
Weierstraß-Institut
für Angewandte Analysis und Stochastik
Leibniz-Institut im Forschungsverbund Berlin e. V.

Preprint ISSN 2198-5855

Numerical methods for accurate description of ultrashort pulses

in optical fibers

Shalva Amiranashvili1, Mindaugas Radziunas1, Uwe Bandelow1,

Raimondas Čiegis2
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Numerical methods for accurate description of ultrashort pulses
in optical fibers

Shalva Amiranashvili, Mindaugas Radziunas, Uwe Bandelow,
Raimondas Čiegis

Abstract

We consider a one-dimensional first-order nonlinear wave equation (the so-called forward
Maxwell equation, FME) that applies to a few-cycle optical pulse propagating along a preferred
direction in a nonlinear medium, e.g., ultrashort pulses in nonlinear fibers. The model is a good ap-
proximation to the standard second-order wave equation under assumption of weak nonlinearity.
We compare FME to the commonly accepted generalized nonlinear Schrödinger equation, which
quantifies the envelope of a quickly oscillating wave field based on the slowly varying envelope
approximation. In our numerical example, we demonstrate that FME, in contrast to the envelope
model, reveals new spectral lines when applied to few-cycle pulses. We analyze and compare
pseudo-spectral numerical schemes employing symmetric splitting for both models. Finally, we
adopt these schemes to a parallel computation and discuss scalability of the parallelization.

1 Introduction

Propagation of short optical pulses in nonlinear fibers is adequately described by the generalized
nonlinear Schrödinger equation (GNLSE), which applies to the pulse envelope [2, 14]. GNLSE is
derived under the slowly varying envelope approximation (SVEA), such that pulse spectrum should be
narrow, as compared to the value of the pulse carrier frequency. For an ultrashort (few-cycle) pulse
or a sequence of short pulses at different frequencies the envelope concept becomes questionable
[42], and, moreover, such an envelope is by no means slow. To follow the evolution of a spectrally
broad wave packet one may equip GNLSE with additional terms (see, e.g., [16]). On the other hand,
in some cases, the description provided by GNLSE becomes even worse after inclusion of additional
terms [33]. An alternative approach is to avoid the use of a pulse envelope and to calculate the optical
field directly. Several so-called short pulse equations, which are propagation models on the level of the
electrical field, have been suggested [24, 31, 38, 8, 5, 27]. These models require special dispersion
laws and in return have a rich analytic structure, e.g., they are either integrable [37, 34] or at least allow
for an analytic description of solitary solutions [27, 39, 4]. Another class of useful field-level models
has been derived for arbitrary dispersion relations [19, 23, 22, 21, 6]. Such equations provide the most
accurate pulse description, but they have to be solved numerically.

Numerical algorithms for the solution of the GNLSE-type problems with most general nonlocal dis-
persion operator attracted recently a lot of attention. Comprehensive reviews on numerical methods
for the GNLSE are available [9, 10], state of the art results for the related numerical splitting-type
schemes are given in [30, 32, 40]. On the other hand, little is known about numerical approaches to
the field-level short pulse equations, which are in the focus of this study.

In what follows we discuss a non-envelope unidirectional forward Maxwell equation (FME, see [19])
model. The latter is suitable for simulation of ultrashort optical pulses and spectrally broad wave pack-
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ets in nonlinear fibers. The model employs unidirectional approximation to a general nonlinear wave
equation; it is a valuable alternative to the common GNLSE, which is less general. Here we present an
exemplary situation where the solution of the GNLSE for the pulse envelope considerably differs from
the solution of the FME, what reveals limitations of the standard GNLSE model and demonstrates the
potential of the FME approach.

The numerical schemes considered in our work are based on results of Ref. [7], where the efficiency
of various numerical solvers of the GNLSE was studied. In the present work, we construct and ap-
ply pseudo-spectral symmetric splitting schemes with specialized approximations of different physical
processes for both, GNLSE and FME models. We also propose an MPI-based parallelization of these
algorithms and analyze the scalability of this parallelization. It is identified that the FFT parallel solver
defines the efficiency of the parallel algorithm in the case of a distributed memory version of the solver.

The paper is organized as follows. In Section 2 we discuss a state of art non-envelope model for sim-
ulation of ultrashort optical pulses in nonlinear fibers. Numerical schemes based on pseudo-spectral
and splitting methods for GNLSE and FME are constructed in Section 3. Example simulations of these
two models and the comparison of the obtained results are performed in Section 4. Parallel versions
of the numerical algorithms are proposed in Section 5. Conclusions are finally presented in Section 6.

2 Mathematical models

2.1 One-dimensional framework

For optical pulses in nonlinear media, the full pulse electric field E(r, t) is often captured by a relatively
simple 1 + 1 dimensional scalar wave equation. In the first instance, this applies to a bulk propagation
of a nonlinear plane wave with linear polarization. For instance, the wave may propagate along Oz
axis such that the only non-vanishing electric and magnetic field components are Ex = E(z, t) and
By = B(z, t). Assuming a typical cubic nonlinear polarization and a non-magnetic medium, pulse
evolution is described by the one-dimensional reduction of the Maxwell equations [14]

∂zE = −∂tB, −∂zH = ∂tD, (1)

with the following material relations for the displacement field D and the magnetic field H ,

D = ε0

(
ε̂E + χ̂(3)[E,E,E]

)
, B = µ0H.

Here ε0 and µ0 are vacuum permeabilities. Equations (1) are combined in a nonlinear wave equation

∂2
zE −

1

c2
∂2
t

(
ε̂E + χ̂(3)[E,E,E]

)
= 0, (2)

where c = (ε0µ0)−1/2 is the speed of light. The operators ε̂ and χ̂(3) describe dispersion and non-
linearity, respectively. Parameter z in the equations above denotes the spatial position at which the
time-dependent fields are observed. In nonlinear optics it is convenient to take z as an evolutional
coordinate [2, 14]. Thus, to close the problem (2) for z ≥ 0, we supply the following initial conditions

E(z, t)|z=0 = E0(t), ∂zE(z, t)|z=0 = E1(t). (3)

The system (1) will be applied to a localized pulse, which vanishes for a fixed z and t → ±∞. Both
electric and magnetic field areas are then preserved in the sense that

∂z

∫ ∞
−∞

E(z, t)dt = 0 and ∂z

∫ ∞
−∞

H(z, t)dt = 0.
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A usual approximation (see discussion in [25]) is that both areas strictly vanish∫ ∞
−∞

E(z, t)dt = 0 and

∫ ∞
−∞

H(z, t)dt = 0, (4)

which is assumed in our paper. In particular, we require that both∫ ∞
−∞

E0(t)dt = 0 and

∫ ∞
−∞

E1(t)dt = 0,

and, therefore,
Ẽ(z, ω)|ω=0 = 0, (5)

where the frequency-domain representation Ẽ(z, ω) is related to the field function E(z, t) through

Ẽ(z, ω) =

∫ ∞
−∞

E(z, t)eiωtdt, E(z, t) =

∫ ∞
−∞

Ẽ(z, ω)e−iωt
dω

2π
.

The dispersion operator ε̂ is a convolution operator. In the frequency domain it is quantified by the
dispersion function ε(ω). If the pulse field is decomposed into Fourier harmonics, the action of ε̂ is
described by [26]

ε̂ e−iωt = ε(ω)e−iωt, ε̂E(z, t) =

∫ ∞
−∞

ε(ω)Ẽ(z, ω)e−iωt
dω

2π
.

The latter expression is more tractable than convolution in the time domain, e.g., for spectrally narrow
pulses.

A priory, ε(ω) is a complex-valued function with the property ε(−ω) = ε∗(ω), it’s imaginary part rep-
resents dissipation. The latter is negligible in the so-called transparency window, a material-dependent
interval of frequencies that are of special interest for optical applications, because of low absorption.
In the transparency window, one can use Sellmeier’s approximation [26]

ε(ω) = 1 +
∑
m

Bmλ
2

λ2 − Cm
, λ =

2πc

ω
, (6)

with up to five terms in the sum for practically relevant cases [11]. Here, Bm and Cm are real-valued
fit parameters. Both the transparency window and the pulse spectrum are well-separated from the sin-
gularities in Eq. (6). These singularities represent material resonances, at which dissipation becomes
important.

The nonlinear operator χ̂(3) is associated with a kernel function K(t1, t2, t3) and is defined as

χ̂(3)[E1, E2, E3](z, t) =

∫∫∫ ∞
t1,t2,t3=0

K(t1, t2, t3)×

E1(z, t− t1)E2(z, t− t2)E3(z, t− t3) dt1dt2dt3.

χ̂(3) relates the nonlinear medium polarization to the prehistory of E(z, t). We will be interested in
two special situations. The simplest one corresponds to an instant cubic nonlinearity,

χ̂(3)[E,E,E](z, t) = χE3(z, t), χ = const. (7)
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Here, the material constant χ is the nonlinear permeability of the third order. A more reliable situation
corresponds to an instant response of electrons and a delayed Raman response of ions [2, 14]

χ̂(3)[E,E,E](z, t) = χ
(

(1− fR)E2(z, t) + fRI(z, t)
)
E(z, t),

I(z, t) =

∫ ∞
0

R(t′)E2(z, t− t′)dt′.

The weight factor fR and the response function R(t′) are quantified in, e.g., Refs. [13, 43].

In addition to bulk propagation, Eq. (2) applies to optical fibers. For example, consider a single-mode
fiber [2] in which the full electric field E(r, t) can be factorized

E(r, t) ≈ F(x, y)E(z, t).

Here, the geometric factor F(x, y) is approximately the same for all frequencies in pulse spectrum.
Two radial coordinates can be integrated out from Maxwell equations which are then reduced to Eq. (2)
for the amplitude factor E(z, t), see Ref. [12]. In this case, the effective ε(ω) describes both the
intrinsic medium dispersion and the geometric waveguide dispersion, and it results from a separate
calculation that requires knowledge of the waveguide modes F(x, y), that depend parametrically on
ω. In what follows. ε(ω) is considered as a known function. It is taken real because power dissipation
in silica fibers is as small as 0.2 dB/km for a typical λ = 1.55µm [41].

2.2 Unidirectional approximation

Although Eq. (2) looks simple, its numerical solution may be a challenge because (2) resolves fields
on the wavelength scale (∼ 1µm), whereas the fiber length may reach hundreds of meters. We face a
multi-scale problem and a simplified solution is highly desirable. Fortunately, Eq. (2) has an important
feature: χE2 � 1 for pulse powers that do not destroy the medium. A typical solution of Eq. (2) in this
case is a combination of weakly nonlinear pulses, which propagate forward and backward along Oz
axis almost unaware of each other. The mathematical formulation can be gained by using operators
related to the refraction index n(ω) and the wave vector (propagation constant) β(ω), where

n(ω) =
√
ε(ω), β(ω) =

ω

c
n(ω). (8)

The operator n̂ is derived from n(ω) in a full analogy with ε̂:

n̂e−iωt = n(ω)e−iωt, n̂E(z, t) =

∫ ∞
−∞

n(ω)Ẽ(z, ω)e−iωt
dω

2π
,

evidently ε̂ = n̂2. We also define the operator β̂ = (1/c)n̂∂t such that

β̂e−iωt = −iβ(ω)e−iωt, β̂E(z, t) = −i
∫ ∞
−∞

β(ω)Ẽ(z, ω)e−iωt
dω

2π
. (9)

The difference between ε̂ and n̂ on one side and β̂ on the other side is due to the fact that ε(−ω) =

ε∗(ω) and n(−ω) = n∗(ω), whereas β(−ω) = −β∗(ω) in accord with (8). Since Ẽ(z,−ω) =

Ẽ∗(z, ω) for a real-valued E(z, t), one can easily find that β̂E(z, t) is real-valued as well. Note, that
the zero-area condition (4) makes it possible to define

β̂−1E(z, t) = i

∫ ∞
−∞

Ẽ(z, ω)

β(ω)
e−iωt

dω

2π
,
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because the singularity at ω = 0 is removable for a smooth Ẽ(z, ω) due to Eq. (5).

Now we write Eq. (2) in the form(
β̂2 − ∂2

z

)
E +

1

c2
∂2
t

(
χ̂(3)[E,E,E]

)
= 0. (10)

The first (linear) term can be factorized and defines two special solutions of the linearized equation:

� forward propagating wave which is a linear combination of the functions ei(kz−ωt), k = β(ω),
and satisfies the equation (β̂ + ∂z)E = 0, and

� backward propagating wave which is a combination of the functions ei(kz−ωt), k = −β(ω), and
satisfies the equation (β̂ − ∂z)E = 0.

The second (nonlinear) term in Eq. (10) couples forward and backward waves and makes their strict
definition more sophisticated. To this end, we start with a solution E(z, t) of Eq. (10) and define its
forward, E

→
(z, t), and backward, E

←
(z, t), components as solutions of the following linear equations

(
β̂ + ∂z

)
E
→

+
1

2c
n̂−1∂t

(
χ̂(3)[E,E,E]

)
= 0, (11)(

β̂ − ∂z
)
E
←

+
1

2c
n̂−1∂t

(
χ̂(3)[E,E,E]

)
= 0, (12)

satisfying the initial conditions

E
→

(z, t)|z=0 =
E0(t)− β̂−1E1(t)

2
and E

←
(z, t)|z=0 =

E0(t) + β̂−1E1(t)

2
, (13)

where we recall that the zero-area condition yields
∫∞
−∞E1(t)dt = 0 and makes it possible to define

β̂−1E1. Furthermore, by applying β̂ − ∂z to Eq. (11) and β̂ + ∂z to Eq. (12), adding both resulting
equations, recalling that β̂ = (1/c)n̂∂t, and comparing the resulting equation to Eq. (10) we obtain(

β̂2 − ∂2
z

)[
E
→

(z, t) + E
←

(z, t)− E(z, t)
]

= 0.

The initial conditions for the difference E
→

+ E
←
− E are trivial because Eqs. (3) and (13) yield

E
→

(z, t)|z=0 + E
←

(z, t)|z=0 = E0(t) = E(z, t)|z=0,

and Eqs. (11) and (12) yield

∂zE→
(z, t)|z=0 + ∂zE←

(z, t)|z=0 = β̂E
←

(z, t)|z=0 − β̂E→(z, t)|z=0 = E1(t) = ∂zE(z, t)|z=0.

We conclude that the field E(z, t) is a sum of the above defined forward and backward waves,

E(z, t) = E
→

(z, t) + E
←

(z, t). (14)

Now we can substitute the expression (14) into Eqs. (11) and (12), which become a coupled system
of nonlinear equations that can be solved without any a priori knowledge of the solution to Eq. (10).

The system (11), (12), in which E(z, t) is eliminated using Eq. (14), is advantageous for considering
of solely forward (backward) waves. Let ε be a small parameter related to the amplitude of the forward
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wave and assume that an initial E
←

(z, t)|z=0 = O(ε3). Equation (12) suggests that also for z > 0 the

amplitude of the nonlinearly generated backward wave scales as

E
←
∼ χ̂(3)[E

→
, E
→
, E
→

] = O(ε3).

The effect of the backward waves in Eq. (11) is then of the order of

χ̂(3)[E
→
, E
→
, E
←

] = O(ε5),

i.e., beyond the accuracy of the original Eq. (2) with only cubic nonlinearity. Therefore we neglect the
backward wave in Eq. (11) and obtain a first-order unidirectional propagation equation for the forward
wave

(∂z + β̂)E
→

+
1

2c
n̂−1∂t

(
χ̂(3)[E

→
, E
→
, E
→

]
)

= 0. (15)

From now on we don’t distinguish between the forward wave field E
→

(z, t) and the full field E(z, t).

Note that the just derived equation has the structure of the conservation law

∂zE + ∂t

(
1

c
n̂E +

1

2c
n̂−1χ̂(3)[E,E,E]

)
= 0,

such that the “forward area”
∫∞
−∞E(z, t)dt is constant. For the instantaneous Kerr nonlinearity (7) we

have

∂zE(z, t) + β̂E(z, t) +
χ

2c
n̂−1∂t

(
E3(z, t)

)
= 0. (16)

In the frequency domain the latter equation reads as

i∂zẼ(z, ω) + β(ω)Ẽ(z, ω) +
χω

2cn(ω)

∫ ∞
−∞

E3(z, t)eiωtdt = 0. (17)

Equation (15) was originally derived in Ref. [19] by starting with Eq. (10) and setting (in our notations)

β̂2 − ∂2
z = 2β̂(β̂ + ∂z)− (β̂ + ∂z)

2 ≈ 2β̂(β̂ + ∂z),

because (β̂+∂z)E → 0 for a weakly nonlinear forward wave. In contrast to the derivation of Eq. (15)
given in Ref [19] (see also Refs. [23, 22, 21, 6]), our derivation given above employs less mathematical
assumptions, and in particular clearly distinguishes between forward and backward waves. In this way
it offers an initial condition and an explicit estimate of the neglected terms.

Equations (15) and (16) can be further simplified by utilizing the fact that the index of refraction does
not change much in the transparency window. For instance, for bulk fused silica the change in n(ω)
is only 10% for more than 4 octaves in the frequency domain [11]. Consequently, dispersion of the
nonlinear term in Eq. (15) can be ignored. The operator n̂−1 is then replaced by a factor n−1

∗ for some
characteristic value n∗ of the refractive index. We will use the standard notation [2]

n2 =
3χ

8n∗

for the nonlinear refractive index. In contrast to n̂−1, the time derivative of the nonlinear term in Eq. (15)
cannot be simplified for short optical pulses, which are wide in the frequency domain. This time deriva-
tive describes self-steepening of pulses [2, 14].
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A common way to deal with Eq. (15) is to solve it along the propagation coordinate z in a suitable time
window that moves with the optical pulse. Therefore it is profitable to change from the time variable t
to time delay τ by setting

E(z, t) = F (z, τ) with τ = t− z/V, (18)

where V refers to a typical velocity that serves for a whole pulse or a sequence of pulses. Usually it is
possible to introduce the carrier frequency ωC and set

n∗ = n(ωC), V =
1

β′(ωC)
=

(
dω

dk

)
ω=ωC

. (19)

Transformation (18) can be utilized in the frequency domain, where

F (z, τ) 7→ F̃ (z, ω) =

∫ ∞
−∞

F (z, τ)eiωτdω =∫ ∞
−∞

E(z, t)eiω(t−z/V )dω = Ẽ(z, ω)e−iωz/V . (20)

Therefore Eq. (17) yields

i∂zF̃ (z, ω) +B(ω)F̃ (z, ω) +
4n2ω

3c

∫ ∞
−∞

F 3(z, τ)eiωτdτ = 0,

B(ω) = β(ω)− ω

V
,

(21)

whereB(ω) is just a Doppler-shifted propagation factor in the moving frame. Returning to the physical
space in Eq. (21), we obtain that F (z, τ) is governed by the FME [19]

∂zF +
(
β̂ − V −1∂τ

)
F +

4n2

3c
∂τ
(
F 3
)

= 0. (22)

The just derived FME is a natural competitor to the GNLSE

i∂zψ + b̂ψ +
n2

c
(ωC + i∂τ )|ψ|2ψ = 0, b̂ψ =

∫ ∞
−∞

b(∆)ψ̃(z,∆)e−i∆t
d∆

2π
,

b(∆) = β(ωC + ∆)− β0 − β1∆, β0 = β(ωC), β1 = β′(ωC),

(23)

which in the simple case of Taylor approximation with respect to detuning ∆

b(∆) =
J∑
j=2

βj
j!

∆j ⇔ b̂ψ =
J∑
j=2

βj
j!

(i∂τ )
jψ,

is a standard pulse propagation equation in nonlinear fiber optics [2, 14]. Here, the carrier frequency
ωC is taken identical to that in Eq. (19) and

E(z, t) =
1

2
ψ(z, τ)ei(β0z−ωCt) + c.c., τ = t− β1z.

GNLSE models (23) can directly be derived from Eq. (2) by using the SVEA. It is noteworthy that
GNLSE is solved in the frequency domain centered at ωC , the most ambitious choice is [0, 2ωC ],
see the upper part of Fig. 1. The frequency ωM in this case is the maximal detuning from the carrier
frequency. The GNLSE model (23) is opposed by the more general FME (22) which works in the
frequency domain [−ωM , ωM ]. The latter is typically several times larger than that of the GNLSE. We
are especially interested in the differences between the FME and GNLSE and in physical situations
that are correctly described only by the more general FME.

DOI 10.20347/WIAS.PREPRINT.2470 Berlin 2018
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ωC ω

ω

ωC+ωMωC−ωM

ωM−ωM

0

GNLSE

FME

Figure 1: Schematic representation of frequencies resolved by the GNLSE and FME models.

3 Numerical schemes

First of all, we note that both the GNLSE problem (23) and the FME model (22) are defined within the
infinite interval of the delay coordinate τ . When constructing numerical schemes, we restrict our study
to the numerically tractable finite interval [−τR, τR], where the length of the interval, 2τR, is inverse
proportional to the resolution of the discrete frequencies. This time interval is covered by the discrete
uniform grid

Ω̄τ =
{
τj : τj = jh, j = −J/2, . . . , J/2, h = 2τR/J

}
with the grid points denoted by τj , the grid boundary ∂Ωτ = {τ−J/2 = −τR, τJ/2 = τR}, and the
inner part of the grid Ωτ = Ω̄τ \∂Ωτ . When needed, we are also using the points τj = jh, |j| > J/2,
belonging to the extension of this grid over the boundaries of the domain. We will use a constant step
h what allows us to apply the same grid for both finite difference and spectral methods. The choice of h
should also be performed with care since it is inverse proportional to the maximal resolvable absolute
(in the FME case) or relative (GNLSE case) field oscillation frequency ωM , see Fig. 1.

Let Ωz be a z-grid

Ωz = {zn : zn = zn−1 + κn, n = 1, . . . , N, z0 = 0, zN = L},

where κn is the discretization step. For simplicity of notations in most definitions, we take the constant
step-size κn = κ.

We consider numerical approximations Un
j to the exact solution values ψnj = ψ(zn, τj) in the GNLSE

case or F n
j = F (zn, τj) in the FME case at the grid points (zn, τj) ∈ Ωz× Ω̄τ . To quantify nonlinear

terms in these equations we introduce the symmetric finite difference operator

∂hτU
n
j =

Un
j+1 − Un

j−1

2h
,

which, when needed, will be evaluated using the conditions

Un
−J/2 = Un

J/2, Un
−J/2−1 = Un

J/2−1, zn ∈ Ωz. (24)

With these periodic boundary conditions, we avoid artificial field reflections from the lateral boundaries
at large z but feel an influence of the fields from the neighboring periods, instead.

Linear terms in both FME and GNLSE are treated in the frequency domain. Applying the spectral
approximation numerical schemes, we use the following Fourier sum representation of the grid function
Uj :

Uj =
[
F−1(Û)

]
j

:=
1

J

∑
`∈J

Û`e
−iω`jh, j ∈ J = {−J/2, . . . , J/2− 1}, ω` =

π`

τR
,

DOI 10.20347/WIAS.PREPRINT.2470 Berlin 2018
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where Û` are the Fourier coefficients defined as

Û` = [F(U)]` :=
∑
j∈J

Uje
iω`jh, ` ∈ J. (25)

3.1 Numerical schemes for GNLSE

Assuming that n is even, we approximate the GNLSE problem (23) using the following pseudo-spectral
symmetric Strang splitting scheme [7, 18]:

Û
n+ 1

3
` = eiκb(ω`)Ûn

` , ` ∈ J,

U
n+ 2

3
j − Un+ 1

3
j

κ
+
n2

c
∂hτ

∣∣∣∣∣U
n+ 1

3
j + U

n+ 2
3

j

2

∣∣∣∣∣
2
U
n+ 1

3
j + U

n+ 2
3

j

2

 = 0, j ∈ J,

Un+1
j = exp

(
iκ
n2

c
ωC |U

n+ 2
3

j |2
)
U
n+ 2

3
j , j ∈ J,

U
n+ 4

3
j = exp

(
iκ
n2

c
ωC |Un+1

j |2
)
Un+1
j , j ∈ J,

U
n+ 5

3
j − Un+ 4

3
j

κ
+
n2

c
∂hτ

∣∣∣∣∣U
n+ 4

3
j + U

n+ 5
3

j

2

∣∣∣∣∣
2
U
n+ 4

3
j + U

n+ 5
3

j

2

 = 0, j ∈ J,

Ûn+2
` = eiκb(ω`)Û

n+ 5
3

` , ` ∈ J.

(26)

In the second and fifth steps of this scheme, we exploit the periodic boundary conditions (24).

Next, we present main results on the approximation accuracy, stability and conservation laws valid
for the discrete solution. The linear diffraction and local nonlinear interaction subproblems are solved
exactly. Thus the discrete solutions of these subproblems satisfy the conservation laws:

‖Un+r/3‖2 = ‖Un+(r−1)/3‖2, r = 1, 3, 4, 6, (27)

where the L2 norm is defined as ‖U‖2 =
∑

j∈J |Uj|2h.

The nonlinear advection subproblem is approximated using the second order accuracy implicit sym-
metric Euler scheme. It is solved using the following iterative procedure [28, 18]:

Ũ s
j − U

n+ 1
3

j

κ
+
n2

c
∂hτ

∣∣∣∣∣ Ũ s−1
j + U

n+ 1
3

j

2

∣∣∣∣∣
2
Ũ s
j + U

n+ 1
3

j

2

 = 0, j ∈ J,

Ũ0
j = U

n+ 1
3

j , s = 1, . . . , S.

For each iteration, a system of linear equations is solved, and the fast factorization algorithm is used.
In all computer experiments, we have restricted to the predictor-corrector version of the algorithm
when S = 2. It is important to note, that the symmetric Euler approximation scheme is unconditionally
stable for the linear advection equation. This result follows trivially by using the Fourier analysis and
Parseval’s relation.

The considered nonlinear advection subproblems satisfy some conservation laws. It is well-known
that transformations of the differential form into equivalent equations are valid only if the solution is
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smooth. For weak solutions, such forms can be not equivalent. Thus we apply conservative methods
to approximate the basic form of the equations. We note that the central difference approximation
algorithm (26) can be presented in divergence form. We have approximated the nonlinear advection
equation also by the explicit Richtmyer two-step Lax-Wendroff method [28]:

U
n+ 1

2

j+ 1
2

=
1

2

(
U
n+ 1

3
j + U

n+ 1
3

j+1

)
− κn2

2hc

(∣∣Un+ 1
3

j+1

∣∣2Un+ 1
3

j+1 −
∣∣Un+ 1

3
j

∣∣2Un+ 1
3

j

)
,

U
n+ 2

3
j = U

n+ 1
3

j − κn2

hc

(∣∣Un+ 1
2

j+ 1
2

∣∣2Un+ 1
2

j+ 1
2

−
∣∣Un+ 1

2

j− 1
2

∣∣2Un+ 1
2

j− 1
2

)
, j ∈ J. (28)

The scheme (28) is also conservative, and it approximates the differential equation with the second
order. Obviously, the explicit algorithm is only conditionally stable.

3.2 Numerical schemes for FME

In this case, we apply an only slightly modified approach, as for the GNLSE problem. Namely, we
approximate the FME problem (22) using the following pseudo-spectral symmetric Strang splitting
scheme

Û
n+ 1

2
` = eiκB(ω`)Ûn

` , ` ∈ J,

Un+1
j − Un+ 1

2
j

κ
+

4n2

3c
∂hτ

Un+ 1
2

j + Un+1
j

2

3

= 0, j ∈ J,

U
n+ 3

2
j − Un+1

j

κ
+

4n2

3c
∂hτ

Un+ 3
2

j + Un+1
j

2

3

= 0, j ∈ J,

Ûn+2
` = eiκB(ω`)Û

n+ 3
2

` , ` ∈ J.

(29)

The nonlinear advection subproblems can be resolved using the iterative procedure,

Ũ s
j − U

n+ r
2

j

κ
+

4n2

3c
∂hτ

[ Ũ s−1
j + U

n+ r
2

j

2

]2
Ũ s
j + U

n+ r
2

j

2

 = 0, j ∈ J,

Ũ0
j = U

n+ r
2

j , s = 1, . . . , S, r = 1, 2,

or can be approximated again by the explicit Richtmyer two-step Lax-Wendroff method:

U
n+ r

4

j+ 1
2

=
1

2

(
U
n+ r−1

4
j + U

n+ r−1
4

j+1

)
− 4κn2

6hc

([
U
n+ r−1

4
j+1

]3 − [Un+ r−1
4

j

]3)
,

U
n+ r+1

4
j = U

n+ r−1
4

j − 4κn2

3hc

([
U
n+ r

4

j+ 1
2

]3 − [Un+ r
4

j− 1
2

]3)
, j ∈ J, r = 3, 5. (30)

The linear diffraction and linear advection interaction subproblems, both defined by the function B(ω)
in the frequency domain, are solved exactly applying the spectral approach. Function B(ω) used in
this case is defined in (21) and denotes a Doppler-shifted propagation factor in the moving frame. It is
noteworthy, that the expression (25) for the zeroth Fourier component Û` (with ` = 0 and ω` = 0) is
proportional to the discrete version of the field area within the computational domain,

Ûn
0 =

∑
j∈J

Un
j ≈

1

h

∫ τR

−τR
F (zn, τ) dτ.

DOI 10.20347/WIAS.PREPRINT.2470 Berlin 2018



Numerical methods for ultrashort pulses 11

Thus, due to the condition B(0) = 0, the scheme (30) for the Fourier component Û0 provides the
conservation of this discrete field area.

For the approximation of the basic form of nonlinear advection subproblem, we apply conservative
methods. One can easily check that the summation of the central difference approximation algorithm
(29), the corresponding iterative procedure, and the Lax-Wendroff method (30) over all j ∈ J provides
the conservation condition for the discrete field area,

∑
j∈J Ujh. This also proves the conservation of

the discrete field area by the whole splitting scheme.

Finally, we note, that the approximation accuracy of the numerical scheme is of the second order with
respect to both coordinates. In computational experiments, the accuracy was controlled using Runge
rule and by repeating the computations with halved discretization steps.

4 Example

Example numerical solutions of the FME, which was solved using the splitting scheme combined with
the two-step Lax-Wendroff method, and GNLSE models are compared in Fig. 2. We use β(ω) for
bulk fused silica [11] and let the pulse circular frequency ωC correspond to the wavelength 2.216µm
[ν0 = ωC/(2π) = 135.3 THz]. The initial pulse has a cosh−1 shape and is given by

E(z, τ)|z=0 =

√
P0

cosh(τ/τ0)︸ ︷︷ ︸
ψ(z,τ)|z=0

sin(ωCτ),

where τ0 = 13 fs. The seed pulse contains three oscillations of the wave field at half-maximum. The
normalized initial peak power n2P0 = 0.0288 is 60% larger than that of the fundamental soliton at fre-
quency ωC . Such a pulse cannot propagate without changes in its shape, as opposed by fundamental
solitons [17].

The GNLSE solution, see Fig. 2(a,c), shows slowly decreasing power oscillations with the increase of
z both in space-time [Fig. 2(a)] and space-frequency [Fig. 2(c)] domains. At maximum compression
(z = 1.5 mm) of the pulse, its spectrum achieves its maximal width, which is sufficient for generation
of a wave at the new frequency [650 THz in Fig. 2(c)], the so-called soliton’s Cherenkov radiation [3].
The radiation is responsible for asymmetry of the pulse field in Fig. 2(a).

The FME solution is shown in Fig. 2(b,d). The space-time representation is similar to Fig. 2(a), whereas
in the frequency domain we see notable differences. Not only the third harmonic of the carrier fre-
quency becomes visible [at 400 THz in Fig. 2(d)] but also two new Cherenkov-type lines appear. Such
lines attracted recently considerable attention [29, 15], their adequate explanation and accurate de-
scription are still under debate.

5 Parallel algorithm

In this section, we are considering and discussing the parallelization of all numerical solution algo-
rithms presented in Section 3. Here we restrict to a strong scalability analysis when the size of the
discrete problems is fixed and different numbers of processors are used in the computations. Such
information is very important when a medium size problem should be solved as fast as possible. In
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Figure 2: Exemplary solutions of the GNLSE (a,c) and FME (b,d) for a three-cycle pulse that propa-
gates in fused silica. The energy density plots are given in space-time (a,b) and space-frequency (c,d)
domains. See text for parameters and discussion.

order to estimate the general trend of a scalability analysis, we also present results for a problem with
doubled size of the grid.

All parallel numerical tests in this work were performed on the computer cluster “HPC Sauletekis”
(http://www.supercomputing.ff.vu.lt) at the High-Performance Computing Center
of Vilnius University, Faculty of Physics. We have used nodes with Intel R© Xeon R© processors E5-2670
with 16 cores (2.60 GHz) and 128 GB of RAM per node. Computational nodes are interconnected via
the InfiniBand network.

A standard method for the parallel solution of such problems is the domain decomposition method [35,
36]. We use a simple one-dimensional partitioning of the grid Ωτ . The discrete mesh of the problem
domain and associated sets of solutions are partitioned into sub-domains, which are allocated to
different processes. The parallel algorithm is implemented using MPI library to cover both shared and
distributed memory architectures of parallel computers [1].

Below we present a detailed description of the parallel algorithm for the pseudo-spectral symmetric
Strang splitting scheme (26) used for the solution of the GNLSE problem. The advection problem is
approximated by the explicit Richtmyer two-step Lax-Wendroff scheme (28). A parallel version of the
splitting scheme (29) for the FME problem is constructed following the same template.

Let us assume that P processes are used. We decompose the computational grid Ω̄τ and a set of
indexes J into P non-overlapping size-balanced sub-grids Ωl

τ and subsets Jl, l = 1, . . . , P :

Ω̄τ =
P⋃
l=1

Ωl
τ , J =

P⋃
l=1

Jl.

Then `-th process should perform the following calculations (ñ in the schemes below denotes the
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starting index of each step):

1. Solve the local cubic nonlinearity subproblem:

U
ñ+ 1

3
j = exp

(
iκ
n2

c
ωC |U ñ

j |2
)
U ñ
j , j ∈ J`.

The algorithm is parallel and no data communication is required.

2. Solve the nonlinear advection subproblem: The

U
ñ+ 1

6

j+ 1
2

=
1

2

(
U ñ
j + U ñ

j+1

)
− κn2

2hc

(∣∣U ñ
j+1

∣∣2U ñ
j+1 −

∣∣U ñ
j

∣∣2U ñ
j

)
,

U
ñ+ 1

3
j = U ñ

j −
κn2

hc

(∣∣U ñ+ 1
6

j+ 1
2

∣∣2U ñ+ 1
6

j+ 1
2

−
∣∣U ñ+ 1

6

j− 1
2

∣∣2U ñ+ 1
6

j− 1
2

)
, j ∈ J`.

The Richtmyer two-step Lax-Wendroff scheme is explicit, and all computations are done in parallel.
The scheme is based on three-point grid stencil, thus the approximation of fluxes requires to exchange
values of the solutions at boundaries of subdomains, including the periodicity conditions. The commu-
nication of overlapping data is done only among adjacent processes, and the well-known odd-even
paradigm is used to implement it in parallel.

3. Solve the linear propagation subproblem:

Û ñ
s = eiκb(ωs)Û ñ

s , s ∈ J`.

This algorithm is implemented in parallel and no communication is required.

The discrete FFT should be done before and after this step, and this transform is the most computation
intensive part of the parallel algorithm. It takes about 56% of all CPU time. We have used the parallel
version of FFTW library to implement the discrete FFT algorithm [20].

To test the parallel performance of the developed algorithm, we have solved GNLSE problem using
two sizes of the discrete grid J = 16384, N = 60000 and J = 32768, N = 120000.

Parallel performance results of our parallel solver are presented in Table 1. The total wall time Tp is
given in seconds, here p is the total number of used parallel processes. In Table 1, we also present
the obtained values of parallel algorithmic speed-up Sp = T1/Tp and efficiency Ep = Sp/p.

Table 1: The total wall time Tp, speed-up Sp and efficiency Ep for solving GNLSE problem with two
sizes of the discrete problem: small J = 16384, N = 60000 and large J = 32768, N = 120000.

J = 16384, N = 60000 p = 1 p = 2 p = 4 p = 8 p = 16

Tp 567 327 167 83 48

Sp 1 1.734 3.40 6.83 11.8
Ep 1 0.867 0.850 0.854 0.738

J = 32768, N = 120000 p = 1 p = 2 p = 4 p = 8 p = 16

Tp 2280 1300 632 331 188

Sp 1 1.75 3.61 6.89 12.1
Ep 1 0.877 0.902 0.861 0.758
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The obtained speed-up and efficiency values of the parallel algorithm are satisfying; they show that
the scalability of the algorithm is efficient, even for smaller size discrete problems. Some degradation
of the efficiency is mainly connected to the challenges to parallelize the FFT algorithm. The parallel
version of the FFTW algorithm shows a good scalability up to 16 processes when the shared memory
version of MPI algorithm can be used. Even in this case, we see some degradation when 8 + 8 cores
(the case of p = 16 in Table 1) of two different processors in one node are used.

If this parallel algorithm is computed on two nodes with 32 processes, the distributed memory version
of the FFTW algorithm is applied. The efficiency of the parallel algorithm, in this case, is seriously
degraded, the larger problem is solved in T32 = 283 seconds, which is close to the time used for the
same calculations by 8 processes. In order to show that the parallel efficiency of the remaining part of
the algorithm is optimal, computational experiments are done for a larger problem with full nonlinearity
but vanishing dispersion. The following results are obtained:

T1 = 1002, T2 = 504, T4 = 253, T8 = 129, T16 = 73, T32 = 37.

The algorithms are perfectly scalable even for distributed memory case when two nodes with 32 pro-
cesses are used.

6 Conclusions

In this paper, we have presented a new derivation of the FME from the one-dimensional nonlinear
wave equation, the latter is mathematically strictly decomposed in nonlinear forward and backward
waves. Like in the case of GNLSE, the assumption of the single field propagation direction allows us
to exploit time coordinate transformation (18) and to calculate the optical field evolution only in the finite
comoving frame. This means that comparing to FME, the numerical solution of the full wave equation
requires much more computational time and memory resources.

In contrast to GNLSE, however, the application of FME requires tracking the frequencies from a larger
frequency range, as it was shown in Fig. 1, and, therefore, the calculation time needed to resolve FME
usually is significantly larger than that one required by GNLSE. For ultrashort (a few optical cycle-long)
pulses, for supercontinuum generation, or for the systems where several pulses with strongly differing
carrier frequencies are present, all frequencies within the interval [0, ωM ] can be important. In this
case, the time and memory resources required by GNSLE and FME become comparable. However,
as we have shown in our example, in these situations, the conventional GNSLE can fail to show some
effects, which, on the other hand, are still tracked by the FME.

The algorithms suggested for the numerical solution of both, GNLSE and FME models are based on
the pseudo-spectral splitting scheme. Such scheme is a natural choice for numerical integration of
both these models with nonlocal dispersion operators defined in the frequency domain. To speed up
the calculations, we have tested our algorithms on a parallel computer cluster. We have found, that
scalability of the parallel algorithm remains good until all exploited cores are on the same node and the
shared memory version of the algorithm is used. This scalability was drastically degraded when the
simulations were carried out on different nodes, and distributed memory version of the FFT algorithm
was applied.
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