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Abstract

This dissertation presents a research work in the �eld of computational physics, namely

the development, testing and benchmark of a high performance solver of the Generalized

Nonlinear Schrödinger equation that can address problems with high dimensionality and

complex geometries, based on massive parallel computing using graphical processing

units.

The Generalized Nonlinear Schrödinger equation is an active topic of research and has

attracted the attention of many researchers during the last decades. A major di�culty in

this �eld is that the model is usually non-integrable and even perturbation methods are

not valid in multidimensional and complex geometries. Instead, most of the research is

done using numerical simulations to address this class of problems. However, in general,

these have a high computational cost and can only be performed e�ciently in costly

computer clusters or supercomputers. In recent years, the �eld of computer sciences

came up with a new computation concept called heterogeneous computing, that allows

to use all the computing resources of a machine in an integrated way to do massive com-

puting. This new computing paradigm is in the core of this dissertation as the enabling

technology that supports the development of our solver. This dissertation begins with

a general overview of the state-of-the-art in both Generalized Nonlinear Schrödinger

equation and graphical processing units computing. The fundamental aspects of this

equation are analyzed, presenting the most relevant analytical and numerical methods,

which includes the overview of the Split-step Fourier method, the algorithm chosen for

the development of the solver.

The algorithm was implemented in the CUDA language, which runs on NVIDIA

graphical processing units, and the extensive tests performed on the solver revealed that

it outperforms the serial version of the solver. It is shown that the solver developed

turns the graphical processing units into low-budget solutions for high performance

computation, many times faster than state-of-the-art central processing units, and with

performances that can compete with expensive supercomputers. Also, two physical

problems described by the Generalized Nonlinear Schrödinger equation are considered in
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the last part of the dissertation and even though they have not been fully explored, given

the limited duration of this dissertation project. The preliminary studies show some

interesting results and illustrate the potential and versatility of the solver developed.

Finally, some conclusions and future directions of research are discussed.

This dissertation hopes to contribute to the �eld of computational physics by showing

how the new computing paradigms (such as heterogeneous computing) can be used to

improve the performance of existing algorithms and methods and, through that, provide

a tool of research to study more complex and demanding problems.
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Resumo

Esta dissertação apresenta o desenvolvimento de um trabalho na área de física com-

putacional, mais precisamente, o desenvolvimento, teste e análise de performance de

um solver para a equação Não Linear de Schrödinger Generalizada, que seja capaz de

resolver problemas de alta dimensionalidade e em geometrias complexas, baseado na

computação paralela usando placas grá�cas.

A equação Não Linear de Schrödinger Generalizada é um tópico bastante activo e

tem atraído a atenção de muitos investigadores nas últimas décadas. Uma das maiores

di�culdades na investigação destes sistemas é que geralmente o modelo é não-integrável e

mesmo os métodos perturbativos são incapazes de oferecer soluções para estes problemas.

Assim, a grande parte da investigação passa pela simulação numérica desta classe de

problemas. No entanto, estes têm em geral um elevado custo computacional e só em

clusters de computadores ou supercomputadores a sua simulação é e�ciente. Nos últimos

anos, surgiu um novo conceito na ciência de computadores denominado computação

heterogénea, que permite a utilização integrada de todos os recursos de um computador

para o cálculo de grandes tarefas numéricas. Este paradigma computacional constituí

o núcleo desta dissertação ao ser a tecnologia que permite o desenvolvimento do solver.

Esta dissertação começa com uma síntese geral do estado da arte da investigação tanto do

caso da equação Não Linear de Schrödinger Generalizada como da computação em placas

grá�cas. Os aspectos fundamentais da equação são analisados e os métodos analíticos e

numéricos mais importantes são apresentados, com especial atenção ao Split-Step Fourier

Method , o algoritmo que escolhemos para utilizar no solver.

O algoritmo foi implementado na linguagem CUDA, que corre em placas grá�cas da

NVIDIA, e uma grande variedade de testes foram executados ao solver, revelando perfor-

mances muito acima das obtidas para versões tradicionais com base no processamento

em série. É mostrado também que o solver desenvolvido torna um computador com

uma simples placa grá�ca numa solução de baixo custo para obtenção de performances

elevadas, muito mais rápidas que os habituais processadores em série e com resultados

capazes de competir com supercomputadores muito mais caros. Além desta análise, dois
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problemas descritos pela equação Não Linear de Schrödinger Generalizada são consider-

ados na última parte da dissertação, mesmo não tendo sido completamente explorados

devido à duração limitada deste projeto de dissertação. Os estudos preliminares mostram

alguns resultados interessantes e acima de tudo ilustram o potencial e versatilidade do

solver desenvolvido.

Deste trabalho espera-se sair uma contribuição para o ramo da física computacional

ao demostrar como novos paradigmas computacionais (como a computação heterogénea)

podem ser utilizados para melhorar a performance dos algoritmos e métodos existentes

e, assim, oferecer uma ferramenta computacional capaz de resolver problemas computa-

cionalmente custosos.

vi



Contents

1 Introduction 1

1.1 A soliton story . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 1+1=3 and the Nonlinear Schrödinger Equation . . . . . . . . . . . . . . 4

1.3 Optical solitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Analytical, variational and numerical methods . . . . . . . . . . . . . . . 10

1.5 GPU computing and prospects for the NLSE . . . . . . . . . . . . . . . . 11

1.6 GASE - GPU Accelerated Soliton Explorer . . . . . . . . . . . . . . . . . 15

1.7 Outline and structure of the dissertation . . . . . . . . . . . . . . . . . . 15

2 Nonlinear Schrödinger equation in a nutshell 17

2.1 NLSE and analytical solutions . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 GNLSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Noether's theorem and conservation laws in the GNLSE . . . . . . . . . . 21

2.4 Variational methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.1 Trial functions and solutions . . . . . . . . . . . . . . . . . . . . . 23

2.4.2 Perturbation methods . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.3 E�ective particle approach . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Numerical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.1 Explicit and implicit �nite di�erences methods . . . . . . . . . . . 29

2.5.2 Pseudo-spectral methods and the SSFM . . . . . . . . . . . . . . 31

2.5.3 Boundary conditions for the SSFM . . . . . . . . . . . . . . . . . 34

2.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Implementation of the GPU-based GNLSE solver 37

3.1 Simple problem, high computational time . . . . . . . . . . . . . . . . . . 37

3.2 How to plow a �eld? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Gaming vs Scienti�c precision . . . . . . . . . . . . . . . . . . . . . . . . 42

vii



3.4 Some memories must be kept closer than others: memory considerations

for GPU computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Compatibility issue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.6 Implementation of the GNLSE solver . . . . . . . . . . . . . . . . . . . . 45

3.6.1 Outline of the code . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.6.2 Integration step routine . . . . . . . . . . . . . . . . . . . . . . . 46

3.6.3 Code features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Benchmark of GASE 55

4.1 Validation of the method . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Benchmark of the method: SSFM versus CN . . . . . . . . . . . . . . . . 57

4.3 Benchmark of the code: GPU versus CPU . . . . . . . . . . . . . . . . . 58

4.3.1 (1+1)-d speedup results . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.2 (2+1)-d speedup results . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.3 (2+1+1)-d speedup results . . . . . . . . . . . . . . . . . . . . . . 63

4.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Case study 1: Lightons: phonons with Light 67

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Physical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3 Numerical study of the normal modes in a soliton chain . . . . . . . . . . 71

5.3.1 Other types of solutions . . . . . . . . . . . . . . . . . . . . . . . 75

5.3.2 Soliton chains in (2+1)-d . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6 Case study 2: Soliton-soliton scattering in (2+1)-d 79

6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2 Physical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.3 Scattering of colliding (2+1)-dimensional spatial solitons . . . . . . . . . 81

6.4 Hard soliton scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.5 Soft soliton scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7 Conclusions 91

7.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.2 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

viii



List of Figures

1.1 a) On 1995 during a conference on nonlinear waves at Heriot-Watt Uni-

versity, the attending scientists recreated the �rst reported observation of

a solitary wave, as part of a ceremony to honor Russell and name the new

aqueduct with his name. Image from [1] b) Figure taken from the original

report of the FPU problem [22], showing a simulation performed in the

MANIAC. Fermi, Pasta and Ulam initialized the system with all energy

in the lowest normal mode and observed the evolution. The energy is

transferred into several modes and, after some time, the system returns

to a state similar to the initial condition, with energy back to the �rst

mode, unlike the expected thermalization. . . . . . . . . . . . . . . . . . 3

1.2 Examples of soliton interaction (numerical and experimental) showing

the particle behavior of solitons. a) Numerical simulation of a collision

between two out-of-phase optical spatial solitons in a cubic media. b) Ex-

perimental results showing the collision of two solitons in a photorefractive

medium [46]. Frame 1 shows the two solitons when they are launched one

at a time. Frame 2 shows the output result when no nonlinearity exists

and frame 3 is the output with nonlinear refractive index and when two

solitons are launched at the same time. Frames 4,5 and 6 show di�erent

types of interactions depending on the initial phase di�erence between

the two solitons: 4 shows fusion of two solitons caused by the attractive

potential for in-phase solitons; frame 5 shows the result of the interaction

between two solitons with phase di�erence π/2; frame 6 represents the

out-of-phase case, where the solitons repel each other. . . . . . . . . . . 7

1.3 In (2+1)-d, high power supergaussian states constitute liquid light states,

i.e., solitons showing liquid behavior. In this simulation is shown the

coalescence of two high power solitons (Pdf version only - click twice on

sub-�gure a) for a small clip of the simulation) . . . . . . . . . . . . . . 9

ix



1.4 a) GPUs have long surpassed peak performances of CPUs, which trig-

gered the development of GPU computing. b) Also, they attain this peak

performances without prohibitive power consumptions, characteristic of

frequency scaling of the CPUs, using the parallel computing paradigm. . 12

2.1 Depending on the positive or negative sign of the nonlinearity, solitons

can be either bright - �gure a) - or dark - �gure b) - respectively. Both

were represented in arbitrary units. . . . . . . . . . . . . . . . . . . . . . 19

2.2 Supergaussian shapes of: a) a low power soliton with m = 1; b) a high

power soliton with m = 1.9. The competition between focusing cubic and

defocusing quintic nonlinearities made high power solitons to spread, ac-

quiring a �at-top form. Typically, the high power supergaussians exhibit

liquid-like behavior, while low power exhibit other behaviors. . . . . . . . 24

2.3 Visual scheme describing the split-step algorithm for evolving an initial

�eld ψ(z), described in equations (2.43-2.45). . . . . . . . . . . . . . . . 29

2.4 Visual scheme of the simulation box, describing the concept of boundary

layer. The blue interior of the box is where the �eld evolves. . . . . . . . 36

3.1 a) Image description of the problem of a supergaussian state colliding

with a small hole of linear material. b) Representation of the circle for

various mesh sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Conceptual comparison between two di�erent computing paradigms, the

high frequency and the high throughput computing paradigm. . . . . . . 40

3.3 Succinct description of the code structure. The code is divided in three

parts: the �rst initializes the data and the simulation box, the second is

the integration routine and the third is the post-simulation analysis of the

data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Integration routines for both versions of the solver. Figure a) shows the

structure of the evolution routine for GASE, where it is possible to see

the additional memory transfer needed but also the parallel structure of

computations running both in CPU and GPU. Figure b) describes the

integration procedure for the CPU version of the solver. . . . . . . . . . 50

3.5 Sequence a)-d) shows a collision of a supergaussian state with velocity

µ = 0.3 with a hole of radius 2.4. The light state emerges as two smaller

and low intensity beams after the scattering. (Pdf version only - click

twice on sub-�gure a) for a small clip of the simulation) . . . . . . . . . 51

x



3.6 Sequence a)-d) shows a collision of a supergaussian state with velocity

µ = 0.5 with a hole of radius 2.4. The light state emerges as two smaller

and low intensity beams after the scattering, with a di�erent angle than

the situation with velocity µ = 0.3. (Pdf version only - click twice on

sub-�gure a) for a small clip of the simulation) . . . . . . . . . . . . . . 52

3.7 Sequence a)-d) shows a collision of a supergaussian state with velocity

µ = 0.15 with a hole of radius 2.4. The light state collides and is re�ected

by the hole. (Pdf version only - click twice on sub-�gure a) for a small

clip of the simulation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.8 Sequence a)-d) shows a collision of a supergaussian state with velocity

µ = 0.3 with a hole of radius 2.0. The light state after an intermediate

division in two light states collapses again in one high power state. (Pdf

version only - click twice on sub-�gure a) for a clip of the simulation, where

can also be seen that the state became trapped between two consecutive

holes, that we simulate in the same box using periodic conditions) . . . 53

3.9 Sequence a)-d) shows a collision of a supergaussian state with velocity

µ = 0.3 with a hole of radius 1.0. The light state emerges almost as if

not been scattered. (Pdf version only - click twice on sub-�gure a) for a

small clip of the simulation) . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1 Initial conditions (a)) and analytical �nal state at zfinal = 100 (b)) of the

high power - dashed line - and low power - solid line - solitons. . . . . . 56

4.2 Single (top) and Double (bottom) precision benchmarks for simulations

of the (1+1)-d NLSE, with the results for computational time per step

(left) and the corresponding speedup in comparison with the CPU version

of the code (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Double (top) and single (bottom) precision benchmarks for simulations of

the (2+1)-d GNLSE for a cubic-quintic media, with the results for compu-

tational time per step (left) and the corresponding speedup in comparison

with the CPU version of the code (right). . . . . . . . . . . . . . . . . . . 62

4.4 Single precision benchmarks for simulations of the (2+1)-d GNLSE for a

cubic-quintic media with absorbing boundaries, with the results for com-

putational time per step (left) and the corresponding speedup in compar-

ison with the CPU version of the code (right). . . . . . . . . . . . . . . . 63

xi



4.5 Double (top) and single (bottom) precision benchmarks for simulations

of the (2+1+1)-d GNLSE for a cubic-quintic media, with the results for

computational time per step (left) and the corresponding speedup in com-

parison with the CPU version of the code (right). . . . . . . . . . . . . . 64

5.1 Evolution of the soliton chain for n = 3 (a)) and n = 15 (b)). Figures

a) and b) show the intensity pro�le evolution where we can identify the

phonon-like oscillations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Evolution of the displacement of the second soliton of the chain from the

right, for n = 3 (a)) and n = 15 (c)), comparing in detail the displacement

obtained from the simulations (solid line) with the prediction of TLE

(dashed line). Figures b) and d) display the Fourier transform of the

displacements wave (numerical results with solid line, TLE with dashed

line), where we can identify the generation of new frequencies for lower n. 73

5.3 Error analysis of the displacement wave for a soliton between the nu-

merical simulation and TLE model. Solid line is the absolute value of

displacement error, |u2 − uTLE2 |, dashed and dash-point line is the abso-

lute value of error for phase di�erence between consecutive solitons and

the prediction |Ψ2,3 − π|, |Ψ1,2 − π| respectively. . . . . . . . . . . . . . . 74

5.4 Dispersion relation computed for a chain of N = 40 solitons (circular

markers) and comparison with the TLE model (solid line). . . . . . . . . 74

5.5 Collapse of the standing wave for displacements with n = 15. The feed-

back process increases the amplitude of the oscillation and when it sur-

passes the mean separation between solitons, solitons start to collide and

the phonon-like behavior is lost. . . . . . . . . . . . . . . . . . . . . . . 75

5.6 Evolution of the collision of a soliton with velocity µ = 0.2 with a soli-

ton chain with 4 solitons initially separated by ∆ = 10. The trapping

potential allows to obtain results that resemble the Newton's cradle. . . 76

5.7 Evolution of an 1-dimensional chain of 2-dimensional spatial solitons with

∆ = 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.1 Graphical description of the problem analyzed. Here, impact parameter

b was exaggerated for better comprehension. Simulation box has limits

[0, 80]× [0, 80] and a mesh of N = 210 × 210 points was used. . . . . . . . 81

xii



6.2 Typical numerical results for the evolution of two colliding solitons. Se-

quence a)-e) shows a collision between two out-of-phase solitons with

k1 = 0.2 and b = 0, sequence f)-j) displays the results for b = 4 and

k)-o) for b = 9. Sequence p)-t) displays the coalescence of two colliding

in-phase solitons with b = 0 and k = 0.3. Sequence u)-y) shows the re-

sults for b = 5 and k = 0.3. Sequence z)-dd) displays the destruction of

two colliding in-phase solitons with b = 0 and k = 0.8. . . . . . . . . . . 83

6.3 Computational results for the relation between the scattering angle and

the impact parameter, θ(b). This �gure displays the results for colliding

out-of-phase solitons for k = 0.05 (full line with markers), k = 0.2 (dashed

line with markers) and k = 0.3 (pointed line with markers). The full line

without markers shows the hard-sphere limit for a sphere with radius of 6. 84

6.4 Computational results for the relation between the scattering angle and

the impact parameter, θ(b). This �gure shows the results for colliding

in-phase solitons with k = 0.3 (circles), k = 0.25 (crosses), k = 0.23 (tri-

angles) and k = 0.2 (squares). Di�erent behaviors are obtained depending

on both the collision velocity and the impact parameter. Shaded region

is the zone of coalescence for k = 0.3, where solitons reveal liquid-like

behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.5 Sequence of data values for two coupled �elds showing the collision of two

in-phase solitons for the situation A in the �gure (6.4). (Pdf version only

- click twice on sub-�gure a) for a small clip of the simulation) . . . . . . 86

6.6 Sequence of data values for two coupled �elds showing the collision of two

in-phase solitons for the situation B in the �gure (6.4). (Pdf version only

- click twice on sub-�gure a) for a small clip of the simulation) . . . . . . 87

6.7 Sequence of data values for two coupled �elds showing the collision of two

in-phase solitons for the situation C in the �gure (6.4). (Pdf version only

- click twice on sub-�gure a) for a small clip of the simulation) . . . . . . 88

6.8 Sequence of data values for two coupled �elds showing the collision of two

in-phase solitons for the situation D in the �gure (6.4). (Pdf version only

- click twice on sub-�gure a) for a small clip of the simulation) . . . . . . 89

xiii





List of Tables

3.1 Comparison between di�erent top-of-the-line GPUs of the NVIDIA con-

sumer line Geforce. A model from the Fermi line of a professional com-

puting dedicated GPUs is also presented. An increasing computational

power is notorious over the years, as well the increase of chip memory

and memory bandwidth. It is well patented that evolution of GPUs will

reach another level in the next few years, with the new high performance

Geforce Titan setting the pace. . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 Error analysis for the simulations with �xed integration step h = 0.01

and variable number of points, which introduces a variable discretization

∆x. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Error analysis for the simulations with �xed number of points N = 28

and variable integration step h. . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Accuracy and performance comparison between GASE solver, based on

SSFM, and the CN solver. It can be easily seen that GASE outperforms

in every aspect the CN method. . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Speci�cations of both the two GPUs and the CPU used during the bench-

marks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5 A collection of results for simulation times and speedup of the solver for

the (1+1)-d NLSE using double precision, for both GASE (running in the

desktop GPU) and the CPU-based version of the solver. . . . . . . . . . 61

4.6 A collection of results for simulation times and speedup of the solver for

the (2+1)-d GNLSE for a cubic-quintic media, using double precision, for

both GASE (running in the desktop GPU) and the CPU-based version of

the solver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

xv



4.7 A collection of results for simulation times and speedup of the solver for

the (2+1+1)-d GNLSE for a cubic-quintic media, using double precision,

for both GASE (running in the desktop GPU) and the CPU-based version

of the solver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

xvi



List of abbreviations

GNLSE - Generalized Nonlinear Schrödinger Equation

GPU - Graphical Processing Unit

GPGPU - General Purpose GPU applications

CPU - Central Processing Unit

KdV - Korteweg-de-Vries

FPU - Fermi-Pasta-Ulam

CW - Continuous Wave

BEC - Bose-Einstein Condensate

IST - Inverse Scattering Transform

FD - Finite Di�erences

FFT - Finite Fourier Transform

PS - Pseudo-Spectral

SSFM - Split-Step Fourier Method

xvii





1 Introduction

The central problem of this dissertation is the development of a high performance solver

of the Generalized Nonlinear Schrödinger Equation (GNLSE) based on heterogeneous

programming using graphical processing units (GPU), that is able to address physical

systems with high dimensionality (more than one spatial dimension) and complex ge-

ometries or structures with reasonable simulation times and that can run using low cost

desktop computers. This constitutes a paradigm in computational physics since until

few years ago this type of problems could only be addressed using costly state-of-the-art

supercomputers and computer clusters, generally inaccessible to most scientists. GPU

computing is bringing a revolution into scienti�c computing by allowing to do super-

computing by using several hundreds of processing units inside a desktop computers as

a massive cluster. However many of the computational models and simulation codes

previously developed cannot be straightforwardly adapted to heterogeneous computing,

given its distinct computing architecture and the speci�c programming tools required.

Although the focus of this dissertation is on the development of the GNLSE solver,

both as a proof of concept and as a simulation tool for future research, in the following

chapters we will also present several case studies where we do some earlier exploration

of soliton dynamics, mainly as a test and illustration of the potential of this code. These

examples were not fully explored in terms of a complete scienti�c analysis since that

goes beyond the scope of this dissertation and would require a longer research time.

The existence and propagation of solitons in nonlinear media attracted a substantial

research interest for the past 50 years. While thousands of papers were published in this

�eld and particularly in the study of the Nonlinear Schrödinger Equation (NLSE), new

and more complex systems provide substance for prospective explorations. As current

investigations focus on multidimensional solitons and spatial distribution of nonlinearity,

described by non-integrable models, numerical simulations become mandatory. In a nor-

mal computer, simulation times for such systems are usually prohibitive and researchers

that do not have access to a supercomputer are either limited in the research to smaller

and simple systems. In this context, the development of new and high performance
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computational tools for the study of the propagation of solitons is a subject of great

importance for state-of-the-art problems.

Heterogeneous computing is one of the newest and fascinating trends in modern

physics. It consists on the use of the central processing unit (CPU) in addition to other

specialized hardware, usually the graphical processing units to get faster numerical sim-

ulations. Particularly, the use of the GPU for general purpose applications (GPGPU)

created a buzz in recent years, as researchers from many areas attained overwhelming

performances - up to 100 times faster than state-of-the-art CPUs. This potential, that

is at the same level of the 1999-2000 timeframe best supercomputers, suggests that

GPU based solvers of the NLSE could be the solution for simulating the cutting-edge

demanding problems using only inexpensive personal machines, a hypothesis that is the

motivation behind this dissertation.

1.1 A soliton story

The story of solitons is proli�c in coincidences and fortuitous events. It all started in 1834

with a curious scottish engineer, John Scott Russell, hired to investigate how to improve

the e�ciency of boat designs at the Union Canal, near Edinburgh. In a fortuitous

accident, a rope pulling a boat broke and Russell observed the formation of a wave

that he described accurately in his report [69] as �a large solitary elevation, a rounded,

smooth and well-de�ned heap of water, which continued its course along the channel

apparently without change of form or diminution of speed�. Most probably, this was not

the �rst time that a solitary wave was observed, but Russell was the �rst to report it.

Believing that the discovery was important he did extensive experiments in a scale model

constructed at his backyard. In 1895, Dutch physicists Diederick Korteweg and Gustav

de Vries derived an equation [48] to match the observations reported by Russell. This

partial di�erential equation, now called Korteweg-de Vries equation (KdV), contained

both linear and nonlinear terms and although they were unable at that time to produce

general solutions, they found a solitary-wave solution that resembled Russell's wave.

Strangely, as it happened to Russell, their work fell into obscurity and was overlooked

by mathematicians, physicists and engineers for more than 50 years.

The story continues in the early 1950s, at Los Alamos Scienti�c Laboratory when En-

rico Fermi, John Pasta and Stanislaw Ulam used one of the earliest digital computers -

the MANIAC (MAthematical Numerical Integrator And Computer) - to investigate the

simple nonlinear system of a one dimensional chain of masses connected by springs with
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Figure 1.1: a) On 1995 during a conference on nonlinear waves at Heriot-Watt University,
the attending scientists recreated the �rst reported observation of a solitary
wave, as part of a ceremony to honor Russell and name the new aqueduct
with his name. Image from [1] b) Figure taken from the original report of
the FPU problem [22], showing a simulation performed in the MANIAC.
Fermi, Pasta and Ulam initialized the system with all energy in the lowest
normal mode and observed the evolution. The energy is transferred into
several modes and, after some time, the system returns to a state similar to
the initial condition, with energy back to the �rst mode, unlike the expected
thermalization.

linear and small nonlinear restoring forces [22]. Exciting one normal mode of the linear

system, they believed that the nonlinearity term would excite di�erent modes and then

at some point in time the system would �thermalize�, i. e., the energy would be equally

distributed among all the possible normal modes. Nevertheless, the results were unex-

pected: while it is true that after some periods the energy was shared between several

modes, the prolongation of the simulation revealed a near return to the initial mode,

as 97% of the energy focused again in the initial mode. This unexplained recurrence,

later known as Fermi-Pasta-Ulam problem (FPU), did not convinced everyone, as some

thought the system did not run enough time [8].

One of the �rst attempts to solve this puzzle was a phenomenological explanation

suggested in 1965 by Zabusky and Kruskal [86]. Taking the FPU in the continuum

limit, they found that the system was governed by a KdV equation, an equation analyt-

ically intractable at that time. Solving the equation using numerical simulations, they

observed a breakdown of the initial periodic condition into a train of solitary waves.
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Regardless of the initial condition tested, the recurrence of the initial wave suggested by

the results of FPU was not observed during the simulations. Instead, they detected that

the solitary waves started to move and collide. They also observed a quasi-recurrence

to an intermediate state after a near chaotic behavior.

It is a common mistake to attribute the solution of the FPU problem to this study of

Zabusky and Kruskal [46]. Despite obtaining a recurrence, their belief that the discovery

provided a phenomenological explanation was poorly grounded, as they did not obtain

any return to initial mode. A more concise explanation was only reached recently (1997)

by Casetti et al. [13] with the discovery of two regimes for the dynamics of the FPU

that depends on the energy per oscillator and on the total number of masses. For

low oscillator energy and number of masses, dynamics are regular to weakly chaotic,

like the FPU results. For higher oscillator energies and number of masses, dynamics are

completely chaotic. Indeed, we should be thankful that Fermi and his co-workers did not

simulate bigger systems nor used stronger nonlinearities, because if they did, they would

have found an equipartition of the energy, and then maybe much of the understanding

of nonlinearities that arose from their studies might not have existed.

In spite of not succeeding in explaining the FPU problem properly, Zabusky and

Kruskal's publication still became very famous. They observed the survival of solitary

waves after collisions - a behavior typical of a particle - and led them to coin one of the

most successful terms in nonlinear science: the soliton.

1.2 1+1=3 and the Nonlinear Schrödinger Equation

When one starts to study physics it is common to think that nonlinear is synonym of

anomalous, pertaining to something that diverges from �well behaved� physics. However,

nonlinear systems are far more common in the real world than the linear ones. The

study of nonlinear systems is the subject of nonlinear science, and the main idea is that

�the whole is more than a sum of its parts�, or in physicist language, the superposition

principle is not valid.

Another feature that boosted the development of the nonlinear science was its univer-

sality, not only in terms of being present in almost every phenomenon of the Universe,

but also because it can be found in many �elds of science. Indeed, models explaining

phenomena like chaos or coherent structures can be used to describe a wide panoply of

problems, not only in theoretical physics but also in mathematics, biology, neurosciences,

sociology and more [71].
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The Nonlinear Schrödinger Equation is one of this models. The NLSE was introduced

�rst in 1964 by Chiao et al. [14] to describe the propagation and self-trapping of con-

tinuous wave light beams (CW) incident in a nonlinear Kerr media, both in one and

two spatial dimensions. Soon, the �rst hints of the universality started to appear, when

Hasewaga and Tappert [30] suggested a NLSE equation to describe the propagation of

pulsed beams in optical �bers. Nowadays, it is normally accepted that NLSE

i
∂ψ

∂z
+

1

2
∇2
⊥ψ + |ψ|2ψ = 0 (1.1)

and the more global GNLSE

i
∂ψ

∂z
+

1

2
∇2
⊥ψ + F (|ψ|2)ψ = 0 (1.2)

are universal equations that describe the evolution of wave envelope in a weakly nonlinear

medium. This equation arises in many and distinct areas, the most common being:

• Nonlinear optics: to describe the propagation of CW and pulsed beams in nonlinear

medium [14, 46, 30];

• Bose Einstein Condensates (BEC): to describe the mean-�eld dynamics of the BEC

[43, 27] where it is commonly known as Gross Pitaevski equation;

• Fluid dynamics:to describe for example the instability of Poiseuille �ow [76], deep

water waves [85] and Couette-Taylor �ow [19]. It is commonly known as Complex

Ginzburg-Landau equation;

• Plasma physics: to describe Langmuir waves [6];

• Protein chemistry: to model the vibrations of molecular chains [16].

This variety of applications reinforced the interest and the search for solutions for the

NLSE.

In the seminal paper, Chiao and his co-workers said at some point that NLSE �appears

to have no simple analytical solution� [14] leading them to search for numerical solutions.

Although the solution had a bell shape similar to a solitary wave, the relationship was

not explicitly noticed.

Meanwhile, the paper of Zabusky and Kruskal on solitons [86] led to the development of

the Inverse Scattering Transform (IST) method in 1967 [26]. This elegant mathematical

tool is an analog of the Fourier transform for nonlinear systems, such as the initial value
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problem of the KdV equation. With IST, it is possible to obtain analytically the soliton

solutions of KdV equation, previously predicted by Korteweg and Vries via ansatz. The

relationship between NLSE and solitons was uncovered in 1972 by Zakharov and Shabat.

In their publication [87] they showed that IST was applicable to the NLSE, explaining

then the self-focusing and self-phase modulation of intense laser beams in nonlinear Kerr

media by the means of stable soliton solutions. Together with the universality of the

model, this achievement constituted a strong stimulus that pushed the research during

the earlier years.

1.3 Optical solitons

During the past 50 years, thousands of papers devoted to the subject of NLSE were

published and a complete review would be too long to be included in this dissertation.

We will only summarize some of the most important results, focusing mainly in the �eld

of nonlinear optics.

Solitons in optical media are usually referred to as optical solitons. Depending if the

nonlinearity is self-focusing or defocusing they can either be bright or dark solitons,

respectively [46]. This dissertation will focus on the most common: bright solitons.

Optical solitons are usually classi�ed into three categories:

• Spatial solitons: the con�nement is in spatial dimensions, and the phenomenon is

the result of the equilibrium between nonlinear self-focusing and di�raction of the

beam. Predicted as a solution of the original NLSE derivation [14] in 1972, stable

(1+1)-dimensional1 solitons were observed for the �rst time in planar waveguides

in 1988 by Maneuf et al. [54]. On the other hand, (2+1)-d solitons were only

observed in a photorefractive crystal in 1993 by Duree et al. [21];

• Temporal solitons: the con�nement occurs along the temporal dimension and this

type of soliton is related with the compensation of dispersion by the self-phase

modulation induced by the Kerr e�ect. They were observed experimentally in

1980 by Mollenauer et al.[61];

• Spatiotemporal solitons: the con�nement occurs both in space and in time. Also

called light bullets, they di�er from the previous cases as they involve both the

1The notation (D+1)-dimensional or (D+1)-d solitons refers to solitons con�ned in D transverse spa-
tial dimensions, with 1 standing for the propagation spatial dimension of the system. (D+1+1)-d
are solitons con�ned in D transverse spatial dimensions and 1 temporal dimension. The last 1 is
associated with propagation spatial dimension.
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Figure 1.2: Examples of soliton interaction (numerical and experimental) showing the
particle behavior of solitons. a) Numerical simulation of a collision between
two out-of-phase optical spatial solitons in a cubic media. b) Experimental
results showing the collision of two solitons in a photorefractive medium [46].
Frame 1 shows the two solitons when they are launched one at a time. Frame
2 shows the output result when no nonlinearity exists and frame 3 is the
output with nonlinear refractive index and when two solitons are launched
at the same time. Frames 4,5 and 6 show di�erent types of interactions
depending on the initial phase di�erence between the two solitons: 4 shows
fusion of two solitons caused by the attractive potential for in-phase solitons;
frame 5 shows the result of the interaction between two solitons with phase
di�erence π/2; frame 6 represents the out-of-phase case, where the solitons
repel each other.

spatial and time con�nement of localized pulsed beams. Stable (2+1+1)-d solitons

were predicted in quadratic media in 1981 [34] but an experimental realization still

has not been accomplished.

There are two major �elds of interest in the research of the existence and the propagation

of solitons: solitons in nonlinear bulk medium and solitons in tailor made materials with

a spatial distribution of nonlinearities, also called optical lattices.

For solitons in bulk nonlinear medium, a subject of great interest is the unique prop-

erties of interaction between solitons. For (1+1)-d solitons, there are many analytical

studies of collision of solitons in Kerr media [5, 46], predicting elastic collision between

solitons with exchange of momenta and preservation of shape, e�ects observed in var-

ious experiments since 1990 [68]. The case of soliton collision in media with higher

order nonlinearities also revealed interesting properties, as it features inelastic collisions

[72], energy exchange mechanisms [46] and fractal structure of the dependence of �nal

velocity with the variation of phase di�erence between the two solitons [20]. In fact,

the dependence of the interaction between solitons with their phase di�erence triggered

the development of theoretical potential of interaction between two solitons [51]. The
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interaction can be either coherent or incoherent whether it depends or not on the phase

di�erence. Coherent interaction [51, 46] could lead to the mutual attraction for in-phase

solitons or repulsion for out-of-phase ones. Incoherent interaction is obtained considering

systems that support vector solitons [79, 49, 3], using two orthogonally polarized beams

[56] or even a system of solitons so that their relative phase di�erence varies faster than

the response of the medium [73, 74]. In such systems, incoherent interacting solitons

can only attract each other[46].

Throughout the last decades, (1+1)-d solitons have been studied extensively and there

have been many theoretical tools developed with great success for their analysis. It may

seem that same results can be obtained straightforwardly for (2+1)-d solitons. It turns

out that this intuition could not be wronger. However, contrary to what happens in

the one dimensional case, it was shown [46, 87] that a (D+1)-dimensional GNLSE with

focusing power-law nonlinearity |ψ|2qψ blows up under the condition qD ≥ 2. Thus,

Kerr nonlinearity is enough to create a singularity for D = 2, which implies that (2+1)-

d solitons are only realizable with di�erent nonlinearities, such as quadratic media [53]

or saturable media. Saturable media are obtained either exploiting the photorefractive

e�ect [37] or higher order nonlinearities like the cubic-quintic media, where cubic is

focusing and quintic a defocusing nonlinearity [18].

Like the one dimensional case, the interaction between solitons concentrates most of

the research to the present days. Malomed et al. [50, 52] developed e�ective potential

theories for coherent and incoherent interaction between two solitons, that ultimately

supported discoveries like the conservation of angular momentum [17], the stable and

unstable spiraling of solitons [10, 74, 46] and the rotation of N-soliton clusters in a ring

like geometry [46]. Also, ring shaped solitons with angular momentum were predicted for

saturable [46] and cubic-quintic media [60]. More recently, Michinel and his co-workers

published a series of investigations on the dynamics of solitons in cubic-quintic media.

They revealed the coalescence of two solitons [67], the splashing and the creation of

small droplets when hitting a surface [58], the existence of an analogous to the Young-

Laplace surface tension [59] and the capillarity phenomena [64]. These results suggested

a liquid-like behavior of beams of light, that they called liquid light.

The generation of bullets of light in (D+1+1)-d systems is far more tricky, as the con-

�nement is not only in space but also in time. In the NLSE both the spatial and temporal

dimensions are treated alike, which suggests a similar mechanism of con�nement of light

along these dimensions. However the processes of di�raction and dispersion that a�ect

analogously the beam along the spatial and temporal dimensions, respectively, occur
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Figure 1.3: In (2+1)-d, high power supergaussian states constitute liquid light states, i.e.,
solitons showing liquid behavior. In this simulation is shown the coalescence
of two high power solitons (Pdf version only - click twice on sub-�gure a) for
a small clip of the simulation)

with considerably di�erent characteristic scales: dispersion is small while beam di�rac-

tion is much stronger [46, 53]. The stabilization of solitons due to the lack of a suitable

media is an issue that seems to delay inde�nitely their experimental observation. An

extensive review of the subject can be found in [53].

The study of solitons in optical lattices is recent and is boosted mainly by the discovery

and development of new media and metamaterials, that can have a complex spatial

structure with di�erent components, each having distinct optical properties, including

linear and nonlinear refraction index. Here we use the term lattice loosely, as often the

pattern is not periodic like an actual lattice. Electromagnetically induced transparency

is one of the phenomena that makes such studies possible, with systems like Λ and N

gases o�ering strong nonlinearities and refraction index controllable by a proper choice

of control �elds [24, 37, 28].

In the case of linear lattices, deep research has been done during the past two decades.

One con�guration that received much attention is the Bessel lattice, because of the non-

di�racting properties of the Bessel beams that can provide large distance waveguides [36].

These have been shown to support new pro�les of solitons [39], as well as rotating and

orbiting solitons [38, 33]. In the same way, other interesting examples are the Laguerre

lattices that produce ring and rotating solitons [28], periodic lattices - like the case of

�ber Bragg grating - with gap soliton solutions [46] and random lattices, supporting

Brownian-like motion [41]. The possibility of steering light by distributions of the linear

refraction index arises as the most interesting application of these studies [78, 40].

The nonlinear lattices only captured the attention in the last eight years and are still

in their �rst steps of research. New soliton pro�les and steering of light are predicted in

a variety of nonlinear lattices (see [37] for an extensive review), like for example, higher
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order bound states in arrays of waveguides [37], oscillations of solitons in sinusoidal

lattices [42] and surface solitons in arrays of nanowires [84]. The importance of such

structures lies mostly on the achievement of stable solitons impossible in bulk media,

like two dimensional spatial solitons in a metamaterial of nanowires embedded in a Kerr

media [75] or in photonic crystals and lattices[46, 23].

Optical solitons are one of the most active topics in nonlinear science and that is not

only due to the theoretical phenomena involved but also to possible applications of the

technology. Robustness of temporal solitons made them a natural candidate for long-haul

communication systems [46] where normally one uses pulsed beams to transmit binary

digital data. Actually, �ber communications are the foundation of modern connections,

with the record of data transfer rate set this year at 31 Tb/s over a distance of 7200 km,

which is equivalent to sending almost 300 high de�nition movies in one second [70]. The

theory of solitons comes into the practical world especially in the investigation of the

timing jitter limitation due to soliton interaction. An extensive but outdated review of

solitons in optical communications can be found in [32]. In turn, spatial solitons also have

their applications. The newsworthy properties of soliton interaction, collision and also

steering in optical lattices can be used for idealization of ultra-fast fully-optical devices

like logic gates [55], appealing for the �eld of optical computing and optoelectronics.

1.4 Analytical, variational and numerical methods

Unfortunately, only the (1+1)-d NLSE is an integrable equation via IST. Usually the

GNLSE cannot be investigated with this elegant analytical tool. Therefore, the analysis

of solitons in multidimensional systems and optical lattices relies on one of two strategies:

variational techniques [4] or full numerical integration [2].

The variational approach is something in between the analytical and the pure nu-

merical methods of analysis. The idea is to assume a trial function and predict the

dynamics of the parameters from the resulting Euler-Lagrange set of equations [4]. This

technique can also be used to predict the shape of solitons in media with higher nonlin-

earities [56, 18]. When used to describe interactions between solitons [35] and dynamics

in linear optical lattices [83, 36, 40, 31] this method is called e�ective particle approach.

Variational methods have been successful in explaining several results, including the col-

lapse of spatial beams [67], �at-top beams in saturable cubic-quintic materials [18] and

the properties of liquid-light [59].

However, neither analytical nor variational tools are capable of explaining solitons
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in more complex situations like nonlinear lattices. Also, even for the easiest cases the

variational methods can be rather complicated to use[9]. To overcome these di�culties,

numerical simulations can be very useful, providing an e�cient way of doing elaborated

research. Many methods and algorithms developed in the past [25, 2] fall into one of

two categories: methods based on �nite di�erence (FD) or based in pseudo-spectral

(PS) methods. Both of these two classes of methods are based on the splitting of the

evolution of the NLSE into linear and nonlinear steps. However, the PS methods use

the Fast-Fourier Transform (FFT) - or an equivalent one - of the �pulse� to perform

the linear step in Fourier space, while doing the nonlinear step in direct space. On

the other hand, the FD methods do both these steps in the direct space. For slowly

varying envelope situations, this distinction makes the PS methods faster by an order of

magnitude for the same error, as the PS admits a bigger integration step [2]. However,

when the dynamics of the envelope is faster and it becomes necessary to use a smaller

integration step, FD frequently present similar or better performance [2].

In general the performance of each method or algorithm depends not only on the

characteristics of the physical problem under study but also on the type of computer

system that is going to be used. For example, the same PS method can have perfor-

mances di�ering by several orders of magnitude when being computed in a single core

desktop, a computer cluster, or a supercomputer. Therefore it is very important not

only to carefully select the numerical methods and type of computer system to be used,

but also to take into account the interplay between these two factors.

1.5 GPU computing and prospects for the NLSE

As discussed in earlier sections, computers are a fundamental tool of analysis of the non-

linear science problems, including the NLSE. Today, many interesting research problems

require large simulations, which involve multi-core CPUs. Therefore we must look into

the new paradigms of computer theory and technology that de�ne the computing power

required to address this more complex problems.

It is interesting to notice that even though the �rst computers were developed to

perform intense numerical calculations (especially cracking German war codes during

second world war), after the late 1980s computers were integrated in everyday life, from

business to household desktops and personal laptops, performing many other tasks other

than numerical and scienti�c calculations. This is currently the core of the computer

industry, driving their research and their quest for higher performances. Though numer-
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Figure 1.4: a) GPUs have long surpassed peak performances of CPUs, which triggered
the development of GPU computing. b) Also, they attain this peak perfor-
mances without prohibitive power consumptions, characteristic of frequency
scaling of the CPUs, using the parallel computing paradigm.
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ical scienti�c computing is no longer a nuclear objective of computer developers, it can

still much bene�t from the continuous waves of innovation and improvements constantly

occurring in this technology.

During the past decade, the frantic demand for faster processors by software indus-

tries made the computer engineers to come up with the parallel programming paradigm

for common purposes. This included the development of multi-core CPUs with ever

increasing number of cores and the development of the necessary software to allow them

to work in parallel. This helped to achieve computer performances as never before. The

quest for parallel computation is not limited to CPUs. GPUs also experienced a similar

evolution. Modern GPUs contain several hundreds of cores and they exploit the highly

parallelizable task of calculating the value of a pixel, thus speeding up video games and

image processing. The former is so important for the gaming industry that GPUs have

long surpassed multi-core CPUs in both number of cores and computer performance,

reaching incredible speeds of the order of a Tera�op/s, while the best CPUs are limited

up to 50 GFLOP/s. GPUs have yet another advantage, as they cost the same or less

than a CPU. This fact can get even striking, as the performance of a mid-range GPU is

the same of the best supercomputers of year 2000, that cost 110$ million, for example

ASCI White.

Excited by this technology, science world started to think about the use of GPU for

general purposes (GPGPU) such as scienti�c computations, but the �rst approaches were

challenging, as no easy and versatile programming framework was available. Recognizing

the problem, NVIDIA made an e�ort to make this potential available to the industry and

scienti�c community by developing a new programming framework for NVIDIA GPUs

called CUDA. With CUDA and more recently with OPENCL - a platform-independent

framework - the modern researcher can nowadays move his computational codes to the

GPU of his personal computer and obtain speedups2 worthy of a modern supercomputer.

However life is not perfect yet! There are some obstacles for the average physicist to

become a GPGPU user, as learning the architecture of the GPU and new programming

paradigms can be time consuming and a truly jigsaw puzzle.

The �rst use of GPU computing for solving di�erential equations was probably by

Mark Harris [29] and ever since GPU computations proliferated in many areas of physics.

A few examples of scienti�c computation using GPU include:

• Fluid dynamics: the power of GPU is exploited to simulate large systems showing

2Speedup is a measure of the relative performance of a code developed in parallel when comparing to

serial computations, de�ned usually as Speedup =
serial computing execution time
parallel computing execution time

.
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turbulence obtaining simulations 22 times faster than CPUs [44];

• Statistical physics: Multidimensional Ising model simulations were done with

speedups of 8 [47, 66], while Brownian dynamics and reaction-di�usion systems

were simulated with speedups of 8 and 55 [65, 82];

• Electromagnetic waves: Maxwell equation was simulated with speedup of 50 and

60 in two [7] and three [57] dimensional systems, respectively.

NVIDIA also provides an extensive report [15] that shows the utilization of graphical

cards for GPU-ready commercial software. From bioinformatics - sequence mapping

software up to 100 times faster - to computational �nances - �nancial analytic software

500 times faster - the applications are numberless.

It was in 2009-2012 timeframe that Ron Caplan developed the �rst approach of a

NLSE solver using GPU computations during his PhD at San Diego University [11].

The code developed, that later became a package for MATLAB called NLSEmagic,

served his purpose obtaining simulations up to 20 times faster than a CPU based script

[12]. This code was a conceptual breakthrough by demonstrating the potential power of

GPUs in solving the NLSE. However, it had many important limitations:

• First, is based on a Runge-Kutta scheme, which is an explicit FD method and then

conditionally stable and slower than PS methods for most of the computations;

• NLSEmagic does not admit spatial distribution of the nonlinearities, which is very

important for current research;

• Finally, NLSEmagic package is developed in MATLAB and although he used

CMEX - a MATLAB interface for developing part of the code in C - MATLAB is

still a scripting language, hence with low performance when compared with C or

C++. Based on the experience acquired during the preparation of this master's

dissertation, it is my opinion that even if Caplan has achieved a large speedup, he

was strongly limited by using a MATLAB script, which can be easily outperformed

by a CPU C++ based code.

In conclusion, GPU computing has an enormous potential for researchers and engineers.

In particular, there is still space for improvements regarding high performance GNLSE

solvers and integrators. Regardless of the NLSE simulation in GPU being already devel-

oped recently, it is our belief that there is still room for progress and higher performance,

because it neither allows to solve the GNLSE nor uses high-performance C++ language,
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nor it is based on spectral methods, which are usually more stable and have higher

performance.

1.6 GASE - GPU Accelerated Soliton Explorer

The solver of the GNLSE developed during this dissertation project was named GASE. It

consists in an executable �le compiled from a CUDA C++ code compiled using Microsoft

Visual Studio, which computes the numerical solutions of the GNLSE, as well as a series

of complementary scripts in Python which do the analysis of the data and produce the

graphical outputs. The solver can run in a normal computer having a NVIDIA GPU

installed and enabled to use CUDA. This hardware component usually costs about few

hundreds euros and is the element responsible for doing most of the massive computation

in GASE.

The code GASE is capable of simulating physical problems with 1, 2 and 3 spatial

dimensions in simulation boxes with a number of sampling points up to 223, although

this value is only limited by the hardware and not by the code itself. GASE can simulate

systems with any type of nonlinearity, including cubic, quintic and logarithmic, as well

as nonlinearities that have a spatial dependence. Also, a recent upgrade of GASE allows

to simulate a system of two coupled GNLSE (this can also be extended for more than

two GNLSE).

The code is also prepared to simulate problems with periodic, re�ective and absorbing

boundary conditions. In short, this code has a high performance when compared with

other sequential algorithms and is designed to be able to address a wide class of problems.

1.7 Outline and structure of the dissertation

This dissertation addresses aspects of two immense topics: GPU computing and the

NLSE. Its main output is the development of a solver of the GNLSE based on CUDA in

C++ framework, that uses GPU computing and is capable of addressing problems with

high dimensionality and spatial distribution of nonlinearities, such as optical lattices. We

hope that this output can give a contribution to other researchers by providing them

with a tool to investigate computationally modern problems in nonlinear science. This is

the result of one year of work whereas becoming an expert in both GPU computing and

the NLSE requires years of dedication. Not surprisingly, there is still space for further

improvement of the simulation code, as well as to explore its full scienti�c potential.
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CHAPTER 1. INTRODUCTION

It has been a long way to reach this point, a road covered with many hours at the

computer, testing di�erent algorithms, making few mistakes and learning from them.

In the words of Edison, �I have many results, I know many things that do not work�.

Indeed, the hardest tasks during the last year were to learn C++ and CUDA, to become

familiar with GPU architecture and with the concepts needed in the development of the

code, and to overcome all the di�culties that come with unexplored territory, without

having any work as reference as it was one of the �rst GPU based codes developed at

the department. These tasks consumed more than eight to nine full months but however

they have no place in this dissertation, as it only reports what worked well. In an

analogy, this dissertation is like a building: the outcome can be analyzed and we can tell

how we built it, but the hard work and the needed strength can be wrongly overlooked.

The dissertation is structured as follows. In this �rst chapter, a general overview of the

subject was given, in theory of solitons, NLSE and GPU computing. A small motivation

and the framework was also discussed.

In Chapter 2 a brief synopsis of NLSE and solitons is presented, discussing succinctly

the mathematical formulation and examples of variational methods and e�ective particle

approach. The numerical methods, both �nite-di�erences and a pseudo spectral method

called Split Step Fourier Method (SSFM) are introduced, followed by a discussion of

the boundary conditions. The code implementation is discussed in chapter 3, and a

comparison of the performance of GPU-based versus CPU-based simulations is described

in chapter 4. In chapter 5 and 6 we present two case studies as proof of concept of the

developed tools. In chapter 5 we analyze a one dimensional chain of spatial solitons,

predicting numerically and showing computationally the possibility of having phonon-

like oscillations. Chapter 6 is devoted to the problem of soliton collision in (2+1)-d

system, investigating both the in-phase and out-of-phase soliton collision. Finally, future

perspectives and an outline of the main conclusions are provided in chapter 7.
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2 Nonlinear Schrödinger equation in

a nutshell

This chapter is devoted to brie�y review some of the principal aspects of the NLSE and

its solution, focusing on the main analytical results and introducing the most relevant

numerical methods. Given the tremendous work done over the years and extensive

literature in this topic, we restrain this review to the aspects which are most relevant to

future chapters and more speci�cally to the development of the code GASE.

In particular, we mainly discuss the solutions of the (1+1)-d NLSE, which is (to our

knowledge and so far) the only case with a generic method of obtaining exact analytical

solutions via IST method. However, we also describe ways of obtaining approximate

soliton-like solutions for the GNLSE in cases with higher dimensions. Finally, we discuss

the most notorious successful numerical methods used to solve computationally the

GNLSE, namely the Finite Di�erences (FD) methods and Pseudo-spectral (PS) methods.

In particular, the review of the Split-step Fourier method (SSFM) establishes the ground

base for the two following chapters, since it corresponds to the numerical method used

in the development of our solver of the GNLSE. In the following chapter we describe

how this numerical method was adapted and implemented to work on GPUs and make

use of its tremendous computing power.

2.1 NLSE and analytical solutions

Traditionally, the NLSE refers to the Schrodinger equation where an extra term was

added, corresponding to a cubic nonlinearity:

i
∂ψ

∂z
+

1

2
∇2
⊥ψ + s|ψ|2ψ = 0. (2.1)

This model is widely spread in nonlinear science and describes the evolution of a

dimensionless amplitude �eld ψ in a dispersive and weakly nonlinear medium. In this

formulation, the coordinate z is usually associated to the longitudinal direction, along
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which the �eld propagates, while the ∇2
⊥ is the Laplacian in the transverse directions.

Also the number s = ±1 refers to the sign of the nonlinearity.

The (1+1)-d NLSE corresponds to a simpli�ed version of equation (2.1) and is given

by

i
∂ψ

∂z
+

1

2

∂2ψ

∂x2
+ s|ψ|2ψ = 0. (2.2)

It has soliton solutions for both values of s, which can be calculated using IST ([14]). In

nonlinear optics equation 2.2 has two major applications. On one hand, when x refers to

a spatial coordinate then, the NLSE describes the con�nement of a CW light beam in a

Kerr media [14]. On the other hand, when x refers to a temporal coordinate (sometimes

x is replaced by τ in this equation to make the temporal character more evident), then,

NLSE describes the propagation of a pulsed beam in an optical �ber [30]. From now on,

and unless noted otherwise, only spatial solitons are considered.

For s = 1, the media is also called self-focusing and the supported solutions are called

bright solitons. The one dimensional bright soliton solution of equation (2.2), centered

at constant x = x̄0, is given by [46]

ψ(x, z) = 2νsech [2ν (x− x̄0)] exp
(
2iν2z

)
, (2.3)

where ν is the amplitude of the soliton. It can be proven that the NLSE is invariant

under the Galilean transformation [77]

x 7→ x′ = x− µz

z 7→ z′ = z (2.4)

ψ(x, z) 7→ ψ′(x′, z′) = ψ′(x− µz, z) exp
(
iµx− iµ2z/2

)
allowing us to consider a more general solution of a moving soliton,

ψ(x, z) = 2νsech [2ν (x− x̄0 − µz)] exp {iµ (x− x̄0) + iδ(z)}

δ(z) = (2ν2 − µ2/2)z + δ0 (2.5)

where ν is the amplitude, x̄0 is the initial position of the centroid of the �eld distribution

ψ, µ is the transverse velocity and δ0 is the initial phase of the soliton. Bright solitons

can exist for all values of ν and µ, constituting a two-parameter family of solutions.

For s = −1, the media is called self-defocusing and the supported solitons are called

18



2.1. NLSE AND ANALYTICAL SOLUTIONS

Figure 2.1: Depending on the positive or negative sign of the nonlinearity, solitons can
be either bright - �gure a) - or dark - �gure b) - respectively. Both were
represented in arbitrary units.

dark solitons. Using the IST and the boundary condition |ψ| = ψ0 as x→∞, these dark

solitons solutions correspond to a localized intensity reduction in an otherwise constant

CW background. They can be expressed analytically [46] as

ψ(x, z) = ψ0 {B tanh [ψ0B (x− Aψ0z)] + iA} exp
(
−iψ2

0z
)

(2.6)

where the two parameters A and B obey the relation A2 + B2 = 1. Even though it

is possible to interpret the parameter A as being related with the velocity of the dark

soliton, the similarities end here. Dark and bright solitons have very distinct properties

since they are not the dual of each other. Such properties will not be discussed here since

they fall out of the scope of this dissertation. From now on, the discussion is focused on

the case of bright solitons, that shall be designated simply as solitons.

The case of (1+1)-d solitons is well studied in the literature, much due to the devel-

opment of IST. However, the dimensionality of the physical system has a key role on

the nature of the solutions of NLSE. Indeed, it is proven that for the (D+1)-d NLSE,

with a Kerr-type nonlinearity, a generic localized envelope-like solution collapses into a

singularity for D = 2 [46, 87]. This behavior is indicative of the di�culty of �nding enve-

lope and soliton-like solutions of the NLSE in systems with high dimensionality. In fact,

stable (2+1)-d solitons are only possible considering higher and saturable nonlinearities,

described by the GNLSE.
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2.2 GNLSE

The GNLSE is generalization of the NLSE obtained by replacing the cubic nonlinearity

with a generic nonlinear term, say

i
∂ψ

∂z
+

1

2
∇2
⊥ψ + F (|ψ|2)ψ = 0, (2.7)

where F (|ψ|2) is a real valued function describing the nonlinearity. The interest of the

GNLSE is that for certain nonlinearities it allows for (D+1)-d soliton-like solutions with

D > 1, and specially for (2+1)-d. Various types of non-Kerr law nonlinearities had been

studied, these include the following:

• Parabolic law: F (|ψ|2) = |ψ|2 + s|ψ|4

For many optical materials and media, the refractive index begins to deviate from

the Kerr type for large intensities of ψ. For example, a polydiacetene para-toluene

sulfonate (PTS) crystal has a parabolic law dependence for the refraction index

with s < 0 [18]. This situation, usually called cubic-quintic media, relies on the

competition between the two nonlinearities to stabilize (2+1)-d solitons. In fact,

at low intensities the self-focusing dominates the system, but for high intensities

the beam collapse is avoided by the self-defocusing e�ect.

• Saturating law: F (|ψ|2) = λ
(

1− 1
(1+|ψ|2/|Ψsat|2)

)
Simple two-level atomic systems [9] or photorefractive materials [37] displays a

type of nonlinearity which saturates for �eld intensities above |ψsat|2.

On the other hand, when the nonlinear term in the (2+1)-d GNLSE depends explicitly

on the spatial coordinates (described by a formal dependence of F on the transverse and

longitudinal coordinates, say F (|ψ|2; r⊥, z)) it describes the so called optical lattices,

which can also support the formation and propagation of solitons. Typically optical

lattices can be classi�ed into two main classes:

• Linear lattices:

Considering that F (|ψ|2; r, z) = F1(|ψ|2) + V (r, z) we obtain an equation that

governs the solitons in a linear lattice

i
∂ψ

∂z
+

1

2
∇2
⊥ψ + F (|ψ|2)ψ + V (r, z)ψ = 0 (2.8)

described by the potential V (r, z). In BECs, V (r, z) is the trapping potential and

this equation is usually called Gross Pitaevski equation.
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• Nonlinear lattices:

Nonlinear lattices are spacial distributions of the nonlinearities. It is not possible

to present a general formula for this case but for example, one can consider a

cubic-quintic nonlinearity modulated in space by the function R(r, z), being the

problem governed by

i
∂ψ

∂z
+

1

2
∇2
⊥ψ +R(r, z)

(
|ψ|2 − |ψ|4

)
ψ = 0. (2.9)

Unfortunately, it is only for very speci�c cases that GNLSE constitutes an integrable

model with analytical soliton solutions. In a rigorous sense, solutions of nonintegrable

systems are not solitons, but it is common to use the term because most of the solutions

normally tested are soliton-shaped waves. As nonintegrable GNLSEs are important

models in nonlinear physics, it is necessary to develop methods capable of analyzing the

properties of solitons in such systems. In the following sections some of these methods

are brie�y reviewed.

2.3 Noether's theorem and conservation laws in the

GNLSE

Unlike the (1+1)-d NLSE, the GNLSE does not possess an in�nite number of conserved

quantities [14]. However, the existence of some conserved quantities is of great impor-

tance for the analysis of the GNLSE, as it can provide clues about soliton behavior.

An investigation of the conservation laws is based on the structure of the Lagrangian

associated with GNLSE described by equation (2.7). This Lagrangian density is de�ned

as

L =
i

2
(ψ∗ψz − ψψ∗z)−

1

2
∇⊥ψ∇⊥ψ∗ +G

(
|ψ|2

)
, (2.10)

with

G(λ) =

ˆ λ

0

F (λ)dλ, (2.11)

where we introduced the notation ∂ψ
∂z

= ψz and x refers to the transverse coordinates

[77].
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The corresponding action is

S {ψ, ψ∗} =

z1ˆ

z0

ˆ

all space

L dx dz. (2.12)

According to the formulation of �eld theory of Noether's theorem, an action invariant

under the following in�nitesimal transformation

z 7→ z
′
= z + δz(x, z, ψ) (2.13)

x 7→ x
′
= x + δx(x, z, ψ) (2.14)

ψ(x, z) 7→ ψ(x
′
, z
′
) = ψ(x, z) + δψ(x, z) (2.15)

must conserve

ˆ [
∂L
∂ψz

(ψzδz +∇⊥ψ · δx− δψ) +
∂L
∂ψ∗z

(ψ∗zδz +∇⊥ψ∗ · δx− δψ∗)− Lδt
]
dx. (2.16)

From this result, it can be proven that the GNLSE has three conserved quantities,

namely

E =

ˆ
|ψ|2dx (2.17)

H =

ˆ [
1

2
∇⊥ψ∇⊥ψ∗ −G(|ψ|2)

]
dx (2.18)

M =
i

2

ˆ
[ψ∇⊥ψ∗ − ψ∗∇⊥ψ)] dx (2.19)

Quantity E results from the invariance of the action under a phase shift transformation

and can be interpreted as a conservation of an energy type quantity. It is usually referred

as soliton energy, mass, plasmon number or, in the case of optical solitons, as wave power.

The second quantity H corresponds to the Hamiltonian of the soliton and its conser-

vation re�ects the invariance of the action under time shift.

Finally the invariance of the action under spacial shifts or translations leads to the

conservation of the linear momentum, represented by M .

These conservation laws and the Lagrangian formalism behind them have an important

role in the development of the variational methods used to study the soliton solutions

in GNLSE systems discussed in the following section.
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2.4 Variational methods

2.4.1 Trial functions and solutions

An important method to obtain approximate stationary solutions of the GNLSE is to

consider trial functions that depend on a set of parameters that are determined using

the Ritz optimization procedure. For example, when looking for stationary solutions, it

is possible to use the method of separation of variables to write ψ(x, z) = g(x) exp(iδz),

where g is the shape function of soliton and the second factor is the phase of the soliton.

Typically g depends on a set of parameters p (in a formal way g ≡ g(x; p)) besides the

coordinates x which determine the soliton amplitude and width, among others. Then

the substitution of ψ in the GNLSE, yields the nonlinear eigenvalue problem

1

2
∇2
⊥g + F (|g|2)g − δg = 0. (2.20)

Then using the Lagrangian density of the GNLSE , corresponding to equation (2.10),

it is possible to compute

〈L〉 =

ˆ

all space

L(g)dx. (2.21)

Now, the Ritz optimization procedure allows to determine the values of the parameters

p which maximize the resemblance between the trial functions and the exact solutions

of GNLSE. This method consists in solving the following equation

∂ 〈L〉
∂p

= 0. (2.22)

The method appears to be very simple but its success depends on the right choice

of the trial function. It has been proven successfully in many situations by providing a

good insight of the properties of the solutions of the GNLSE, particularly for the (2+1)-d

cubic-quintic GNLSE, by helping to explain �at-top beams [18] and liquid-light [58]. For

a cubic-quintic media described by F (|g|2) = |g|2− |g|4, the states are supergaussians of
order m described by

g(x) = A exp

(
−1

2

(
x− x̄0

a

)2m
)
, (2.23)

where A is the amplitude, a is the width, x̄0 is the initial position of the centroid of the

�eld distribution g. With the Ritz optimization procedure, expressions for the amplitude

and the width can be given by [18]
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Figure 2.2: Supergaussian shapes of: a) a low power soliton with m = 1; b) a high power
soliton with m = 1.9. The competition between focusing cubic and defocus-
ing quintic nonlinearities made high power solitons to spread, acquiring a
�at-top form. Typically, the high power supergaussians exhibit liquid-like
behavior, while low power exhibit other behaviors.

A =

√(
3

2

)1/m
3

2

m− ln 2

2m− ln 3
(2.24)

a =
1

A

√
21+1/mm

Γ(1 + 1/m)

2m− ln 3

ln(4/3)
(2.25)

both dependent on the order m. It can be proven that the parameter m is directly

proportional to power and thus, high power states are those with higher values of m.

2.4.2 Perturbation methods

Another technique used for obtaining approximate solutions of the GNLSE are pertur-

bation methods. Many of these approaches have been developed over the years, not

only for NLSE and GNLSE but for other similar nonlinear equations [46]. This section

is focused on a simple formulation of the adiabatic perturbation theory developed by

Anjwan Biswas [9] for (1+1)-d, which can be easily extended to systems with higher

dimensions. In some physical systems, after some manipulations, it is possible to derive

a perturbed (1+1)-d GNLSE of the form

iψz +
1

2

∂2ψ

∂x2
+ F (|ψ|2)ψ = iεR[ψ, ψ∗] (2.26)
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where R is the function describing a perturbation term and ε is a small parameter. It is

also assumed that the general form of the soliton solution of the previous equation is of

the form

ψ(x, z) = A(z)g[B{x− x̄(z)}] exp(−ik(z){x− x̄(z)}+ iθ(z)), (2.27)

where A, B, g, k, θ,x̄(t) are the amplitude, the width, the shape, the frequency, the

phase and the centroid of the soliton, respectively. These parameters can be calculated

from ψ according to the following expressions:

A(z) =

[
I0,2,0,0,0

´∞
−∞ |ψ|

4dx

I0,4,0,0,0

´∞
−∞ |ψ|2dx

]1/2

(2.28)

B(z) =

[
I2,2,0,0,0

´∞
−∞ |ψ|

2dx

I0,2,0,0,0

´∞
−∞ x

2|ψ|2dx

]1/2

(2.29)

k(z) =
i
´∞
−∞(ψψ∗x − ψ∗ψx)dx

2
´∞
−∞ |ψ|2dx

(2.30)

x̄(z) =

´∞
−∞ x|ψ|

2dx´∞
−∞ |ψ|2dx

, (2.31)

where the integrals Il,m,n,p,r are given by

Il,m,n,p,r =

∞̂

−∞

τ lgm(τ)(
dg

dτ
)n(

d2g

dτ 2
)p(

d3g

dτ 3
)rdτ. (2.32)

The evolution of these parameters resulting from the perturbative analysis of equation

(2.26). In detail, di�erentiating equation (2.17) and (2.28-2.31) with respect to z and

considering the perturbed GNLSE (2.26) it is possible to deduce that, if the shape of

soliton is kept unchanged under a perturbation R, then the characteristic parameters of

the soliton must satisfy the following evolution equations

dE

dz
= ε

∞̂

−∞

(ψ∗R + ψR∗)dx (2.33)

dA

dz
=

ε

I0,4,0,0,0

B

A3

∞̂

−∞

|ψ|2(ψ∗R + ψR∗)dx (2.34)
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dB

dz
=

2ε

I0,4,0,0,0

B2

A4

∞̂

−∞

|ψ|2(ψ∗R + ψR∗)dx− ε

I0,2,0,0,0

B2

A2

∞̂

−∞

(ψ∗R + ψR∗)dx (2.35)

dk

dz
=

iε

I0,2,0,0,0

B

A2

∞̂

−∞

(ψ∗xR− ψxR∗)dx−
ε

I0,2,0,0,0

kB

A2

∞̂

−∞

(ψ∗R + ψR∗)dx (2.36)

dx̄

dz
= −k +

ε

I0,2,0,0,0

B

A2

∞̂

−∞

x(ψ∗R + ψR∗)dx (2.37)

dθ

dz
= −k

2

2
− B

2

I0,0,2,0,0

I0,2,0,0,0

+
1

I0,2,0,0,0

∞̂

−∞

F (A2g2(s))g2(s)ds+

+
iε

I0,2,0,0,0

B

A2

∞̂

−∞

(ψ∗R− ψR∗)dx. (2.38)

This system of equations describes completely the dynamics of weakly perturbed soli-

ton and can be extrapolated for higher dimensional systems. A variety of situations

can be studied under this formalism, such as soliton-soliton interactions [56] and soliton

steering in linear optical lattices [41, 38]. This method is sometimes called the e�ective

particle approach.

2.4.3 E�ective particle approach

The e�ective particle approach [83] is a special case of the perturbed GNLSE discussed

in the previous section and it describes the behavior of a soliton in a (1+1)-d linear

optical lattice governed by the equation

i
∂ψ

∂z
+

1

2

∂2ψ

∂x2
+ F (|ψ|2)ψ + V (r, z)ψ = 0, (2.39)

where V is a real valued function that describes the linear refraction index pro�le. For

small values of modulation of the refraction index, it is possible to apply the formalism

derived in section (2.4.2). With the help of equation (2.26) it is possible to identify

R = iV ψ/ε and use the formulas (2.33-2.38) to prove that the amplitude, the width and

the energy of the soliton remain constant.
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Using this approach it is possible to recover the notorious result from quantum me-

chanics known as the Ehrenfest theorem, which basically expresses the correspondence

principle between classical and quantum mechanics. In particular, the equation of the

evolution of the centroid of the soliton, obtained using e�ective particle approach is

d2x̄

dz2
= − 1

E

ˆ ∞
−∞
|ψ|2∂V

∂x
dx. (2.40)

In short, it describes a quantum equivalent of Newton second law for a classical particle

under the in�uence of a potential V , namely

d2x

dz2
= −∇V. (2.41)

The e�ective particle approach can be used not only to study the trajectory of solitons in

optical lattices, but also can provide a theoretical framework to study the interaction of

several weakly overlapping solitons. However, all this approximative analytical methods

have strong limitations in addressing systems with high dimensionality and complexity.

In these cases, it is necessary to use an approach with long tradition in nonlinear science

and use numerical methods. In the following section some of the most relevant of such

methods are discussed.

2.5 Numerical methods

Numerical methods are not so powerful as analytical methods in the sense that one

cannot obtain the complete set of solutions for the problem. However, they are still useful

since they can avoid cumbersome or impossible calculations by solving the problem for

a speci�c con�guration of the solution. This is specially true if one has some intuition

about the type and behavior of the solution. In the last three decades most of the

theoretical results in soliton propagation were supported by numerical investigations.

In the theory of di�erential equations, the GNLSE is a nonlinear second-order parabolic

partial di�erential equation and if we remove the nonlinear part, the GNLSE becomes a

linear parabolic equation or a di�usion equation. The di�usion equation can be solved

numerically using di�erent numerical methods that convert the partial di�erential equa-

tion into an algebraic equation, via some form of discretization. Then the problem can

be treated using methods from computational linear algebra which in most cases consist

in methods of matrix inversion. Among the algebraic methods used the most com-
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mon are the Crank-Nicholson implicit scheme and pseudo-spectral methods which are

both unconditionally stable [25]. The presence of the nonlinear term changes drastically

the situation and the otherwise known methods are no longer unconditionally stable,

becoming important to choose carefully the integration step.

Usually, integration schemes for nonlinear problems rely on the split of the integration

step into a linear and a nonlinear sub-steps. The splitting procedure is a well known

mathematical method and the idea is to decompose a complex model into a sequence

of simple sub-problems. The method has an associated error that can be theoretically

estimated. One of the most popular splitting methods is the Strang-Splitting algorithm

which constitutes a second order splitting [2]. To explain how the splitting procedure

can be applied to the GNLSE we consider that it can be written as:

∂ψ

∂z
=
(
D̂ + N̂

)
ψ, (2.42)

where D̂ = i
2
∇2
⊥ is a linear operator containing the linear terms of the GNLSE and

N̂ = iF (|ψ|2) is its nonlinear counterpart. When applied to this equation, Strang-

Splitting algorithm is as follows:

∂ψ

∂z
= D̂ψ, with z ∈ [z, z + h/2], ψ(z) = ψ(z) (2.43)

∂ψNL

∂z
= N̂ψNL, with z ∈ [z, z + h], ψNL(z) = ψ(z + h/2) (2.44)

∂ψL

∂z
= D̂ψL, with z ∈ [z + h/2, z + h], ψL(z + h/2) = ψNL(z + h) (2.45)

where h is the integration step. It can be proven that this algorithm is second order

accurate. The nonlinear problem is then divided into two simple problems. The linear

sub-step requires the integration of the di�usion equation which can be done as previ-

ously discussed. The nonlinear sub-step can be integrated numerically using the Euler

method, the Runge-Kutta or other methods.

The splitting method is commonly referred in beam propagation studies as the split-

step. The idea is that the linear and nonlinear parts of the dynamics can be treated

separately considering small integration steps. Depending on the strategy to solve the

linear sub-problem of the algorithm, beam propagation methods can be either �nite

di�erence or pseudo-spectral.
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Figure 2.3: Visual scheme describing the split-step algorithm for evolving an initial �eld
ψ(z), described in equations (2.43-2.45).

2.5.1 Explicit and implicit �nite di�erences methods

Finite di�erence methods can be grouped into two broad categories: explicit or implicit

schemes. During this section we brie�y present an example of each.

The fourth-order Runge-Kutta (RK4) scheme was used by Ron Caplan in the �rst

CUDA solver of the NLSE [11]. The RK4 is an explicit method that can be used also

for the GNLSE. Writing the GNLSE as

∂ψ

∂z
= f(ψ) = i

[
1

2
∇2
⊥ψ + F (|ψ|2)ψ

]
(2.46)

the RK4 scheme is de�ned by [12]

k1 = f(ψ(z)) (2.47)

k2 = f(ψ(z) +
h

2
k) (2.48)

k3 = f(ψ(z) +
h

2
k2) (2.49)

k4 = f(ψ(z) +
h

2
k3) (2.50)

ψ(z + h) = ψ(z) +
h

6
(k1 + 2k2 + 2k3 + k4) . (2.51)

To convert the GNLSE into an algebraic equation, the domain of ψ is replaced by a

discrete set of points that lay on a regular grid. For example, in the case of (1+1)-d

GNLSE, the transverse spatial variable is reduced to a set of spatial points separated

by a step ∆x, while the longitudinal variable becomes a discrete set of values separated

by the integration step h. Then, after discretization, the solution ψ is replaced by a

discrete set of values ψ(j∆x, nh) = ψnj with n and j being integer numbers. This case

can be generalized to other spatial dimensions, but we restrict ourselves to the study of

the easiest case. In �nite di�erences the Laplacian is computed by means of a stencil

29



CHAPTER 2. NONLINEAR SCHRÖDINGER EQUATION IN A NUTSHELL

(considering a 3-point stencil)

∂2ψnj
∂x2

=
ψnj−1 − 2ψnj + ψnj+1

∆x2
. (2.52)

Once the Laplacian is computed, nonlinear term corresponds only to a point-to-point

vector multiplication and the implementation of the method is complete.

It turns out that this method is not only considerably unstable but also non conser-

vative in the sense that it does not conserve the wave energy de�ned in equation (2.17)

during the system evolution[25]. However it can be shown that an implicit method

ψn+1
j − ψnj

h
= θfj

(
ψn+1

)
+ (1− θ) fj (ψn) (2.53)

is conservative under the condition θ = 1/2, which corresponds to a scheme commonly

known as the Crank-Nicholson (CN) scheme. The split-step CN scheme can be obtained

from the algorithm (2.43-2.45). The most common strategy is to use a simple Euler or

RK4 method for the nonlinear sub-step and a CN for solving the linear sub-steps. In

(1+1)-d, using the discretization previously discussed and the 3-point stencil, the linear

step can be written as

ψ
n+1/2
j − ψnj

h
= i

(
ψ
n+1/2
j−1 − 2ψ

n+1/2
j + ψ

n+1/2
j+1

2∆x2

)
+ i

(
ψnj−1 − 2ψnj + ψnj+1

2∆x2

)
.(2.54)

Then, grouping the n+ 1/2 and n terms,

ψ
n+1/2
j

h
− i

ψ
n+1/2
j−1 − 2ψ

n+1/2
j + ψ

n+1/2
j+1

2∆x2
=
ψnj
h

+ i
ψnj−1 − 2ψnj + ψnj+1

2∆x2
(2.55)

the problem is reduced to the solution of the following linear system for ψn+1/2

Aψn+1/2 = A∗ψn (2.56)

with

A =
i

2∆x2



∆x2/h+ 2 −1 0 0 ... 0

−1 ∆x2/h+ 2 −1 0 ... 0

0
. . .

...
. . .

...

0 · · · −1 ∆x2/h+ 2 −1

0 · · · −1 ∆x2/h+ 2


(2.57)

This system is usually solved using iterative methods, that, depending on the problem,
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can either be fast or slow. Normally, when the matrix is sparse (for example it is a 3-

diagonal for (1+1)-d and 5-diagonal for (2+1)-d) there can be considerable speedups if

the solver uses sparse matrix algorithms. A solver based on the CN method using GPU

computing was implemented by Paulo Alcino in 2012 at INESC Porto.

Even tough the CN scheme relies on the use of iterative methods that are slower

than matrix multiplications of RK4, the performance of CN is usually better than RK4

[25] because RK4 is not conservative. In general, to improve the solutions obtained by

RK4, it is necessary to use a smaller integration step h, which increases the number of

integration steps needed for the simulation and drastically reduces the performance of

the method.

2.5.2 Pseudo-spectral methods and the SSFM

Pseudo-spectral methods rely on the utilization of the decomposition of the �eld ψ in an

orthogonal basis of functions, where it is easy to compute the linear sub-step [2]. From

direct integration, the exact solution of the equation (2.42) is given by

ψ(z + h,x) = exp
(
h
(
D̂ + N̂

))
ψ(z,x), (2.58)

with D̂ = i
2
∇2
⊥ a linear operator relative to the dispersion and N̂ = iF (|ψ|2) relative to

the nonlinearities of the media. Using the Strang-Splitting algorithm we can reach an

approximation for the solution of the GNLSE as

ψ (z + h,x) ≈ exp

(
h

2
D̂

)
exp

(
hN̂
)

exp

(
h

2
D̂

)
ψ (z,x) . (2.59)

This means that computationally the solution ψ (z + h,x) is calculated from ψ (z,x)

by applying sequentially the operators exp
(
hD̂/2

)
, exp

(
hN̂
)
and exp

(
hD̂/2

)
again.

The Baker-Hausdor� formula [2] for two operators â and b̂ is

exp (â) exp
(
b̂
)

= exp

(
â+ b̂+

1

2

[
â, b̂
]

+
1

12

[
â− b̂,

[
â, b̂
]]

+ ...

)
(2.60)

and can give us a good insight of the error of the method. Indeed, applying the formula

two times using â = hD̂/2 and b̂ = hN̂ , it can be obtained

exp

(
h

2
D̂

)
exp

(
hN̂
)

exp

(
h

2
D̂

)
= exp

(
hD̂ + hN̂ +O

(
h3
[
D̂ − N̂ ,

[
D̂, N̂

]])
+ ...

)
(2.61)
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suggesting that the dominant error term is of the order of h3 and that the method is

accurate up to the second order.

Before advancing, the spatial discretization must be considered. Considering a (3+1)-

d system, the discretization on spatial coordinates can be introduced by a grid of integers

(j, k, l) where 0 ≤ j < Nx,0 ≤ k < Ny,0 ≤ l < Nt. Thus, any point in the continuous

spatial space x = (x, y, t)1 is represented by the corresponding X = (j∆x, k∆y, l∆t). Is

also useful to de�ne a discretization vector ∆X = (∆x,∆y,∆t) and the vector number

of points N = (Nx, Ny, Nt).

The Fourier transform of the �eld ψ is the decomposition of the �eld ψ in an orthogonal

basis of plane waves. Usually, the computational Fast Fourier transform (FFT) maps

the complex-valued vector ψ into its frequency domain representation by

ψ̂(z,k) =
Nx−1∑
j=0

Ny−1∑
k=0

Nt−1∑
l=0

ψ(z,X) exp (−ik ·X) , (2.62)

where X is the discretized space vector. The discretization of the spatial domain re-

�ects as a discretization in the k = (kx, ky, kt) frequency domain. For even values of

the components of the vector N, the discretization can be done in terms of three in-

tegers, (ĵ, k̂, l̂), within the limits de�ned by N; however it is not linear like the spatial

discretization. For example, kx is discretized under the formula

kx =

 2πî
Nx∆x

, for 0 ≤ î ≤ Nx

2

2π(̂i−Nx)
Nx∆x

, for Nx

2
< î < Nx

. (2.63)

This allows to build a complete map between the �eld ψ in the discretized direct

space and the frequency discretized version ψ̂. The advantage of the using the Fourier

transforms is that in the frequency space the Laplacian is algebraic, namely

D̂(k) =
−i
2

k · k. (2.64)

Therefore, it is possible to evaluate the linear sub-step in Fourier space using

1In this sense we are considering t as a spatial variable.
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ψ̂(z,k) = FT {ψ (z,X)} (2.65)

exp

(
h

2
D̂

)
ψ (z,X) = F−1

T

{
exp

(
−ihk · k

2

)
ψ̂ (z,k)

}
(2.66)

where FT denotes the FFT operation.

The nonlinear sub-step can be evaluated in direct space using the formula

ψNL(z + h/2,X) = exp
(
ihF (|ψ|2,X)

)
ψ(z + h/2,X) (2.67)

which completes the Split-step Fourier method (SSFM). It is important to notice that

both the linear and nonlinear sub-steps are computationally solved in a discretized grid.

This discussion about the discretization and the vectors X and k concludes that both

equations (2.66) and (2.67) can be done by point-to-point calculations. In summary the

SSFM algorithm is as follows:

ψ̂(z,k) = FT {ψ (z,X)}

ψ (z + h/2,X) = F−1
T

{
exp

(
−ihk · k

2

)
ψ̂ (z,k)

}
ψNL(z + h/2,X) = exp

(
ihF (|ψ|2,X)

)
ψ(z + h/2,X) (2.68)

ψ̂NL(z + h/2,k) = FT
{
ψNL (z + h/2,X)

}
ψ (z + h,X) = F−1

T

{
exp

(
−ihk · k

2

)
ψ̂NL (z + h/2,k)

}
.

Before concluding this section we shall notice three important features of the SSFM.

First, in a usual problem the interest is not to do only a single integration step but

several of them. In that situation, it can be shown that, except for the �rst step, we

need only to compute one linear sub-step per integration step instead of two. In fact, the

First Same As Last [62] property allows to concatenate the linear sub-steps as follows:

ψ (z + 2h,x) ≈ exp

(
h

2
D̂

)
exp

(
hN̂
)

exp

(
h

2
D̂

)
exp

(
h

2
D̂

)
︸ ︷︷ ︸

FSAL

exp
(
hN̂
)

exp

(
h

2
D̂

)
ψ (z,x)

= exp

(
h

2
D̂

)
exp

(
hN̂
)

exp
(
hD̂
)

exp
(
hN̂
)

exp

(
h

2
D̂

)
ψ (z,x) . (2.69)
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Thus, considering several integration steps, the cost of this second order method is

basically the same of the �rst order method.

Secondly, the calculation of the linear sub-step, the most time consuming step of the

method, is done by using the FFT. If the dimensions N are all powers of 2, this method

has a computational cost of order O (NtotlogNtot) where Ntot = Nx · Ny · Nt. As most

FD methods rely in O(N2
tot) matrix operations, SSFM are usually faster, especially for

multidimensional or large systems.

Last but not least, the SSFM is conservative and normally admits larger integration

steps than the FD methods for obtaining the same accuracy. In fact, the only situation

where FD are preferable over SSFM is when the system is small and the dynamics of

the envelope is fast, introducing a limitation to smaller integration steps [2].

The SSFM is not the faster neither the most accurate method for every situation

[2, 25]. However, it constitutes the best performance GNLSE solver for the majority

of the problems. Thus, it is our choice for the implementation of a high performance

GNLSE solver using GPU computing.

2.5.3 Boundary conditions for the SSFM

An important aspect of any solver of the GNLSE are the boundary conditions. In general,

a soliton like solution of the GNLSE extends well beyond the limits of the simulation

box even though in that portion of space the amplitude of the �eld can be very close

to zero, and therefore negligible. Also, it is possible that the solitons propagate to close

proximity (and scatter through) to the boundaries of the simulation box.

The boundary represents a discontinuity in the simulation box and can interact with

the soliton-like pulses yielding diverse, and many times unwanted, e�ects. These may

include re�ection and numerical dispersion, depending on the type of the solver being de-

veloped. Therefore, great care must be put in addressing the boundary-�eld interaction.

This is specially important when considering problems where the medium is supposed to

be in�nite or the relevant interaction is restricted to a small region of space after which

the �eld evolves into far regions, as occurs during soliton scattering. If no attention is

put to boundary conditions then extremely large simulation boxes must be used, which

are costly in terms of computational resources, e�ciency and simulation times.

To avoid these problems, several types of numerical solvers for the GNLSE have been

developed which control the physics of boundary-�eld interaction, namely allowing to

produce periodic, re�ective and absorbing boundaries.

Periodic boundary conditions allow that, when the �eld reaches one of the boundaries
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of the simulation box, then it emerges from the opposing boundary. This implies that

a two dimensional simulation box corresponds topologically to a torus. This type of

boundary condition arises natively from the SSFM algorithm given its calculation of the

linear step in the Fourier space.

Re�ecting boundary conditions force the �eld that reaches one of the boundaries to

bounce back. This type of boundary condition can be implemented by dividing the

simulation box into two domains, one at the center where the simulation occurs and

another corresponding to a thin layer of points, as shown in �gure (2.4). The idea is to

replace the original GNLSE with an altered version, say

i
∂ψ

∂z
+

1

2
∇2
⊥ψ + F (|ψ|2)ψ + Vrψ = 0 (2.70)

where

Vr =

vr at the boundary layer

0 elsewhere
(2.71)

where vr is a real-valued constant larger than any of the other terms in the GNLSE.

The absorbing boundary conditions correspond to the case where a �eld reaching

the boundaries of the box is totally (or almost totally) absorbed and disappears from

the simulation box. This boundary condition is specially indicated to simulate the

propagation of solitons in in�nite or very large domains.

Again this boundary condition is obtained by replacing the original GNLSE with

i
∂ψ

∂z
+

1

2
∇2
⊥ψ + F (|ψ|2)ψ + iVaψ = 0 (2.72)

where Va is a positive real valued function, chosen to maximize the absorption of the

radiation. The most common absorbing potentials are the Gaussian [62]

Va = Ae
− (X−X0)

2

2w0 (2.73)

and the hyperbolic tangent [67]

Va = A (1 + tanh (w0 (r − x0))) . (2.74)

Parameters A, w0 and x0 are characteristic of the absorbing potential whose choice

depends on the problem and must be optimized to maximize the absorption of the

outgoing radiation.
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Figure 2.4: Visual scheme of the simulation box, describing the concept of boundary
layer. The blue interior of the box is where the �eld evolves.

2.6 Concluding remarks

By the end of this chapter we have presented some of the most important aspects of the

structure, solutions and numerical methods of the GNLSE. Particularly, the introduc-

tion of the SSFM provides the cornerstone for the next chapter, where we describe the

implementation of our GNLSE solver based on GPU computing, GASE. In the following

chapter we discuss how the SSFM can be adapted to operate in a GPU architecture,

taking to account the allocation of data into the memory available. Also, we address

how the resources of a computer can be used in heterogeneous programming to boost

code e�ciency.
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3 Implementation of the GPU-based

GNLSE solver

In the previous chapter we reviewed the basic framework of the GNLSE, including the

type of equations and situations that have been studied, the analytical methods used, and

some of the most relevant numerical methods developed to solve it. In this chapter we

focus on the implementation of a GNLSE solver based on a SSFM using GPU computing.

We start by analyzing the advantages and disadvantages of this approach, especially

when compared with CPU-based computing, which constitutes the most common base

approach in the past. The core of this chapter is devoted to the description of the

algorithm used, its computational implementation and to its performance analysis. As

it shall be shown, we have obtained computational speedup factors of almost 100 when

compared to the same CPU-based solver, demonstrating the high potential of GPU

computing for numerical analysis of the GNLSE.

3.1 Simple problem, high computational time

The calculation of solutions of the GNLSE in systems with dimensionality higher than

(1+1)-d and specially, if it involves complex geometries and higher order nonlinearities, is

a very large computational problem. This is mostly due to the large number of points of

the spatial mesh used to sample the �eld and the local optical properties, which need to

be determined and computed on each time step. Using serial programming, such as used

in single core CPUs, the solution of this type of problems requires vast running times

as most calculations must be done sequentially for a very large set of sampling points

of the �eld. To illustrate the immense challenge at hands, consider a simple problem,

consisting of the investigation of the dynamics of a supergaussian (2+1)-d soliton in a

cubic-quintic media limited in a small square domain with side length a having a small

circle - we will call it a hole - of linear material at the center, with diameter of value a/25,

as shown in �gure 3.1. Consider also that the soliton has a characteristic size of a/4 and
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Figure 3.1: a) Image description of the problem of a supergaussian state colliding with
a small hole of linear material. b) Representation of the circle for various
mesh sizes.

scatters with a small angle towards the hole. Such problem has no known analytical

solutions, including those obtained using perturbation methods (section 2.4.2), which

leaves numerical simulations as the only choice of analysis method.

Numerical simulations rely on the adequate discretization of the simulation box which

is determined with the spatial scales of the problem. For the problem in �gure 3.1 the

discretization mesh size is determined by the need to preserve the circular shape of the

linear defect. Figure (3.1) shows that this requires using at least 40 points per diameter

of the object. Since 40 discretization points are equivalent to a/25, then the domain is

described by at least a grid of 1000x1000=1 million points.

In a modern 3 GHz processor the multiplication by an exponential factor - equivalent

operation to the nonlinear step of the SSFM - of a vector of 1 million points lasts at least

2 seconds. In our problem we have three di�erent nonlinear steps to do, two relative to

cubic and quintic nonlinearities and other relative to the refraction index hole, giving a

computational time of 6 seconds per nonlinear step. If we are interested in seeing what

is the behavior of the soliton with small velocities interacting with a sequence of holes,

we must integrate the problem by a larger number of steps, say 100 000. Considering

all these results, the total running time of the simulation would greatly exceed a week.

Now imagine that we want three or four other simulations with di�erent wire sizes and

that along the way we may have to do some intermediate tests. The simulation would

then be impossible to solve using ordinary computers.

Many of the recent research in solitons considers problems such the one previously

discussed. Using serial programming to solve them on a computer would involve pro-

hibitive running times. The alternative is to use parallel programming in a computer
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cluster and doing the calculations simultaneously on several interconnected computers

instead of sequentially on a single computer. The idea is to break up the original do-

main into smaller chunks or sub-domains and doing the calculations for each of them in

a separate computer. The best about this is that the process is scalable, which means

that increasing the number of sampling points of the domain mesh can be solved by just

adding more computers to the cluster. Unfortunately, in reality things are not so simple,

in fact they can be even worse than using a single machine. At every integration step the

computers need to exchange information about the values of the �eld at the boundaries

of their sub-domains. This data transfer is usually even slower than the computational

process and thus clusters are not a solution. Also, good clusters are extremely expensive.

GPU computing is a recent trend that seems to solve both of these problems. Modern

GPUs have thousands of cores connected directly to the same device RAMmemory, what

seems to minimize the memory transfer problems while still having the possibility of the

parallelization of the simulation over many chip cores. Also, they are cheap devices,

which cost almost the same price of modern CPUs.

The only �aw is that the cores of GPUs are not as powerful as CPUs. GPUs cores

have peak operation frequency of 1GHz, which is three times slower than the normal

3 GHz processors. CPU and GPU are the result of two distinct strategies to achieve

higher computing power. Typically, CPUs result from an approach pursued over the

last decades to attain high computing frequencies and through that, reduce the time

needed to perform each operation. Unfortunately, this strategy has been so successful

that it has reached the limit between classical and quantum physics. As computer

electronics became smaller and computer clocking became faster, the physics of the

electrons swirling through the computer wiring starts to exhibit quantum features and

some severe problems of thermal dissipation. As a result, this approach has reached an

e�ciency barrier.

The increasing demand for devices capable to do massive computing, specially from

the game industry, has led to a di�erent approach based on parallel programming, using

clusters of simple cores integrated in a single device, the GPU. The idea is to optimize

not single operations but the overall computing time. For example, it is more interesting

to minimize the overall computational time of 1 million pixels than to minimize the time

of computing a single pixel. This new paradigm appears to be the new trend in high

performance computing, replacing high frequency computing with a high throughput

computing paradigm.

Many of the GPU cards are developed for running computer games with higher perfor-
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Figure 3.2: Conceptual comparison between two di�erent computing paradigms, the high
frequency and the high throughput computing paradigm.

mance graphics and rely on the same algebraic operations needed to do many scienti�c

calculations. As a result they constitute a recent and almost untapped resource in com-

putational physics. The following section describes some of the aspects, challenges and

results of using this technology to develop the high performance solver of the GNLSE.

3.2 How to plow a �eld?

Seymour Cray, for many the father of supercomputing, always resisted to massive parallel

computing as a credible solution for better computational performances. To sustain his

opinion he even joked once saying �If you were plowing a �eld, which would you rather

use: Two strong oxen or 1024 chickens?�. This question re�ects the conceptual problem

of using the two di�erent paradigms. If you put some numbers to Cray's problem then

you realize that if each ox is able to yield a force power of 150 kg while each chicken

yields 0.5 kg, then, as surprising as it might have been to Cray himself, chickens would

win!

In this analogy the oxen represent the CPU, powerful and able to plow data quickly,
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and chickens represent GPUs and other forms of distributed computing, slower but in

larger number. Of course the problem of high performance computing is not as simple

as this analogy seems to suggest. The answer to Cray's challenge depends on the size of

the �eld to be plowed (the analogy is a good one and can be used to explain many of

the ideas, so we keep it for now). If the �eld is small, the oxen are better because they

are able to plow quickly, but if the �eld is very large, then the combined power of the

chickens and their ability to do work simultaneously and independently (this is called

concurrence) can be preferable.

If you know chicken, you know how hard it would be to organize and coordinate

a brood of chickens to plow a �eld. With GPUs the problem is the same, and it is

necessary a computer model and the corresponding software to make the many GPU

cores to work as a unit to solve a numerical problem. The development of the CUDA by

NVIDIA answered this problem. CUDA is an extension to C/C++ for GPU computing

using NVIDIA devices. This extension allows programmers to access GPU memory and

compute capabilities. A normal code is composed by a part to be performed in the CPU

(host) and a part that is performed in the GPU (device).

Although CUDA can help in coordinating the operations of di�erent GPU cores, it

is limited to basic algebraic operations and it is not the ideal tool for scienti�c pro-

gramming. Being closer to machine code than scripting languages, such as Python and

MATLAB, it allows better control of machine operations but yields more complex and

extensive coding that require longer development, programming and debugging times.

Therefore, for GPU computing to be used for scienti�c calculations in an e�cient way,

it would be necessary to develop numerical packages and libraries similar to Lapack,

Blas, Scipy (Python libraries) and others. These libraries use serial programming so

the challenge is to adapt the functions to make full use of parallelization capabilities of

GPUs. Such packages and libraries are currently being developed and new progresses

are being made available to computational physicists every day. Fortunately, such pack-

ages already include e�cient versions of the numerical tools necessary to implement a

GNLSE solver.

In particular, in the solver developed during the preparation of this dissertation, the

following numerical packages were used, both of them developed by NVIDIA and in-

cluded in the most recent CUDA toolkit (version 5.0) :

• Thrust is a library that provides a collection of parallel data operations that allows

the transformation and operation between vectors. Thrust also de�nes the vector

containers and can work both in the CPU and GPU depending if the vector is
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in the host or in the device memory, respectively, and permit to make complex

vector operations with a high-level of abstraction, selecting automatically the most

e�cient parallel implementation.

• Cu�t is a library that allows the user to apply one, two or three dimension FFT

transformations of vectors in the GPU. It is the analog of Fftw library for CPU

and it only works in the graphics card.

Even though much of these packages facilitate the development of the GNLSE solvers and

allow a good level of abstraction from what is actually occurring in the hardware during

the calculations, the way the code is written is not independent of the parallelization in

the hardware.

In fact there are three aspects that need to be considered when writing a GNLSE solver

to work in massively parallel GPUs: the fact that GPUs are designed to operate mainly

with single precision �oating point numbers, the existence of di�erent types of memories

distributed in the graphics card that have to be used adequately, and portability and

compatibility issues of the code developed.

This factors are addressed in the three following sections.

3.3 Gaming vs Scienti�c precision

The GPUs have long surpassed the performances of the CPUs. The performance can

be measured in the number of �oating point operations that can be done in a second, a

unit named FLOP/s. A typical modern CPU is capable of no more than 100 GFLOP/s

while GPUs are now reaching TFLOP/s performances. But these peak performances

are only obtained in single precision.

As mentioned, the main application of massive parallel programming using GPUs

is the acceleration of the graphics in computer games. For this reason, many of the

calculations need only to be performed using �oating point numbers with single precision.

However, for scienti�c calculations, where it is mandatory to maintain numeric errors

under control during the computations, the use of double precision numbers is preferable,

if not necessary. The most recent devices and numerical packages developed for GPU

already allow to use double precision numbers. But as GPUs are not optimized for

this type of work, the immense single precision performance is strongly reduced to more

modest values when double precision is used. Yet, the peak performance of GPUs at

double precision is still better than those of CPUs and even CPU clusters, and a speedup
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Table 3.1: Comparison between di�erent top-of-the-line GPUs of the NVIDIA consumer
line Geforce. A model from the Fermi line of a professional computing dedi-
cated GPUs is also presented. An increasing computational power is notorious
over the years, as well the increase of chip memory and memory bandwidth.
It is well patented that evolution of GPUs will reach another level in the next
few years, with the new high performance Geforce Titan setting the pace.

can still be obtained. For example, the calculation of a multiplication by an exponential

of a vector of 1 million points has a speedup of 90 in single precision and 40 for double.

In this case a speedup is still obtained and the reduction in speedup is not so dramatic

as predicted. That is due to the fact that usual operations are frequently limited by

the bandwidth of the memory, i.e., the transfer rate of data from the memory to the

processing unit.

To understand the concept of bandwidth we focus on the simple example of the sum

of two vectors. For the Intel I7 processor, the memory bandwidth is 25,6 GB/s which

means that the system can only transfer 25,6 GB of data from memory to the CPU

during one second of operation. Considering that a double precision �oat occupies 8

bytes of memory, processing units have access to less than 3500 million of �oats per

second. Considering that a sum has to read two values and store one, the bandwidth

limit the peak performance of a sum to 3500/3 ≈ 1.16 GFLOP/s far away from the

predicted peak performance of 98,78 GFLOP/s. Thus, the bandwidth of the GPU is a

determinant factor in achieving higher performances in numerical experiments.

Although the need to use double precision in scienti�c calculations can diminish sig-

ni�cantly the true power of the GPUs, it is important to notice also that these are

recent developments in these technologies. Not only GPUs are becoming faster with

ever-increasing number of cores (reaching almost 3000 cores) but also the developments

that allow to do double precision calculations are quite recent (less than 4 years), still in

their infancy. Therefore, although there is still a long way to go, scienti�c computation
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based on GPU appears to have a bright future ahead.

3.4 Some memories must be kept closer than others:

memory considerations for GPU computing

Other key aspect of hardware that is necessary to account when programming is memory

allocation. In more detail, di�erent types of data needed for the calculations must be

stored in distinct types of memory of the GPU architecture, if optimal (or close to

optimal) performance is to be achieved.

Inside the GPU card there are three types of memory, with di�erent access times:

• Shared memory: small amount of memory (48 kB) with fast access but not acces-

sible by all cores in a GPU;

• Constant memory : small amount of memory (64 kB = 8192 double precision

�oats) with fast access and accessible by all cores. The speed makes it the ideal

to store constant data, such as physical constants used by the solver.

• Global memory: big amount of memory (few GB, see table 3.1) with slow access

and accessible by all cores. Its size makes it ideal to store the �eld distribution

and the nonlinearities.

As mentioned, global memory, the RAM of the device, is the memory used to store

�elds. It should be noticed that the amount of memory of the GPU is �xed from factory

and cannot be augmented afterward, unlike the CPU, where one can always add larger

RAM memories. This can limit the capabilities of the GPU in larger simulation systems.

Generally, for each GB of RAM memory, 222 double precision numbers can be stored

and operated in the GPU. Hopefully, future GPU models will have increasing memory

that will make GPUs more capable of addressing larger simulations.

Finally let us give a word about data storage, namely about saving the numerical data

produced during calculation in the GPU to a more permanent storage, in this case a hard

disk, for later analysis. The transference of data between di�erent groups of cores in the

GPU is fast (the bandwidth concept mentioned in the last section) resulting in a short

latency time between two time steps of integration of the GNLSE. However, transferring

that information from the GPU to be stored in an external hard disk is time consuming,

and must be avoided during the calculations. This problem will be addressed in more

detail in the next sections.
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3.5 Compatibility issue

The use of GPUs for general purpose computing, and more speci�cally for scienti�c

computing, is something new in computer sciences and is a part of a broader concept

called heterogeneous computing. To put it simple, heterogeneous computing aims to use

all the resources available in a machine (GPUs, CPUs or others) in an integrated way

to do massive computing. The early precursors of this concept included the engineers

of NVIDIA, one of the most important graphics cards company and the developer of

CUDA. Although CUDA is currently perhaps most advanced platform for heterogeneous

computing, it operates only on speci�c GPU cards from NVIDIA. There is some irony

in this fact: heterogeneous computing has a main goal in promoting portability between

di�erent devices but CUDA and programs written in CUDA can only be used in hardware

from a speci�c manufacturer. Therefore, our code is not portable to machines that

have other types of GPU cards. To address this limitation, an alternative to CUDA is

being developed in recent years by a consortium of GPU card and CPU manufacturers

(especially AMD) called OPEN CL. The idea is that OPEN CL can become a standard

language for heterogeneous computing capable of operating in any type of device.

Unfortunately, OPEN CL is still in its earlier versions and even though it can already

compete with CUDA in terms of managing parallel computation in distinct devices, it

still lacks numerical packages that support scienti�c computing. This short-come of

OPEN CL is expected to be overcome in future years as it becomes more used and

software developers bridge the gap between it and CUDA. It is not possible to consider

OPEN CL to support the development of a GNLSE solver yet, however the structure

of GASE should (in principle) be easily transposed from CUDA as OPEN CL reaches

later stages of development.

3.6 Implementation of the GNLSE solver

This section is devoted to explain the general structure of the numerical code developed

during this dissertation's research.

3.6.1 Outline of the code

The code is basically composed of three parts, each corresponding to a speci�c stage of

the calculation as shown in �gure 3.3.
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The �rst part encompasses the initialization of the data structures that store the

data. These include the lists containing the spatial coordinates, the value of the �eld

and the optical properties and parameters in each point of the mesh of the simulation

box. Within these structures are also included the data necessary to implement the

boundary conditions.

During the second part of the code the actual numerical calculations necessary to

integrate the GNLSE are performed using the SSFM. In a very simple way, it consists in

a loop which repeats the integration step. This is the most time consuming part of the

code and the duration of each step will be discussed in the following sections. During

this second stage, the results are stored into the hard disk to be used in the third and

last stage of the code where the data is analyzed. In order to reduce both the memory

requirements of the hard disk and the latency of the process of transferring data from

the memory to the hard disk, data is only stored after doing an user-de�ned number of

integration steps. While the �rst and second part are written in C++ with CUDA, this

last part of the code is written in Python (instead of CUDA) by reasons of convenience,

since not only Python allows to produce graphics with high quality but also is much

easier to program, given that it is a scripting language.

It should be noticed that CUDA and the associated numerical toolkit allow us to do

most of the calculations both in the GPU and CPU without signi�cative changes to the

structure of the code. In order to compare our solver GASE with a CPU version of a

GNLSE solver we adapted and developed also a CPU solver using the same structure

and the Fftw library for the Fourier transforms. Therefore, and to benchmark the GPU

computations relative to the CPU version, this code is prepared to operate in both

platforms with speci�cations that we discuss in the following section.

3.6.2 Integration step routine

One of the most important features of GASE is that it can address systems with higher

dimensionality, i.e., (2+1)-d and (2+1+1)-d domains (although it can be easily extended

for higher dimensions if necessary). This implies the discretization of the domain into

a regular mesh of points on which the �eld and the optical properties of the medium

must be evaluated. In principle, these values could be stored in multidimensional lists

of data (similar to tensors) but this is not the most e�cient way to use data in GPU

computing. In fact, the numerical libraries built on CUDA and used to develop GASE

operate only with one dimensional lists, including the numerical library which takes

care of the FFT. Therefore, the multidimensional list must be spanned into a single
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Figure 3.3: Succinct description of the code structure. The code is divided in three
parts: the �rst initializes the data and the simulation box, the second is the
integration routine and the third is the post-simulation analysis of the data.
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one dimensional list (which is quite simple to do). More importantly, it is necessary to

convert the identifying index of the data in the multidimensional list (j, k, l) into the

index in the one dimensional list I = j+ k×Nx + l×Nx×Ny. The conversion between

the index I to (j, k, l) is easily done with the help of �oor and mod functions, using the

expressions

j = I mod (Nx)

k = �oor

(
I

Nx

)
mod (Ny)

l = �oor

(
I

NxNy

)
In the simulation mesh, this allows to compute the spatial coordinates of the point

to which the data pertains to. For example in three dimensional mesh, coordinates are

obtained as X = (j∆x, k∆y, l∆t). Also, having this methodology in mind, the nonlinear

step can be easily calculated from expression (2.68).

The FFT routine transforms the �eld 1D lists with the �eld data Ψ(I) into another,

say Ψ̂(I), where each element corresponds to a speci�c spatial frequency. According to

the documentation of Cu�t, the relation between true index of the list I and the corre-

sponding spatial frequency is given computing (j, k, l) and then using the correspondence

formulas (here shown for kx but the same is extended to the other dimensions)

kx =


2πj
Nx∆x

, for 0 ≤ j ≤ Nx

2

2π(j−Nx)
Nx∆x

, for Nx

2
< j < Nx

allows us to compute the Laplacian of the �eld and then computing the linear step

using expression (2.68).

The second stage of the code is basically a loop which operates consecutive linear and

nonlinear steps of the SSFM on the �eld data and is depicted in �gure . However, it

should be noticed that these steps are grouped (blocks) into sequences of about a few

hundred steps (steps per block) during which no data is registered in the hard disk. As

explained before, the transference of data from the GPU to the disk is time consuming

and if done after each step it would eat away the performance of doing parallel computing.

Also, the data on GPU cannot be transferred directly to the hard disk. Rather, it is

�rst copied to the RAM of the host and then it undergoes some simple processing in

the CPU. Namely, the �eld intensity and phase are computed from the complex �eld
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amplitude pro�le. Only then, the data is transferred from the RAM to the hard disk.

Together, the computation of �eld intensity and phase and the transfer of the data from

the RAM to the hard disk, constitute a very slow process. This would kill some of the

performance of the GPU code so a new feature was added to GASE, allowing to perform

this operations in the CPU while GPU is already and simultaneously running the next

step of the SSFM. It is important, but not mandatory, to choose sequences of SSFM

steps su�ciently long to give time for the CPU to �nish its task, but short enough to

allow a good insight of the evolution of the �eld. As a result of using the CPU for part of

the workload, the GPU is relieved from part of the calculations and from latency times

during data storage, resulting in faster computing processes as a whole. In fact, this is

a good example of heterogeneous computing where all the resources of the machines are

used to promote overall e�ciency.

3.6.3 Code features

Before ending this chapter it is important to make a synthesis of the capabilities of GASE.

Therefore, summarizing all the work developed, GASE is currently able to perform

integrations of any given GNLSE in (1+1)-d, (2+1)-d and (2+1+1)-d geometry, with

any user given initial condition. The nonlinearities are chosen by the user and might be

of arbitrary power and can be either a constant number or a spatial distribution. The

nonlinearities can also be given by a function to have a dependance on the propagation

distance.

All of these systems can be simulated in a simulation box either using periodic, re-

�ective or absorbing boundary conditions. Moreover, there is also a recent and still

under development, feature that allows the simulation of two coupled GNLSE. There-

fore, GASE is a powerful tool and we believe it to be ready to investigate the majority

of the most state-of-the-art problems in solitons and in GNLSE subject.

3.7 Concluding remarks

In the beginning of this chapter we have introduced a problem and conclude that simu-

lating such system would imply very high computational running times, which make the

problem very hard to investigate. We proceed trying to develop a new tool to address

the problem and presented the GPUs as a recent technology that could be useful for

such systems.
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Figure 3.4: Integration routines for both versions of the solver. Figure a) shows the
structure of the evolution routine for GASE, where it is possible to see the
additional memory transfer needed but also the parallel structure of compu-
tations running both in CPU and GPU. Figure b) describes the integration
procedure for the CPU version of the solver.
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After a small discussion on GPU computing framework, we described succinctly the

structure of GASE, the GNLSE solver based on GPU computing developed during this

dissertation. Full details were not given as this description is intended to be simple to

the reader, avoiding to enter in the complicated world of CUDA programming.

At the end of this chapter an obvious question arises: what is the speedup, if any at

all, that GASE can achieve?

To answer the question we recover the initial problem introduced at the begin of the

chapter. The propagation of a supergaussian of orderm = 1.9 with parameters described

in section 2.4.1 was done using GASE. In conformity with the initial description of the

problem, shown in �gure (3.1), we choose a simulation box with limits [0, 120]× [0, 120]

. Also, the center hole has a radius of 2.4 and refractive index n = 0. After some initial

numerical tests we found that the system could be solved in single precision using an

integration step of h = 0.02. The total number of integration steps used is 100 000.

Figure 3.5: Sequence a)-d) shows a collision of a supergaussian state with velocity µ =
0.3 with a hole of radius 2.4. The light state emerges as two smaller and
low intensity beams after the scattering. (Pdf version only - click twice on
sub-�gure a) for a small clip of the simulation)

A series of simulations were performed and results are presented in �gures (3.5 -

3.9). The physics of the results are interesting as they resemble a collision of a drop

of liquid with a circular object, which is not unexpected given the liquid behavior of

high power supergaussian states [58]. Also, the results change depending on the initial

velocity and the hole radius, and a plethora of di�erent behaviors is achieved. For the

initial hole radius, a soliton with velocity µ = 0.15 rebound on the hole, but with higher

velocity, such as µ = 0.3 and µ = 0.5, is decomposed in two smaller and lower intensity

light beams. Diminishing the hole radius to 2.0, a light beam with a velocity µ = 0.3

is momentarily divided into two low power light beams but regroup as one after the

collision with the hole. A smaller hole of 1.0 seems even to not a�ect the propagation.

These results are interesting but are not our main goal in dissertation. Instead, they
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illustrate the power of the developed GNLSE solver.

As a matter of fact, we have not performed only the 5 presented simulations but

a series of simulations that, including the earlier investigations and those which were

wrongly set up, took more than one day to run in our computer. An initial comparison

between GPU and CPU versions of the solver show that GASE runs the problem almost

100 times faster than the CPU version. The conclusion is obvious: if we had chosen to

investigate this problem in a normal CPU then it would have taken almost 100 days, a

third of the duration of this dissertation.

But how fast can we go and for which problems? The answer is addressed in the next

chapter, where we perform the benchmarking of GASE.

Figure 3.6: Sequence a)-d) shows a collision of a supergaussian state with velocity µ =
0.5 with a hole of radius 2.4. The light state emerges as two smaller and low
intensity beams after the scattering, with a di�erent angle than the situation
with velocity µ = 0.3. (Pdf version only - click twice on sub-�gure a) for a
small clip of the simulation)

Figure 3.7: Sequence a)-d) shows a collision of a supergaussian state with velocity µ =
0.15 with a hole of radius 2.4. The light state collides and is re�ected by the
hole. (Pdf version only - click twice on sub-�gure a) for a small clip of the
simulation)

52





3.7. CONCLUDING REMARKS

Figure 3.8: Sequence a)-d) shows a collision of a supergaussian state with velocity µ =
0.3 with a hole of radius 2.0. The light state after an intermediate division
in two light states collapses again in one high power state. (Pdf version only
- click twice on sub-�gure a) for a clip of the simulation, where can also be
seen that the state became trapped between two consecutive holes, that we
simulate in the same box using periodic conditions)

Figure 3.9: Sequence a)-d) shows a collision of a supergaussian state with velocity µ =
0.3 with a hole of radius 1.0. The light state emerges almost as if not been
scattered. (Pdf version only - click twice on sub-�gure a) for a small clip of
the simulation)
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4 Benchmark of GASE

During the last chapter the implementation of GASE and the features and speci�cations

of the code were succinctly described. This chapter is focused on testing and benchmark-

ing of the code, analyzing the obtained speedups in comparison with the CN algorithm

and with CPU-based version of the code. These results, that are the central and most

critical results of this dissertation, show that the GPU is many times faster than the

CPU version of the code, which demonstrates the utility and e�ciency of the GASE,

especially for multidimensional and complex systems.

4.1 Validation of the method

A crucial step in the development of numerical codes for physical simulations is their

validation. The most direct methodology is to use the codes to simulate cases where

there are known analytical solutions and compare them. As discussed in chapter 2, only

the (1+1)-d NLSE admits analytical solutions using IST method, so our accuracy tests

are restricted to solitons in Kerr media. The soliton solutions of the NLSE for this

system have the form

ψ(x, z) = 2νsech [2ν (x− x̄0 − µz)] exp {iµ (x− x̄0) + iδ(z)}

δ(z) = (2ν2 − µ2/2)z + δ0, (4.1)

where ν is the amplitude, x̄0 is the initial position of the centroid of the �eld distribution

ψ, µ is the transverse velocity and δ0 is the initial phase of the soliton. In order to analyze

the accuracy of the simulations, the relative error can be computed

i2 =

´∞
−∞ |ψ(x, zfinal)− ψn(x, zfinal)|2dx´∞

−∞ |ψn(x, zfinal)|2dx
,

where ψn and ψ are the numerical and analytical solutions of equation (2.1) respectively.

The code was validated considering the evolution of the solitons with di�erent initial
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Figure 4.1: Initial conditions (a)) and analytical �nal state at zfinal = 100 (b)) of the
high power - dashed line - and low power - solid line - solitons.

conditions, as shown in �gure (4.1). The �rst is a low power soliton with ν = 0.3 while

the second is a high power soliton with ν = 1. Both have a small initial velocity µ = 0.05

and were initially centered at x = 20. The simulation box corresponds to x ∈ [0, 40] and

is discretized in a grid of N points. The evolution is computed using an integration step

h until reaching the �nal propagation distance zfinal = 100, where the data is retrieved

to hard disk in order to perform the error analysis.

In table (4.1) are presented the numerical errors as a function of the spatial discretiza-

tion along the x dimension, introduced by the variation of the number of points N of

the simulation grid. It is shown that, the case of low power soliton needs lower spatial

de�nition for getting the same accuracy as the high power soliton, which is explained by

the steeper variation in amplitude of the second soliton. When the number of points is

N = 28 or bigger, i.e., spatial discretization around ∆x . 0.2, we obtained very accurate

results for both solitons.

Using a grid with N = 28 points, the in�uence of integration step h in the accuracy of

simulations can be investigated. Results are presented in table (4.2) and show again that

the higher power soliton requires a smaller integration step for same accuracy results.

It is then shown that optimal spatial discretization is problem dependent, but that for

solitons with similar powers to those considered, good results can be obtained using a

spatial discretization with step ∆x = 0.2. Optimal integration step h is also dependent

on the problem and must be investigated case by case, comparing the results obtained

to those expected.

The results presented in this section are quite simple and might seem accessory but
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N i2 (ν = 0.3) i2 (ν = 1)

25 0.016 1.98
26 1.5e-8 1.97
27 1.4e-8 0.11
28 1.4e-8 1.9e-8
29 1.4e-8 1.9e-8
210 1.4e-8 1.9e-8
211 1.4e-8 1.9e-8
212 1.4e-8 1.9e-8

Table 4.1: Error analysis for the simulations with �xed integration step h = 0.01 and
variable number of points, which introduces a variable discretization ∆x.

h i2 (ν = 0.3) i2 (ν = 1)

1.0 0.00025 1.6
0.5 6.4e-6 1.4
0.1 1.9e-8 0.9
0.05 1.3e-8 0.04
0.01 1.4e-8 1.8e-8

Table 4.2: Error analysis for the simulations with �xed number of points N = 28 and
variable integration step h.

they are still important as they constitute a validation of the method and the code,

showing that GASE is accurate. Also, the information of tables (4.1) and (4.2) allows

us to have a prediction of the necessary discretization and integration step for future

simulations.

4.2 Benchmark of the method: SSFM versus CN

In chapters 1 and 2 it was mentioned that SSFM usually outperforms the CN algorithm

for majority of simulations of the GNLSE. Having access to a code developed by Paulo

Alcino, a GPU version of the CN scheme, it was possible to do a direct comparison of

both accuracy and speedups performances of the two algorithms. The test simulation

is done for the (1+1)-d NLSE, similar to that performed in last section, with soliton

amplitude ν = 0.3 but with �nal propagation distance zfinal = 1000. The simulations

were performed in a simulation box with x ∈ [0, 40] described by a grid of N = 28 points.

Results of computational runs are presented in table (4.3) for various integration steps

h. Direct analysis shows that not only SSFM is far more accurate than CN, allowing
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h i2 SSFM i2 CN time CN (s) time SSFM (s)

0.1 1.9e-8 0.8 0.5 0.4
0.05 1.3e-8 0.8 1.0 0.9
0.01 1.4e-8 1.8e-2 6.0 2.0
0.005 1.0e-8 2.3e-3 64.1 5.1
0.001 1.0e-8 1.0e-4 132.6 28.1

Table 4.3: Accuracy and performance comparison between GASE solver, based on
SSFM, and the CN solver. It can be easily seen that GASE outperforms
in every aspect the CN method.

to carry out simulations with bigger integration steps and thus reduced computational

times, but also that the code developed is faster than the CN code even for the same

integration step, contrary to what was expected [2]. This might be related either with

the low performance of iterative methods in GPUs comparing to Fourier transforms, or

with implementation problems in the CN code.

Also, during early investigations, it was noted that CN algorithm is neither conser-

vative nor reliable, as the convergence of the solution is di�cult and relies on the right

choice of an iterator. Then, it can be concluded that SSFM is the adequate choice

between the two of them for a high performance solver of the GNLSE using GPUs.

4.3 Benchmark of the code: GPU versus CPU

After some initial tests, the attention is now focused on comparing GASE with the CPU

version of the same code. Before advancing, the methodology used must be discussed. In

this section we compare results for computational times obtained in the desktop GPU,

GTX 660 Ti, the laptop GPU, GT 640M, and the desktop CPU, Intel I7 3770K, with

speci�cations given in table (4.4). With these results we compute the speedup of GASE

comparing the performance of each GPU with the CPU running time. Speedup tests

were done for (1+1)-d, (2+1)-d and (2+1+1)-d systems. The (1+1)-d tests were done

in a simple cubic nonlinear media using sech-shaped solitons. For the (2+1)-d and the

(2+1+1)-d case were used supergaussian solitons as approximate stable soliton solutions.

To avoid the soliton collapse for high dimensions it was considered that the media also

has a quintic nonlinearity.
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Table 4.4: Speci�cations of both the two GPUs and the CPU used during the bench-
marks.

4.3.1 (1+1)-d speedup results

For the (1+1)-d results we ran a series of simulations of bright sech-shaped soliton, equal

to the one used in section 4.1. The �nal propagation distance is also ztotal = 1000 and the

simulation box has a variable number of points N with constant spatial discretization

∆x = 0.2, which de�nes the limits of the simulation box. The solution is only retrieved to

the hard disk at the �nal propagation distance, which is not the usual situation since in

most cases it is important to keep track of the evolution of the solution at intermediate

integration steps. However, for performance testing this is not necessary. Also, the

results obtained constitute a lower bound to performance speedup of GASE relative to

other codes since it bene�ts from the improved performance in managing the storage of

data to disk, as discussed in section 3.6.2.

Computational running times and speedups for GPU and CPU versions of the code

are shown in �gure (4.2) and table (4.5). For keeping the computational times under

control, di�erent integration steps h were chosen and consequently di�erent number of

total integration steps were performed for obtaining the same �nal propagation distance.

Then, for comparing the computational times, the variable time per step, that is just

the total computational time for each simulation divided by the total number of steps

performed, is introduced. Results obtained show increasing speedup with increasing

number of points, with best results showing a speedup of 35 for N = 217 . Also, even

the low end laptop GPU still outperforms the CPU, with a speedup factor over 7 for

su�ciently large systems.

To understand the implications of the speedups, imagine that we need to de�ne a

big simulation box with x ∈ [0, 830000]. With a ∆x ≈ 0.2 discretization, at least

a grid of N = 222 points is needed. Table (4.5) shows that such simulation runs in

48.4 seconds in the GPU, while it takes more than 26 minutes to run in the CPU. To
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Figure 4.2: Single (top) and Double (bottom) precision benchmarks for simulations of
the (1+1)-d NLSE, with the results for computational time per step (left)
and the corresponding speedup in comparison with the CPU version of the
code (right).
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Number of Steps h N GPU (s) CPU (s) Speedup

100 000 0.01 28 3.4 6.2 1.8
10 000 0.1 212 0.8 10.8 13.5
1 000 1.0 218 2.8 82.1 29.3
1 000 1.0 222 48.4 1575.6 32.5

Table 4.5: A collection of results for simulation times and speedup of the solver for the
(1+1)-d NLSE using double precision, for both GASE (running in the desktop
GPU) and the CPU-based version of the solver.

understand the performance of this code in comparison with another code written in

a scripting language, we developed a similar version of the code in Python. For the

same simulation, Python took more than 11 days, more than 20 000 times slower than

our GASE code, which provides a demonstration that Ron Caplan's NLSEmagic [12] is

strongly limited by using a scripting language.

It is noticeable that the performance when using double precision is reduced to less

than a half when compared with single precision performance. This was expected but still

good speedup results are obtained. Single performance can be used for some problems

but should be used carefully, and only after being sure that results obtained are the same

to those obtained using double precision. Simulations involving many integrations steps

should be done using double precision, in order to keep numerical errors under control.

4.3.2 (2+1)-d speedup results

For the (2+1)-d speedup tests we choose to run a simulation of a cubic-quintic medium

described by the GNLSE of equation (2.2) with F (|ψ|2) = |ψ|2 − |ψ|4. For the initial

condition, it is used a supergaussian of order m = 1, with parameters and form given by

the equations introduced in section (2.4.1). The �nal propagation distance is considered

ztotal = 10 and the integration step is now �xed at h = 0.01. The simulation box has

a constant spatial discretization ∆x = ∆y = 0.2 and is de�ned over a grid of Nx × Ny

points, corresponding to the number of the mesh points in the x and y dimension,

respectively. Again, speedup results are analyzed with the help of a time per step

variable, as done for the (1+1)-d case. Running times and speedup results are shown

in �gure (4.3) and table (4.6) and again signi�cant speedups were obtained, reaching in

double precision a top speedup factor of just over 40. For example, for a computational

grid with N = 211×211 points, GPU took just one minute to solve the system while CPU

took more than 40 minutes. If we consider a simulation that took a day to solve in GPU
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Figure 4.3: Double (top) and single (bottom) precision benchmarks for simulations of the
(2+1)-d GNLSE for a cubic-quintic media, with the results for computational
time per step (left) and the corresponding speedup in comparison with the
CPU version of the code (right).

- just consider for example the same mesh and �nal propagation time of ztotal = 14400 -

solving in the CPU will took more than one month, which is a prohibitive duration for

the majority of research.

It is important to note that these results are even better than the (1+1)-d case. This

is related to the fact that now we consider two nonlinear terms and the system is then

more complex. This becomes more clear with the results of �gure (4.4), corresponding

to the same initial value problem but now solved in a simulation box with boundary

conditions as introduced in section 2.5.3. For this it is used an absorbing potential

Va = (1 + tanh (r − L)), with L the limits of the simulation box . Speedup factors for

this problem show a top value of over 80 which is really signi�cative.
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Figure 4.4: Single precision benchmarks for simulations of the (2+1)-d GNLSE for a
cubic-quintic media with absorbing boundaries, with the results for compu-
tational time per step (left) and the corresponding speedup in comparison
with the CPU version of the code (right).

Number of Steps h N GPU (s) CPU (s) Speedup

1 000 0.01 28 × 28 1.1 34.1 31.0
1 000 0.01 29 × 29 3.8 142.9 37.6
1 000 0.01 210 × 210 14.7 587.5 39.9
1 000 0.01 211 × 211 61.0 2506.5 41.1

Table 4.6: A collection of results for simulation times and speedup of the solver for the
(2+1)-d GNLSE for a cubic-quintic media, using double precision, for both
GASE (running in the desktop GPU) and the CPU-based version of the solver.

As obtained for (1+1)-d, �gure (4.3) shows that single precision simulations are twice

faster than double precision, with overwhelming speedup factor of almost 80. In (2+1)-d

cases is common to be interested in evolving the system much less steps than the (1+1)-d

problems. Therefore, single precision can be used for some cases but again, this must

be done with caution.

4.3.3 (2+1+1)-d speedup results

For the three dimensional simulations, or as called before, the (2+1+1)-d GNLSE, we

use a supergaussian state of orderm = 1 as one in the last section. The �nal propagation

distance is considered zfinal = 10 and the integration step is �xed as h = 0.01. We use

the discretization of the space as before, ∆x = ∆y = ∆t = 0.2 and de�ne a simulation

box represented by the mesh Nx ×Ny ×Nt.
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Figure 4.5: Double (top) and single (bottom) precision benchmarks for simulations of
the (2+1+1)-d GNLSE for a cubic-quintic media, with the results for com-
putational time per step (left) and the corresponding speedup in comparison
with the CPU version of the code (right).
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Number of Steps h N GPU (s) CPU (s) Speedup

1 000 0.01 25 × 25 × 25 0.7 16.4 23.4
1 000 0.01 26 × 26 × 26 3.7 133.5 36.1
1 000 0.01 27 × 27 × 27 29.8 1112.7 37.3

Table 4.7: A collection of results for simulation times and speedup of the solver for the
(2+1+1)-d GNLSE for a cubic-quintic media, using double precision, for both
GASE (running in the desktop GPU) and the CPU-based version of the solver.

Results for speedups compared with serial CPU performances are shown in �gure (4.5)

and table (4.7). It can be observed that speedups are slight smaller than those obtained

for (2+1)-d case, which is possibly related with the lower performances of the GPU for

computing Fourier transforms in three dimensions. Still, a considerable speedup factor

of over 35 is obtained for the larger simulation boxes. For single precision, speedup

factor is almost twice of that obtained for the double precision, which as said in sections

before, was already expected.

4.4 Concluding remarks

Along this chapter we presented the tests done to validate the GNLSE solver devel-

oped during this dissertation - GASE. We started by comparing the results obtained

with GASE with the exact solution, in situations where an analytical solution exists.

Afterward, we proceed to a series of tests intended to benchmark the performance of

GASE in comparison with the CPU version developed. We have obtained maximum

speedups of around 80 for single precision and around 40 for double precision. Also

we have observed that increasing the dimensionality of the system or the complexity

leads to a larger speedup factor. Therefore, the results of this chapter are important

as they demonstrate the realization of the goal of this dissertation: the development of

a high performance GNLSE solver, capable of addressing e�ciently problems in mul-

tidimensional or complex systems, using only low-cost computers and based on GPU

computing.
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5 Case study 1: Lightons: phonons

with Light

In the present and the following chapter we present two case studies used to evaluate the

potential of our implementation of a GNLSE solver based on GPU computing. These

case studies have not been fully explored in terms of scienti�c analysis for two reasons.

First, because the main objective of this dissertation is the development of a GPU based

GNLSE solver, which is by itself very challenging and required much e�ort. Secondly,

each of these topics can constitute a subject of a master thesis on their own. However,

we already present many and interesting new results.

In this chapter we analyze a chain of interacting solitons which can support collective

excitations similar to phonons in chains of masses. This problem is exceptionally di�cult

to address using conventional SSFM implemented on a single CPU due mainly to the

large number of discretization points and integration steps required to simulate several

dozens of solitons and investigate the continuous limit of this excitations. Moreover,

we also present results for (2+1)-d chains of solitons, not just (1+1)-d, which truly

demonstrate the potential of GPU computing.

5.1 Motivation

At a fundamental point of view, soliton appear as stable solution of nonlinear wave

equations, such as the Nonlinear Schrodinger equation (NLSE), balancing wave disper-

sion with nonlinear wave interaction, and resulting in a coherent wave package that can

behave both like a particle and a wave.

In some sense, solitons bridge the gap between waves and particles. Being a wave

phenomenon in its fundamental aspects, solitons can behave like a particle by avoiding

the e�ects of dispersion and keeping most of its intensity con�ned to a small region of

space. Also, like particles, in some situations they can scatter each other as if they where

solid blocks of light.
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CHAPTER 5. CASE STUDY 1: LIGHTONS: PHONONS WITH LIGHT

Just as waves can exhibit particle like behavior, particles can also support waves, such

as mechanical waves. For example, a chain of interacting particles can display collective

oscillatory motions which depend on the nature of the interaction forces. Elastic linear

interaction allows small displacements of the particles from their equilibrium positions

to form mechanical waves, known as phonons, that propagate throughout the chain. As

waves, phonons can not only propagate but also superpose and interfere.

From this duality, where nonlinear wave packages display particle behavior and par-

ticles can support waves, arises a question: can solitons aligned in a chain support

mechanical waves similar to phonons?

In this chapter, we focus our attention in the collective oscillations of a 1-dimensional

chain of N optical solitons, supported by a medium with a cubic nonlinearity as described

by the NLSE. We investigate the nature of these oscillations using GASE and extend

the models existing in the literature not only by identifying its limitations but also by

presenting illustrations of their extension to (2+1)-d systems.

5.2 Physical model

The evolution of optical solitons in a media with cubic non-linearity is governed by the

(1+1)-dimensional NLSE

i
∂ψ

∂z
+

1

2

∂2ψ

∂x2
+ |ψ|2 ψ = 0 (5.1)

where z is the propagation distance and x is coordinate along the transverse direction.

The single soliton solution for this equation is

ψj(x, z) = 2νjsech {2νj (x− x̄j)} exp {i2µj (x− x̄j) + iδj} (5.2)

where the parameters νj, x̄j, µj, and δj refer to the amplitude, the position, the frequency

and the phase of the soliton, respectively.

We consider the limit of large distance and small overlap between consecutive solitons,

where the N-soliton solution for the equation (5.1) can be given as a sum of N single

soliton solutions

ψ(x, z) =
N∑
j=1

ψj(x, z) (5.3)

When replacing (5.3) into equation (5.1) it becomes clear that the nonlinear term is

responsible for the interaction between solitons. To solve the resulting equation, we use

an ansatz and separate equation (5.1) into the following N coupled equations, one for
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each single soliton:

i
∂ψj
∂z

+
1

2

∂2ψj
∂x2

+ |ψj|2 ψj = −Rj [ψ] (5.4)

It is simple to see that the sum of the solutions of each of these equations is a solution

of equation (5.1). Each of these equations is just a NLSE with a small perturbation

Rj associated to solitonic interaction. Considering that only �rst neighbors can interact

and expanding the �rst order in the overlap O
(
ψjψ

∗
j+1, ψjψ

∗
j−1

)
we get

Rj [ψ] = 2 |ψj|2 (ψj+1 + ψj−1) + ψ2
j

(
ψ∗j+1 + ψ∗j−1

)
(5.5)

The initial problem is now reduced to a form which is suitable to be analyzed using a

quasiparticle approach which results in the following evolution equations for the param-

eters of each j-th soliton[81]

dµj
dz

= 16ν3 [cos (φj+1,j) exp (−∆j,j+1)− cos (φj−1,j) exp (−∆j−1,j)] (5.6)

dx̄j
dz

= 2µj − 4ν [sin (φj+1,j) exp (−∆j,j+1)− sin (φj−1,j) exp (−∆j−1,j)] (5.7)

dδj
dz

= 2
(
ν2 + µ2

j

)
+ 2µ

(
dx̄j
dz
− 2µj

)
+ (5.8)

+24ν2 [cos (φj+1,j) exp (−∆j,j+1) + cos (φj−1,j) exp (−∆j−1,j)]

Here φj,l = 2µ (x̄l − x̄j) + Ψj,l is the complex phase between solitons, with Ψj,l = δj − δl,
the quantity ∆j,l = 2ν |x̄l − x̄j| is the spacing between two solitons and ν and µ are

the mean values for the amplitude and frequency, respectively. The derivation of these

equations takes into account the assumptions that the overlap is small, i.e. ν |x̄l − x̄j| �
1, and that the solitons have similar frequencies and amplitudes, i.e. |µj − µl| � µ,

|νj − νl| � ν. Also it is assumed that the amplitude νj of each soliton is approximately

constant, a fact which occurs in the adiabatic limit and is supported by small amplitude

variation observed in numerical simulations.

We also adopt a conjecture commonly made [81], where it is assumed that if the

system is initialized with consecutive solitons having a phase di�erence of 0 or π, this

di�erence remains constant during the motion of the solitons. This assumption leads us
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to the Toda Lattice Equation (TLE) [80]

∂2uj
∂z2

= 32 cos (Ψ) ν3 exp (−2ν∆) {exp (−2ν (uj+1 − uj))− exp (−2ν (uj − uj−1))}
(5.9)

where uj = x̄j−x0
j is the displacement of the j−th soliton from its position of equilibrium

x0
j . The phase di�erence between consecutive solitons is represented by Ψ and the

equilibrium lattice spacing is ∆ = x0
j+1−x0

j = L/N with [0, L] the limits of the simulation

box. We impose the later condition considering that our problem has periodic boundary

conditions and that each soliton is at a stable point of the lattice.

For small displacements we can expand the TLE as

∂2uj
∂z2

' C (uj+1 − 2uj + uj−1) +O
(
u2
)

(5.10)

with the constant C given by C = −64 cos (Ψ) ν4 exp (−2ν∆). This equation resembles

the equation of motion of phonons which have the traveling waves solution

uj =
∑
k

Ake
−i(kx0j−ωkz) (5.11)

obeying the dispersion relation

ωk =

√
2C

M
(1− cos k∆) (5.12)

with M = 1, that implies that C must be positive, which happens for Ψ = π.

It is important to discuss the validity of the assumption that the relative phase be-

tween consecutive solitons Ψ remains constant throughout the evolution of the system.

Equation (5.8) implies that the phase of a moving soliton must change. Since the motion

of two consecutive solitons is di�erent then, their phase di�erence cannot remain con-

stant. Therefore equation (5.9) and (5.8) are inconsistent[81], fact also stated by Novoa

et. al [63] which lead them to consider an analog ideal binary system that eliminates

the phase di�erence dependence �xing the interaction between consecutive solitons. Due

to these questions and also to the nonlinearity of the TLE, it seems odd to expect a

phonon-like behavior with traveling waves as normal modes. However, even knowing

that the normal modes purposed above cannot describe perfectly the dynamics of the

system, we expect that for small displacements and short evolutions the solitons can

support collective oscillations. With the evolution of the system, there is an accumula-
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tion of phase di�erence between solitons, which changes the nature of their interaction,

resulting in a distortion of the phonon-like modes and ultimately destroying them.

5.3 Numerical study of the normal modes in a soliton

chain

Several simulations were made of a chain of N = 40 solitons in a one dimensional domain

with a cubic nonlinearity. The initial �eld condition provided was:

v =
N∑
j=1

2νsech
{

2ν
(
x− x0

j − uj
)}
eijπ (5.13)

where x0
j =

(
j + 1

2

)
∆. The uj are chosen as uj = sin (kj∆), where k = 2πn/N is the

wave number for this wave. Initializing the soliton frequencies as µj = 0, we expect

solutions of the type of standing waves, which lead us to a dispersion relation ω(k) that

could be compared with the theoretical dispersion de�ned in equation (5.12).

The GPU used is a standard GeForce GTX 660 Ti. In all 1-dimensional simulations

reported in the next section will be used the values ∆ = 20 and ν = 0.35 for the soliton

parameters. The spatial discretization used was ∆x = 800/212 and the integration step

was h = 0.02. The typical simulation time is about 11 minutes, being more than 13

times faster than the CPU versions.

Figure (5.1) shows the results of the simulations for standing waves in the solitonic

chain with wave number equal to k = 2πn/N , n = 3 and n = 15. In the insets of �gure

(5.1) we can identify in more detail the oscillatory and wave-like motion of the solitons.

We have chosen small oscillation amplitudes A = 0.5, compared to the distance between

solitons, to satisfy the validity conditions of the model described in section 5.2.

From the results presented in �gure (5.1) and to compare them with the model dis-

cussed in the previous section, we determine numerically the position of the geometric

center of each soliton at a given integration step. In �gure (5.2) we can compare the

motion of a soliton observed in the simulations with that predicted by the Toda model.

The match is closer for larger n where the phonon-like motion is more stable. In both

cases, the amplitude of the oscillation increases during the evolution, implying that the

system is not really undergoing a periodic motion. However, the characteristic time of

the oscillation, or pseudo-period, de�ned as the period of return of the soliton to the

position of equilibrium u = 0, remains stable throughout the simulation. For n = 3, the
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CHAPTER 5. CASE STUDY 1: LIGHTONS: PHONONS WITH LIGHT

Figure 5.1: Evolution of the soliton chain for n = 3 (a)) and n = 15 (b)). Figures a) and
b) show the intensity pro�le evolution where we can identify the phonon-like
oscillations.
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Figure 5.2: Evolution of the displacement of the second soliton of the chain from the
right, for n = 3 (a)) and n = 15 (c)), comparing in detail the displacement
obtained from the simulations (solid line) with the prediction of TLE (dashed
line). Figures b) and d) display the Fourier transform of the displacements
wave (numerical results with solid line, TLE with dashed line), where we can
identify the generation of new frequencies for lower n.
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nonlinear character of equation (5.9) is stronger and leads to the generation of higher

harmonics in the spectrum of the motion of the soliton, as seen in �gure (5.2b)).

Figure 5.3: Error analysis of the displacement wave for a soliton between the numerical
simulation and TLE model. Solid line is the absolute value of displacement
error, |u2−uTLE2 |, dashed and dash-point line is the absolute value of error for
phase di�erence between consecutive solitons and the prediction |Ψ2,3 − π|,
|Ψ1,2 − π| respectively.

Figure (5.3) allows to verify the limitation of the TLE model by comparing the absolute

di�erence between the displacement predicted and the calculated in the simulations,

with the deviation of the phase di�erence between consecutive solitons from its initial

value π. Clearly there is a good correlation which indicates the connection between the

accumulation of error in phase di�erence and degradation of the phonon-like oscillations.

Figure 5.4: Dispersion relation computed for a chain of N = 40 solitons (circular mark-
ers) and comparison with the TLE model (solid line).
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Simulating standing waves for an integer parameter n ∈]0, 20[ we can obtain the right-

side branch of the dispersion relation, shown in �gure (5.4). As we can see, the data

obtained from the pseudo-period values for each wave number leads to the expected

theoretical dispersion, which con�rms again the possibility of having standing waves

propagating in chains of solitons. Similar results can be obtained for chains with as

many solitons as wanted.

5.3.1 Other types of solutions

In the previous section we presented how a chain of solitons can sustain phonon-like

excitations. Unlike the predictions of the model, the oscillations associated with soliton

motion are not stable, but appear to reveal some type of feedback that yield increasing

oscillation amplitudes. As a result, after some integration steps, the amplitude of the

oscillation surpasses the mean distance between solitons and the chain collapses as soliton

scatter each other, as seen in �gure (5.5). This suggests the existence of a second regime,

distinct from the spring-like interacting that supports soliton oscillations, where the

nature of their interaction is closer to collisions.

Figure 5.5: Collapse of the standing wave for displacements with n = 15. The feedback
process increases the amplitude of the oscillation and when it surpasses the
mean separation between solitons, solitons start to collide and the phonon-
like behavior is lost.

To investigate this, we look into the collisional response of the chain, by considering it

in equilibrium con�guration where all the solitons are still equally apart. Then we send

one soliton with a given velocity against the chain of solitons. To prevent the solitons

of the chain from escaping, a weak linear potential of the form
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Figure 5.6: Evolution of the collision of a soliton with velocity µ = 0.2 with a soliton
chain with 4 solitons initially separated by ∆ = 10. The trapping potential
allows to obtain results that resemble the Newton's cradle.

V (x) = 3× 10−5(x− 100)2

is added to the system.

The results are shown in �gure (5.6). The chain now responds similar to a Newton's

cradle, where each soliton transfers its momentum to the following and replaces it in the

chain. This behavior is closer to a particle than to the mechanical-like waves, previously

observed in the simulation. This appears to suggest that the system can exhibit many

types of behavior, from wave-like to particle-like. This is a result of the nonlinear nature

of the system which allows for distinct types of phenomena.

5.3.2 Soliton chains in (2+1)-d

Finally we show that these e�ects are not limited to soliton chains in (1+1)-d but

can be generalized to higher spatial dimensions. In �gure (5.7) we show a chain in a

(2+1)-dimensional space. Here the spatial solitons are Gaussian shapes supported by a

cubic-quintic media and the early results show that it is possible to propagate energy

and momentum with wave-like phenomena in a chain of solitons.
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5.4 Concluding remarks

We have explored the dynamics of an 1-dimensional chain of optical solitons in a cubic

nonlinear media described by the NLSE. Using perturbative methods we show that

the interaction between consecutive solitons could support wave-like oscillations of the

positions of the optical solitons in the chain. We name these waves lightons: phonons of

light. Numerical simulations show it is possible to create standing wave oscillations in the

considered system that follows a predicted relation of dispersion. For small propagation

distances and displacement amplitudes, the system revealed a controllable sinusoidal

motion for the soliton position which is obtained only with light-light interaction. For

higher amplitudes, the solitons enter a collisional regime and their behavior changes

from a phonon type excitation to something that resembles a Newton cradle.
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Figure 5.7: Evolution of an 1-dimensional chain of 2-dimensional spatial solitons with
∆ = 20.
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6 Case study 2: Soliton-soliton

scattering in (2+1)-d

In the previous chapter we analyzed an example of how the developed GNLSE solver

can be used to study problems with high complexity, speci�cally, with a large number

of solitons. In this chapter we demonstrate the potential of this computing approach in

addressing systems with higher dimensionality. In particular, we study the collisions of

(2+1)-d solitons in the physics of the dynamics in two dimensional plane. Unlike the

case with (1+1)-d collisions, it is possible to study a wide range of collision parameters,

including the impact parameter, the phase di�erence, the initial energies, etc.. We

have chosen to analyze the transition between solid and liquid-light behavior and their

in�uence on the collision dynamics.

6.1 Motivation

The example of the previous chapter illustrated how solitons can have a versatile nature,

exhibiting both wave and particle-like behavior. However, the diversity of soliton behav-

ior extends well beyond that. In systems with higher dimensionality, (2+1)-d or more,

soliton-like solutions of the GNLSE must be supported by a mix of higher nonlinearities,

as discussed in chapter 2.

Depending on the relative global phase of the soliton and type of nonlinear media,

two solitons can scatter each other like rigid bodies, go right through each other like a

wave, or coalesce in a wider soliton, like the coalescence of two droplets of light.

Exploring the dynamics of interacting solitons is a process with major interest in

nonlinear optics. However, most studies have been restricted to the one dimensional

simulations, where the simulations can be performed in a state-of-the-art computer.

Exploring systems with higher dimensions was limited to the use of clusters and super-

computers. The use of GPU computing in GASE allows to explore these situations and

take into account a wider and richer diversity of situations. In this chapter we explore
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the scattering of solitons in cubic-quintic media in (2+1)-d scenarios. As a result, we are

able to explore the interplay between solitons phase, their original velocities and impact

parameters, thus providing a better insight of the physical processes.

6.2 Physical model

The starting point of analysis is again the GNLSE

i
∂ψ

∂z
+

1

2
∇2
⊥ψ + F (|ψ|2)ψ = 0, (6.1)

which describes the evolution of the dimensionless amplitude of a light �eld ψ in a

nonlinear media with properties given by the function F (|ψ|2). Here z is the longitu-

dinal coordinate parallel to the propagation and ∇2
⊥ is the Laplacian in the transverse

directions.

As discussed in chapter 2, for systems with (2+1) or more dimensions it is necessary

to consider special types of nonlinearities for soliton-like solutions is assumed that the

solutions of equation (6.1) can be described by a general soliton solution

q(x, z) = A(z)g[B{x− x̄(z)}] exp(−ik(z){x− x̄(z)}+ iθ(z)), (6.2)

where A, B, g, k, θ,x̄(t) are the amplitude, the width, the shape, the frequency, the

phase and the center of the soliton, respectively. The existence and the dynamics of the

soliton can be then be investigated using variational methods in terms of the variation

of these parameters for speci�c forms of F , corresponding to di�erent nonlinearities.

Media with cubic-quintic nonlinearities are known to support solitons in more than one

dimension and have been extensively studied because they are described by a simple

nonlinear potential of the form F
(
|ψ|2

)
= |ψ|2 − |ψ|4 . In this case, it is possible to

obtain approximate solutions in the form of supergaussians pulses [18], de�ned by

ψ(r, z) = A exp
[
−B2(r − r̄)2m

]
exp (iδz) , (6.3)

where r is the vector with transverse coordinates and m a parameter related to pulse

energy. For the soliton to be stable, these parameters must be mutually related by the

following conditions,
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A =

√(
3

2

)1/m
3

2

m− ln 2

2m− ln 3
(6.4)

B =

(
1

A

√
21/m

Γ(1 + 1/m)

2m− ln 3

ln(4/3)

)−1

(6.5)

δ =
2B2m

Γ(1 + 1/m)

m+ ln(2/3)

ln(4/3)
, (6.6)

expressions derived from those presented in section 2.4.1 and from [18]. As the system

is non integrable, studying the dynamics of the solitons is only possible using either

perturbative methods or numerical simulations. Here, we focus on the numerical simu-

lations because they provide a more direct way of studying the interactions of solitons

in wider range of situations.

6.3 Scattering of colliding (2+1)-dimensional spatial

solitons

We are interested in the computational analysis of two (2+1)-dimensional soliton colli-

sions in the xy plane. The spatial solitons dynamics is described by the cubic-quintic

GNLSE . The solitons have parameter m = 1, and the other parameters set according

to equations (6.4-6.6). In this study, we initialize the solitons with a phase di�erence

δ1 − δ2 = 0 or π and with opposing but equal velocities |k1|, |k2| = k (see �gure (6.1)),

by multiplying the supergaussian shape () by exp (−ik(z){x− x̄(z)}+ iθ(z)).

Figure 6.1: Graphical description of the problem analyzed. Here, impact parameter b
was exaggerated for better comprehension. Simulation box has limits [0, 80]×
[0, 80] and a mesh of N = 210 × 210 points was used.
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The global phase di�erence δ1 − δ2 determines the nature of the interaction between

the two solitons and ultimately their behavior, switching between particle, wave and

liquid-like. As shown in the literature [46], the phase di�erence between solitons de-

termines whether the interaction is attractive or repulsive. In the situations considered

here, the two solitons and their trajectories are completely symmetric (point re�ective

symmetry relative to the origin), therefore their phase di�erence and the character of

their interaction remains constant throughout the simulations. Another relevant pa-

rameter in the soliton-soliton scattering is the angular momentum, which introduces an

e�ective repulsion between the solitons, and is determined by the initial velocity k and

impact parameter b of the solitons. For large impact parameters and large velocities,

the interaction is very weak and both solitons almost are not de�ected from a straight

trajectory, being nearly impossible to classify their behavior. Instead, for small impact

parameters, the interaction is stronger and a wide variety of soliton behaviors can be

observed, as shown in �gure (6.2).

To help understand the di�erent types of phenomena found, we introduce the following

classi�cation of soliton scattering:

• hard soliton scattering occurs for δ1 − δ2 = π, where their interaction is mainly

repulsive and they interact as if they were rigid spheres for high velocities;

• soft soliton scattering occurs for δ1 − δ2 = 0 and the solitons have distinct behav-

iors, dominated by mutual attraction. Soft solitons can exhibit a wide variety of

behaviors, from liquid light (when they coalesce into a single droplet of light) and

�planetary-like�, when they orbit for a few moments around each other. When the

collision velocity is very large, solitons can also destroy each other giving rise to

radiation.

The designation of hard and soft light introduced here follows a trend found in the

literature and originated by several authors, including Michinel et. al [64] who introduced

the concept of liquid light.

In the following sections we describe in more detail the behavior identi�ed in the

simulations.

6.4 Hard soliton scattering

For δ1 − δ2 = π, the two solitons are set to be out-of-phase and their interaction is

strongly repulsive, as seen in �gure (6.2) in sequences (a-j). This is con�rmed in �gure
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Figure 6.2: Typical numerical results for the evolution of two colliding solitons. Sequence
a)-e) shows a collision between two out-of-phase solitons with k1 = 0.2 and
b = 0, sequence f)-j) displays the results for b = 4 and k)-o) for b = 9.
Sequence p)-t) displays the coalescence of two colliding in-phase solitons
with b = 0 and k = 0.3. Sequence u)-y) shows the results for b = 5 and
k = 0.3. Sequence z)-dd) displays the destruction of two colliding in-phase
solitons with b = 0 and k = 0.8.
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(6.3), which shows the dependence of the scattering angle θ (measured as a de�ection of

the original straight trajectory) on the impact parameter.

Figure 6.3: Computational results for the relation between the scattering angle and the
impact parameter, θ(b). This �gure displays the results for colliding out-
of-phase solitons for k = 0.05 (full line with markers), k = 0.2 (dashed line
with markers) and k = 0.3 (pointed line with markers). The full line without
markers shows the hard-sphere limit for a sphere with radius of 6.

The increase of collision velocity further strengths the repulsive nature of the inter-

action but also forces the solitons to come closer to each other. As a result, in this

limit the scattering angle approaches the results predicted by the scattering model for

hard-spheres [45], revealing the particle-like behavior of solitons.

6.5 Soft soliton scattering

For δ1−δ2 = 0, the two solitons are set to be in-phase and their interaction is attractive,

as seen in �gure (6.2) in sequences (k-y). However the anticipated particle-like dynamics

does not hold for small impact parameter as the light pulses tend to coalesce, revealing

a liquid-like behavior of solitons. In �gure (6.4) it is seen that with the increase of the

impact parameter the system undergoes a transition to a particle-like dynamics. For

large impact parameters it is seen that the solitons almost do not interact, and thus the

scattering angle is approximately null. With the decreasing of the impact parameter we

see the expected increase of θ. The peak in �gure (6.4) seems to be related with the

formation of a quasi-stable state with angular momentum.

Unfortunately, the complete analysis of these processes is di�cult since using the
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Figure 6.4: Computational results for the relation between the scattering angle and the
impact parameter, θ(b). This �gure shows the results for colliding in-phase
solitons with k = 0.3 (circles), k = 0.25 (crosses), k = 0.23 (triangles) and
k = 0.2 (squares). Di�erent behaviors are obtained depending on both the
collision velocity and the impact parameter. Shaded region is the zone of
coalescence for k = 0.3, where solitons reveal liquid-like behavior.

basic algorithm of GASE it is impossible to separate the light intensity pertaining to

each soliton. Only the total intensity in each point can be calculated.

To overcome this limitation, we developed a version of GASE algorithm where the

original GNLSE is decomposed into two equations, say

i
∂ψ1

∂z
+

1

2
∇2
⊥ψ1 + F (|ψ|2)ψ1 = 0, (6.7)

i
∂ψ2

∂z
+

1

2
∇2
⊥ψ2 + F (|ψ|2)ψ2 = 0, (6.8)

each describing the evolution of the �eld associated with each soliton. Notice that the

value of F is computed from ψ = ψ1 + ψ2 corresponding to the sum of the �elds of

both solitons. It is trivial to show that if ψ1 and ψ2 satisfy the equations (6.7) and (6.8)

respectively then, ψ = ψ1 + ψ2 satis�es the original GNLSE (6.1).

This upgrade to the original GASE code allows to identify the evolution of each

�eld. Figure (6.5-6.8) shows the results obtained for the scattering of two solitons with

�planetary-like� trajectories. The results show a transfer of intensity between these two

solitons. This suggests that during the interaction, the two solitons exchange energy
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Figure 6.5: Sequence of data values for two coupled �elds showing the collision of two
in-phase solitons for the situation A in the �gure (6.4). (Pdf version only -
click twice on sub-�gure a) for a small clip of the simulation)
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and momentum. The development of this upgrade to the original code was done very

recently and it was not possible to use it extensively to explore and analyze soliton

dynamics. However, the results shown in �gures (6.5-6.8) are illustrative of its potential.

Figure 6.6: Sequence of data values for two coupled �elds showing the collision of two
in-phase solitons for the situation B in the �gure (6.4). (Pdf version only -
click twice on sub-�gure a) for a small clip of the simulation)

6.6 Concluding remarks

The problem of soliton scattering introduced in this chapter appear to be an interesting

and relevant topic of research presenting a wide diversity of phenomena and meriting

a closer investigation that goes beyond the scope of this dissertation. We have chosen

to present the results of our preliminary analysis to demonstrate the potential of GASE

as tool of research in the �eld of soliton and nonlinear optics. As we hope to have

demonstrated, it allows to solve complex and computationally intensive problems, that

otherwise require expensive and massive computational resources. In fact, had we used a

state-of-the-art CPU to solve it using a standard SSFM code, the estimated running time

of the performed simulations would exceed 240 days. Almost as much as the duration of

this dissertation project!. Instead, using GASE, it accounted for only 6 days of running
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Figure 6.7: Sequence of data values for two coupled �elds showing the collision of two
in-phase solitons for the situation C in the �gure (6.4). (Pdf version only -
click twice on sub-�gure a) for a small clip of the simulation)

time.

In the next chapter we discuss the future work, including the development of the topics

of this and the previous chapters, and present our concluding remarks.
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Figure 6.8: Sequence of data values for two coupled �elds showing the collision of two
in-phase solitons for the situation D in the �gure (6.4). (Pdf version only -
click twice on sub-�gure a) for a small clip of the simulation)
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7 Conclusions

The study of systems governed by the GNLSE is an active subject of nonlinear physics.

The majority of the investigation on the GNLSE relies on the use of numerical methods,

as analytical and variational methods often fail to provide solutions. For multidimen-

sional systems and optical lattices, spatial distributions of linear or nonlinear refractive

index, such research can became rather di�cult and ine�cient, as the computational

running times for such problems are too long and can only be solved using modern and

costly supercomputers. Thus, the main goal of the present dissertation is to develop a

high performance numerical solver for the GNLSE, capable of addressing those problems

in normal computers and, through that, provide a basis for future research.

The GPU computing technology is recent, still taking its �rst steps, and relies on

a whole new paradigm of computing, known as heterogeneous computing, to achieve

massive parallel computation. Particularly, GPUs constitute an interesting new tool

for scienti�c computing, as they not only have an incredible computational power and

potential, but also because their evolution is fast as it is fed by the gaming industry,

one of the most powerful industries of the world. This allows to foresee that in the near

future, even higher performances could be obtained.

With this in mind, we developed GASE - GPU Accelerated Soliton Explorer - a solver

of the GNLSE that uses the SSFM and it is based on GPU computing. In fact, this solver

can run in a low-budget desktop or laptop, having only as a �special ingredient� a recent

NVIDIA graphical processing unit. These devices are standard in modern computers

and for a desktop a current high-line GPU costs around 300 euros. It was observed that

the performance obtained by our solver in such low-cost solutions competes with the

usual computer clusters and supercomputers, that costs thousands of euros. Then, the

methodology approached in this dissertation should become increasingly important in

the following years.

However, the development of computational codes for scienti�c purposes using the

GPU could not be done straightforwardly from the old algorithms, numerical methods

and codes used in �normal� CPU computation. Also, the type of parallelism used in
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computer clusters is di�erent, being necessary to re-adapt the numerical tools to work

in GPU. In particular, it must be taken into account in which type of memory the

data is saved in other to avoid possible memory bottlenecks. On the other hand, the

GPU computing belongs to a more general computing paradigm: the heterogeneous

computing. The heterogeneous computing aims to use every resources of a computer

(CPU, GPU and others) to do massive parallel computations. In the GASE, this concept

was used to improve even more the performance of the solver by allocating di�erent jobs

to the CPU and the GPU, having in mind the times associated to the data transfer

between them. This way, all of the resources of the machine are used simultaneously

during the process and yields speedups in excess of 100 when comparing to simulations

run using a top-of-the-line CPU. With the future improvement of these technologies it

is expected that this optimal value of GASE could be even larger.

Besides the performance results of GASE, we should also underline its versatility in the

analysis of physical problems described by the GNLSE. The code is capable of addressing

simulation boxes with 1, 2 and 3 dimensions and the number of sampling points of the

�eld in excess of 223, which allows reasonably large simulation domains. Also, several

types of nonlinearities can be used simultaneously. These include not only quadratic,

cubic, quintic, logarithmic, etc. nonlinearities but also spatial distributions (including

the dependence on the propagation coordinate) of the nonlinear refraction index - called

nonlinear lattices. Basically, any type of nonlinearity could be simulated. We have also

included three types of boundary conditions, namely periodic, re�ective or absorbing

boundary conditions. Finally, in the last stage of the development, we included the

possibility of simulating several �elds satisfying their own GNLSE but coupled to each

other.

The development of the code GASE included extensive testing to validate the numer-

ical accuracy of the results and to benchmark the code in relation to other numerical

approaches: Crank-Nicholson GPU-based solver and CPU SSFM. In all these cases,

GASE was superior in performances. We concluded this dissertation by presenting the

application of GASE to the study of two physical problems.

Although the results obtained in both problems correspond to a preliminary study,

they illustrate the versatility and potential of GASE and GPU computing. Had we

more time and we could have explored both these problems in more depth, as well as

investigate others. In the following section we give a brief overview of future work that

could be developed with the help of GASE.
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7.1 Future work

At the end of this dissertation, there is a multitude of extensions to this work that could

be done. From the point of view of the solver, GASE can be extended to being capable

of addressing the problems with many coupled GNLSE, a feature that can be useful

for problems where the �eld has a vector character. As novices in GPU computing,

we believe that there are still certain optimizations that could be done and lend to an

even faster solver, such as asynchronous memory transfer from the GPU to the CPU or

others. The extension of GASE to work in other GPUs from other manufacturers rather

than NVIDIA can also be done, passing the developed CUDA code to the OPEN CL

language. The extension of GASE to multi-GPU architectures is also another point of

interest.

From the point of view of the study of the GNLSE, there is still plenty of room for

further developments. In fact, as GASE is capable of addressing almost any problem

described by the GNLSE, the solver is ready to tackle a multitude of research problems

in the subject of solitons, either in multidimensional systems or in the case of optical

lattices. As the GNLSE has a certain character of universality, being present in many

�elds of physics, the same solver could also constitute a tool for studying phenomena

in Bose-Einstein condensates, plasma physics and �uid dynamics, among many others.

The solver can also be proven useful in other areas of physics, such as general relativity,

where it can be used to analyze the propagation of gravitational waves, a high nonlinear

type of wave. It is our hope that in the short term GASE will become an important tool

of research in these problems.

7.2 Publications

Conference proceedings

• Nuno A. Silva, M. I. Carvalho, A. Guerreiro, Lightons: Phonons with light, Pro-

ceedings of RIAO/OPTILAS 2013, Porto, Portugal, 2013

• Nuno A. Silva, M. I. Carvalho, A. Guerreiro, Spatial soliton dynamics in cubic-

quintic media, Proceedings of RIAO/OPTILAS 2013,Porto, Portugal, 2013

Poster presentations

• Nuno A. Silva, M. I. Carvalho, A. Guerreiro, Lightons: Phonons with light,

NANOPT 2013, Porto, Portugal, 2013
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• Nuno A. Silva, M. I. Carvalho, A. Guerreiro, Lightons: Phonons with light,

RIAO/OPTILAS 2013, Porto, Portugal, 2013

• Nuno A. Silva, M. I. Carvalho, A. Guerreiro, Spatial soliton dynamics in cubic-

quintic media, RIAO/OPTILAS 2013, Porto, Portugal, 2013
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