
NASA Conference Publication 3321

ICASE/LaRC Symposium on Visualizing
Time-Varying Data

Edited by

D. C Banks, T. W. Crockett, and K. Stacy

Proceedings of a symposium sponsored by the
National Aeronautics and Space Administration,

Washington, D.C., and the Institute for Computer

Applications in Science and Engineering (ICASE),

Hampton, Virginia, and held in Williamsburg,Virginia
September 18-19, 1995

January 1996

https://ntrs.nasa.gov/search.jsp?R=19960015577 2020-06-16T04:46:26+00:00Z

NASA Conference Publication 3321

ICASE/LaRC Symposium on Visualizing
Time-Varying Data

Edited by
D. C. Banks

Mississippi State University • Mississippi State, Mississippi

T. W. Crockett

Institute for Computer Applications in Science and Engineering (ICASE) • Hampton, Virginia

K. Stacy

Langley Research Center • Hampton, Virginia

Proceedings of a symposium sponsored by the
National Aeronautics and Space Administration,

Washington, D.C., and the Institute for Computer

Applications in Science and Engineering (ICASE),
Hampton, Virginia, and held in Williamsburg,Virginia

September 18-19, 1995

National Aeronautics and Space Administration
Langley Research Center • Hampton, Virginia 23681-0001

January 1996

Cover Photo

Visualization of the flOW field near a high density contour in an
interstellar cloud collision simulation.

(From Flow Visualization Using Moving Textures, N. Max and B. Becker, LLNL)

This publication is available from the following sources:

NASA Center for AeroSpace Information
800 Elkridge Landing Road
Linthieum Heights, MD 21090-2934
(301) 621-0390

National Technical Information Service (NTIS)
5285 Port Royal Road
Springfield, VA 22161-2171
(703) 487-4650

ii

Preface

Time-varying datasets present difficult problems for both analysis and visualization. For example,

the data may be terabytes in size, distributed across mass storage systems at several sites, with

time scales ranging from femtoseconds to eons. In response to these challenges, ICASE and

NASA Langley Research Center, in cooperation with ACM SIGGRAPH, organized the first

Symposium on Visualizing Time-Varying Data. The purpose was to bring the producers of time-

varying data together with visualization specialists to assess open issues in the field, present new

solutions, and encourage collaborative problem-solving.

These proceedings contain the peer-reviewed papers which were presented at the Symposium.

They cover a broad range of topics, from methods for modeling and compressing data to systems

for visualizing CFD simulations and World Wide Web traffic. Because the subject matter is

inherently dynamic, a paper proceedings cannot adequately convey all aspects of the work. The

accompanying video proceedings provide additional context for several of the papers.

In addition to the contributed papers, the Symposium featured a dozen informal "home videos" of

work in progress, as well as several live demonstrations of visualization systems. We also

solicited contributions of time-varying datasets which pose challenging visualization problems.

Abstracts of the informal presentations are included here. The complete program, the contributed

datasets, and other materials are available on the World Wide Web at "http://www.icase.edu/

workshops/vtvd/" .

We wish to thank Jay Lambiotte, Bill von Ofenheim, and the Scientific Applications Branch at

NASA LaRC for their support of this Symposium. Brian Hahn of the Newport News office of

Silicon Graphics, Inc. furnished computer equipment to support the live demonstrations. Finally,

Emily Todd of ICASE provided invaluable assistance in managing the logistics of the Symposium

and assembling the proceedings.

David Banks, Mississippi State University

Tom Crockett, ICASE

Kathy Stacy, NASA Langley Research Center

g,i

I!!

Symposium Organizers

Symposium Co-Chairs:

David C. Banks, Mississippi State University

Kathryn Stacy, NASA Langley Research Center

Organizing Committee:

Mary Adams (Demonstrations), NASA Langley Research Center

Leon Clancy (Computer Systems), ICASE

Thomas Crockett (Datasets), ICASE

Kwan-Liu Ma (Publicity), ICASE

Piyush Mehrotra, ICASE

Kurt Severance (Audio/Visual), NASA Langley Research Center

Program Committee:

Lambertus Hesselink (Program Chair), Stanford University

Roger Crawfis, Lawrence Livermore National Laboratory

Robert Haimes, Massachusetts Institute of Technology

Chuck Hansen, Los AIamos National Laboratory

David Lane, Computer Sciences Corporation, NASA Ames Research Center

Nelson Max, Lawrence Livermore National Laboratory.

Duane Melson, NASA Langley Research Center

Lloyd Treinish, IBM T. J. Watson Research Center

Velvin Watson, NASA Ames Research Center

Reviewers:

David Banks, Mississippi State University

Roger Crawfis, Lawrence Livermore National Laborator)'

Robert Haimes, Massachusetts Institute of Technology

Chuck Hansen, Los AIamos National Laboratories

David Lane, NASA Ames Research Center

Nelson Max, Lawrence Livermore National Laboratory

Duane Melson, NASA Langley Research Center

Samuel Uselton, NASA Ames Research Center

Velvin Watson, NASA Ames Research Center

iv

Contents

Preface .. iii

Symposium Organizers ... iv

I. PAPERS

Visualizing and Modeling Categorical Time Series Data .. 3
Randy Ribler, Anup Mathur, and Marc Abrams

A Tool for Hierarchical Representation and Visualization
of Time-Varying Data .. 21

Pak Chnng Wong and R. Daniel Bergeron

Real-Time Visualization of World Wide Web Traffic ... 31

Will H. Scullin, Thomas T. Kwan, and Daniel A. Reed

Visualizing Causality ... 47
Eric J. Davies and William B. Cowan

Unsteady Visualization of Grand Challenge Size CFD Problems:
Traditional Post-Processing vs. Co-Processing ... 63

Robert Haimes

Flow Visualization Using Moving Textures .. 77
Nelson Max and Barry Becket

Volumetric Ray Casting of Time Varying Data Sets .. 89
Vineet Goel and Amar Mukherjee

1I. VIDEO PRESENTATIONS

Eddy Visualization for Various Ocean Models ... 109
Robert J. Moorhead, Zhifan Zhu, Kelly Gaither, and John VanderZwagg

Visualizing Time-Varying Volume Data Using Parallel Computers ... 109
Kwan-Liu Ma and Tzi-ck_r Chiueh

ARL Scientific Visualization ... 110

William Mattson and Rick Angelini

Visualization of ERBE Data .. 110

Larry Matthias and Paula Detweiler

Volumetric Visualization Techniques Applied to the
Time Evolution of a Turbulent Supersonic Flow
over a Flat Plate at Mach 2.25 .. 111

James Patten and Gordon Erlebacher

v

SVPTime-Dependent Visualization Selections ... 111
Mary Vickerman

Virtual Facilities: Visualizing Experimental Data .. 111
Richard J. Schwartz

Applications of Parallel Rendering in Visualizing
Time-Varying Data .. 112

Thomas W. Crockett, David C. Banks, William J. Bent,
Richard G. Wilmoth, Bart A. Singer, and Patricia J. Crossno

DeVise - A Tool For Visually Querying Sequence Data ... 112
M. Cheng, M. Livny, and R. Ramakrishnan

A High Resolution North Atlantic Ocean Circulation Calculation ... 113
Matthvw O'Kecfe

Visualization of Numerical Unsteady Flows .. 113
David Lane

Displaying the Rotation of a Vortex Tube ... 114
David Banks, Tom Crockett, Will Bene, and Bart Singer

Ill.TIME-VARYING DATASETS

3-D Unsteady Navier-Stokes Computations of Flow
Through a Ducted-Propeller Blade Passage .. 117

Robert T. Biedron

The Aerospace Flight Vehicle Pitch-Over Dataset .. 117
BillKleb

Unsteady Viscous Flow Over 3-D Rectangular Cavity .. 118
N. Duane Melson

Participants .. 119

vi

Papers

Visualizing and Modeling Categorical Time Series

Randy Ribler Anup Mathur
Marc Abrams

Department of Computer Science

Virginia Polytechnic Institute and State University

Blacksburg, VA 24061-0106

{ribler,mathur,abrams} @cs.vt.edu

August 25, 1995

Data

Abstract

Categorical time series data can not be effectively visualized and modeled using methods de-
veloped for ordinal data. The arbitrary mapping of categorical data to ordinal values can have a
number of undesirable consequences. New techniques for visualizing and modeling categorical time
series data are described, and examples are presented using computer and communications network
traces.

1 Introduction

Visualization tools allow scientists to comprehend very large data sets, and to discover relationships
which otherwise are difficult to detect. Unfortunately, not all types of data can easily be visualized using

existing tools. In particular, most of the large arsenal of tools that are available for the visualization

and modeling of numeric time series data are inappropriate for categorical time series data. This paper

identifies the particular problems that are encountered when visualizing and modeling categorical time

series, and proposes new methods which are useful in many domains. Example problems from computer
and communications network performance analysis are examined.

Categorical data is identified by category rather than by ordinal value. The data set can be partitioned

into a number of categories. Each element in the data set belongs to exactly one category. For example,

gender data is categorical data. Each item in a data set of people can be placed in one of the categories

from the set {Male, Female}.

Categorical data arises naturally in many types of analysis. The analysis of computer trace files was

the original motivation for this work. These files contain time series information describing the state of

an executing computer program. Some examples of categorical data contained in these traces are:

• the name of the currently executing procedure in a program

• the name of the disk drive in use

• the names of programs loaded in memory

• the name of a remote computer sending information

Trace files provide low-level descriptions of the time dependent state transitions which occur during

program execution. But trace files are often very large, and important information may be lost when
they are summarized or modeled with statistics such as averages and variances.

A trace file is an n length sequence of ordered pairs {7'1, S1}, {T2, $2}, ..., {T,, S_}, where Ti(1 < i < n),
is a time and Si is a system state vector which records pertinent system information. To simplify the

3

A
50 • t ,

0 "

4

4 "

° i / ,'o

I_Oow_l imq_.,oo _putm

/
_0 :to

-/

Figure 1: Sequence "abcdefghijklm" with one mapping of letters to numbers

analysis, and to create visualizations that are more intuitive, the system state vectors is usually broken
down into its component members, yielding a separate scalar time series for each member of the state

vector. In situations where it is important to consider the state vector as a unit, each unique vector is

identified by a unique model state, which is a single categorical value [ADM92]. In either case, the reduc-

tion allows us to analyze a time series of scalar values. We use the term event to refer to the individual

entries in the time series. We use the term state to refer to the category to which an individual event

belongs.

2 Problem Statement

2.1 Problem 1: Visualization

Visualization is generally accomplished through mapping data values to a coordinate system, and dis-

playing a 2-dimensional projection of a 2, 3, or more dimensional object. Often the same coordinate
system that is used to model a physical phenomenon is used to produce its visualization. Each data point

has a spatial relationship with every other data point in the set. This relationship can be expressed as
a vector.

Generally, spatial relationships between categories of data do not exist or are incomplete. We can

not compute a distance and a direction between names of things. This limitation renders the majority

of conventional visualization techniques inappropriate for use with categorical data.

Imposing spatial relationships through the arbitrary assignment of ordinal values to each category

can produce results that are either misleading or not particularly revealing. Figure 1 shows one mapping

of a repeated sequence of the states "abcdefghijklm." This mapping is obtained by assigning sequential

numbers to each of the letters in the sequence. The repeated ramps seem to match our intuition about

how a repeated sequence should look when the letters are mapped to numbers. Figure 2 shows a mapping

of different numbers to the same sequence of letters. Although it is clear from both graphs that a pattern

exists, the graph in Figure 2 contains additional oscillations which are misleading. When there are a

large number of unique states in the series, it becomes impossible to distinguish this phenomenon from
real oscillations in the data.

The fact that two different mapping can produce such different visualizations is not surprising when

we consider that n categories can be mapped to n ordinal values in n! different ways. It seems unlikely

that all n! different views will convey the same information equally well.

It is tempting to try to use the view itself as a basis for coordinate assignment. A mapping that

minimizes the distance between the state transitions, where distance is defined as the difference between

the ordinal values assigned to the successive states, might at first seem desirable. But because the same

4

lo

a

e

4

2

o o 1o 70

/
_o

i i
8o ao

Figure 2: The same sequence as Figure 1, with another mapping

mapping must be used throughout the trace, a mapping that minimizes distances globally may still

display very poor performance locally. In addition, it can be shown that determining this mapping,
known as Optimal Linear Sequencing, is NP-hard [GJ79].

2.2 Problem 2: Modeling

We can not directly model categorical time series for the same reasons that we can not directly visualize

them. That is, conventional models assume that ordinal relationships can be exploited. Another signif-

icant problem is that many models of time series data rely on time invariant probability di3tributions,
and yet, it is often important to model and understand the transient behavior present in traces. When

we model a trace, we view it as a realization of a stochastic process. In our models, the proLability mass

functions used to determine the stochastic process are time-dependent.

3 Traces Used for Illustration

Table 1 summarizes the traces used to demonstrate our visualizations and models.

Table 1: Example Traces

Traces

Trace Name

Gaussian Elimination

World Wide Web (WWW) Traffic

Dining Philosophers
Cache Hit Trace of WWW Traffic

Number of States Unique States
409 31

229,256 2973
5793 588

37 2

3.1 Gaussian Elimination

The Gaussian Elimination trace was obtained from an instrumented implementation which solves a

64 x 64 system of equations using 32 processors on an NCUBE multicom_)uter [RW93]. The system
state recorded in the trace is the number of the processor that last sent a message. Process numbers

are categorical because their exists no total ordering on their values - one processor is not "less than"
another.

S

3.2 World Wide Web Traffic

The World Wide Web (WWW) traffic trace records the names of files which were accessed on a server
used to store educational materials for computer science classes at Virginia Tech. This large trace includes

the names of all the files accessed over a period of 75 days [AWA+95].

3.3 Five Dining Philosophers

"he five dining philosophers trace was created by a parallel program running on a Sequent Symmetry at

_ rgonne National Labs. The program simulates a resource contention problem from operating system
d_ sign: five philosophers sit in a circle, eat spaghetti, and contend for a limited number of forks. At

an point, each philosopher is in one of eight po6sible states (e.g., eating, or waiting for a fork). Upon a
sta e change, the trace records a categorical data vector of length five, where each element in the vector

reccrds the state of one of the five philosophers. Each unique vector is mapped to a unique model state,

which is a single categorical value [ADM92].

3.4 Cache Hits

Cache :'or proxy) servers are used within organizations connected to the World Wide Web (WWW)

to keep tocal copies of frequently used files from remote WWW sites. The cache hit trace for WWW
traffic r_ :ords a "hit" when a requested file is available locally, and records a "miss" when a file must

be acces_ _ remotely from the WWW. We use a small section of this trace, displayed in Table 2, to

exemplify visualizations and modeling concepts.

Table 2: WWW Cache Hit trace

Number Ill Number

State

0 451420 miss 20 456250 miss

1 452660 miss 21 456340 miss

2 453270 hit 22 456380 hit

3 453300 miss 23 456850 miss

4 453460 hit 24 456869 miss

5 453690 miss 25 456870 miss

6 454090 miss 26 456871 miss

7 454140 miss 27 456872 miss

8 454170 miss 28 456880 miss

9 454290 miss 29 456900 miss

10 454410 miss 30 457190 miss

11 454510 miss 31 458050 miss

12 454640 miss 32 458490 miss

13 454730 miss 33 459210 miss

14 454750 miss 34 459300 miss

15 454890 miss 35 459320 miss

16 455460 m_ 36 459440 miss

17 455480 miss 37 459450 miss

18 455510 miss 38 459490 hit

19 455860 miss

4 Five New Visualizations of Categorical Time Series

Because it is not productive to map categorical data directly to ordinal values, we propose a strategy

which identifies numerical relationships between occurrences of categorical values in a time-series, and

uses these relationships as a means to visualization. This section describes a number of visualizations

which exploit the repetitions of states in the series to produce appropriate visualizations. We first

illustrate each visualization with the cache hit subtrace from Table 2 for pedagogical purposes, then with
another trace from Table 1 to illustrate a practical application.

4.1 Cumulative Categorical Periodogram

The periodogram is a popular view for ordinal data. The discrete Fourier transform (DFT) transforms

numeric time-series data into its component sine waves, which are used to produce the periodogram. But

the concept of component sine waves is inapplicable to categorical time series data. We need a different
definition of periodicity for categorical time series.

Intuitively, a categorical time series achieves a cycle when it returns to a previously encountered state.

The period of this cycle can be defined as either the number of intervening events plus one, or as the

time between the two occurrences of the state. We refer to the first definition as the untimed period,
and to the second as the timed period.

4.1.1 Untimed Cumulative Categorical Periodogram

Recall that a trace is a sequence, {T1, Sx }, {T2, S_} , {Tn, Sn}. We compute an Untimed Cumulative

Categorical Periodogram (CCP) by determining the number of times cycles with each of the possible

untimed periods (1 to n - 1) occur. The number of occurrences of cycles with period i in a sequence S

of length n is given by

Occnrrencesi = fi { 10 ifSj=Sj_,,• . otherwise.
J=l

Occurrencesi can be computed for 1 < i < n in O(n) time and O(number of categories) space.
Figure 3 shows the CCP generated from the cache hit trace in Table 2. The x-axis represents periods

and has domain [0, n). The y-axis represents occurrencesi, for 0 < i < n. The events numbered 3, 4,

5, and 23 contribute to the bar at z = 2 in the periodigram, giving it the value 4. Events 22 and 38

are responsible for the bars at 18 and 16 respectively. All other events, with the exceptions of events 0
and 2, contribute to the first bin. Events 0 and 2 are the first occurrences of states and therefore do not

represent the completion of a cycle.

Figure 4 shows the CCP generated from the five dining philosophers trace. The x-axis is logarithmic
to help distinguish the lower frequencies. The y-axis is logarithmic so that we can clearly see a wide

range of amplitudes. This particular graph identifies strong periodic behavior at periods near 6, 30, and
60.

4.1.2 Geometric Distribution of CCP

In uniformly distributed random data, the probability that a given event completes a cycle of length l
is pqJ-1, where p is the reciprocal of the number of uniformly distributed states, and q is 1 - p. This

means that the periods of the cycles present in random data will have a geometric distribution, where
the expected value for the number of occurrences of cycles of length l in a sequence of length n is

E(Occurrencesl) = (pql-1)(n - 1).

where Occurrencesl is the number of occurrences of states which recur with period I.

7

Cun'_Rtlve Ca_K)oeloa! Perto_io_r4_In ot hltr.er.e

26

2O

18

10

IS

0 o
I I I

2 4 6 IS "SO 12 14 18
I_urnDer o¢ On_nlenlnG 8uNIm Eleh_een I=loo_¢uml, r_ee

m

_l 2O

Figure 3: Untimed Cumulative Categorical Periodogram of Cache Hits

Gumumth,I CmeOo*tGmJ Pe_oclo_mm of 5..__1G_O___._rm

1OOO

i

1

Numbo¢ ¢_ _mct_m_ 8m _ _! 100OO

Figure 4: Untimed Cumulative CategoricalPeriodogram of Dining Philosophers

8

However, we expectto findstrong periodiccomponents inthe computer and communications network

trafficwe analyze,and these periodswilltend to be presentfor contiguous stretches.When periodic

components of a tracehave period Ievery Ith event willalsohave period I.The probabilityof seeingk
repetitionsofa givenperiod Iin random data is:

This quickly becomes very small as k gets large, so when we see localized periodic behavior in a

trace, we can be very confident that it is not from random chance. Still it may be desirable to normalize

to correct for this bias toward geometric distributions. This would allow random data to produce a

relatively flat curve. Normalization may be accomplished by subtracting the expected value from each
bin and dividing by the standard error.

NormOccurrencesl = (Occurrencesl - E(0ccurrencesl))

x/Var(Occurrencesl)

4.1.3 Timed CCP

The Timed CCP differs from the untimed CCP in that it defines the period of a cycle as the time between

the reoccurrences of a state. Figure 5 shows the timed CCP generated from the same trace of the five

dining philosophers simulation. This view shows that most of the periodic behavior occurs in between
3500 and 5500 time units.

Cu mulnl lye C_lltaoorl_l Pet'iooog_rn o4 5_s.. 1000_,_DO._2.e_

I 0 t000 eO00 eO_

jlllliii
_o 400o e_oo

Tn E_ween Reooou_l,orm_

II
7000

Figure 5: Timed Cumulative Categorical Periodogram of Dining Philosophers

i

|

Ca_.eoo¢lca! Perk_o¢iram o(Mr.enB

*** •

0 * * / i n i n
0 6 10 16 2o 26 30 _8 4O

Evor_ _mOer

Figure 6: Categorical Periodogram of Cache Hits

4.2 Categorical Periodogram (CP)

The CCP provides a visualization of the total number of occurrences of each period. However, it is often

useful to see exactly where the cycles occur in the time series. Figure 6 shows the categorical periodograrn

of our cache hit example. In this view we see not the events themselves, but the period since the previous

occurrence of each state. A dot is plotted on the graph for every event that completes a cycle. The z-

coordinate of the entry is the event sequence number, and the y-coordinate is the period of the cycle

which has been completed. For example, the point (1, 1) is plotted because in Table 2, $1 = So ="miss,"

thus the period of "miss" at event one is one. The point (4, 2) is plotted because $4 = $2 ="hit," yielding

a period of two. The categorical periodogram is designed to generate horizontal lines across sections of

the graph that contain strong periodic components.

An example of a categorical periodogram from trace data is shown in Figure 7, which shows the CP for

the dining philosophers trace. Several strong periodic components can be seen. Two central components
with periods of approximately 30 and 60 are particularly prominent, while some shorter components at

the left and right, which result from processes starting and stopping, also stand out clearly.

4.2.1 Timed Categorical Periodogram

The timed categorical periodogram, like the timed CCP, uses time between repetitions of states rather
than number of intervening events to determine period. Figure 8 shows the timed categorical periodogram

for the five dining philosophers problem. Several sequences with strong periodic behavior can also be

looo

1 o looo 3ooo 40oo &ooo
E_r*t nu rvlZ_r

Figure 7: Untimed Categorical Periodogram

1 _,.oe

1o0ooo

10000

looo

lOO

C_eOoflr.._ Penocloo_ltm of Is___looo_2oo_a.one

•. _: *"* t **_,..-*..R._. ! .I" ,_

o

1 i i * , i i
z. 2.4o86e._oe 2.4o6oe._oe 2.4o41e-,,_) 2.4o6:;_e-.o9 2.4oe.44p.oe 2.4ooee.,.oe 2.4o6ee..oo

,*_m)lute fJme

Figure 8: Timed Categorical Periodogram

10

seen here. In addition, some oscillating features can be seen. When a frequency is present in a trace for

a contiguous time interval, lines will form from the concentration of plotted points. When these lines

appear to move upward it is an indication of periods becoming longer, and when lines move downward,

it is an indication of periods becoming shorter. There appears to be a strong relationship between two

components in this trace. As the period of one component increases, the other decreases.

Figure 9 shows the oscillating section from the dining philosophers trace in greater detail and with a

linear rather than a log y-axis.

4.3 Mass Evolution Graph

It is difficult to identify which states comprise periods of interest using the categorical periodogram.

A single horizontal line may be made up of a series of different states. For example, the subsequence

"abcabcabc" will produce a solid horizontal line at y = 3. If, later in the sequence, these same states are
included in a subsequence of period six, there will be no way to identify the fact that these individual

states have a new period of reoccurrence. The Mass Evolution Graph (MEG) shows how the periodicity
of each state changes in time. The x-axis is the event number, and the y-axis indicates the number of

times the state has previously appeared in the trace.

Figure 10 shows the untimed MEG for the sub-trace of Table 2. The two different states (cache hit

and cache miss) are each represented by a different line. The ith occurrence of a state is plotted at

y-coordinate i. The x-coordinate is the event sequence number. MEG lines that are perfectly straight

identify periodic behavior. This can be seen in the segment of the trace that contains only cache misses.

Figure 9: Oscillating Section of Timed Categorical Periodogram

Uele Evolution Qraph of rmr.erm
36

s I ! i l I *

0 8 10 16 E_mk-a_D rr_e¢r_ 26 3O 35

Figure 10: Mass Evolution Graph of Cache Hits

In a system where a state s occurs with a probability p(s), we expect that a linear regression of the s

path in the MEG will have a slope equal to p(s). We can construct a MEG using either untimed or
timed definitions of period.

The MEG frequently extracts characteristics of a trace that are not easily discernible in any other
view. For example, Figure 11 shows that the Gaussian Elimination trace contains a series of distinct

phases, that is, it has distinct sections of the trace which have different probability density functions.

Places in the graph where lines touch the x-axis indicate times when model states appear for the first
time.

The slope of the MEG line between points (xi, Yi) and (xi+l, Yi+I) is:

(Yi+l - yi) 1

(_+_ - _,) - (_+_ - _,)'

which is equal to the frequency, or the reciprocal of the period in the categorical periodogram. So the

derivative of the mass evolution graph is equal to the reciprocal of the categorical periodogram. When
the i th model state in the sequence appears at period p in the categorical periodogram, the i th model

state in the MEG forms a line of slope 1/p with the preceding occurrence of that model state.

1!

Mm E_lutlon Ore® _ i)e.ens

I
i

0 60 IO0 180 20O 21[,0 30O _&O 400 4.8O
E_ nu rnDer

Figure 11: Mass Evolution Graph of Gaussian Elimination Trace

4.4 Correlation of Categorical Time Series

4.4.1 Components of Categorical Correlation

Correlation for numeric data is defined based on the strength of the relationship [Ott88] between an

independent and dependent variable. So for example, if the dependent variable gets larger when the in-

dependent variable gets larger, there is said to be a strong correlation between the two values. Categorical

data does not share this concept of larger and smaller values (which is larger "a" or "b?') so another

definition for categorical data is required. The definition should reflect our strong intuitive feelings about

correlated categorical data. For example, it seems obvious that two sequences, "abcdefg" and "abcdefg,"

should posses the highest degree (i.e. perfect) correlation. Similarly "abcabc" seems to be correlated to
"xyzxyz," but seems to be more highly correlated to "cbacba" and also correlated to "abcabd." These

concepts of correlation depend not on the one-to-one relationship between independent and dependent

variables, but on the similarities in sequences of independent/dependent variables.

Our intuitions, though strong in some instances, seem weak when we ask questions like, "Is 'abcabc'

more highly correlated to 'abcefg' or 'cbacba?'" These questions are difficult because they compare
different aspects of our intuitive idea of correlation. For example, "abcefg" matches "abcabc" for the

first three elements in the sequence, but "cbacba" has a one-to-one matching for each element in the

sequence and it also uses the same alphabet.

These different aspects suggest that the correlation should be a vector rather than a single value, where

each element of the vector corresponds to particular aspects of categorical correlation. The approach

here is to implement and test a categorical correlation made up of several components, and attempt to

evaluate the efficacy of each. All of the individual components range from 0 to 1, where 1 indicates

perfect correlation.

4.4.2 Correlating Subsequences

Rather than computing a correlation for the entire trace, we utilize a pair of moving windows, one window
for each trace, to determine the correlation of two subsequences. For each event, a correlation value is

computed which reflects the correlation of the two subsequences that are centered at that event. The

window size determines the length of the two subsequences. This method provides a view of how the
correlations of local subsequences change over time.

4.4.3 Parameters for Categorical Correlation

Several parameters will be used to describe categorical correlation. To determine the correlation for two

categorical sequences S and S' of length n, the following parameters will be used:

12

Sk is the k th element in sequence S, 1 < k < n

s_ is the k $h element in sequence S _, 1 < k < n
w is the size of the windows that will be compared

W is a subsequence in the window on S

W _ is a subsequence in the window on S _
Wiisthei th state in W,1 <i<w

IIAII is the size of the alphabet used (i.e. number of unique states)

4.4.4 Position Correlation

The simplest measure of correlation is the number of items in the two subsequences that match both in

category and position, divided by the number of items in the subsequence. We refer to this aspect as

position correlation.

o e w,soi '
4.4.5 State Set Correlation

The state set correlation is the number of states the two windows have in common, divided by the number

of items in the subsequence. Let A represent the union of the alphabets of states present in the two

windows. Let i be an index for an arbitrary numbering of the set A. Let Ci be the number of occurrences

of Ai in sequence W. Let C_ be the number of occurrences of Ai in the sequence W'.

IIAHmi_(C_, C')
StateSetCorrelation = _ w

1

4.4.6 Transitions in Common

Transitions in common attempts to measure the degree to which the two windows make the same tran-

sitions between contiguous states. So if both windows contain many instances of the same subsequence,
the transitions in common will tend to be high. Let T/d equal the number of transitions from state Ai

to state Aj in the sequence W. Let T[d equal the number of transitions from state Ai to state Aj in the
sequence W _.

IIAIIIIAIImin(7_,j, T[d)

TransitionslnCommon = _ _ _-_ : _
i=I j=l

We can compute a categorical correlation vector which contains a component for each of the measures
describe above. The following algorithm computes this categorical correlation vector.

A window W of size w is centered around one event in the S sequence and a similar window W' is

centered around the corresponding event in the S _ sequence. A categorical correlation vector is computed

for the two subsequences in W and W _. Each window is advanced by one state and the process is

repeated. The result is a sequence of correlation vectors. These may be visualized as a graph where

each component of the correlation vector appears as a separately plotted line in a 2-dimensional graph.

Because the windows can not be centered on the initial events (there are not enough events to fill the

windows), the windows are initially zero filled. This produces a bias in the initial correlations computed.

In most applications these initial correlations should be discarded.

13

Figure 12: Trie Visualization of WWW Trace

4.5 Pattern Visualization for Categorical Time Series

4.5.1 Trie Visualization

A pattern is a sequence of events that consists of a specified sequence of states. The trie visualization is

designed to find patterns in categorical time series. Because we do not know what patterns to look for, we

need a method that will find interesting patterns automatically. Depending on the application, interesting
patterns are patterns that occur frequently, infrequently, or within a certain range of repetitions.

If we define k as the maximum length of patterns that we want to detect, we can solve the problem
by partitioning the trace into k-space, where a section of the trace: _ to _+k is mapped to k-space

coordinate (Ti, _+I,-., _+k). If we use a k-dimensional array s that is initialized to zero, and increment

the value s[Ti, Ti+l, ..Ti+k] each time that the corresponding subsequence is encountered, we will generate

a sparse k-dimensional matrix which will contain values other than 0 only in locations corresponding to
sequences that occur in the trace. The entries in the k-dimensional matrix are equal to the number of

times the corresponding patterns occur. We can compute s in 0(n) time and space.

Given s we can produce a visualization which shows, for each event i in the sequence, the number of

times the subsequence beginning at event i and continuing to event i + k occurs in the entire sequence.

4.5.2 Examples Using Tries

The trievisualizationmethod can be used in a varietyofapplications.We have used itto analyzeWorld

Wide Web traffic,and to detectsectionsofcode that are common to multiplecomputer programs

We can use the Trie technique to view the repetitionspresentin the WWW Traffictrace.Figure 12

shows, foreach event,the number oftimes the 14statesubsequence beginning atthat eventoccurswithin

the entiretrace.There are a largenumber ofsequences thatare repeated 10-30times.Surprisingly,there

isat leastone sequence that occurs over 50,000 times in the trace.This sequence consistsof repeated
accessesto the same file.

5 Modeling Approach

Having proposed a number of visualizationsmethods, we next consider the use of one of them (MEG)

to generate a model. This sectiondescribeshow the MEG isused as a basisfor modeling. The goal

of MEG based modeling isto produce a time-dependent probabilitymass function (pmf) fi(t)foreach

statei recorded in the trace.The firststep towards recoveringfi(t)isto pldta curve with the Number

of Occurrences of state i as the abscissa and Time or Event Number as the ordinate. The slope of this

curve at any instant t is directly proportional to fi (t). We denote the set of such curves for all unique

14

states in the trace as the Mass Evolution Graph (MEG). The next step in our approach is to fit a curve

to each path in the MEG using linear regression techniques and compute si (t), the time-dependent slope

function for each fitted curve. Since si(t) represents the proportion of time state i occurs, instead of si(t)

we use the normalized si(t), si'(t), defined as follows:

s Ct)
s,'(t) - s (t)

Thus }'-_isi' (t) = 1. si' (t) is the estimated probability mass function for state i.
Table 3 below shows the normalized estimated pmf for the WWW cache hit trace. The columns

From Event and To Event in this table define an event interval for the pmf. The interval is closed at

From Event and open at To Event. The column P(O) is the probability of a cache miss during the

corresponding event interval in the table. Similarly the column P(1) is the probability of a cache hit

during the corresponding event interval in the table. The first line of Table 3 says that between event
numbers 0 and 2, p(0) = 1 and p(1) = 0.

Table 3: Model for the Cache Hit trace

Estimated pmf

From Event To Event

0 2

2 5

5 6

6 22

22 26

P(0) P(1)
1.00 0.00

0.50 0.50

0.90 0.10

0.95 0.05

1.00 0.00

The steps in the process of building a MEG model from a trace are discussed in detail below.

5.1 Partitioning Paths in the MEG

A path i in the MEG is a realization of the time-dependent pmf, fi(t), for the corresponding state. Our

goal is to obtain an estimate of this pmf. As discussed in section 5 above, the pmf for a state i at event
t is directly proportional to the slope of the corresponding MEG path si(t) at that event. This holds

true for all events except where the time-dependent pmf fi (t) is not differentiable. Denote such events

as partitioning events. Partitioning events define the boundaries of event-intervals such that:

• during each event-interval the function fi(t) has a constant value, and

• for each consecutive event-interval the function fi(t) has a distinct value.

To estimate the function fi(t) we must determine all the partitioning events for it. In a MEG path,

events where the slope of the path changes significantly are strong indicators of a partitioning event

for the corresponding state. In this step we determine the partitioning events for the pmf of a state by

partitioning the corresponding MEG path into segments of nearly-constant slope. We use two algorithms

that form a UNIX-style pipeline to partition a path in the MEG into segments having a constant slope.

The first algorithm computes the slope at every event for each path in the MEG. The input to this

algorithm is the MEG. The second algorithm partitions each path in the MEG into segments of constant

slope. The input to this algorithm are the MEG and the output from the first algorithm.

The partitioning algorithm inspects the slope at each consecutive pair of events in a MEG path. If

the slope at event Ei differs from the slope at the immediately previous event Ei-x by more than the user
defined parameter threshold then the event Ei is a partitioning event. _tnother user defined parameter

runlength enforces a lower bound on the number of events in a segment (e.g., if runlength = 2 then a

segment must have at least two points).

15

)

Figure 13: MEG of the Ganssian Elimination Trace After Fitting Straight Lines to Partitioned Segments

5.2 Fitting straight line segments to MEG paths

This step can be described by the following simple algorithm:

for every path i in the MEG {

for every partitioned segment j in path i {

fit a straight line 1;o segment j using linear regression;
} /* endfor */

} /* end for */

Figure 13 shows the MEG for the Gaussian Elimination trace after each path in it has been partitioned

(using the approach described in section 5.1) and each partitioned segment has been fitted with a straight
line.

Note that a single straight line can be fitted to the entire MEG path. This saves us from the

partitioning step described in the previous section (section 5.1). However, this usually leads to a less
accurate model.

5.3 Generating the Model

Generating the model after fitting straight lines to segments involves inferring an empirical probability

mass function using the fitted lines. To illustrate the mechanism for generating the model we start with

a simpler scenario, namely a single straight line is fitted to every path in the MEG output. Recall that

every path in the MEG output corresponds to a state in the trace. Also the slope of a MEG path is
proportional to the pmf for corresponding state. Using the above we can derive the probabilities for the

simple scenario by using the slopes of the straight lines fitting each path in the MEG output. Recall that
we already have these FittedSlopes from the previous step described in section 5.2.

The same idea is extended to MEG paths that are partitioned into segments. Consider the scenario

where a MEG path i (corresponding to state i) is partitioned into k segments and a straight line is

fitted to each of these k segments. From the FittedSlopes of each of the k segments we can build a

time-dependent estimated pmf for state i. Applied to all paths (and hence all states) in the MEG output
this generates an estimated time-dependent probability mass function for all states.

16

6 Model Validation

This section describes how we validate the MEG model. Vic also demonstrate how well our model

compares to a time-homogeneous semi-Markov model which does not take time-varying behavior into
account. The model generated from the Gaussian Eliminatio_l trace is used as an example.

6.1 Tests for Model Validation

We use two tests for model validation - categorical correlation and homogeneity.

6.1.1 Categorical Correlation

Categoricalcorrelation(section4.4)measures how closelycategoricaltime seriesresemble one another.

We use categoricalcorrelationplotsto gauge the accuracy of our model by measuring the correlation

between a tracesynthesizedfrom our model and the originaltrace.

6.1.2 Test of Homogeneity

Another validation test we use is the test of homogeneity. It is a statistical test which tests the following

null hypothesis:

• H0 : A trace synthesized from our model is generated from the same distribution that generated

the original trace.

We use the Kruskal-Wallis rank sum test with correction for ties [Ott88]. The Kruskal-Wallis test is
non-parametric test, so we do not need to make any distributional assumptions about the trace data.

To validate our model using the Kruskal-Wallis test we first synthesize traces from our model. A

synthesized trace is then compared with the original trace using the Kruskal-Wallis test. To make the

test more rigorous we partition the synthesized and the original traces into ten partitions and then apply
the Kruskal-Wallis test to each such partition in the synthesized trace and the corresponding partition

in the original trace. Denote by n the number of partition pairs for which H0 is not rejected. If n = 10
then all ten partitions of the synthesized trace match their corresponding partitions in the original trace.

6.2 Validation Results

The results from the validation tests for the model generated for the Gaussian Elimination trace are

described below.

6.2.1 Categorical Correlation Plots

The categorical correlation plots are constructed using a moving window 32 events wide. The ordinate

in these plots shows the categorical correlation component as a fraction that represents the degree of

correlation between traces. The plots in Figures 14 and 15, display the categorical correlation between

the original Gaussian Elimination trace (ge3_.origina 0 and a trace synthesized from the MEG model

(ge32.MEG). Also shown on each plot is the categorical correlation between the original Gaussian Elim-
ination trace (ge32.origina 0 and a trace synthesized from a semi-markov Model (ge32.semi-markov).

Figures 14 and 15, illustrate that for each of the categorical correlation components displayed, the trace

synthesized from the MEG model follows the original trace more accurately than the trace synthesized
from the semi-markov model.

17

.tEQ md_m_
i

:I ,),
Figure 14: CategoricalCorrelationPlot:Match Component

i

oi

ox

. , ,i

Figure 15: Categorical Correlation P_ot: Phase Component

4_

6.2.2 Results of the Kruskal-Wallls test

Table 4 shows the results of the Kruskal-Wallis test on original G aussian Elimination trace (ge32.original),
a trace synthesized from the MEG model (ge32.MEG), and a trace synthesized from the semi-Markov

model (ge32.semi-markov). As shown in Table 4 only 5 (out of 10) of the trace ge32.semi-markov pass
the Kruskal-Wallis test when compared to ge32.original. In a s;milar test all 10 segments of the trace
ge32.MEG passed.

Table 4: Results of the Kruskal-Wallis test for the Gaussian Elimination Trace

Kruskal-Wallis test results (a = 0.05, X _ = 3.84146)

Model No. segments passing the test Mean of H'

Semi-Markov 5 of 10 25.12

MEG 10 of 10 0.34

:Standard Deviation of H' I

r27.67

0.38

18

7 Conclusions and Future Work

In this paper we have demonstrated a number of visualization techniques for categorical time series data,
and a modeling approach which can build accurate models of time-dependent data. These techniques

can be used to help draw insights from very large data sets.
Because it is risky to draw conclusions about a population of traces from a single trace, all of these

techniques are currently being expanded to support ensembles of data. Many of the visualizations are

also being expanded to provide 3-dimensional views of the categorical attributes that we have described.

All of the views and models described in this paper have been incorporated into Chitra95, a third

generation performance analysis and visualization tool developed at Virginia Tech [ALG94, ABRV94],

available via WWW from http://www.cs.vt.edu/,-,chitra.

References

[ABRV94] M. Abrams, A. Batongbacal, R. Ribler, and D. Vazirani. CrIITRA94: A tool to dynamically

characterize ensembles of traces for input data modeling and output analysis. Technical

Report TR 94-21, Computer Sci. Dept., Virginia Tech, Blacksburg, VA 24061-0106, June

1994. Available from World Wide Web location http://www.cs.vt.edu/-_chitra.

[ADM92] M. Abrams, N. Doraswamy, and A. Mathur. Chitra: Visual analysis of parallel and distributed

programs in the time, event, and frequency domain. IEEE Trans. on Parallel and Distributed

Systems, 3(6):672-685, November 1992.

[ALG94] M. Abrams, T. Lee, and K. Ganugapati. Constructing software performance models from
trace data with Chitra92. submitted to Software - Practice and Experience, February 1994.

Computer Sci. Dept., Virginia Tech, TR 94-07.

[AWA+95] M. Abrams, S. Williams, G. Abdulla, S. Patel, R. Ribler, and E. Fox. Multimedia traf-

fic analysis using chitra95. Technical Report TR 95-05, Computer Sci. Dept., Virginia Tech,

Blacksburg, VA 24061-0106, May 1995. Available from World Wide Web location http://suc-

ceed/95multimediaAWAFPR/95multimediaAWAFPR.html.

[G J79] M. R. Garey and D. S. Johnson. Computers and Intractability. W.H. Freeman and Company,

New York, 1979.

[OttS8] L. Ott. An Introduction to Statistical Methods and Data Analysis. PWS-Kent, Boston, 3rd

edition, 1988.

[Rw93] Diane T. Rover and Abdul Waheed. Multiple-domain analysis methods. In ACM/ONR

Workshop on Parallel Debugging and Performance, proceedings appeared in A CM SIGPLAN

Notices, 28(12), Dec. 1993, pages 53-63, San Diego, May 1993. ACM.

19

A TOOL FOR HIERARCHICAL REPRESENTATION AND VISUALIZATION OF

TIME-VARYING DATA l

Pak Chung Wong

Department of Computer Science

University of New Hampshire

Durham, NH

R. Daniel Bergeron

Department of Computer Science

University of New Hampshire

Durham, NH

SUMMARY

A wavelet-based data visualization tool is presented to support multiresolution analysis of very large

multidimensional multivariate scientific data. It has the ability to display scientific data in a fine to coarse

hierarchical fashion. In addition, the tool has error tracking facilities that enable scientists to visualize error

information of an individual coarse approximation and the whole hierarchy.

INTRODUCTION

Developing very large scientific data visualization tools is a sophisticated process. Although a variety of

visualization tools exist for visualizing multidimensional multivariate scientific data [WB95a], none of them

really address the data size problem effectively.

It is often the case that scientists are primarily interested in analyzing only small subsets of the data at

the highest resolution obtained. The sheer quantity of data, however, makes it infeasible for them to explore

the data at this fine resolution. Very large scientific data needs to be reduced to a reasonable size to make it

useful. A key requirement, therefore, is to efficiently survey the full data set at a lower resolution and then

be able to identify and analyze interesting subsets of the data in greater detail.

We are developing a visualization prototype that supports multiresolution analysis of very large scientific

data. It is a data management tool as well as a data visualization tool. Currently our emphasis is placed

on one-dimensional time-varying data. We have developed an error tracking sub-system [WB95b] and a

partitioned wavelet transform mechanism [WB95d] to aid scientific data analysis. All indications are that

wavelets are very powerful tools [WB95a, WB95c], not just for very large data management, but also for

error tracking as well as missing values predictions [Hou94].

The prototype is implemented in C++ with a Motif front-end. It supports very large data visualization in

a variety of ways:

1This work has been supported in part by the National Science Foundation under grant IRI-9117153.

21

o it acceptsdatain CDF [Nat94], as well as system-defined binary and ASCII formats;

o it provides orthogonal wavelet support with up to ten vanishing moments;

o it supports progressive refinement data analysis with resolution as fine as one data item per pixel;

o it allows users to retrieve data and select display resolution interactively;

o it keeps track of the accumulated data loss as well as data loss from individual resolutions during

wavelet transforms;

o it displays data loss errors;

o it provides a variety of colormaps.

In the remainder of this paper, we discuss the prototype in greater detail and suggest how it may contribute

to the understanding of very large scientific data.

INTERACTIVE DATA EXPLORATION MODEL

The concept of hierarchical data representation is critical for data exploration because it may be too

expensive for scientists to re-visit the original data frequently. The size of the data may also prevent them

from storing it locally. Besides, reduced data stored in random access memory such as a CD-ROM can be

accessed freely without much memory burden. This version of data might be the best, i.e., highest resolution,

the scientist can access locally.

A more important aspect of the hierarchical representation is the notion of interactive data exploration.

Scientists can first pin-point the interesting subsets of data from the resolutions that suit their applications

and memory capacity. They can then acquire finer but localized data from other data banks through channels

such asftp, World Wide Web, or any distributed CD-ROM library.

TIME-VARYING SCIENTIFIC DATA

Our target data is obtained from the NASA International Solar-Terrestrial Physics (ISTP) [God92]

program. The data is stored on CD-ROM in CDF. The medium-sized sample data used for illustrations in

this paper is extracted from the CD-ROM USA_NASA_DDF_ISTP_K1P_0003 recorded from the spacecraft

GEOTAIL. This data set contains electron average energy data recorded every 64 seconds around the earth

for the first three months of 1994. It has a total of 217 = 131,072 integers.

WAVELETS

Although wavelets play an important role in our design, we do not describe wavelet theory in detail in

this paper. The reader is referred to [Str89, Dau92, Chu92] for more details. For novices, we recommend
[WB94].

22

Without lossof generality,a waveletis describedasa filter matrix that acceptsa datastreamwith N
N N

items, and generates T approximation values and T detail values. The approximation is a coarse summary

of the original data. A hierarchy of coarse approximations is generated when this process is applied

iteratively on the approximations to get increasingly coarse data. Figure 1 depicts a simple example of

i l 1

i-I I Ilppmximatio_

Figure 1: Wavelet decomposition on a 1D dataset.

a multiresolution hierarchy generated by wavelet decompositions. Wavelet transforms are invertible. If

both the approximations and the details of any one resolution are available, it is possible to have a lossless

reconstruction of the approximations of the next finer resolution.

USER INTERFACE OVERVIEW

The system front-end is divided into eight window panes. A copy of a typical system display is shown

in Figure 2 and Color Plate 1.

Figure 2: The system displays a coarse approximation of a one-dimensional dataset with 131,072 items.

The first pane contains five command buttons, as shown in Figure 3. The first button is the data bank

command, which initiates all the system I/O operations. The next one is the wavelet command button. It

looks up the wavelet selection table and generates the multiresolution wavelet approximations accordingly.

The middle button allows scientists to select colormaps. It is followed by a context-sensitive help command

button, and the exit button.

23

Figure3: Systemcommandbuttons.

Thecolormapwindowpanein theupperright of Figure2 displaysall thecolorscurrentlyavailablefor
datamapping.Figure4 andColor Plate2 depictfive pre-definedcolormapsdescribedby Levkowitz and

Figure4: From topto bottom: therainbowscale,theheated-objectscale,themagentascale,thebluescale,
andthelinearizedoptimalcolor scale.

Herman[LH92] for visualization.Theyaretherainbowscale,the heated-objectscale,themagentascale,
thebluescale,andthelinearizedoptimalcolor scale.

Theresolutionselectionbuttonspaneis shownin Figure5. In thisexample,theone-dimensionalinput

Figure5: Multiresolutionbuttons.

datahasa total of 131,072items. Thecoarsestresolutionsupportedby thesystemis 1,024. That means
thereareatotalof 7 resolutionsavailable,with resolution0 beingthecoarsest.

Figure6depictsa portionof thedatarangeselectionpane.Thebackgroundof theslider is thecoarsest

Figure6: Datarangeselectionslider.

approximationof theoriginal data.It servesasaroughguidelinefor navigatingthroughverylargescientific
data. The rectangularshapedrubberbandmarks therangeof databeing selected. The position of the
rubberbandis controlledby themouse.Thebox sizedependson thedisplayresolutionandthesizeof the
originaldata.

Weskip themaindatadisplaywindowpanefor now,andmoveon to thenextcontrol slider.Theindex
reflectedby the slider is usedto mapdatato color. The currentprototypeonly allowsvery simplecolor
mapping.

24

I Data ID is ISTP.84. _ _ _ l_i

:'l Resolution 3 is selected. Ill

............... .

Figure 7: System message display.

The system provides a scrollable message box, which is depicted in Figure 7. It is used to display system

status including data ID, metadata, colormap, wavelet, as well as error messages.

The wavelet window pane displays the wavelet currently being used. Figure 8 depicts a Daubechies

Figure 8: Wavelet display.

wavelet [Dau92] with five vanishing moments.

The wavelet selection pane contains ten selection buttons, as shown in Figure 9. The system currently

Figure 9: Wavelet selection buttons.

provides compactly supported orthogonal wavelets with vanishing moments from 1 to 10. This includes the

Haar wavelet, and the nine wavelets of the Daubechies family.

MULTIRESOLUTION VISUALIZATION

The main window pane in Figure 2 is the data visualization area of the system. Since one-dimensional

time-varying data is the primary target of this prototype, we limit the visualization options to simple polyline

plots. This basic technique, although very simple, is a powerful tool to convey information and characteristics

of time-varying data [Cle93].

Figure 10 and Color Plate 3 show the one-dimensional ISTP data set described earlier. A highly

localized Daubechies wavelet is used to generate the multiresolution hierarchy, from the 0 th resolution with

2 _° = 1,024 to the 6 t_ resolution with 216 = 65,536 items. A rainbow colormap, as depicted in Figure 4, is

used for the display.

25

Figure10:Top: Thecoarsestapproximationof thedata at the 0 th resolution. Dotted rectangles are zooming

windows. The height indicates the data value and the color shows its corresponding approximation error.
Middle: The zoomed data at the 3 _a resolution. Bottom: The zoomed data at the 6 th resolution.

We start from the coarsest (0 th) resolution with 1,024 items. After the interesting spot (the highly

fluctuating data with some of the highest data values) is identified, we study the marked data at the 3 Td

resolution, three levels up in the hierarchy. The zooming to finer resolutions (i.e., more coefficients)

continues until it reaches the 6 th resolution with 65,536 items. At this point, we are positioned to study the

original data.

VISUALIZATION OF ERROR

Our system provides a mechanism for tracking and visualizing data loss of an approximation hierarchy.

By using a wavelet representation, the data loss can be obtained from the details of each resolution. This is

described in detail in [WB95b].

The interesting spot identified in Figure 10 contains highly fluctuating data with very high data values.

Both of these characteristics contribute to the very high information loss of the approximation. This is

reflected by the darker colors (green/blue) of the error display in the figure. By using the color to represent

the accumulated error, we are able to understand more about the quality of any portion of the approximation.

In [WB95b], we present an example in which a combination of data and error display actually reveals hidden

information which does not show up in the data plot itself.

CONCLUSIONS AND FUTURE WORK

We discuss the notion of multiresolution representation of very large time-varying data. The idea

is illustrated with a wavelet-based analysis tool. The prototype demonstrates the feasibility of using a

hierarchical data representation based on wavelets in an interactive exploratory visualization environment.

26

Our intermediategoal is to extendthis work from handlingone-dimensionaltime-varyingdatato mul-
tidimensionalmultivariatedata. Theincreaseof dataparameters,especiallythe dimensionalparameters,
complicatesthe waveletalgorithmsandour error trackingmechanism,and makesthe visualizationmore
complicated.Theadditionalquantityof dataalsoaffectsthecomputationdemands,butmostof this timeis
requiredfor pre-processing.

Acknowledgements

The authors' work has been supported in part by the National Science Foundation under grant IRI-

9117153. The NASA ISTP data is courtesy of Dr. Terry Onsager of the Institute for the Study of Earth,

Oceans, and Space at the University of New Hampshire. The colormaps are courtesy of Professor Haim

Levkowitz of the Department of Computer Science at the University of Massachusetts at Lowell.

References

[Chu92] Charles K. Chui. An Introduction to Wavelets. Wavelet Analysis and its Applications - Volume

1. Academic Press, 1992.

[Cle93] William S. Cleveland. Visualizing Data. Hobart Press, Summit, New Jersey, 1993.

[Dau92] Ingrid Daubechies. Ten Lectures on Wavelets. SIAM, Philadelphia, Pennsylvania, 1992.

[God92] Goddard Space Flight Center, National Aeronautics and Space Administration, Greenbelt, Mary-

land. International Solar-Terrestrail Physics (ISTP) Key Parameter Generation Software (KPGS)

Standards and Conventions- Version 1.1, December 1992.

[Hou94] Christian Houdr& Wavelets, probability, and statistics: Some bridges. In John J. Benedetto and

Michael W. Frazier, editors, Wavelets, Mathematics and Applications, chapter 9, pages 365-398.

CRC Press, 1994.

[LH92] Haim Levkowitz and Gabor T. Herman. Color scales for image data. IEEE Computer Graphics

and Applications, 12(1):72-80, January 1992.

[Nat94] National Space Science Data Center, Greenbelt, Maryland. CDF User's Guide, Version 2.4,

February 1994.

[Str89] Gilbert Strang. Wavelets and dilation equations: A brief introduction. SIAM Review, 31 (4):614-

627, December 1989.

[WB94] Pak Chung Wong and R. Daniel Bergeron. A child's garden of wavelet transforms. Technical

report, Computer Science Department, University of New Hampshire, Durham, New Hampshire,

1994.

[WB95a] Pak Chung Wong and R. Daniel Bergeron. 30 years of multidimensional multivariate visualization.

In Proceedings of Dagstuhl Workshop on Scientific Visualization. IEEE Computer Science Press,

1995.

27

[WB95b] Pak Chung Wong and R. Daniel Bergeron. Authenticity analysis of wavelet approximations in

visualization. In Proceedings of Visualization "95, 1995.

[WB95c] Pak Chung Wong and R. Daniel Bergeron. Hierarchical representation of very large data sets for

visualization using wavelets. In Proceedings of Dagstuhl Workshop on Scientific Visualization.

IEEE Computer Society Press, 1995.

[WB95d] Pak Chung Wong and R. Daniel Bergeron. A model for adaptive multiresolution representation

of very large multidimensional multivariate scientific datasets using wavelets. Technical report,

Computer Science Department, University of New Hampshire, Durham, New Hampshire, 1995.
In preperation.

28

138

_m ID B I$IP.94.

_l_m IsI dlmmnmmnl (1310_).wtth 1 mm

W) Ism_wa. Eli

I

Color Plate 1.

Color Plate 2.

 iJk:.........
i
i
i

. ,.'°

I

ill , ii

Color Plate 3.

29

REAL-TIME VISUALIZATION OF WORLD WIDE WEB TRAFFIC*

Will H. Scullin Thomas T. Kwan Daniel A. Reed

Department of Computer Science
University of Illinois

Urbana, Illinois 61801

SUMMARY

The World Wide Web (WWW) server at the National Center for Supercomputing Applications
(NCSA) is one of the most heavily accessed WWW servers in the world. To increase our

understanding of h_w users access this server and to provide a basis for assessing server and system
software optimizatlons, we analyzed NCSA's server performance using the Avatar virtual reality
performance visualization system. The large volume of performance data generated each day,
coupled with rapidly changing server access patterns, makes real-time analysis both attractive and
highly desirable. This paper presents the results of our analysis and discusses the implications for
understanding time varying data in a virtual environment.

1 INTRODUCTION

The ease of use of the World Wide Web (WWW) [2] as a global information system has made it
an indispensable tool for the worldwide Internet community. The widespread distribution of WWW

servers and client browsers (e.g., NCSA Mosaic) not only fueled the explosion of interest in the
WWW but also led to phenomenal growth in network traffic. This paper describes our experiences
with real-time data presentation techniques for understanding this growth and its implications for
next generation WWW servers.

1.1 World Wide Web Growth

Network statistics from Merit, the NSFNet backbone management group, show that WWW
traffic is the largest and by far the fastest growing segment of the Internet, and growing numbers of
government and commercial groups are making hundreds of gigabytes of data available via WWW
servers. In particular, because NCSA, along with CERN, the European Laboratory for Particle
Physics, helped pioneer the development of early server and client browser software, NCSA has bee_
one of the most heavily accessed WWW sites in the world. The WWW servers at NCSA have
experienced tremendous traffic growth, with the request rate growing at a compounded rate of
about eleven percent per month for many months [10].

To support continued growth, next generation WWW servers must be capable of concurrently
serving multiple request streams while managing a potentially multi-gigabyte data base of

multimedia information. This places demands on the servers' underlying operating system and file
system that lie far outside today's normal operating regime. In essence, WWW servers must
become more adaptive and intelligent. The first step on this path is understanding extant access
patterns and responses. Based on this understanding, one can then develop more efficient and
intelligent server and system file caching and prefetching strategies.

1.2 Performance Analysis

Understanding extant access patterns and server responses requires the analysis of both the
application stimulus (e.g., number and types of requests) and the system response (e.g., processor
utilization and network statistics). At NCSA, this aggregate data rate, including both server logs
and sampled processor and network performance statistics, exceeds 200 megabytes per day. From

*Supported in part by the National Science Foundation under grants NSF IRI 92-12976 and NSF CDA 94-01124,
and by the Advanced Research Projects Agency under ARPA contracts DAVT63-91-C-0029 and DABT63-93-C-0040.

31

this data, one can easily calculate 40-50 important, time varying perform_nce metrics.
Understanding the correlations among these metrics, and their evolution _ th changing access
patterns, is a daunting task.

To alleviate this problem, we have exploited and extended the Pablo pert_ finance analysis toolkit

[14] to develop Avatar [15] -- a flexible, extensible framework for using virtu _1 reality to analyze
complex performance data. Avatar uses data immersion to provide a fast, im aitive mechanism for

evaluating data from a variety of perspectives and for manipulating characteristics of the data
display. Because it can operate in real-time with a stream of arriving server requests, Avatar has
enabled us to quickly discover transient data correlations among subsets of the WWW server

performance data.

1.3 Paper Organization

The remainder of this paper is organized as follows. In §2, we describe the WWW server data
collection process. Following this, in §3, we describe the Avatar software used to visualize and
interact with the time varying WWW data. In §4, we analyze this data to identify user request
patterns and correlations and discuss the implications of our findings. This is followed in §5 by a
brief description of our current research directions and in §6 by a summary of related work. Finally,
in §7, we conclude with a summary of our observations.

2 NCSA WWW PERFORMANCE DATA

Every day, NCSA's WWW server continuously collects performance data to enable system
administrators and researchers to understand the characteristics and growth rates of the WWW
access traffic. This data provides valuable insights into current server performance bottlenecks and
hints about the evolution of access patterns. In aggregate, the data volume exceeds 200
megabytes/day, with 30-40 requests per second arriving at peak times. Below, we first briefly
describe NCSA's WWW server architecture, followed by a description of the performance data and
how it is captured for real-time analysis.

2.1 Server Architecture

To date, the backbone of the NCSA WWW service has been a group of dedicated
Hewlett-Packard HP 735 workstations. As of May 1995, NCSA has eleven HP 735's dedicated as
WWW servers. In the NCSA configuration, the local disk on each HP 735 stores performance data

and log files. The WWW servers are connected to Andrew (AFS_) t [16] file servers via a 100
megabit/second Fiber Distribution Data Interface (FDDI) ring; see Figure 1. The FDDI ring
connects to the rest of NCSA and, via a T3 link, to the Internet.

At NCSA, the WWW document tree is shared among the servers and stored by the Andrew File

System (AFS). This center-wide AFS file system is also shared by many hundreds of client
workstations and supercomputers. The current NCSA AFS file system has three SUN Spare 10 file
servers, each with 120 gigabytes of disk space. AFS provides a single, consistent view of the file
system to each WWW server, allowing each WWW server to access all of the WWW document tree.

Because AFS manages the shared document tree, the individual WWW servers need not and do
not know either the number or identity of the other servers. A round-robin Domain Name System
(DNS) enables the servers to independently receive WWW requests; for additional details on the
server architecture, see Katz et al [9].

lThe Andrew FileSystemisa productofTransarc,Corporation.

_2

WWW Servers

(AFS Clients)

AFS File Servers

VR

I

I

I
t

m

Data rate controls

Statistical

Analysis

T
Real-Time Data

Control (planned)

Figure 1:2 Real-time data collection and analysis architecture.

T3 Internet Link

2.2 World Wide Web Data

Each WWW server executes a Hypertext Transfer Protocol (HTTP) daemon (httpd) that
responds to requests from remote WWW clients. To support on-line and off-line performance
analysis, each WWW server collects the following time varying data: (1) the standard access logs
from the HTTP daemon, (2) samples of virtual memory statistics, obtained by recording Unix
vmstat data once each minute, and (3) samples of network packet counts, obtained by recording
Unix netstat data once each minute. Below, we describe these three data sources in more detail.

2.2.1 Access Logs

NCSA's HTTP daemon produces a log entry for each request. Each entry includes the IP address
or domain name of the client, a timestamp (with one second resolution), the identity of the request
(i.e., the document requested), the size of the document requested, and other information. From

this information, one can compute several time varying access pattern metrics, including document
types, request rates, data volumes, and locations.

For example, because the WWW server logs contain the name of each requested document, and a
file extension is used to identify the document type, it is possible to dassify the data as requests for
text, images, audio, video, and scientific data. For example, the text category includes hypertext
markup language (HTML) documents, plain text, and postscript files; the image category includes
GIF, X bitmap (xbm), JPEG, and RGB files; the audio category includes au, aiff, and aifc files; the

video category includes MPEG and QuickTi,,o files; and the data category includes Hierarchical Data
Format (HDF) files.

Because the WWW server logs also contain the IP address of the requesting system, one cast
classify the requests based on originating domain. For example, common U.S. Internet domains
include education (odu), commercial (corn), and government (gov); requests from each domain can
be viewed as a separate metric. To reduce the number of possible metrics, we introduced a

33

"Europe" pseudo-domain that includes requests from European countries that generated a

non-trivlal number of WWW requests. _ The remaining requests are grouped in a separate "other"
pseudo-domain. As WWW traffic continues to increase, we expect it will be necessary to further

refine this characterization by partitioning the requests based on geographic location. §

At present, we can extract the foUowlng metrics from the WWW server logs: the server identifier,
the time, the number of requests and bytes transferred in each of seven file categories (text, image,
audio, video, HDF, other, and total), and, similarly, the number of requests and bytes transferred
for six domain categories (edu, coin, gov, Europe, other, and total). These thirteen metrics define a
subset of the data dimensions for each of the eleven component WWW servers; additional metrics
are defined by virtual memory and network traffic, described below.

2.2.2 Virtual Memory Statistics

In addition to the access logs, each of the component NCSA WWW servers also records data

from the vmstat utility. Although the details of this data vary across Unix systems, the data usually
contains a measure of system processor usage (e.g., user time, system time, context switches per
second) and paging activity (e.g., page ins, page outs, and address translation faults). Data from
vmstat is collected at one minute intervals, and contributes another eighteen metrics to the time
varying server performance data.

2.2.3 Network Statistics

NCSA's servers also record samples from the netstat utility. This utility reports the count of
network packets and errors. As with the vrnstat data, information is collected at one minute
intervals, and provides some insights into the behavior of the network interfaces on the servers. This
data shows, for instance, that the number of packets is highly correlated with the number of
requests; we will return to this issue in §4. The netstat utility contributes an additional two metrics
(number of input output network packets) to the performance data.

In aggregate, the HTTP server logs, the virtual memory statistics, and the network statistics
define a high-dimensional performance data space. One minute samples of this data define the
location and motion of the eleven component WWW servers within the metric space. Our goal is
understanding the time wrying characteristics of this metric space.

2.3 Real-time Data Analysis

Figure 1 shows the real-time data capture and analysis system we have developed. The access
logs, virtual memory statistics, and network statistics are periodically transferred via TCP

connections from the WWW servers to an analysis program. The analysis program computes
statistics for each performance metric and merges the data into records. Because the virtual
memory statistics and the network statistics both have a one minute resolution, statistical data

summarization is performed on the access logs (which have one second resolution) to yield
performance metric samples once each minute.

After computing the statistics, the analysis program produces data records in the Pablo Self

Defining Data Format (SDDF); SDDF is described in greater detail in §3.4.1. The SDDF records
are then transferred to the Avatar visualization module for rendering in the NCSA CAVE [5], an
unencumbered environment for immersive data analysis. In the fo]lowing section, we will describe
the visualization module in detail.

tAt present, these countries include Belgium, Finland, Prance, Germany, Italy, the Netherl,mds, Norway, Spain,
Sweden, Switzerland, and the United Kingdom.

iIndeed, since the this paper was first written, we have further subdivided the categories and mapped them to
specific geographic regions.

34

3 Avatar DATA IMMERSION ENVIRONMENT

Avatar is a flexible, extensible framework that uses virtual reality to support analysis of complex,
high-dimensional, time varying data. To date, the focus of our work has been performance data
analysis. However, the Avatar infrastructure is sufficiently general to support analysis of
high-dimensional time varying data from any source.

Below, we first describe one of Avatar's metaphors for data interaction and it implementation; we
then describe how users can interact with the Avatar virtual environment. This is followed by a
brief description of the input data format.

3.1 Scattercube Matrix Metaphor

In our problem domain, there are roughly forty metrics for each of the (currently) eleven WWW
servers, the metrics change each minute, and there are tens of megabytes of statistical data each
day. Moreover, some of the performance metrics are discrete, others are continuous, and their
dynamic ranges can differ by multiple orders of magnitude.

Because human visualization and spatialization skills evolved to recognize two and
three-dimensional projections, understanding the relations among such abstract, multivariate data

is a difficult task. In short, the conundrum of high-dimensional data visualization is finding
presentation metaphors that successfully project the data in meaningful ways.

Avatar draws on a long history of data display research in the statistical graphics community [4]
by extending the notion of a two-dimensional scatterplot matrix to three dimensions. In a
two-dimensional scatterplot matrix, all possible pairs of dimensions for a set of n-dimensional data

are plotted against each other in separate scatterplots arranged in an n by n matrix. This shows all
possible two-dimensional data projections and can be used to determine data dispersion and
bivariate correlations.

As an example, Figure 2 shows a scatterplot matrix of eight variables. This figure illustrates three
important attributes of scatterplot matrices. First, the matrix is symmetric; the upper and lower
triangles are simple transpositions. This allows one to view whichever projection is more convenient.
Second, the diagonal is degenerate -- both metrics are the same for these scatterplots. In Figure 2,
these degenerate scatterplots have been replaced with plots [4] showing the mean and variance of
the associated metric. However, if the data were plotted in the diagonal scatterplots, its dispersion
would be visible on the diagonal. Third, data clustered in one scatterplot need not be clustered in
other scatterplots. Indeed, this will occur only if the data is clustered in all dimensions.

A scattercube matrix extends the notion of showing all bivariate projections in the
two-dimensional scatterplot matrix to showing all combinations of trivariate projections in
individual scattercubes. Like the scatterplot matrix, this also allows one to study data dispersion
and correlations, but with an added dimension. Moreover, it maps naturally to a virtual
environment where one can walk around and inside the data. In such an environment, each
scattercube forms a virtual room of data. Figure 5 shows the exterior of a six-dimensional
scattercube matrix; the cube color scheme is explained below.

Like a scatterplot matrix, a scattercube matrix has symmetries, though they are more complex,
with bivariate and trivariate degeneracies and multiple transpositions. In a two-dimensional
scatterplot matrix, degeneracies occur only along the diagonal. In a three-dimensional scattercube
matrix, degeneracy occurs along three diagonal planes; in all scattercubes in each of these planes,
two of the three metric axes are identical. As an example, in Figure 5 the three degenerate planes
are shown in blue, green, and red. The intersection of the three planes, the set of white cubes that
cut through the diagonal of the cube of cubes, is additionally degenerate -- all three metric axes are

35

Figure 2: Scatterplot matrix.

identical. Finally, in Figure 5, the non-degenerate cubes are violet, and there are multiple
transpositions of the non-degenerate groupsfl

Our implementation of the scattercube matrix is dynamic, with the location and attributes of
each of the displayed data values continually updated. Geometrically, the behaviors of the p entities
define a set of p curves in an n-dimensional performance metric space, and the measured data define

a series of irregularly spaced points on each entity's behavioral trajectory. Hence_ understanding the
movement of the data points is as important as understanding their spatial relation at any temporal
point.

To help analyze data point trajectories, it is possible to display these trajectories using history
ribbons. These history ribbons serve two roles. First, they are markers of data paths, much as
massless particles and stream lines show air movement in visualizations of computational fluid
dynamic calculations. Second, they fulfill the same role as brushing in statistical graphics [4] --
interactively enabling history ribbons for a subset of the data points allows one to see if the selected
points cluster in one or more scattercubes.

In our implementation of history ribbons, more recent positions are rendered using bright colors;
darker colors show older positions. As an example, Figure 6 shows an overview of the scattercube

_Typicany, Avo_ar does not display desenerate cubes, both to reduce rendering time and to increase the visibility
of the remainins, non-degenerate scattercubes.

36

with degenerate cubes removed and history lines (in blue) activated. Figure 8 shows a closeup of a
single scattercube with history ribbons enabled; in this figure, a subset of the points are clustered,
with one outlier clearly visible.

3.2 Avatar Implementation

To realize the Avatar scattercube metaphor just described, we have developed a virtual world
implementation that operates with either (a) a head mounted display (HMD) and six degree of

freedom tracker, (b) the CAVEH [5] virtual reality theater, or (c) a workstation display with stereo
glasses. Sonification software supports real-time mapping of data to sound using either the
Porsonify [11] sonification library or the CAVE's native sound library. The HMD version supports
three dimensional sound spatialization via a Crystal Rivers Technologies Convolvotron [18, 17].

All versions track head and hand position, orientation, and movement, and render new scenes in
real-time based on user movement. A tracked mouse allows one to interact with three-dimensional

objects. Users can move inside a single scattercube by walking and between scattercubes by
"flying." The latter is accomplished by pointing the tracked mouse in the desired direction and
clicking a button. Unfortunately, space precludes a complete description of the Avatar
implementation and its capabilities. Below, we briefly summarize those aspects most relevant to

user interaction and data analysis; for additional implementation details, see [15].

3.3 Immersive Interaction

One of the more difficult implementation problems in virtual reality is user interaction.

Capitalizing on new hardware technology and the kinematic and haptic senses requires a judicious
balance of new and familiar interaction techniques. Below, we describe Avatar's menus and window

system, data point and data dimension selection, navigation, sonification, and voice recognition
features.

3.3.1 Menus and Windows

In Avatar the primary interaction mode remains a set of menus and windows. Figure 7 shows an
example of the Avatar window and menu within a single scattercube. For the sake of simplicity and
familiarity, these windows and menus resemble those of a standard workstation or PC windowing
system. The primary difference lies in the pointing device used in virtual environments.

Unlike a desktop mouse, which is untouched except when needed, tracked, three-dimensional mice
are continually held by a user. Consequently, they are much more susceptible to accidental

movement. Current, temporary solutions to this problem have been making menu items very large,
providing as much feedback on current cursor location as possible (e.g., by sound cues when menu
items are selected), and being patient.

A disadvantage of large windows and menus is that they can obstruct the user's vision of
surrounding imagery. Consequently, Avatar allows the user to temporarily disable the window and
menu interface to provide an unobstructed view of the data display. With the menus disabled, the
user can still interact with the system by walking or flying, and by using voice commands; see §3.3.6.

3.3.2 Data Point Selection

In Avatar, the individual scattercubes typically are between 8 to 10 feet (2.5 to 3 meters) on a
side. This means that one can comfortably walk about a single scattercube and view the
scattercube's data from multiple perspectives. Using the tracked mouse, one can select an

liThe CAVE is a room-sized cube of rear-projection displays that allows users to walk about unencumbered by a
head-mounted display.

37

individual data point simply by pricking it. By selecting a point, the user can enable or disable
history ribbons or query the point for additional information.

As with scatterplot brushing, data point selection or de-selection in one scattercube is reflected in
all other scattercubes. This allows the user to select all the data points in a cluster in the current
scattercube, fly to another scattercube, and see if the cluster exists in other subsets of the metric

space.

3.3.3 Dimension Selection

Ideally, the size of the displayed scattercube matrix would be n × n × n, where n is the number of
data dimensions. However, limitations of the graphics rendering hardware and memory currently
restrict the number of scattercubes to at most a few dozen, depending on the number of data

points. Because human factors studies show that a minimum of roughly ten frames per second is
required to maintain any illusion of direct interaction, real-time display of all scattercubes for a
forty-dimensional data set is not practical.

To support display and study of high-dimensional data sets while still not compromising the
frame rate, we instead allow users to interactively change the metrics mapped to the axes of an
individual scattercube. A simple dialog provides a list of all available metrics; picking an item from
the list causes the desired axis to change. For consistency with standard scatterplot layout, all
scattercubes in the axis plane change. As described below, this still permits flying along a
coordinate plane to see data changes with respect to metric changes.

3.3.4 Navigation

Ararat allows one to scale the rendered scenes over a large range. For example, it is possible to
scale the scattercube matrix such that all scattercubes fit within a volume slightly larger than one's
head. At this scale it is possible to move between scattercubes simply by by head movement.
However, we have found that the most etTective scale maps each scattercube to a space roughly the
size of a small room. At this scale, movement within a scattercube is best accomplished by walking.
However, the layout of the scattercubes mandates some other mechanism f_r intercube movement.

After informal experiments, we selected a mechanism for intercube movement that combines

flying (unrestricted movement in three dimensions) with warping (jumping from point a to point b).
The user points the tracked mouse in the desired direction, pushes a button, and is transported
from their current position in one scattercube to the same position the adjoining scattercube. This
restricted form of flying keeps the scattercube floor and walls aligned with physical barriers external
to the virtual environment, while still conveying a feeling of movement.

As we noted earlier, Figure 6, with the degenerate scattercubes removed, shows the complex
symmetry of the scattercube matrix. A scatterplot matrix is symmetric across the degenerate
diagonal, but a scattercube matrix is symmetric across all its degenerate planes, for a total of six
symmetric regions. While seemingly redundant, these regions are important because they allow
traversal of entire columns of metrics in any direction. Being able to traverse an entire column
allows a user compare two metrics against all the other remaining metrics by simply moving in a
straight llne. If the symmetries were removed, this comparison would still be possible, but the path
for doing this could be quite complex.

Both navigation and metric selection menus allow the user to change the metrics mapped to the
axes of a cube, either by moving to a different scattercube or by changing the metrics in the current
scattercube. Although seemingly redundant, they really serve different purposes. Navigation is
within a context -- one can see into neighboring scattercubes, the cubes are placed in a logical
order, and one can quickly move through that ordering in any direction. Menus are more useful
when the one wants to view a specific set of metrics.

38

3.3.5 Sonification

Avatar's visual displays can be augmented with soniflcation of data attributes. For instance,
within each scattercube, the mean value of the data points in a particular dimension can be mapped
to the pitch of a continuous or periodic sound. Alternatively, one can map the variance of the data
or the data centroid to pitch or other sound attributes. Several such sound sources can operate
simultaneously in each scattercube.

With sound spatialization hardware [18], sounds can appear to emanate from either fixed or
moving points (e.g., by mapping the mean of the data to pitch and placing the pitch at the
temporally varying location of the mean). Moreover, it is possible to move between scattercubes
and obtain some intuition about data dispersion merely by listening to the sound changes within

each cube; see [17] for more details. While sound does not provide the level of detail possible with
graphics, sonic cues do not require the direct attention of the user to be useful and effective.

3.3.6 Voice Recognition

Finally, Avatar supports a speaker-dependent voice recognition and synthesis system. The voice
recognition hardware matches utterances with a previously trained vocabulary and injects
associated commands (e.g., scaling, rotation, or display opacity). Although not capable of complex
voice recognition, this mechanism can be used in a manner similar to keyboard shortcuts in a
desktop application and can be used even when the menu interfaces of §3.3.1 are hidden.

3.4 Avatar Data Inputs

To maximize portability and extensibility, Avatar has been designed to process high-dimensional
data described by the Pablo Self Defining Data Format (SDDF) [1]. This data can originate from a
file or can be real-time data transmitted via a network socket. Below, we describe SDDF, illustrate

its representation of WWW data, and describe mechanisms for real-time WWW data reduction and
control.

3.4.1 Self Defining Data Format (SDDF)

Avatar uses the Pablo** Self Defining Data Format (SDDF) [1] for its data representation. SDDF
is a recta-data format, in the style of HDF [13] or netCDF. As such, SDDF consists of two parts:
data record descriptors and data record instances defined by those descriptors. The record
descriptors define the number and sizes of the data elements in each record. The actual data
consists of a sequence of descriptor tags and record instances. The tags identify the record
descriptor that should be used to parse the byte stream that follows.

Figure 3 shows a typical SDDF record descriptor; the header consists of pairs of attribute names
and their types. For the WWW data of §2, each pair represents a different data dimension. A
corresponding SDDF record is shown in Figure 4. There is a one-one mapping between fields in the
header and fields in the record.

The Pablo [14] software contains a variety of tools for generating and processing ASCII and
binary SDDF flies, and it supports transmission of records over standard Unix sockets. There also
are routines to convert several other popular data formats to SDDF.

3.4.2 Input Data Rates

When the input data is from a file, the user has a great deal of control over what rate the data is
presented. The user can control how much data is read from the file at one time, and how
frequently. It is possible to stop the data, step through the data file in user-defined increments, or
start again from the beginning.

**Pablo is a registered trademark of the Board of Trustees of the University of minois.

39

SDDFA

#1:

"Mosaic_Metric"

int

int

int

int

int

int

int

int

int

int

int

int

"server_number" ;

"minute_of_day" ;

"in_packets" ;

"out_packet s" ;

"page_ins" ;

"page_outs";

"device_interrupt s_per_sec" ;

"sys_calls_per_ sec" ;

"cont ext_ swit ch_p er_ sec" ;

"user_time" ;

"system_time" ;

"idle time" ;

Figure 3: SDDF record descriptor (netstat and vmstat).

"Mosaic_Metric" _ 1, 1300, 1632, 1853, 46, O, 251, 1404, 46, 1, 3, 95 };;

Figure 4: Single SDDF record.

In contrast, with real-time data one has very limited control over the data generation rate. If the
data generation rate exceeds the display rate, the data must be buffered; this is only feasible if the
aggregate data volume is modest. Ideally, the data analysis software should allow the user to
interact with the data source to control many aspects of the data generation. For instance, using a

dialog display in the virtual environment, a user might vary the size of an averaging window. For
large window sizes, the data rate becomes small, albeit with consequent loss of fine display
resolution and extra overhead for data reduction.

The real-time data analysis software of Figure 1 allows the user of Avatar to adjust the frequency
of real-time data updates by changing the size of averaging windows. By default these windows are
one minute long. However, their size can be increased to decrease the real-time data rate.

4 DATA DISCOVERY AND EXPERIENCES

Using the real-time data reduction software shown in Figure 1 and Avatar's scattercube
metaphor, we have explored the characteristics of WWW traffic. Below, we describe the qualitative
results obtained by analyzing WWW performance data in the Avatar virtual environment. We also
summarize our experiences with Avatar and real-time data. For a more extensive analysis of WWW
traffic based on Avatar and other statistical techniques_ see [10].

4O

4.1 WWW Data Analysis

Although we had earlier conducted a statistical analysis of the WWW server logs, while being
immersed in Avatar's scattercube representation of the WWW data, we quickly discovered several
data correlations that deepened our understanding of the WWW client stimuli and WWW server
responses. The majority of these insights were based on seeing the temporal evolution of request
characteristics and server responses. In our experience, understanding temporal behavior is much
more difficult without dynamic graphics. We illustrate this experience with three examples.

Using Avatar, we could track request evolution across a complete twenty-four hour period, either
by replaying previously captured data or by real-time display. By choosing a scattercube whose axes
correspond to time of day, number of requests, and pseudo-domain, we could study the origin and
number of requests during a day. This representation showed that the dominant, temporal feature
of the request patterns is the standard business day, both in the United States and in Europe - the
majority of the activity in the scattercubes occurs when the time-of-day metric falls within 8-5 local
time.

As we noted in §1, for many months the request rate to the NCSA WWW server grew at a
compounded rate of about eleven percent per month. However, in addition to the rate, the
characteristics of the growth have important implications for WWW server implementation.
Although audio and video account for only a small percent of the total number of requests, they
account for a disproportionally large portion of total data volume.

In a scattercube whose axes corresponded to the volume of data served in response to audio,
video, and text requests, the effects of video requests were striking. Each time a video request is
serviced, the head of the history ribbon for the associated server leaps to the center of the
scattercube. Moving to related scattercubes with server memory metrics showed the deleterious
effects of such requests. We concluded that as more images and video clips are available online,
managing system buffer caches to accommodate even a relatively small number of requests for such
large objects will be a major challenge.

The scattercube metaphor has also enabled us to quickly discover qualitative correlations among
server performance metrics. Near-perfect correlations are striking; the WWW server history ribbons
often lie along the diagonal in the scattercubes whose axes are server metrics. For example, Figure 8
shows the correlation between the number of input and output network packets; the scattercube
with these two metrics (along the major axes) has diagonal ribbons. Intuitively, this means that
most requests are satisfied with a small amount of data.

Figure 8 does show one anomaly -- the load on one of the servers (the blue ribbon) is much
higher than that on the other servers. In the scattercube, this is represented as a outlying data
point and ribbon that does not follow the general movement of the data points from the other

servers, tt The quick discovery of such anomalous behavior is often essential to the fine tuning of
systems with a heavy load.

4.2 Real-time Data

Real-time data analysis has proven both an advantage and a liability. The biggest advantage is
the ability to see current behavior. Because one of Avatar's operating modes is on a workstation
with stereo glasses, it can serve as a WWW server diagnostic station. In the future, we believe this
will permit real-time interactive adjustment of server parameters to maximize performance; this is
the dashed line in Figure 1.

t! Similar behavior occurs on most days, although the heavy load moves randomly from server to server. We conjecture
that some remote host is caching the IP address of a particular WWW server rather than periodically requesting a
new IP address from the NCSA DNS server.

41

The liability is that in a real-time environment, it is not possible to freeze the generation of the
WWW log data -- new user requests continually arrive at the WWW servers. However, the Avatar
user interface allows us to either record the data for off-line analysis or to specify the size of the

time window in which statistics are computed. Because of the relatively large number of WWW
servers at NCSA, we must ensure that data (from all the servers) we process has approximately the
same timestamp. This way, activities among servers can be easily correlated in Avatar.

In our experiments, we selected a time interval increment of five minutes. That is, log data from
each WWW server is collected and processed such that the log records processed reflect activities
within the same five minute time window on each WWW server. In a round-robin order, the logs
from each WWW server were collected, transferred, and processed to enable us to update and view
all server activities that are correlated in time.

5 RESEARCH DIRECTIONS

Although our immersive virtual reality system already allows software developers and
performance analysts to interact with executing software and modify software parameters, much
work remains. We continue to enhance Avatar and experiment with new display metaphors to make
understanding time varying data a less daunting task. Below, we discuss our on-going research
efforts and possible enhancements to Avatar. These efforts include new instrumentation, new
display metaphors, and three-dimensional projection pursuit.

5.1 WWW Instrumentation

Although the server logs and standard Unix utilities can provide considerable insight into server
behavior, understanding the fine-scale causes for server performance requires more detailed data.
We are instrumenting the NCSA HTTP server using the Pablo performance instrumentation toolkit

d14] to capture timestamped event traces of file and network input/output operations, sizes,
urations, and times and to generate statistical summaries of data in user-specified windows of time.

The primary motivation of this work is to understand the operating regime for current WWW
servers and how operating system implementation idiosyncrasies limit server performance. However,
the enormous volume of performance data from the additional instrumentation makes correlating
diverse metrics, assessing policy alternatives, and gaining behavioral insights even more difficult.

5.2 Display Metaphors

To analyze the detailed server performance data just described, we plan to expand Avatar's
repertoire of data presentation metaphors to include an abstract rendering of the NCSA WWW
server architecture. By showing the components of the server architecture, augmented with data on
their performance, this display will enable us to understand how the servers respond to specific
types of requests and how bottlenecks shift through the server components. Such understanding is a
prelude to designing better server caching algorithms.

In addition, to better understand the geographic distribution of requests we have developed a
"WWW globe" that maps the IP addresses of incoming requests to their geographic location and
computes time varying statistics for geographic regions. Our preliminary experience suggests that
this metaphor is effective in the study of relations among location, number and volume of requests
and how those request characteristics relate to network bandwidths.

5.3 Projection Pursuit

Although there are already a large number of dimensions in the WWW data set, more detailed
server instrumentation will produce data with more metrics and higher dimensions (e.g., one

42

hundred or more). To cope with this ever growing dimensionality, one needs more powerful
statistical data analysis techniques that can identify data correlations prior to data display.

Projection pursuit [8] is one such powerful technique. It can be viewed as a generalizatio:_ of
principal components analysis that finds one or more optimum projections of the data variables
such that the data exhibits clusters with respect to those dimensions. Although the majority of

projection pursuit techniques are intended for two-dimensional projection, there are techniques for
three-dimensional projection pursuit [12]. In principle, such techniques are ideally matched to the

scattercube metaphor.

By coUapsing 40-100 dimensions to only three, all the data can be shown in a single scattercube.
However, each of the resulting three dimensions is now a linear combination of all the original
dimensions. We plan to augment the existing scattercube metaphor with three-dimensional
projection pursuit and develop display techniques that will allow the user to identify the relative
contribution of each original dimension to the projection, and then move to the scattercubes that

display this data in the original metric space.

6 RELATED WORK

Our research draws on a long history of statistical graphics and virtual reality research. Cleveland

[4] is a cogent summary of the statistics community's techniques for visualizing irregular data,
Huber [7] describes early experiences with three-dimensional scatterplots. Our work differs in its
generalization of scatterplot matrices to encompass three-dimensional scatterplots and the
integration of history lines to show phase behavior.

The closest analog to our work within the virtual reality community is Feiner and Besher's work
on multi-dimensional data spaces for visualization of financial data. AutoVision [3] and it's

predecessor, n-Vision [6], use "worlds within worlds" to display N-dimensional data. Both create a
hierarchy of three-dimensional displays, where within a display one can recurs,.vely nest other
displays by selecting a point. Our work differs by imposing no hierarchy on the data dimensions.
All are treated as equals, and one need not assign an a priori order or importance.

7 CONCLUSIONS

In this paper, we described how real-time performance data is captured from NCSA's World
Wide Web (WWW) servers and how this time varying data is displayed and analyzed with the
Avatar virtual environment. Avatar has enabled us to explore novel para_gms for displaying time

varying data, for interacting with this data via immersive techniques, and for understanding the
evolution of WWW access patterns and server responses. In particular, Avatar allowed us to quickly
discover data correlations and effortlessly navigate through high-dimensional data.

Based on this and our experiences with other high-dimensional data sets, we believe Avatar is a

promising tool for visualizing and understanding time varying data. However, much work remains,
and we continue to enhance Avatar and experiment with new display metaphors to make

understanding time varying data a less daunting task.

ACKNOWLEDGMENTS

We thank Bob McGrath for installing our daemon on NCSA's WWW servers and Chris Elford for

porting the SDDF converter to the SGI platform.

REFERENCES

1. Aydt, R. A. SDDF: The Pablo Self-Describing Data Format. Tech. rep., University of Illinois
at Urbana-Champaign, Department of Computer Science, Sept. 1993.

43

2. Bt reefs-Lee, T., Cail]iau, R., Luotonen, A., Nidsen, H., and Secret, A. The World-Wide Web.
Communications of the ACM 37, 8 (Aug. 1994), 76-82.

3. Bes _ers, C., and Feiner, S. AutoVisual: Rule-Based Design of Interactive Multivariate
Vis_:alizations. IEEE Computer Graphics and Applications 13, 4 (July 1993), 41-49.

4. Cleve land, W. S., and MiGill, M. E., Eds. Dynamic Graphics for Statistics. Wadsworth &
Brooks/Cole, 1988.

5. Cruz-l_eira, C., D.J.Sandin, and DeFanti, T. Surround-Screen Projection-Based Virtual

Reality The Design and Implementation of the CAVE. In SIGGRAPH '93 Proceedings (Aug.
1993), ,_ ssociation for Computing Machinery.

6. Feiner, 5 , and Beshers, C. Visualizing n-Dimensional Virtual Worlds with n-Vision. In ACM
SIGGRADH Computer Graphics (Mar. 1990), vol. 24, pp. 37-39.

7. Huber, P. I. Experiences with Three-Dimensional Scatterplots. In Dynamic Graphics for
Statistics, N. S. Cleveland and M. E. MiGill, Eds. Wadsworth & Brooks/Cole, 1988,
pp. 448-45_.

8. Hurley, C., _nd Buja, A. Analyzing High-Dimensional Data with Motion Graphics. SIAM
Journal of Scientific and Statistical Computing 11, 6 (Nov. 1990), 1193-1211.

9. Katz, E. D., Butler, M., and McGrath, R. A Scalable HTTP Server: The NCSA Prototype. In
Proceedings oj First International WWW Conference (May 1994).

10. Kwan, T. T., l_cGrath, R. E., and Reed, D. A. User Access Patterns to NCSA's World Wide

Web Server. Te:h. rep., University of Illinois at Urbana-Champalgn, Department of Computer
Science, February 1995 (available at http://www-pablo, cs .uiuc. odu/Papers/NNN.ps. Z).

11. Madhyastha, T. _.{. A Portable System for Data Sonitlcation. Master's thesis, University of
Rlinois at Urbana -Champaign, Department of Computer Science, May 1992.

12. Nason, G. Three-c;.mensional Projection Pursuit. Tech. rep., Department of Mathematics,
University of Briars,|, 1994.

13. NCSA. NCSA HDt Version 3.3. University of minois at Urbana-Champaign, National Center
for Supercomputing _pplications, Feb. 1994.

14. Reed, D. A. Experim _ntal Performance Analysis of Parallel Systems: Techniques and Open
Problems. In Proceea:,_gs of the 7th International Conference on Modelling Techniques and
Tools for Computer F_ rforrnance Evaluation (May 1994), pp. 25-51.

15. Reed, D. A., Shields, I/. A., Tavera, L. F., Scullin, W. H., and Elford, C. L. Virtual Reality
and Parallel Systems P,'rformance Analysis. IEEE Computer (to appear, currently available as
http ://_nww-pablo. cs. _iuc. edu/Proj ect s/VR/, 1995).

16. Satyanarayanan, M. Scai_ble, Secure, and Highly Available Distributed File Access. IEEE
Transactions on Computer's $3, 5 (May 1990), 9-21.

17. Tavera, L. F. Three Dimer slonal Sound for Data Presentation in a Virtual Reality
Environment. Master's the_'is, University of Illinois at Urbana-Champaign, Department of
Computer Science, Dec. 1964.

18. Wenzd, E. M., Wightman, t. L., and Foster, S. H. A Virtual Display System for Conveying
Three-dimensional Acoustic Information. In Proceedings of the Human Factors Society (1988),
pp. 86 - 90.

44

Figure 5: Scattercube matrix. Figure 6: Scattercube (degenerate cubes removed).

Figure 7: Avatar windows and menu. Figure 8: Avatar server imbalance.

45

VISUALIZING CAUSALITY

Eric J. Davies

University of Waterloo

Waterloo, Ontario

William B. Cowan

University of Waterloo

Waterloo, Ontario

SUMMARY

The Temporal Network Visualizer is an experimental system to perform real-time visualization

of time varying network oriented data. It builds upon the concept of stripcharts to augment a user's

memory of past events, enhancing the user's ability to recognize patterns that occur across time as well

as space, patterns that we associate with causality. Examples are given for visualizing transactions

in an economic simulation and traffic in an actual local area network. The paper concludes with a

description of our preliminary user testing and its results.

PROBLEM AREA

One of the most important relationships we can uncover in time-varying data is that of causality.

When a computing system fails, a building collapses or any of a variety of unexpected events occur,

we go to great pains to discover what preceding events were the likely causes.

Statistics has long been a powerful tool in this. Through its devices, we seek correlations between

events. After having found a significant correlation between a set of events, researchers turn to more

expensive and time consuming laboratory procedures to uncover the underlying mechanism behind

the correlation. This pattern is clearly visible in the history of AIDS research; high risk activities
were first correlated with incidences of AIDS and later a probable mechanism was found in the HIV

virus. In terms of discovering causal relationships, visualization of time-varying data may prove to
be a similarly powerful tool.

Our interests are in online visualizations; visualization done with data that is continuously col-

lected during the course of the visualization as opposed to that done with a set of data that is available

at the beginning. This mandates that our visualizations be animated 1. The common way to animate

time varying data is to map the narrative time (time in the semantic or application domain) to the

presentation time. For instance, an animation of the respiratory system might use color that changes

during the presentation time to represent C02 concentrations that changed during the narrative

1With an online visualization, at t_ the system has available only data representing times to to tl

and so can only represent that portion of time. At some later point, say tj, a new graph must be

produced if the display is to represent the newly collected data. Therefore, the display must change
if it is to reflect the currently known data, and hence be animated.

47

time. As expandeduponin the followingsubsections,this approachhas its shortcomings in several

areas; scaling, limitations of human short term storage (memory), and limitations in how 'global' our

instaneous perception is.

Scaling

In many applicationdomains, eventsare on time scalesthat are not wellmatched to the time

scaleof human perception.As a result,itisnecessaryto provide a scalingof the temporal data.

Very fastevents,likethe progressof a sub-atomicparticlethrough a detector,need to be expanded

or 'sloweddown'. Very slow events,such as climatechange, can take decades and hence must be

compressed beforeviewing. However, when the observer expects to take quick actionbased on

informationpresentedin the visualization,an airtrafficcontrollerfor example, elasticityof time

cannotbe providedwithout deleteriousconsequences.

Applications,such as airtrafficcontrol,areon-linevisualizationssincethey have a temporal con-

straintrequiringthe displayto reflectthe currentdata (lesssome reasonablelag timefrom processing

and display).We willcallthisconstraintthe real-timerequirement. The real-timerequirement

means thatscalingmust takeplacein otherdomains in orderto providefunctionalitysimilarto that

providedby temporal scaling.

Short Term Storage

In each image presented,the observermay be ableto noticespatialrelationshipsbetween items.

However, perceivingrelationshipsthatcontainatemporal component (inadditiontoa spatialcompo-

nent)ismuch more difficult,particularlyiftheamount ofextraneousinformation(noise)issignificant.

As a simple but concreteexample, imagine sittingin a darkened room with a set of lights

11,12,...,I,_such that each I_+iiswired to flasha set intervalafterI_flashes.As the intervalin-

creases,itbecomes more difficultto see a relationshipbetween Iiand Ii+i.Ifadditionalrandomly

flashinglightsareadded tothe room, preceivingthe relationshipsbetween the lightsbecomes harder

still.

Globality

Staticvisualizations,such as thosecommonly printedinjournals,can have an arbitrarilylarge

amount of detailbecause readerscan take as long as needed to examine the images. This is not

trueofan animated visualization,particularlyone monitoringa real-timesourceofdata.The crucial

informationmay only be displayedwhilethe user'sattentionisfocusedon a differentportionof the

display.

The localityof human perceptionhas been exploitedin aircraftsimulators,where eye trackingis

used to presenta detailedimage only where the _pilot'islooking.In the caseof a visualizaton,the

situationisthe reverse,we need to directthe observer'seye to portionsof the displaywe think the

observerwillbe isinterestedin so that the eventsare seen.

48

What Is Needed

We have shown that there are three fundamental properties that are valuable when we visualize

temporal relationships: the visual representation should allow the time component to be scaled, the

recognition of relationships should not rely on the user's short term storage, and the representation

should assist the user with perceiving relevent patterns (such as potential causal relationships). The
Temporal Network Visualizer (TNV) is a system which has these properties.

The remainder of this paper discusses how we have given these properties to TNV, and how we

have applied the visualizer to two, different application domains that are time oriented: local area

network traffic and economic modeling. We conclude with preliminary results of our user testing.

BASIC APPROACH

The difficulty in solving the light partioning problem described earlier is that the short term

storage associated with visual processing is limited and degrades with increased detail. Our solution

is to transform the problem from being one of memory to one of recognizing visual patterns. To

accomplish this transformation, we borrow from the concept of stripcharts.

A strip chart is a simple XY graph used to plot scalar data in on-line visualizations. The scalar

values are mapped to the Y axis and narrative time to the X axis. The data points are scrolled along

the X axis such that the most recent data is closest to the Y axis. Temporal scaling is achieved by

varying the rate at which the data is scrolled along the X axis. Common examples of strip charts are
the output medium of seismographs and traditional lie detectors.

The nature of strip charts is that they make it easy to perceive patterns involving a small number

of time dependent variables (subsequently referred to as channels, a term borrowed from keyframed

animation). Accordingly, variations on stripcharts have been used in program execution visualization

systems such as the Hermes debugger [1] and the Animation Choreographer [2].

However, as the number of channels increases the effectiveness of strip chart oriented displays

diminishes. It is harder to compare two items when there is intervening space and distractors between
them, and these two quantities are a function of the number of channels.

We assume that the data to be visualized represents relationships between a relatively small

number of objects. The basis of our approach is to use a Cnodes and edges' style graph to represent

the objects and relationships respectively. The edges of the graph become pairs of quasi-strip charts

which we subsequently refer to as edge graphs. As an example, Figure 1 depicts three objects and

their relationships. The edge graph for the relationship on directed edge AB is drawn along one side

of the edge AB, while the relationslfip on directed edge BA is drawn along the opposite side.

ENHANCEMENTS TO THE BASIC APPROACH

Several improvements are possible to enhance the visualization in the following areas:

• the space problem is aided by the use of anti-matter mode and grouping; and

49

R(A,B)

R(A.C)

R(B,C)

R(B,A)

B.

m m.

m--- m.

_._FL_rl__n_k_.FL

,..=-,.=,...im_

B

C

Figure 1: Transformation of stripcharts to edge graphs.

• the online perceptual problem, such as the presence of distractors, is solved by grouping, color-

tagging, and a replay facility.

Anti-matter Mode

A drawback to the basic representation of edge graphs is a difficulty in tracking possible causal

relationships. The historical information displayed by the edge graph is not necessarily positioned to

correlated easily with information from other edge graphs.

As an example, consider a system of three objects (A, B and C), edges AB and BC, and a

relationship between edges such that an event on AB is followed by an event on BC _. When the

block representing an event on AB is close to A, the block representing an event on BC is close to

B, as shown in Figure 2. If an observer notices the event on BC, the observer may not associate it
with the event on AB because the first event is outside of the spatial locality of the second event.

To solve the locality problem (for some cases) the visualizer has an 'anti-matter' option. With

the option enabled, each edge is split into two edge graphs; the data proceed from the first object in
the relation to the midpoint of the edge, and mirror images of the data proceed simultaneously from

the second object to the midpoint (in the opposite direction). To distinguish between the two edge

graphs, the first is drawn with green blocks while the mirror is drawn with purple blocks. The intent
is that when the observer sees new activity on BC, the green block will be near B, and a purple

(anti-matter) block on AB will also be near B and hence the observer will more easily notice related

activity has occurred. Figure 3 shows the previous example with anti-matter option enabled.

Grouping

Eventually, as the number of objects increases the amount of screen real-estate is not enough

to display everything, no matter how efficiently the screen real-estate is used. Using a larger screen

helps to an extent, but only so much detail can be handled at once by an observer, particularly when

the data is animated.

UAssume no random events on BC.

50

Figure 2: A client/server relay sequence without the anti-matter option enabled.

Figure 3: A client/server relay sequence with the anti-matter option enabled.

Rather than employing a 'region of interest' approach, such as fisheye views [3] or the perspective

wall [4]3, TNV uses two different schemes to deal with excessive detail. A visibility toggle allows a

user to hide an object and all the connecting edges. An ellipsing mechanism supplies a drag-and-drop

interface to encapsulate objects into groups. Both schemes can operate while the visualization is in

progress with the use of a direct manipulation view called the 'grouping' window which contains icons
of all the objects. This is illustrated in Figure 4.

Color-tagging

Color-tagging is a causality-detection strategy which takes advantage of the human capacity for

pre-attentive processing. Pre-attentive processing is that portion of visual processing that we are able
to do in parallel, processing that takes a constant time to perform, independent of scene complexity 4.

Our approach is to highlight significant events on edges in order to attract a viewer's attention.

Our chosen highlighting method is to color the events a radically different hue, since color is one of

the visual attributes that we are able to process pre-attentively.

Currently we have three detection mechanisms in place. Each mechanism unifies the color of two
events if one event falls within a temporal window relative to the other.

Reply-detection: tags a pair of events if they travel along the same edge but in opposite directions

(shown in Figure 5). Reply-detection is useful for spqtting symmetrically positioned events (i.e.,

message/acknowledgement sequences in ethernet traffic).

3Fisheye views and perspective wall approachs achieve space contraction by distorting the basic

geometry of the display. Distorting the edge graphs compromises the accuracy of the in_formation
displayed.

4Additional background on pre-attentive processing can be found in [5].

51

Grouping Window

Lat I Lat2 Lat3
Song

Lals

Sun

Visualization Window

@
Song Lats

Sun

Figure 4: Icons as they appear in the grouping window (left), and in the window containing the

visualization (right).

t:aggtng

window I C_ I
fory _D _ v

for l tagging windows
for v and u

respec tively

Figure 5: Color-tagging of symmetrically positioned events. Blocks x and y are highlighted.

Relay-detection: tags a pair of events if one is travelling to a the same node the other is leaving

from (shown in Figure 6). Relay-detection eases discovery of transitive chains of events (such

as trickle down effects in economic data).

Hidden-cause/effect-detection: tags pairs of events if they travel on edges that do not share any

common objects. It is useful in picking out relationships which are not explicitly revealed by

the topology of the data.

Time Control

A television set is an example of a strictly real time device. Lacking any image buffering capability,

a television set can only monitor a video signal with no (humanly) perceivable delay. However, the

popularity of the video cassette recorder in the consumer market is an indication of the desirability

of occassionally loosening real-time constraints.

Most of the visualizer's time control interface (shown in Figure 7) is an imitation of the panel of

a VCR. Additional replay features are possible since we are playing from a random access storage

device (memory) instead of a serial access device (tape). The additional features are:

52

tagging

window

for X

u / •

Figure 6: Color tagging of transitive chains of events. Blocks x and v are highlighted.

'=i Form i •

Timing Window

BackVad_able period

Replay Segment

End

Temporal warping _ I_euu'tJIme flow J

cau_ up

Figure 7: Interface for time control in the visualizer.

• repeatedly replay a segment of time until stopped;

• the same as above, but in reverse time;

• oscillate between two points in time; and

• a continuous range of playback rates.

For a visualization system, the ability to replay in reverse time is a strong feature. Playing in
n*

reverse time flips the temporal order of cause and effect chains. As an analogy, imagine a room of

people throwing balls against walls, one of which eventually knocks over a vase. Watched in reverse

time, one can see the vase 'get up' to meet the colliding ball, which then bounces off several walls to

return to the hands of the person who originally threw the ball. Playing in reverse time eliminates

the dependency on the observer's memory to assemble transitive cause and effect chains, extraneous
detail.

53

_ tcurrenr. |¢urronr.-cl

Pl_seter _

Ziphlus

Figure 8: Selecting a region of time by dragging the cursor along an edge.

Unlike the VCR, TNV has a convenient mechanism to select points in time for replay. The

mechanism exploits the mapping between a point on an edge graph and a point in narrative time.

The point closest to the source object represents the current time while points further away

represent time increasingly further into the past. For example, in Figure 8, when observer notices

an interesting pattern on an edge, the observer can drag the cursor along the portion of the edge

containing the pattern to specify start and end times, and then press a replay button.
After a section of time has replayed, there remains the issue of returning to the current time. In

other words, how is the real time constraint re-tighten? A VCR equipped TV uses a discontinous

time technique. When the stop button on the VCR is pressed, the VCR passes through (to the TV)

the present-time external video signal. Under this model, the observer misses activity that occurred

during the replay.
Compact disc (CD) players however, offer an alternative. When manually searching for a particular

song, some CD players allow a listener to play material at faster rates until the desired section is
located _. TNV offers the options to catch up immediately (VCR style) and gradually (CD style).

The gradual catch up preserves the temporal context that is lost under the dis-continuous technique.

APPLICATIONS IN THE REAL WORLD

The expression, "No man is an island", becomes truer each day as the twin forces of technology

and capitalism accelerate us towards increasing levels of connectivity. The internet, long used by

the academic community to exchange information, is beginning to do the same for individuals and

businessess. Similarly, free trade agreements are increasing commerce across borders. Both the

internet (under the name of 'the Information Superhighway') and economic trade (national and

international) are items of great interest today to individuals, businesses, and governments. As they

continue to grow, it will be increasingly important to monitor the ongoing activity in each to catch

early developments of problems like the internet worm or the stock market crash of 1987.

Effectively monitoring either of these will require controlling the display of vast amounts of in-

formation, maintaining a real-time display, and enhancing the observer's ability to pick out causal

relationships. While our system is too limited in its processing speed and capacity to handle either

Sin order to keep the pitch from being affected as it is when you play a record at the wrong speed,

compact disc players actually present short samples taken from non-contiguous regions of the track.

54

the entire internet or a global economy (the data collection alone would be a major technical feat in

either case), it does support the concepts to enable this on a smaller scale. As examples, the following
subsections discuss how we have used TNV to monitor traffic on a local area subnet and to visualize

an economic simulation.

Monitoring A Network

One difficulty of network visualizations that employ motion, as TNV does, is the preconceived

metaphors of the observers. The intuitive interpretation of edge graphs is that each block traveling

along an edge represents an ethernet packet traveling from one device to another. Such a display is

not possible with a real-time constraint because the time scale is far faster than current monitors can

handle, let alone the human visual system 6.

TNV visualizes not the actual packets but the volume of packets from one machine to another.

To do this we uses two programs in addition to TNV:

Snoop, a vendor supplied packet capture program on SUN's r to supply the raw data;

ProcSnoopCnt or ProcSnoopSize, filter programs written in C which summarize the raw data

provided by Snoop. The programs supply a count of the number of packets and the amount of

actual data in bytes (respectively) passed between each pair of devices on the network, sampled
over one second intervals.

The data is shipped over the network to an SGI workstation running TNV.

This strategy has trade-offs; sending the data from one machine to another induces additional

traffic on the network (which is visible in the visualization), but it also allows the visualizing system

to run remotely from the network being monitored s.

The Computer Graphics Lab of the University of Waterloo has a hetereogenous set of computing

devices attached to its local subnet. Devices range from ancient multiprocessor systems to Sun

Sparcstations, DEC Alphas, and an SGI Onyx. Fortunately, not all of these machines are particularly
active.

As Figure 9 shows, even without the edge graphs and the spiral graphs, the layout is crowded.

To conserve enough window real-estate for visualizing the traffic between the devices, we use the

grouping mechanism:

• twelve older workstations (represented by rocking chair icons) are grouped into a single entity

labeled 'old stuff';

• three harmony workstations (represented by the musical notes icons) into 'harmony';

6Modern machines are more than fast enough for most communication exchanges to be sent and

replied to in the period of a single vertical retrace of a conventional CRT display.

rSUN and Sparcstation are trademarks of Sun Microsystems. DEC and Alpha are trademarks of

Digital Equipment Corporation. SGI and Onyx are trademarks of Silicon Graphics.

SThis was done while demonstrating TNV at CASCON '94. The visualization system was run on
a local machine in Toronto, Ont, while Snoop was capturing packets on a subnet in Waterloo, Ont.

The data was shipped across the internet to Toronto to provide a visualization of live data.

55

r_nNal_P

ud rl |P |not ,_1_ osprssso CGLDSC C_L.OSR CGI.OS2 otton, lust
caPPuch Ino ue_der uerldl_n

plx router do_eld
uer'ob I uonbet potoroo

¢_t PIhBs°t er

pebbles 4k:llst rllsC CGLOS8 _hlptal I zlph|us

¢:0| pet"we botton9 Oszoe dine beMbaH

brushte I I

vel IoMioot cr_ml_rn

lute

A X X
hoporoo

xter_*O4 xter_n3

X X X X
J_VJI' |mcultMG? ##CC¢_tf_ xternln'l xtm_r_4JI2

56

Figure 9: The CGL local subnet, before edges are added.

• six sun workstations (represented by shining sun icons) into 'suns';

• five DEC LAT server ports (CGLDSX) into 'lats'; and

• six X-windows terrninals (represented by the X logo} into 'xterms',

resulting in the layout shown in Figure 10.

Enabling the anti-matter option has an unexpected' benefit in network visualization; the ability to

discriminate between point-to-point and broadcast communications. Point-to-point communications

are usually intended to be reliable and hence for every original packet put onto the network by device

A for device B, there must be a packet placed on the network containing an acknowledgement from

device B for device A/Because the acknowledgement must follow the original message with very little

delay 9 the original message and its reply occur simultaneously (in a human time scale).

In terms of the TNV display, a group of packets from device A to device B causes a green block

to be drawn on one side of the edge AB and close to A while the replies to the packets cause a green

block to be drawn on the opposite side and close to B. The anti-matter option adds two additional

purple blocks to mirror the message block and reply block. The mirror of the message block is aligned

with the reply block while the mirror of the reply block is aligned with the message block, as shown

in Figure 11.

While most communication on an ethernet is point-to-point, some devices broadcast. Visualization

of the CGL network resulted in the observation that several terminal servers periodically broadcast

packets a°.

The real-time nature of network visualization is important because often the observer is seeking
to correlate the activity shown in the visualization with actions and behaviors occurring in the real

9If the acknowledgement is not received in a sufficiently short interval, a repeat of the message is

sent under the assumption that the original message is lost.

1°Examination of the contents of actual messages with the Snoop tool revealed that the LAT devices

broadcast a list of the services they provide.

nnN_m_

pIx

Suns

gozm0 r'out |r

A
dlno

A
baNbaM

pebbles
phule|or

2_
zlphlus

Lat#

her_ony

L_< d,
4©oslNo¢

eg|

oldStuff

A X
hol_roo _t_ms

Figure 10: The CGL local subnet, after machines are grouped.

initial me_sago
J anti-matter form

/ of initial message

Physeter message reply to initial _ \

message

Ziphius

Figure 11: The appearance of acknowledged packets in the network visualization.

57

world (not reflected in the visualization). A :_hort time lag between an event and its visualization

is unavoidable since even the fastest machine _equires time to collect and process data. However, a

system in which the lag stretchs or shrinks is a :)roblem because it dynamically changes the apparent

relationships we are trying to discover. In the m _work visualization, the TNV display lags clock time

by exactly four seconds, ensuring that data is c: Uected, processed, and in memory before the TNV

actually needs it for the display.

To handle temporary data drop-outs (i.e. whn a lag time of four seconds is insufficient due to

network congestion), portions of the edges are dra_"n with dashed lines to indicate that data has not

been collected for portions of the represented tim period. Without this feature, it is possible to

have the rather ironic (and misleading) effect of trat_c levels appearing to be zero when the levels are

actually high enough to prevent the transfer of data from Snoop.

Visualizing An Econol :ic Simulation

The original purpose of the system was to visualize financial data. However, for the purposes of

testing the system, we produced a simple economic simu.ation to generate fake data. Simulated data
has several benefits over real data:

• the data represents a closed system, which is hard t,- find in the real economic world;

• the level of noise in the data is controllable;

• since the simulation is fairly simple and has no unknown quantities, (unlike the real world) the

relationships are predictable.

Our simulation represents 3 countries, each of which co.Ltains: four producers which employ

labor, pay taxes, sell products and in some cases buy product" from other producers; one source of

labor/consumers which buys products and pays taxes; and a government which buys products and

employs labor.

The simulation is a simplistic model of reality since the number of producers, the spending habits

of the consumers, and the price setting scheme of the producers is _mrealistic. However, it does model

the 'trickle-down' effect; when one labor/consumer group has an influx of capital, it spends more,

resulting in an outflux of capital to governments and producers, wire in turn spend more.

TNV is supplied with two sets of values: the amount of capital h¢_!d by each party, and the amount

of capital exchanged between each pair of parties. The amount o_ capital is represented by spiral

graphs (a variation of a bar graph). Positive values are represented by green boxes, while negative

values (debt in the case of the economic visualization) are drawn ii_ red. The exchange of capital

between two parties is shown by the edge graphs connecting them.

Other Applications

58

A very suitable application for TNV would be monitoring telephone e:changes systems. Objects

could either represent individual lines or entire exchanges. The ability to r ,verse _ime could be used
to infer where calls were originating from, without the use of caller-id.

Monitoringelectricpowergridswouldalsobe apossibility.Powergridsoperateon two different
time scales; one corresponding to normal use, and one corresponding to breakdowns. In normal use,

large changes in power consumption would be on the scale of minutes to hours, tied to uses of business

and consumer products such as lighting, heating, air conditioners and industrial processes. On the

other hand, breakdowns operate in a scale of seconds.

EMPIRICAL TESTING

Evaluating how well a set of subjects can discern useful intbrmation from real-world network data

initially seems like an obvious and simple way to test the quality of our visualization. Unfortunately,

extracting such network information from a visualization is a complex task which incorporates several

more primitive subtasks. The choice of the subtasks is dependent on the personal strategies developed

by the subjects.

In appreciation of this, our testing philosphy is to monitor how well users perform each primitive

subtask involved. The philosphy is based on the assumptions that facilitating the individual subtasks

similarly facilitates the whole task, and that the subtasks are less prone to the effects of personal

strategies. Currently, we have preliminary results for the subtask of recognizing the edge in the graph
that has intentionally symmetric behavior 11. We will subsequently refer to an edge with symmetric

behavior as the signal edge, while to others will be referred to as noise edges.

To keep the length of the tests manageable, each type of display (anti-matter, color-tagged, color-

tagged anti-matter, and a stripchart) were tested with a complete graph on five objects arranged on

the perimeter of a circle. The signal edge generated a pair of events (one in each direction) every

half second with a probability 0.15. The noise edges generated the same level of traffic, but the

likelihood of false positives (randomly paired events) on a particular edge was 0.152 or 0.0225 in any

half second interval. Four subjects were asked to identify the objects at either end of the signal edge

via a numeric keypad after a fixed interval of watching the display.

Figure 13 shows that the color-tagged display and the color-tagged anti-matter display allowed
the most accurate selections, and were the least degraded by shorter inspection intervals. This is to

be expected, since using color as a tag allows greater parallel processing/filtering by observers.

The stripchart display, used as a control group, consisted of five subgraphs, each with four

stripcharts. The top surface of each stripchart represented traffic in one direction, while the bottom

surface represented traffic in the other direction. The display in Figure 12 features a graph in which

the non-random edge is between objects 1 and 4. The anti-matter display and the stripchart display

were not significantly different which is not surprising since the anti-matter display is essentially a

distorted version of the strip chart.

Sadly, few real world applications consist of only five objects and 10 edges. The low level of

complexity would not be useful in most cases, even with the grouping mechanism. Accordingly,

additional tests, increasing the number of objects, were done to see how the color-tagging with anti-

matter scheme scaled. The results are shown in Figure 13. In the first test, the complete graph

on five objects was replaced by a complete graph on eight objects (28 edges). Subject performance

nThis is the type of behavior observed on an ethernet between sites that are engaged in point-to-

point communication.

59

bEue

red
_n n i--i n rl n

--...,..,....__.__ U u u uu
n n I-7

3 u u u u u

n Bu n nu n u

o n u FI I--Inn UU n n

1

n nn mn
3 u _ t._l U u

rm I--I I--1 mn
2 u U LI u LI

, _nr_ n 004
u U L_J O

n Fqnn rl
0 u I__1_ U u

4 nuI-I rqUU OU n n
n mr_ n n

2 _ I I U u H

, no,,"% n,-,,_ 3
n n o P,,, nor-] n uu O

4 nu nnu uu U
_o n nn

3 u U U u U n l-1 n (-I n

no on 0 , ,, ,,u.uu_n 0 nu _" nJ-J
n nn nn s _ _n u u

, o o _ u o , u o .,° ufl .n 2
o uO 0 un_

Figure 12: Example of the stripchart display. The signal edge is between objects 1 and 4.

dropped to the level of the stripchart, possibly resulting from the 3 fold increase in the number of

false positives 12, requiring additional serial processing.

If the drop in performance was purely a matter of the number of edges, increasing the number

of objects without increasing the number of edges would have no visible effect. This conjecture was

tested by giving subjects a non-complete graph with 15 objects and 28 edges. Performance dropped,

but not nearly to the extent that it did with the increase from 5 to 8 objects.

The preceding is an example of the experiments we are currently conducting. It is our intention

that each feature we implement is empirically tested for the effect on subjects' abilities to extract

information from the display.

CONCLUSIONS AND FURTHER WORK

This paper has several goals: to convince the reader that enhancing a user's ability to perceive

causality is a worthwhile pursuit; to explain how conventional visualization may fall short, and to

explore better ways of visualizing causality.

Our user testing is still in its beginning stages. However, with the'data collected from it, we will

be able to refine our current set of tests and quantify the effectiveness of our tool in helping observers

perceive other causal relationships than the simple symmetric case.

Acknowledgements

6O

12The number of random edges increased from 9 to 27, while the probability of a false positive on

a random edge remained the same. In terms of average signal-to-noise ratios, increasing the number

of edges dropped the S/N ratio from 0.83 to 0.26.

Effect of Display Type
Effect of Scaling on the

Anti-matter Tagged Display

gged+Ant L-matter

U" U

h
0 0

dO _ _ 60

Strip :hart:_::'::
..+..<,.-

_ti-matter

40

1.00 2.00 3.00 4.00 5.00

90

80 _'

70 --

8 nodes

15 nodes'

5 nodes

7

b

Time allowed to inspect the display
(in seconds)

Time allowed to inspect the display
(in seconds)

Figure 13: User testing results for different_ display types and scaling. The shaded areas represent a

99% confidence interval for the value of the proportion estimator.

61

Many thanks are owed to members of the Computer Graphics Lab at the University of Waterloo,

and other students there who participated in our experiments. Additional thanks are due to Karen

Sleumer for her tireless proof-reading of this paper. This research was supported by grants from
NSERC and ITRC.

References

[1] David J. Taylor. A prototype debugger for hermes. In Proceedings of the 1992 CAS Conference,

volume 1, 1992.

[2] Eileen Kraemer and John T. Stasko. Toward flexible control of the temporal mapping from

concurrent program events to animations. Technical report, Graphics, Visualization, and Usability

Center, Georgia Institute of Technology, 1994.

[3] George W. Furnas. Generalized fisheye views. In CHI'86 Proceedings, pages 16-23, April 1986.

[4] Jock D. Mackinlay, G.G. Robertson, and S.K. Card. The perspective wall: Detail and context

smoothly integrated. In CHI'91 Conference on Human Factors in Computing Systems, pages

173-179, April 1991.

[5] Cathryn J. Downing. Expectancy and visual-spatial attention: Effects on perceptual quality.
Journal of Experimental Psychology: Human Perception and Performance, 14(2):188-202, 1988.

62

Unsteady Visualization of Grand Challenge Size CFD Problems:
Traditional Post-Processing vs. Co-Processing

Robert Haimes

Massachusetts Institute of Technology
Cambridge, MA

haimes@orville.mit.edu

ABSTRACT

The traditional steps taken in the analysis of steady-state Computational Fluid Dynamics results
break down when dealing with time-varying problems. A single transient application can require
enormous resources that can stress any computer center. The common approach that most indi-
viduals take is a form of sub-sampling (usually in time) with regard to disk requirements and not
to the physical problem. This can lead to erroneous results when viewed and give the investigator
(or worse - the designer) an incorrect impression of the unsteady flow regime.

This paper discusses two available visualization packages that can perform co-processing. Through
their architecture, and some coding, close coupling of a CFD solver with the visualization allows
for concurrent execution of both. The pros and cons of each system are exposed. And finally, a
hybrid post-processing / co-processing scheme is discussed that can, in a production environment,
resolve the resource / accuracy issues.

TRADITIONAL COMPUTATIONAL ANALYSIS

The computational steps traditional used for Computational Fluid Dynamics (CFD) analysis
(or when CFD is used in design) are:

• Grid Generation

The surfaces of the object(s) to be analyzed (usually derived from a CAD system) specify
part of the domain of interest. Usually for the analysis of external aerodynamics, the airplane
is surrounded by other surfaces that extend many body lengths away from the craft. This
enclosed volume is then discretized (subdivided) in one of three ways. Unstructured meshes
are built by having the subdivisions be comprised of tetrahedral elements. Another technique
breaks up the domain into sub-domains that are hexahedral. These sub-domains are further
subdivided in a regular manner so that individual cells in the block can be indexed via an
integer triad. The structured block schemes may have the blocks abut or overlap. Finally,
some systems use meshes that are not body fit. In this class of grid generation, the surfaces
of the object intersect a hierarchical (embedded) Cartesian mesh. For all of these methods,
the number of nodes produced for complex geometries can be on the order of millions. See
Aftosmis[1] for a fine treatise on the state of the art in grid generation.

• Flow Solver

The flow solver takes as input the grid generated by the first step. Because of the different
styles of gridding, the solver is usually written with ability to use only one of the volume
discretization methods. In fact there are no standard file types, so most solvers are written
in close cooperation with the grid generator. The flow solver usually integrates either the

Euler or Navier-Stokes equations (these are hyperbolic partial differential equations) in an
iterative manner, storing the results either at the nodes in the mesh or in the element centers.
The output of the solver is usually a file that contains the solution. Again there are no file
standards. PLOT3D[2] files can be used by grid generators and solvers that use structured
blocks and store the solution at the nodes. In practice, this file type is not used by the solver

writer because it contains no information on what to do at the block interfaces (the boundary
conditions to be applied). Therefore, even this subclass of solvers writes the solution to disk
in a manner that only the solver can use (to restart) and this file is converted to a PLOT3D
file for post-processing.

63

Post-processing Visualization

After the solution procedure is complete, the output from the grid generator and flow solver
is displayed and examined in a graphical manner by the third step in this process. Usually
workstation-class equipment with 3D graphics adapters are used to quickly render the out-

put from data extraction techniques. The tools (such as iso-surfacing, geometric cuts and
streamlines) allow the examination of the volumetric data produced by the solver. Even for
steady-state solutions, much time is usually required to scan, poke and probe the data in order
to understand the structure of the flow field. In general, most visualization packages read and

display PLOT3D data files as well as a limited suite of output from specific packages. There
are some systems that can deal naturally with unstructured meshes and few that can handle
hybrid structured/unstructured solutions. No general package can, at this point, deal with
the output from Cartesian systems.

The 3-step process (described above) has been the view of CFD analysis for years as individuals
and teams have worked on each component. This work has had the assumption that a steady-state

problem is being tackled. Therefore, this process works well for steady-state solutions. But, when it
is applied to a transient system there are two crucial steps that get easily overwhelmed. First, if the

grid changes in time, the grid generation process can take enormous amount of human interaction.
This area will not be covered by this paper.

The second limiter to effectively using the traditional CFD analysis steps in transient prob-
lems is understanding the results. The production of a movie is the method currently employed.
This is accomplished by treating each saved snap-shot of the solution (on disk) as a steady-state
visualization task. Image (window) dumps are produced from the same view (or from a fly-by)
with the same tools active. These images can be played back a some later time to give the viewer
information on what is changing in time. Movies can be a very efficient method for communicating
what is going on in the changing flow field, but is ineffective as a vehicle for understanding the flow
physics. Rarely are we smart enough to 'story-board' our movie in a way that displays salient flow
features without finding them first.

We have learned that a single view or picture is not enough to understand complex flow features;

why should a single snap-shot in a movie convey any more?

PROBLEMS WITH POST-PROCESSING

If we follow the traditional computational analysis steps for CFD (and assume the simple case

that the grid is not changing in time) and we wish to construct an interactive visualizer we need to
be aware of the following:

• Disk space requirements

A single snap-shot must contain at least the values (primitive variables) stored at the appro-
priate locations within the mesh. For most simple 3D Euler solvers that means 5 floating
point words. Navier-Stokes solutions with turbulence models may contain 7 state-variables.
The number can increase with the modeling of multi-phase flows, chemistry and/or electo-

magnetic systems. If we examine a 5 equation system with 1 million nodes (with the field
variables stored at the nodes) a single snap-shot will require ?.0 megabytes. If 1000 time-steps
are needed for the simulation (and the grid is not moving), 20 gigabytes are required to record
the entire simulation. This means that the workstation performing the visualization of this
simulation requires vast amounts of disk space. The disk space should be local because access
to this much data over a distributed file system can also be a limitation.

• Disk speed vs. computational speeds

The time required to read the complete solution of a saved time frame from disk is now longer
than the compute time for a set number of iterations from an explicit solver. Depending
on the hardware and solver an iteration of an implicit code may also take less time than

64

reading the solution from disk. If one examines the performance improvements in the last

decade or two, it is easy to see that depending on disk performance (vs. CPU improvement)
may be a bad 'bet' for enhancing interactivity. Workstation performance continues to double

every 18 months. The price per megabyte of disk drives has dropped at amazing rates, but
the performance of commodity drives has only gone from about 1 megabyte/see in 1985 to
about 5 megabytes/see in 1995. To augment disk performance, technologies may be applied
like disk striping, RAID, or systems like Thinking Machine's DataVault, which all depend on
using multiple disks and controllers functioning in parallel. But most workstations currently

have SCSI interfaces that limit data transfer rates to about 5 megabytes/see (SCSI II) per
chain. High performance workstations that have other methods may only be able to move 20

megabytes/see through an I/O channel. Therefore, to post-process on a normal workstation,
it may take 4 seconds per iteration, just to read the solution for the above example.

Cluster and Parallel Machine I/O problems

Disk access time is much worse within current parallel machines and clusters of workstations

that are acting in concert to solve a single problem. In this case we are not trying to read
the volume of data, but are running the solver to write it out. I/O is the bottleneck for a
parallel machine with a front-end. The machine probably has the ability to compute in the
gigaFLOP range (being able to generate much data very quickly) but all this data has to
be funneled to a single machine and put on disk by that machine. Clusters of workstations

usually depend upon distributed file systems. In this case the disk access time is usually
not the bottleneck, but the network becomes the pacing hardware. An IBM SP2 is a prime
example of the difficulties of writing the solution out every iteration. The machine has a high-
speed interconnect, but the distributed file system does not use it. There are other access

points into each node. Most SP2s have an Ethernet port for every node and some also have
FDDI connections. These traditional network interfaces must be used for the file system. The
SP2 can also be used in the traditional front-end paradigm if one of the nodes has a disk
farm. In this model, the high-speed interconnect can be used with explicit message passing
to the I/O node that does the writing. This obviously requires special code and knowledge
of the underlying hardware. In our above example, it would take about 20 seconds to write

one time frame (Ethernet hardware - distributed file system). If the machine is dedicated (no
other tasks running), then that wastes 20 seconds of cycles.

Numerics of particle traces

Most visualization tools can work on a single snap shot of the data but some visualization

tools for transient problems require dealing with time. One such tool is the integration of
particle paths through a changing vector field. After a careful analysis (numerical stability
and accuracy) of integration schemes[3] it has been shown that there exist certain time-step
limitations to insure that the path calculated is correct. Even for higher order integration
methods, the limitation is on the order of the time step used for the CFD calculation. This is
because of a physical limit, the time-scale of the flow. What this means for the visualization

system is that in order to get accurate particle traces, the velocity field must be examined
close to every time step the solver takes.

Because of the disk space requirements and the time to write the solution to disk, the authors
of unsteady flow solvers perform some sort of sub-sampling. This sub-sampling can either be

spatial or temporal. Because the traditional approach is to deal with the data as if it were many
steady-state solutions, this sub-sampling I/O is almost always temporal. The individual running
the simulation determines the frequency to write the complete solution based on the available disk

space. In many cases, important transitions are missed. Also since the solution is coarsely sampled
in time, streaklines (unsteady particle paths as discussed above) almost always produces erroneous
resalts. The problem with sub-sampling is that the time-step selected for the visualization becomes
dependent on the available disk space and not the physical problem.

65

With the huge storage equipment (and therefore financial) burden on the compute facility it
is no wonder that only large national labs routinely visualize results from unsteady problems. We
must adopt another visualization paradigm in order to overcome the limitations produced by post-
processing.

CO-PROCESSING VISUALIZATION

A solution to the above problems is co-processing. The concurrent solving with interactive
visualization can relieve the compute arena of the disk space, speed and sampling limitations. Co-
processing does require a complete re-thinking of the architecture of the visualization system and
poses the following issues:

• Coupling to the solver

The solver must communicate with the visualization system. This can be accomplished by
one of three methods:

Disk files: In this approach the solver task communicates with the visualization task by data
written to disk. This method is rejected for the disk timing and I/O arguments discussed
above.

Shared memory: In this approach the solver and visualization system communicate via shared
memory. This has the advantage that the solver and visualization task are separate and the
communication is fast. The disadvantage is that the solver must be written with the shared
memory interface. The data that is exposed must be shared in a way that the visualization
task knows where and how to get individual data elements. Also, some method is required to

mark the data invalid as it is being updated.

Application Programming Interface (API): This method couples the visualization task (or
some portion of the visualization system) with the solver. This coupling is done at the
programming level. The advantages to this approach is that all the data is shared (there is
only one task), no special operating system level requirements are needed, and it can be used
with solvers written in different languages. The challenge is to develop a software architecture
that is general, non-invasive, and that allows the visualization system and solver to function
independently.

• Additional resources

Whichever approach is selected, an additional burden is placed on the computer resources.
Now both the solver and at least a portion of the visualization system is active on the com-
puter. The visualization system should not place a large encumbrance on either the memory
subsystem or require large amounts of CPU cycles.

• Robustness

The visualization system is running concurrently with the solver. Either it is part of the same
task, or has access to crucial data. The visualization must be robust and not interfere with
the solver's functioning. A problem with the visualization portion of the system must not
crash the solver.

Interactivity

It is important for interactivity that the resources required by a co-processing visualization
system be a minimum. The cost of CPU cycles and additional memory are the barometer for
the frame rate. To accomplish fast frame rates, it becomes a necessity to classify the type of
transient problem under consideration. If the visualization system is properly designed, this
classification can be used to determine when the results of a tool should be saved and when

recalculation is necessary. The following classification is used throughout this paper:

66

Common Blocks

or global data
Main Program

I Visual3

I
V3CELL,V3GRID,V3SCAL,...

Figure 1: Control diagram of Visual3

Data Unsteady: In this type of application the grid structure and position are fixed in time.

The data defined at the nodes (both scalar and vector) changes with each time step. An
example is when a boundary condition in the domain is changing.

Grid Unsteady: These cases are 'Data Unsteady'; in addition the grid coordinates associated
with each node are also allowed to move with each snapshot. An example of this is stator/rotor
interaction in turbomachinery. The stator and rotor grids are separate, with the rotor grid
sliding past the stator grid. In this case the stator portion is actually 'Data Unsteady' and
the rotor grid moves in a radial manner.

Structure Unsteady: If the number of nodes, number of cells or cell connectivity changes from
iteration to iteration, then the case is 'Structure Unsteady'. An example of this mode is
store-separation or the solid rockets moving away from the shuttle during lift-off.

CO-PROCESSING USING Visual3

The manner in which a solver interacts with Visual3[4, 5] is through the API coupling method.
It is best understood by first looking at a steady-state post-processing application, then examining
how this architecture is changed for an unsteady post-processing application and finally looking at
co-processing.

As shown in Fig. 1 the steady-state driver program first initializes and activates Visual3. Vi-

sual3, now in control, gets the data it requires from the driver by calling a small number of
programmer-supplied subroutines. These call-back routines are connected to the main program
only through COMMON blocks in FORTRAN or through global data in C. The reason for this
unusual approach is that it keeps the interface between the driver and Visual3 as simple as pos-
sible, and allows the programmer to plot new scalar functions by simply changing the code which
supplies the scalar data.

In the simplest steady-state visualization application, a main routine reads the data from disk

and calls V3_INIT. The application also contains the subroutines, V3SURFACE (define the domain
surfaces), V3GRID (specify the 3D coordinates for the nodes), V3SCAL (specify the scalar values for

the nodes), and if appropriate V3CELL (defines the volume discretization) and V3VECT (specifies
the vector values at the nodes), that are called by Visual3. Figure 2 shows the flow diagram for
the control of Visual3. In the initialization phase V3CELL, V3SURFACE and V3GRID are called

once to obtain the data structure and grid coordinates, which do not change. After initialization,
Visual3 enters a large animation loop. At the beginning of the loop the first step is to process
the list of X-events (keystrokes, dial movements, and cursor movements) that have occurred since
the beginning of the previous loop. Processing this list can result in changes in the transformation
matrix being used to view the scene, or a change of desired scalar or vector variable, or the invocation

67

Initializegraphicswindows

if new vector, call V3VECT

1

rendereverything

Figure 2: Flow diagram of Visual3 for steady application

of some new plotting function. The second step is to call V3SCAL if the scalar variable has changed,
and V3VECT if the vector variable has changed. The third step is to construct any 2D structures
required for cutting surfaces and iso-surfaces. The final step is to perform the rendering, the
drawing of the images to all of the graphics windows. The third and fourth steps are usually the
most computationally and graphically demanding, and are optimized by keeping careful note of
what has changed since the previous loop.

In post-processing unsteady visualization, the program control is similar to that in steady-state
visualization. It is assumed that the unsteady data has been pre-computed or needs only a minor

level of computational effort. Again the driver program initializes Visual8 during the transfer of
control. Program control is returned to the calling routine only when Visual8 is terminated by the
user.

There are currently two supported types of unsteadiness. At present the 'Structure Unsteady'
mode is not allowed. The modifications to the control loop in Visual3 to handle both 'Data
Unsteady' and 'Grid Unsteady' modes are very minor, as shown in Figure 3. Before the data
collection phase, the call-back V3UPDATF_ is executed. This allows the programmer to update the
data as appropriate for the problem.

Another change is that V3GRID is called if the case is 'Grid Unsteady' so that new grid co-
ordinates can be obtained. In any case, V3SCAL and V3VECT are always called, even if their

definition has not changed, because the values in the field have been updated.

The operating system on SGI workstations, IRIX, supports a parallel processing feature called

68

Initialize graphics windows

,l
callV3CELL, V3SURFACE, V3GRID

process X-events I

1,
if 'Grid Unsteady', call V3GRID

call V3SCAL,V3VECT

construct 2D data

render everything I

Figure 3: Flow diagram of Visual3 for post-processing unsteady application

'threads'. On machines with more than one processor, threads can run on different CPUs. These

Symmetrical Multi-Processor (SMP) computers include PowerSeries, Onyx and PowerOnyx ma-
chines. Multi-threading provides a mechanism by which a process can split into two or more parts
that run concurrently and share the same address space. Visual3 can use this mechanism to allow

co-processing with a solver. In this mode: when the programmer calls for visualization initialization,
Visual3 generates a new thread which runs the graphics, before returning to the calling program.
At this point there are now two (or more) threads running, one (set) executing the solver code, and
the other thread executing Visual3.

To avoid data conflicts between the two, special locking mechanisms have been set up to insure
that the solver does not update its data at the same time that Visual3 is fetching it by the call-
back mechanism. The programmer controls when new data is available to Visual3 by calls to a
hand-shake routine. When the solver needs to update the flow variables, at the end of one timestep
for example, a call is made to this hand-shake routine so that Vlsual3 can be notified that the

data is being updated and is not currently available. If Visual3 is in the process of accessing the
data, then the hand-shake routine waits until the access is completed before seizing control. Once

59

I Initialize graphics windows]

Icall V3CELL, V3SURFACE,

process X-events

V3GRXDI

I check if data is availablenew

if 'Grid Unsteady', call V3GRID

call V3SCAL,V3VECT

t

Ir
e

d

re)construct
d!ta, if necessary; y

render everything

(
Figure 4: Flow diagram of Visual3 for co-processing unsteady application

the solver has finished the data update, it again executes the hand-shake routine to notify Visual3
that the data is available while setting the simulation time. The simulation time is used for particle

integrations.
From the point of view of VisualS, the modifications to the control loop are shown in Figure 4.

After processing the X-event list, and before updating the data, it checks to see if the data is
available. If it is not, then Visual$ jumps to the rendering phase so that interactivity is maintained.

CO-PROCESSING AND pV3

A distributed visualization tool-kit that performs co-processing, pV316], has been developed.

pV3 builds heavily from the technology developed for Visual3. This re-tooling was necessary to
support the visualization of transient problems without having to dump the entire volume of data to
disk every iteration. This system also relieves the equipment-specific requirements of using Visual3

in the co-processing mode. pV3 is designed to allow the solver to run on other equipment than the
graphics workstation. In fact, the solver can execute in a cluster environment.

70

pV3 segregates the visualization system into two parts. The first part is the task that actually
displays the visualization results onto the graphics workstation, the server. The second portion is
a library of routines that allows the solver (solver portions or solvers) to communicate with the
visualization server by providing windows to the data at critical times during the simulation. This
client library separates all visualization based calculations from the flow solver, so that the solver
programmer only needs to feed pV3 the current simulation data.

pV3 has been designed to minimize network traffic. The client-side library extracts lower
dimensional data required by the requested visualization tool from the volume of data in-place.
This distilled data is transferred to the graphics workstation. To further reduce the communication

burden posed by the visualization session, the transient problem classification described above is
used. Only the extracted data that has changed from the last iteration is sent over the network.

An added benefit of this architecture is that most of the visualization compute tasks run in

parallel for co-processing in a cluster environment or on a Massively Parallel Processor (MPP).
This is because most visualization tools can be cast into operations performed on all the cells
within a partition. This means that these tools are embarrassingly parallel. If the partitions are
balanced on the basis of cells, then the result of much of the visualization computation is also
executed in parallel with some balance. Therefore much better performance for the visualization is
achieved.

Each client may be assigned a different class of unsteadiness. This tells the system if data
needs to be recalculated and re-transmitted. For example, if a sub-domain is 'Data Unsteady' and
a geometric cut is desired (such as a planar cut), only the field data at the nodes (scalar and/or
vector) need to be re-transmitted to the server every iteration. The geometry (node locations and
mesh data to support the surface) is communicated only when the cut is initiated. If, in the above
example, the case is 'Grid Unsteady' all data needs to sent every iteration to the server.

To maximize pV3's effectiveness, client-side libraries exist for most major workstation vendors,
MPP's and super-computer manufacturers. Unlike Visual3's co-processing, the computer resources
that would usually be used in the execution of the solver can be used. In fact, pV3 has been designed
so that the process of coupling to the solver is simple and noninvasive. The solver's control structure
is maintained with the visualization subservient. In the distributed setting, client(s) perform their
appropriate calculations for the problem, then as the solution is updated, supplied call-back routines
are executed by the visualization library.

The programming model for a typical iterative CFD application can be seen in Figure 5. In
general, at the top of each time step boundary conditions are calculated and set, and the solver
computes the change to the solution for the entire volume. Then the change to the field is applied.

The coupling is performed by adding two calls to the pV3 client library in the solver code. The
first call is for initialization which informs the visualization system about the following:

Volume discvetization - the number of disjoint elements and their type and the number and size
of structured blocks.

Boundary Conditions

lr

Iso,yogi
J

v

Figure 5: Archetypical Iterative CFD Solver

71

Boundary Conditions _-_

rSo verI

Common Blocks Data Update _ "- ofg]o_T_-_aia--

PV_UPDATE

Call-back routines

Figure 6: Flow diagram of a pV3 client

Unsteady mode- 'Steady-state', 'Grid', 'Data' or 'Structure Unsteady'.
Visualization field variables - the number, type, name and limits for each scalar, vector and

threshold field.

Programmed cuts - any non-planar geometric cuts defined for this case.

After a successful initialization, the process is entered into the pV3 client group.

This second call (to PV_UPDATE) informs the visualization system of two things: (1) the
simulation time for time-accurate solvers and (2) the solution has been updated and synchronized.

This is the mechanism that allows pV3 to operate, see Figure 6. Without the server running, every
time the solution is updated and this call is executed, a check is made for any members in the
server group. If none are found, this call returns. When the visualization task starts, it enrolls in
the server group, and waits for initialization messages from the clients. The next time the client

goes through an iteration, and calls the pV3 update routine, an initialization message is sent to
the server. The server processes all initialization messages, figures out the number of clients and
the visualization session begins. Each subsequent time the client goes through the loop and makes

this pV3 call, visualization state messages and tool requests are gathered. Then the appropriate
data is calculated, collected and sent to the graphics workstation.

Because PV_UPDATE is where all requests from the graphics workstation are performed, the

overall response to state changes and the interactive latency associated with these changes (as well
as the next time frame) depend on how frequently this routine is called. About one call per second
is optimal. If the solution is updated significantly faster then much of the compute cycles will be
used for the visualization, moving the solution slowly forward in time. In this case it is advisable to

call PV_UPDATE only every N times the solver updates the solution. When skipping iterations,
some analysis of how many iterations can be missed is required, if particle integrations are required.

The more difficult case is when the solution update rate is much slower than optimal. In this

situation, there are two choices: /1/live with large lags between user requests and the result ofthe request seen on the screen or set up another task between the solver and the pV3 server.
This software's responsibility is to communicate with the solver. It should be the task to make all

the pV3 client-side calls. This secondary task must communicate with the solver (and not through
disk files) and therefore must be on the same machine to avoid large network transfers. If the

machine supports mnlti-threading, the task can be a second thread and perform double-buffering
of the solution space, so no data need be transferred. These methods are a trade-off of computer

72

resources for interactivity.

When the user is finished with the visualization, the server sends a termination message, leaves
the server group, and exits. The clients receive the message and clean up any memory allocated for

the visualization. The pV3 client update call reverts to looking for members in the server group.

The visualization system gets the solver's data via call-back routines supplied with the solver.
These routines furnish details about the volume discretization, define the surfaces (partition as well
as computational boundaries), the node locations and the requested scalar and vector fields. These
are virtually the same call-backs used for a Visual3 driver.

During the design of pV3, the state of the solver (client side) was always viewed as the most im-
portant component. No error condition, exception or unusual state within the visualization portion
of the client effects the solver. To maintain this robustness, no visualization state is stored within

the client, all tools are handled via a specific request for data and the response is calculated and
sent to the server. If any condition occurs that would cause some problem within the visualization
system, the pV3 server shuts itself down. This allows the simulation to continue, with at most a
delay equal to pV3's time-out constant. The pV3 server can always be restarted to re-connect to
the solver at any later time.

This software architecture has the following advantages:
Control- the solver is always in control, and the control mechanisms used during code develop-

ment can be maintained.

Minimum intrusion - Only two lines need to be added (not including the call-back routines) to
the solver code to allow co-processing visualization. Therefore, it can be removed easily for bug
isolation.

Steering - The ability to steer the solution is provided via text strings passed from the server to

all clients. The action is taken by a programmer supplied call-back that gets the string, interprets
the command(s) and performs the requested action.

USING Visual3's ARCHITECTURE

Most of the problems with using Visual3 for co-processing are that the design point for the

code was steady-state or post-processing unsteady visualization. The issues of robustness (for the
running solver) were not considered. If the Visual3 thread aborts, the solver may continue, but the
memory allocated for the visualization session does not get freed-up and the visualization session

can not be restarted. In this case the thread (and possibly a processor on the SMP machine)
will not be used for the simulation. This is generally true, if the visualization has aborted or is

functioning. One processor is used, out of the pool, for the visualization (or shared with what is
currently running on the machine).

In most cases, where design decisions pitted memory usage vs. a speed trade-off, speed was
selected, again because the execution model was not co-processing. That means that if the size of
the problem would just fit in the machine without visualization, it would page when the visualization
was activated, pV3 requires much less memory for the same size problem because the trade-offs
were more carefully analyzed.

Finally, Visual3 can be run in the co-processing mode on only a small subset of machines with
available ports. Currently this only includes SGI SMP machines with 3D graphics hardware.

PROBLEMS WITH pV3 CO-PROCESSING

pV3's architecture does pose some difficulties to the code integrator. These involve informing
the system on how to patch sub-domains together (for instantaneous streamlines and particle in-
tegrations) and in the definition of surfaces of interest (such as wing, body, tail, etc.). Having the
programmer define the surfaces allows pV3 to automatically collect them together for the visualiza-

tion. The programmer can lessen the sub-domain connectivity burden by trading-off computational
efficiency for having pV3 attempt to continue integrated paths anywhere throughout the domain.

The compute portion of most of the visualization tools is embarrassingly parallel. This gives
an advantage in response when the application has been partitioned. The disadvantage is that

73

during the execution of the tools that are serial (such as instantaneous streamlines or particle
path integrations) the entire cluster may be stalled. This is a situation that must be minimized.
Much effort has been placed in the design of pV3 to overlap the wait time required for these
serial operations to complete with other visualization computation. This involves pulling requests
associated with serial tools off the message queue, if they exist, without regard to order. This

technique works as long as there are many visualization requests that are not serial. A complete
description of the methods used for integrating in partitioned volumes can be seen in Sujudi and
Haimes[7].

When the domain has been partitioned and load balanced for the solver, the visualization will
upset that balance. There is no attempt within pV3's client-side library to address this problem.
This would be contrary to the design goals of minimizing the data movement and leaving the solver
(and and the solver's data) alone. Therefore, while the visualization is active, the solver remains load
balanced, but the visualization compute and balance is defined by what tools have been activated,
the load that generates in each partition, and the action of the serial tools (as discussed above).

The most significant problem with pV3 in its current form is that it is purely interactive. If
someone is not watching the solution as it progresses in time, the information is lost. This is because
data is never stored for review. Movies can be made at the server during the visualization session,
but this action can slow down the entire solver-visualization concurrent processing.

FEATURE EXTRACTION

In the past, feature extraction and identification were interesting concepts, but not required
to understand the underlying physics of a steady 3D problem. This is because the results of
the more traditional tools like iso-surfaces, cuts and streamlines were more interactive and easily
abstracted so they could be represented to the investigator. These tools worked and properly
conveyed the collected information at the expense of much user interaction. For unsteady problems,
the investigator does not have the luxury of spending much time scanning only one 'snap-shot' in
the simulation. Automated assistance is required in pointing out areas of potential interest in the
flow. This must not require a heavy compute burden (for co-processing the visualization should
not significantly slow down the solution procedure). Methods must be developed to abstract the
feature and display it in a manner that makes sense physically.

Some success has been made in this field. For example, a method that finds the vortical struc-
tures has been developed[8]. This is important for flow regimes that are vortex dominated (most
of these are unsteady) such as flow over delta wings and flow in turbomachinery. Tracking the core
can give insight into controlling unsteady lift and fluctuating loadings due to core/surface interac-
tions. This particular algorithm has been designed so that no serial operations are required, it is
embarrassingly parallel, deterministic (with no 'knobs') and the output is minimal. The method
operates on a cell at a time in the domain and disjoint lines are created where the core of swirling
flow is found. Only these line segments need to be sent to the server to be displayed, distilling the
entire vector field to a tiny amount of data.

More feature extraction techniques are required that have the same characteristics: embarrass-
ingly parallel, deterministic and minimal output.

CONCLUSIONS

pV3 is an important tool for solver development and debugging[9, 10]. But as discussed above,
the problem with pV3 in a production environment or for batch execution is that the user may
not be around to fire-up the server and view the results. An important addition to the pV3 suite

of software (currently in the design and implementation phase) is a 'batch' server. The client side
will remain unchanged. The solver need not know if the results are currently being viewed or to be
viewed at some later time.

Therefore, when a 'batch' job starts, the 'batch' pV3 server is also started. Data is read on

where and what tools and probes are to be active and their locations. The results (tool extracts) are
collected and written to disk for play-back later. This is different from the normal post-processing

74

in that the entire volume of data is not written to disk every iteration. Features (with the properties
described above) can also be extracted and dumped along with the traditional tools.

The end result is something that is not interactive in the placement of tools, but can be thought
of as analogous to a wind-tunnel experiment. The investigator must be smart in the placement of
probes to extract data of interest. If an important area is missed (or only found after viewing the
results) the user will have to re-run the 'tunnel' adding (or changing the location) of the probes. A
post-processing viewer is also required to read and display the extracts. This viewer will be highly
interactive in dealing with time. This is due to the fact that the amount of data has been reduced
many orders-of-magnitude.

This suggests a method for resolving the problems in dealing with transient CFD calculations.
The traditional method used of storing the entire solution space every N iterations should be
maintained. N may be able to be increased, because co-processing will be used for time critical
components. This includes particle integrations, feature extracts, and the result of any other tools
desired at a high fidelity in time. An interactive post-processing viewer is required, that can handle
a mixture of field quantities and extracts, and is flexible in dealing with simulation time. Time
is traversed with the frequent re-rendering of the co-processed extracts while the normal post-
processing of the field quantities is refreshed at the time when the data is available. The time

required to read the saved solution from disk (or over the network) can be overlapped with the
rendering of the high fidelity extracts to give good overall interactivity.

If important transitions are missed, then the solver and pV3 can be re-executed from the closest
saved time-frame to interactively examine the changing flow field.

References

[1] M. J. Aftosmis. Emerging CFD Technologies and Aerospace Vehicle Design. NASA Workshop
on Surface Modeling, Grid Generation, and Relented Issues in CFD Solutions, May 1995.

[2] P. Buning and J. L. Steger. Graphics and Flow Visualization in Computational Fluid Dynamics.
AIAA Paper 85-1507, 1985.

[3] D. Darmofal and R. Haimes. An Analysis of 3-D Particle Path Integration Algorithms. AIAA
Paper 95-1713, June 1995.

[4] M. B. Giles and R. Haimes. Advanced Interactive Visualization for CFD. Computing Systems
in Engineering, 1(1):51-62, 1990.

[5] R. Haimes and M. Giles. VISUALJ: Interactive Unsteady Unstructured 3D Visualization.
AIAA Paper 91-0794, January 1991.

[6] R. Haimes. pVJ: A Distributed System for Large-Scale Unsteady CFD Visualization. AIAA
Paper 94-0321, January 1994.

[7] D. Sujudi and R. Haimes. Integration of Particle Paths and Streamlines in a Spatially-
Decomposed Computation. Proceedings of Parallel CFD '95, June 1995.

[8] D. Sujudi and R. Haimes. Identification of Swirling Flow in 3-D Vector Fields. AIAA Paper
95-1715, June 1995.

[9] P. Crumpton and R. Haimes. Parallel Visualisation of Unstructured Grids. Proceedings of
Parallel CFD '95, June 1995.

[10] R. Haimes and T. Barth. Application of the pV3 Co-processing Visualization Environment to

3-D Unstructured Mesh Calculations on the IBM SP2 Parallel Computer. Proceedings of The
Computational Aerosciences Workshop 95, NASA Ames Research Center, March 1995.

75

FLOW VISUALIZATION USING MOVING TEXTURES*

Nelson Max

Lawrence Livermore National Laboratory

Livermore, California

Barry Becker

Lawrence Livermore National Laboratory

Livermore, Califomia

SUMMARY

We present a method for visualizing 2D and 3D flows by animating textures on triangles, taking advan-

tage of texture mapping hardware. We discuss the problems when the flow is time-varying, and present

solutions.

INTRODUCTION

An intuitive way to visualize a flow is to watch particles or textures move in the flow. The early color

table animation of [1] was an example of this technique. More recently, van Wijk [2] has proposed advect-

ing and motion blurring particles by the flow field. The LIC method [3, 4, 5] uses integrals of white noise

textures along streamlines, moving the weighting function in the integrals from frame to frame to animate

the texture motion. The motion blur of the particles and the directional texture blurring from the LIC inte-

gration create anisotropic textures which indicate the flow even in a still frame. However they are computa-

tionally intensive, and cannot generate animation in real time. The textured splats of Crawfis [6] use a loop

of cycling texture maps with precomputed advecting motion blurred spots, and take advantage of texture

mapping hardware. These are composited in back to front order in a local region near each data point, and

oriented in the direction of the velocity vector, so that the precomputed advection cycle indicates the flow.

In this paper, we show how texture mapping hardware can produce near-real-time texture motion,

*This work was performed under the auspices of the U.S. Department of Energy by Lawrence Liver-

more National Laboratory under contract number W-7405-ENG-48, with specific support from an

internal LDRD grant. We thank Roger Crawfis for helpful suggestions.

77

usingapolygongrid, andonefixed texture.However,we makenoattemptto indicatetheflow direction in

a still frame. As discussed below, any anisotropic stretching comes from the velocity gradient, not the

velocity itself.

The basic idea is to advect the texture by the flow field. In [7] we gave an indication of the wind veloc-

ity by advecting the 3D texture coordinates on the polygon vertices of a cloudiness contour surface in a cli-

mate simulation. This was slow, because the 3D texture was rendered in software, and because advecting

the texture was difficult for time-varying flows. In this paper, we replace the 3D textures by 2D texture

maps compatible with hardware rendering, and give techniques for handling time-varying flows more effi-

ciently.

The next section gives our technique for the case of 2D steady flows, and the following one discusses

the problems of texture distortion. Then we discuss the problems with extending our method to time-vary-

ing flows, and our two solutions. Next we develop compositing methods for visualizing 3D flows. The final

section gives our results and conclusions.

TEXTURE ADVECTION FOR STEADY 2D FLOWS

We start with a mathematical definition of texture advection, and then show how it can be approxi-

mated by hardware texture-mapped polygon rendering.

Let Ft(x, y) represent the steady flow solution of the differential equation

df (x,y) - V(Ft(x,y))
dt

(1)

where V(x, y) is the velocity field being visualized. Thus point P is carried by the flow to the point Ft(p)

after a time delay t. The flow F t satisfies the composition rule

for both positive and negative s and t. Thus (F t)-l(p) = F-t(p).

In this paper, we will assume that the initial texture coordinates at t = 0 are the same as the (x, y) coor-

dinates of the region R being rendered. In practice, the texture is usually defined in a different (u, v) coordi-

nate system related to (x, y) by translation and scaling, but for simplicity we will ignore the difference.

If T(x, y) is a 2D texture being advected by the flow, then a new texture Tt(x, y) is defined by

78

,((F,)-1)-)
Thus, to compute Tt at a point P, we go backwards along the streamline through P, to find the point Q such

that Ft(Q) = P, and then evaluate the texture function T at Q. When animated, this will give the appearance

that the initial texture T is being carried along by the flow. By equation (2) above,

F-(t+
At)

(P) = F-z_tIF-t (P) _J" Thus the streamlines Ft(P) needed for the texture coordinates can

/

be

computed incrementally.

There are two problems with this formulation when the domain of definition for V(x, y) or T(x, y) is

limited to a finite region R in which the velocity data or texture is available. First of all, if the streamline

F-t(p) leaves the region R, the necessary velocities are not available to continue the integration. One must

either extrapolate the known velocities outside R, or continue the streamline as a straight line using the last

valid velocity. Fortunately, either of these extrapolation methods will give a correctly moving texture in

animation. This is because the visible texture motion at a point P inside R is determined only by the veloc-

ity at P, and the extrapolation of the streamline beyond R serves only to determine what texture will be

brought in from "off screen".

Second, even if F -t(p) is extended outside R, the texture may not be known there. The standard solu-

tion to this is to take T(x, y) to be a periodic function in both x and y, so that it is defined for all (x, y). Most

texture mapping hardware is capable of generating this sort of wraparound texture, by using modular arith-

metic (or truncation of high order bits) to compute the appropriate texture map address from the x and y

values. There are also tools to generate textures which wrap around without apparent seams [8].

To adapt this technique to hardware polygon rendering, the 2D region R is divided up into a regular

grid of triangles, and the texture coordinates Ft(Pi) are only computed for the vertices Pi of the grid. Dur-

ing the hardware scan conversion, texturing, and shading process, the texture coordinates at each pixel are

interpolated from those at the vertices, and the appropriate texture pixels are accessed. For triangles, the

stand_d bilinear interpolation, which is not rotation invariant, reduces to linear interpolation, which is. For

anti-aliasing, the hardware can use the higher order bits of the texture coordinates to weight an average of

four adjacent texture map values (or four values in each of the two most-nearly-appropriate-resolution ver-

sions of the texture, if MIP mapping [9] is employed.)

TEXTURE DISTORTION

The flow F-t(P) can change the shape of a triangle, so that it becomes long and thin in texture space, as

shown in figure 1. In the direction where the triangle is stretched by F-t, the texture will be compressed by

F t. This distortion will not be present if the velocity is constant, so that F -t and F t are both translations.

The distortion instead indicates anisotropies in the derivatives of V. For incompressible 2D flows, stretching

79

in onedirectionwill becompensatedbycompressionin aperpendiculardirection.Forcompressibleflows,

theremaybestretchingin all directionsat somepositions,andshrinkingin all directionsatothers.

Figure 1.The triangleon theright is mappedto thetextureontheleft, whichendsupbeing
compressedverticallywhenthetriangleisrendered.

During theanimationof thetextureadvection,thisdistortion continues to build up, so that eventually

the visualization will become useless. Therefore we periodically restart the texture coordinates back at their

original positions in the regular grid. To avoid the sudden jump this would cause in the animation, we grad-

ually fade up the new texture and fade down the old one, according to the weighting curves in figure 2.

Each texture starts with weight zero, fades up over the old texture until it alone is present, and then fades

Figure 2. Three cycles of the weighting curves for fading the textures up and down.

down as an even newer texture takes its place. This "cross dissolve" can be done in hardware, using o_com-

8O

positing [10]. If the textures are random, and contain an adequate range of spatial frequencies, this cross

dissolve will not disturb the perception of continuously flowing motion.

Since each texture is used for only a short time, the distortion does not become extreme. For a steady

flow, one cross dissolve cycle ends with the same image at which it began, so an animation loop may be

created which can be cycled rapidly and repeatedly on a workstation screen. Similar precomputed loops are

possible with the surface particle [2], LIC [3], and textured splat [6] techniques.

TEXTURE ADVECTION FOR UNSTEADY 2D FLOWS

If the velocity V depends on t, the differential equation

dF t
V_ F t (xl y) t 1

(x, Y) _

dt
(3)

defines a flow which no longer satisfies equation (2). For a fixed initial position Q, the curve F t(Q) is a par-

ticle trace C(t) as in [i 1], rather than a streamline. To find the texture coordinates for P at time to we need to

find the point Q such that F t° (Q) = P. We must go backwards along the particle trace, and thus solve the

differential equation

dC (t) _ V (C (t) , t) (4)
dt

for the t range 0 < t < to, with "final" condition C(to) = P, and then set Q = C(0). With the change of vari-

ables u = to - t, this is equivalent to the differential equation

dC(u) _-V(C(u) to-U) (5)
du

for the u range 0 < u < t0, with initial condition C(0) = P. Then Q = C(to).

In the case of unsteady flow, the differential equations (5) for different to are not related and define

completely different particle traces, so incremental methods can no longer be used. In [7] we integrated

equation (5) anew for each frame time to. To find the texture coordinates for frame to , we had to access the

time varying velocity data for the whole t range 0 < t < t 0, which is very inefficient for large data sets. Here

we propose two more practical methods.

The first method is to derive a differential equation for the flow G t (x, y) = (Ft) -1 (X, y). This flow

maps a point P to the texture coordinate point Q needed at frame time t, that is, the point with Ft(Q) = P.

Thus we have

81

Let Gtx and Gty be the x and y components of the vector-valued function Gt(x, y), and similarly let Ftx and

F_ be the components of F t. Then by differentiating the components of equation (6) with respect to t by the

chain rule, we get the pair of equations

bF'x
bt

Ft t - F t - t
b xbG x c) xC}Gy

+ + =0,
bx bt by bt

F t F t t bFtybatyb ybG xbr+ + =0
bt bx bt by bt "

F' bF tbx
..._.2Y= Vy, where Vx and Vyare thecomponents of the velocityfieldNow by equation (3),_ = Vx and bt

at position Ft(G t (P))-= P and time t. Therefore we have

M| bt/

where M is the Jacobian matrix for the flow Ft(x, y):

M

Thus

bx c)y_

But since Gt(x, y)= :_Ft) -'_ (x, y), the matrix M -1 is the Jacobian matrix J for at(x, y):

OCtxOGtx
j = bx by

t

bGty bGy

bx by

Thus Gt(x, y) satisfies the partial differential equations:

82

OGtx (x, y) OG_x(x, y) OGtx (x, y)

at - Ox Vx ay Vy

t l t

bGy (x, y) bG v (x, y) bGy (x, y) V
Ot - Ox Vx Oy Y"

(7)

These differential equations essentially say that the flow Gt(x, y) is determined from the negative of the

velocity V, as transformed into the texture coordinate system appropriate for t = 0, so they determine the

texture flow necessary to give the desired apparent velocity at time t. The initial condition for G t at t = 0 is

that G°(P) = P, that is, G Ois the identity map. Equations (7) can be integrated incrementally in time by

Euler's method. If Gt(Pi) is known at time t for all vertices on a regular grid, the partials in the Jacobian

matrix J(Pi) can be estimated from central differences between the G t values at adjacent grid vertices. (For

vertices at the boundary of R, one-sided differences must be used.) Then, using the current velocity

OGtx _Gty

V(Gt(Pi), t), increments AG x = --ff[-At and AGy = ---_- At are found for the components of G t. If necessary,

At can be a fraction of the time step between frames, and/or the vertex grid used for solving equations (7)

can be finer than the triangle grid used in rendering the texture, in order to make the solution more accurate.

The vertex grid spacing will affect the accuracy of the finite difference approximations to the partial
OG t

derivatives like --_Y. This accuracy is critical, because small errors in these partials will cause errors in

position in the next frame, which may compound the errors in the partials, and cause them to grow expo-

nentially from frame to frame. Here again, it is useful to fade out the current advected texture and fade in a

new texture whose coordinates are reinitialized to the identity map, so that the integration errors cannot

accumulate for too long.

The second method for handling unsteady flows is to move the triangle vertices by the flow Ft(x, y),

keeping their texture coordinates constant. This advects the texture directly, by moving the triangles, and

carrying the texture along with them. To do this, we incrementally integrate equation (3), and no partial

derivative estimates are needed for a Jacobian. However we again have a problem at the edges of the region

R. The boundary vertices may move inside R, leaving gaps at the edges, or may move outside, causing too

much texture to be rendered. The excess rendering is easily prevented by clipping all triangles to the

boundary of R. The gaps can be eliminated by creating extra guard polygons around the edges of R, widen-

ing it to a larger region S. Whenever any vertex on the boundary of S crosses into R, a new row of guard

polygons is added to the affected side of S. Again it is useful to integrate only over a limited time interval

before reinitializing the texture coordinates, to avoid creating too many extra polygons.

FLOWS IN 3D

In three dimensions, one could advect 3D texture coordinates, but 3D texturing is not widely available.

83

Wehaveinsteadused2D texturesonparallelsectionplanes.Wemadethetexturedplanessemi-transparent,
andcompositedthemfrom backto front usingtheotcompositinghardwareinourworkstation.(This is how

3Dtexturemappingis usuallyimplementedin hardware.)Forthemethodswhichchangeonly thetexture
coordinates,we usedthe2D projectionof thevelocityontothesectionplane.Forthemethodwhich moves

thetrianglevertices,we usedthetrue3D velocity,allowing thesectionsurfacesto warpout of planarity.

Combiningthecompositingfor thecross-dissolveof figure2 with thecompositingof theseparatetex-

tureplanescanleadto problemsin theaccumulatedopacity.Giventwo objectswith opacities51 and52,

theresultingopacityfrom compositingbothobjectsis oq+ 52 - 5152.(See[10]or multiply thetransparen-
cies.)Supposefl(t) andf2(t) arethetwo weightingcurvesshownin figure2,withf! +f2 = 1, and 5 is the

desired section plane opacity. If we just take the two component opacities to be oq = 5f1 and 5 2 = 5f2 , the

result is a composite opacity

5 C = 5f 1 + 5f2 - 52flf2 = 5 - 5flf2

The unwanted last term causes a periodic pulsation in 5 c.

A solution is to use exponentials, which have better multiplicative properties. Define an "optical

-f,l -.I"21
depth" 1 = - In(1 - 5), so that 5 = 1 - e- l, and let 51 = 1 - e and 5 2 = 1 - e . The resulting composite

opacity is then

5 C = 5 1 + 5 2 -- 5 15 2

-fl I -f2l (_e-f,l)(e -f21)= 1-e +l-e - 1 1-

- (f, +-/'2) l -1
= 1-e = 1-e = 5

as desired.

Another problem with compositing texture planes of constant transparency is that the frontmost planes

will eventually obscure the ones to the rear if the data volume gets large. One solution is to use variable-

transparency textures, so that some regions of the texture are completely transparent. Another is to specify

the transparency on triangle vertices using a separate scalar data variable which can select out regions of

interest where the texture motion should be visible. In [7] we used percent cloudiness contour surfaces to

specify the location of the advecting software-rendered texture. With our new hardware based technique,

this cloudiness variable is used to specify the vertex transparency, and produces similar realism in much

less time.

IMPLEMENTATION AND RESULTS

The different types of moving textures discussed were implemented as a class hierarchy in C++. Inven-

84

tor [12]quadmesheswereusedtorepresenttexturelayers.AnIris Explorermodulewasthenconstructedin

orderto makeuseof color mapsanddatareaders.

Figure3showswhathappenswhentheverticesthemselvesareadvected.Thewholesurfacedistorts,

evenin thedirectionperpendiculartotheplane.In Figure4 thetexturecoordinatesareadvectedbackwards

while theverticesareheldfixed.Thisgivestheimpressionof motionin thedirectionof flow.Unfortunately

thetexturedistortstoo muchovera longperiodof time.Also thetextureverticesmaymoveoutsidethe

defineddomain.A solutionto thefirst problemis to fadein asecondtexturewith thetexturecoordinates

resetto their originalpositions.Theresultingcrossdissolveis shownin Figure5.Theopacityfor eachtex-
ture is computedusingexponentials,asdiscussedabove,sothereisnodistractingvariationin theoverall

intensityduringanimation.To avoidtheproblemof havingto sampleoutsidethedomain,weusedthe
inverseflow G t for the texture coordinates, as explained above, while keeping the vertices fixed (Figure 6).

This method also gives bad results over time if we do not periodically fade in a new unadvected texture as

shown figure 7. Figure 8 illustrates how flow moves through particles of aerogel, a material with very low

density which is a good thermal insulator. Figure 9 shows a frame from an animation of global wind data on

a spherical mesh. The opaque regions represent high percent cloudiness. Although the vector field is static,

the texture (but not the colors) appear to move in the direction of flow. Figures 10 and 11 depict steady flow

near a high density contour in an interstellar cloud collision simulation (data courtesey of Richard Klein).

Figure 10 has moving vertices, while figure 11 has moving texture coordinates. The color indicates density.

A frame from an animation of unsteady wind data over Indonesia on a curvilinear mesh is shown in Figure

12. Percent cloudiness is mapped to color and opacity.

We ran our software on an SGI Onyx supporting hardware texture mapping. For a 32 by 32 slice of a

volume (as in the aerogel example) we were able to achieve about four frames per second. To rotate a com-

plete 50x40xlO volume, like the one shown in Figure 9, about 15 seconds was required.

REFERENCES

1. Shoup, Richard: Color Table Animation. Computer Graphics Vol. 13, No. 2 (August 1979) pp. 8 - 13

2. van Wijk, Jarke: Flow Visualization With Surface Particles. IEEE Computer Graphics and Applications,

Vol. 13, No. 4 (July 1993) pp. 18 - 24.

3. Cabral, Brian; and Leedom, Lieth: Imaging Vector Fields Using Line Integral Convolution. Computer

Graphics Proceedings, Annual Conference Series (1993) pp. 263 - 270.

4. Forssell, Lisa: Visualizing Flow over Curvilinear Grid Surfaces using Line Integral Convolution. Pro-

ceedings of IEEE Visualization '94, pp. 240 - 247.

85

5. Stalling,Detlev;andHege,Hans-Christian:Fast and Resolution Independent Line Integral Convolution.

ACM Computer Graphics Proceedings, Annual Conference Series, 1995, pp. 249 - 256.

6. Crawfis, Roger; and Max, Nelson: Texture Splats for 3D Scalar and Vector Field Visualization. Proceed-

ings of IEEE Visualization '93, pp. 261 - 265.

7. Max, Nelson; Crawfis, Roger; and Williams, Dean: Visualizing Wind Velocities by Advecting Cloud Tex-

tures. Proceedings of IEEE Visualization '92, pp. 179 - 184.

8. Heeger, David; and Bergen, James: Pyramid-Based Texture Analysis and Synthesis. ACM Computer

Graphics Proceedings, Annual Conference Series, 1995, pp. 229 - 238.

9. Williams, Lance: Pyramidal Parametrics. Computer Graphics Vol. 17 No. 3 (July 1983) pp. 1 - 11.

10. Porter Tom; and Duff, Tom: Compositing Digital Images. Computer Graphics Vol. 18, No. 4 (July

1984) pp. 253 - 259.

11. Lane, David: UFAT - A Particle Tracer for Time-Dependent Flow Fields. Proceedings of IEEE Visual-

ization '94, pp. 257 - 264.

12. Wemecke, Josie: The Inventor Mentor. Addison -Wesley Publ. Co., Inc., 1994.

Figure 3. Actual vertices are advected in 3D.

Figure 5. Same method

as figure 4, but with a
new texture fading in as
soon as the other

becomes too distorted.

Figure 4. Texture coordinates are advected
backwards.

Figure 6. Texture coordinates are advected

using vectors transformed by the local
jacobian matrix, while vertices are held fixed.

Figure 7. Same method

as figure 6, but with a

new texture fading in
as soon as the other
becomes too distorted.

86

Figure 10. Several layers of textures advected using the
method of figure 3. The layers are colored by density and

move near a high density solid contour surface.

Figure 8. Method of

figure 6 applied to a

steady flow moving

through particles of

aerogel and using a
colored texture.

Figure 9, Method of

figure 5 applied to a

steady flow depicting

wind data on a spherical

mesh. Color and opacity

from percent cloudiness.

Figure 11. Method of

figure 6 applied to a steady
flow representing a field
from an interstellar cloud

collision simulation.

Figure 12. Method of

figure 7 applied to an

unsteady flow

representing global
climate data. Color and

opacity indicate percent
cloudiness. Both the

winds and percent

cloudiness vary in time.

87

VOLUMETRIC RAY CASTING OF TIME VARYING DATA SETS

Vineet Goel 1

HP-Laboratories, 3U-4

1501 Page Mill Rd

Palo Alto, CA 94304

Amax Mukherjee

Department of Computer Science

University of Central Florida

Orlando, FL 32816

SUMMARY

In this paper, we present a fast technique for rendering scalar characteristics of time varying data

sets. In this context, we present a block decomposition algorithm which decomposes changed data points

in two consecutive time stamps, in rectangular blocks. These rectangular blocks are sorted in increasing

visibility order for a given viewing direction. The sorted rectangular blocks are then projected on to

the image plane to compute the color and opacity values of changed ray segments. These values are

combined with the color and opacity values of rays in previous time stamp to generate an image for the

current time stamp. The proposed algorithm allows any screen resolution. We also present a compact

storage scheme for time varying data sets using the block decomposition algorithm. This scheme saves

about 98.2% of the memory space for electrical wave propagation data sets.

INTRODUCTION

Volume Visualization is the subfield of scientific visualization which computes 2D information from

3D data sets. This 3D data set can be static or time varying. Time varying data sets arise in 3D flow

simulation [7, 5, 11, 2, 12], recording of neuron activities in the brain at different time stamps [1, 15],

simulation of electrical wave propagation in the heart [4], etc. The resulting 3D data is directly rendered

(called Direct Volume Rendering (DVR)) in order to generate high quality images. The different methods

used for direct volume rendering are ray-casting [9, 10], integration methods, splatting [19], and V-buffer

[18] rendering. Direct volume rendering is a computationally expensive task as full volume data has to

be traversed for a given viewing direction.

In FTB computation, the order of sample points computation is 1 through n for a ray r. At the ith

sample point, the following computations axe done.

CT(i + 1) = ciai(1 -- A,_,) + Cr(i)

1 - Ac_,+, = (1- ai)(1 - Ao,,) (1)

Where ci and ai are the color and opacity values of sample i. The quantity CT(i) is the color value

aPreviously, Ph.D. student at University of Central Florida

89

contributedby sample1 throughi - 1 for a ray r. The quantities Aa 0 and C_(0) are zero. The final

color value of the ray is given by Cr(n + 1).

The Eqn. 1 can be written in matrix form as

which can be written as:

whereM0,0= (0)1 '

and

1-Aa,+ 1 0 1-ai 1-A,_,
(2)

M/+I,0 = EiMi,o (3)

1 cioq)Ei = 0 1 - ai
(4)

c,(i))Mi,o = 1 - An, (5)

Given a ray, suppose we want to compute the accumulated color and opacity values of a ray segment

from sample points (i) through (i + j), From equation 2,

Cr(i+j+l) i 1

We can represent it as

c, jlo, jl)(1c,o)()1 - oti+j_ 1 "'" 0 1 - ai 1 - An, (6)

- Aa,+_+l = 0 A(i,j) 1 - As, (7)

where C(i,j), A(i,j) is accumulated color and opacity values for a ray segment from sample (i)

through (i + j). Therefore,

C_(i + j + 1) - Cr(i) = C(i,j)
1 -- Aai

1 - Ac,,,+_ _ A(i,j) (8)
1 - A,_ i

Consider a ray r which is segmented in p parts consisting of sample points useful in computing color

and opacity values of a ray, (i.e., skipping empty voxels). Let, these p segments be (io, il), (i2, i3) ,

(i4, i5), ... (i2p-2, 0), where n > il > i2 > i3 > ... > i2p-2 > 0, as the ray passes through p sorted blocks

and (i,j),i > j denotes sample points j,j + 1,...,i in the segment. It's color and opacity values are

computed using the product of p matrices as

90

Mn+l,0 = Cio,ilCi2,i3...Ci2p_2,oMo,o (9)

where C_,j = Ei-IEi-2...Ej,/ > j, where i and j denote the beginning and end cells of a segment.

Computation of a ray segment is equivalent to computation of matrices Ci,j. The final ray value is

computed as the product of matrices as in Eqn. 9.

Assume that two consecutive ray segments rl and r2 of a ray r which are ordered as r2, rl, have

values C;1,i 2 and Ci3,1,, respectively, where il > i2 > i3 > i4. rl over r2 (i.e. rl composed over r2) is

defined as Cil,i_Ci3,{,. If r 1 and r 2 are ordered as rl, r2 then r2 over r 1 is defined as Ci3,_4Ci1,_2 [14].

The quantities Cil,42 and Ci3,i4 are called partial ray values for ray r.

These equations will be used in the context of volumetric ray casting of time varying data sets.

In this paper, we deal with visualizing only the scalar characteristics of a time varying data set using

the volumetric ray casting technique. This technique has been used for visualizing electrical wave

propagation in heart [4, 16] and it can be used in visualizing the activities of neurons in the brain

using fMRI (functional MKI) data sets [1, 15]. Shen and Johnson [16] proposed a method where only

changed data points are projected onto the image plane to find those rays which need to be recomputed.

Here, a changed data point is projected onto the image plane to find the affected pixels which are four

neighboring pixels surrounding the projected point. Therefore, screen resolution is assumed to be the

same as the resolution of 3D data set. Moreover in this method, changed rays are fully traversed in

the volume data set to compute their final color values. Therefore, a changed ray may traverse empty

and/or unchanged data points. Shen and Johnson [16] also proposed storing only the changed data

point values and their positions in a differential file for compact storage of time varying data sets.

In this paper, we propose a new sequential algorithm for rendering time varying data sets. We use

a block decomposition algorithm for compact storage of the time varying data sets. In particular, we

present the following results for compact storage scheme and rendering of time varying data sets.

• A novel idea of rendering time varying data sets using a block decomposition algorithm.

A compact storage scheme for time varying data sets. The typical data set size is 1283 at each

time stamp. This requires 210 MB of memory space to store time varying data set over 100 time

stamps. Our proposed storage scheme requires only 3.7MB of memory space for electrical wave

propagation in the heart data set.

• The proposed algorithm allows any screen resolution unlike the existing algorithm [16] where

screen resolution is the same as the resolution of a volume data set.

• The implementation results suggest that the performance of our algorithm is comparable to the

algorithm by Shen and Johnson [16].

BLOCK DECOMPOSITION

In this section, we describe the block decomposition algorithm in the context of 2D data sets which

is then extended to block decomposition for 3D binary data sets. We have proved that the number of

blocks decomposed by the proposed algorithm for 2D data sets has an upper bound of three times the

minimum number of blocks [6]. We conjecture that the upper bound of the number of blocks decom-

posed for 3D data sets is four times the minimum number of blocks. This algorithm has linear time

91

complexity with respect to number of blocks for both 2D and 3D data sets.

Nomenclature and Definitions

A 2D data set of size n x n is represented by I with a positive integer value I(y, x) > 0 representing

a pixel at the yth row and xth column of the 2D data set where 1 < x < n, 1 < y < n.

A 3D binary data set of size n x n x n is represented by V with a positive integer value V(z, y, x) at

location (x, y, z) where 1 < x < n, 1 _< y < n, 1 < z < n. The 3D data set can be thought of as a stack

of n 2D data sets of size n x n.

The ith row of a 2D data set I is a set of pixels called ith scan-line Q with value Q(x) = I(i, x)

at location x where 1 < x _< n. Similarly, a kth slice of 3D data set V is a 2D data set I with

I(y, x) = V(k, y, x).

A line segment L in a scan-line Q is defined as a maximum set of contiguous pixels having the same

integer value dL > O. The minimum and maximum x coordinates in a line segment L are represented

by X_(L) and Xe(L), respectively.

A 2D-block R in a 2D data set I is the set of pixels with the same integer value dR > 0, contained

in a rectangle whose minimum x and y coordinates are represented by X_(R) and Y_(R), respectively

and maximum x and y coordinates are Xe(R) and Ye(R), respectively. Similarly, a 3D-block B in a

3D data set V is a rectangular block of voxels with value ds _> 1 whose minimum x, y and z coordinates

are Xs(B),Ys(B) and Zs(B), respectively and maximum x, y and z coordinates are Xe(B), Ye(B) and

Ze(B), respectively. Note that, unlike 2D-block, the voxel values in 3D-block required to be non-zero

but not necessary equal.

Functions Xs(P),Y,(P), and Zs(P) give minimum x,y and z coordinates respectively, wherever

applicable, of the entity P where P can be a line segment L, a 2D-block R, or a 3D-block B. Similarly,

functions Xe(P), Ye(P), and Ze(p) give maximum a:, y and z coordinates respectively, of the entity P.

Function B_val(P) gives the value for entity P which is equal to dL, dR, and dB for a line segment L,

a 2D-block R, and a 3D-block B, respectively.

Two line segments L1 and L2 in different rows are said to be aligned if Xs(L1) = X_(L2), X_(L1) =

Xe(L2), and B_val(L1) = B_val(L2).

A scan-line Q can be decomposed into a unique minimum set £ of non-overlapping line segment.

A 2D data set I can be decomposed into a set 7_ of non-overlapping 2D-blocks. This decomposition

may not be unique. Similarly, a 3D data set V can be decomposed in several ways into a set I) of

non-overlapping 3D-blocks.

In the following section, we present algorithms to obtain block decomposition of a 2D data sets in

2D-blocks.

2D-Block Decomposition

A method of finding a block decomposition of 2D data set is to extend a method by Ferrari et.al.

[3, 8, 13] of finding minimal number of rectangles in 2D binary images. This method first finds all the

92

Figure 1: Active and deactive 2D-blocks in 2D data set

concave vertices in the data set and then uses matching technique with complexity O(e 1"5log e log log e)

to find 2D-blocks [8]. Here, e is the number of concave vertices. This process is time consuming and

concave vertices have to be determined first. We propose an O(e) algorithm which finds a decomposition

of the rectilinear region having at most three times the minimum number of 2D-blocks, while raster

scanning the 2D data set.

While raster scanning a 2D (or 3D) data set, we will recognize two types of blocks, active and

complete. The complete blocks are those which have already been identified by the scanning process

in our decomposition and the active blocks are those which are still being processed, as illustrated in

Fig. 1.

Each scan line of 2D data set I is decomposed into line segments while raster scanning the data set.

The line segments in consecutive scan-lines of data set having same pixel values are combined to form

blocks. While combining, line segments can be broken into more than one line segments. For example

in Fig. 2, ith scan line has line segments a and c and (i + 1)th scan line has line segments b and d.

While combining line segments in scan lines i and (i -F 1), line segment a is broken into al and a2,

line segment b is broken into bl and b2 and line segment c is broken into cl and e2. Line segments a2

and bl form part of a block. Line segment al is followed by zero entries in scan line (i ÷ 1), therefore

the block corresponding to al is complete. A new block starts with line segment b2. Similarly, a block

corresponding to cl is complete, and line segments e2 and d are combined to form a part of a block.

The active blocks correspond to a2, b2, and e2 during scanning (i + 1)th row.

a c

,, _ _a, - o, "

i lh row X X X X y y Y

(i+ 1) fll row X X X Y Y

r d
b

X & Y arc non-z_ro pixel values

Figure 2: Combining line segments in two consecutive scan lines.

The idea behind the decomposition algorithm for two-dimensional data set can be explained with

respect to the 8 x 8 data set as shown in Fig. 3(a). The data set is raster scanned top to bottom. Two

buffers BV and BC each of size n x 1 are used. BV holds the pixel value of the current scan line, that

is, BV(j) = I(i,j) if the ith row of the data set is being scanned currently. The buffer BC holds a

count value associated with the pixel value I(i,j) as follows.

93

BC(j) = k if the k pixel values including the current pixel value at the jth

column of the image are identified as equal and non-zero, i.e.,

I(i,j) = I(i - 1,j) = ... = I(i - k + 1,j) 7_ 0

and I(i,j) ¢ I(i - k,j)

= 1 if I(i,j) _ 0 and I(i,j) ¢ I(i- 1,j)
- 0 otherwise

(10)

Initially, all buffers are set to zero. The values of BV and BC for the first three scan lines are

shown in Fig. 3(b). When we enter the fourth scan line, we recognize that I(4, 2) = 0 indicating that a

completed block needs to be identified. We proceed to finish scanning of the fourth scan line, pixel by

pixel, after copying BV and BC to two temporary buffers TV and TC respectively, pixel by pixel only

if I(i,j) 7_ BV(j). The situation is illustrated in Fig. 3(b). TV and TC now contain all the information

regarding the completed blocks. The line segments of TC correspond to blocks whose pixel value equals

the pixel value of the corresponding segment in TV and whose height equals the corresponding entry of

the line segment in TC. Thus at this point, we have identified two blocks each of size 2 x 2 containing a

pixel value of 1. When we finish scanning the last row of the image, the content of TV and TC will be

as shown in Fig. 3(c), identifying the lower left block of size 2 x 2 containing pixel value 2, the middle

block of size 6 x 2 containing pixel value 2 and the lower right block of size 2 x 2 containing pixel value

3. The final block decomposition is shown in Fig. 3(d).

In general, after scanning ith row of the 2D data set, the line segments in the buffer TC represent

completed blocks only if the content of TC buffer has changed during ith raster scan. For each such

line segment L, there is a block R such that

Xs(R) = Xs(L),
Xo(R) = X (L)
Ys(R) = i - 1 - reval(L),
Y (R) = i- 1

The value dR of block R is equal to the pixel value in the TV for the corresponding line segment L.

To formalize the description of the algorithm, whose computation is based only on the current pixel

value I(i,j), the condition expressed by Eqn. 10, can be restated as a sequence of operations:

1. BC(j) _ BC(j) + I
1

0

2. BV(j) _- I(i,j)

if BV(j) = I(i,j) ¢ 0

if (I(i,j) ¢ 0) and (I(i,j) ¢ BV(j))
otherwise

We also need a control bit F which is used to initiate the operation to output the completed blocks.

This bit is reset to zero at the beginning and is set to one for the ith row if and only if for any j,

the new value of BC(j) is less than or equal to current value of BC(j). The 2D-block decomposition

algorithm returns a set 7_ of blocks stored in the form of a linked list. Each record of the linked list

94

Yl
x

li t! zi 2il i ti

"i i2i21 i i
_-K_ilr.':K_£__i(!....

(d)

2DDm_
J_

i_12 3 4 56 7 8

/qolololololololol
1210b111212111110I

_310111112121111101
_410101012121010101

510101012121010101

I-ital Val'_ of buffets

B_dfct BV _l B_'fer BC

O0 000 000 00000000

] 010101212] 010 I____ to_Iololol4141oloI_U

Af_ _Z B_ TV B_= TC

L_ _,, of 101212121Z 1313101 101212161_1zl2101

Dm _t (c)

Figure 3: (a) Sample 8 x 8 data set. (b) Values of BF, BC, TF and TC buffers after processing 3rd

and 4th row of data set. (c) Content of buffers TV and TC after scanning last row of the 2D data set.

(d) Blocks decomposed in original data set.

stores parameters Xs(R), Ys(R), Xe(R), Ye(R), and dR of a block R and pointer to next record in the

[inked list.

If we exclude raster scanning time, the time complexity of the 2D-block decomposition algorithm is

O(I 7£ [) [6], while finding the minimum number of blocks in a rectilinear region takes O(J 7£ IL5 log [

7_ I log log I 7"£ I) [8]. We have proved that that this algorithm finds number of blocks less than three

times the minimum number of blocks for any arbitrary rectilinear region [6].

3D-Block Decomposition

In this section, we present a generalization of the block decomposition algorithm to three dimensions.

We simplify the problem by assuming that all non-zero voxel values are mapped to one, essentially

reducing the data set to a 3-dimensional binary data set. The main idea of the algorithm is as follows.

The 3D data set is processed slice by slice. Each slice is raster scanned in the same manner as a

2D data set. If a set of non-zero pixels in a slice are followed by zero pixels at the corresponding pixel

locations in the next slice, a set of 3D-blocks are completed. As an example, consider the binary 3D

data set representation of object in Fig. 4(a), by five slices in the z-direction in Fig. 4(b). The shaded

region represents non-zero entries. For the sake of clarity, the depth information (the count of number

of contiguous non-zero voxels in z-direction) are also written on the corresponding voxel location at

each slice. We notice that the pixels at (2,3,1),(2,2,2),(2,3,2)in the slice z = 2 are followed by

95

(a

x (b)

yl_L0.1 3 4

2

ioioiol

go _o..
41o[o',o:o

z=l

z X

Y

o: o:o :o

z=2

TC3 afm'z = 2

i i i_.?.__,..._
L.__?._....L__
l,i_i i

o.%.._- - J-.- J-- -: i i

f
oioioio

I C,,?i?;,
i i

o:o 1o Io,

z=3

(c)

.inioiol
, .v_ __. 2".....,-.,--/?--1
o, oalol
'-0-io! o i-o"I

Zffi4

_)

TC3 aft_z=4

i i i

.... :----I----I
: :4:

.__+__.p._J
i :4:

.._..___..__ __ J__.
i . ;

/
oioio io
.__,,___q..._
0',o:o:o

._.$..°j___Joioio io
°°,.It.__ j°.°j

'0'0'[o: : 1o
z=S

Figure 4: (a) A 3D object, (b) Slices in 3D data set representing object. The buffer BC3 is shown

superimposed on the slices. (c) Buffer containing depth information for completed blocks, at the end of

scanning 3rd slice.

zero pixels in slice z = 3 in Fig. 4(b). For these pixel locations, the count values do not increase

monotonically from the slice at z = 2 to the slice at z = 3. This indicates a set of completed blocks

and we can now extract these count values to a 2D buffer TC3 as shown in Fig. 4(c). We apply the

2D-Block-Decomposition algorithm of the previous section to buffer TC3. Each 2D-block R in T_

has value dR equal to depth value in tim buffer. For each 2D-block R, a 3D-block B can be constructed

using Zs(R), Xe(R), Ys(R), Ye(R) values of R as X,(B), Xe(B), Y,(B), Y¢(B) values, respectively of B.

The Zs(B) and Ze(B) value of the 3D-block B can be found using the current slice number k and dR

value of 2D-block R, assigning Zs(B) equal to k - 1 - dR and Z¢(B) equal to k - 1. Thus for example,

we identify two blocks of size 1 x 1 x 1 and 1 x 2 x 2 at z = 3 and one block of size 1 x 2 x 4 ar z = 5.

In the algorithm 3D-Block-Decomposition, Two buffers BC3 and TC3 each of size m x m are

used. Buffer BC3 holds a count value associated with location V(k, i,j) as follows.

BC3(i,j) = p
= 1

= 0

ifV(k,i,j)= V(k- 1,i,j) = ... = I(k-p+ 1, i,j) = 1

if V(k,i,j)= 1 and V(k- 1, i,j)= 0
otherwise

Initially, both the buffers BC3 and TC3 are set to zero. As a zero pixel in a slice follows non-zero

pixel at corresponding x = j, y = i location in the previous slice, the count value of BC3(i,j) is copied

to TC3(i,j) and BC3(i,j) is set to zero.

A control bit G is used to initiate the operation of output of completed blocks. It is set to zero

initially, and set to one if at some slice values in BC3 are copied to buffer TC3. At the end of scan

of a slice k, if bit G is one, it implies that TC3 has depth information for some completed blocks.

The 2D-Block-Decomposition algorithm is used to find 2D-blocks in TC3. For each 2D-block R, a

3D-block B is constructed using following equations.

96

Xs(B) = Xs(R),
X (B) =
rs(B) =
r (B) = r.(R)
Zs(B) = k- B_val(R)- 1,
Z (B) = k- 1

The 3D-block decomposition algorithm returns a set/3 of 3D-blocks stored in the form of a linked

list. Each record of the linked list stores parameters Xs(B), Ys(B), Xe(B),Ye(B), Zs(B), Z_(B) of a

3D-block B and pointer to next record in the linked list.

The time complexity of the algorithm is O(n3+] B]), where O(n 3) is the time taken to raster scan

the 3D data set and O(] B [) is the time for blocks output. Finding the minimum number of blocks in

a rectilinear volume is NP-Hard. It is our conjecture [6] that this algorithm finds number of blocks less

than four times the minimum number of blocks for any arbitrary rectilinear volume.

COMPACT REPRESENTATION OF TIME VARYING DATA SETS

The main idea behind the proposed method for compact storage of time varying data sets is to

compare volume data of two consecutive time stamps and to decompose only the changed data points

in 3D-blocks. This is done by using a slight modification of 3D-Block-Decompostion algorithm. Let

a sequence of 3D time varying data sets be denoted by 13, where the size of each volume data set is n 3.

A volume data set at time stamp t is denoted by Vt, where 1 < t <[]2 [, where I 12 [denotes the number

of volume data sets in Y.

The volume data at time stamp zero is denoted by V0. Let B c be a block containing only those data

points which have changed. The block B c is stored in a file called Block by storing its starting coordinates

(Xs(BC), Ys(BC), Zs(BC)) and ending coordinates (X_(BC), Ye(BC), Ze(BC)). These are followed by data

values of changed data points within the block B e . When all the changed data blocks in volume data

sets in two consecutive time stamps are recorded in the Block file, a marker with value - 1 is written in

the Block file to indicate the end of the changed data points between two consecutive time stamps.

Let the total number of changed data points and changed data blocks over all the volume data sets

be n _ and n b. The time complexity of the algorithm is O(I V I n3 + nb+ nO), where O(([Y I n3) is

the time taken to raster scan the 3D data set and O(rt b + rt c) is the time for blocks output. The total

memory required for storing sequence of time varying data sets is O(2n b + n_+ I]2 I), where storing

starting and ending positions of a block requires O(2n b) memory space. While the existing algorithm

[16] requires O(2n c) memory space in order to store positions and data values of changed data points.

Therefore, for a time varying data sequence where changed data points are mostly clustered, such as

in fMRI data sequence recording neuron activities in the brain [1, 15], the proposed algorithm requires

less memory compare to method proposed by Shen and Johnson [16].

97

Table 1: Block decomposition time and number of changed data points at different time stamps.

Time Number of

Stamp changed data

points

10 2394

20 8057

30 9299

40 9898

50 7300

60 2536

70 1160

80 684

90 179

Number

blocks

1046

3705
4609

4834

3690

1338

572

369

108

of Block

Decomposition

time(sec)

2.69

2.89

2.97

3.05

3.00

2.83

2.71

2.62

2.54

Results

We have implemented the proposed time varying data sets storage algorithm on Sun-Sparc (40 MItz).

Table 1 gives the number of changed blocks, block decomposition time and number of changed data

points at different time stamp for a sequence of electrical wave propagation data sets. Each data set is

of size 1283 and there are total 100 data sets including the data set at time stamp zero. The time to

raster scan a volume data in this sequence is 2.10 seconds which is included in the block decomposition

time.

The total sequence of 99 volume data sets is stored in 1.6 MB using this algorithm. The size of the

volume data set V0 at time stamp zero is 2.10 MB. Therefore, the total memory required to store the

sequence time varying data set is 3.7 MB, resulting in a 98.2% saving of the storage space. The existing

aigorithm by Shen and Johnson [16] requires 4.18 MB of storage space. In these data sets, the changed

data points are scattered, thereby giving a large number of changed blocks. For a time varying data

set sequence, where changed data points are comparatively more clustered, the proposed technique will

save the storage space by an even larger factor.

VOLUMETRIC RAY CASTING OF TIME VARYING DATA SETS

The main idea behind the proposed volumetric ray casting algorithm is as follows. Suppose at time

stamp t, a ray r is segmented into p parts consisting of sample points useful in computing color and

opacity value of ray r (i.e., skipping empty voxels). Let these p segments be (il, i2), (i3, i4), (is, i6), ...

(i2p-1, i2p), where (i, j), i > j denotes sample points j, j + 1, ...,/in the segment at the time stamp t and

ik > ik+l for all k. A segment containing only the changed sample points called changed ray segment.

A ray containing at least one changed ray segment at a time t is called a modified ray. A list of ray

segments for a ray may contain some changed ray segments at time t. The new color value of the ray

is computed using Eqn. 9 where only Ci,j needs to be computed if (i,j) is a changed ray segment.

98

At the time stamp 0, the image can be generated for a specified viewing direction using the fast

rendering algorithm [6]. To obtain an image at time stamp t from the image at time t - 1, the following

steps are performed.

.

.

.

.

Modification: The changed blocks at time stamp t are read from the block file and current volume

data points are updated using the new values of changed data points in blocks. This results in

volume data set at time stamp t. The block parameters Xs(BC), Ys(BC), Z_(BC), X_(BC), Y_(BC),

and Z_(B _) are stored in a linked list representing the set of blocks B _ as described earlier.

Sorting: The set of the changed blocks B c is sorted for specified viewing direction using the block

sorting technique.

Projection: Each of the changed blocks B c is projected onto the image plane and the changed ray

segments are computed. The starting color and opacity value for a changed segment (i,j) of ray

r is set to 1.0 and 0.0 respectively.

Merging: For each modified ray, values of changed segments are combined with values of unchanged

segments, to find the new color and opacity values of a modified ray using Eqn. 9.

In the next section, we describe the technique for sorting blocks according to their visibility order.

SORTING OF BLOCKS

We present a method for sorting blocks according to their visibility order for orthographic and per-

spective projections. We show that for any viewing direction, the blocks can be totally ordered and the

viewing directions can be categorized into a small number of equivalent categories. Furthermore, for

orthographic projections all rays belong to only one category of viewing directions. We then show that

visibility order of blocks for nay viewing category is same.

Orthographic Projection

We will first describe the sorting of blocks in 2D data set and then extend the method for blocks

in 3D data set. The direction of a ray can be specified by a unit viewing vector (x_, y.), where x. is

x-component and Yv is y-component of the unit vector. All the viewing vectors can be divided into four

categories as (+, +), (+,-), (-, ÷), and (-,-), where -t- stands for viewing component being greater

than or equal to zero and - stands for viewing component being less than zero. For orthographic

projection for which all the rays are parallel, the rays have same unit viewing vector (xv, Yv). We now

prove the following theorem.

Theorem 1: Any two rays r I and r_ in a viewing category, traversing the set of blocks T_ 1 and T_2,

respectively, traverse blocks in 7_ in same order, where T_ = _'_1 ["_*_2 and I 7_ I>__2.

Proof: Let R_, Rj E 7_ and rays rl, r2 belong to the viewing category (-t-,-).

99

X

_rL.vfmg

_ (+,-)

Figure 5: Possible locations blocks Rj for a ray to traverse Ri first and then Rj.

[
°..

.y) ,,""

• " ,_x,(_) ,-x,(_)

• Rayr2

2D Dam_

Figure 6: Ray r2 traversing block Rj first and then block Ri.

Let rl traverse Ri first and then Rj, the block Rj could be located as shown in Fig. 5. The top and

right boundaries of Ri define three regions (dotted lines) and R3 could be totally or partially contained

in these regions. Therefore,

x,(Rj) > or < (11)

Let r2 pass through first R3 and then Ri. Consider, a point q at location (xq, yq) on ray r2 after ray

entered block Rj but before exiting from Ri, as shown in Fig. 6, then

and

from Eqns. 12 & 13,

xq > Xs(Rj) and yq < Y_(Rj) (12)

zq < X_(Ri) and yq > Y_(Ri) (13)

Xe(Ri) > Xs(Rj) and Ys(Ri) < Ye(Rj) (14)

Eqn. 14 contradicts Eqn. 11. Therefore, rays rl and r2 pass blocks Ri and Rj in the same order. We can

prove the theorem for rays in other viewing categories (+, +), (-, -), and (-, +). in the same manner. [:3

100

© <

(a) Co)

Figure 7: Tables for determining the visibility order of blocks Ri and Rj for viewing categories (a)
(+, +), (b) (+,-).

Therefore, from Eqn. 11, the visibility order of two blocks Ri and Rj can be determined by com-

paring either the X or Y coordinates of the boundaries as given by tables in Fig. 7. The condition

Xs(Rj) > Xe(Ri) is shown in Fig. 7(a) by marking with the symbol > in the entry corresponding to

Xs row for Rj and Xe column for Ri for the viewing category (+, +). If any of the uncircled condition

is true then the order is (Ri,Rj). If any of the circled condition is true the order is (Rj, Ri). When

a circled and an uncircled condition are true, then any of the ordering (Ri, Rj) and (Rj, Ri) can be

taken because the two blocks have no rays in common. Given (Ri, Rj) and (Rj, Rk) as sorted order

for three blocks Ri, Rj and Rk, their sorted order is (Ri, Rj,Rk); thus the ordering relation between

two blocks is a total ordering relation and the blocks can be sorted using this relation. The visibility

order condition for the viewing category (+,-) are shown in Fig. 7(b). The visibility order for blocks

for categories (-, -) and (-, +) is reverse of visibility order for categories (+, +) and (+, -), respectively.

For 3D data sets, (x,_,y,_,zv) are viewing direction components in x, y, and z directions. All

the viewing directions fall under one of the eight categories (+, +, +), (+, +,-), (+,-, +), (-, +, +),

(-4-,-,-), (-, +,-), (-,-, +), (, ,). Note that viewing categories (-,-,-), (+,-,-), (-, +,-),

and (-, -, +) are opposite of (+, +, +), (-, +, +), (+, -, +) and (+, +, -), respectively. Therefore, we

need to order all the blocks only for four distinct visibility orders (+, +, +), (-, +, +), (+,-, +) and

(+, +, -). We state the following theorem which is an extension of theorem 2 for 3-dimensions.

Theorem 2: Any two rays rx and r2 in a 3D-viewing category, passing through the set of blocks 61

and B2, respectively, pass through blocks in B in same order, where B = B1 NB2 and I B I> 2.

The proof for above theorem is generalization of theorem 1.

The condition for viewing category (-, +, +) can be stated as follows. For other viewing categories

similar conditions can be derived.

if Xs(Bj) > Xe(Bi) then (Bj, Bi)

else if Xe(Bj) < Xs(Bi) then (Bi, Bj)

else ifYe(Bj) < Y_(B;) then (Bj,Bi)

else if Y_(Bj) > Y,(Bi) then (Bi, Bj)

else if > Zs(B) then (Bj,
else (Bi, Bj)

101

1 2 3 4 5 5 7 8 0 10 11 1:2 1:3 14 15 16 17 18

(a) ray segments after time t

1 2 :3 4 5 (5 7 8 9 10 11 1:2 13 14 15 15 17 18

mmm mmmn mm mmm

(b) Changed ray segments at time t+l

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

m

(c)

m changed sample points

IN old sample points

D empty sample points

Figure 8: (a) P_y segments at time t = 1.

segments for ray r.

final changed at unchanged ray

segments at time t-t- 1

(b) Changed ray segments at time t = 1. (c) Final ray

Similar sorting techniques can be applied for perspective projection [6].

Merging

In this section, we describe the method of combining segments of a modified ray r at time t, with

its changed ray segments at time t + 1 resulting in a sequence of ray segments useful in computing color

value of the ray. We illustrate this process by an example.

Assume that for ray r, the sample points at t = 0 are shown in Fig. 8(a). The ray segments

(18, 15), (12, 7), and (4, 2) are computed using Eqn. 1 and the final ray value of ray r at time stamp

t = 0 is computed using Eqn. 9. Assume that at time t = 1, the changed ray segments for ray r are

(16, 15), (13,9), (5,4), as shown in Fig. 8(b). These changed segments of ray r have to be combined

with the ray segments of ray r at time t = 0, in order to compute the final color value of the ray. For

example, ray segment (18, 15) at time t = 0 is overlapped by the changed ray (16, 15) at time t = 1.

These two ray segments are combined by dividing ray segment (18, 15) into ray segments (18, 17) and

(16, 15). The segment (16, 15) at t = 0 is completely contained in segment (16, 15) at t = 1, therefore,

the new value of the segment (16, 15) is the same as the segment value at t = 1. Therefore, merging

of segments (18, 15) at time t = 0 and (16, 15) at t = 1 results in segments (18, 17) and (16, 15). Ray

segment (12, 7) at t = 0 is combined with ray segment (13, 9) at t = 1 in the similar fashion, resulting

in a new segment list (13,9) and (8,7), where segment (13,9) contains new values of sample points

at t = 1. Similarly, ray segment (4, 2) at time t = 0 and segment (5, 4) at time t = 0 are combined,

resulting in segments (5,4), (3,2) to be in the segment list of ray r. Therefore, the final ray segments

list for ray r for time t = 1 is (18, 17),(16, 15),(13,9),(8,7),(5,4),(3,2). This list is used in computing

the final color value of ray r for time t = 1 using Eqn. 9. At time t = 2, this list is used as above for

merging with changed segment list for ray r at time t = 2.

The worst case complexity of this step is O(n), when number of samples are O(n) which form O(n)

102

changed ray segments. The color and opacity values of each segment are computed using Eqn. 8.

IMPLEMENTATION

We have implemented the proposed algorithm on Sun-sparc (40 MHz) and used electrical wave

propagation data set for testing the performance of our algorithm. In our implementation, in the

beginning each ray is assigned a buffer for storing accumulated color and opacity values at each sample

point along a ray. The size of the buffer is the same as the maximum number of sample points in a

ray which is computed by intersecting the ray with the planes bounding the volume data set. The ith

location in the buffer contain the accumulated color and opacity values for non-empty sample points j

through i (j _< i), where the (j - 1)th sample point is empty. For example, in Fig. 8, the 10th location of

the buffer for ray r contains accumulated color and opacity values of sample points 7 through 10 at time

t = 0. But in order to compute the color and opacity values of segment (12, 7), Eqn. 8 is used which

requires the starting color and opacity values for this segment. At time t = 0, the starting color and

opacity values of all the segments are 0.0. and 1.0, respectively. The starting color and opacity values

of each segment are stored in a buffer called head, attached with each ray segment. At the next time

stamp, new accumulated values may be written to a ray buffer and merging step may change starting

sample point of a previous ray segment. For example in Fig. 8(b), merging segment (18, 15) and the

new segment (16, 15) at time t = 1, results in segments (18, 17) and (16, 15). To compute the color and

opacity values of segment (18, 17), the accumulated color and opacity values of the 16th sample point

at time t = 0 are required. Therefore, the accumulated color and opacity values of the 16th sample

point are the starting values for segment (18, 17). The new starting value of a segment is copied from

the buffer thil attached to each ray segment. In this tail buffer, the color and opacity value at the last

sample point of the segment at the previous time stamp is stored. This is done in merging step. As

an example in Fig. 8(c), the tail value of segment (16, 15) is the color and opacity value of the 16th

sample at time t = 0. These color and opacity values are the starting values for segment (18, 17).

Therefore, each ray segment has following structure.

struct col_op {

float color,opacity; /* color and opacity values */

};

struct ray_seg {

int start, end;

};

/* starting and ending sample point

indices for ray segment */

struct col_op head, tail;

The color and opacity values of each new segment are computed using Eqn. 8 which uses the last

sample point values and head values of the segment.

Table 2 gives the rendering time at different time stamps. Fig. 9 depicts some of the images gener-

ated at different time stamps. It is clear from this table that as the number of changed block increases,

103

Table2: Block sorting, projection, merging and total rendering time for electrical wave propagation
data sets. All times are in seconds.

Time [ProjectionStamp Time

10 0.04

20 0.14

30 0.20

40 0.19

50 0.16

60 0.05
70 0.02

80 0.01

90 0.00

Sorting Merging and

Time Rendering Time

0.46

1.28

1.57

1.56

1.33

0.50

0.22
0.14

0.03

0.II

0.26
0.40

0.46

0.45

0.27

0.15

0.14

0.07

projection time increases. An image is generated in about 2.0 seconds for a 5% change in data points.

Multiple images can be generated in a second using high speed workstations. In the case of sequence of

time varying data sets where changed data points are more clustered, further speed up is expected as

the number of changed blocks will be relatively smM1. The advantage of this technique of rendering time

varying data sets is that the user can generate images of any resolution unlike in the method proposed

by Shen and Johnson [16], where image resolution is the same as that of volume data sets.

CONCLUSION

In this paper, We have presented a storage scheme for time varying data sets which achieves a

98.2% savings of memory space for electrical wave propagation data sets. We have then presented an

algorithm for direct rendering of compact data structures. The implementation results suggest that the

performance of this algorithm is comparable to the existing algorithm by Shen and Johnson [16], but

our algorithm allows any arbitrary image resolution. The performance of the proposed algorithm for

time varying data sets is expected to be better for data sets containing more clustered changed data

points such as in data sets recording neuron activities in the brain [1, 15].

References

[1] J. D. Cohen, D. C. Noll, and W. Schneider. Functional magnetic resonance imaging: Overview and methods for
psychological research. Behavior Research Methods, Instruments and Computers, 25(2):101-113, 1993.

[2] R. Crawfis and N. Max. Texture splats for 3d scalar and vector field visualization. In Proceedings of Visualization,
pages 261-265, 1993.

[3] L. Ferrari, P. V. Sankar, and J. Sklansky. Minimal rectangular partitions of digitalized blobs. Computer Vision,
Graphics and Image Processing, 28:58-71, 1984.

[4] P. Ghapute and C. R_ Johnson. A 3d cellular automata model of the heart. In Proceedings of 15th Annual 1EEE
EMBS Int. Conf., 1993.

[5] A. Globus, C. Levit, and T. Lasinski. A tool for visualizing the topology of three dimensional vector fields. In
Proceedings of Visualization, pages 33--40, 1991.

104

[6] Vineet God. Volume Rendering Algorithms and Architectures. Ph.D. Dissertation, Univ. of Central Florida, Orlando,

FL, 1995.

[7] J. L. HaJman and L. Hesselink. Visualizing vector field topology in fluid flows. IEEE Computer Graphics and

Applications, 11(3):36-46, 1991.

[8] H. Imai and T. Asano. Efficient algorithms for geometric graph search problems. SIAM J. of Computing, 15(2):478-

494, May 1986.

[9] M. Levoy. Display of surface from volume data. IEEE Computer Graphics and Applications, 8(3):29-37, May 1988.

[10] M. Levoy. Efficient ray tracing of volume data. ACM Trans. on Graphics, 9(3), July 1990.

[11] K. L. Ma and P. J. Smith. Virtual smoke: An interactive 3d flow visualization technique. In Proceedings of Visual-

ization, pages 46-53, 1992.

[12] N. Max, B. Becker, and R. Crawfis. Flow volume for interactive vector field visualization. In Proceedings of Visual-

ization, pages 19-23, 1993.

[13] T. Ohtsuki. Minimum dissection of rectilinear regions. In IEEE International Symposium on Circuits and Systems,

pages 1210-1213, Rome, 1982.

[14] T. Porter and T. Duff. Compositing digital images. Computer Graphics, pages 253-259, July 1984.

[15] W. Schnieder, D. C. Noll, and 2. D. Cohen. Functional topographic mapping of the cortical ribbon in human vision

and conventional mri scanner. Nature, 365:150-153, 1993.

[16] Finn Wei Shen and Christopher R. Johnson. Differential volume rendering: A fast volume visualization technique for

flow animation. In Proceedings of Visualization, pages 180-187, 1994.

[17] P. G. Swarm and S. K. Semwal. Volume rendering of flow visualization point data. In Proceedings of Visualization,

pages 25-32, 1991.

[18] C. Upson and M. Keeler. The v-buffer: Visible volume rendering. Computer Graphics, 22(4):59-64, July 1990.

[19] L. Westover. Footprint evaluation for volume rendering. Computer Graphics, 24(4):367-376, August 1990.

105

(_)

(d)

(b) (c)

(_) _(f__

(s) _ (i)

(k)

Figure 9: (a) Image at time stamp 0, (b) Image at time stamp 10, (c) Image at time stamp 20, (d)

Image at time stamp 30. (e) Image at time stamp 40, (f) Image at time stamp 50, (g) Image at time

stamp 60, (h) Image at time stamp 70. (i) Image at time stamp 80, (j) Image at time stamp 90, (k)
Image at time stamp 99.

106

Video

Presentations

107

Eddy Visualization for Various Ocean Models

Robert J. Moorhead, Zhifan Zhu, Kelly Gaither, and John VanderZwagg

Engineering Research Center

Mississippi State University

A feature detection algorithm is developed to extract eddies from a multi-year simulation of the

ocean dynamics in the Pacific Ocean. The extraction algorithm finds the center of potential eddies

using a topology-based approach. The extent of the eddy is determined by growing a geometric

model until the local flow field and the tangent of the surface exceed a threshold. Potential eddies

are then rejected on the basis of size and other physical parameters. The individual instances are

then tracked over time. More eddies are then rejected based on a persistence threshold. The end

result is approximately a thousand-fold decrease in data that must be visualized.

A movie of the resulting phenomena will be shown and the technique presented.

Visualizing Time-Varying Volume Data Using Parallel Computers

Kwan-Liu Ma

ICASE

Tzi-cker Chiueh

State University of New York at Stony Brook

Most previous research on parallel volume rendering on distributed-memory parallel architectures

has ignored I/O and focused only on the rendering algorithms. This presentation describes the

design of a strategy to reduce the I/O overhead in the overall rendering process for time-varying

data by exploiting both inter- and intra-volume parallelism. Given a generic parallel volume

renderer and an N-processor machine, there are three possible approaches to turn it into a parallel

volume animator for time-varying data. The first approach simply runs the parallel volume

renderer on the sequence of data sets one after another. At any point in time, the entire N-

processor machine is dedicated to rendering a particular volume. Therefore, only the parallelism

associated with rendering a single data volume, i.e. intra-volume parallelism, has been exploited.

The second approach takes the exact opposite approach by rendering N data volumes

simultaneously, each on one processor. This approach thus only exploits inter-volume parallelism.

As the optimal rendering performance can only be achieved by carefully balancing two

performance factors: resource utilization efficiency and parallelism, both intra-volume and inter-

volume parallelism should be exploited. The third approach thus takes the hybrid approach, in

which N processor nodes are partitioned into M groups, each of which renders one data volume at

a time. Tests have been performed on the 72-node Intel Paragon located in the NASA Langley

Research Center by using a 64-time-step 128x128x128 voxels data set. Preliminary test results

will be reported.

109

ARL Scientific Visualization

William Mattson and Rick Angelini

U. S. Army Research Laboratory

The Sense and Destroy Armor (SADARM) projectile is a smart munition containing two smaller

submunitions that deploy, sense enemy targets, and fire a shaped charge toward the target.

Wavefronts Dynamation and Advanced Visualizer were used to model and animate the SADARM

submunitions and their deployment process. The animation was used in conjunction with the CFD

calculations to depict the submunition collision solution. Computational fluid dynamics has been

applied to determine the unsteady aerodynamics of the SADARM submunition separation. Flow

Field computations for this multibody problem have been performed at a transonic Mach number,

M=0.80 using the Cray C-90 at Waterways Experiment Station. The visualization was done using

Bop-View.

A molecular dynamics model of shock and detonation of a two dimensional energetic crystal. The
animation was used to visualize the method and mechanisms of the chemical reactions of

detonation. The model consists of a relaxed heteronuclear crystal at rest in a herringbone lattice,

struck by a flyer plate producing a shock front that is driven by chemical reactions immediately

behind the front. Both the molecular dynamics and visualization were done with in house code.

An interior ballistics model of the stresses and strains of a projectile moving down a gun barrel.

Projectile design is an expensive and hazardous engineering task. This study was done to study

the causes and effects of unstable projectiles. The visualization was used to show the stresses and

ringing of the gun tube caused by minor collisions between projectile and gun barrel. The model

was prepared with Patran, and the finite element analysis was done by Dyna3D. Visualization was

performed with Ensight.

Visualization of ERBE Data

Larry Matthias and Paula Detweiler

Lockheed Engineering and Sciences Company

This video presents an overview of the Earth Radiation Budget Experiment (ERBE) project for

NASA Langley Research Center. It explains, using 3D animation, what types of data were

collected from the satellite instruments and the major scientific contributions of the project to

atmospheric science.

This video visualizes the following data:

• Longwave Radiation
• Shortwave Radiation

• Computed Net Radiation

• Cloud Forcing

110

Volumetric Visualization Techniques Applied to the Time Evolution of a

Turbulent Supersonic Flow over a Flat Plate at Mach 2.25

James Patten and Gordon Erlebacher

ICASE

In this movie, we demonstrate volumetric visualization techniques applied to the time evolution of

a turbulent supersonic flow over a flat plate at Mach 2.25. We plot the vorticity magnitude to help

visualize the bursting phenomena, which occurs very close to the wall.

SVP Time-Dependent Visualization Selections

Mary Vickerman

NASA Lewis Research Center

This video shows clips of various time-dependent visualizations that we have created using a

software library developed at NASA Lewis called SVP (Scientific Visualization Package). The

visualizations cover a range of research areas including: CFD, materials properties, solid

lubricants, and molecular dynamics.

Virtual Facilities: Visualizing Experimental Data

Richard J. Schwartz

ViGYAN Inc.

Non-intrusive Global Measurement Systems, such as Particle Image Velocimetry, Pressure and

Temperature Sensitive Paints, and Doppler Global Velocimetry are examples of technologies

available today to provide massive quantities of time varying information about flow over a large

surface area or volume. The resultant data sets can be overwhelming, making traditional

presentation methods, such as graphs and tables, inadequate for the task. However, data sets can

be displayed by computer animations. By utilizing image processing and three-dimensional

computer modeling software, a virtual environment can be created to show the data in situ.

Therefore, a data set can be visualized along with the test environment, namely a wind tunnel

model and the wind tunnel itself. The technique described has been successfully implemented

using PC-based computers with commercial three-dimensional modeling and rendering software.

111

Applications of Parallel Rendering for Visualizing Time-Varying Data

Thomas W. Crockett

ICASE

David C. Banks

Mississippi State University

William J. Bene

Old Dominion University /

Computer Sciences Corporation

Richard G. Wilmoth

NASA Langley Research Center

Bart A. Singer

High Technology Corporation

Patricia J. Crossno

University of New Mexico /
Sandia National Laboratories

Over the last few years, a number of researchers in the field of computer graphics have been

exploring the use of parallel supercomputers for image generation. This work has progressed to

the point that it is now being applied to a variety of visualization problems involving

computationally-intensive simulations and large-scale datasets. In this video, we briefly introduce

the concept of parallel rendering, and describe several scenarios in which it may be useful for

visualizing time-varying data. We illustrate our discussion with several animations which were

produced using PGL, a parallel graphics library under development at ICASE. The examples

include visualizations of rarefied and turbulent flowfields and an explosive welding process.

DeVise -- A Tool for Visually Querying Sequence Data

M. Cheng, M. Livny, and R. Ramakrishnan

Computer Sciences Department

University of Wisconsin--Madison

Visually exploring sequence data, in particular, time-series data, is important in many domains.

DeVise is a tool developed at UW-Madison that supports the concept of a visual querY over such

data. The novel features of DeVise include its flexibility in designing visual presentations of the

data, and its ability to deal with very large datasets by transparently bringing in pages from disk to

main memory as needed. In this talk, I will motivate and describe our work in this area, with

several examples that use DeVise.

112

A High Resolution North Atlantic Ocean Circulation Calculation

Matthew O' Keefe

University of Minnesota

In our new Laboratory for Computational Science and Engineering we are visualizing very high

resolution ocean circulation calculations (0.08 degrees). I would like to show a variety of

animations of surface temperature, vorticity, salinity that are primarily 2D and also some 3D fly-

throughs of large time-dependent ocean flows. We are working on a quaternion-based automatic

fly-through movie generation tool that focused on 3D flows.

Our group has designed a PowerWall display system that allows us to paste together multiple

high-resolution screens yielding a single very high resolution display. We used this technology to

display a variety of high-res time dependent flows at Supercomputing 95.

Visualization of Numerical Unsteady Flows

David Lane

Computer Sciences Corporation

Numerical simulations of complex 3D time-dependent (unsteady) flows are becoming

increasingly feasible because of the progress in computing systems. Unfortunately, many existing

flow visualization systems were developed for time-independent (steady) solutions and do not

adequately depict solutions from unsteady flow simulations. Furthermore, most systems only

handle one time step of the solutions individually and do not consider the time-dependent nature

of the solutions. For example, instantaneous streamlines are computed by tracking the particles

using one time step of the solution. However, for streaklines and timelines, particles need to be

tracked through all time steps.

For a complex 3D flow simulation, it is common to generate a grid system with several millions of

grid points and to have tens of thousands of time steps. The disk requirement for storing the flow

data can easily be tens of gigabytes. Visualizing solutions of this magnitude is a challenging

problem with today's computer hardware technology. Even interactive visualization of one time

step of the flow data can be a problem for some existing flow visualization systems because of the

size of the grid.

The Unsteady Flow Analysis Toolkit (UFAT) developed at NASA Ames Research Center to

compute time-dependent particle traces from unsteady CFD solutions is described. The system

computes particle traces (streaklines) by integrating through the time steps. This system has been

used by several NASA scientists to visualize their CFD time-dependent solutions. The flow
visualization results are shown.

113

Displaying the Rotation of a Vortex Tube

David Banks

Mississippi State University

Will Bene

Computer Sciences Corporation

Tom Crockett

ICASE

Bart Singer

High Technology Corporation

This video visualizes the development of vortical structures in an unsteady flow. A direct

numerical simulation provides the raw data, and the vortex core is identified by a predictor-

gradient scheme using vorticity and pressure-gradients. A vortex tube can be reconstructed for

graphical display on a workstation, but interpolating the tubes geometry between given time steps

requires substantial computation. We are using a parallel machine both to interpolate the gross

geometry of the tube between time steps and also to deform the surface shape of the tube by a

small amount. The deformation (in the form of small grooves) provides a set of visual landmarks

to indicate the direction and magnitude of rotation on the surface of the tube. This visualization

technique substantially assists in revealing the dynamics of the tube and on the tube.

114

Time-Varying

Datasets

115

3-D Unsteady Navier-Stokes Computations of Flow Through a Ducted-

Propeller Blade Passage

Robert T. Biedron

Analytical Services & Materials, Inc.

http://www.icase.edu/workshops/vtvd/datasets/rotorblade.html

An upwind, approximate factorization scheme was used to solve the thin-layer Navier-Stokes

equations for the flow through a single passage in a ducted propeller. The passage consists of a

rotating fan blade and a stationary guide vane, bounded on the bottom by the hub and on the top

by the cowl. Periodicity of 22.5 degrees is enforced in the circumferential direction, yielding a

computation representative of a ducted propeller with 16 fan blades and 16 guide vanes. A

patched/overset grid system comprised of 4 structured blocks was used for the computation.

The dataset displays the relative motion of the fan blades and guide vanes modeled through the

use of a "sliding block" patched-grid interface. The location of the fan blade relative to the guide

vane is recomputed at each iteration. The dataset depicts the solution at every fifth time step of the

computation.

The Aerospace Flight Vehicle Pitch-Over Dataset

Bill Kleb

NASA Langley Research Center

http:llwww.icase.edu/workshopslvtvd/datasetslavpitchup.html

The dataset is a computational fluid dynamic (CFD) simulation of a proposed vertical take-off/

vertical landing, single-stage to orbit flight vehicle. This is one of the many vehicle concepts

being considered as a replacement for the Space Shuttle. Just after re-entry into the earth's

atmosphere, but prior to landing vertically, the vehicle must reverse it's direction of flight from

being nose-first to base-first so that it can fire its engines for landing. This dataset represents a

simulation of this pitch-over maneuver. The CFD code used to generate the dataset is a modified

version of the 3D3U code written by J. T. Batina of NASA Langley. The code was originally

created to enable simulation of transonic, unsteady flowfields about wings and wing-bodies

include aeroelastic effects.

117

Unsteady Viscous Flow Over 3-D Rectangular Cavity

N. Duane Melson

NASA Langley Research Center

http://www.icase.edu/workshops/vtvd/datasets/cavity.html

An iterative-implicit thin-layer Navier-Stokes solver with multigrid acceleration was used to

calculate the self-excited unsteady laminar flow over and in a rectangular shallow cavity in a fiat

plate. A two-block structured grid was used for the calculation.

118

PARTICIPANTS

Marc Abrams

Department of Computer Science
VPI & SU

Blacksburg, VA 2406 l-0106
U.S.A.

(540) 23 !-8457
abrams @ vt.edu

Mary Adams

Mail Stop ! 28
NASA Langley Research Center

Hampton, VA 23681-0001
U.S.A.

(804) 864-2314

m.s.adams @larc.nasa.gov

Rick Angelini

U. S. Army Research Laboratory
AMSRL-SC-CC

High Performance Computing Division

Aberdeen Proving Ground, MD 21005-5067
U.S.A.

(410) 278-6266

angel@arl.mil

David Banks

Department of Computer Science
Mississippi State University

Mississippi State, MS 39762
U.S.A.

(601) 325-2756
banks@cs.msstate.edu

R. Daniel Bergeron

Department of Computer Science

University of New Hampshire
Kingsbury Hall
Durham, NH 03824
U.S.A.

(603) 862-3778
rdb@cs.unh.edu

Daryl Bonhaus

Mail Stop 128

NASA Langley Research Center

Hampton, VA 23681-0001
U.S.A.

(804) 864-2293

d.l.bonhaus @larc.nasa.gov

John T. Bowen

Mail Stop 125

NASA Langley Research Center

Hampton, VA 23681-0001
U.S.A.

(804) 864-6725

j.t.bowen @ larc.nasa.gov

Steve Bryson

Computer Sciences Corporation
Mail Stop T-27A-I
NASA Ames Research Center

Moffett Field, CA 94035-1000
U.S.A.

(415) 604-4524

bryson@nas.nasa.gov

Judy Busby

David Taylor Research Center
Code 542

CDNSWC DTRC
Bethesda, MD 20084

U.S.A.

(301) 227-3274

busby@dawgs.dt.navy.mil

Rod Coleman

David Taylor Model Basin
Code 542

NSWC/Carderock

Bethesda, MD 20084
U.S.A.

(301) 227-1930

coleman @oasys.dt.navy.mil

119

Robert Z. Conrow

ITT Federal Services Corporation

Mail Stop AP220
P. O. Box 5728

Vandenberg Air Force Base, CA 93437
U.S.A.

(805) 734-8232

zeb@ tecnetl.jcte.jcs.mil

Eric Davies

Barrodale Computing Services
Suite 8 - 1560 Church Avenue

Victoria, B.C.
Canada V8P 2H 1

ejdavies @ barrodale.com

John Edwards

Mail Stop 242
NASA Langley Research Center

Hampton, VA 23681-0001
U.S.A.

(804) 864-2273

j.w.edwards @larc.nasa.gov

Charles Fenno

Mail Stop 463
NASA Langley Research Center

Hampton, VA 23681-0001
U.S.A.

(804) 864-3579

c.c.fenno@larc.nasa.gov

Roger Hahn

Century Computing. Inc.
8101 Sandy Spring Road
Laurel, MD 20707
U.S.A.

(301) 953-3330
rhahn@cen.com

120

Tom Crockett
ICASE

Mail Stop 132C

NASA Langley Research Center
Hampton, VA 23681-0001
U.S.A.

(804) 864-2182
tom @icase.edu

David E. Edwards

United Technologies Research Center
411 Silver Lane

Mail Stop i29-13

East Hartford, CT 06108
U.S.A.

(203) 727-7518
edwardde @utrc.utc.com

Gordon Erlebacher
ICASE

Mail Stop 132C

NASA Langley Research Center

Hampton, VA 23681-0001
U.S.A.

(804) 864-6781
erlebach @ icase.edu

Michael Gerald-Yamasaki

Mail Stop T27A- I
NASA Ames Research Center

Moffett Field, CA 94035-1000
U.S.A.

(415) 604-4412

yamo@ nas.nasa.gov

Robert Haimes

Massachusetts Institute of Technology
Room 37-467

77 Massachusetts Avenue

Cambridge, MA 02139
U.S.A.

(617) 253-7518
haimes @orville.mit.edu

JenniferHare
U.S.ArmyResearchLaboratory
AMSRL-SC-CC
HighPerformanceComputingDivision
AberdeenProvingGround,MD 21005-5067
U.S.A.

(410) 278-9149

jen @arl.mil

Nilan Karunaratne
ICASE

Mail Stop 132C

NASA Langley Research Center

Hampton. VA 23681-0001
U.S.A.

(804) 864-2173
karunnc @icase.edu

William Kleb

Mail Stop 408A

NASA Langley Research Center

Hampton, VA 23681-0001
U.S.A.

(804) 864-4364
w.l.kleb @larc.nasa.gov

Don Krieger

Children's Hospital of Pittsburgh

University of Pittsburgh, Room 3699
3705 Fifth Avenue

Pittsburgh, PA 15213
U.S.A.

(412) 692-5093

don @neuronet.pitt.edu

David Lane

Computer Sciences Corporation
NASA Ames Research Center

Mail Stop T27A-2
Moffett Field, CA 94035

U.S.A.

(415) 604-4375

lane@nas.nasa.gov

Lambertus Hesselink

Department of Aeronautics and Astronautics
Stanford University

Durand Building - Room 353
Stanford, CA 94305-4035
U.S.A.

(415) 723-4850
bert @ kaos.stanford.edu

Patricia Kerr

Mail Stop 125
NASA Langley Research Center

Hampton, VA 23681-0001
U.S.A.

(804) 864-5782

p.a.kerr @larc.nasa.gov

Steve Kramer

Intelligent Light
1099 Wall Street West

Suite 387

Lyndhurst, NJ 07071
U.S.A.

(201) 460-4700

kramer@ ilight.com

Jay Lambiotte
Mail Stop 125

NASA Langley Research Center

Hampton, VA 23681-0001
U.S.A.

(804) 864-5794

j.j.lambiotte @larc.nasa.gov

Yu-Tai Lee

David Taylor Model Basin
Code 542

Naval Surface Warfare Center

Bethesda, MD 20084-5000
U.S.A.

(301) 227-1328

ylee @ oasys.dt.navy.mil
121

StephenLegensky
IntelligentLight
1099WallStreetWest
Suite387
Lyndhurst,NJ07071
U.S.A.
(201)460-4700
sml@ilight.com

Kwan-LiuMa
ICASE
MailStop132C
NASALangleyResearchCenter
Hampton,VA 23681-0001
U.S.A.
(804)864-2195
kma@icase.edu

AnupMathur
DepartmentofComputerScience
VPI& SU
Blacksburg,VA 24061-0106
U.S.A.
(540)953-2800,ext.3038
mathur@csgrad.cs.vt.edu

WilliamMattson
U.S.ArmyResearchLaboratory
AMSRL-SC-CC
HighPerformanceComputingDivision
AberdeenProvingGround,MD 21005-5067
U.S.A.
(410)278-7502
wmattson@arl.mil

PiyushMehrotra
ICASE
MailStop132C
NASALangleyResearchCenter
Hampton,VA 23681-0001
U.S.A.
(804)864-2188
pm@icase.edu

122

David Leone

Sterling Software

303 Twin Dolphin Drive
Suite 510

Redwood City, CA 94065-1417
U.S.A.

(415) 802-7100

daveleone @sterling.com

Wayne Mastin

Mail Stop 125

NASA Langley Research Center
Hampton. VA 23681-0001
U.S.A.

(804) 864-5781

cwm @geolab.larc.nasa.gov

Larry Matthias

Lockheed Engineering & Sciences Company
144 Research Drive

Hampton, VA 23666
U.S.A.

(804) 766-9726

I.e.matthias @larc.nasa.gov

Nelson Max

Lawrence Livermore National Laboratory
Mail Stop L-301
7000 East Avenue

Livermore, CA 94550
U.S.A.

(510) 422-4074

max2@llnt.gov

N. Duane Melson

Mail Stop 128

NASA Langley Research Center

Hampton, VA 23681-0001
U.S.A.

(804) 864-2222

n.d.melson @larc.nasa.gov

RobertMoorhead
ERC
MississippiStateUniversity
P.O.Box6176
MississippiState,MS39762
U.S.A.
(601)325-2850
rjm@erc.msstate.edu

RichardMuntz
DepartmentofComputerScience
UniversityofCalifornia-LosAngeles
3732BoelterHall
LosAngeles,CA90095-1596
U.S.A.
(3i0)825-3546
muntz@cs.ucla.edu

RobertNowak
MailStop408A
NASALangleyResearchCenter
Hampton.VA 23681-0001
U.S.A.
(804)864-1391
r.j.nowak@larc.nasa.gov

TomPalmer
CEI.Inc.
P.O.Box14306
ResearchTrianglePark,NC 27709
U.S.A.
(919)481-4301
palmer@ceintl.com

Mary-AnnePosenau
MailStop125
NASALangleyResearchCenter
Hampton,VA 23681-0001
U.S.A.
(804)864-6717
m.a.k.posenau@larc.nasa.gov

AmarMukherjee
DepartmentofComputerScience
UniversityofCentralFlorida
Orlando,FL 32816
U.S.A.
(407)823-2763
amar@cs.ucf.edu

DavidMyrick
ComputerSciencesCorporation
MailStop157D
NASALangleyResearchCenter
Hampton,VA 23681-0001
U.S.A.
(804)864-9230
myrick@magician.larc.nasa.gov

MatthewO'Keefe
DepartmentofElectricalEngineering
UniversityofMinnesota
4-174,EE/CSciBuilding
Minneapolis,MN 55455
U.S.A.
(612)625-6306
okeefe@mountains.ee.umn.edu

AlanPope
MailStop152
NASALangleyResearchCenter
Hampton,VA 23681-0001
U.S.A.
(804)864-6642
a.t.pope@larc.nasa,gov

RaghuRamakrishnan
DepartmentofComputerScience
UniversityofWisconsin- Madison
1210W.Dayton
Madison,WI 53706
U.S.A.
(608)262-9759
raghu@cs.wisc.edu

123

Daniel A. Reed

Department of Computer Science

University of Illinois

1304 W. Springfield Avenue
Urbana, IL 61801

U.S.A.

(217) 333-3807
reed @cs.uiuc.edu

Randy Ribler

Department of Computer Science
VPI & SU

Blacksburg, VA 24061-0106
U.S.A.

(540) 231-6931

ribler@csgrad.cs.vt.edu

Kevin Russo

Naval Research Laboratory
Code 5580

4555 Overlook Avenue

Washington, DC 20375-5337
U.S.A.

(202) 767-3879

russo@ ait.nrl.navy.mil

Richard Schwartz

Vigyan. Inc.

Mail Stop 493

NASA Langley Research Center

Hampton, VA 23681-0001
U.S.A.

(804) 864-4594

r.s.schwartz@larc.nasa.gov

Kurt Severance

Mail Stop 125

NASA Langley Research Ce'nter
Hampton, VA 23681-0001
U.S.A.

(804) 864-6715

k.severance@ larc.nasa.gov

124

Wei-Min Ren

Siemens Automotive

615 Bland Boulevard

Newport News, VA 23602
U.S.A.

(804) 875-7454

Vincent Roland

Mail Stop 125

NASA Langley Research Center

Hampton, VA 23681-0001
U.S.A.

(804) 864-672 I

v.r.roland @ larc. nasa.gov

James R. Schiess

Mail Stop 125
NASA Langley Research Center

Hampton, VA 23681-0001
U.S.A.

(804) 864-6718

j.r.schiess @larc.nasa.gov

Will Scullin

Department of Computer Science

University of Illinois

1304 W. Springfield Avenue
Urbana, IL 61801

U.S.A.

(217) 333-1515
scullin@cs.uiuc.edu

Robert Smith

Mail Stop 125

NASA Langley Research Center

Hampton, VA 23681-0001
U.S.A.

(804) 864-5774

bobs @ bobsun.larc.nasa.agov

REPORT DOCUMENTATION PAGE Fo,'r,,Appro,,,,d
OMB No. 0704.0188

Pul_ic reporting burden for this ¢otteotion o/information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources.
gathering and maintaining the data needed, and completing and revmwing the collection of information. Send comments regarding the; burden estimate or any other aspeot of thcs
collec_on of information, including suggestions fo_ reducing this burden, to Washington Headquarters Services. Directorate for information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-O188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. Janual'yREPORTDATE1996]a. ConferenceREP°RTTYPE AND DATESCOVEREDpublication
II i

4. roLE ANDSUBTITLE
ICASE/LaRC Symposium on Visualizing Time-Varying Data

S. AUTHOR(S)

D. C. Banks, T. W. Crockett, and K. Stacy, editors

7. PERFORMINGORGANIZATIONNAME(S)ANDADDRESS(ES)

NASA Langley Research Center
Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

and

Institute for Computer Applications in Science and Engineering (ICASE)
Hampton, VA 23681-0001

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Dennis M. Bushnell
Final Report

5. FUNDING NUMBERS

C NAS 1-19480
505-90-52-01

8. PERFORMING ORGANIZATION

REPORT NUMBER

L-17555

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA CP-3321

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited

Subject Category 60,61

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Time-varying datasets present difficult problems for both analysis and visualization. For example, the data may be
terabytes in size, distributed across mass storage systems at several sites, with time scales ranging from femtosec-
onds to eons. In response to these challenges, ICASE and NASA Langley Research Center, in cooperation with
ACM SIGGRAPH, organized the first symposium on Visualizing Tune-Varying Data. The purpose was to bring the
producers of time-varying data together with visualization specialists to assess open issues in the field, to present
new solutions, and to encourage collaborative problem-solving.

These proceedings contain the peer-reviewed papers which were presented at the Symposium. They cover a broad
range of topics, from methods for modeling and compressing data to systems for visualizing CFD simulations and
the World Wide Web traffic. Because the subject matter is inherently dynamic, a paper proceedings cannot ade-
quately convey all aspects of the work. The accompanying video proceedings provide additional context for several
of the papers.

14. SUBJECT TERMS

Visualization; Tinae-varying data

I

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

NSN 7540-01-280-5500

I

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

131
16. PRICE CODE

A07

20. LIMITATION

OF ABSTRACT

Standard Form 298 (Rev. 2-89)
Prescribed WANSI Sld. Z39-18
298-102

Kathryn Stacy

Mail Stop 125
NASA Langley Research Center

Hampton, VA 23681-0001
U.S.A.

(804) 864-6719
k.stacy@larc.nasa.gov

James Stegeman
Mail Stop 5-1 !
NASA Lewis Research Center

Cleveland, OH 44135
U.S.A.

(2 i 6) 433-3389

stegeman @lerc.nasa.gov

Joe Thompson

Engineering Research Center for

Computational Field Simulation

Mississippi State University
Box 6176

Mississippi State, MS 39762
U.S.A.

(601) 325-7299

joe @erc.msstate.edu

Ronald Ungewitter
Rockwell International

6633 Canoga Avenue
P. O. Box 7922

Canoga Park, CA 91309-7922
U.S.A.

(818) 586-0531

r.j.ungewitter@rdyne.rockwell.com

Mary Vickerman

Mail Stop 142-5
NASA Lewis Research Center

21000 Brookpark Road
Cleveland, OH 44135

U.S.A.

(216) 433-5067

vickerman @lerc.nasa.gov

William von Ofenheim

Mail Stop 125
NASA Langley Research Center

Hampton, VA 23681-0001
U.S.A.

(804) 864-6712
w.h.c.vonofenheim@larc.nasa.gov

Thomas Whittaker

Sterling Software
MS T27A-2
NAS/NASA Ames Research Center

Moffett Field, CA 94037

U.S.A.

(415) 604-4451

tomw @nas.nasa.gov

Pak Wong

Department of Computer Science
University of New Hampshire

Kingsbury Hall
Durham, NH 03824
U.S.A.

(603) 862-3782

pcw@cs.unh.edu

125

