456 research outputs found

    Enforcing Predictability of Many-cores with DCFNoC

    Get PDF
    © 2021 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.[EN] The ever need for higher performance forces industry to include technology based on multi-processors system on chip (MPSoCs) in their safety-critical embedded systems. MPSoCs include a network-on-chip (NoC) to interconnect the cores between them and with memory and the rest of shared resources. Unfortunately, the inclusion of NoCs compromises guaranteeing time predictability as network-level conflicts may occur. To overcome this problem, in this paper we propose DCFNoC, a new time-predictable NoC design paradigm where conflicts within the network are eliminated by design. This new paradigm builds on top of the Channel Dependency Graph (CDG) in order to deterministically avoid network conflicts. The network guarantees predictability to applications and is able to naturally inject messages using a TDM period equal to the optimal theoretical bound without the need of using a computationally demanding offline process. DCFNoC is integrated in a tile-based many-core system and adapted to its memory hierarchy. Our results show that DCFNoC guarantees time predictability avoiding network interference among multiple running applications. DCFNoC always guarantees performance and also improves wormhole performance in a 4 × 4 setting by a factor of 3.7× when interference traffic is injected. For a 8 × 8 network differences are even larger. In addition, DCFNoC obtains a total area saving of 10.79% over a standard wormhole implementation.This work has been supported by MINECO under Grant BES-2016-076885, by MINECO and funds from the European ERDF under Grant TIN2015-66972-C05-1-R and Grant RTI2018-098156-B-C51, and by the EC H2020 RECIPE project under Grant 801137.Picornell-Sanjuan, T.; Flich Cardo, J.; Hernández Luz, C.; Duato Marín, JF. (2021). Enforcing Predictability of Many-cores with DCFNoC. IEEE Transactions on Computers. 70(2):270-283. https://doi.org/10.1109/TC.2020.2987797S27028370

    Master of Science

    Get PDF
    thesisIntegrated circuits often consist of multiple processing elements that are regularly tiled across the two-dimensional surface of a die. This work presents the design and integration of high speed relative timed routers for asynchronous network-on-chip. It researches NoC's efficiency through simplicity by directly translating simple T-router, source-routing, single-flit packet to higher radix routers. This work is intended to study performance and power trade-offs adding higher radix routers, 3D topologies, Virtual Channels, Accurate NoC modeling, and Transmission line communication links. Routers with and without virtual channels are designed and integrated to arrayed communication networks. Furthermore, the work investigates 3D networks with diffusive RC wires and transmission lines on long wrap interconnects

    Conflict-Free Networks on Chip for Real Time Systems

    Full text link
    [ES] La constante necesidad de un mayor rendimiento para cumplir con la gran demanda de potencia de cómputo de las nuevas aplicaciones, (ej. sistemas de conducción autónoma), obliga a la industria a apostar por la tecnología basada en Sistemas en Chip con Procesadores Multinúcleo (MPSoCs) en sus sistemas embebidos de seguridad-crítica. Los sistemas MPSoCs generalmente incluyen una red en el chip (NoC) para interconectar los núcleos de procesamiento entre ellos, con la memoria y con el resto de recursos compartidos. Desafortunadamente, el uso de las NoCs dificulta alcanzar la predecibilidad en el tiempo, ya que pueden aparecer conflictos en muchos puntos y de forma distribuida a nivel de red. Para afrontar este problema, en esta tesis se propone un nuevo paradigma de diseño para NoCs de tiempo real donde los conflictos en la red son eliminados por diseño. Este nuevo paradigma parte del Grafo de Dependencia de Canales (CDG) para evitar los conflictos de red de forma determinista. Nuestra solución es capaz de inyectar mensajes de forma natural usando un periodo TDM igual al límite teórico óptimo sin la necesidad de usar un proceso offline exigente computacionalmente. La red se ha integrado en un sistema multinúcleo basado en tiles y adaptado a su jerarquía de memoria. Como segunda contribución principal, proponemos un nuevo planificador dinámico y distribuido capaz de alcanzar un rendimiento pico muy cercanos a las NoC basadas en un diseño wormhole sin comprometer sus garantías de tiempo real. El planificador se basa en nuestro diseño de red para explotar sus propiedades clave. Los resultados de nuestra NoC muestran que nuestro diseño garantiza la predecibilidad en el tiempo evitando interferencias en la red entre múltiples aplicaciones ejecutándose concurrentemente. La red siempre garantiza el rendimiento y también mejora el rendimiento respecto al de las redes wormhole en una red 4 x 4 en un factor de 3,7x cuando se inyecta trafico para generar interferencias. En una red 8 x 8 las diferencias son incluso mayores. Además, la red obtiene un ahorro de área total del 10,79% frente a una implementación básica de una red wormhole. El planificador propuesto alcanza una mejora de rendimiento de 6,9x y 14,4x frente la versión básica de la red DCFNoC para redes en forma de malla de 16 y 64 nodos, respectivamente. Cuando lo comparamos frente a un conmutador estándar wormhole se preserva un rendimiento de red del 95% al mismo tiempo que preserva la estricta predecibilidad en el tiempo. Este logro abre la puerta a nuevos diseños de NoCs de alto rendimiento con predecibilidad en el tiempo. Como contribución final, construimos una taxonomía de NoCs basadas en TDM con propiedades de tiempo real. Con esta taxonomía realizamos un análisis exhaustivo para estudiar y comparar desde tiempos de respuesta, a implementaciones con bajo coste, pasando por soluciones de compromiso para diseños de NoCs de tiempo real. Como resultado, obtenemos nuevos diseños de NoCs basadas en TDM.[CA] La constant necessitat d'un major rendiment per a complir amb la gran demanda de potència de còmput de les noves aplicacions, (ex. sistemes de conducció autònoma), obliga la indústria a apostar per la tecnologia basada en Sistemes en Xip amb Processadors Multinucli (MPSoCs) en els seus sistemes embeguts de seguretat-crítica. Els sistemes MPSoCs generalment inclouen una xarxa en el xip (NoC) per a interconnectar els nuclis de processament entre ells, amb la memòria i amb la resta de recursos compartits. Desafortunadament, l'ús de les NoCs dificulta aconseguir la predictibilitat en el temps, ja que poden aparéixer conflictes en molts punts i de forma distribuïda a nivell de xarxa. Per a afrontar aquest problema, en aquesta tesi es proposa un nou paradigma de disseny per a NoCs de temps real on els conflictes en la xarxa són eliminats per disseny. Aquest nou paradigma parteix del Graf de Dependència de Canals (CDG) per a evitar els conflictes de xarxa de manera determinista. La nostra solució és capaç d'injectar missatges de mra natural fent ús d'un període TDM igual al límit teòric òptim sense la necessitat de fer ús d'un procés offline exigent computacionalment. La xarxa s'ha integrat en un sistema multinucli basat en tiles i adaptat a la seua jerarquia de memòria. Com a segona contribució principal, proposem un nou planificador dinàmic i distribuït capaç d'aconseguir un rendiment pic molt pròxims a les NoC basades en un disseny wormhole sense comprometre les seues garanties de temps real. El planificador es basa en el nostre disseny de xarxa per a explotar les seues propietats clau. Els resultats de la nostra NoC mostren que el nostre disseny garanteix la predictibilitat en el temps evitant interferències en la xarxa entre múltiples aplicacions executant-se concurrentment. La xarxa sempre garanteix el rendiment i també millora el rendiment respecte al de les xarxes wormhole en una xarxa 4 x 4 en un factor de 3,7x quan s'injecta trafic per a generar interferències. En una xarxa 8 x 8 les diferències són fins i tot majors. A més, la xarxa obté un estalvi d'àrea total del 10,79% front una implementació bàsica d'una xarxa wormhole. El planificador proposat aconsegueix una millora de rendiment de 6,9x i 14,4x front la versió bàsica de la xarxa DCFNoC per a xarxes en forma de malla de 16 i 64 nodes, respectivament. Quan ho comparem amb un commutador estàndard wormhole es preserva un rendiment de xarxa del 95% al mateix temps que preserva la estricta predictibilitat en el temps. Aquest assoliment obri la porta a nous dissenys de NoCs d'alt rendiment amb predictibilitat en el temps. Com a contribució final, construïm una taxonomia de NoCs basades en TDM amb propietats de temps real. Amb aquesta taxonomia realitzem una anàlisi exhaustiu per a estudiar i comparar des de temps de resposta, a implementacions amb baix cost, passant per solucions de compromís per a dissenys de NoCs de temps real. Com a resultat, obtenim nous dissenys de NoCs basades en TDM.[EN] The ever need for higher performance to cope with the high computational power demands of new applications (e.g autonomous driving systems), forces industry to support technology based on multi-processors system on chip (MPSoCs) in their safety-critical embedded systems. MPSoCs usually include a network-on-chip (NoC) to interconnect the cores between them and, with memory and the rest of shared resources. Unfortunately, the inclusion of NoCs difficults achieving time predictability as network-level conflicts may occur in many points in a distributed manner. To overcome this problem, this thesis proposes a new time-predictable NoC design paradigm where conflicts within the network are eliminated by design. This new paradigm builds on top of the Channel Dependency Graph (CDG) in order to deterministically avoid network conflicts. Our solution is able to naturally inject messages using a TDM period equal to the optimal theoretical bound without the need of using a computationally demanding offline process. The network is integrated in a tile-based manycore system and adapted to its memory hierarchy. As a second main contribution, we propose a novel distributed dynamic scheduler that is able to achieve peak performance close to a wormhole-based NoC design without compromising its real-time guarantees. The scheduler builds on top of our NoC design to exploit its key properties. The results of our NoC show that our design guarantees time predictability avoiding network interference among multiple running applications. The network always guarantees performance and also improves wormhole performance in a 4 x 4 setting by a factor of 3.7x when interference traffic is injected. For a 8 x 8 network differences are even larger. In addition, the network obtains a total area saving of 10.79% over a standard wormhole implementation. The proposed scheduler achieves an overall throughput improvement of 6.9x and 14.4x over a baseline conflict-free NoC for 16 and 64-node meshes, respectively. When compared against a standard wormhole router 95% of its network throughput is preserved while strict timing predictability is kept. This achievement opens the door to new high performance time predictable NoC designs. As a final contribution, we build a taxonomy of TDM-based NoCs with real-time properties. With this taxonomy we perform a comprehensive analysis to study and compare from response time specific, to low resource implementation cost, through trade-off solutions for real-time NoCs designs. As a result, we derive new TDM-based NoC designs.Picornell Sanjuan, T. (2021). Conflict-Free Networks on Chip for Real Time Systems [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/177347TESI

    Control Plane for Embedded DSP

    Get PDF
    This project is sponsored by MITRE Corporation to develop a scalable and reusable control plane architecture for VLSI design. The main goal of this project is to develop a communication platform for a wide range of applications to reduce the development and testing time associated with the design of a interconnect system. Thorough research has been conducted in the area of network-on-chip designs that are suitable for these types of applications. The necessary components are built and verified in hardware description language. The deliverable components are packaged as reusable and parameterized SystemVerilog code

    Performance realization of Bridge Model using Ethernet-MAC for NoC based system with FPGA Prototyping

    Get PDF
    The System on Chip (SoC) integrates the number of processing elements (PE) with different application requirements on a single chip. The SoC uses bus-based interconnection with shared memory access. However, buses are not scalable and limited to particular interface protocol. To overcome these problems, The Network on Chip (NoC) is an emerging interconnect solution with a scalable and reliable solution over SoC. The bridge model is essential to communicate the NoC based system on SoC. In this article, a cost-effective and efficient bridge model with ethernet-MAC is designed and also the placement of the bride with NoC based system is prototyped on Artix-7 FPGA. The Bridge model mainly contains FIFO modules, Serializer and de-serializer, priority-based arbiter with credit counter, packet framer and packet parser with Ethernet-MAC transceiver Module. The bridge with a single router and different sizes of the NoC based systems with mesh topology are designed using adaptive-XY routing. The performance metrics are evaluated for bridge with NoC in terms of average latency and maximum throughput for different Packet Injection Rate (PIR)

    Design Space Exploration for MPSoC Architectures

    Get PDF
    Multiprocessor system-on-chip (MPSoC) designs utilize the available technology and communication architectures to meet the requirements of the upcoming applications. In MPSoC, the communication platform is both the key enabler, as well as the key differentiator for realizing efficient MPSoCs. It provides product differentiation to meet a diverse, multi-dimensional set of design constraints, including performance, power, energy, reconfigurability, scalability, cost, reliability and time-to-market. The communication resources of a single interconnection platform cannot be fully utilized by all kind of applications, such as the availability of higher communication bandwidth for computation but not data intensive applications is often unfeasible in the practical implementation. This thesis aims to perform the architecture-level design space exploration towards efficient and scalable resource utilization for MPSoC communication architecture. In order to meet the performance requirements within the design constraints, careful selection of MPSoC communication platform, resource aware partitioning and mapping of the application play important role. To enhance the utilization of communication resources, variety of techniques such as resource sharing, multicast to avoid re-transmission of identical data, and adaptive routing can be used. For implementation, these techniques should be customized according to the platform architecture. To address the resource utilization of MPSoC communication platforms, variety of architectures with different design parameters and performance levels, namely Segmented bus (SegBus), Network-on-Chip (NoC) and Three-Dimensional NoC (3D-NoC), are selected. Average packet latency and power consumption are the evaluation parameters for the proposed techniques. In conventional computing architectures, fault on a component makes the connected fault-free components inoperative. Resource sharing approach can utilize the fault-free components to retain the system performance by reducing the impact of faults. Design space exploration also guides to narrow down the selection of MPSoC architecture, which can meet the performance requirements with design constraints.Siirretty Doriast

    Dual Data Rate Network-on-Chip Architectures

    Get PDF
    Networks-on-Chip (NoCs) are becoming increasing important for the performance of modern multi-core systems-on-chip. The performance of current NoCs is limited, among others, by two factors: their limited clock frequency and long router pipeline. The clock frequency of a network defines the limits of its saturation throughput. However, for high throughput routers, clock is constrained by the control logic (for virtual channel and switch allocation) whereas the datapath (crossbar switch and links) possesses significant slack. This slack in the datapath wastes network throughput potential. Secondly, routers require flits to go through a large number of pipeline stages increasing packet latency at low traffic loads. These stages include router resource allocation, switch traversal (ST) and link traversal (LT). The allocation stages are used to manage contention among flits attempting to simultaneously access switch and links, and the ST stage is needed to change the routing dimension. In some cases, these stages are not needed and then requiring flits to go through them increases packet latency. The aim of this thesis is to improve NoC performance, in terms of network throughput, by removing the slack in the router datapath, and in terms of average packet latency, by enabling incoming flits to bypass, when possible, allocation and ST stages. More precisely, this thesis introduces Dual Data-Rate (DDR) NoC architectures which exploit the slack present in the NoC datapath to operate it at DDR. This requires a clock with period twice the datapath delay and removes the control logic from the critical path. DDR datapaths enable throughput higher than existing single data-rate (SDR) networks where the clock period is defined by the control logic. Additionally, this thesis supplements DDR NoC architectures with varying levels of pipeline stage bypassing capabilities to reduce low-load packet latency. In order to avoid complex logic required for bypassing from all inputs to all outputs, this thesis implements and evaluates a simplified bypassing approach. DDR NoC routers support bypassing of the allocation stage for flits propagating an in-network straight hop (i.e. East to West, North to South and vice versa) and when entering or exiting the network. Disabling bypassing during XY-turns limits its benefits, but, for most routing algorithms under low traffic loads, flits encounter at most one XY-turn on their way to the destination. Bypassing allocation stage enables incoming flits to directly initiate ST, when required conditions are met, and propagate at one cycle per hop. Furthermore, DDR NoC routers allow flits to bypass the ST stage when propagating a straight hop from the head of a specific input VC. Restricting ST bypassing from a specific VC further simplifies check logic to have clock period defined by datapath delays. Bypassing ST requires dedicated bypass paths from non-local input ports to opposite output ports. It enables flits to propagate half a cycle per hop. This thesis shows that compared to current state-of-the-art SDR NoCs, operating router’s datapath at DDR improves throughput by up to 20%. Adding to a DDR NoC an allocation bypassing mechanism for straight hops reduces its packet latency by up to 45%, while maintaining the DDR throughput advantage. Enhancing allocation bypassing to include flits entering and exiting the network further reduces latency by another 24%. Finally, adding ST bypassing further reduces latency by another 32%. Overall, DDR NoCs offer up to 40% lower latency and about 20% higher throughput compared to the SDR networks

    Quarc: an architecture for efficient on-chip communication

    Get PDF
    The exponential downscaling of the feature size has enforced a paradigm shift from computation-based design to communication-based design in system on chip development. Buses, the traditional communication architecture in systems on chip, are incapable of addressing the increasing bandwidth requirements of future large systems. Networks on chip have emerged as an interconnection architecture offering unique solutions to the technological and design issues related to communication in future systems on chip. The transition from buses as a shared medium to networks on chip as a segmented medium has given rise to new challenges in system on chip realm. By leveraging the shared nature of the communication medium, buses have been highly efficient in delivering multicast communication. The segmented nature of networks, however, inhibits the multicast messages to be delivered as efficiently by networks on chip. Relying on extensive research on multicast communication in parallel computers, several network on chip architectures have offered mechanisms to perform the operation, while conforming to resource constraints of the network on chip paradigm. Multicast communication in majority of these networks on chip is implemented by establishing a connection between source and all multicast destinations before the message transmission commences. Establishing the connections incurs an overhead and, therefore, is not desirable; in particular in latency sensitive services such as cache coherence. To address high performance multicast communication, this research presents Quarc, a novel network on chip architecture. The Quarc architecture targets an area-efficient, low power, high performance implementation. The thesis covers a detailed representation of the building blocks of the architecture, including topology, router and network interface. The cost and performance comparison of the Quarc architecture against other network on chip architectures reveals that the Quarc architecture is a highly efficient architecture. Moreover, the thesis introduces novel performance models of complex traffic patterns, including multicast and quality of service-aware communication

    The MANGO clockless network-on-chip: Concepts and implementation

    Get PDF

    Automated Debugging Methodology for FPGA-based Systems

    Get PDF
    Electronic devices make up a vital part of our lives. These are seen from mobiles, laptops, computers, home automation, etc. to name a few. The modern designs constitute billions of transistors. However, with this evolution, ensuring that the devices fulfill the designer’s expectation under variable conditions has also become a great challenge. This requires a lot of design time and effort. Whenever an error is encountered, the process is re-started. Hence, it is desired to minimize the number of spins required to achieve an error-free product, as each spin results in loss of time and effort. Software-based simulation systems present the main technique to ensure the verification of the design before fabrication. However, few design errors (bugs) are likely to escape the simulation process. Such bugs subsequently appear during the post-silicon phase. Finding such bugs is time-consuming due to inherent invisibility of the hardware. Instead of software simulation of the design in the pre-silicon phase, post-silicon techniques permit the designers to verify the functionality through the physical implementations of the design. The main benefit of the methodology is that the implemented design in the post-silicon phase runs many order-of-magnitude faster than its counterpart in pre-silicon. This allows the designers to validate their design more exhaustively. This thesis presents five main contributions to enable a fast and automated debugging solution for reconfigurable hardware. During the research work, we used an obstacle avoidance system for robotic vehicles as a use case to illustrate how to apply the proposed debugging solution in practical environments. The first contribution presents a debugging system capable of providing a lossless trace of debugging data which permits a cycle-accurate replay. This methodology ensures capturing permanent as well as intermittent errors in the implemented design. The contribution also describes a solution to enhance hardware observability. It is proposed to utilize processor-configurable concentration networks, employ debug data compression to transmit the data more efficiently, and partially reconfiguring the debugging system at run-time to save the time required for design re-compilation as well as preserve the timing closure. The second contribution presents a solution for communication-centric designs. Furthermore, solutions for designs with multi-clock domains are also discussed. The third contribution presents a priority-based signal selection methodology to identify the signals which can be more helpful during the debugging process. A connectivity generation tool is also presented which can map the identified signals to the debugging system. The fourth contribution presents an automated error detection solution which can help in capturing the permanent as well as intermittent errors without continuous monitoring of debugging data. The proposed solution works for designs even in the absence of golden reference. The fifth contribution proposes to use artificial intelligence for post-silicon debugging. We presented a novel idea of using a recurrent neural network for debugging when a golden reference is present for training the network. Furthermore, the idea was also extended to designs where golden reference is not present
    • …
    corecore