveness of animation is closely related to the data type. Tversky and Morri-

son [133] found out that animation may be ineffective when displaying events and

were often too complex and too fast to be accurately perceived. However, they still

acknowledged that animation allowed interactions such as close-ups, zooming, alter-

native perspectives and control of speed, which were likely to facilitate perception

and comprehension.

There has been a lot of work evaluating the effectiveness of animation for different

purposes in the information visualization area. Heer and Robertson proposed design

principles for creating animated transitions for data graphs and performed user stud-

ies finding that animated transitions significantly improved graphical perception [70].

Robertson et al. [111] evaluated the effectiveness of animation in trend visualization

and draw the conclusion that small comparable visualization was the most effective

approach. They discovered that animation worked well in presentation tasks but not

as good as other techniques for analysis purposes. All the techniques have their own

19

advantages for particular situations. However, Lundström et al [96] presented an an-

imation method to convey uncertainty in medical visualization and evaluated their

method by employing radiologists in a study simulating the clinical task of stenosis

assessment, in which the animation technique was shown to outperform traditional

rendering in terms of assessment accuracy. Boyandin et al. presented a qualitative

user study analyzing findings made while exploring changes over time in spatial inter-

action with flow maps using animation and small-multiples as two alternative ways of

representing temporal changes. They concluded participants with animation tended

to make more findings concerning geographically local events and changes between

subsequent years; while with small-multiples there are more findings concerning longer

time periods were made [25]. We believe that for data with meaningful 3D structures,

like our time-varying datasets, animation can visualize temporal events effectively.

We evaluates the effectiveness of animation in 3d data visualization serving dif-

ferent purposes in Chapter 7. We examine if animation is beneficial under different

visualization tasks. We also performed a formal user study comparing our seman-

tic animation in Chapter 6 to interactive visualization with exploration and analysis

tasks.

CHAPTER 3: APPLICATIONS

In this chapter, we introduce the simulation large scale datasets we used in this

dissertation. The datasets include volumetric data and 2D simulation data on grids.

Some of the data are results of forecasts from complex simulation models.

3.1 Time-varying Volumetric Data

Volumetric data has found extensive use in geological and medical applications such

as 3D CAT scans and MRI’s. We mainly uses three time-varying volume dataset in

this dissertation. Each of these datasets is in 3D with multi-variate along the time.

We mainly use three volume datasets as below. Figure 1 shows example renderings

of each dataset.

1. Air Quality Air quality data are generated from the community multi-scale air

quality (CMAQ) [2] and the sparse matrix operator kernel emissions (SMOKE) [3]

modeling systems. SMOKE is also one input source of the CMAQ system, which

simulates various chemical and physical processes that are important for under-

standing atmospheric transformations and distributions. The chemical pollu-

tion are simulated across North America including chemicals such as NH3, SO2,

NO2 and NO. There are 25 timestep each day and the dataset consists of 365

days which is a total of 9125 volumes. The size of each volume is 112x148x19.

21

2. Jet Engine Jet engine dataset simulates the process of engine changes of a jet.

It has two simulation variables: density and energy. Each variable has 200

timesteps and each volume data is 128x128x128.

3. Turbulence The turbulence data is mathematica turbulence simulation which

consists of 4 different conditions and 249 volumes under each condition. The

size of each volume is 100x100x100.

(a) Air Quality (b) Energy (c) Turbulence

Figure 1: Example volume renderings of different datasets.

3.2 Coastal Circulation and Storm Surge Model

Besides volumetric datasets, we also use 2D or 3D simulated storm surge or oil

particle datasets. These dataset are simulated by a coastal circulation and storm

surge Model named ADvanced CIRCulation (ADCIRC) model [4]. ADCIRC is a sys-

tem of computer programs for solving time dependent, free surface circulation and

transport problems in two and three dimensions. These programs utilize the finite el-

ement method in space allowing the use of highly flexible, unstructured grids [41, 44].

Typical ADCIRC applications have included: (i) modeling tides and wind driven cir-

culation, (ii) analysis of hurricane storm surge and flooding, (iii) dredging feasibility

22

and material disposal studies, (iv) larval transport studies, (v) near shore marine

operations. It has been employed successfully to coupled wind, wind-wave, tide and

riverine ow simulations on unstructured meshes in many geographical regions includ-

ing the Gulf of Mexico. ADCIRC has been coupled recently to the Simulating WAves

Nearshore (SWAN) model, so that both models run on the same unstructured meshes

and on the same computational cores [162, 44]. The resulting SWAN+ADCIRC

model is well-positioned to simulate accurately and efficiently the propagation of

wind-waves, tides and storm surge from deep water onto the continental shelf and

into the nearshore [42, 35].

Simulations are usually in a different format. The simulation result files from

ADCIRC are in NetCDF format which is a set of software libraries and self-describing,

machine-independent data formats and array-oriented scientific data format [5]. We

download all the daily simulations and use NetCDF libraries to interpret the ensemble

dataset. Each ensemble member contains more than 10 variables including 1D scalar

values or 2D vectors such as elevation values and wind vectors. We select simply

features directly from these as well as calculating inundation area, wind speeds and

other surge related features. The oil spill dataset only contains the geo-location

information of each particle over the time.

3.2.1 Surge Simulation

The surge simulation has two categories, one is long time duration containing one

major storm, the other is ensemble surge simulation with short time duration but

numerous of runs. We introduce more details of storm simulations with their own

23

features in Section 7.2.2.1. Both of the ensemble and storm simulation share the same

format.Different from the storm surge dataset, ensemble simulations are relatively

short in time and most of them do not include tropical cyclone. The surge simulation

are produced several time a day and in great number. These daily runs are used for

many different things, and different clients will be looking for different things. Some

may be interested in the tides, others will be interested in the wave forecast, etc.

Marine scientists are producing a wide variety of data that will be used differently by

different audiences.

The simulation lies on a grid which consists of 295,328 vertices and 520,114 tri-

angles. Figure 2 (left)shows the mesh grid of the surge simulation. Each simulation

contains 84 timesteps, which means 84 hours, and more than 20 variable outputs

are produces such as sea surface elevation, atmospheric pressure, sea water velocity,

wind velocity, peak wave period, mean absolute wave period, significant wave height,

mean wave direction and so on. Among these variables, sea surface elevation and

wind velocity are the most important and interesting ones. Figure 2 (right) shows

rendering examples of these parameters.

3.2.2 Oil Spill Simulation

Beyond natural disasters, accidents can create serious problems too. The destruc-

tion of the Deepwater Horizon drilling platform during the spring of 2010, which put

the northern Gulf of Mexico in threaten by an oil spill, also raised concerns of emer-

gency responders. The oil spill posed a serious environmental threat to northern Gulf

coastline from Florida to Texas. There was also concern that oil would be carried by

24

Figure 2: Left: Mesh of the surge dataset. Right: Sample renderings of different
variables in the simulation.

the currents to more distant regions. Early predictions showed oil could make its way

to the Atlantic Ocean and the eastern seaboard of the United States. Other concerns

such as the potential of a major storm could impact the northern Gulf during the

spill.

Due to these facts, scientists generate simulations to study how oil behave under

different circumstances and parameters. The oil spill simulation consists of longitudes

and latitudes information of over 10 million particles. The major parameters changed

between different simulations are winds and currents [43].

As shown in Figure 3, three simulations are produced with the same time duration

but under different parameters. The particle locations are sampled and connected

across different time steps to show the trajectories moving from orange to red. The

trajectories show a general movement of the oil spill to the north and east. In Figure 3

(a), the particles are pushed only with currents while the other two added different

wind forcings. When only the currents are applied as forcing, the particle motion

25

Figure 3: Sampled predicted particle locations in time during the mid-June period,
with forcings from (a) currents only, (b) currents and 1% winds, and (c) currents and
3% winds. Particle movement is shown with the trajectories moving from orange to
red. The platform location is indicated.

is limited mostly to the continental shelf, with the particles nearly stationary in

deepwater. This behavior is supported generally by the observations. Figure 3 (b)

and (c) show when winds are included as forcing, the oil particles have a very different

trajectories, moving too much in deepwater, especially to the south and west. Figure 4

shows a different simulation sets under the condition of simulated storm effects. As

we can see, scientists produce tons of simulations to observe the different behaviors.

The results can tell them what the appropriate parameters are and make predictions

when real life scenarios happen.

26

Figure 4: Sampled predicted particle locations in time during the Alex, with forcings
from (a) currents only, (b) currents and 1% winds, and (c) currents and 3% winds.
Particle movement is shown with the trajectories moving from orange to red. The
platform location is indicated.

CHAPTER 4: DESIGN AND GENERATION OF TIME LINE

4.1 Introduction

In this chapter, we present an approach to construct a space of various data prop-

erties and extract corresponding virtual words. We define “virtual words” as data

properties, in the form of high-dimensional vectors, at feature locations in the 3D

space. The virtual words are further used to generate succinct time lines for ana-

lyzing and summarizing time-varying datasets. We concentrate on visualizing scalar,

multi-field, and time-varying datasets, although the concept of virtual words can be

used to study general temporal events.

Our approach is derived from the fact that human languages can effectively de-

scribe all kinds of objects and events in the world with a limited set of words. For

example, linguistics specialists Berlin and Kay [19] have identified eleven possible

“basic color" categories, such as red, green, and yellow, from a study involving twenty

different languages. As shown in Figure 5, the rest color in the continuous 3D color

space is often described according to their similarities to the basic color, e.g., we can

say a color is somewhat blue. Similarly, for time-varying datasets, we collect data

values from various feature aspects to build a data property space, corresponding

to the continuous color space. Representative locations from this space are selected,

corresponding to the basic colors. We define the representative locations in the data

28

property space as “virtual words", which are actually high-dimensional vectors en-

coding different data features. With the collection of virtual words, arbitrary data

properties can be described according to their locations in the data property space.

In addition, the transitions of locations in the data property space can be used to

represent data changes across time. When data properties from different time steps

vary, we can measure their relationships through the distribution similarities of cor-

responding virtual words.

Figure 5: (Left) Only several words exist to describe the entire 3D color space.
(Right) Similarly, we can build a space of data properties and extract virtual words
to describe data and data relationships.

As shown in Figure 6, our approach consists of several stages. First, we select

feature points by means of detecting extrema locations in both the datasets and

object boundaries for individual time steps of a time-varying dataset. Around these

feature points, we additionally generate feature descriptors by collecting various local

data properties. Second, we extract a set of virtual words as high dimensional vectors

through clustering in the space of data properties. We further categorize all the

feature points according to their distances to the virtual words. Third, we use the

distribution statistics of virtual words from different time steps to produce meaningful

29

time lines with a modified method of locally weighted bag of words (Lowbow) [98].

Fourth, we present several time line visualization methods and demonstrate with

examples that our approach can be used flexibly to explore and compare time-varying

datasets.

Figure 6: Our approach consists of stages to select feature points and feature de-
scriptors, extract virtual words, and sample their distribution statistics across time
to produce meaningful time lines for studying temporal relationships.

The main contribution of the time line approach is the novel means of generating

time lines based on extracted virtual words for characterizing features of data prop-

erties. Our approach to constructing virtual words provides a flexible framework for

users to choose their desired data properties by combining a set of independent fea-

ture descriptors. We modify the Lowbow locally weighted bag of words (Lowbow) [98]

algorithm to suit the needs of time-varying data visualization and extend it to incor-

porate existing knowledge or hypothesis into the process of time line generation. Our

approach ensures that the combination of time lines and feature descriptors provides

a succinct visualization tool for data exploration, comparison, and summary when

studying temporal relationships.

Partial of the work in this chapter is published in [158].

30

4.2 Generation of Virtual Words

This section presents our approach to extracting virtual words and generating time

lines. A time line visualizes time steps as points and adjacency relationships of time

steps as lines. For efficient data analysis, we adopt the mechanism from Lowbow algo-

rithm to sample time steps through collecting statistical feature distributions. Since

the locations of sample time steps are calculated carefully based on data properties

selected by users, time lines can be used to analyze temporal relationships.

As shown in Figure 6, our algorithm contains three stages. First, for each time

step, we select feature points and collect feature descriptors around them. Second,

we cluster feature descriptors as high dimensional vectors to produce a set of virtual

words that can represent local data properties. We further categorize all the feature

points according to virtual words. Third, we present a modified Lowbow algorithm to

use the distribution statistics of virtual words to generate time lines. The following

describes the details of these three stages respectively.

4.2.1 SIFT Feature Descriptor

The SIFT algorithm is widely used in computer vision to detect and describe local

features in images.

The algorithm includes four steps:

1. Scale-space extrema detection: The first stage of computation searches over all

scales and image locations. It is implemented efficiently by using a difference-

of-Gaussian function to identify potential interest points that are invariant to

scale and orientation.

31

Figure 7: This figure show the image pyramid in scale space. After the DOG images
are calculated, we can find the local extrma by comparing its 26 neighbors. In 3D
SIFT, we need to compare its 80 neighbors.

2. Keypoint localization: At each candidate location, a detailed model is fit to

determine location and scale. Keypoints are selected based on measures of

their stability.

3. Orientation assignment: One or more orientations are assigned to each keypoint

location based on local image gradient directions. All future operations are

performed on image data that has been transformed relative to the assigned

orientation, scale, and location for each feature, thereby providing invariance to

these transformations.

4. Keypoint descriptor: The local image gradients are measured at the selected

scale in the region around each keypoint. These are transformed into a repre-

32

sentation that allows for significant levels of local shape distortion and change

in illumination.

Figure 8: A keypoint descriptor is calculated by computing the gradient magnitude
and orientation at each image sample point in a region around its location, as shown
on the left. These are weighted by a Gaussian window, indicated by the overlaid
circle. These sampled gradient magnitude and orientation are then accumulated into
orientation histograms summarizing the contents over 4x4 subregions, as shown on
the right side, with the length of each arrow corresponding to the sum of the gradient
magnitudes near that direction within the region. This figure shows a 2x2 descriptor
array computed from an 8x8 set of samples.

4.2.2 Selection of Feature Points

While the definition of feature points varies, we combine two criteria: one is the

local extreme locations from volumetric SIFT algorithm [118], and the other is bound-

ary points. Since feature points are selected independently for each time step, this

approach potentially allows different selection criteria or feature extraction methods

to be applied for different time steps.

We define “virtual words” as data properties, in the form of high-dimensional vec-

tors, at feature locations in the 3D space. The first two steps of our approach are

to select feature locations and to collect feature descriptors. We build our approach

33

based on the SIFT algorithm, as it provides robust feature tracking which is in-

variant to rotation, scaling, noise or changes in illumination. These characteristics

make it appropriate for extracting features from volume datasets. Later, we describe

our method to generate a set of virtual words from the collected information. The

following describes the details of these three stages respectively.

For 3D scalar datasets, we use volumetric SIFT algorithm to select feature points

with two main steps: scale-space extrema detection and point filtering. Simply speak-

ing, the first step selects a set of candidate points and the second step removes some

insignificant candidate points.

In the first step, a scale space of difference-of-Gaussian (DOG) is built as follows.

We first scale a volume to several different levels: ×2, original size, /2, /4, etc.

Similar to the method introduced in [102], these volumes are convolved with a 3D

Gaussian filter G(x, y, z, kα) of n different scales α, kα, · · · , knα to generate a scale

space. A volume pyramid is built by subtracting the differences between adjacent

scale spaces. The choice of k is relevant to the scale of data features, as larger kn

results in smoother effects. For all the results here, we use 4 volume levels and 12

DOG scales (n = 12), and 21/12 for k. From this scale space, we automatically select a

set of candidate points by detecting local extrema locations. Generally the DOG value

of each candidate point is compared to its 80 neighbors, of which 26 in the current

volume, and 27 in each of its two adjacent volumes on the same level. A location is

selected as a candidate only if it is larger than all of its neighbors or smaller than all

the neighbors.

The second step is to filter out inappropriate candidates that are poorly localized

34

along an edge or with low contrast. As described in [102], a poor candidate feature

point has a high principal value along the edge direction but a small value in the

perpendicular direction. We calculate the curvature values λ1, λ2, λ3 using the method

from [66], where λ1 < λ2 < λ3. A candidate point is valid if λ3/λ1 is smaller than a

user specified threshold. Larger thresholds can produce more feature points on the

edges. The edge response in 3d space can be measured by a 3 x 3 Hessian matrix,

H =

Dxx Dyy Dzx

Dxy Dyy Dzy

Dxz Dyz Dzz

(1)

where Dij is the second derivatives computed at the location and scale of the feature

points. The eigenvectors define an orthogonal coordinate system aligned with the

direction of minimal (e1) and maximal (e3) curvature. Let γ be ratio between the

largest eigenvalue and the smallest one, so that γ = λ3/λ1. The trace and determinant

of the matrix H can be calculated by the following equation:

Tr(H) = λ1 + λ2 + λ3 = Dxx + Dyy + Dzz (2)

Det(H) = λ1λ2λ3

= DxxDyyDzz + 2DxyDyzDxz − DxxD
2
yz − DyyD

2
xz − DzzD

2
xy

(3)

If we define α = λ2/λ1, then

Tr(H)3

Det(H)
=

(γ + α + 1)3

γα
(4)

The quantity (γ+α+1)3

γα
is at a minimum when the three eigenvalues are equal and

in increases with γ and α. Therefore, the feature points is accepted when Tr(H)3

Det(H)
<

35

(γ+α+1)3

γα
< (γ+γ+1)3

γ2 < (2γmax+1)3

γ2
max

. We use 15 as the threshold of γmax for all our results

based on observation.

We then sort all the rest of candidate points by their values in the scale space and

allow users to choose the number of points. In our experiment, we provide users a tool

to visualize feature points and 3D data directly, so that users can adjust this parameter

easily. As shown in Figure 10, both points and volumes are colored according to their

locations on one axis (Y axis is used here) to improve the understanding of their

spatial relationships.

Figure 9: Volume Pyramid and 3D SIFT Feature Descriptor. A candidate point
is found by comparing to its 80 neighbors in DOG space, 26 in the same octave
and 27 each in the 2 neighbor volumes in the same octave. A 3D SIFT feature
descriptor is created by calculating the 4x4x4 sub-regions surrounding each feature
point sampling in the rotated neighborhood. Each sub-region, the magnitude of the
gradient, weighted by a Gaussian window centered at the feature point, is added to
the corresponding bin for the gradient orientation, where 8 bins are used for θ and 4
bins are used for φ. [102]

For 3D datasets, users often choose objects-of-interest, e.g., through adjusting

transfer function. Thus the above selection process may miss the important informa-

tion of object boundaries. We accordingly compliment the volumetric SIFT algorithm

36

by considering the influence of boundary locations. Specifically, when users adjust

transfer functions, we modify the volume pyramid by removing all regions that are out

of objects-of-interest. These regions are not considered during the process of scale-

space extrema detection. This simple modification can ensure that all the feature

points inside objects-of-interest are preserved and extra points at the object bound-

aries will occur. We accelerate the process of feature point selection by precomputing

all feature points and building the volume pyramid. During interaction, we modify

the volume pyramid according to newly selected feature points around the boundaries

of objects-of-interest.

Figure 10 shows the results of interactive selection of feature points. The 2D

transfer functions of voxel data values and gradient magnitudes [86] are used. The

top left image shows all the feature points when the entire histogram is selected. The

other three images demonstrate the results of point selections when different transfer

functions are determined.

Figure 10: Selection of feature points (shown on the first row) according to the choices
of transfer functions (shown on the second row).

37

4.2.3 Collection of Feature Descriptors

We extend the feature descriptors presented in the original SIFT algorithm [92] to

describe various local data properties. Different from the original SIFT algorithm,

the interests of data exploration include the rotations and movements of objects.

Therefore, we add the components of gradient orientation for rotations and the ob-

ject location for movements in the feature descriptor. Second, we add components

from texture analysis measurements for describing local data properties. Since each

component describes a different data property, our construction method ensures the

independency among all the components of feature descriptors. This allows users to

freely combine these components to describe the data properties under exploration.

The advantage of the feature descriptor derived from the standard SIFT algorithm

is that it is invariant to orientation, scale, and location of feature points. Simply

speaking, it assigns one orientation to a feature point based on local volume gradient

directions and performs the rest procedure on transformed data. We utilize this

advantage of SIFT algorithm to generate multiple independent components of feature

descriptors.

Specifically, the first component, gradient orientation, is built as follows. Assume

we represent the gradient orientation in 3D by two angles, θ and φ. For each feature

point, we rotate its neighborhood region to the direction of θ = φ = 0 when computing

38

its feature descriptor. The rotation matrix is defined as

R =

cos θ cos φ sin θ cos φ sin φ

− sin θ cos θ 0

− cos θ sin φ − sin θ sin φ cos φ

(5)

With this matrix, we sample a 4×4×4 sub-region surrounding the feature point in the

rotated neighborhood. At each voxel of this sub-region, we generate a feature vector

according to θ and φ. To quantify the value space, we use 8 bins for θ and 4 bins for

φ. The gradient magnitude, weighted by a Gaussian window function centered at the

feature point location, is added to the corresponding bin for the gradient orientation.

In this way, the component of gradient direction has 4×4×4×8×4 = 2048 dimensions.

Our approach allows users to select larger values, which can produce more accurate

results but take longer computation time. We choose the described parameters by

balancing these two factors.

We use the vector (θ, φ) as the second descriptor component and the location vector

(x, y, z) as the third descriptor component. This is necessary for time-varying data

visualization, otherwise when an object moves or rotates across time, the time line

will be just a point. We also add the time step when a feature point occurs as the

fourth descriptor component, which will be used in the generation process of time

lines in Section 3.4.

We have also explored other factors that can benefit time-varying data visualiza-

tion. We mainly apply the first order of statistics for texture analysis to collect

information of local data properties, such as variance and histogram [29]. Note that

39

since this information is collected on the data after the rotation, it is independent to

the gradient orientation. Obviously, it is also independent to location and time steps.

Therefore, we can arbitrarily choose a combination of these descriptor components.

The generation of time lines described below in Section 3.4 also allows users to select

different weights for each descriptor component.

Figure 11 shows the time line results from different feature descriptors for a time-

varying energy dataset. Overall, the time lines suggest that the data changes grad-

ually during the initial period (rendered in blue to cyan) and data properties are

similar during the middle and end durations (rendered in yellow to red). We can see

that the resulting time lines can be very different for these descriptor components

representing different data properties. Therefore, it is important to provide users

both the results of time lines and the choices of feature descriptors, so that they are

aware of the meanings of time lines.

4.2.4 Extraction of Virtual Words

From the collection of feature descriptors, we extract virtual words as follows.

Here we use the “applicable components" of feature descriptors to refer to all the

components except the location. Our first step is to cluster each applicable component

of feature descriptors independently. This clustering step can be viewed as selecting

important virtual words from the space of feature descriptors. This is from the fact

that the number of different feature descriptors is often limited. One reason is that

it is bounded by the dimensions of feature descriptors. The other is that the type

of local data properties from a time-varying dataset is also limited. Specifically, we

40

(a) SIFT (b) data value (c) value his-
togram

(d) value variance (e) magnitude

(f) mag histogram (g) mag variance (h) location (i) orientation (j) combined

Figure 11: Time lines generated from different feature descriptors for a time-varying
energy simulation dataset. Different feature descriptions yield different shapes of time
lines. The first row shows the results of the sift descriptor, voxel value, histogram
of value, magnitude of value, and gradient magnitude. The second row shows the
results of histogram of gradient magnitude, variance of gradient magnitude, location,
gradient direction, and the average combination of these nine descriptors. Overall,
the time lines suggest two different data portions: the initial period (rendered in blue
to cyan) and the end period (rendered in yellow to red).

use K-means [34, 59] as the clustering method since it is flexible to operate on any

dimension. The choices of the clustering numbers should be different for various

cases. From our experiments on both synthetical and real time-varying datasets, we

find that the results are very similar as long as the cluster number is large enough.

Also, the statistical prospective of Lowbow algorithm used in Section 3.4 values large

sampling size. Therefore, we use 15 times the average number of feature points per

time step as our clustering number. As shown in Figure 12, the results of 1000 and

1500 clusters are similar and close to the real scenario. In this way, a set of virtual

words is selected for each applicable component of feature descriptors.

Figure 13 provide examples of automatically extracted virtual words. Since virtual

41

(a) 200 (b) 500

(c) 1000 (d) 1500

Figure 12: Results of different clustering numbers show that the time lines are similar
for 1000 and 1500 clusters.

words are vectors in the high dimensional space of data properties, they are hard

to visualize directly. We illustrate them in Figure 13 by marking their locations in

the volume. The counterparts of virtual words are the feature descriptors at these

locations. The colors represent different virtual words. We can see that virtual

words often appear at representative locations with large gradients or on the object

boundaries. In Figure 14, the automatically selected feature points are the eight

42

corners of the cube. They are also the virtual words that describe several different

types of temporal events. This result is consistent with our understanding of the cube

dataset.

Figure 13: Example locations of virtual words, shown as the red points.

All the feature points are then categorized according to virtual words. For each

applicable component of feature descriptors, we use the closest virtual word (deter-

mined by the distance in the space of feature descriptor) to represent each feature

point. This is actually achieved from the clustering process simultaneously.

4.3 Creation of Time Lines

Since the virtual words cannot be visualized directly, we transform the relationships

among virtual words to time lines, which visualize time steps as points and adjacency

relationships of time steps as lines.

This transformation provides a visual analytics tool to study temporal evolutions.

It is also a mechanism allowing flexible sampling for different requirements of per-

formance and accuracy. For this purpose, we adopt the mechanism from Lowbow

43

algorithm to sample time windows.

We achieve this goal with the following three steps. First, histograms are generated

to record the distributions of virtual words for each time step. Second, we use these

histograms to calculate dissimilarity matrices of different time steps. We also use

time windows to group several timesteps into one histogram for sampling purposes.

Third, time lines are produced by feeding the resulting dissimilarity matrices to MDS

method [130, 24]. We project the Lowbow representation to the 2D plane, since 2D

lines are more intuitive to understand.

Figure 14 shows the time line results of a synthetical time-varying data of a cube

with different movement patterns and shape changes. We often use colors to indicate

the temporal sequence. Most of our results use a blue to red colormap corresponding

to the start to end of a time duration. As shown in Figure 14, the automatically

selected feature points are the eight corners of the cube. They are also the virtual

words that describe several different types of temporal events. The time lines visualize

a variety of temporal events, including object movement, faster movement, object

scaling, shape deformation, and effects under noise. The dissimilarities between each

time steps are changing linearly in both scaling and deformation, therefore the changes

of these two movements are similar. By observing the distance of points in the two

time lines of Figure 14(a) and 14(b), user can see the changes of these two movements

are different.

One advantage of Lowbow is the sampling feature. It allows us to sample time steps

arbitrarily and emulate their histograms using different Gaussian windows. Each win-

dow covers several time steps. To ensure the smoothness of a time line, we can overlap

44

(a) Moving (b) Moving faster (c) Scaling (d) Deformation (e) Noise

Figure 14: Time lines can describe various types of temporal events. The illustrations
on the second row contain several snapshots from key time steps and the time lines
are shown on the first row. Different Cube synthetical Datasets are used from (a) to
(e): (a) and (b) cube moving around in the 3D space along the same path at different
speed, (a) cube moving at 1 voxel per timestep, (b) cube moving 2 voxels per timestep.
The densities of points in the time line reflect the speed of the movement. (c) scaling
of the cube, (d) deformation of the cube, and (e) cube moving around under noises.
The moving paths of (a), (b), and (e) are the same, which can be detected with time
lines easily.

adjacent time windows. For each applicable component i of feature descriptors, Low-

bow is used to generate a dissimilarity matrix DMi. We then combine all these

matrices to a final dissimilarity matrix DMfinal as the MDS input. Assume ST1 and

ST2 are sample time windows. Here we allow users to assign weights w(i) to the

component i of feature descriptors, so that the effects of different data properties can

be adjusted. When we assign larger weights for some descriptors, the combined time

line is more affected by these factors.

DMfinal(ST1, ST2) =
∑

i

w(i) × DMi(ST1, ST2) (6)

Specifically, for each applicable component of feature descriptors, one histogram is

generated for each sample time step by collecting the distribution of all the virtual

words in the sampling window. The values of each feature descriptor component are

45

calculated independently for individual time steps. They are further collected for

each sample time step. Some feature component only contains one value, such as

the data value component (the average data values of virtual words are calculated

for each time step); while the other feature components are high dimensional vectors,

such as the components of SIFT and histogram of data values. Let us define
−−−−−→
fi(tp, v)

as the value of component i of virtual word v at time tp. Then, we can generate a

dissimilarity matrix for the sample time steps by calculating the Euclidean distances

of their values
−−−−−→
fi(tp, v). The difference value DMi(ST1, ST2) of two sample time steps

ST1 and ST2 is calculated using these equations:

DMi(ST1, ST2) =
∑

t1∈ST1,t2∈ST2

∑

v

difi(t1, t2, v) (7)

difi(t1, t2, v) = |
−−−−−→
fi(t1, v) −

−−−−−→
fi(t2, v)| · (num(t1, v) + num(t2, v)) (8)

where num(tp, v) is the number of feature points correspond to virtual word v at time

tp and || represents the L2 norm.

For the location component, we calculate the average location of each virtual word

from a user specified component of feature descriptors for each sample time step.

An important component according to the data features under exploration can be

selected for this purpose. The Equation 8 can be modified as follows:

difi(t1, t2, v) = |
−−−−→
L(t1, v) −

−−−−→
L(t2, v)| · (num(t1, v) + num(t2, v)) (9)

where
−−−−→
L(tp, v) is the average location of virtual word v at time tp. The rest is the

same as the applicable components.

To ensure the correctness of time lines for visualizing time-varying datasets, we

46

need to handle the problem that different sample time windows may contain differ-

ent numbers of time steps. If we simply follow the original Lowbow algorithm, the

histograms for the sample time steps containing more feature points may collect in-

formation from smaller time durations, yielding an unequal property of the time lines.

Therefore, we make the following changes to ensure the equal window size everywhere.

We can first calculate a histogram for each time step and normalize them using the

numbers of feature points. Then, we operate sampling windows on time steps instead

of feature points. All the applicable components of feature descriptors can be treated

in this way. Similarly, the average location should be calculated for each time step,

instead of every sampling window. This process results in an effect that sampled time

steps may have different numbers of feature points, meaning that feature points from

different time steps have different weights on the resulting time curves. We believe

that this is a necessary change to keep consistent local statistics of data distributions

for time-varying data visualization.

4.4 Time Line Visualization

This section describes several methods to visualize time lines for different explo-

ration and analysis purposes. First, we present a method to concatenate feature

descriptors with the correspondence of feature points, which allows users to apply

their existing knowledge or hypothesis of the data in the time line generation process.

Second, an approach of parallel time lines is provided for simultaneous visualization

of related information. Meanwhile, we describe a hybrid time line generation ap-

proach, which mixes input datasets, for comparing data from different time duration

47

or attributes. Fourth, a focus+context method is employed to allow users to adjust

the details of different time durations flexibly.

4.4.1 Concatenation of Feature Descriptors

Up to now, we generate time lines based on the distribution of virtual words. It is

also very useful to introduce the relationships among virtual words, as sometimes a

small set of correlated features, such as the control points to model a human face [161],

can describe a dataset very well. For time-varying data visualization, we allow users to

identify such correlations among virtual words and specify a sequence to concatenate

them during the generation process of time lines. Users can apply their existing

knowledge of the data to generate corresponding time lines or explore hidden temporal

relationships through hypothesizing different sequences.

Specifically, we allow users to specify a sequence for a set of virtual words and

use it to generate new, long feature descriptors by concatenating the same applicable

components of feature descriptors. Instead of using distribution of virtual words, we

collect histograms of concatenated virtual words for sampled time windows. The rest

of the procedure is the same as previous. We cluster long feature descriptors and

generate histograms to be used in Lowbow. This method ensures that all the feature

descriptors have the same length for the clustering step. The sequence of virtual

words can be determined by important locations in the space of data properties. In

analogy to the control points for human face modeling, each virtual word can be

related to a special meaning of the datasets.

Figure 15 shows an example time line for the attribute NH3 of a January air quality

48

Figure 15: An example of concatenating feature descriptors. The image on the left
top shows an example volume rendering of one time step. The red points indicate the
locations of virtual words, which correspond to several regions with the maximum
data variations in the entire time range. The times lines on the left bottom are time
lines of three days as examples, all suggest that the time steps at the start (early
morning) and the end (late night) are similar. The time line on the right visualizes
this change across a month, with pollution levels high in the day (right snapshot) and
low at night (left snapshot).

dataset. For this dataset, we know that several regions during this time duration vary

the most. Therefore, we select a few regions as the key portions of the data, as shown

on the top of Figure 15. For each region, we choose the feature point that is closest

to the region center as a virtual word. The long feature vectors are then generated by

concatenating the feature descriptors of each virtual word. In the time line, each day

is represented with 6 sample time windows. The majority blue to red portion of the

time line suggests that data changes repeatedly from left to right, which correspond

to the major air quality distribution feature - high pollution levels during daytime

and low levels at night.

49

4.4.2 Parallel Time Lines

We explore parallel time lines to visualize the relationships between different data

properties. Parallel time lines are generated by shifting the original time line along

a certain direction on the 2D plane. This provides a visualization of multiple data

properties simultaneously. It can be used to analyze the relationships between several

data properties or different data fields across time.

We first determine the shifting direction to reduce the overlapping issue of parallel

time lines. With the locations of sample time steps, we apply the principal component

analysis (PCA) algorithm [149] to calculate the main directions of point distribution.

The shifting direction is identified as the second (less important) direction of the

PCA result. Second, we allow users to adjust the amount of shifts to achieve their

ideal effect. Since the rendering parameters of a time line are very limited, we also

explore controlling parameters of time line visualizations. For effective comparison,

we need to limit the number of parallel time lines and the choices of different rendering

parameters. For instance, the number of the used color for visualizing different time

lines can not be too large to ensure that the result is easy to recognize. Figure 16

shows an example of parallel time lines for two types of information simultaneously.

It is obvious to see the time durations when these data values are different.

4.4.3 Hybrid Time Lines for Data Comparison

To visualize the relationships between different time durations or data fields, we can

also mix their datasets in the generation process of time lines. In this way, sample

time steps from different data will be distributed on the same 2D plane according

50

Figure 16: We use parallel time lines to visualize the amount of feature points (the
wider line) and average density (the thinner line) for an energy dataset. The color
represents values from different sample time steps.

to their dissimilarities calculated from Lowbow. This allows users to compare their

relationships across time closely. To distinguish different time durations or data fields,

we generate separate time lines and render them with different parameters. Figure 17

compares two pairs of different time durations (January 11-21 and 16-26) of attribute

NH3 in an air quality datasets. We use different line widths to differentiate the two

time durations. The time line from (a) shows that the two time durations are similar,

and the time line from (b) indicates that the two green portions in the middle are

significantly different.

4.4.4 Multi-Scale Visualization

A multi-scale visualization is provided to users for adjusting the details of different

time durations. We separate the visualization process into two independent steps:

51

(a) (b)

1 2 1 2

3 4 3 4

Figure 17: With the time lines, we can easily compare different datasets or time
durations. The numbered snapshots from separate volume renderings below the time
lines provide details of the selected time steps.

52

determining sample time windows and generating time lines.

In the first step, we initialize the importance values with 1 for all the time durations.

Then, we update it according to user selections. User can select the amount of sample

time steps and adjust the importance values of different time durations respectively.

With this information, we compute the number of sample time steps for each time

duration, yielding an even distribution of importance of duration t as follows:

Avgim(t) = n(t)/(imp(t) × length(t)) (10)

where n(t) is the number of sample time steps, imp(t) is the importance value, and

length(t) is the length of the time duration t. We then distribute sample time steps

evenly within each duration. The more sample points the time duration have, the

more details will be revealed within the time range.

To smooth a time line, adjacent time windows are overlapped. Generally we use

five times the distance between two sample time steps as the size of time window.

This parameter can also be interactively adjusted. The second step is to generate a

time line with a histogram from each sample window.

Figure 18 shows the time lines of two synthetical cube datasets with different sizes

of sampling windows. Figure 19 shows three time lines from user interaction. The

time line (a) enlarges the time duration in the middle around the extrema location

in orange. The time line (b) enlarges the portion in blue to yellow to observe the

subtle details of the normal periodic trend. The time line (c) demonstrates that our

approach allows flexible selection of important durations. By increasing the number

of sample time windows, we can see more details in the time lines, reflecting more

53

Figure 18: Results of the multi-scale visualization from two Cube synthetical
datasets. The first row shows the time lines for the cube moving around dataset,
illustrated in Figure 14 (a). The second row shows the time lines for the cube under
noises dataset, illustrated in Figure 14 (e). Different sample time steps (84, 42, and
14) are applied to the three columns respectively. This figure demonstrates that the
statistics aspect of Lowbow can reduce the effect of noises in the time lines.

54

accurate information of the temporal durations.

4.5 Results

Our approach produces the visualizations of a single or multiple time-lines. The

snapshots and arrows are added manually in Figures 15, 17, 19, 20, 21, and 22 for

illustrating selected time steps. Any volume rendering methods can accompany our

approach to visualize individual time steps. In the following case studies, we apply

time lines to study the major temporal relationships in the time-varying datasets.

4.5.1 Case Studies

4.5.1.1 Test Case

To demonstrate the effects of time lines, we concatenate three different datasets,

air quality, flow tube, and energy, to compose a time-varying dataset. As shown in

Figure 20, the automatically generated time line clearly shows three time segments

with different color. In this test, the differences between the three datasets dominate

the shape of time line, resulting in three clusters on the time line. When we focus

on the main temporal change by using a small number of sample time steps, shown

in Figure 20 (b), we can identify the three time segments easily. Larger numbers of

sample time steps can be used for revealing more details of each time duration, as

shown in (a) and (c).

We start the data exploration with uniform sample time windows, which means that

the locations of sample points between two datasets are affected by both of them. This

explains why the three line segments are connected. If users are interested, they can

further select one of the time duration, e.g., Figure 16 only visualizes the duration in

55

(a)

(b)

(c)

Figure 19: Multi-scale visualization results of the storm surge dataset illustrated in
Figure 21. The interaction panel at the bottom shows that users can adjust time
durations and importance degrees flexibly. The scale bar on the left indicates the
number of sample windows for the current time lines. Snapshots from user selected
time steps are also provided.

56

Figure 20: Three time durations can be identified easily with the time line visual-
ization. We generate three time lines by choosing different parameters (numbers of
sample time steps, window sizes) for exploring different details: (a) (150, 10), (b) (60,
30), (c) (90, 10).

purple, and we can analyze more details from there. This test shows that time line

visualization helps users to understand that there are three main temporal events,

which segment the time duration easily.

The following provides two case studies for a time-varying storm surge dataset and

a multi-field time-varying air quality dataset.

4.5.2 Storm surge data visualization

We apply the time line approach to study the storm surge data simulation of

hurricane Isabel. The dataset we use in this case study contains information around

the sea shore at North Carolina. All the snapshots in Figure 21 are colored in the

same way: green is used to render terrain and the rest color of blue to red represent

the heights of ocean.

57

(a) (b)

Figure 21: (a) The time line of a storm surge dataset demonstrates the effects of
Hurricane Isabel to Outer Banks, North Carolina. The left portion (blue to yellow)
corresponds to the periodicity of tidal elevations that influence every 12.4 hours. The
right portion (orange to red) indicates significant data changes of ocean surface from
its normal distribution during the hurricane. The circle in the snapshots indicates
the user specified regions. (b) Top: Hurricane path is shown with three example
time steps. (b) Bottom: The average heights of ocean levels are increasing before the
hurricane, which confirms the shifts on the time line.

As shown in Figure 21 (a), the time line visualizes several important temporal

trends, which are difficult to detect otherwise. First, we can detect a normal periodic

feature (blue to yellow) and the effect of hurricane (orange to red), which corresponds

to the abnormal high ocean levels in red as seen from the two snapshots on the right.

Second, the time line suggests the starting time step of hurricane automatically with

the extrema curve location in orange. Around the starting point, we can see a waiting

period before the abrupt of hurricane according to the dense point distribution. Third,

the distance between adjacent sample time steps increases, which indicates that the

data changes dramatically during hurricane. Fourth, the linear curve shape of the

hurricane duration is consist with the movement of hurricane center roughly in a line,

shown in Figure 21 (b) Top. This movement event is similar to the cube examples

in Figure 14 (a), which can be identified from the line shapes as well. Fifth, the

58

direction of the red portion at the end indicates that the data changes back toward

its normal distribution after hurricane, as it moves toward the periodic cycles.

We can continue to explore the details of temporal trend by enlarging selected

time durations, such as the periodic cycles shown in Figure 19 (b) Top. As the cycles

move toward the hurricane portion, we can expect that the ocean levels are increasing

gradually, which is confirmed with the average height per cycle measured from the

data, shown in Figure 21 (b) Bottom.

4.5.2.1 Air quality data visualization

We also apply time line in the study of air quality with multi-field time-varying

datasets. We use a continuous air quality simulation from the CMAQ model in 12

months, of which each location takes 25 attributes. All attributes are collected 25

times every day.

We first generate time lines of four attributes respectively to visualize the data

changes in a year. The number of sample time steps for this figure is 365 and the

window size is 50. The top four time lines in Figure 22 are colored from blue to

red, representing Jan to Dec. Each time line visualizes an important data property:

pollution volumes in the early spring and late winter are similar (the blue the red

segments), and are different in the summer and fall (the green to yellow portion).

This property is confirmed by domain scientists. Also, simply taking the time lines

generated independently, we can detect that attributes NO and NO2 are similar,

while NH3 is very different. This finding is consistent with the CMAQ model, since

NO2 is generated according to the amount of NO.

59

NO NO2 SO2 NH3

Figure 22: (NO, NO2, SO2, NH3) Time lines for four attributes of an air quality
dataset for a whole year suggests that NH3 is very different from the other three
attributes. (NH3 - 12 months) To further inspect attribute NH3, we use 12 different
color to represent 12 months in one year. (NH3 - June) This figure shows time line
of attribute NH3 in June, colored by the number of days. The snapshots show the
morning, noon and night renderings of three individual days, which are colored in
pink, blue and purple. With every day starting at green and ending at red, obvious
patterns can be observed.

60

Further, we focus on the special attribute NH3 and apply different color to represent

the 12 months in a year. As shown in Figure 22 (NH3 - 12 months), we generate the

average 3D data visualization to explore the temporal change according to the time

line. The volume visualizations of four months provide visual contexts to understand

that the pollution volumes change from the white and green bodies back and forth in

a year.

We can further zoom into a smaller time range to study detailed changes. For

example, we explore the attribute NH3 in June with a time line shown in Figure 22

(NH3 - June). In this time line, we increase the number of sample time steps to 180

and window size to 25, so that daily-level temporal evolutions can be revealed. We

also modify time line visualization by omitting the line segments between adjacent

days, thus only the sample time steps belonging to the same days are connected. This

helps users to study the temporal changes across different days, which are shown with

the line structure patterns. Generally each line starts from outside, reach into the

center at day, and drop back at night. Such line patterns indicate that the pollution

volumes in the early morning and at late night of a day are similar; the volumes

during day time in this month are similar. This finding is further confirmed with the

3D visualization, shown on the outside of the time line. This visualization reveals that

the data variations of all the days in this month are similar. Therefore, users do not

need to visualize all the time steps for every day in this dataset. This demonstrates

that the data distribution in a time line can significantly shorten the exploration

process for users.

61

4.5.3 Quantitative Results

Table 1: The information of datasets and performances of key steps.

Dataset Dimension Number of Feature Extraction Time
Time Steps Sseconds/Time Step

energy 1283 200 75
flow tube 1003 249 50

storm surge 6002 792 20
air quality 1363 775 90
Dataset Description Collection Clustering Time Line Generation

Hours Minutes Seconds
energy 2 6 3 (100 windows)

flow tube 2 6 3 (100 windows)
storm surge 3 18 8 (150 windows)
air quality 14.8 80 20 (300 windows)

The performance of our algorithm varies from the data size and complexity. First,

the selection of feature points depends on the data size and the number of time steps.

Second, the calculation of feature descriptors is linear to the number of feature points.

All the feature components are very fast to compute, except the SIFT component.

Third, the extraction of virtual words basically depends on the sizes of selected feature

descriptors and the number of feature points. Fourth, the generation of time lines is

linear to the number of time steps.

Overall, the performance and memory requirements of our approach are linear

to the number of time steps. The most time-consuming stages can be pre-processed.

The first step is performed once for the entire dataset, leaving the interactive selection

process much faster. The second and third steps are performed only once for a dataset

and do not affect the data exploration process. The main algorithm used during the

visualization process is the generation of time lines, which is less than a minute for

62

the entire time-varying dataset. The exploration and visualization is interactive.

Solutions to accelerate the pre-process stage include using improved SIFT algo-

rithms such as SURF [18], reducing the number of virtual words, and selecting regions-

of-interests. Both these methods can achieve fast and accurate feature extraction and

can greatly reduce the processing time. Also, since the computations of feature points

and histograms of time windows are independent, we can employ GPU-based or par-

allel computing techniques to accelerate the pre-process state. These methods are es-

pecially used during exploration stages to help users to identify the regions-of-interest

or time durations.

4.6 Discussion

4.6.1 Discussion on Visual Design

The efficiency of the time line visualization comes from the visualization of data

relationships with 2D distances. Cognitive science has shown that human beings can

effectively recognize object similarities from a representation by their distances [23].

Since the time lines distribute sample time steps on the 2D space according to their

data features, users can easily identify some interesting events, such as periodicity,

similarity, and important temporal events through extrema locations.

The major advantage of time line is its capability to incorporate the entire time-

varying dataset into one single line to show its progression along the time. The

modified lowbow algorithms allows user to show the temporal changes of dataset at

different scales. For example, the user can display the time line of the air quality data

at a monthly, daily or even hourly basis. This ensures that time line can handle long

63

time sequence of data. Other approaches, which is based only on sampling through

the entire dataset, will lead to information loss and inaccurate results.

Though our time line approach shows only the arbitrary shapes and does not have

details as important regions inside each volume, the line is generated based on the

features extracted from the dataset. It is easy for users to identify abnormalities

and further explore the dataset to find events and features. It is impossible to visu-

alize the dataset without any kind of data reduction when dealing with large-scale

datasets. Without this step of information reduction, it will be more time-consuming

to generate time lines. Note that, using feature points can still capture a wide range

of data changes, particularly because we select feature points for each time step inde-

pendently. When objects change significantly from previous time steps, new feature

points often occur. Successful cases, like face recognition, have already shown that a

few feature points can help reduce a large amount of irrelevant information.

Our case studies demonstrate that time lines are a very useful addition to rendering

results for data exploration. Visualizing data corresponding to locations on a time

line can help users understand the distribution and relationships of different time

steps. With a time line, users can visualize just several time steps to obtain a quick

understanding of the entire time-varying dataset. Our approach is more efficient than

snapshots or animation, since it does not require rendering results from all the time

steps. This is especially important for analyzing datasets with a large number of time

steps. On the other hand, we realize that it may take time for users to get familiar

with time lines. Our results of the cube dataset can be used as an example.

We think that interactivity should be relevant to the data size. For ultra-scale

64

datasets, only the I/O performance will be below interactive speeds. The processes

of selecting feature points, collecting feature descriptors, and clustering of virtual

words are time-consuming. These processes should be performed ahead of the data

exploration. During visualization, users can still adjust their focuses on the time

lines and visualize different time durations and data attributes with a reasonable

performance. For large scale time-varying datasets which include millions of time

steps, the time line approach can save the exploration and visualization time for

users significantly.

Generally, time lines are useful to visualize significant data changes. Small details

may be lost among the overall temporal trend. Our approach allows users to choose

transfer functions, select descriptor components, adjust the amount of feature points,

and fine-tune level-of-details. These interactions can assist users to explore a complex

dataset gradually.

4.6.2 Comparison

We compare our approach with four different methods. Among which, time his-

togram and time activity curves are popular approaches for time-varying data visu-

alization. The last method is a different design based on our extraction method of

virtual words.

4.6.2.1 Time Histogram

Time histogram is a popular method to visualize the distribution of data properties

across time. Generally, the horizontal axis represents time and the vertical axis

represents data properties, such as data values.

65

The left image in Fig 23 shows time histogram generated based on density values

with 100 bins. The right one is generated using the extracted virtual words. Each

column represents one sample time step and each bin represents one virtual word.

There are 100 sample time steps and 500 words in the vocabulary.

Advantages of Time Histogram: Time histogram is simple to compute and straight-

forward for users to understand. It has also been applied widely in many fields. As

shown in Figure 23, the density histogram on the left indicates that the flow becomes

stable during the second half of the time range. This is a great method when the

data size is small and important data features are related to the voxel values directly.

Advantages of Time Line: Compared to time histogram, time line can visualize

general temporal trends; while time histogram may miss many important temporal

trends, as it only suggests the similarity of value distributions. Time line allows

selection of data features beyond voxel values, which is crucial for exploring datasets

with complex features. For datasets with long durations, time line can statistically

sample the dataset at different scales; thereby producing visualization in a suitable

resolution.

Figure 23: Left: Time histogram of an energy dataset; Right: Virtual word histogram
of energy dataset.

66

Figure 24: Example time activity curves of several blocks of voles from air quality
dataset. Left: only two curves are shown. Right: one hundred curves are shown.

4.6.2.2 Time Activity Curves

Time curves are first used to reveal the temporal changes of time-varying medical

visualization. Given a spatial location inside a body, the amount of activity measured

is correlated to the biological function which is imaged. Many forms of time curves

are then proposed and applied to scientific and volumetric datasets [51, 151, 141]. We

have briefly described these approaches in the section of related work.

As shown in Fig 24, the curves are generated based on L1 metric from Equation

(1) in [51]. One hundred data blocks are used to render the time activity curves.

Advantages of Time Activity Curves: Time activity curve integrates the advantage

of time histogram, which is intuitive to understand; and advantage of time line,

which allows selection of various data features. Time activity curves work well for

some applications, such as identifying functions of organs [51]. Since the location of

organ is known before visualization, all the voxels within that spatial location can be

clustered and calculated into one curve to represent the biological function.

Advantages of Time Line: First, time line does not have the clustering issue of

67

time activity curves, which produce a number of curves for data blocks. Also, time

line visualizes temporal trends directly; while time activity curves, the same as time

histogram, require users to analyze temporal trends through similarity of curve values.

Further more, time line represents similarity of two time steps with distances on a

2D plan, which does not require users with professional trainings.

4.6.2.3 Storyboard

The closest previous work to this approach is the interactive storyboard approach [94]

for visualizing overall data contents and relations of time-varying datasets.

Figure 25: Example visualizations of the energy data at two scales from the story-
board approach[94] .

Advantages of Storyboard: As shown in Figure 25, the storyboard approach selects

representative time steps from a time line and embeds their snapshots in the story-

board visualization. This design is convenient for users to understand the overall data

contents and changes through both the example snapshots and changes of time lines.

Advantages of Time Line: First, the dissimilarity comparison of storyboard is based

on data blocks. Every block in a time step is compared with the data block at the

same location from all the other time steps, leading to n2 (n is the number of time

steps) performance. While time line can independently collect distribution of virtual

68

words for each time window and compare distributions of each two time windows,

leading to n + h2 (h is the number of virtual words) performance. Since h is much

smaller than n (n ∈ [5, 800] is generally much smaller than n), time line is more

efficient than the storyboard approach. Second, the feature definition of storyboard

approach only includes simple measurements such as data density, gradient and second

order statistics. Time line allows feature selections based on representative voxel

features/virtual words.

4.6.2.4 Visualization of Time Window

As seen in Fig 26, bags of local virtual words are shown in histograms, which have

time axis vertical and number of words horizontal. The histograms show how each

small time duration are different from others. The brightness of each row reflects the

amount of the particular virtual word inside the local time window. We can observe

the differences between these two time stages.

Figure 26: Time window visualization of a hurricane dataset at early (left) and late
(right) stages.

Advantages of Time Window: The time window clearly shows how many different

words are with in this time duration, which promotes the analysis of individual data

features.

Advantages of Time Line: Time line is scalable to the number of time steps. Com-

69

pared with time window, time line can handle large datasets with its statistical sam-

pling component.

4.6.3 Discussion of Choices

In our approach, we project the temporal differences to a 2D space with MDS;

therefore, the time line is an approximation of the original difference measurement.

This is unavoidable when representing a high dimensional data in the 2D space. In-

dicated by various studies that apply MDS [130, 24], the MDS-based dimensional re-

duction scheme produces an optimal approximation of the temporal differences. Our

approach, includes the measurement of temporal differences and later data visualiza-

tion and comparison, can be integrated with other dimension reduction methods, such

as PCA (Principle Component Analysis) [80], LLE (Local Linear Embedding) [113],

LDA (Linear Discriminant Analysis) [55, 58]. We choose MDS because of two reasons:

first it is widely used in information visualization and graph visualization; second it is

based on a matrix of similarities and assigns a location to each item in N-dimensional

space, which matches our requirements exactly.

Some of steps in our approach can be simplified or replaced with other algorithms.

For instance, we can use other feature extraction methods such as Harris Corner

detection [69], SURF [18], or simple dissimilarity measurements like voxel values.

All these methods are suitable for some types of data features. In particular, SIFT

algorithm can capture gradient-based features and object boundaries very well, which

are often important features for scientific datasets. We can adjust the parameters

to concentrate on different types of features: for example, reducing the number of

70

gradients in SIFT descriptor can point to features related to data values. The choice

of the feature extraction methods should be finally determined according to the data

properties and domain knowledge.

4.7 Conclusions

In this chapter, we present an approach to generate succinct time lines for vi-

sualizing time-varying datasets. This approach is derived from the fact that human

languages can describe various temporal events effectively with a limited set of words.

For time-varying datasets, we characterize a set of virtual words according to selected

data features and treat the entire dataset as discrete descriptions with these words

across time. In this way, many important temporal relationships can be detected

through measuring the distribution of virtual words. We further summarize temporal

relationships as time lines by projecting their dissimilarities to the 2D space. With

provided interaction methods, our approach assists users to explore and analyze a

time-varying dataset with a simple, yet effective tool.

CHAPTER 5: ENSEMBLE VISUALIZATION

5.1 Introduction

Scientific simulations are generated to study various natural phenomena and behav-

iors. These simulations are often produced on super computers with different input

parameters. With the techniques advancing, the resulting data sets are growing both

in size and duration. They are usually large, multi-variate, multi-dimensional, and

spatio-temporal. By carefully studying the simulations, scientists can gain an under-

standing of possible outcomes of each simulation parameter. An ensemble data set is

a collection of these simulation.

Normally a large number of parameters are involved in the process of generating

a simulation. Take tropical cyclone as an example, scientists and emergency respon-

ders are extremely interested in how and when events, such as inundation, hurricane

movements and elevation, happen. Predictions are made through the researching on

such ensemble datasets. This is important for emergency responders to make deci-

sions such as evacuation. In this case, better visualization systems are required to

provide assistance to summarize ensembles, analyze correlations between variables

and members, study underlying features.

The main challenge to visualize an ensemble data set is its complexity and size.

Moreover, due to the large number of ensemble members, any visualization technique

72

will be too visually cluttered to provide assistance in data analysis. In this chapter

we introduce an ensemble visualization approach which visualize the ensemble and

allow user to perform exploration and analysis within one ensemble member or among

members of different parameters.

Our approach consists of two parts. First, we utilize the time line approach we

described in Chapter 4 to generate lines to represent a large number of ensemble

members together. We analyze the distribution of local statistics and classify members

into groups. We highlight each group and hide the members in our visualization to

provide visual summary of the ensembles groups. Second, we propose a method to

automatically add newly generated simulation members into the visualization without

comparing it with all existing members. We achieve this by comparing the new

member’s local statistics histogram with the existing members’. This does not require

additional calculation of the dissimilarities through MDS. In this way, the speed of

rendering such a large simulation datasets can be greatly improved.

The related work of ensemble visualization is reviewed in Section 2.4. The rest of

the chapter is organized as follows. Section 5.2 describes our detailed approach and

results. Finally, Section 5.5 discusses our approach and concludes this chapter.

5.2 Approach

5.2.1 Ensemble Datasets

As described in Section 3.2 the datasets, we mainly use two ensemble dataset:

storm surge and oil spill. Each of them is scientific simulations with different input

and output parameters over time and space. The storm surge dataset contains a

73

large number of days with multiple variables on each day. The oil spill data has

particle movement information for different simulation parameters. Both of them are

ensemble dataset with large amount of information.

One property of the ensemble data is that the members share common input param-

eters, so their time line presentations are similar. But with the parameters changing,

each of them may be shifted and slightly different from the previous ones. All of our

datasets simulates scientific scenarios on a single day or a same time duration, so they

all share some periodic patterns with each member’s time line lying near others. As

shown in Figure 27, one time line to visualize an ensemble without tropical cyclone

is displayed on the left, and one ensemble member with tropical cyclone is on the

right. Each ensemble member contains a time duration of three and half days. The

time line of a single member without a cyclone shows more stable patterns, each day

shares a similar location. The pattern just suggests periodic tidal waves at this time

duration. The one with cyclone shows the periodic pattern of each day as the time

line goes left and right, but each day is different and the effects of a cyclone is clearly

observed.

5.2.2 Ensemble Time Lines

We use our time line approach to represent the overall comparison of the ensemble

dataset. Each simulation run is rendered as one time line and different simulations

are connected. The first step is to load in a portion of the ensemble dataset since it is

impossible to read in entire data. For example, each storm surge simulation consists

of more than half a million vertices and dozens of variables, several simulations will

74

Figure 27: Left: time line of one ensemble member without tropical cyclone. Right:
time line of one ensemble member with tropical cyclone.

take up all the desktop PCs memory. We select feature aspects and follow our time

line generation approach by connecting all the simulation data together to create one

single time line. Details of initial time line generation is covered in Chapter 4.

In the storm surge ensemble data, we connect daily simulation runs as a single long

sequence and use sample windows to capture local features as before. Thus, the whole

time line not only represents all the simulation data changes, but also still preserves

individual simulation properties.

We test our approach on different ensemble datasets. As we can see in Figure 28 (a),

an ensemble dataset of storm surge is visualized. The time line of the 40 connected

simulations is shown in periodic patterns. Each day is rendered using different color.

Figure 28 (b) shows 10 members from oil spill data. Each run is with different input

parameters. The time line is created based on average moving speed of particles.

Figure 28 (c) shows a month of air quality dataset. Blocks of volume are analyzed in

75

this case.

(a) Storm Surge (b) Oil Spill (c) NH3

Figure 28: (a) Time line of 40 ensemble members from storm surge dataset. (b) Time
line of 10 ensemble members from oil spill dataset. (c) Time line of 1 month data
from air quality dataset. Each run is rendered with same transparency.

Figure 29 shows the ensemble time lines of the air quality dataset which only

generate the time lines based on a small data block in each volume. In Figure 29 (a),

we use about 40 days of simulation in two months of the air quality NH3 data blocks

and for each day we use 5 sample points. The differences between months are huge

in this simulation, the days in different months are clearly separated. Figure 29 (b)

shows the rendering results of our visual cluster reduction method results described

in Section 5.3. Two representative days are rendered to avoid visual cluttering of the

entire dataset.

5.3 Visual Clutter Reduction

In our storm surge dataset, one major parameter changes during the storm surge,

resulting in two very different groups of time lines as shown in Figure 30. Each of the

group has similarities within their own group. Each group shares a similar periodic

pattern.

One problem created by this approach is that with numerous simulation runs, there

76

(a) (b)

Figure 29: (a) Time line of 40 days of air quality data, each member is sampled to 5
sample points. (b) Time line rendered by our visual clutter reduction method, using
representative days to represent the whole group.

may be serious occlusion issues. When only some parameters of each simulation run

changes, the output data can be quite similar with each other. So the resulting time

lines have very close locations. Since each day is rendered using different color with a

same transparency, they are visually cluttered and hard to observe any details when

placing all the days onto a 2D plane.

To solve this issue, after we get our initial plot results of each individual day on

the 2D plane, the plots of the first day will be used as a reference. We calculate the

distance between the local histograms of reference and the next simulation. We use

H(i,n) to represent the local histograms and Href to represent the histogram of the

reference day. The following the equation is used to calculated the distance between

simulation runs and reference.

Dis(H(i,n), Href) =
∑

n

−−−→
H(i,n) −

−−→
Href . (11)

A threshold will be setted determine wether the daily simulations are close to the

77

Figure 30: Time line of 40 ensemble members. The first member is opaque while
other members are transplant to avoid visual cluttering. Time line of 41 ensemble
members. The outlier is highlighted and form a new group.

reference. The days with a small distance to the reference will be rendered in trans-

parent colors. If the simulation member is considered as similar to the reference,

we update the reference using by calculating the average of the average histogram of

simulation members in this group. When the distance between the simulation exceeds

the threshold, another group will be created. A new reference day of this new group

is generated too. The simulations coming into the ensemble later will be compared

with all the existing references to decide if it belongs to the current groups or it needs

to create a new group.

Figure 31 (left) shows the result of time lines in a same group with different trans-

parency. The dominate periodic feature is preserved without visual cluttering. The

first day in this group is highlighted to represent the whole group. Then another odd

daily simulations comes in, which is very different from the reference, As in Figure 31

(right). We can clearly see this member with significantly different behavior and does

78

Figure 31: Time line of 40 ensemble members. The first day of the first ensemble
member is opaque while other members are transplant to avoid visual cluttering.
Time line of 41 ensemble members. The outlier is highlighted and form a new group.

not belong to the current group. The previous time lines are still in transparency but

the new one is considered as an outlier and form its own group and rendered in full

transparency.

We can employ a strategy to display the representative simulation run in each

group. We sort all the distances between the reference day and each simulation

member and use the member whose distance is closest to the reference. Figure 32

shows the results of using the closest day to represent the group.

5.4 Acceleration For New Member Insertion

Another challenging problem is when new simulation is generated, traditional

method requires to calculate its relationship with all the existing members in the

ensemble. In our approach, initial time line is only generate with with the already

produced ensembles. When a new member comes, traditional methods require to

calculate the distance of the new member with the entire ensemble first, then place

79

(a) (b)

(c)

Figure 32: Time line of 40 ensemble members. (a) The first day of the member who
is closest to the reference is highlighted to represent the whole group, while other
members are transplant to avoid visual cluttering. (b) Time line of 40 ensemble
members. The outlier is highlighted and form a new group. (c) Time line of 50
ensemble members. New members are considered as the second group and the first
day of the member with the closest distances to the reference day is highlighted to
represent the group.

80

it onto the 2D plane. This is too time consuming and unnecessary to use all the ex-

isting members again to calculate the whole layout. Besides MDS, we only examine

the distance of the histograms of the new member to other histograms, and simply

find the closest histograms to the new histogram.

(a) 20 (b) 50

(c) 100 (d) 156

Figure 33: Sample result of inserting a new member into the ensemble visualization.
The opaque time line in both figures is the new member. The green time line is our
result and red is the pre-calculated position using MDS.

We test our approach using these three ensemble datasets. We first calculate the

whole ensemble together and generate the time line, the last member is render in

red. Then we use our method to find the suitable locations for the last member, our

result is in green. This method could save a lot of time by not calculation the entire

ensemble again. Figure 33 shows three examples of inserting a new member into the

visualization. Each examples contains different sizes of ensemble members, Figure 33

(a) shows a small ensemble data with 20 simulation runs; Fig 33 (b) shows a medium

ensemble data with 50 simulation runs; Figure 33 (c) is a large ensemble data with

156 simulation runs. Each run in these examples contains 20 sample points.

81

(a) 20 (b) 50

(c) 100 (d) 156

Figure 34: Sample result of inserting a new member into the ensemble visualization
using the average locations of closest 4 members. The opaque time line in both figures
is the new member. The green time line is our result and red is the pre-calculated
position using MDS.

As we can see from the result, the closest histogram location may not be the best

choice. We then use the average of n-closest histogram locations as the position for

the new member. Figure 34 shows the results of the described approach. We choose 4

closest locations based on our experiments. But in some cases, the closest n locations

may still be very different from the target histogram, we further set up threshold to

control the number of n to achieve better results. Any histograms whose difference

is larger than this threshold will not be taken into consideration of the final location

calculation. Figure 35 displays the results of using threshold to improve the n-closest

location average method.

From these results, the red and green lines are very close to each other which means

our method is effective no matter the size of the data.Table 2 shows the time used by

our algorithm and MDS. We test our approach on 4 different sizes of the storm surge

82

(a) 20 (b) 50

(c) 100 (d) 156

Figure 35: Sample result of inserting a new member into the ensemble visualization
using thresholds. The opaque time line in both figures is the new member. The green
time line is our result and red is the pre-calculated position using MDS.

dataset from 20 days to more than 150 days. Each day is sampled into 20 sample

points which means each individual time line consists of 20 points. The improvement

of time used is linear to the number of runs considered. There is a huge advantage

when the dataset is large, while small dataset it takes about the same amount of time.

Table 2: Time comparison of our methods and MDS.

Dataset Total Time Step Our method (seconds) MDS (seconds)
Storm 20 4 5
Storm 50 8 23
Storm 100 18 48
Storm 156 50 83

There are some failed cases of this approach when the new histogram is quite

different from the other simulation runs or it is located near the border, average or

closest locations will not work properly. As we can see in Figure 36 left, when there

is only several simulation runs, the result positions are pulled towards the major part

83

Figure 36: Failed cases of ensemble Acceleration.

of where the time lines are located. The right side of Figure 36 shows insertion into

a large number of runs, but the inserted run is on the border of the entire time line,

the result is shifted too.

5.5 Conclusion

In this chapter, we present our ensemble time line visualization approach. Our

method first generates a single time line for the ensemble dataset. From this time

line, scientist can visualize individual or overall time lines. All the members in the

ensemble dataset is visualized at the same time. Easy comparison can be made by

looking at multiple time lines. Further inspection and analysis can be performed if

outlier or abnormalities are observed. This is an efficient way to find features within

an individual member and between different ensemble members.

The local histograms of virtual words contain rich and meaningful information.

84

We use the properties of the virtual words distribution and can easily find method to

improve our visualization results and avoid unnecessary calculations and processes.

The analysis of virtual words helps us in generating more focused representation and

accelerating the visualization process.

Visual cluttering is unavoidable when the size of the ensemble member is large. We

solve the visual clutter problem by comparing the histograms between members and

automatically generate groups for members, highlighting the representative member

and hiding the others. We also can generate different views and interactions for

scientist to explore, study and analyze within one member or between members using

basic information visualization techniques.

Since simulation data is produced everyday, we propose an approach to accelerate

the process of adding the new member into the existing time line visualization. One

advantage of this is when the new data is produced, we do not need to calculate it

with all the other members through MDS again. We utilize the previously generated

time line and place the new incoming data based on its distance to the previous

members in the ensembles. No complicated calculation are need in this case and an

abstract representation of the new member are generated for scientists to do direct

comparison which is essential when dealing with large amount of simulation runs.

Our approach provides a suitable calculation efficiency to solve the issue of the newly

coming simulation member.

CHAPTER 6: ANIMATED VISUALIZATION

6.1 Introduction

In this chapter, we present an approach to generate animated visualization as

digital stories, which can effectively demonstrate temporal events by mimicking the

composition and transition of storytelling techniques.

Animation has been used extensively in visualization. Studies from both research

and education have reported that users often describe animation as fun and excit-

ing, which elicits the usage of animation for effective visualization. Especially for

time-varying data research, where temporal evolutions are often focused, animation

becomes a natural way to represent and analyze the characteristics of data changes

across time. For example, storm surge research studies the behavior of hurricanes

and their impact on water volumes, which are two important events over the entire

duration of the storm. It is obviously not efficient for users to analyze data features

and relationships with static visualization for each time step. Therefore, exploring

suitable ways to generate animation and incorporating animation in the interactive

exploration process are valuable for time-varying data visualization.

However, existing visualization systems only provide limited support to generate

animations. They are often produced with limited capabilities through adjusting

rendering configuration, such as allowing users to record snapshots, adjust rendering

86

parameters, and blend time segments. It is time-consuming for users to determine

and modify all these parameters before reaching a satisfying animation result. Also,

since these rendering configurations do not imply event semantics directly, current

approaches can be very difficult for non-professional users. Therefore, useful story-

telling techniques should be considered to describe event features in the visualization,

so that the produced animations are easy to understand and follow. Up to now,

there has not been such an approach to connect the generation of animation with the

description of temporal events.

Our approach considers general tips of both storytelling and story writing. For

example, as shown in Figure 37, a good story may include a plot with several stages,

such as exposition, conflict, rising action, climax, a falling action and final resolu-

tion [103]. Stories often describe a subject from different aspects and switch topics

smoothly. Similarly, our approach describes a temporal event from different aspects

and scales through the concept of an event graph (Figure 38), which abstracts a time-

varying dataset as a graph of related event features. Animations are then generated

by searching for similar narrative structures shown in Figure 37. Our approach also

allows interactive generation and modification of digital stories based on the semantics

of event features.

Figure 37: Example representations of narrative structures.

87

Specifically, animations are designed for both summary visualization and interac-

tive exploration of time-varying datasets. Given an event description, we first au-

tomatically construct an event graph that abstracts event features from the entire

time duration as nodes and their relationships as links. The event graph is built by

exploring suitable segmentation of event durations according to different data fea-

tures, thereby embedding a tree-like hierarchical structure. Narrative structures are

built by exploring suitable starting points and search strategies in the event graph.

We provide automatic graph search algorithms as well as interactive modification

methods. According to different stages of a narrative structure, we automatically de-

termine all the rendering parameters to highlight event features and construct story

transitions. We also integrate this animation generation approach into the interac-

tive exploration process of time-varying datasets, so that suitable animations can be

synthesized promptly to provide more comprehensive event visualization. We demon-

strate with a storm surge application that our approach allows semantic visualization

of time-varying data by generating suitable animations to describe various event fea-

tures.

The main contribution of our automatic animation generation approach is that it

employs animation as a summary and exploration tool to enhance time-varying data

visualization. The key concept of our approach is the event graph, which character-

izes temporal patterns from different aspects and scales in a time-varying sequence.

Closely related to the event graph, several options of constructing narrative structures

are explored, ranging from automatic graph search strategies to interactive modifica-

tion methods. Our approach allows semantic generation of animations, as users can

88

Figure 38: An event graph for the behavior of hurricane eye. The event is described
from three feature aspects at different scales. The orange bar inside each node rep-
resents its time duration. The scale 0 contains a virtual root that connects all the
feature aspects. The black edges are tree links which indicate child/parent relation-
ships of features belonging to the same aspect. The green edges are relation links
which describe similarities of event features from different aspects.

easily produce or modify animations by selecting feature aspects, event details, and

options of digital storytelling. We also provide a composition solution for animations

by determining optimal parameters automatically with a narrative structure. Partial

of this chapter is published in [159].

6.2 Approach

In this section, we first present the concept of event graph. Then, we describe

our approach to construct an event graph and build narrative structures given a

user-specified event. We further present our automatic methods to determine all the

required rendering parameters and generate animations with smooth transitions. In

addition, we introduce two usages of animations for time-varying data visualization.

89

6.2.1 Event Graph

The purpose of the event graph is to abstract various features of an event in a

time-varying dataset. We choose the form of a graph, which represents event features

as nodes and node relationships as links, since it is close to the narrative structures

used in storytelling techniques, as shown in Figure 37. With such an event graph, we

can generate animations with narrative structures built by exploring suitable starting

points and graph search strategies. Since most of our narrative structures are com-

posed of linked node pairs, which correspond to semantic transitions between related

event features, we can convey different feature aspects or scales of an event smoothly

in the resulting animations.

For example, Figure 38 shows an event graph of a hurricane eye in a time-varying

storm surge dataset. The behavior of the hurricane eye is described from the aspects

of moving path, moving speed, and wind rotations around the eye region. A reason-

able narrative structure is to describe these three feature aspects respectively, like

introducing an event from different viewpoints; and each aspect from scales of low to

high, like starting with an overview and gradually getting into the details.

We can represent an event graph G as follows:

G = {{nodes}; {tree links}; {relation links}} (12)

where an event graph consists of three sets of information: nodes for representing

event features from several aspects and at different scales, tree links for indicating

the child and parent relationships of nodes belonging to the same feature aspect;

90

relation links for indicating the similarities of time durations of nodes from different

feature aspects.

Specifically, the nodes without any children correspond to basic events, such as a

straight moving path or a constant moving speed. The nodes with children correspond

to complex events which are composed of multiple basic events. Every event graph

also contains one virtual node that connects all the features aspects. The number

of nodes in an event graph is related to both the event complexity and detail levels

according to user interest. Each node has several components: feature aspect, time

range, a score measure to indicate the significance of this event feature, a list of tree

links, and a list of relation links.

There are two types of links: tree links and relation links. The tree links represent

the relationships of complex events and basic events belong to the same feature aspect.

The duration of a parent node always contains the durations of its children nodes.

The relation links describe the temporal similarities of nodes that are on the same

scale but from different feature aspects. Each relation link has two components: a

related node and a similarity value, which uses 0 to represent “the same", 1 to indicate

that the time range of the current node includes the related node, −1 vice versa, and

the ratio of overlapped time duration to the time range of the current node for other

cases. To avoid confusion, we use relation links with value 0 most of the time.

An important feature of the event graph is that each event graph embeds a tree-

like structure that organizes all the relevant event features. As shown in the graph

example in Figure 38, each feature aspect is represented as a tree branch. The scale

0 represents a virtual node as the tree root. The scale 1 always represents event

91

features from the entire duration of a time-varying dataset. Starting from the scale 2,

the nodes are calculated by segmenting the time range of parent nodes according to

the characteristics of data changes. With this tree structure, we can locate different

levels of event details according to the node scales.

6.2.2 Constructing Event Graphs

We construct an event graph by following the embedded hierarchical tree structure.

Initially, given an event and its feature descriptions, we can first build a basic tree

structure with the virtual root at scale 0 and a node for representing each feature

aspect from the entire time duration at scale 1.

Starting from scale 2, we segment the duration of each node on a parent scale until

reaching basic events. As shown in Figure 39, the moving speed of the hurricane eye

is reducing constantly, therefore it is a basic event and only contains one node. The

river surface elevation and the wind rotation of the hurricane eye contain more vari-

ation. They are represented by a sub-tree in the event graph. Our approach to time

segmentation is through measuring the dissimilarities of time steps automatically.

For every feature aspect, we compare each pair of adjacent time steps and quantify

their differences as one value, which can be shown as the curves in Figure 39. We

detect if this node describes a basic event by testing if all the dissimilarity values are

below a user-specified threshold. The segmentation process stops when reaching a

basic event; otherwise it continues to higher scales.

The segmentation is achieved by searching for the cuts that divide a time duration

into several segments, where the dissimilarity values are more evenly distributed.

92

Specifically, we calculate the gradients of dissimilarity values, smooth them with a

Gaussian operator, and apply Sobel edge detection [131]. The locations with the

maximum results are the cuts to segment a time duration. For storytelling effects,

we limit the number of children for each node to 3, so that we can keep an evenly

distributed event graph.

Figure 39: (left) The temporal dissimilarity curves for moving speed of the hurricane,
river surface elevations, and wind rotation of the hurricane eye. Our segmentation
results are shown as the red lines. Longer lines indicate segmentation on lower scales.
(right) Constructed sub-trees.

For example, for the event of the hurricane eye, we first locate the path of the eye

as the weighted center of wind magnitudes for each time step.

The moving speed is measured as the shift of eye location in adjacent time steps.

For the wind rotation, we first identify a region around the hurricane eye with high

wind magnitudes, which is shown as the blue region. Then we sum the wind angle

at each vertex of all the triangles within this region. Since the hurricane speed is

93

roughly constant during the entire duration, this branch only has a leaf on scale 1,

while the moving path and wind rotations are further divided to higher scales.

To match event features from different aspects, we combine them during the con-

struction process of the event graph. Specifically, we determine if two nodes with

the same duration, but from different feature aspects, can be segmented jointly. We

achieve this by measuring the distributions of their dissimilarity values. The dissim-

ilarity values from the involved time durations are concatenated and treated as one

high-dimensional vector. We combine two feature aspects if the dot product of their

normalized dissimilarity vectors is smaller than 10% of the time duration. We further

merge their dissimilarity values for the segmentation process. Otherwise, the conclu-

sion is that these two aspects are very different and should be segmented separately.

For example, the moving path and wind rotation of the hurricane eye are segmented

jointly on scale 2.

The relation links are constructed for each scale to describe the relationships of

node durations from different feature aspects. For scale 1, since the durations of

all the nodes are the same, there is a relation link with value 0 between every node

pair. Starting from scale 2, we measure the relationships of node durations and assign

corresponding values. For example, there are two relation links between the two nodes

under moving path and wind rotation aspects in Figure 38.

We also measure a significance score of each node based on the multiplication of

its temporal duration, region size and dissimilarity variance of an event within the

node duration. The region size is measured as the accumulated area that covers the

event for the entire duration. For example, in Figure 38, the moving path covers all

94

the regions where the hurricane passes, while the wind rotation is only related to the

small region of hurricane eye. The dissimilarity variance is calculated through the

dissimilarity curve, shown in Figure 39. For each scale, we further normalize all the

scores by dividing the largest value, so that they can suggest the significance portion

on this scale. The virtual root is always assigned a score value 0, meaning that this

node should be skipped. We also balance different feature aspects by multiplying

a user-assigned scale with the dissimilarity variance. For example, we magnify the

scores of wind rotation by 10 to make them comparable to the scores of other feature

aspects. The significance results describe the events in the example of Figure 38 well.

On scale 1, the moving path has the highest score value, 1.0, since it describes an

event that involves the entire data region. The score value of moving speed is the

lowest, 0.1, since it has to do with details which are not obvious when we consider

the entire time duration.

Scientists often have some domain knowledge of the data under study. For example,

in the storm surge study, scientists are interested in the behavior of hurricane and

effects of the hurricane on ocean and river volumes. Therefore, we can build a set

of event graphs before visualization. Figure 41 shows another example result of an

event graph built from a storm surge dataset: bumps and splats in the river.

6.2.3 Building Narrative Structure

A narrative structure is a plot that determines the sequence of event features in

an animation. It is built by searching for a suitable node as the beginning and a

search strategy that traverses the event graph and satisfies user-assigned storytelling

95

Relation search Interactive depth-first search

Figure 40: The event graph of the hurricane eye and 2 narrative structures, shown
as the red links. The node with red boundary is the starting point. The top shows
the result of a relation search algorithm on scale 1. The bottom shows the result of
a depth-first search algorithm below scale 3. Interactions are also applied to skip the
feature aspect of speed and one node of wind rotation, as well as repeating the end
segment of wind rotation aspect.

Relation search Interactive visualization

Figure 41: The event graph of bumps and splats and 2 narrative structures, shown
as the red links. The node with red boundary is the starting point. The top shows
the result of relation search below scale 3. The bottom shows the result of interactive
visualization, where users first choose to visualize the splat feature globally and then
select the feature of elevation height close to the end of the time range.

96

options. Several automatic schemes as well as interactive modification methods are

explored to generate narrative structures.

The starting node is preferably the most significant node on the lowest available

scale, which can serve as an overview to introduce the major event feature. For

example, for the event of the hurricane eye in Figure 40, we compare the scores of the

three nodes on scale 1, and select the moving path node as the starting point. This

is the same beginning for the two narrative structures built from different strategies

in Figure 40.

The path of a narrative structure traverses the rest of the relevant nodes in the

event graph. A path is composed of tree links and relation links in a specific order.

Traversing along the tree links is identical to describing additional event details.

Traversing along the relation links equals the description of related event features

from other aspects.

These two links help us to achieve smooth semantic transitions in the storytelling.

To build suitable narrative structures, we design three criteria for the graph search

strategies.

1. An event is composed of an overview at the beginning and smooth transitions

to event details.

2. Related features are introduced sequentially according to their score values or

temporal order.

3. No node is repeated unless specified by the user.

We can utilize some existing algorithms of graph search, such as breadth-first search

and depth-first search [36], to generate our narrative structures. These two search

97

algorithms meet our design criterion 3 directly. If we always start from a node on the

lowest available scale, we can also meet our criterion 1. According to criterion 2, the

only addition we make is to determine the search sequence of children nodes given a

parent node. We can choose to follow the order of their temporal durations or the

order of their score values.

Since we introduce the relation links to the event graph, we also develop a search

strategy called relation search. Specifically, given a starting node, we follow the depth-

first search algorithm. The main difference is that if the current node has relation

links, we first traverse the nodes connected by relation links instead of exploring

tree links. This means that we do not perform depth-first search on relation links.

Examples with the hurricane and splat events are provided in Figures 40 and 41.

The design of our event graph allows easy user interaction and modification on

narrative structures. For example, we provide the following interaction methods.

1. Selecting feature aspects

Users can select different event aspects to visualize and the branches that are

not selected are ignored in the searching process.

2. Selecting of level-of-details

Users can adjust the levels-of-detail of animations and only the nodes on in-

volved scales are traversed.

3. Skip

Users can choose to ignore some feature aspects at certain levels (e.g., if they

are already familiar with this data portion). These nodes are not considered

during the graph traversal.

98

4. Repeat

A portion of a narrative structure can be repeated for emphasis. We add the

repeated portion to the narrative structure.

5. Selecting starting point

Users can select the starting node. The branch containing the starting node

will be treated as mostly important.

6.2.4 Automating Animation as Storytelling

To avoid unnecessary user interaction, our approach determines all the rendering

parameters automatically. The parameters are calculated for each node in the nar-

rative structure. We also provide a transition between adjacent nodes to indicate

feature changes.

Our rendering parameters include: time steps, viewpoints, and data resolution. The

other rendering settings are fixed in an animation to avoid confusion. For example,

the region-of-interest is always highlighted in green, as shown in Figure 43. All

the other regions are visualized in the same color design: terrain always in grey and

surfaces always colored according to their elevation levels with a blue-to-red colormap.

All these detailed rendering parameters are automatically determined based on our

experiments. For professional users, an interface is also provided for adjustments.

The number of time steps selected for each node is proportional to its score value.

The data loading and rendering times for each time step are approximately the same,

assuming we use the same data resolution for all the time steps belonging to this

node. Therefore, the number of time steps is linear to the allocation of time duration.

99

To emphasize important features, a small number of time steps is used for basic

events, while a rather large number is used for major events like the hurricane moving

path. We set the maximum allowed number of time steps Nmax, which can also be

adjusted. The number of time steps for a node n with score score(n) is calculated

as Nideal(n) = score(n)p × Nmax, where p is a parameter to adjust the effect of score

values. We treat an event evolving gradually in each node duration, so we sample

time steps evenly. Assume the number of time steps contained in a node is N(n).

If N(n) >= Nideal(n), we select a time step for every Nideal(n)/N(n) time steps.

Otherwise, we set a sleep time proportional to Nideal(n)/N(n) × rendering speed in

the program.

Several options for viewpoints are explored for our animation: sky view, local view,

dynamic view, optimal view, and user-selected views. Generally, we prefer to put the

event close to the center of the screen and avoid having the interesting region occluded

by surroundings.

1. Sky view

A sky view is often used in TV programs. It points to the event center, is vertical

to the main event moving direction, and has a 60 degree elevation. The view

zooms into a region whose size is 1.6 times the bounding box of the interested

region in this time duration.

2. Local view

A local view produces the effect that viewers are standing close to the ground,

which can be found by reducing the elevation degree of the sky view to the

range of [0, 30].

100

3. Dynamic view

The dynamic view follows the path of the event and points to the object center

at each time step. We smooth the path to avoid the shaking camera effect.

Similar to the sky view, the view zooms into a region whose size is 1.6 times of

the bounding box of the interesting region in this time step.

4. Optimal view

The optimal view can be selected according to the object shapes and overlap re-

lations, such as through maximizing data variations [93]. It is the same for each

event node. We simplify this step by running 2D principal component analysis

(PCA) [149] on the object center locations from the entire node duration. The

optimal view is calculated as rotating the second axis of PCA to an elevation

of 60 degree. The view zooms in the same way as the sky view.

5. Selected view

Our system allows users to choose their desired viewpoint by rotating and zoom-

ing the scene.

Data resolution is selected according to the performance requirement. Low resolu-

tion is used for interactive exploration. In our experiment, our machine can support a

reasonable performance (around 0.5 second per time step) when using data contains

520114 polygons.

To provide smooth transition between adjacent nodes, we introduce three additional

renderings of the event location, duration and graph. They are rendered automatically

to provide useful information about an event feature. As shown in Figure 43, we use

the top right corner to show the location of an event, which can be calculated with

101

Figure 42: A transition example. Four snpshots are provided from the transition of
wind rotation to the moving speed on scale 1, which is indicated by the red curve on
the event graph on the top. During the transition, the viewpoint is smoothly rotated
and the rendered data are automatically blended to produce a rotating and fading
effect.

the camera setting. The time duration is shown on the bottom of the screen, which

renders the duration of the current event node in pink. The current time step is also

specified with a red arrow above the time window automatically according to data

names. A simple event graph is rendered on the top with current node or link in red.

These two renderings change automatically according to the node information. When

the node switches, we change the scene by linearly interpolating the ending viewpoint

of the previous node and the starting viewpoint of the next node, and then start the

animation for the next node. We also blend the data from the two transiting nodes

in the rendering to produce a simultaneous rotating and fading effect. Figure 42

provides such an example.

Animated Visualization

We provide two options of digital storytelling using animations: summary and

interaction modes. The summary mode automatically produces an animation to

summarize the relevant event features in a time-varying dataset, while the interac-

tion mode is designed to generate and show animations in real-time to provide more

102

comprehensive event information than static visualization for interactive exploration.

The summary mode does not have a performance constraint, and thus we can

include all the nodes of an event graph in the animation results. Any of the three

searching strategies can be used to build narrative structures. We can also render

datasets in their original resolution and utilize any provided methods to determine

our rendering parameters. Figures 40 and 41 (top) provide examples of summary

animations using relation search with different levels-of-details.

The interactive mode allows users to apply animations to enrich static visualization.

Instead of requiring users to select their interesting data region from every time step,

we render a time-varying dataset according to a narrative structure automatically.

This setting allows users to replay an animation, stop an animation anytime, and

most importantly generate a specific animation that describes their interested event

features. Such interactive exploration provides more relevant information to users

efficiently. Since the construction of the event graph takes time, especially for large

time-varying datasets, we require users to specify the event under exploration before

interaction. The event graph of any event only needs to be built once, therefore we can

quickly collect all the event graphs of major events. In the storm surge application, the

behavior of the hurricane and its impact on the water are two important events. We

also perform data reduction before the exploration process by equally downsampling

the grid meshes for all the wind field, terrain and water surfaces.

The challenges of real-time animation generation are to find a suitable starting

node based on user selection and satisfy performance requirement. During interaction,

users can specify their interesting event aspect and adjust the time step and viewpoint

103

to visualize a specific data portion. With this information, we locate the matching

node on the highest scale from the corresponding branch in the event graph. The time

range of this node should include the selected time step and the node region covers the

visualized data portion. Among our search strategies to generate narrative structures,

we often choose the depth-first search and relation search algorithms, as they provide

most relevant information for user interaction. Since a narrative structure is built

very quickly, we can start the resulting animation without any delay. To satisfy the

interactive performance requirement, we simplify choices of rendering parameters.

For example, we use sky view, local view, and dynamic view instead of optimal view.

We also use data in lower resolutions. Figures 40 and 41 (bottom) provide examples

of animations under the interactive exploration mode.

6.3 Results and Discussions

The time-varying datasets used in this dissertation are generated by a storm surge

or inundation model, ADCIRC (http://www.adcirc.org/), which has been approved

for storm surge studies by Federal Emergency Management Agency (FEMA) and

applied extensively for modeling storm surge in the Southern Louisiana and New

Orleans areas. Specifically, we use the data of hurricane Isabel to the Outer Banks of

North Carolina, USA, in 2003 [145]. Each dataset contains 792 time steps, 520,000

triangles, and 260,000 vertices. There are three attributes, terrain elevation, water

elevation, and wind vector on every vertex.

104

6.3.1 Example Results

The attached multimedia files provide our animation results, which correspond to

the narrative structures in Figures 40 and 41. These four examples demonstrate

different automatic narrative structures and interactive modification results. The

event graphs of two events, hurricane eye and splats, are constructed automatically

based on event descriptions. In all the renderings, the terrain surfaces are rendered

in gray. The water and hurricane surfaces are illustrated with a blue to red colormap,

with red corresponding to the highest elevation value. The options of viewpoints are

randomized in the generated animations to avoid uniform rendering effects. Example

snapshots are provided in Figure 43.

The narrative structure in Figure 40 (top) is generated with the relation search

strategy with the lowest details. The resulting animation provides an overview of the

three event features. It first shows the moving path of the hurricane eye, which is

close to a straight line, since it is the most significant feature. Second, the animation

visualizes the wind rotation around the hurricane eye, which mostly increases time

range. At the end, it introduces the moving speed, which is constantly reduced.

The narrative structure in Figure 40 (bottom) is generated with the depth-first

search strategy. The resulting animation provides more details of the event than the

first animation. It has the same starting point, which overviews the moving path

of the hurricane eye. The animation then visualizes each segment of the moving

path. Then, the animation overviews the wind rotation and visualizes the second

half time range for the hurricane eye. Since the second half is nearer to the coastal

105

terrain, which is more important to scientists, users can choose to skip the first half

range and repeat the second half. Different parameters are selected to provide more

comprehensive information on the wind rotation.

Our second example event is the bumps and splats in the rivers. The narrative

structure in Figure 41 (top) is generated with the relation search strategy with middle

level of details. The animation first overviews the water surface elevation height,

which is the dominant feature of this event. It continues to introduce the bumps

and splats in the river, which are highlighted as green dots. Then, the animation

visualizes the elevation height and splats respectively, for both time ranges, where we

can see a periodic feature during the first time range and the effect of the hurricane

during the second part.

The narrative structure in Figure 41 (bottom) is generated with interactive explo-

ration. We first choose to visualize the bumps and splats, so the animation starts

with an overview on scale 1 and continues to visualize the data from the first and

second time ranges respectively. We then choose to view the elevation height over the

second time range, and the animation locates the starting node on the scale 2 and

generates an animation with the depth-first search algorithm.

6.3.2 Quantitative Results

We run our algorithms on a computer with an Intel Core2 CPU 6600 at 2.40GHz

and 2GB RAM. Most of the processes in our approach, construction of the event

graph, calculation of rendering parameters, and data reduction, are preprocessed

before interactive visualization. The running time for constructing an event graph

106

moving path (s1) → wind rotation (s1) → moving speed (s1)
Hurricane eye - relation search (narrative structure is shown in Figure 40 (top))

moving path (s1) → movingpath 1 (s2) → movingpath 2 (s2) → wind rotation (s1)
→ windrotation 2 (s2) → windrotation 2 (s2)
Hurricane eye - interactive depth-first search (narrative structure is shown in
Figure 40 (bottom))

elevation (s1) → bumps-splats (s1) → elevation 1 (s2) → bumps-splats 1 (s2) →
elevation 2 (s2) → bumps-splats 2 (s2)
Bumps and splats - relation search (narrative structure is shown in Figure 41 (top))

bumps-splats (s1) → bumps-splats 1 (s2) → bumps-splats 2 (s2) → bumps-splats 1
(s3) → bumps-splats 2 (s3)
Bumps and splats - interactive exploration - start1 (narrative structure is shown in
Figure 41 (bottom) marked with start1)

height 2 (s2) → height 1 (s3) → height 2 (s3)
Bumps and splats - interactive exploration - start2 (narrative structure is shown in
Figure 41 (bottom) marked with start2)

Figure 43: Example renderings from the animation results. Each row corresponds to
a narrative structure in Figures 40 or 41. The event location of each node is illustrated
on the right top corner and the node duration is rendered as the red bar on the bottom
of each snapshot. The little red triangle above the duration bar indicates the specific
time step of each snapshot. The texts under each row suggest the node sequence in
each animation. Please refer to the descriptions in section 4.1 (example results) for
more details of these animations.

107

depends on the selected event features. The event graphs in Figures 40 and 41 take

around 7 minutes. We also determine parameters for the rendering at this stage,

which is within 5 minutes. Data reduction can be achieved within an hour and it is

only required once for a dataset.

The only operation during interactive visualization is the generation of narrative

structures. The performance of all our search algorithms is interactive. Therefore,

once an event graph is built, our approach allows users to generate and modify ani-

mations interactively.

6.4 Conclusions

This chapter presents an automatic animation approach to visualize temporal

events by mimicking the composition and transition of storytelling techniques. This

is achieved with the concept of an event graph, which abstracts event features from

different aspects and scales, and an automatic animation process with a series of event

detection, time segmentation, graph search, and rendering composition methods. Our

approach also allows interactive modifications of both narrative structures and pa-

rameter selections. The resulting animations can be used in summary visualization

as well as interactive exploration, which provides more comprehensive information

of a time-varying dataset in a timely fashion. We demonstrate with a storm surge

application that our approach allows semantic visualization of time-varying data and

easy animation generation for users without special knowledge about the underlying

visualization techniques.

Our approach provides a framework to generate animations to describe various

108

temporal events. As shown in our example results, our approach only requires users

to identify some high level key aspects of the time-varying phenomena and how to

characterize the associated features, such as motion path, eye, and wind speed for

the hurricane eye event. This information can be obtained through discussion with

domain experts. As a result, in this case we have a structure that can be applied

to all hurricane and storm surge simulations, and which also can be used to classify

and correlate these different simulated phenomena. For our storm surge application,

scientists have pointed out that the bumps and splats are directly related to the

storm modeling technique (and may be unphysical artifacts); therefore they are very

interested in characterizing and understanding these events. Thus we have a process

to add important new features in a straightforward manner. This overall process of

developing a rich narrative framework by considering a small number of key high level

aspects can be applied generally to a range of time-varying phenomena.

CHAPTER 7: EVALUATION OF ANIMATED VISUALIZATION

7.1 Introduction

Animation has been widely used to show trends in real-life applications. It is

one of the most popular choices for many end users, as it is a natural way to rep-

resent trends in scientific data containing 2D or 3D structures. In visualization of

time-varying datasets, animations are often generated by connecting snapshots from

individual time steps [11, 61, 95, 150, 112, 135]. Several methods have been devel-

oped for animation in visualization, including both interactive editing systems for

assisting users to generate animations and automatic approaches. Akiba et al. [11]

developed a template-based animation tool for volume visualization. Gershon [61]

presented methods for displaying a series of blurred images in an animation loop.

Viola et al. [135] presented a method to focus viewpoints automatically on features

of a volumetric dataset. Woodring and Shen [150] highlighted objects in a volume

dataset by applying animations with positional motions and opacity variations.

However, there have been serious concerns on the effectiveness of animation in the

field of visualization. The main focus is on if the dynamic features of animations suit

for data exploration and analysis applications. Dynamic visualization has its advan-

tage over static media, especially for teaching students about dynamic phenomena.

It is not as simple as an animation showing some visible phenomenon. Dynamic

110

representations can also visualize variables that are not visible, but are spatially dis-

tributed, such as changes in atmospheric pressure or temperature on a weather map.

It can also display statistical concepts such as changes in variables or computer al-

gorithms. Dynamic visualization can also be a metaphor for abstract information

and distort reality such as speeding up some process, slow down other, changing

viewpoints, augmenting the visualization with cues to draw viewers’ attention. But

the fact is that dynamic displays are not always easy to understand. Dynamic vi-

sualization also includes non-interactive dynamic displays, interactive dynamic dis-

plays [71, 8]. Example questions include: If animations are statistically better than

static or interactive visualization approaches? Does people perceive knowledge more

quickly and accurately from dynamic animation than static images? How would these

different visualization achieve when user performing exploration and analysis under

different tasks?

Several researches, mainly from the field of information visualization, have been

performed to evaluate the effectiveness of animation in visualization [70, 111]. Heer

and Robertson designed animations for creating animated transitions for data graphs.

Lundström et al [96] presented an animation method to convey uncertainty in med-

ical visualization. Researcher also uses other visualization methods to represent the

statistical data such as scatterplots and parallel coordinates [20, 136, 50]. Also, a

large portion of work are done by comparing dynamic graphs with static graphs [52].

The evaluation results of animation are mixed, Tversky and Morrison [133] found

out that animation may be ineffective when displaying events and were often too

complex and too fast to be accurately perceived. Archambault et al. performed user

111

study on mental map with animation and small multiples, and claimed small multi-

ples give significantly faster performance but with more errors too. [13] While some

researchers have found animation to be effective and helpful, others have concluded

that animation is not as good as other visualizations in terms of analysis tasks al-

though animation is fun and exciting to users [111]. Blok [21] find that users are able

to extract relevant information in a monitoring context.

In this chapter, we focus on the effectiveness of animated visualization for time-

varying scientific visualization and study if animations can help users to explore, an-

alyze and understand various natural phenomena. We use storm surge visualization

as a case study to present our approach extended from[159] for generating animations

for various visualization tasks. Further, we have performed a formal user study to

compare the effectiveness of animated visualization and traditional interactive visu-

alization for time-varying data visualization. In this study, we attempt to evaluate

the benefits of animation in presenting events and comprehending underlying data

features, for which we believe animation is beneficial over interactive systems. Three

typical categories of visualization tasks, presentation, exploration and reasoning, are

selected for the study. Our results demonstrate advantages of animated visualization

over interactive visualization.

Section 7.2 presents the detailed design, results and discussion of our evaluation.

Finally we conclude this chapter in Section 7.3.

112

7.2 Evaluation

This study compares two types of visualization systems for time-varying data vi-

sualization: animated visualization versus a typical interactive visualization. The

following presents the design of two systems and describes the details of our user

study.

7.2.1 System

In order to evaluate how users can effectively analyze data with animations, it is

important to describe the supported interaction techniques and animations and to

ensure that differences in the two compared systems are understood with regards to

the outcome of the study.

The interactive visualization is selected to compare with animations as it is the

most commonly used approach to study time-varying scientific simulations. As shown

in Figure 44, the design of the interactive visualization system also adopts typical

visualization systems with three panels: a 3D rendering panel, a temporal trend

panel, and a control panel.

1. Rendering Panel

The 3D rendering panel visualizes all the involved data attributes from a selected

time step. Standard interactions are provided, including rotation, zooming

in/out, and viewpoint selection, selection of time step, and selection of data

attribute such as the renderings in Figure 2. We only provide these standard

interactions to direct subjects focus on the tasks.

2. Temporal Trend Panel

113

Figure 44: Temporal trend window (left) and control panel (right).

The temporal trend window presents 2D curves of data fluctuations. This win-

dow is included in the system as 2D heat maps and plots of different variables are

commonly used when visualizing storm surge simulations. The temporal trend

curves are updated automatically according to the tasks. For example, for the

task of visualizing surges, the curve of average water elevation is displayed in

the temporal trend window.

3. Control Panel

The control panel is for selecting data attributes, time steps, and reset 3D view

for convenience. Our interactive visualization system only enable relevant data

attributes for each task to direct the focus of subjects on the same set of data

attributes and avoid the factor of user experience.

The animation system contains two panels: a 3D rendering panel and a temporal

trend panel, which are the same as the interactive visualization system. The 3D

rendering panel adopts the same rendering scheme for all the data attributes and

time steps, in the sense that all the rendering effects are exactly the same. The main

different is that for the animation system, the 3D rendering panel displays animation;

114

while for the interactive system, the 3D rendering panel displays the rendering from

a selected time step. The control panel is disabled for the animation system to avoid

the confusion of different animation effects.

7.2.2 Materials

This section describes the datasets and animations we used in the user study.

7.2.2.1 Datasets

Two storm surge simulation datasets are selected, Hurricane Isabel in 2003 and

Hurricane Irene in 2011. Several nice features of these two datasets make them

especially suitable for our user study.

First, the two simulation datasets are comparable from the following three aspects.

Both datasets cover the same region, whose terrain model consist of more than 260,000

vertices and 520,000 triangles. A set of four key variables, elevation, wind vectors,

atmospheric pressure and depth-average velocity, are provided in both datasets. The

numbers of time steps from the two datasets are also comparable, Isabel contains 396

time steps and Irene contains 336. Therefore, we expect that the choice of datasets

does not affect the performance of subjects in the user study.

Second, data features of the two datasets are different, which allow us to design a

set of tasks for both datasets with different answers. Since subjects will not be able

to answer the questions for one dataset by using the information they acquire from

the other dataset, we can ensure that the order of the datasets does not affect the

results of our user study. For example, the eye paths of the hurricanes in the two

datasets differ completely. Irene skirts the North Carolina coast then tracks further

115

north into New England, while Isabel makes landfall in the southern portion of the

Outer Banks and track inland. Due to its path Irene demonstrates a more obvious

example of back surge. Isabel has a smaller back and splats on Pungo River Canal

which happens before the major surge come in. The following section describes the

details of these data features.

7.2.2.2 Modeling of Data Features

To generate animations for each task, the relevant data features need to be modeled

and tracked automatically. Storm surge simulations provide complex 3D scenarios

which simulate the behavior of water elevation under different parameters, such as

wind forces and atmospheric pressure. We concentrate on two data features that are

important to scientists.

1. Back Surge Modeling

Back surge is a very interesting event which appears frequently a lot near North

Carolina coast, specifically near Outer Banks. Considering the direction of the

hurricane, back surge can be found after the eye has passed and the general di-

rection of the water velocity is directly or perpendicular to the storms direction.

In other words, the back surge travels the opposite direction of normal surges.

Figure 45 provides an example of back surge modeling.

We extract land boundary vertices by comparing its height with his neighbor-

hoods. Assume negative height value is below the sea level and positive value

is above, if one vertex is below sea level and one of his neighbors is above, then

we consider it as a land boundary vertex and vice versa. After we extract all

116

the land boundary vertices, we further select boundary vertices on outer banks

and calculate the directions of these vertices. For each vertex on Outer Banks,

we build a small bounding box and all vertices the bounding box are connected

to the targeted vertex to create multiple lines. The average direction of the

direction perpendicular to these lines is considered as the out-going direction.

In Figure 45, the grid of storm surge model is shown in (a), with blue color

for the vertices, red color for extracted land boundaries, and green vectors for

the directions of out-going waves on Outer Banks. Figure 45 (b) shows the

elevation changes along the time on all the boundaries. The y-axis represents

the elevation height.

The direction of the tides is simulated with the variable, depth-average velocity.

We then use these two angles to determine whether the tides are traveling into

land or going out of land. If the angle between tide direction and Outer Banks

out-going direction is smaller than 90 degrees, we consider it as water coming

out of land as back surge; otherwise, water is coming toward land. We use

hue-preserved color [32] to represent the angle between current wave direction

and North. Green means wave traveling towards West while orange means East

in Figure 45 (b). The darkest green means the tides are traveling directly to

west while orange means tides traveling to east.

We consider water coming out of land as positive value and water coming to

land as negative value. Then we accumulate the +/- values into local time

windows to find out a temporal trend of how the water is traveling along the

time. Figure 45 (c) shows the aggregated values of local time windows. The

117

vertices which have back surge features are clearly with very high value. Using

these information we can locate the back surge.

2. Inundation

Emergency response department and decision makes are particularly more in-

terested in inundation timeline and level. Inundation is a simple but important

feature in the simulation. It is crucial in the decision making of evacuation.

We compare the elevation height of each time step with the height of land in

North Carolina and record the inundation area of each time step. We also cal-

culated the inundation possibilities for the vertices of North Carolina based on

its location to the land boundary and its height.

3. Hurricane path

The calculation of hurricane path is straightforward. First, we setup a back-

ground image without wind. At each time step, we use the rendering result

to subtract the background image, where we can find the location of eye with

manually assigned thresholds of RGB values. After calculating the eye position,

we smooth the path using a Gaussian function.

Based on the hurricane path we extracted, we can further calculate the speed

and locations of hurricane eyes along the path. Figure 46 shows a sample result

of an extracted path.

7.2.2.3 Animation Preparation

We use the automatic approach in Chapter 6 to create animations for the user

study. All the animations follow several design principles.

118

(a) (b)

(c)

Figure 45: Model of back surge. (a) shows the vertices in the grid. (b) shows the
elevation changes and tides directions. (c) shows the aggregated window values with
corresponding locations rendered in blue.

119

Figure 46: Result path of hurricane Irene extracted from simulation.

• Starting with an overview of entire duration

• Ending with focused view in relevant time duration

• Including all relevant data attributes in at least one segment of the animation

sequence

These principles are well-accepted in visualization communities as they are consistent

with the procedure of data exploration.

For each task, an animation is generated based on the assigned events and features.

Details of the animations are provided for each task in Section 7.2.6.

7.2.3 Hypotheses

According to the properties of animation and interactive visualization, we postu-

lated three hypotheses for experiments.

120

• H1: Animation would be faster than interactive visualization for presenting and

exploring dynamic events.

• H2: Interactive visualization would be more accurate for exploring specific data

features.

• H3: Animation could be more effective in identifying events than interactive

visualization.

7.2.4 Experiment Procedure

Before the study, a training session is provided. Several rendered snapshots of

each variable were displayed to the subjects. A demo animation is also played. Each

subject is given several minutes to learn the interactions and get familiar with the

system.

The order of experiments is randomized. Each task contains two sessions, with one

session for animation and another session for interactive visualization. The datasets

used in the two sessions are different. Both the order of animation / interactive

visualization and the order of datasets are randomized in the study. The tasks are all

independent and they are ordered the same throughout all the experiments to keep

consistency.

The procedure is the same for each task session. Subjects are given time to read and

understand the task first. For session with animation, an animation of a randomly

chosen dataset will be displayed. During this animation stage, subjects watches the

animation repeatedly until he/she finishes the task. They are allowed to use functions

as fast forward, rewind and play back as they wish. For session with interactive

121

visualization, subjects will use the system to finish the task. The irrelevant variable

selections are disabled in order to make the study fair. Answering sheets are provided

with task questions on them. Several tasks are with color figures and charts. The

participants write down answers on answering sheet with task questions.

All experiments are conducted in the same room and on the same machine. The

resolution of the display is 1920*1280.

7.2.5 Subjects

Participants are undergraduate and graduate students from the Computer Science

department. There are 12 subjects (10 male, 2 female) with an average age of 26

(maximum 29, minimum 19). Subjects are asked to work as quickly and accurately

as possible. No time limit is given. Both the results and completion time of each task

are recorded.

7.2.6 Tasks

The user study consisted of three categories and two tasks in each category.

7.2.6.1 Category 1 - Representation

One important usage of visualization is to represent data as represent the currently

happening events. Other user studies also include representation tasks [111]. The

intention of these tasks is to examine how well subjects could understand from the

animation or interactive visualization.

Task 1: Use the interactive visualization system or animation to visualize the

hurricane. Draw the path of the hurricane on the map.

Related to this task, two attributes, atmospheric pressure and wind strength, were

122

Figure 47: Left: A map was provided to subjects to draw the hurricane path; Middle:
An example of a subject answer. Right: Overlapped image of ground truth image
with subject answer. This image was then used to compute a pixel difference between
these two.

shown in the temporal trend panel. The animation consisted of two phases; each

phase displayed the hurricane wind strength and atmospheric pressure with a Bird’s-

eye view of the whole grid of the entire time duration respectively.

Task 2: Use the interactive visualization system or animation to visualize the

inundation areas. Mark all the inundation areas inside the blue circle.

Figure 48: Left: A map was provided to subjects to mark the inundation area; Middle:
An example of a subject answer. Right: Processed subject answer image, the user
answers were painted black. This image was then compared with the ground truth
image.

Elevation was the only attribute related to this task and was enabled in the control

123

panel. The average of elevation of every time step was shown in the temporal trend

window. Animation of inundation along North Carolina was shown to the subjects

including three phases: a whole time overview of the North Carolina coast; the second

phase showed a more focused view on areas around Outer Banks, the Pamlico and

Albemarle Sounds. They were asked to look for storm surge time duration, where the

highest possibilities of inundations were. The last phase displayed a view on North

Carolina coast of the time after the surges.

7.2.6.2 Category 2 - Exploration

This category focused on analyzing data with animation and interactive visualiza-

tion. The subjects were asked to explore if certain features or events existed in the

simulation. In addition, the subjects were asked to explore the relationships between

different variables, such as wind vectors and elevations.

Task 3: Do you find back surge during the storm surge, if yes, write down the

starting time step and ending time step of the back surge. Mark where back surge

happened on the map. The map was the same as task 2 without the blue circle.

In this task, the subjects were given the definition of back surge and the average

value of elevation of every time step was displayed. Subjects were asked to find specific

time steps and locations of back surges beginning and fading away. Since back surge

was one of the most important features found in the analysis of our data, this task

would focus on searching for back surge. A sample answer from subject was shown

in Figure 49.

The animation contained three phases: the first phase showed the overview on the

124

Figure 49: Sample answers from subjects for task 3. Participants marked back surge
area and wrote down the time duration.

North Carolina coast of the entire time duration displaying elevations; the second

phase used a focused view around back surge area detected by our algorithm during

the storm surge time displaying velocity vectors along with elevation surfaces; and

last phase showed the elevation changes after the hurricane passed.

Task 4: Describe the relationships (location, strength, and height) between the

hurricane eye and the highest elevation.

Subjects were asked to find the relationships between wind vectors and water eleva-

tions. The wind vectors clearly identified the hurricane eye and eye wall and showed

how it affected the elevations to change. A sample answer from subject of this task is

shown in Figure 50. Some hints including the temporal changes of the major feature

were provided for the subjects to understand the questions. In this case, the temporal

curves of elevation changes and atmospheric pressure were displayed. The interactive

systems enabled rendering elevation surface and wind vectors.

125

Figure 50: Sample answers from subjects for 4. The red line indicated the hurricane
path. Participants wrote down the answers.

The animation used two phases to describe this event by rendering the elevation

and wind direction using a focused view on North Carolina coast in the first phase

and a dynamically view following the hurricane eye to observe the wind in the second

phase. Both phases only animated time durations when hurricane was close to North

Carolina.

7.2.6.3 Category 3 - Reasoning

In this category, the subjects would look at very low level details on certain locations

in the simulation. We focused on if and how fast the subjects could find out the reason

of different behavior of two locations during the hurricane. The overall changes of

relevant variables in the detailed area would also be shown to the subjects.

126

Task 5: The two locations were NOAA water level observation stations on Outer

Banks. One is Oregon Marina Inlet, the other is Beaufort. The vertices around these

two areas were extracted and the overall changes of these vertices are shown to the

subjects. An overview of how hurricane traveled was presented to the subject and

then the relevant variables during the storm surge time were displayed. The question

is: Why the elevation and pressure changes are different from each other on those

two locations?

Figure 51 showed the locations of observation stations on Outer Banks and the

temporal trends of two different attributes. The animation displayed the focused view

of these two locations rendering relevant variables with the highlighted locations. The

animation displayed overall changes and then the changes during storm surge time

period using three phases. The first phase displayed the overall changes over the

entire time period. The second phase showed the elevation with velocity vectors to

help subjects find the reason for the differences in the elevation curves. The last

phase displayed the wind vectors with atmospheric pressure to help subject inspect

the pressure changes.

Task 6: Two canals in North Carolina which might be dramatically affected by the

storm surge were analyzed. One was the Pungo River Canal; the other was Adam

Creek Canal. The two canals were impacted differently during the hurricane because

of their locations to the hurricane path. The vertices around these two areas were

extracted and the overall changes of these vertices are shown to the subjects. The

subjects were asked to find out the reason why the two canals changed differently

during the storm surge. The question was: Why does the Pungo River Canal and

127

(a)Task 5, two locations on Outer Banks

(b)Elevation

(c)Atmospheric Pressure

Figure 51: (a) This image shows the two locations in task 5 on Outer Banks, marked
with red and blue box. (b) and (c) show the temporal trends of elevation changes
and atmospheric pressure of these two locations.

Adam Creek Canal have different elevation changes?

Figure 52 showed the locations of the two canals in North Carolina and the temporal

trends of two different attributes. The animation showed an overview of changes

during the entire time duration, rendering elevation surfaces, then displayed elevation

and water velocity of each location with a closer view during the surge time duration

one by one.

128

(a) Task 6, two canals in North Carolina

(b)Water Velocity

(c)Elevation

Figure 52: (a) This image shows the locations of the two canals in task 6, marked
with red and blue box. (b) and (c) show the temporal trends of water velocities and
elevation changes of these two locations.

7.2.7 Data Analysis and Results

7.2.7.1 Completion time

Table 3 shows the average completion time, standard deviation and t-test result of

each task. Figure 53 shows the completion time and STD error bar of all the tasks.

T-test results show significant differences in overall results and task 1, 4, 5, and 6.

The T-test result of overall is 0.000005, and for task 1 to 6 are 0.002, 0.106, 0.106,

0.049, 0.041 and 0.009 respectively.

We analyzed the completion time of all tasks disregarding the correctness of the

answers. Generally the subjects took less time to finish their tasks using animation

129

Figure 53: Task completion time and STD error bar. The first column is the overall
average;The rest are tasks 1-6.

Table 3: Task completion time and STD error

Case Animation Interaction t-test
all average 170.9861111 257.3611111 5.04182E-06

task 1 average 94.75 190.9166667 0.002455855
task 2 average 171.1666667 238.5 0.105595806
task 3 average 162.8333333 218.9166667 0.10584544
task 4 average 168.6666667 279.8333333 0.04891159
task 5 average 222.8333333 321.5833333 0.04069019
task 6 average 205.6666667 294.4166667 0.009488679

than interaction. We observed significant differences in completion time in task 1, 4,

5 and 6. This supports our hypothesis 1.

7.2.7.2 Accuracy

We first describe our grading of each task and then present the result of accuracy.

Task 1 & 2: Since the answers in this category are all drawn, we scan the answer

papers and compare the answers with our ground truth. Pixel-wised differences are

130

calculated.

For task 1, 20 points are evenly selected on the ground truth path. We then find the

nearest points to each on the path subjects drew. The sum of the distance between

all those points gives quantitative results of task 1.

For task 2, we compare the areas (number of pixels) from answer papers and the

ground truth. The ground truth and sample answer image is shown in Figure 48.

Task 3 & 4: The grading for task 3 is straightforward. Each of the answers on the

staring time step, the ending time step, and location, credits 33%. We allow a +/-5

time step differences in answering time step values.

The answers for task 4 is that there are several different phases of the relationship

between highest elevation and hurricane, such as highest elevation happened ahead of

or behind to the east of hurricane eye along the path. We give corresponding portion

of the grades to each correct description.

Task 5 & 6: Task 5 and 6 focus on letting the subject tell the reason of why different

locations have different impacts. The correct answers are the different distances

between locations and hurricane eye, as well as the time when hurricane passed.

Credits are given if the subjects described the reason perfectly or partially mentioning

the key words.

Table 4 shows the average accuracy, standard deviation and t-test result of each

task. Figure 54 shows the accuracy and STD error bar of all the tasks. T-test results

shows no significant differences in the results.

131

Figure 54: Task accuracy and STD error bar. The first column is overall average of
all the tasks; The t-test of all tasks doesn’t show significant differences.

Table 4: Task accuracy time and STD error

Case Animation Interaction t-test
all average 56.10363889 55.50241667 0.432729

task 1 average 80.066 84.0745 0.338127
task 2 average 63.9725 61.85666667 0.302523
task 3 average 60.75 52.5 0.247851
task 4 average 52.66666667 51.25 0.396065
task 5 average 58.33333333 62.5 0.337119
task 6 average 20.83333333 20.83333333 0.5

7.2.8 Discussion

From the results, we can observe that subjects usually take less time to complete

the tasks using animated visualization, which supports our hypnosis 1.

The overall accuracy is low in this study. Both animation and interaction are

averaging around 55%, indicating some tasks are more difficult than we anticipated.

Though the average accuracy of animation is slightly higher than interaction, we does

not observe significant differences in the results. This indicates our hypnosis 3 is not

132

supported by the results.In some case, the interaction achieves a better accuracy than

animation. The reason is that subjects gain more time to inspect one specified static

time step and perceive more details, for example, task 2. The presentation category

takes the least time to complete and highest accuracy. This finding supports our

hypnosis 2.

We consider the last category more difficult than the other two and probably will

take more time and be less accurate. The reasoning category does not reach a high

accuracy; probably due to that computer science students are not familiar with the

storm surge effects on elevation and land. Both interaction and animation receive a

low accuracy, but animation still out performs interaction on task completion time.

We plan to perform user studies on Meteorology students and faculties to find if they

can do better than computer science students.

Another interesting aspect of our analysis results is that since the subjects fell into

two conditions: animation first or interaction first. We can observe differences be-

tween these two conditions. For interaction first methods, the average accuracy of is

49.23% while later the animation method achieve 66%. This is reasonable because the

later method would have a better accuracy because the subjects are getting familiar

with the visualization when using the first condition of the study. For animation

first methods, the average accuracy of animation is 59.48%, as the interaction accu-

racy is 61.77%. As we can see, comparing the first used method and the latter used

method,animation always achieves a better accuracy than the interactive visualiza-

tion. Also, the improvement from both conditions also shows animation performs

better in perceive knowledges.

133

The average completion time of each task for Isabel is 3 minutes and 31 seconds

while for Irene is 3 minutes and 39 seconds. The average accuracy of tasks using

Isabel is 52.87% and for Irene is 58.74%. T-test result of accuracy for these two

dataset is 0.1508 which shows no significant difference. This indicates our results are

not affected by using two different datasets.

The average completion time of category 1, 2 and 3 is 176, 207 and 262 seconds

respectively. The average accuracy for category 1, 2 and 3 is 72.49%, 54.29% and

40.63%. These results are consistent with the difficulties of each category.

We observed how subjects interact with animation. Most of them will choose to stop

at one time which is related to the task and inspect that time step as they do using the

interaction system. It is understandable static renderings can give participants more

time to gain knowledges from the visualization. when users see interesting features or

events during the animation, a stop function will be beneficial to inspect more details

from the visualization.

In general, people perceive knowledge faster using animation. In our completion

time analysis, animation totally outperformed the interactive visualization. Further-

more, the accuracy of both methods is close to each other which means necessary

information can be observed and perceived from both visualization. Under the anima-

tion first condition, the subjects performs better in the following interaction methods

too. The animation helps the subjects to better understand what is happening in the

simulation. Because the subjects are from computer science department, they only

have some common knowledge of hurricane behaviors. They can only conclude what

they saw in the visualization. The results of accuracy shows that the animation is

134

slightly better or equivalent to interactive systems.

7.3 Conclusion

In this chapter, we evaluate the effectiveness of animation in visualizing scientific

time-varying data by conducting a formal user study. Our study compares two visu-

alization systems. One system is our animated visualization, which has created the

animations based on the focuses of tasks. The other is an interactive visualization

system, which adopts a popular design with an interactive rendering panel and a 2D

time curve panel. The study consists of tasks from three different categories, each of

which serves a specific goal in visualization and visual analysis.

In general, the study shows animation is beneficial in some cases but interactive

visualization also has its own strength too. The results show that animation is efficient

but there are no significant differences in accuracy. This hints that user can achieve

the same goal using animation faster than interactive visualization. We also observe

participants behaviors during the user study. In some case, such as task 1 and 2, based

on tradition and personal habits, interactive visualization is still users’ first choice.

In the representation category, the subjects are required to find the accurate position

and areas in the map, the static display provides them the best results when they

are recording their answers to the sheet. Also when under interactive visualization,

participants tend to select time steps and display them fast to achieve dynamic effects

which simulates the animation to observe changes between time steps. This means

switching between the views can have a beneficial effect. No matter dynamic or static,

visualization always needs to fit the the purposes the task.

CHAPTER 8: VISUALIZATION OF PROTOCOL

8.1 Introduction

In this chapter, we visualize non-traditional time-varying data, the network security

protocols, which can be considered as different behaviors at different time stamps,

and use animated visualization to help in teaching information assurance classes.

Information assurance education for both college students and the general public

has been well recognized by many universities as an important topic since the early

nineties. For example, Pothamsetty has investigated 25 security courses offered by

multiple universities that are designated as NSA Centers of Academic Excellence and

found that most of them adopted a curriculum structure of introductory-advanced

information assurance courses [106]. Our experiences in teaching introductory and

advanced security courses have led us to realize that there exists a gap between the

teaching of security primitives and protocols, which may severely impact the learning

outcomes of information assurance education. It has been shown that a group of

secure primitives may finally compose vulnerable protocols if they are inappropriately

organized. Therefore, special efforts must be made in the course plan to cultivate the

capability of students to select suitable primitives and organize them appropriately.

We believe that an interactive education environment for demonstration and exercises

can help bridge this teaching gap.

136

The objective of this project is to develop an innovative digital construction set by

integrating the achievements in security education and visualization. We also design

instructional demonstrations and hands-on experiments using the set to assist stu-

dents to bridge security primitives and protocols. Our approach applies the pedagog-

ical methods that have been learned from the success of children and adult education

using electronic blocks or construction sets [146, 154]. Specifically, we treat security

primitives as Lego pieces and protocols as construction results. Our work can serve

two tightly integrated purposes: automatic demonstrations of protocol decomposi-

tion to help students understand the relationships among primitives and protocols,

and hands-on experiments to cultivate their capabilities to manipulate primitives and

design protocols that satisfy different security requirements. The latter is one of the

ultimate objectives of information assurance education.

The main contribution of this research is a 3D digital Lego approach that visual-

izes security protocols effectively and automatically to teach information assurance

courses. Compared to traditional methods, this approach attempts to better reveal

the relationships among security primitives and protocols, thereby improving secu-

rity education outcomes. Our design of 3D digital Legos allows other instructors to

develop, share, and modify the sample Lego sets so that they can generate their own

demonstration and experiment materials easily. Based on this approach, we have

developed a prototype system with several important interaction functions that can

be used as a user-friendly demonstration and experiment environment. We have also

1Lego is a trademark of the LEGO Group. Here we use it only to represent the pieces of
a construction set.

137

performed initial evaluations to assess this Lego-based approach on teaching intro-

ductory security courses and received positive feedback.

This chapter is organized as follows. Section 8.2 discusses related work on construc-

tion sets in education and graphical approaches for information assurance courses. In

Section 8.3, we present our efforts to explore suitable representations of security pro-

tocols using real Lego toys, which help us design the 3D digital Legos. Section 8.4

describes our approach to 3D digital Lego generation for visualizing security protocols.

Section 8.5 presents the integrated system as a user-friendly demonstration and ex-

periment environment. We describe our evaluation processes and results in section 8.6

and provide a discussion on our approach in Section 8.7. Finally, Section 8.8 discusses

future extensions and concludes the chapter. This work is published in [157].

8.2 Related Work

8.2.1 Construction Sets

Construction sets have a venerable place in the history of education. Records show

that as early as in 1800 appeared a building set for castles and walled towns [68]. In

America, building blocks have been recommended to parents since 1826 [40].

Recently, the educational role of construction sets has been enhanced by the in-

tegration of computational media. For example, building blocks with sensors and

fiber optic output were used to construct a speech-enabled alphabet set [48] or 3D

structures for communicating to a computer [87]. Particularly, construction sets have

been widely used in undergraduate robotics education. For example, Lego bricks [110]

were used as the controllers for large Lego sets. The sets provided a wide space for

138

students to make hypotheses about how things work and validate their assumptions

[147]. Similar digital manipulations have been used in artificial intelligence, program-

ming, and general engineering courses [97, 99, 146]. Inspired by the success in robotics

education, digital construction sets have been applied to the design of space habitat

and vehicle [72] and computer systems [38]. For example, the functional decompo-

sition approach [38] has been applied to many systems, including analog electronics,

digital design, VLSI, and software.

In this chapter, we present an approach that adopts the concept of Legos to help

students understand the relationships among security protocols and the involving

primitives. Different from previous methods, our approach can automatically generate

specialized digital Legos for various security protocols.

8.2.2 Achievements in Security Education

This project is inspired by the fact that various security protocols are constructed

by a limited number of primitives. For example, Millen et al. [100] have summarized

ten reduction rules to decompose security protocols into simple units and Cremers [39]

has investigated how to decompose a complicated protocol into sub-protocols. There-

fore, we believe that a suitable design of digital Legos can be used to assist us in

teaching security protocols. Previously, we have developed a 2D Lego system for

security courses [143] in which special 2D Lego pieces are designed to visualize the

operations such as encryption. Our experiences show that the 2D shapes may cause

some difficulty in understanding the security protocols, since the message contents are

represented as embedded boundaries. Therefore, in this chapter we present a more

139

intuitive approach that can simulate the real 3D Legos.

Several other graphical approaches have been proposed for security education. For

example, Burger and Rothermel presented a general purpose simulation architecture

for teaching security protocols [28]. Saul and Hutchison developed a graphic environ-

ment for analyzing security protocols [116]. Schweitzer [117] designed an interactive

visualization tool for demonstrating protocols visually in a user-controlled stepwise

manner. Elmqvist also developed an animation function to display protocols in a step-

by-step fashion [49]. In contrast to our approach, these methods are mainly designed

to use graphics or interactions to emphasize the sequential events associated with a

protocol. Compared to previous methods, our approach can illustrate the messages

of a protocol in visual forms and demonstrate the relationships among primitives and

protocols.

8.3 Construction with Real Legos

8.3.1 Notation

We first introduce the notations that are used to describe a security protocol in

the remainder of this chapter. A security protocol usually consists of the interactions

among multiple entities. We adopt the Dolev-Yao model [45] to represent the deduc-

tion capabilities of the legitimate entities and attackers. Table 5 lists the notations

of the security protocols.

To build a generic approach that can represent a wide range of security protocols

and attacks, we have adopted a flexible two-tier construction method [143].

We use the subindex of an item to label its owner so that the end users of our

140

representation meaning

A entity A
N_B random number generated by B
Ku_B the public key of entity B
Kv_B the private key of entity B

Ks_AB the symmetric key shared between A and B
A → B A sends a message to B

x, y concatenation of items x and y
{msg}key a message encrypted with the key

Table 5: Notations of the symbols.

Figure 55: Two example security protocols, Woo Lam Protocol (left) and PKP pro-
tocol (right), shown in plain text.

system can directly edit the protocol files. For example, N_B represents a random

number generated by entity B. If the subindex contains two entity names, it is

shared between them. For example, Ks_AB represents a secret key shared between

entity A and entity B. As illustrated in Figure 55, this approach represents messages

of security protocols with plain text and they can be easily understood by the end

users.

8.3.2 Protocol Construction with Real Legos

Before designing 3D digital Legos, we have explored several ways to use real Lego

blocks to construct security protocols. This experiment helps us learn how the con-

141

cepts of Legos can be used to represent primitives and protocols and assists us in

designing effective 3D digital Legos for security education. The results also confirm

our hypothesis that Legos can be used as an appropriate metaphor in an education

tool to expose the relationships among security primitives and protocols. Below we

describe our selections of protocol representation and the designs of protocol con-

struction.

For constructing various protocols using real Legos, we have selected a Lego prod-

uct that satisfies two requirements. First, we look for products that contain small

Lego pieces so that the final construction results are in an appropriate size for demon-

stration and storage. Second, we need a large number of Lego blocks with similar

shapes, since primitives usually appear multiple times in a protocol. Under these two

requirements, we have selected the “Lego System Ultimate Building Set” made by

LEGO as our tool.

We have explored several ways to construct security protocols with real Legos. We

use colors to differentiate entities. For example, in Figure 56, red and yellow, blue

and white, or green and white are used to visualize entities A and B respectively.

We choose one or several Lego blocks to represent the primitive types. To utilize the

available Lego pieces efficiently, we select combinations of Lego shapes for different

primitive types carefully through the following procedure. First, we summarize the

frequencies of primitives in several security protocols that are taught in our intro-

ductory level security course. Then the number of each Lego shape is counted. By

matching the numbers of available Lego blocks to the frequencies of primitives, we

ensure that our design can utilize the available Lego blocks efficiently.

142

Figure 56: Example results of security protocols built with real Legos. Five designs
are shown on the left and four are shown on the bottom

143

Based on the designs of primitives, we have explored several methods to construct

protocols. Figure 56 shows five designs for the Needhand-Schroeder-Lowe protocol

on the top and four designs for the Andrew Secure RPC protocol on the bottom.

Our main choices are between the vertical and flat designs for the message contents.

For example, the top left red-yellow design in Figure 56 (top) is a vertical version for

providing a strong transition impression and the blue-white designs in Figure 56 (top)

and (bottom) are flat versions for demonstrating message contents. It is interesting to

note that multiple ways can be used to construct a protocol even with a simple Lego

set. Also, this experiment helped the authors to remember several security protocols

easily.

8.4 Automatic Construction of 3D Digital Legos

We design a method to construct specialized 3D digital Legos automatically for

teaching security protocols. This method allows more flexible generation of instruc-

tional demonstrations and hands-on experiments than real Legos. Compared to the

traditional text-based methods (examples shown in Figure 55), our Lego-based ap-

proach provides more effective course materials to direct the students’ focus and

attract their interests.

In this section, we present a generic method to construct 3D digital Lego sets

for teaching various security protocols. Our method is developed based on the two-

tier protocol representation that enables our approach to visualize different security

protocols and attacks. The entire generation process is automated to allow easy

creation and sharing of course materials.

144

8.4.1 Basic Lego Design

To better expose the relationships among primitives and protocols, we use different

shapes to represent the primitive types and different colors to represent the entities.

For each Lego block, only one surface is chosen to carry the information of message

contents and is used to determine whether or not two blocks can fit together. In this

way, a protocol can be visualized as multiple sending and receiving blocks.

Specifically, our digital Legos are constructed with the following procedure. First,

we generate a set of geometry meshes to represent the primitive pieces based on 2D

designs. Second, multiple blocks of digital Legos are composed in an appropriate

order to visualize a security protocol.

Since we want to construct the digital Lego blocks automatically for a given pro-

tocol, we use two portions with fixed shapes and two portions with adjustable shapes

to compose one Lego block. As shown in Figure 57, the top, bottom, and body define

the general shape of a Lego block and the content surface is generated according to

the message content. The shapes of the top and bottom portions match each other to

ensure the vertical connection between any two blocks. They always point downward,

since we assume that the protocols are executed from top to bottom. The content

surface carries the most important information so we use a later subsection to discuss

its generation in detail. The length of a block is also automatically adjusted according

to the content of a message.

Our main purpose for separating the sending and receiving blocks is to provide

flexibility to the demonstration and experiment tasks. Although a message is shared

145

Figure 57: Our Lego block consists of two portions with fixed shapes (top and bottom)
and two portions with adjustable shapes (body and content). The adjustable portions
are automatically generated according to the message content and sending/receiving
type.

between a sender and a receiver, their interpretation of the same message may be

different, especially when attackers are involved. This also allows us to show different

detail levels of the same message in demonstration and experiment tasks.

Once a protocol is selected, this Lego design allows us to generate all the Lego blocks

automatically. For better discretion of the Lego body and the message contents, we

use a similar, but deeper color for the Lego body. We believe that this design matches

the spirit of Legos closely, which is to capture the interests of students and attract

their focus to important security concepts represented by functional Lego shapes.

To generate 3D Legos, we use polygon meshes because of their flexibility. As

shown in Figure 57, the top, body, and bottom portions are composed of simple 3D

146

(a) (b) (c)

(d)

Figure 58: The generation process of primitive pieces. (a) We design grey-scale images
to represent primitive shapes. (b) The input image is automatically converted to a
3D mesh to represent the sending operation. (c) We reverse the point heights in (b)
to represent a receiving operation. (d) Sample results of using this primitive piece
during Lego visualization.

meshes. We use the following two subsections to describe our procedures to generate

the content surfaces.

8.4.2 Design and Generation of Primitive Representations

Since the message surfaces are rendered in 3D, we also prepare our primitive pieces

in 3D so that they can be used to compose 3D Lego blocks quickly during the rendering

process. The following describes our method that allows users to design the shapes

of primitives by transforming 2D images to 3D meshes.

Our method allows users to design their primitives using grey-scale images, as

shown in Figure 58 (a). Instructors can use any image editing software to input

their design easily and the rest procedure is automatically handled by our method.

147

Specifically, we map a n× n (100 is used for all the examples in this chapter) grid on

the input image, and preserve all the line connections in the grid. The pixel colors

(darkness values) in the image are used to adjust the corresponding point heights in

the grid. This procedure generates an initial 3D mesh that matches the appearance

of the input image. We also use the point heights to separate the raised portions from

the background and assign them to different colors during visualization. To improve

the efficiency of the rendering process, we simplify these meshes with the MeshLab

software [33] to generate the final primitive pieces. Figure 58 (b) shows the generated

mesh based on image (a) and the protruding surface is used to represent a sending

operation. We reverse the mesh in (b) to generate the receiving piece with a dented

surface. This design ensures that two content surfaces can be put face-to-face if and

only if their shapes match. The content surface is then combined with the other

portions of a Lego block to generate the final results in Figure 58 (d).

We have designed several Lego sets to cover all the primitives in our selected uniform

representation of protocols, as shown in Figure 59. These results demonstrate that

our approach can generate various Lego sets flexibly. This method also allows other

users to share these designs and create their own shapes easily. We believe that the

ability to switch primitive designs can help users to choose their desired styles and

make the learning process more attractive to students.

8.4.3 Generation of Content Surfaces

With the primitive pieces created above, we can automatically generate the content

surfaces of Lego blocks for a given message. To compose a connected 3D mesh as

148

Figure 59: Examples of our primitive designs. From top to bottom are princi-
pal/entity, random number, public key, private key, and symmetric key. The pieces
with red bodies are sending blocks and the green bodies are receiving blocks.

the content surface, we use the following procedure which first arranges a message

content on a 2D table and then stitches corresponding primitive pieces together.

A message often consists of a list of primitives connected by manipulation operators

such as encryption and concatenation.

We can view concatenation as the connection of two or more primitives at the same

level, and encryption as the coverage of primitives at a deeper level. A 2D table can

be generated for any given message. For example, Figure 60 (left) shows the filled

2D table for message “{B,{N_A,N_A}Ks_BS,A}Ks_AS” in the Yahalom protocol.

Starting from a corner of the 2D table, we fill it with the message content by increasing

the row when seeing concatenation or increasing the column when seeing encryption.

We also record whether or not a location on the table has content or not by assigning

a 0/1 flag to it. In this way, we can use such a 2D table to represent any message.

During the real-time rendering process, we draw Lego blocks according to their

149

Figure 60: The generation process of a content surface. A message
“{B,{N_A,N_A}Ks_BS,A}Ks_AS” is first converted to a 2D table (left), then ren-
dered with corresponding primitive pieces automatically (right).

content tables. For locations without any content (with flag 0), we draw one big

polygon to cover the space. For locations with contents (with flag 1), we draw the

corresponding primitive pieces in the pre-assigned colors of their entities. For sym-

metric keys, we take the colors of both entities and use each to draw half of the mesh.

Figure 60 shows an example of our rendering method.

Here we use a security protocol, Woo and Lam Pi 3 protocol, as an example to

illustrate our rendering process. Figure 61 shows the traditional text version of the

protocol on the left, and the digital Lego version on the right. We use colors to

represent the communicating entities in the protocol: red for Alice, green for Bob,

and blue for the server. In this example, we choose the last style shown in Figure 59,

with the heart shape representing an entity, the star representing a random number,

the club representing a public key, the claw representing a symmetric key, and the

echinus shape representing a private key. Each row of the rendering represents the

transition of one message. For example, the first row is Alice sending her identity A

150

Figure 61: Woo and Lam Pi 3 protocol shown in the text-based approach (left) and
the Lego-based approach (right).

to Bob. The convex and concave shapes are used to indicate the sending/receiving

operations.

8.5 Integrated Lego System

With our digital Lego sets, we have developed two types of course materials: pro-

tocol demonstrations and hands-on experiments. The demonstrations are designed

to better illustrate important protocol concepts during lectures. As a complemen-

tary component, our hands-on experiments are developed to train students to apply

security knowledge flexibly during protocol design. We have integrated both compo-

nents into one prototype Lego system, so that students can study examples and take

exercises with the same tool.

151

8.5.1 System Design

We develop our system with a multi-panel interface design. As shown in Figure 62,

our system is composed of a main rendering window on the left and two interaction

windows on the right. The main window contains four panels: primitive panel for

displaying the current primitive design (left top), protocol panel for node knowledge,

protocol contents or exercises (left middle), attack panel for attack strands and the

knowledge of a node selected by users (left bottom), and rendering panel for visual-

izing and interacting with 3D Legos (right). The right top window is designed for

users to adjust the rendering and interaction settings. The right bottom window is

for controlling the exercise process. This multi-panel interface allows us to integrate

multiple demonstration and experiment functions into our Lego system.

8.5.2 Interaction

Since we visualize security protocols with 3D digital Legos, it is important to

provide suitable interactive methods that allow users to browse Lego contents freely

and assist them in constructing protocols. As examples show in Figures 63 and 64,

our system is capable of the following specialized interaction functions:

• Rotating: Viewers can rotate individual or a group of Lego blocks.

• Moving: Viewers can also move individual or a group of Lego blocks around the

screen space.

• Displaying messages: The message contained in a selected Lego block is dis-

played in a floating window.

• Facing-to-viewer: We design a special facing-to-viewer rendering function, which

152

Figure 62: Our system interface includes both 3D Lego-based and text-based inter-
action panels.

turns the message content surfaces of selected Lego blocks to viewers while

preserving the central positions of these Lego blocks, as shown in Figure 63.

• Merging: Viewers can adjust the distances between adjacent Lego blocks and

finally merge all of them, just like playing with real Legos. An example of this

merging function is shown in Figure 64.

• Labeling: We also allow viewers to select important primitives or protocol por-

tions and adjust their rendering parameters to emphasize the important con-

tents.

8.5.3 Experiments

We also design an experiment function for our digital Lego system so that it can be

used for practice and homework. An experiment panel is provided with the supporting

153

Figure 63: Interaction examples of the single rotation, multiple rotation, moving,
facing-to-viewer, and displaying message functions.

Figure 64: An example of the merging interaction. The Lego blocks in the same
column are sent by the same entity and they are merged first. Then all the columns
are merged.

154

Figure 65: Experiment examples. Selected primitives can be automatically replaced
with a “?” mark.

functions, such as start, next, and complete. Suitable rendering settings are also

adopted during the visualization process. For example, Figure 65 (left) shows a Lego

block in our filling experiment. This experiment is designed to emphasize important

portions of protocols and strengthen related concepts by asking students to complete a

pre-designed protocol. For each of our sample protocols used in the class, we randomly

remove a portion of Lego blocks or messages that are related to the lecture contents.

A difficulty level is used to control the amount of information that is hidden. As

shown in Figure 65, our Lego construction method can automatically visualize the

protocol. We can also change the settings of 3D Legos to direct the attention of

users to specific portions of a protocol, such as using the facing-to-viewer motion in

Figure 63.

8.5.4 Results

We have tested the Lego approach with all the security protocols being taught in

our undergraduate course “Introduction to Information Security and Privacy”. The

selected protocols include the examples that are widely used in security courses, such

as Woo Lam protocol, Neumann Stubblebine, Needham Schroeder Public Key, Need-

155

ham Schroeder Lowe Public Key, and Otway Rees. We have also selected several

protocols from real life applications such as BAN modified version of CCITT X.509

(3), Kerberos V5, and KSL (Nonce based improvement of Kerberos V5). Many of

these protocols have been collected by the SPORE project [74]. For all these proto-

cols, our approach can automatically generate the Lego-based protocol visualizations.

Figure 66 shows the Lego representations of the following messages:

• “A->S:{N_B}Ku_B"

• “A->S:A"

• “A->S:{Ks_AB,N_B,A}Ks_BS"

• “S->A:{N_A,B,Ks_AB,{Ks_AB,A}Ks_BS}Ks_AS"

• “A->S:B,N_B,{A,N_A}Ks_BS"

• “A->S:A,N_A"

• “S->A:{B,Ks_AB,N_A,N_B}Ks_AS,{A,Ks_AB}Ks_BS"

Due to the space limit, in Figure 66 we illustrate messages with different lengths

and complexity, instead of the entire protocols. Since a protocol is composed of

individual messages, these examples demonstrate that our Lego construction approach

can handle quite a variety of security protocols.

Figure 67 shows one message represented in several designs of security primitives.

Other instructors can either adopt our samples directly or design their own appear-

ances of primitives. Our approach to constructing digital Legos allows an easy switch

of primitive designs during runtime.

We have also tested the usages of our interaction functions. When studying a

protocol, we often use the merging function to visualize the entire protocol. Then,

156

Figure 66: Example results demonstrate that our approach can visualize various
security protocols.

Figure 67: S → A : {B, Ks_AB, N_A, N_B}Ks_AS, {A, Ks_AB}Ks_BS.
The message is visualized in different primitive styles. Our Lego construction ap-
proach can switch among different primitive styles in real time.

we use the facing-to-viewer function to browse the contents of individual messages.

For protocols with many rounds of interactions, we can use the moving function

to scroll down the screen to view the entire protocol. For a particular Lego block,

viewers can use the rotating function to observe details or use the labeling function

to view the text representation of the message. We believe that these functions are

essential to help instructors or students to experience realistic interaction with 3D

Lego-represented security protocols.

8.6 Evaluation

We have designed and performed user studies to evaluate the effectiveness of our

Lego-based approach on teaching security protocols. The main evaluation goal is

to compare our Lego-based approach with the traditional text-based approach from

157

different educational aspects. The results of these studies have provided important

information to us on the advantages of the new Lego-based approach, as well as useful

clues to improve this visual-based scheme.

Our evaluation plan consists of the following two portions: an informal survey for

gathering feedback on the general Lego-based approach and a formal user study for

assessing the specific performance of the Lego-based and text-based approaches. The

following first describes the informal survey, which shows significant interests in using

Legos in class from students. Later, we present two experiments in our user study

and discuss their results.

8.6.1 Survey

Due to the limit of available time in our class, we have designed a brief survey to

assess the general interest of students for Lego-based approaches. Our hypothesis is

that an interactive tool based on a popular toy concept would pique the interest of

students in computing majors more so than traditional text-based methods. We be-

lieve the positive results indicate that visual approaches can better promote students

to study challenging and abstract security theories. The following lists the subjects,

procedure, results and discussions of our survey.

8.6.1.1 Subjects

Our subjects include 23 student volunteers from the “Introduction to Information

Security and Privacy” class at UNC Charlotte. The majority of our subjects are

juniors with computing backgrounds. Since these students have learned security pro-

tocols using the text-based approach throughout the semester, they are all equipped

158

with basic knowledge of security protocols and are familiar with the text-based ap-

proach.

8.6.1.2 Procedure

Before the survey, a fifteen minute introduction of our Lego-based approach is given

to the subjects. Since these students are familiar with the text-based approach, we

concentrate on explaining how the designs of digital Legos can be used to teach the

primitive and protocol relationships in general security protocols. We also demon-

strate the digital Lego system and its interaction methods. After the introduction,

we answer questions raised by the students for about ten minutes.

During the survey, each student is given a copy of the survey questions and in-

structed to take as much time as they need to finish. The survey is in the form of

multiple choice, Likert-scale, and free response questions. The questions are used to

assess the interest of students on general Lego related issues. Figure 68 shows the

four multiple choice questions and Table 6 shows the four Likert-scale questions (the

six scales are strongly agree, agree, slightly agree, slightly disagree, disagree, and

strongly disagree).

8.6.1.3 Results and Discussions:

The results of this survey indicate a strong motivation of students to combine text

and visual based approaches to learn security protocols. Considering that the students

participating in this survey have only been introduced to the Lego-based approach

shortly, we think that they may have questions and concerns on the details of digital

Legos. Even so, a majority of the students still choose the Lego-based approach in

159

Figure 68: Multiple choice questions in the survey and their results shown in the bar
graph. The questions are: (a) “Do you consider yourself as a visual learner or a verbal
learner?”; (b) “If I were learning about a protocol, I would prefer to walk through each
step by imagining a scenario where two or more entities execute the steps or use the
text-based methods used in class so far?”; (c) “When I think of a security protocol,
I get something most like visual of entities or text of a protocol?” (d) “I feel I can
learn best by using digital Legos, text or both?” The colors represent the choices of
students.

Questions Strongly Agree Agree Slightly Agree
(a) 9 12 2
(b) 3 8 9
(c) 10 4 2
(d) 0 5 11

Questions Slightly Disagree Disagree Strongly Disagree
(a) 0 0 0
(b) 0 3 0
(c) 3 2 2
(d) 3 4 0

Table 6: The results of the Likert-scale questions in the survey.
The questions are: (a) “I feel I can learn security protocols by a visual approach;” (b) “I feel

I can learn security protocols by a digital Lego system;” (c) “In the past, I played with Legos

a lot;” (d) “I feel I can learn security protocols by the text-based approach.” The numbers

represent the choices of students.

160

additional to the traditional text based approach.

As shown in Figure 68, all the students consider themselves to be visual learners,

which shows a unanimous interest in improving the traditional text-based approach.

About 91% students prefer to learn security protocols as visual entities and imagine

protocol scenarios in visual forms. This number indicates a wide acceptance of visual-

based education tools. Also, in the last question “I feel I can learn best by digital

Lego, text, or both?”, none of the students chose the text-based approach and about

65% chose a combined Lego and text-based approach. Since our system is able to

show the plain text of protocols as well as digital Legos, our system design matches

the interests of students.

Table 6 shows our Likert-scale questions and their results. If we use the scores 0 to

5 to represent the choices “Strongly Disagree” to “Strongly Agree”, the averages are

4.3, 3.35, 3.45, and 2.75 for questions (a)-(d), respectively. For the first question, “I

feel I can learn protocols by a visual approach”, the average score 4.3 shows a strong

confidence in visual-based approaches. For the last question, “I feel I can learn security

protocols by a text-based approach”, the average score 2.75 is just a little bit higher

than neutral. Since these students have been taught with the text-based approach, we

think that this score indicates some obvious obstacles they have experienced during

the semester. These two numbers match the results in Figure 68 as well. For sub-

questions (b) and (c), we can see high percentages of students who have played with

Lego in the past and who feel that they can learn security protocols by a digital Lego

system. We find that four out of the seven students who have not played with Legos

are also interested in the visual-aspect of this approach. This result indicates that the

161

combination of digital Legos and text in our system may best serve for the purpose.

8.6.2 User Studies

The survey results support our contention that visual-based approaches should

be used to improve the teaching of security protocols. We have further designed

and performed two user studies to assess our Lego-based approach. Specifically, we

concentrate on two essential aspects of learning: identification and memorization of

security primitives and protocols.

We modify our digital Lego system to generate an experiment environment for our

user studies. The following describes the three major changes.

• Adding automatic experiment functions, including randomizing question se-

quences, recording individual operation time durations and user answers, allow-

ing pause and resume during the experiment, and saving subject files;

• Enabling and disabling experiment buttons for different experiment phases.

During the observation phase, only one “question” button is active for view-

ing questions; during the response phase, only the multiple choice buttons are

active; and the “next” button becomes active only after an answer has been

selected. This function guides the subjects to finish the experiment without

distraction.

• Adjusting the user control panels by hiding all unnecessary interaction buttons.

Figure 69 shows the interface of our experiment environment using the Lego-based

approach and the text-based approach, respectively. The control buttons used during

the studies are the same for both methods, so that they do not affect the study results.

162

Figure 69: The interface of our experiment environment. The top shows a question
“A → B : {Ks_AB, N_B, A}?” using the text-based approach with the questions
and choices displayed in the right bottom panel. The bottom shows the same question
using the Lego-based approach with the questions and choices shown in the middle
3D Lego panel.

163

Before the experiments, we hold a practice session to familiarize the subjects with

our experiment environment and procedure. The procedure of the practice session is

the same as our user studies, except that the practice session only contains one sample

question and explanation for each experiment. This practice session is designed to

reduce the confusion of subjects during experiments and ensure the accuracy of our

captured time durations.

8.6.2.1 Experiment 1: Protocol Primitive Identification

Since the survey results have shown that the Lego-based approach can attract

the attention of students, we are interested in finding out how this approach can

assist the teaching of security protocols. Our first hypothesis is that the Lego-based

approach could help students identify important primitives in a protocol more easily

than the text-based approach. We design this experiment to evaluate the aspect of

identification through measuring the factors of accuracy and time duration during

identification tasks.

Apparatus: A Windows machine with an ordinary USB mouse.

Subjects: Seventeen students (5 females and 12 males) volunteered from the “Intro-

duction to Information Security and Privacy” class. They have all taken the survey

before this experiment.

Materials: Since this experiment requires subjects to study an entire protocol care-

fully, we have selected four short protocols: one contains 7 messages and the other

three contains 5 messages each. Also, all of the messages in these protocols consist

of a small number of primitives. Figure 70 shows these four protocols, corresponding

164

Figure 70: Four identification questions with choices and answers.

multiple choice questions, and their answers.

Procedure: To avoid the factor of question orders influencing the user study results,

we adopt the following procedure. For each subject, our experiment environment first

randomly divides the four protocols into two sets, one for the text-based approach

and the other for the Lego-based approach, and randomly determines the sequences of

protocols in each set. The order of the two approaches is also randomly chosen. Our

experiment environment automatically uses the first approach on the first protocol

set and the second approach on the second set.

For each protocol, the system first enters a memorization phase, which allows a

subject to study the protocol as long as he or she needs. Then, when the subjects

165

indicate that they are ready, the system shows them one portion of the protocol (with

three incorrect alternatives) in the same form that they have been viewing (digital or

traditional) and asks them to identify the message that appears in the full protocol

previously displayed. This leads to the response phase. After the subjects choose

their answers and click the “next” button, our system displays the next question and

repeats the same procedure until the experiment is finished. During the experiment,

our system automatically records the accuracy, memorization duration, and response

duration for each subject and each question.

Experiment Results and Analysis: Figures 71 (left) and 72 show the statistical re-

sults of this experiment. We calculate the averages and standard deviations of the

accuracy, memorization duration, and response duration respectively.

From the results, we can see that the memorization and response durations for

these two approaches are similar. The Lego-based approach attracts the attention

just a little bit longer than the text-based approach (3.3 seconds). The p-value from

t-test is 0.74 showing that this is not significantly different.

The response duration of the Lego-based approach is 9.2 seconds shorter than that

of the text-based approach, indicating that the Lego-based approach may be easier

for subjects to identify the missing primitives. However, the p-value from t-test is 0.1

showing that this difference is not significant.

The average accuracy of the Lego-based approach is much higher than that of the

text-based approach. We think that the low accuracy of the text-based approach

shows that the subjects have some difficulties on using the traditional method to

166

Figure 71: The results of experiment 1 (left) and experiment 2 (right).

Figure 72: Data analysis results for experiment 1. The left shows the accuracy results
and the right shows the memorization and response duration results.

identify the missing primitives. Since they have been familiar with the text-based

approach throughout the semester, this may reflect some obstacles they have during

the course. The absolute accuracy value of the Lego-based approach is also low,

but its response duration is shorter and the accuracy is much higher than the text-

based approach. The p-value from t-test is 0.03 showing that they are significantly

different. We think that this result demonstrates one advantage of the Lego-based

approach over the traditional text-based approach.

8.6.2.2 Experiment 2: Protocol Primitive Memorization

Since visual-based approaches might be used to strengthen user memory, we design

this experiment to evaluate whether or not the Lego-based approach can help subjects

remember the primitives in a protocol better than the text-based approach.

167

Figure 73: Ten memorization questions with choices and answers. The primitives
followed by a “!” will be replaced by a “?” in the experiments.

Apparatus and Subjects: The same as Experiment 1.

Materials: We have selected ten messages with different kinds of primitives appear-

ing in general security protocols. They are neither too long nor too short. The average

number of primitives in these messages is 6. Figure 73 shows the ten messages, cor-

responding multiple choice questions, and their answers.

Procedure: The same as experiment 1, our experiment environment randomly di-

vides all the messages into two sets, one for the text-based approach and the other for

the Lego-based approach, and randomly determines the question sequences in each

set. The order of the two approaches is also randomly determined.

The experiment procedure for each message is similar to the procedure for each

protocol in the experiment 1. After subjects study a message and click the question

button, our experiment environment replaces one primitive in the message with a “?”

mark, and displays four choices in the same format as the message. Figure 65 shows

one example of a message in the experiment. The subjects are then asked to identify

168

which primitive has appeared in the previous message. This procedure is repeated

until all the questions have been answered. During the experiment, we record the

accuracy, memorization duration and response duration for each subject and each

question.

Experiment Results and Analysis: Figures 71 (right) and 74 show the statistical

results of this experiment. We calculate the averages and standard deviations of the

accuracy, memorization duration, and response duration respectively.

All the results, including the accuracy, memorization duration, and response du-

ration, of these two approaches are similar. The p-values from the t-test also show

that they are not significantly different. The small difference between these two ap-

proaches may come from the fact that the text-based approach has been used to teach

these subjects throughout the semester, while the Lego-based approach is only briefly

introduced before the experiment.

Combining the results from our survey and two user studies, we think that the

Lego-based approach obviously offers more meaningful and interesting information for

students to observe, especially on the relationships among primitives and protocols.

Suitable usages of such visual information may lead to direct benefits for students to

learn and apply security protocols.

8.7 Discussion

The main strengths of the Lego-based approach are two fold: attract the interests

of students and improve the understanding of security protocols. First, it is essential

to the success of information assurance education that we can attract and retain the

169

Figure 74: Data analysis results for experiment 2. The left shows the accuracy results
and the right shows the memorization and response duration results.

interests of students. Both the survey and user studies in our evaluation demonstrate

that the combination of 3D digital Legos and the text-based approach is the best

solution for students to accept. We also emphasize this strength by providing several

features to our Lego system, including the flexibility to change primitive designs and

the 3D interaction methods that simulate real-life Lego experiences.

Second, the Lego toys promote children to recognize individual shapes and the

matching relationships among different blocks. Similarly, our approach constructs

digital Legos to help students identify individual security primitives and improve

their understanding of the relationships among primitives and protocols. Our user

studies evaluate two important aspects, primitive identification and memorization,

since they are directly related to our objectives. A good understanding of the re-

lationships among security primitives and protocols cannot be separated from the

understanding of individual primitives. During our development process, we explore

different designs of primitives, such as the shapes of key words and similar shapes

from objects in real-life, to help students link the protocol contents to the shapes

of the Lego blocks. The evaluation results demonstrate significantly better primitive

170

identification performance of our Lego-based approach compared to the traditional

text-based approach. We believe that once students are familiar with the primitive

pieces, better recognition can lead to better memorization of protocol details, and

thereby improving the understanding of security protocols. We plan to design more

user studies to evaluate other aspects of protocol understanding in the future.

In addition to these impacts, our approach also has the potential to help students

understand the linkage between the protocol design and its vulnerabilities. Here we

use the man-in-the-middle attack as an example to illustrate the potential. A security

protocol is vulnerable to the man-in-the-middle attack when the receiver cannot verify

the authenticity and integrity of a message. For example, when A sends its identity

and public key in plain-text to B, an attacker on the path can switch A’s public key

with its own public key. Under this attack, any messages that B intends to send to

A can be read by the attacker. We have integrated our digital Lego system with the

knowledge model for security protocols [91] to illustrate these attacks. As shown in

Figure 62, for every entity both its initial knowledge when the protocol starts and

the latest knowledge as the protocol proceeds are shown on the left bottom panel.

Therefore, we can combine the content of a message and the latest knowledge of its

receiver to identify the components that the receiver cannot verify or authenticate.

These components are then labeled in a special color to show that an attacker could

have changed their values and a man-in-the-middle attack might exist. Note that this

functionality is not dependent on any specific protocols. In fact, we have adopted

this technique in our undergraduate level security course to allow the students to

understand and compare the man-in-the-middle attacks and type flaw attacks on the

171

key exchange protocols such as Diffie-Hellman and Needham-Schroeder public key

protocols.

8.8 Conclusion and Future Work

To improve the information assurance education, we have developed a digital Lego

system for demonstrating and practicing important security concepts. We carefully

design our digital Lego sets to provide a generic representation of security protocols.

Our approach applies the pedagogical methods learned from toy construction sets

by treating security primitives as Lego pieces and protocols as construction results.

With our digital Lego sets, we have developed a prototype system and supporting

instructional materials. We have also designed and performed evaluations to assess

this Lego-based approach and found encouraging results and feedback.

In the future, we plan to introduce our digital Lego approach and course materials

gradually into the introductory level security courses. We have collected a list of

security protocols that are widely adopted in information assurance education. We

will apply interactive visualization techniques to develop supporting functions and

integrate them into a more comprehensive experiment environment. We plan to

publish our course materials and Lego system online to share with other researchers

and educators. We will also continue to perform formal user studies to gather data

from larger groups and evaluate the effectiveness of the Lego-based approach on aiding

students to understand security protocols. The results of the user studies will be used

to improve our Lego-based approach, so that security knowledge can be introduced

to a broader population.

CHAPTER 9: CONCLUSIONS AND FUTURE WORK

9.1 Conclusions

This dissertation presents new abstract visualization approaches for visualizing

large-scale time-varying datasets. Our concentration on abstract approaches is rooted

from the characteristics of temporal relationships. Two important components, data

feature or event extraction and statistical sampling, provide the essential techniques

to measure temporal relationships. They are also crucial to handle large-scale data

visualization. We believe that abstract visualization suits for the requirements of

applications of large-scale time-varying datasets.

Specifically, we present two abstract visualization platforms: time line and ani-

mated visualization. The time line approach transforms temporal relationships to

simple lines, which are generally easy to understand ans study. The animated visu-

alization approach summarizes a time-varying dataset as an event tree, which also

visualizes the composition structure of the focused event. Generally speaking, time

line provides an abstract snapshot of the entire time-varying dataset; while animated

visualization presents the time-varying dataset from the view of features-of-interest.

The two visualization platforms can be combined to visualize details at different levels.

173

9.2 Future Work

Large-scale time-varying data visualization is a very challenging topic. While efforts

including this dissertation have been made to develop effective approaches, there are

still gaps between current visualization techniques and expectations of scientific users.

Specifically related to the work presented in this dissertation, our future work can be

summarized under the following topics:

The approach of time lines can be used for other types of datasets, such as vec-

tor time-varying datasets and videos. We are interested in investigating solutions

to improve the effectiveness of time-varying data visualization from the following as-

pects. First, we believe that the concept of virtual words can be used to improve

the understanding of time-varying datasets in more flexible ways. We plan to design

a multi-link interface that can incorporate more information from virtual words to

provide new visual analytics capabilities. Second, we are interested in embedding ad-

ditional advanced comparison and analysis tools that use time lines as an interface to

visualize time-varying datasets. Third, we plan to integrate some useful information

we collect from feature points and feature descriptors in our time line visualization.

We are also interested in improving the low-dimensional embedding algorithms for

time line generation.

There are several future direction for our ensemble visualization. First, we plan to

build interactive and multi-display ensemble system to allow scientists explore and

analyze ensemble dataset through more information visualization technologies to find

more insights. Second, we intend to apply our methods to volumetric simulations.

174

This may require more pre-processing of the dataset and more sophisticated feature

extraction and description methods. Third, more information could be included in

the final visualization. Since time line is mainly an abstract shape to show how

data changes, given more 3D geo-spatial renderings can assist scientists to better

explore their dataset. Lastly, uncertainty, input/output parameter effects and more

summary statistics analysis need to be included into the study process to help scientist

understand not only the outcomes of simulation but also the underlying distribution

of members.

The approach of animated visualization has received positive feedbacks. Our fu-

ture work includes exploring the effectiveness of different narrative structures of the

same event given summary or interactive exploration tasks. This result can provide

useful information to design general animation techniques. We are also interested

in extending this approach to volumetric time-varying data visualization, where we

expect to integrate more feature tracking and data reduction methods.

For the evaluation of animated visualization, we plan to continue the study with

students and faculties from Meteorology Department to learn if there are differences

in accuracy from people who had more knowledge on storm surges. Secondly, we

want to test more features and phenomena that scientists are interested in as well as

design more study categories for visual analysis purposes. We plan to bring multiple

simulations together and improve the animation generation approach to fit these

requirements. Lastly, we will try different scientific datasets besides storm surge

simulations to see how users perceive knowledge from other datasets.

175

REFERENCES

[1] http://www.emc.ncep.noaa.gov/index.php?branch=SREF.

[2] http://www.cmascenter.org/.

[3] http://www.smoke-model.org/index.cfm.

[4] http://www.adcirc.org/.

[5] http://www.unidata.ucar.edu/software/netcdf/.

[6] Aigner, W., Miksch, S., Müller, W., Schumann, H., and Tominski, C. Visual
methods for analyzing time-oriented data. IEEE Transactions on Visualization
and Computer Graphics 14, 1 (2008), 47–60.

[7] Aigner, W., Rind, A., and Hoffmann, S. Comparative Evaluation of an Inter-
active Time-Series Visualization that Combines Quantitative Data with Quali-
tative Abstractions. Computer Graphics Forum 31, 3 (2012), 995–1004.

[8] Ainsworth, S., and VanLabeke, N. Multiple forms of dynamic representation.
Learning and Instruction 14, 3 (June 2004), 241–255.

[9] Akiba, H., Fout, N., and Ma, K.-L. Simultaneous classification of time-varying
volume data based on the time histogram. In EuroVis (2006), pp. 171–178.

[10] Akiba, H., and Ma, K.-L. A tri-space visualization interface for analyzing time-
varying multivariate volume data. In Proceedings of The Joint Eurographics-
IEEE VGTC Symposium on Visualization (2007).

[11] Akiba, H., Wang, C., and Ma, K.-L. Aniviz: A template-based animation tool
for volume visualization. IEEE Computer Graphics and Applications 99 (2009).

[12] Anselin, L., Syabri, I., and Smirnov, O. Visualizing multivariate spatial cor-
relation with dynamically linked windows. In University of California, Santa
Barbara. CD-ROM (2002).

[13] Archambault, D., Purchase, H., and Pinaud, B. Animation, small multiples, and
the effect of mental map preservation in dynamic graphs. IEEE Transactions
on Visualization and Computer Graphics 17, 4 (Apr. 2011), 539–552.

[14] Assa, J., Caspi, Y., and Cohen-Or, D. Action synopsis: Pose selection and
illustration. In Proceedings of ACM SIGGRAPH (2005), pp. 667–676.

[15] Bachthaler, S., and Weiskopf, D. Animation of orthogonal texture patterns for
vector field visualization. IEEE Transactions on Visualization and Computer
Graphics 14, 4 (2008), 741–755.

176

[16] Balabanian, J.-P., Viola, I., Möller, T., and Gröller, E. Temporal styles for
time-varying volume data. In Proceedings of 3DPVT’08 - the Fourth Inter-
national Symposium on 3D Data Processing, Visualization and Transmission
(June 2008), S. Gumhold, J. Kosecka, and O. Staadt, Eds., pp. 81–89.

[17] Banks, D. C., and Singer, B. A. A predictor-corrector technique for visualizing
unsteady flow. IEEE Transactions on Visualization and Computer Graphics 1,
2 (1995), 151–163.

[18] Bay, H., Ess, A., Tuytelaars, T., and Van Gool, L. Speeded-up robust features
(surf). Comput. Vis. Image Underst. 110 (June 2008), 346–359.

[19] Berlin, B., and Kay, P. Basic Color Terms: Their Universality and Evolution.
The David Hume Series, 1991.

[20] Blaas, J., Botha, C., and Post, F. Extensions of parallel coordinates for interac-
tive exploration of large multi-timepoint data sets. Visualization and Computer
Graphics, IEEE Transactions on 14, 6 (nov.-dec. 2008), 1436 –1451.

[21] Blok, C. A. Interactive animation to visually explore time series of satellite
imagery. In Proceedings of the 8th international conference on Visual Informa-
tion and Information Systems (Berlin, Heidelberg, 2006), VISUAL’05, Springer-
Verlag, pp. 71–82.

[22] Blumenkrants, M., Starovisky, H., and Shamir, A. Narrative algorithm visual-
ization. In SoftVis ’06: Proceedings of the 2006 ACM symposium on Software
visualization (2006).

[23] Bly, B. M., and Rumelhart, D. E. Cognitive Science (Handbook of Perception
and Cognition). Academic Press, 1999.

[24] Borg, I., and Groenen, P. Modern Multidimensional Scaling: Theory and Ap-
plications. Springer, 1997.

[25] Boyandin, I., Bertini, E., and Lalanne, D. A Qualitative Study on the Explo-
ration of Temporal Changes in Flow Maps with Animation and Small-Multiples.
Computer Graphics Forum 31, 3 (2012), 1005–1014.

[26] Brown, M., and Lowe, D. G. Recognising panoramas. In ICCV ’03: Proceed-
ings of the Ninth IEEE International Conference on Computer Vision (2003),
p. 1218.

[27] Bruckner, S., and Möandller, T. Result-driven exploration of simulation pa-
rameter spaces for visual effects design. Visualization and Computer Graphics,
IEEE Transactions on 16, 6 (nov.-dec. 2010), 1468 –1476.

[28] Burger, C., and Rothermel, K. A framework to support teaching in distributed
systems. Journal on Educational Resources in Computing 1, 3 (2001).

177

[29] Caban, J. J., and Rheingans, P. Texture-based transfer functions for direct
volume rendering. IEEE Transactions on Visualization and Computer Graphics
14, 6 (2008), 1364–1371.

[30] Chen, C.-K., Wang, C., Ma, K.-L., and Wittenberg, A. Static correlation
visualization for large time-varying volume data. In Proceedings of IEEE Pacific
Visualization Symposium (March 2011), pp. 27–34.

[31] Chiueh, T.-c., and Ma, K.-L. A parallel pipelined renderer for time-varying
volume data. In ISPAN ’97: Proceedings of the 1997 International Symposium
on Parallel Architectures, Algorithms and Networks (Washington, DC, USA,
1997), IEEE Computer Society, p. 9.

[32] Chuang, J., Weiskopf, D., and Moller, T. Hue-preserving color blending. IEEE
Transactions on Visualization and Computer Graphics 15, 6 (Nov. 2009), 1275–
1282.

[33] Cignoni, P., and et al. Meshlab. http://meshlab.sourceforge.net/.

[34] Comaniciu, D., and Meer, P. Mean shift: A robust approach toward feature
space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence
24, 5 (2002), 603–619.

[35] Cooten, V., Suzanne, and Coauthors. The ci-flow project: A system for total
water level prediction from the summit to the sea. Bulletin of the American
Meteorological Society 92 (2011), 1427šC1442.

[36] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. Introduction to
Algorithms. The MIT Press, 2001.

[37] Correa, C. D., and Silver, D. Dataset traversal with motion-controlled transfer
functions. Visualization Conference, IEEE 0 (2005), 46.

[38] Coulston, C., and Ford, R. Teaching functional decomposition for the design
of electrical and computer systems. In Proc. of IEEE Frontiers in Education
Annual Conference (2004).

[39] Cremers, C. Compositionality of security protocols: A research agenda. Elec-
tronic Notes in Theoretical Computer Science 142, 3 (2006), 99–110.

[40] Cross, G. Kids’ Stuff. Harvard University Press, 1997.

[41] Dietrich, J., Bunya, S., Westerink, J., Ebersole, B., Smith, J., Atkinson, J.,
RE Jensen, D. R., Jr, R. L., Dawson, C., Cardone, V., Cox, A., Powell, M.,
Westerink, H., and Roberts, H. A high-resolution coupled riverine flow, tide,
wind, wind wave, and storm surge model for southern louisiana and missis-
sippi, part ii: Synoptic description and analysis of hurricanes katrina and rita.
Monthly Weather Review 138 (2010), 378–404.

178

[42] Dietrich, J., Tanaka, S., Westerink, J., Dawson, C., Jr, R. L., Zijlema, M.,
Holthuijsen, L., Smith, J., Westerink, L., and Westerink, H. Performance of
the unstructured-mesh, swan+adcirc model in computing hurricane waves and
surge. Journal of Scientific Computing 52(2) (2012), 468–497.

[43] Dietrich, J., Trahan, C., Howard, M., Fleming, J., Weaver, R., Tanaka, S., Yu,
L., Jr., R. L., Dawson, C., Westerink, J., Wells, G., Lu, A., Vega, K., Kubach,
A., Dresback, K., Kolar, R., Kaiser, C., and Twilley, R. Surface trajectories
of oil transport along the northern coastline of the gulf of mexico. Continental
Shelf Research 41, 0 (2012), 17 – 47.

[44] Dietrich, J., Zijlema, M., Westerink, J., Holthuijsen, L., Dawson, C., Jr, R. L.,
Jensen, R., Smith, J., Stelling, G., and Stone, G. Modeling hurricane waves
and storm surge using integrally-coupled, scalable computations. Coastal En-
gineering 58 (2011), 45–65.

[45] Dolev, D., and Yao, A. On the security of public key protocols. IEEE Transac-
tions on Information Theory 29, 2 (1983), 198–208.

[46] Du, Z., Chiang, Y.-J., and Shen, H.-W. Out-of-core volume rendering for time-
varying fields using a space-partitioning time (spt) tree. In Visualization Sym-
posium, 2009. PacificVis ’09. IEEE Pacific (april 2009), pp. 73 –80.

[47] Edelsbrunner, H., Harer, J., Mascarenhas, A., and Pascucci, V. Time-varying
reeb graphs for continuous space-time data. In Proceedings of 20th Ann. Sym-
pos. Comput. Geom. (2004), pp. 366–372.

[48] Eisenberg, M., Eisenberg, A., Gross, M., Kaowthumrong, K., Lee, N., and
Lovett, W. Computationally-enhanced construction kits for children: Prototype
and principles. In Proc. of Int. Conf. of Learning Sciences (2002), pp. 79–85.

[49] Elmqvist, N. Protoviz: A simple security protocol visualization. Tech. rep., the
University of Gothenburg, 2004.

[50] Elmqvist, N., Dragicevic, P., and Fekete, J.-D. Rolling the dice: Multidimen-
sional visual exploration using scatterplot matrix navigation. IEEE Trans. Vis.
Comput. Graph. 14, 6 (2008), 1539–1148.

[51] Fang, Z., Möller, T., Hamarneh, G., and Celler, A. Visualization and explo-
ration of time-varying medical image data sets. In Proceedings of Graphics
Interface 2007 (New York, NY, USA, 2007), GI ’07, ACM, pp. 281–288.

[52] Farrugia, M., and Quigley, A. Effective temporal graph layout: a compara-
tive study of animation versus static display methods. Journal of Information
Visualization (2011).

[53] Finkelstein, A., Jacobs, C. E., and Salesin, D. H. Multiresolution video. In SIG-
GRAPH ’96: Proceedings of the 23rd annual conference on Computer graphics
and interactive techniques (1996).

179

[54] Fischer, F., Fuchs, J., and Mansmann, F. ClockMap: Enhancing Circular
Treemaps with Temporal Glyphs for Time-Series Data. In Proceedings of the
Eurographics Conference on Visualization (EuroVis 2012 Short Papers) (Vi-
enna, Austria, 2012), M. Meyer and T. Weinkauf, Eds., pp. 97–101.

[55] Fisher, R. The Statistical Utilization of Multiple Measurements. Annals of
Eugenics 8 (1938), 376–386.

[56] Fuchs, R., and Hauser, H. Visualization of multi-variate scientific data. Com-
puter Graphics Forum 28, 6 (2009), 1670–1690.

[57] Fujishiro, I., Otsuka, R., Takeshima, Y., and Takahashi, S. T-map: A topologi-
cal approach to visual exploration of time-varying volume data. In Proceedings
of ISHPC2005, Springer Lecture Notes in Computer Science (2007), vol. 4759.

[58] Fukunaga, K. Introduction to statistical pattern recognition (2nd ed.). Aca-
demic Press Professional, Inc., San Diego, CA, USA, 1990.

[59] Georgescu, B., Shimshoni, I., and Meer, P. Mean shift based clustering in high
dimensions: A texture classification example. In International Conference on
Computer Vision (2003), pp. 456–463.

[60] Gershon, N., and Page, W. What storytelling can do for information visualiza-
tion. Commun. ACM 44, 8 (2001), 31–37.

[61] Gershon, N. D. Visualization of fuzzy data using generalized animation. In VIS
’92: Proceedings of the 3rd conference on Visualization ’92 (1992), pp. 268–273.

[62] Gerstner, T., and Pajarola, R. Topology preserving and controlled topology
simplifying multiresolution isosurface extraction. In Proceedings of Visualiza-
tion (2000), pp. 259–266.

[63] Glatter, M., Huang, J., Ahern, S., Daniel, J., and Lu, A. Visualizing temporal
patterns in large multivariate data using modified globbing. Visualization and
Computer Graphics, IEEE Transactions on 14, 6 (nov.-dec. 2008), 1467 –1474.

[64] Glatter, M., Huang, J., Ahern, S., Daniel, J., and Lu, A. Visualizing tempo-
ral patterns in large multivariate data using textual pattern matching. IEEE
Transactions on Visualization and Computer Graphics 14, 6 (2008), 1467–1474.

[65] Gneiting, T., and Raftery, A. E. Weather forecasting with ensemble methods.
Science 310 (October 2005), 248–24.

[66] Goldfeather, J., and Interrante, V. A novel cubic-order algorithm for approxi-
mating principal direction vectors. ACM Trans. Graph. 23, 1 (2004), 45–63.

[67] Hao, M. C., Janetzko, H., Mittelstädt, S., Hill, W., Dayal, U., Keim, D. A.,
Marwah, M., and Sharma, R. K. A visual analytics approach for peak-preserving
prediction of large seasonal time series. Comput. Graph. Forum (2011), 691–
700.

180

[68] Harley, B. Constructional Toys. Shire Publications, UK, 1990.

[69] Harris, C., and Stephens, M. A combined corner and edge detector. In Pro-
ceedings of the 4th Alvey Vision Conference (1988), pp. 147–151.

[70] Heer, J., and Robertson, G. Animated transitions in statistical data graphics.
IEEE Transactions on Visualization and Computer Graphics 13, 6 (Nov. 2007),
1240–1247.

[71] Hegarty, M. Dynamic visualizations and learning: getting to the difficult ques-
tions. Learning and Instruction 14, 3 (June 2004), 343–351.

[72] Howe, A. The ultimate construction toy: Applying kit-ofparts theory to habitat
and vehicle design. In Proc. of Aerospace Architecture Symposium (2002).

[73] Hsu, W.-H., Mei, J., Correa, C., and Ma, K.-L. Depicting time evolving flow
with illustrative visualization techniques. 1st International ICST Conference on
Arts and Technology (May 2009).

[74] Jacquemard, F., and et al. Security protocols open repository.
http://www.lsv.ens-cachan.fr/Software/spore/index.html.

[75] Jang, Y., Ebert, D. S., and Gaither, K. Time-varying data visualization using
functional representations. IEEE Transactions on Visualization and Computer
Graphics 18 (2012), 421–433.

[76] Janicke, H., Bottinger, M., Mikolajewicz, U., and Scheuermann, G. Visual
exploration of climate variability changes using wavelet analysis. Visualization
and Computer Graphics, IEEE Transactions on 15, 6 (nov.-dec. 2009), 1375
–1382.

[77] Jankun-Kelly, T. J., and Ma, K.-L. A study of transfer function generation for
time-varying volume data. In Proceedings of Volume Graphics (2001), pp. 51–
65.

[78] Ji, G., Shen, H.-W., and Wenger, R. Volume tracking using higher dimensional
isosurfacing. In Proceedings of IEEE Visualization (2003).

[79] Johnson, C., and Hansen, C. Visualization Handbook. Academic Press, Inc.,
Orlando, FL, USA, 2004.

[80] Jolliffe, I. T. Principal Component Analysis. Springer, New York, NY, USA,
2002.

[81] Joshi, A., Caban, J., Rheingans, P., and Sparling, L. Case study on visual-
izing hurricanes using illustration-inspired techniques. IEEE Transactions on
Visualization and Computer Graphics 15, 5 (2009), 709–718.

[82] Joshi, A., and Rheingans, P. Evaluation of illustration-inspired techniques for
time-varying data visualization. Comput. Graph. Forum 27, 3 (2008), 999–1006.

181

[83] Keefe, D., Ewert, M., Ribarsky, W., and Chang, R. Interactive coordinated
multiple-view visualization of biomechanical motion data. Visualization and
Computer Graphics, IEEE Transactions on 15, 6 (nov.-dec. 2009), 1383 –1390.

[84] Kehoe, C., Stasko, J., and Taylor, A. Rethinking the evaluation of algorithm
animations as learning aids: an observational study. Int. J. Hum.-Comput.
Stud. 54, 2 (Feb. 2001), 265–284.

[85] Kehrer, J., Muigg, P., Doleisch, H., and Hauser, H. Interactive visual analysis
of heterogeneous scientific data across an interface. Visualization and Computer
Graphics, IEEE Transactions on 17, 7 (july 2011), 934 –946.

[86] Kindlmann, G., and Durkin, J. W. Semi-automatic generation of transfer func-
tions for direct volume rendering. In IEEE Symposium on Volume Visualization
(1998), pp. 79–86.

[87] Kitamura, Y., and et al. Real-time 3d interaction with activecube. In Proc. of
CHI (2001), pp. 355–356.

[88] Lazebnik, S., Schmid, C., and Ponce, J. Beyond bags of features: Spatial
pyramid matching for recognizing natural scene categories. In Computer Vision
and Pattern Recognition, 2006 IEEE Computer Society Conference on (2006),
vol. 2, pp. 2169–2178.

[89] Lee, T.-Y., and Shen, H.-W. Visualization and exploration of temporal trend
relationships in multivariate time-varying data. IEEE Transactions on Visual-
ization and Computer Graphics 15, 6 (2009), 1359–1366.

[90] Lefer, W., Jobard, B., and Leduc, C. High-quality animation of 2d steady
vector fields. IEEE Transactions on Visualization and Computer Graphics 10,
1 (2004), 2–14.

[91] Li, Z., and Wang, W. Using deductive knowledge to improve cryptographic pro-
tocol verification. In IEEE Military Communications Conference (MILCOM)
(2009).

[92] Lowe, D. G. Object recognition from local scale-invariant features. Computer
Vision, IEEE International Conference on 2 (1999), 1150.

[93] Lu, A., Maciejewski, R., and Ebert, D. S. Volume composition using eye track-
ing data. In Proceedings of EuroVis (2006).

[94] Lu, A., and Shen, H.-W. Interactive storyboard for overall time-varying data
visualization. In Proceedings of IEEE Pacific Visualization Symposium (2008),
pp. 143–150.

[95] Lum, E. B., Stompel, A., and Ma, K. L. Kinetic visualization: a technique for
illustrating 3d shape and structure. In VIS ’02: Proceedings of the conference
on Visualization ’02 (2002), pp. 435–442.

182

[96] Lundström, C., Ljung, P., Persson, A., and Ynnerman, A. Uncertainty vi-
sualization in medical volume rendering using probabilistic animation. IEEE
Transactions on Visualization and Computer Graphics 13, 6 (2007), 1648–1655.

[97] Maloney, J., Burd, L., Kafai, Y., Rusk, N., Silverman, B., and Resnick, M.
Scratch: A sneak preview. In Int. Conf. on Creating, Connecting, and Collab-
orating through Computing (2004), pp. 104–109.

[98] Mao, Y., Dillon, J., and Lebanon, G. Sequential document visualization. IEEE
Transactions on Visualization and Computer Graphics 13, 6 (2007), 1208–1215.

[99] Martin, F., Mikhak, B., Resnick, M., Silverman, B., and Berg, R. To mind-
storms and beyond: evolution of a construction kit for magical machines. In
Robots for kids: exploring new technologies for learning (2000), pp. 9–33.

[100] Millen, J., and Shmatikov, V. Constraint solving for bounded-process crypto-
graphic protocol analysis. In Proc. of ACM CCS (2001), pp. 166–175.

[101] Nam, J. E., Maurer, M., and Mueller, K. Knowledge assisted visualization:
A high-dimensional feature clustering approach to support knowledge-assisted
visualization. Comput. Graph. 33, 5 (2009), 607–615.

[102] Ni, D., Chui, Y. P., Qu, Y., Yang, X., Qin, J., Wong, T.-T., Ho, S. S. H.,
and Heng, P. A. Reconstruction of volumetric ultrasound panorama based on
improved 3d sift. Computerized Medical Imaging and Graphics (June 2009).

[103] Obstfeld, R. Fiction First Aid: Instant Remedies for Novels, Stories and Scripts.
Writer’s Digest Books, Cincinnati, OH, 2002.

[104] Phadke, M. N., Pinto, L., Alabi, F., Harter, J., 2nd, R. M. T., Wu, X., Han-
nah Petersen, S. A. B., and Healey, C. G. Exploring ensemble visualization. In
Visualization and Data Analytics 2012 (2012), pp. 1–12.

[105] Post, F. H., Vrolijk, B., Hauser, H., Laramee, R. S., and Doleisch, H. The state
of the art in flow visualization: Feature extraction and tracking. Computer
Graphics Forum 22, 4 (2003), 775–792.

[106] Pothamsetty, V. Where security education is lacking. In Proc. of InfoSecCD
(2005), pp. 54–58.

[107] Potter, K., Wilson, A., Bremer, P.-T., Williams, D., Doutriaux, C., Pascucci,
V., and Johhson, C. R. Visualization of uncertainty and ensemble data: Explo-
ration of climate modeling and weather forecast data with integrated visus-cdat
systems. In Proceedings of SciDAC 2009 (2009), vol. 180 of Journal of Physics:
Conference Series, p. (published online).

[108] Potter, K., Wilson, A., Bremer, P.-T., Williams, D., Doutriaux, C., Pascucci,
V., and Johnson, C. Ensemble-vis: A framework for the statistical visualiza-
tion of ensemble data. In Data Mining Workshops, 2009. ICDMW ’09. IEEE
International Conference on (dec. 2009), pp. 233 –240.

183

[109] Reinders, F., Post, F. H., and Spoelder, H. J. Visualization of time-dependent
data using feature tracking and event detection. The Visual Computer 17, 1
(2001), 55–71.

[110] Resnick, M., and et al. Programmable bricks: Toys to think with. IBM Systems
Journal 35, 3 (1996), 443–452.

[111] Robertson, G., Fernandez, R., Fisher, D., Lee, B., and Stasko, J. Effectiveness
of animation in trend visualization. IEEE Transactions on Visualization and
Computer Graphics 14, 6 (2008), 1325–1332.

[112] Robertson, G. G., Card, S. K., and Mackinlay, J. D. Information visualization
using 3d interactive animation. Commun. ACM 36, 4 (1993), 57–71.

[113] Roweis, S., and Saul, L. Nonlinear dimensionality reduction by locally linear
embedding. Science 290, 5500 (2000), 2323–2326.

[114] Samtaney, R., Silver, D., Zabusky, N., and Cao, J. Visualizing features and
tracking their evolution. IEEE Trans. Comput. 27 (1994), 20–27.

[115] Sanyal, J., Zhang, S., Dyer, J., Mercer, A., Amburn, P., and Moorhead, R. Noo-
dles: A tool for visualization of numerical weather model ensemble uncertainty.
Visualization and Computer Graphics, IEEE Transactions on 16, 6 (nov.-dec.
2010), 1421 –1430.

[116] Saul, E., and Hutchison, A. A graphical environment for the facilitation of
logic-based security protocol analysis. South African Computer, 21 (1998), 26–
30.

[117] Schweitzer, D., Baird, L., Collins, M., Brown, W., and Sherman, M. Grasp:
A visualization tool for teaching security protocols. In Proceedings of the 10th
Colloquium for Information Systems Security Education (2006).

[118] Scovanner, P., Ali, S., and Shah, M. A 3-dimensional sift descriptor and its
application to action recognition. In MULTIMEDIA ’07: Proceedings of the
15th international conference on Multimedia (2007), pp. 357–360.

[119] Shen, H.-W. Isosurface extraction in time-varying fields using a temporal hierar-
chical index tree. In VIS ’98: Proceedings of the conference on Visualization ’98
(Los Alamitos, CA, USA, 1998), IEEE Computer Society Press, pp. 159–166.

[120] Shen, H.-W., Chiang, L.-J., and Ma, K.-L. A fast volume rendering algorithm
for time-varying fields using a time-space partitioning (tsp) tree. In VISUAL-
IZATION ’99: Proceedings of the 10th IEEE Visualization 1999 Conference
(VIS ’99) (Washington, DC, USA, 1999), IEEE Computer Society.

[121] Shen, H.-W., Chiang, L.-J., and Ma, K.-L. A fast volume rendering algorithm
for time-varying fields using a time-space partitioning (tsp) tree. In IEEE Vi-
sualization (1999).

184

[122] Shi, K., Theisel, H., Hauser, H., Weinkauf, T., Matkovic, K., Hege, H.-C., and
Seidel, H.-P. Path line attributes – an information visualization approach to
analyzing the dynamic behavior of 3d time-dependent flow fields. In Topology-
Based Methods in Visualization II (2009), pp. 75–88.

[123] Silver, D., and Wang, X. Tracking and visualizing turbulent 3d features. IEEE
Transaction on Visualization and Computer Graphics 3, 2 (1997), 129–141.

[124] Sohn, B.-S., and Bajaj, C. Time-varying contour topology. IEEE Transactions
on Visualization and Computer Graphics 12, 1 (2006), 14–125.

[125] Stasko, J., Badre, A., and Lewis, C. Do algorithm animations assist learning?:
an empirical study and analysis. In Proceedings of the INTERACT ’93 and
CHI ’93 conference on Human factors in computing systems (New York, NY,
USA, 1993), CHI ’93, ACM, pp. 61–66.

[126] Sukharev, J., Wang, C., Ma, K.-L., and Wittenberg, A. T. Correlation study of
time-varying multivariate climate data sets. In PACIFICVIS ’09: Proceedings
of the 2009 IEEE Pacific Visualization Symposium (2009), pp. 161–168.

[127] Talbot, J., Lee, B., Kapoor, A., and Tan, D. Ensemblematrix: Interactive
visualization to support machine learning with multiple classifiers. In ACM
Human Factors in Computing Systems (CHI) (2009).

[128] Thomas, J. J., and Cook, K. A., Eds. Illuminating the Path: The Research
and Development Agenda for Visual Analytics. National Visualization and
Analytics Ctr, 2005.

[129] Tikhonova, A., Correa, C., and Ma, K.-L. An exploratory technique for coherent
visualization of time-varying volume data. Computer Graphics Forum 29, 3
(June 2010). (also Proceedings of EuroVis 2010).

[130] Torgeson, W. Multidimensional scaling of similarity. Psychometrika 30 (1965),
379–393.

[131] Trucco, E., and Verri, A. Introductory Techniques for 3-D Computer Vision.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 1998.

[132] Turkay, C., Parulek, J., Reuter, N., and Hauser, H. Interactive visual analysis of
temporal cluster structures. Computer Graphics Forum 30, 3 (2011), 711–720.

[133] TVERSKY, B., MORRISON, J. B., and BETRANCOURT, M. Animation: can
it facilitate? International Journal of Human-Computer Studies 57, 4 (2002),
247 – 262.

[134] Verma, V., and Pang, A. Comparative flow visualization. IEEE Transactions
on Visualization and Computer Graphics 10, 6 (2004), 609–624.

185

[135] Viola, I., Feixas, M., Sbert, M., and Groller, M. E. Importance-driven focus of
attention. IEEE Transactions on Visualization and Computer Graphics 12, 5
(2006), 933–940.

[136] Walker, J., Geng, Z., Jones, M., and Laramee, R. S. Visualization of Large,
Time-Dependent, Abstract Data with Integrated Spherical and Parallel Coor-
dinates. M. Meyer and T. Weinkauf, Eds., Eurographics Association, pp. 43–47.

[137] Wan, L., Mak, S.-K., Wong, T.-T., and Leung, C.-S. Spatiotemporal sampling of
dynamic environment sequences. Visualization and Computer Graphics, IEEE
Transactions on 17, 10 (oct. 2011), 1499 –1509.

[138] Wandell, B. A. Foundations of Vision. Sinauer Associates, 1995.

[139] Wang, C., and Chiang, Y.-J. Isosurface extraction and view-dependent filtering
from time-varying fields using persistent time-octree (ptot). Visualization and
Computer Graphics, IEEE Transactions on 15, 6 (nov.-dec. 2009), 1367 –1374.

[140] Wang, C., Yu, H., Grout, R. W., Ma, K.-L., and Chen, J. H. Analyzing in-
formation transfer in time-varying multivariate data. In Proceedings of IEEE
Pacific Visualization Symposium (March 2011), pp. 99–106.

[141] Wang, C., Yu, H., and Ma, K.-L. Importance-driven time-varying data visu-
alization. IEEE Transactions on Visualization and Computer Graphics 14, 6
(2008), 1547–1554.

[142] Wang, C., Yu, H., and Ma, K.-L. Application-driven compression for visualizing
large-scale time-varying data. IEEE Comput. Graph. Appl. 30 (January 2010),
59–69.

[143] Wang, W., Lu, A., Yu, L., and Li., Z. A digital lego set and exercises for teach-
ing security protocols. In Proceedings of Colloquium for Information Systems
Security Education (CISSE) (2008), pp. 26–33.

[144] Ward, M. O., and Guo, Z. Visual exploration of time-series data with shape
space projections. Computer Graphics Forum 30, 3 (2011), 701–710.

[145] Weaver, R. J., and Luettich, R. A. 2d vs. 3d storm surge sensitivity in adcirc:
Case study of hurricane isabel. In Estuarine and Coastal Modeling XI (2010).

[146] Weinberg, J., Engel, G., Gu, K., Karacal, C., Smith, S., White, W., and Yu, X.
A multidisplinary model for using robotics in engineering education. In Proc.
of The American Society for Engineering Education Annual Conference (2001).

[147] Weinberg, J., and Yu, X. Robotics in education: Low-cost platforms for teaching
integrated systems. IEEE Robotics and Automation 10, 2 (2003), 4–6.

[148] Wohlfart, M., and Hauser, H. Story telling for presentation in volume visual-
ization. In Proceedings of EuroVis (2007), pp. 91–98.

186

[149] Wold, S., Esbensen, K., and Geladi, P. Principal component analysis. Chemo-
metric and intelligent Lab. Sys. 2 (1987), 37–52.

[150] Woodring, J., and Shen, H.-W. Incorporating highlighting animations into
static visualizations. In Proceedings of SPIE Electronic Imaging (2007).

[151] Woodring, J., and Shen, H.-W. Multi-scale time activity data exploration via
temporal clustering visualization spreadsheet. IEEE Transactions on Visualiza-
tion and Computer Graphics 15, 1 (Jan 2009), 123–137.

[152] Woodring, J., and Shen, H.-W. Semi-automatic time-series transfer functions
via temporal clustering and sequencing. Computer Graphics Forum 28, 3 (June
2009), 791–198.

[153] Woodring, J., Wang, C., and Shen, H.-W. High dimensional direct rendering of
time-varying volumes. In Proceedings of IEEE Visualization (2003), pp. 417–
424.

[154] Wyeth, P., and Purchase, H. Using developmental theories to inform the design
of technology for children. In Proc. of Conf. on Interaction design and children
(2003), pp. 93–100.

[155] Xie, Z., Huang, S., Ward, M., and Rundensteiner, E. Exploratory visualiza-
tion of multivariate data with variable quality. In IEEE Symposium on Visual
Analytics Science and Technology (2006), pp. 183–190.

[156] Yu, H., Wang, C., Grout, R. W., Chen, J. H., and Ma, K.-L. In situ visualization
for large-scale combustion simulations. IEEE Comput. Graph. Appl. 30 (May
2010), 45–57.

[157] Yu, L., Harrison, L., Lu, A., Li, Z., and Wang, W. 3d digital legos for teaching
security protocols. TLT 4, 2 (2011), 125–137.

[158] Yu, L., Lu, A., and Chen, W. Generating time lines with virtual words for time-
varying data visualization. International Symposium on Visual Information
Communication and Interaction(VINCI) (2012).

[159] Yu, L., Lu, A., Ribarsky, W., and Chen, W. Automatic animation for time-
varying data visualization. Computer Graphics Forum 29, 7 (2010), 2271–2280.

[160] Yuan, X., Xiao, H., Guo, H., Guo, P., Kendall, W., Huang, J., and Zhang,
Y. Scalable multi-variate analytics of seismic and satellite-based observational
data. Visualization and Computer Graphics, IEEE Transactions on 16, 6 (nov.-
dec. 2010), 1413 –1420.

[161] Zhao, W., Chellappa, R., Phillips, P. J., and Rosenfeld, A. Face recognition: A
literature survey. ACM Comput. Surv. 35, 4 (2003), 399–458.

[162] Zijlema, M. Computation of wind-wave spectra in coastal waters with swan on
unstructured grids. Coastal Engineering 57, 3 (201), 267 – 277.

