158 research outputs found

    Numerical methods for accurate description of ultrashort pulses in optical fibers

    Get PDF
    We consider a one-dimensional first-order nonlinear wave equation (the so-called forward Maxwell equation, FME) that applies to a few-cycle optical pulse propagating along a preferred direction in a nonlinear medium, e.g., ultrashort pulses in nonlinear fibers. The model is a good approximation to the standard second-order wave equation under assumption of weak nonlinearity. We compare FME to the commonly accepted generalized nonlinear Schrödinger equation, which quantifies the envelope of a quickly oscillating wave field based on the slowly varying envelope approximation. In our numerical example, we demonstrate that FME, in contrast to the envelope model, reveals new spectral lines when applied to few-cycle pulses. We analyze and compare pseudo-spectral numerical schemes employing symmetric splitting for both models. Finally, we adopt these schemes to a parallel computation and discuss scalability of the parallelization

    Predicting nonlinear dynamics of optical solitons in optical fiber via the SCPINN

    Full text link
    The strongly-constrained physics-informed neural network (SCPINN) is proposed by adding the information of compound derivative embedded into the soft-constraint of physics-informed neural network(PINN). It is used to predict nonlinear dynamics and the formation process of bright and dark picosecond optical solitons, and femtosecond soliton molecule in the single-mode fiber, and reveal the variation of physical quantities including the energy, amplitude, spectrum and phase of pulses during the soliton transmission. The adaptive weight is introduced to accelerate the convergence of loss function in this new neural network. Compared with the PINN, the accuracy of SCPINN in predicting soliton dynamics is improved by 5-11 times. Therefore, the SCPINN is a forward-looking method to study the modeling and analysis of soliton dynamics in the fiber

    PT\mathcal{PT}-Symmetric Periodic Optical Potentials

    Get PDF
    In quantum theory, any Hamiltonian describing a physical system is mathematically represented by a self-adjoint linear operator to ensure the reality of the associated observables. In an attempt to extend quantum mechanics into the complex domain, it was realized few years ago that certain non-Hermitian parity-time (PT\mathcal{PT}) symmetric Hamiltonians can exhibit an entirely real spectrum. Much of the reported progress has been remained theoretical, and therefore hasn't led to a viable experimental proposal for which non Hermitian quantum effects could be observed in laboratory experiments. Quite recently however, it was suggested that the concept of PT\mathcal{PT}-symmetry could be physically realized within the framework of classical optics. This proposal has, in turn, stimulated extensive investigations and research studies related to PT\mathcal{PT}-symmetric Optics and paved the way for the first experimental observation of PT\mathcal{PT}-symmetry breaking in any physical system. In this paper, we present recent results regarding PT\mathcal{PT}-symmetric Optic

    GASE: a high performance solver for the Generalized Nonlinear Schrödinger equation based on heterogeneous computing

    Get PDF
    European Regional Policy in the Nord -Pas-de-Calais. The Nord -Pas-de-Calais region benefits from rather considerable european funds. The eligibility of part of its territorry to objective 1 of the european regional policy brings new means to compensate for the delay in its development.Le Nord -Pas-de-Calais bénéficie de financements européens non négligeables. Notamment l'éligibilité d'une partie de son territoire à l'objectif 1 de la politique régionale européenne représente de nouveaux moyens au service du rattrapage de développement.Paris Didier. La politique régionale européenne dans le Nord -Pas-de-Calais. In: Hommes et Terres du Nord, 1995/3. La France du Nord dans l'Europe du Nord-Ouest : les nouvelles donnes et les infrastructures de transport. pp. 113-119

    A time-splitting pseudospectral method for the solution of the Gross-Pitaevskii equations using spherical harmonics with generalised-Laguerre basis functions

    Get PDF
    We present a method for numerically solving a Gross-Pitaevskii system of equations with a harmonic and a toroidal external potential that governs the dynamics of one- and two-component Bose-Einstein condensates. The method we develop maintains spectral accuracy by employing Fourier or spherical harmonics in the angular coordinates combined with generalised-Laguerre basis functions in the radial direction. Using an error analysis, we show that the method presented leads to more accurate results than one based on a sine transform in the radial direction when combined with a time-splitting method for integrating the equations forward in time. In contrast to a number of previous studies, no assumptions of radial or cylindrical symmetry is assumed allowing the method to be applied to 2D and 3D time-dependent simulations. This is accomplished by developing an efficient algorithm that accurately performs the generalised-Laguerre transforms of rotating Bose-Einstein condensates for different orders of the Laguerre polynomials. Using this spatial discretisation together with a second order Strang time-splitting method, we illustrate the scheme on a number of 2D and 3D computations of the ground state of a non-rotating and rotating condensate. Comparisons between previously derived theoretical results for these ground state solutions and our numerical computations show excellent agreement for these benchmark problems. The method is further applied to simulate a number of time-dependent problems including the Kelvin-Helmholtz instability in a two-component rotating condensate and the motion of quantised vortices in a 3D condensate

    Scalar Auxiliary Variable/Lagrange multiplier based pseudospectral schemes for the dynamics of nonlinear Schrödinger/Gross-Pitaevskii equations

    Get PDF
    International audienceIn this paper, based on the Scalar Auxiliary Variable (SAV) approach and a newly proposed Lagrange multiplier (LagM) approach originally constructed for gradient flows, we propose two linear implicit pseudo-spectral schemes for simulating the dynamics of general nonlinear Schrödinger/Gross-Pitaevskii equations. Both schemes are of spectral/second-order accuracy in spatial/temporal direction. The SAV based scheme preserves a modified total energy and approximate the mass to third order (with respect to time steps), while the LagM based scheme could preserve exactly the mass and original total energy. A nonlinear algebraic system has to be solved at every time step for the LagM based scheme, hence the SAV scheme is usually more efficient than the LagM one. On the other hand, the LagM scheme may outperform the SAV ones in the sense that it conserves the original total energy and mass and usually admits smaller errors. Ample numerical results are presented to show the effectiveness, accuracy and performance of the proposed schemes

    A splitting lattice Boltzmann scheme for (2+1)-dimensional soliton solutions of the Kadomtsev-Petviashvili equation

    Get PDF
    Recently, considerable attention has been given to (2+1)-dimensional Kadomtsev-Petviashvili equations due to their extensive applications in solitons that widely exist in nonlinear science. Therefore, developing a reliable numerical algorithm for the Kadomtsev-Petviashvili equations is crucial. The lattice Boltzmann method, which has been an efficient simulation method in the last three decades, is a promising technique for solving Kadomtsev-Petviashvili equations. However, the traditional higher-order moment lattice Boltzmann model for the Kadomtsev-Petviashvili equations suffers from low accuracy because of error accumulation. To overcome this shortcoming, a splitting lattice Boltzmann scheme for (2+1)-dimensional Kadomtsev-Petviashvili-Ⅰ type equations is proposed in this paper. The variable substitution method is applied to transform the Kadomtsev-Petviashvili-Ⅰ type equation into two macroscopic equations. Two sets of distribution functions are employed to construct these two macroscopic equations. Moreover, three types of soliton solutions are numerically simulated by this algorithm. The numerical results imply that the splitting lattice Boltzmann schemes have an advantage over the traditional high-order moment lattice Boltzmann model in simulating the Kadomtsev-Petviashvili-Ⅰ type equations
    corecore