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Abstract: Recently, considerable attention has been given to (2+1)-dimensional Kadomtsev-

Petviashvili equations due to their extensive applications in solitons that widely exist in nonlinear 

science. Therefore, developing a reliable numerical algorithm for the Kadomtsev-Petviashvili 

equations is crucial. The lattice Boltzmann method, which has been an efficient simulation method in 

the last three decades, is a promising technique for solving Kadomtsev-Petviashvili equations. 

However, the traditional higher-order moment lattice Boltzmann model for the Kadomtsev-

Petviashvili equations suffers from low accuracy because of error accumulation. To overcome this 

shortcoming, a splitting lattice Boltzmann scheme for (2+1)-dimensional Kadomtsev-Petviashvili-I 

type equations is proposed in this paper. The variable substitution method is applied to transform the 

Kadomtsev-Petviashvili-I type equation into two macroscopic equations. Two sets of distribution 

functions are employed to construct these two macroscopic equations. Moreover, three types of soliton 

solutions are numerically simulated by this algorithm. The numerical results imply that the splitting 

lattice Boltzmann schemes have an advantage over the traditional high-order moment lattice 

Boltzmann model in simulating the Kadomtsev-Petviashvili-I type equations. 

Keywords: lattice Boltzmann method; Kadomtsev-Petviashvili equation; soliton solutions; splitting 
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1. Introduction 

The lattice Boltzmann (LB) method, originating from lattice gas automata (LGA), is a powerful 
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computational fluid technique that has achieved much progress in the past three decades. In an LGA 

model, the flow of fluids is simulated by the movement and collision of a large number of 

indistinguishable particles on a regular spatial lattice. The Boolean variables are used to describe the 

particle distribution in the system. The density and velocity of the fluids are calculated through 

statistical processing of these Boolean variables. Although the LGA appears promising in simulating 

fluid problems, it has several disadvantages due to the iteration of Boolean variables. To improve on 

the LGA, in a general LB model, the ensemble-averaged particle distribution functions and the 

linearized Bhatnagar-Gross-Krook (BGK) approximation is applied to overcome the statistical noise 

and exponential complexity from which the LGA suffers [1–3]. Among the various numerical 

methods, the LB model has emerged as an impressive candidate because of its efficiency and 

simplicity in simulating multiphase flows [4–8], compressible flows [9,10], turbulent flows [11,12], 

combustion [13,14], non-Newtonian flows [15,16] and more. 

In addition, by selecting specific forms of distribution functions, the LB method has been widely 

employed to solve partial differential equations (PDEs) numerically, such as wave equations [17–19], 

Korteweg-de Vries (KdV) equations [20–22], convection-diffusion equations [23–25], reaction-

diffusion equations [26,27], and nonlinear Schrödinger equations [28,29]. 

In this research, the following (2+1)-dimensional Kadomtsev-Petviashvili (KP) equation will be 

investigated: 

3 2

3 2
( 6 ) 0.

u u u u
u

x t x x y


    
+ + + =

    
 (1) 

If the parameter is 𝛾 = −3 , Eq (1) is called the Kadomtsev-Petviashvili-I type (KPI) equation. 

Conversely, in the case 𝛾 = 3 , Equation (1) is called the Kadomtsev-Petviashvili-II type (KPII) 

equation. Both the KPI and KPII equations are fully integrable. The equation was first introduced by 

Kadomtsev and Petviashvili to analyze the stability of one-dimensional solitary pulses under transverse 

perturbations [30]. Regarded as an extension of the KdV equation in two-dimensional space, Eq (1) 

was developed for many application areas. For example, under the assumptions of long wavelengths 

and micro amplitudes, the water waves are governed by KP equations [30]. Bryant found that the 

propagation of weakly dispersive waves can be described with KP equations [31]. The two-

dimensional shallow water waves with finite amplitude can be modeled from the KP equation [32]. 

Moreover, Xue found that several dust-acoustic solitons can be obtained by KP equations [33]. 

Given a wide range of applications in nonlinear science, KP equations have attracted much 

attention. To date, considerable theoretical studies and numerical simulations have been performed on 

KP equations. For example, Kricher et al. investigated the explicit solutions of KP equations [34,35]. 

Zhao proposed the extended mapping method to derive several exact solutions of KP equations and 

analyzed the interactions among different solitary waves [36]. Qin et al. introduced the extended 

homoclinic test method to study the breather wave and rogue wave solutions of the KP equations, 

which are important for describing several phenomena in plasma physics and fluid mechanics [37]. 

The Hirota bilinear method, which can be used to find the analytical solutions of PDEs [38,39], has 

been widely used to develop both rational and rogue wave solutions of KP equations [40–44]. The 

variable-coefficient symbolic computation method is carried out to obtain several multi-rogue wave 

solutions of the KP equation [45]. Using the generalized extended tanh method combined with the 

F-expansion method, several solitary wave solutions of the KP equations were exploited by Seadawy 
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et al. [46]. The explicit finite difference model for the initial or boundary-value problems of KP 

equations were developed by Bratsos and Twizell [47]. To improve the stability of the algorithm, Feng 

and Mitsui utilized a linearized implicit finite difference method based on the Crank-Nicolson scheme 

to solve KP equations [48]. The pseudo-spectral method was carried out by Minzoni and Smyth to 

analyze the evolution of lump solitons of KP equations [49]. A computational approach based on the 

Adomian decomposition method was developed by Wazwaz to study the movement of solitons in KP 

equations [50]. A higher-order moment LB method was constructed by Wang to simulate single-line 

solitons and lump solitons in KP equations [51]. Cai et al. proposed a linearized local energy-

preserving method to analyze the evolution of solitons in KP equations [52]. 

Notably, although the higher-order moment LB model presented by Wang successfully simulated 

the evolution of KP equations [51], the error of the model was unsatisfactory. The macroscopic quantity 

of the model was selected as Eq (2): 

( ), , .equ
f x y t

x





=


  (2) 

Thus, the true macroscopic quantity u must be obtained by the central difference in the x direction. 

This could cause error accumulation, which reduces the accuracy of the model. In this research, a more 

reliable numerical scheme for the KPI equation based on the LB model will be developed. 

Inspired by [49], to achieve the aim of solving KPI equations more effectively, a splitting LB 

scheme is proposed in this paper. First, Eq (1) is translated as follows: 

3

3
6 ,

u u u
u Kw

t x x

  
+ + =

  
 (3) 

2

2
,

w u

x K y

 
=

 
 (4) 

where 𝛿 = −𝛾. We can see that Eq (3) is a KdV equation with the source term 𝐾𝑤. 

It is reasonable to rewrite the KPI equation into Eqs (3) and (4). On one hand, as an extension of 

the KdV equation in two-dimensional space, the (2+1)-dimensional KP equation is derived from one-

dimensional solitary pulses under transverse perturbations [30]. Equation (4) describes the second-

order derivative term in the y-direction as transverse perturbations, which becomes the source term for 

the movement of solitons governed by the KdV equation in the x-direction. On the other hand, Beji [53] 

noted that in the nonlinear water wave equation regarding surface displacement, the KP equation can 

be obtained by taking the x-direction as the main propagation direction of waves, discarding the 

nonlinear and dispersive terms in the y-direction and retaining only the non-dispersive term in the y-

direction. This point of view also verifies the rationality of Eqs (3) and (4). 

The KdV equations with the source term were first calculated by Fornberg and Whitham [54]. In 

their work, the pseudo-spectral method combined with the leap-frog scheme was used. Meanwhile, the 

form of Eq (4) is similar to a diffusion-type equation. Although the characteristic of Eq (4) is different 

from the diffusion equation because the quantities 𝑢 and 𝑤 are not linearly related, Eq (4) can be 

integrated by using the Crank-Nicolson scheme. 

In this paper, we focus on the LB solutions for these two equations. Our strategy is that two sets 
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of distribution functions will be employed to recover these equations. A one-dimensional LB model is 

used to simulate the KdV equation with a source term, and a spatial evolution LB model is applied to 

develop (4). 

The remainder of this research is constructed as follows. In Section 2, a splitting LB scheme for 

KPI equations is proposed. In Section 3, some detailed numerical simulations are conducted to verify 

the scheme. Finally, conclusions are provided in the last section. 

2. A splitting LB scheme for the KPI equation 

2.1. The LB model for the KdV equation with a source term. 

A one-dimensional LB equation with a BGK collision term is considered as follows: 

1
( , ) ( , ) [ ( , ) ( , )] ( , ),eqf x e t t t f x t f x t f x t x t       


+ + − = − − +  (5) 

where the relaxation time is denoted as 𝜏. 𝑓𝛼(𝑥, 𝑡) and 𝑓𝛼
𝑒𝑞(𝑥, 𝑡) represent the discrete distribution 

function and equilibrium distribution function in the 𝛼 direction, respectively. They should satisfy the 

following conservation law: 

( , ) ( , ).eqf x t f x t 
 

=   (6) 

The additional term 𝜔𝛼(𝑥, 𝑡) is used to simulate the source term of the macroscopic equation. 

Now, applying the Chapman-Enskog expansion [55] to 𝑓𝛼(𝑥, 𝑡), it yields: 

( ) ( )
0

( , ) , .
ii

i

f x t f x t 


=

=  (7) 

Here, in Eq (7), 𝑓𝛼
(0)(𝑥, 𝑡) ≡ 𝑓𝛼

𝑒𝑞(𝑥, 𝑡). The parameter 𝜀 is called the Knudsen number. It is reasonable 

to assume that 𝜀 is a small number. Therefore, we can take it as the time step: 𝜀 = 𝛿𝑡 [56]. Thus, the 

LB equation becomes: 

1
( , ) ( , ) [ ( , ) ( , )] ( , ).eqf x e t f x t f x t f x t x t       


+ + − = − − +  (8) 

Since the Knudsen number 𝜀 is small, we can employ the Taylor expansion to the left-hand side of 

the LB equation: 

( )
1

( , ) ( , ) , .
!

ii

i

f x e t f x t e f x t
i t x
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
 



=

  
+ + − = + 

  
  (9) 

Moreover, the multiscale expansion to the additional term 𝜔𝛼(𝑥, 𝑡) is obtained as follows: 
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1

( , ) ( , ).i i

i

x t x t   


=

=  (10) 

To quantify changes in the LB equation at different time scales, the following is introduced: 

,    0,1,i

it t i= =  (11) 

and 

0

.i

iit t




=

 
=

 
  (12) 

Next, Eqs (7), (9), (10) and (12) are substituted into Eq (8), and the terms are separated based on the 

orders of 𝜀: 

( ) ( ) ( )0

1

1 11
,C f f  


 = − +  (13) 

( ) ( ) ( ) ( ) ( )0 0 1 22

1

2

2

1
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     




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
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 (16) 

In the above equations, ∆= 𝜕/𝜕𝑡0 + 𝑒𝛼 ∙ 𝜕/𝜕𝑥  is a kind of partial differential operator. 𝐶𝑖  are 

several polynomials related to 𝜏: 

( )

1

1

1
.   1,2,3,4.

! !

i
n

n

i

C
C i

i n i

−

=

−
= + =

−
  (17) 

To recover the KdV equation with the source term, 𝑢(𝑥, 𝑡) is considered as: 

( , ) ( , ).u x t f x t


=  
(18) 

Due to Eq (6), the distribution functions take the following forms: 
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( )0
( , ) ( , )f x t u x t



=  (19) 

and 

( )
( , ) 0.   1,2,

i
f x t i



= =  (20) 

Now, the following functions of 𝑓𝛼
(0)(𝑥, 𝑡) are selected: 

( )0 2( , ) ( , ) 3 ,m x t f x t e u 


= =  
(21) 

( )0 2 3( , ) ( , ) 12 ,x t f x t e u 


 = =  
(22) 

( )0 3 4( , ) ( , ) 54 ,P x t f x t e u u 


= = +  
(23) 

( )0 4 5 21296
( , ) ( , ) 12 .

5
Q x t f x t e u u 



= = +  (24) 

In Eqs (23) and (24), the parameter 𝜒 = 1/𝜀2𝐶3 can be determined. These functions are equivalent 

to those in [20]. 

By taking a summation (13) + (14) × 𝜀 + (15) × 𝜀2 + (16) × 𝜀3 with respect to 𝛼, we can 

obtain the following macroscopic equation: 

3
4

3
6 ( ).

u u u
u Kw O

t x x


  
+ + = +

  
 (25) 

This is the fourth-order accuracy KdV equation with a source term, in which the recovery of the source 

term 𝐾𝑤  depends on the selection of additional distribution functions 𝜔𝛼
(𝑖)(𝑥, 𝑡) . More detailed 

information regarding this aspect can be found in Appendix A. 

Equations (21)–(24) can be simply used to determine 𝑓𝛼
𝑒𝑞(𝑥, 𝑡)  by solving linear algebraic 

equations. For a one-dimensional five-bit lattice (D1Q5) where the discrete velocities are selected as 

𝑒𝛼 = {𝑒0, 𝑒1, 𝑒2, 𝑒3, 𝑒4} = {0, 𝑐, −𝑐, 2𝑐, −2𝑐}, the equilibrium distribution functions are: 

( ) 3 2

1 4

1
, (4 4 ),

6

eqf x t mc c Pc Q
c

= + − −  
(26) 

( ) 3 2

2 4

1
, ( 4 4 ),

6

eqf x t mc c Pc Q
c

= − + + −  
(27) 

( ) 3 2

3 4

1
, ( 2 2 ),

24

eqf x t mc c Pc Q
c

= − − + +  
(28) 

( ) 3 2

4 4

1
, (2 2 ),

24

eqf x t mc c Pc Q
c

= − − +  (29) 
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( ) ( ) ( )
4

0

1

, , , .eq eqf x t u x t f x t
=

= −  
(30) 

2.2. A spatial evolution LB model for Equation (4) 

For the purpose of simulating Eq (4), we consider the following spatial evolution LB equation 

with the BGK collision term: 

1
( + , ) ( , ) [ ( , ) ( , )].eqg y e x x x g y x g y x g y x     


+ − = − −  (31) 

In Eq (31), �̃�  is a new relaxation time. 𝛿𝑥  is the spatial step in the x-direction. 𝑔𝛽(𝑦, 𝑥)  and 

𝑔𝛽
𝑒𝑞(𝑦, 𝑥) are the distribution function and equilibrium distribution function at position (𝑦, 𝑥) with 

velocity 𝑒𝛽, respectively. They satisfy the following conservation condition: 

( , ) ( , ).eqg y x g y x 
 

=   
(32) 

Now, introducing a new dimensionless parameter 𝜀̃ that numerically equals 𝛿𝑥. Then, Eq (31) can 

be rewritten as: 

1
( + , ) ( , ) [ ( , ) ( , )].eqg y e x g y x g y x g y x     


+ − = − −  (33) 

Next, the Taylor expansion 

1

( + , ) ( , ) ( ) ( , )
!

n
j

j

g y e x g y x e g y x
j x y

    


 



=

 
+ − = +

 
  (34) 

and the Chapman–Enskog expansion [55]: 

( ) ( )
0

( , ) ,
jj

j

g y x g y x 


=

=  (35) 

can be adopted when 𝜀̃ is a small parameter. In (35), 𝑔𝛽
(0)(𝑦, 𝑥) ≡ 𝑔𝛽

𝑒𝑞(𝑦, 𝑥). By denoting different 

spatial scales 𝑥0, 𝑥1, ..., they are 

,      0,1,j

jx x j= =  (36) 

0

.j

j jx x




=

 
=

 
  (37) 

Substitute Eqs (34), (35) and (37) into Eq (33) and separate terms based on different orders of 𝜀̃: 

(0) (1)1
,g g 


 = −  (38) 
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(0) 2 (0) (2)

2

1

1
,g C g g

x
  




+  = −


 (39) 

where �̃�2 = 0.5 − �̃� and the partial differential operator is ∆̃= 𝜕/𝜕𝑥0 + 𝑒𝛽 ∙ 𝜕/𝜕𝑦. 

The macroscopic quantity 𝑤(𝑦, 𝑥) in Eq (4) is defined as 

( , ) ( , ).w y x g y x


=  
(40) 

By reverting back to Eqs (32) and (35), we can obtain 

( )0
( , ) ( , )w y x g y x



=  
(41) 

and 

( )
0.     1,2,

j
g j



= =  
(42) 

Furthermore, several functions related to 𝑔𝛽
(0)(𝑦, 𝑥) are selected as: 

( ) ( )0
, ( , ) 0,m y x g y x e 



= =  
(43) 

( ) ( )0 2

2

, ( , ) .
u

y x g y x e
K C

 







−
= =  (44) 

By taking (38) + (39) × 𝜀̃ and summing about 𝛽, we can obtain the following: 

2

0 0 0

2( ).
w m w m m

C O
x y x x y y x y


 
           

+ + + + + =    
           

 (45) 

Due to Functions (43), (44) and Eq (38), Eq (4) with second-order accuracy of truncation error can be 

recovered: 

2
2

2
+ ( ).

w u
O

x K y




 
=

 
 (46) 

For the D1Q5 lattice where the discrete velocities are selected as 𝑒𝛽 = {�̃�0, �̃�1, �̃�2, �̃�3, �̃�4} =

{0, �̃�, −�̃�, 2�̃�, −2�̃�}, the equilibrium distribution functions can be derived by combining Eqs (41), (43) 

and (44). They are represented as follows: 

( ) 2
, ,      1,2

6

eq u
g y x

c



= =  (47) 

( ) 2
, ,      3,4

12

eq u
g y x

c



= =  (48) 

( )0 2
, .

2

eq u
g y x w

c


= −  (49) 
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Here, the parameter is 𝜆 = −𝛿/(𝐾𝜀̃�̃�2). 

3. Numerical experiments 

In this section, three numerical experiments are proposed to verify the model. 

3.1. Single-line soliton. 

First, we consider the single-line soliton solution of the KPI equation: 

2 2 2 2

0( , , ) 2 sech { [ (4 3 ) ]}.u x y t x y t x    = + − − −  (50) 

The following initial condition is employed: 

2 2

0( , ,0) 2 sech [ ( )].u x y x y x  = + −  (51) 

Equation (50) describes the propagation process of a single-line soliton wave. The propagation speed 

is 4𝜉2 − 3𝜂2, and arctan(−𝜂−1) is the angle between the propagation direction and the positive x-

axis [48]. 

The initial condition and the splitting LB result when 𝑡 = 2  are shown in Figure 1. The 

parameters are as follows: 𝛿𝑡 = 0.0005, lattice size 200 × 100, 𝜏 = 1.3, �̃� = 1.0, 𝑐 = 200, �̃� =

1 , 𝛾 = −3 , 𝜉 = 1.0 , 𝜂 = −1.0/√2 , 𝑥0 = 4.0 , 𝐾 = 200.0 , 𝛿𝑥 = 0.1  and 𝛿𝑦 = 0.1 . This 

numerical simulation is carried out on the domain 20 × 10 , and the exact Dirichlet boundary 

conditions are applied. 

  

(a) (b) 

Figure 1. The initial condition and the splitting LB result when 𝑡 = 2. (a) Initial condition; 

(b) splitting LB result when 𝑡 = 2. The parameters are as follows 𝛿𝑡 = 0.0005, lattice 

size 200 × 100, 𝜏 = 1.3, �̃� = 1.0, 𝑐 = 200, �̃� = 1, 𝛾 = −3, 𝜉 = 1.0, 𝜂 = −1.0/√2, 

𝑥0 = 4.0, 𝐾 = 200.0, 𝛿𝑥 = 0.1 and 𝛿𝑦 = 0.1. 

Additionally, with the parameters given in Figure 1, the comparison between the theoretical 

solutions and splitting LB results at 𝑦 = 5.0 when 𝑡 = 1.0 is presented in Figure 2(a), from which 

it can be seen that the splitting LB results are in good agreement with the exact solutions. 
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The relative errors at line 𝑦 = 5.0 when 𝑡 = 1.0 are also plotted in Figure 2(b). Here, the 

relative errors are defined as 𝑒 = |𝑢𝑁 − 𝑢𝐸|/|𝑢𝐸|, in which 𝑢𝑁 is the splitting LB solution and 𝑢𝐸 

is the exact solution. Figure 2(b) illustrates that the relative errors are lower than 1.5 × 10−5. The 

result demonstrates that the splitting LB solutions are acceptable. 

  

(a) (b) 

Figure 2. (a) Comparison between the theoretical solutions and the splitting LB results at 

𝑦 = 5.0 when 𝑡 = 1.0; and (b) curve of relative errors at line 𝑦 = 5.0 when 𝑡 = 1.0. 

The comparison of the general relative errors 𝐺  between the splitting LB model and the 

traditional higher-order moment LB model is presented in Table 1. Here, the general relative errors 𝐺 

are defined as: 

.

N E

E

u u
G

u

−
=



 (52) 

Table 1. Comparison of G between different kinds of computational methods at different times. 

 
Splitting LB 

Higher-order moment LB 

[51] 

Linearized local energy-

preserving method [52] 

t = 1 7.432065 × 10−6 6.932046 × 10−2 2.607653 × 10−2 

t = 2 6.942704 × 10−6 8.490834 × 10−2 2.119188 × 10−2 

t = 3 7.547621 × 10−6 9.748673 × 10−2 3.286301 × 10−2 

t = 4 6.783254 × 10−6 1.079479 × 10−1 2.955938 × 10−2 

From Table 1, it can be clearly seen that the general relative errors of the splitting LB scheme 

slightly fluctuate but are consistently lower than 1.0 × 10−5. However, the general relative errors of 

the traditional higher-order moment LB model are approximately 10−1, which is significantly higher 

than the 𝐺  in the splitting LB scheme. Furthermore, in the higher-order moment LB model, the 

general relative errors increase over time. This is due to the error accumulation of the model. 

With time step 𝛿𝑡 = 0.01, other parameters are the same as those in LB models, the general 

relative errors of the linearized local energy-preserving method [52] are also presented in Table 1, from 

which we can observe that the errors of the splitting LB scheme are also lower than those of the 

linearized local energy-preserving method. 

In addition, the CPU times of these three numerical methods are considered. Here, the experiment 



28081 
 

AIMS Mathematics  Volume 8, Issue 11, 28071–28089. 

is conducted on a computer with an Intel i5 (2.50 GHz) processor, and the computing program is 

written in Fortran and compiled in Gfortran. The CPU times of the splitting LB scheme, traditional 

higher-order moment LB model and linearized local energy-preserving method are 33.73s, 36.97s 

and 22.19s, respectively. Here, we can see that due to the large time step, the linearized local energy-

preserving method has the lowest CPU time. The CPU time of the splitting LB scheme is lower than 

that of the higher-order moment LB model. 

From the discussion above we can see that the splitting LB scheme has an advantage over the 

traditional high-order moment LB model in simulating KPI equations. 

For the purpose of testing the convergence order of the splitting LB scheme, the relation between 

the general relative errors 𝐺 and spatial step 𝛿𝑥 is shown in Figure 3(a). To compute the numerical 

convergence order, the linear fit is also adopted. The linear fit line is log10𝐺 = 2.5547 × log10𝛿𝑥 

+0.03765, which means that the model’s convergence order is 2.5547 in space. 

To quantify the order of the truncation error, we introduce another parameter 𝜌 = 𝑒/(𝛿𝑥)2. Here, 

𝛿𝑥 is the spatial step in the x-direction, and 𝑒 is the absolute error. Parameter 𝜌 represents the scale 

factor of the truncation error 𝑒 and the square of the spatial step (𝛿𝑥)2. In Figure 3(b), the curve of 

𝜌 at times from 𝑡 = 0.0 to 𝑡 = 1.0 is plotted. From the graph, we can observe that 𝜌 is a finite 

small number in the range of [0.12, 0.16] in this example, which indicates that the splitting LB 

scheme in this paper has a second-order accuracy of the truncation error. 

 

  

(a) (b) 

Figure 3. (a) The relation between 𝐺 and lattice size 𝛿𝑥; (b) Curve of 𝜌 versus time 

𝑡 ∈ (0,1) at 𝑥 = 10.0, 𝑦 = 5.0. 

3.2. Interaction of two line solitons 

We consider the KPI equation with the following initial condition: 

2
2 2

0,

1

( , ,0) 2 sech { [ ]}.i i i i

i

u x y x y x  
=

= + −  (53) 

This problem has the following theoretical solution: 

2
2 2 2 2

0,

1

( , , ) 2 sech { [ (4 3 ) ]}.i i i i i i

i

u x y t x y t x    
=

= + − − −  (54) 
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The computational domain is [0,40] × [0,40], and the exact Dirichlet boundary conditions are used 

in this experiment. 

In Figure 4, the splitting LB solutions at different times 𝑡 = 0 , 𝑡 = 3 , 𝑡 = 5  and 𝑡 = 8  are 

carried out. The parameters are as follows: 𝛿𝑡 = 0.0005, lattice size 200 × 100, 𝜏 = 1.3, �̃� = 1.0, 

𝑐 = 400 , �̃� = 2 , 𝛾 = −3 , 𝜉1 = 1.0 , 𝜉2 = 1.0/√2 , 𝜂1 = −1.0/√3 , 𝜂2 = −1.0 , 𝑥0,1 = 4.0 , 

𝑥0,2 = 14.0, 𝐾 = 200.0, 𝛿𝑥 = 0.2 and 𝛿𝑦 = 0.4. Figure 4(a) shows the initial condition Eq (53) in 

which two line solitons are allowed a collision to take place. Figure 4(b) demonstrates that two solitons 

collide when 𝑡 = 3. In Figure 4(c), when 𝑡 = 5, we find that the solitons collide at 𝑦 > 10. Finally, 

in Figure 4(d), the two solitons have separated completely when 𝑡 = 8 . The simulation results in 

Figure 4 are consistent with the classical results [48]. 

 

Figure 4. Splitting LB results for the interaction of two line-solitons. (a) 𝑡 = 0; (b) 𝑡 = 3; 

(c) 𝑡 = 5  and (d) 𝑡 = 8 . The parameters are as follows: 𝛿𝑡 = 0.0005 , lattice size 

200 × 100 , 𝜏 = 1.3 , �̃� = 1.0 , 𝑐 = 400 , �̃� = 2 , 𝛾 = −3 , 𝜉1 = 1.0 , 𝜉2 = 1.0/√2 , 

𝜂1 = −1.0/√3, 𝜂2 = −1.0, 𝑥0,1 = 4.0, 𝑥0,2 = 14.0, 𝐾 = 200.0, 𝛿𝑥 = 0.2 and 𝛿𝑦 =

0.4. 

3.3. Lump soliton. 

To simulate lump soliton, the KPI equation with the following initial condition is given: 

2 2 2 2

0 0

2
2 2 2 2

0 0

( ) ( ) 1/
( , ,0) 4 .

( ) ( ) 1/

x x y y
u x y

x x y y

 

 

 − − + − + =
 − + − +   

(55) 

The theoretical solution to this problem is as follows: 

2 2 2 2

0 0

2
2 2 2 2

0 0

( ) ( ) 1/
( , ,0) 4 .

( ) ( ) 1/

x x y y
u x y

x x y y

 

 

 − − + − + =
 − + − +   

(56) 
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which shows that the lump soliton will propagate along the x-direction at a speed of 3𝜇2. In this case, 

the exact Dirichlet boundary conditions are considered with the computation domain: [0,20] × [0,20]. 

In Figure 5(a), the initial condition is shown. The parameters are as follows: 𝛿𝑡 = 0.0005, lattice 

size 200 × 100, 𝜏 = 1.3, �̃� = 1.0, 𝑐 = 200, �̃� = 2, 𝛾 = −3, 𝜇 = 1.0, 𝑥0 = 10.0, 𝑦0 = 10.0, 

𝐾 = 200.0, 𝛿𝑥 = 0.1 and 𝛿𝑦 = 0.2. Figures 5(b) and 5(c) show the splitting LB results at 𝑡 = 0.5 

and 𝑡 = 1.0, respectively. These numerical results are consistent with those in [48]. 

 

Figure 5. Splitting LB results for lump soliton. (a) 𝑡 = 0; (b) 𝑡 = 0.5; and (c) 𝑡 = 1.0. 

The parameters are as follows: 𝛿𝑡 = 0.0005, lattice size 200 × 100, 𝜏 = 1.3, �̃� = 1.0, 

𝑐 = 200, �̃� = 2, 𝛾 = −3, 𝜇 = 1.0, 𝑥0 = 10.0, 𝑦0 = 10.0, 𝐾 = 200.0, 𝛿𝑥 = 0.1 and 

𝛿𝑦 = 0.2. 

4. Conclusions 

In this paper, a splitting LB scheme for solving KPI equations was presented. In this algorithm, 

the variable substitution method was used. As a result, the KPI equation has been written into two 

macroscopic equations. Two sets of distribution functions are employed for the construction of these 

two macroscopic equations. This splitting scheme contains both time evolution and spatial evolution 

in which the second equation is based on a space variable rather than time. Three numerical examples 

were conducted to show that this splitting LB scheme was more suitable for simulating KPI equations 

than the traditional higher-order moment LB model. 

It was laborious to apply the traditional LB model to higher order PDEs due to the complexity of the 

higher-order Chapman-Enskog expansion. However, the splitting LB method appeared promising in 

simulating higher order PDEs because the splitting technique can reduce the order of the macroscopic 

equation. How the splitting LB method can be applied to these equations still requires further research. 
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Appendix A 

In this section, the multiscale expansion technique is applied to recover the KdV equation with a 

source term. First, we selected the following summations of the additional distribution functions: 

( )11 0,
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By taking Eq (13) and summing over 𝛼, according to Eqs (19) and (21), the following relation can be 

derived: 
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(A.5) 

The macroscopic Eq (4) and the summation Eq (A.1) can be modified to obtain the following: 
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Equations (A.5) and (A.6) are called conservation laws in the 𝑡0 scale. 

Similarly, we take Eq (14) and sum over 𝛼. Based on Eqs (19), (21), (22) and (A.2), the following 

can be derived: 
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(A.7) 

Because of the macroscopic Eq (4), we can obtain the following: 
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Equations (A.7) and (A.8) are called conservation laws in the 𝑡1 scale. 

To recover the macroscopic equation, we take (13) + 𝜀 × (14) + 𝜀2 × (15) and sum over 𝛼. 

Thus, we obtain the following: 
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(A.9) 

Due to Functions (21)–(22), the third term on the left-hand side of Eq (9) is equal to zero. To recover 

the term 𝜕3𝑢 𝜕𝑥3⁄  in the macroscopic equation, the function 𝑃(𝑥, 𝑡) should be selected in Eq (23). 

Substituting Eqs (A.3) and (A.6) into Eq (A.9) yields the following: 
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This is the KdV equation with a source term if 𝜒 = 1/𝜀2𝐶3. 

Furthermore, to improve the accuracy of the equation, we take Eq (16) and sum it over 𝛼 on 

account of the conservation law Eq (A.5), thus getting: 
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If we select: 
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Moreover, several terms that are not equal to zero are: 
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We assume that the additional distribution functions 𝜔𝛼
(𝑖)

   (𝑖 = 1,2,3,4) are independent of 𝛼. Hence, 

for the D1Q5 lattice, the following can be obtained: 
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Because of the summation Eq (A.4), we derive: 
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(A.17) 

Taking (13) + 𝜀 × (14) + 𝜀2 × (15) + 𝜀3 × (16) and summing over 𝛼, the KdV equation with a 

source term and fourth-order accuracy of truncation error can finally be achieved: 
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From the summations Eqs (A.1)–(A.4) that we select, the additional distribution functions can 

finally be obtained: 
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