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Abstract
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Department of Computing Science

Doctor of Philosophy

by Mahmoud Moadeli

The exponential downscaling of the feature size has enforced a paradigm shift from

computation-based design to communication-based design in system on chip develop-

ment. Buses, the traditional communication architecture in systems on chip, are in-

capable of addressing the increasing bandwidth requirements of future large systems.

Networks on chip have emerged as an interconnection architecture offering unique solu-

tions to the technological and design issues related to communication in future systems

on chip. The transition from buses as a shared medium to networks on chip as a seg-

mented medium has given rise to new challenges in system on chip realm.

By leveraging the shared nature of the communication medium, buses have been highly

efficient in delivering multicast communication. The segmented nature of networks,

however, inhibits the multicast messages to be delivered as efficiently by networks on

chip. Relying on extensive research on multicast communication in parallel computers,

several network on chip architectures have offered mechanisms to perform the operation,

while conforming to resource constraints of the network on chip paradigm. Multicast

communication in majority of these networks on chip is implemented by establishing a

connection between source and all multicast destinations before the message transmission

commences. Establishing the connections incurs an overhead and, therefore, is not

desirable; in particular in latency sensitive services such as cache coherence.

To address high performance multicast communication, this research presents Quarc, a

novel network on chip architecture. The Quarc architecture targets an area-efficient, low

power, high performance implementation. The thesis covers a detailed representation of

the building blocks of the architecture, including topology, router and network interface.

The cost and performance comparison of the Quarc architecture against other network

on chip architectures reveals that the Quarc architecture is a highly efficient architecture.

Moreover, the thesis introduces novel performance models of complex traffic patterns,

including multicast and quality of service-aware communication.
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Chapter 1

Introduction

The advances in semiconductor technologies have enabled the integration of all compo-

nents of a complicated system on a relatively small chip. This concept is referred to as

System-on-Chip (SoC). By the further downscaling of the feature size and at the same

time a growing demand for more functionality, the number of IP modules on a single

chip are increasing. Hence, SoCs with hundreds of IP cores are becoming a reality.

Exploiting the full potential of the powerful concurrent IP cores to successfully meet

the demands of the applications to a large extent depends on the performance of the

communication architecture. The role of communication in future SoCs is so funda-

mental that SoC development has been forced to a paradigm shift from traditional

computation-based design to communication-based design. The interconnection archi-

tecture for future SoCs must allow a high level of task-level parallelism and offer a

significant aggregated bandwidth.

Buses and point-to-point connections as traditional SoC communication mediums are

being stretched to their limits. Buses are inherently non-scalable and their power con-

sumption is proportional to the number of IP cores attached. Moreover, bus arbitration

when used by several masters is not trivial. Hierarchical buses with sophisticated pro-

tocols and multiple bridges between them have emerged to offer more bandwidth (e.g.

PCI Express and AMBA). In such an architecture, communication between nodes in

different levels are made via several buses. Timing closure is a growing problem due to

significant overhead involved in excessive check requirements. Having a simple structure

and offering standard communication protocols are major advantages of buses.

2
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Point-to-point connections as an alternative communication medium in SoC develop-

ment offer ultimate flexibility, more aggregated bandwidth and more communication

parallelism. In point-to-point connections, typically, computation is intertwined with

communication and the wiring complexity grows exponentially with the number of IP

cores. Adopting point-to-point connections in most large SoCs involves using long links

to connect IP cores. To avoid signal degradation, long links must be supplied by full

swing signaling which, in addition to high power consumption, can increase crosstalk

and parasitic capacitance side effects on adjacent links. Those effects can easily cause

uncertainty and bugs in application behavior which varies from one run to another. This

type of unreliability in application behavior is extremely difficult to debug. Therefore,

drawbacks of the point-to-point interconnections far outweigh any benefits for future

SoCs.

Crossbar switches are another type of high performance communication architecture for

SoC development. Crossbar switches with full connectivity are prohibitively expensive

to be a right candidate for future large SoCs.

1.1 Networks on Chip

Networks on chip (NoC) have emerged as a natural evolution of SoC interconnects to

address the design and technological challenges of communication in large SoCs [1–

8]. NoCs promise to deliver the following characteristics and functionality to the SoC

community:

• NoCs structure and manage wires in deep sub-micron technologies to avoid the

crosstalk and parasitic side effects [1–4].

• NoCs are energy efficient and reliable. Unlike the bus-based interconnections, in a

NoC-based system, IP cores do not have to constantly monitor the data on the bus.

This can account for a significant power saving. Also, structuring the links leads

to more reliable communication and allows driving the links by much less than the

conservative full-swing signaling power. Hence, communication in a NoC-based

SoC is more power-efficient and predictable [1, 3].
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• NoCs allow efficient wire utilization through sharing the physical links between

the communicating IP modules [3, 8, 9].

• NoCs scale better than buses and point-to-point interconnections [5, 8]. Depending

on the topology of a NoC, the network can be extended by adding links and routing

elements. Extending the network increases the aggregated throughput the network

offers.

• NoCs decouple computation from communication through well-defined interfaces,

enabling IP modules and interconnect to be designed in isolation, and to be inte-

grated more easily [2, 10].

• NoCs offer a Globally Asynchronous Locally Synchronous (GALS) development

paradigm by acting as an adapter between the IP modules operating at different

frequencies [11, 12].

Figure 1.1 shows a NoC employed as on-chip communication architecture. The figure

represents a mesh network connecting 16 IP modules. Such an architecture functions

as a packet-switched network to interconnect IP modules. The main components of the

communication architecture are routers, links and network interfaces (NI).

Figure 1.1: A NoC-based SoC.
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The links and the routers implement the functionality of physical, data-link and network

layers of OSI reference model [13]. The routers implement routing algorithm, switch-

ing technique and flow control mechanism. The routers also have buffers which their

granularity depends on the switching technique.

The network interface functions as a glue between computation and communication by

implementing the interfaces to both network and the IP cores. In most NoC architectures

the network interface implements the functionality of the transport and session layers

of OSI reference model.

An IP core can be any computation or storage component that has been employed in

traditional SoC development, including processor, memory, FPGA, and DSP. A core

may be comprised of a number of IP cores which are connecting to each other by any

communication architecture including a NoC.

1.2 Thesis motivation

Despite being a relatively emerging field, Networks-on-Chip has attracted the atten-

tion of researchers in both industry and academia. The NoC paradigm has witnessed

numerous NoC architectures spanning from simple proof of concept to full-fledged and

versatile schemes. The proposed architectures have mainly focused on delivering high

performance unicast traffic. This is a rational decision since most of the on-chip traffic

is formed by unicast communication. However, to successfully replace traditional in-

terconnect architectures, NoCs have to be able to deliver all types of communication

efficiently.

The applications running on a NoC-based SoC, typically, have some performance re-

quirements. Before adopting a particular NoC architecture, the performance require-

ments of the application must be matched against the NoC deliverable performance.

Therefore, the NoC community must have access to tools and techniques to evaluate the

performance of the NoC architectures.

The motivations behind this research were:

• To propose a novel NoC architecture to efficiently deliver unicast and multicast

traffic and
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• To develop analytical models of complex traffic patterns including multicast and

QoS-aware communication in Networks-on-Chip.

1.2.1 A novel NoC architecture

By leveraging the advantages of a shared medium, buses have been highly efficient in

performing broadcast and multicast communication. The segmented nature of a NoC,

however, does not allow a message to be delivered to multi-destinations as efficiently.

Due to similarities between NoCs and interconnection networks for parallel computers

the NoC community has mainly relied on experiences in parallel computers to deliver

multicast messages. A number of NoC architectures such as Æthereal [14] and Nostrum

[15] proposed mechanism to perform multicast communication in the NoC domain. All

architectures rely on setting up a connection between source and destinations before

starting the message transmission.

To address the need for efficient multicast message delivery, the thesis proposes the

Quarc NoC. In contrast to earlier architectures which offered multicast as an additional

service to the NoC architecture, multicast communication has been the main motivator

of the Quarc NoC scheme. This work present a full and detailed implementation of all

components constituting the Quarc NoC.

1.2.2 Analytical modeling of NoC traffic

Analytical modeling as one of the most cost-effective methods has been widely used to

evaluate the performance of interconnection networks. The most demanded performance

measures of interest in an interconnection network are average message latency, through-

put and latency jitters. Evaluating message latency has been paid a special attention, as

many services and applications such as cache coherence and multimedia are latency sen-

sitive. The literature has seen numerous analytical models to predict message latency in

networks with variety of configurations. However, the majority of the models have been

proposed for unicast traffic [19, 20], and analysis of more complicated traffic patterns

including collective and QoS-aware communication have not been paid much attention.

Shahrabi et al.[21] introduced a model for predicting the broadcast communication la-

tency in a Hypercube-topology network. However, in their system model only unicast
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traffic was wormhole-routed, and broadcast communication was not wormhole-routed.

Also, their model was developed for architectures using one-port routers.

The interconnection architectures employing an all-port router scheme have been known

for their superiority in delivering high performance multicast communication operations

[122, 123]. The performance of all-port router architectures, in particular the wormhole-

routed ones, has always been evaluated using simulations programs. Developing an

analytical model to address such communication architectures is regarded as a step

forward.

Most applications running on a system on chip must meet a minimum performance to

operate successfully. To address the performance demands of the application running on

a NoC-based SoC, most architectures offering guaranteed or best-effort QoS support. In

particular, differentiated services-based QoS is implemented as the only QoS provisioning

mechanism [9, 22, 23] or has been offered in combination with guaranteed services [24–

29]. Evaluation of the performance of interconnection networks adopting differentiated

services-based QoS in parallel computers and NoC paradigms have always been based on

simulation or prototyping. Developing an analytical model to evaluate the performance

of prioritized traffic will certainly benefit the community by leveraging the cost-efficient

use of the analytical models to evaluate the performance of QoS-aware NoCs.

1.3 Thesis contributions

The contributions of the thesis cover the following aspects of NoC research: architecture,

analytical modeling and performance/cost comparison.

1.3.1 Architecture

The Quarc NoC The introduction of the Quarc NoC is one of the most fundamental

contributions of the thesis. The Quarc NoC is introduced as an all-port router architec-

ture offering high performance communication at low cost. Key characteristics of the

Quarc NoC include: even distribution of traffic in network, highly efficient multicast

communication support and low implementation cost.



Chapter 1. Introduction 8

The Quarc network interface As the interface between computation and com-

munication, the network interface plays a fundamental role in delivering the services

required by a NoC-based application. This thesis presents a modular design and imple-

mentation of the network interface in the Quarc architecture.

1.3.2 Analytical modeling

Communication modeling of multicast traffic Multicast is one of the most widely

used collective communication operations in interconnection networks. The thesis in-

troduces a novel analytical model to predict the average message latency of multicast

traffic in wormhole-routed interconnection networks employing all-port router scheme.

Modeling differentiated services-based QoS traffic Differentiated services-

based QoS is implemented by most architectures addressing QoS. The thesis develops

an analytical model to predict the average message latency of prioritized traffic.

1.3.3 Performance/cost evaluation

Performance and cost are two paramount factors in adopting a particular interconnection

architecture for SoCs. To evaluate the performance and cost of the Quarc NoC, the thesis

presents a comparison against two architectures.

The Quarc NoC versus the Spidergon STNoC The Quarc NoC is inspired by

the Spidergon STNoC [30] and can be considered as an improvement to the architec-

ture. To investigate the effect of the modifications on performance and cost, hardware

implementations of both architectures are developed. Moreover, the performance of the

two architectures has been compared in different configuration settings.

The Quarc NoC versus the mesh-based architecture Mesh is the most widely

used network topology in the NoC domain. The thesis present an extensive comparison

between the Quarc NoC and an architecture adopting mesh as its topology. Hardware

implementations of the two architectures are developed for various configurations. Also,
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an extensive performance comparison between the two architectures in various working

configurations is provided.

1.4 Thesis overview

The thesis comprises twelve chapters. The chapters are organized in five parts depending

on the subjects covered.

Part I: Preliminaries Part I consists of the first two chapters of the thesis. Chapter

1 presents and introduction to the thesis and Chapter 2 gives the preliminaries required

for understanding the following chapters. It starts with an overview of the characteris-

tics of a NoC including topology, routing algorithm, switching technique and buffering

strategy. The chapter follows by presenting a literature overview of a number of the

NoC architectures.

Part II: The Quarc NoC Part II consists of Chapters 3 and 4. Chapter 3 gives

an insight into the Quarc NoC. Topology, routing algorithm, switching technique and

buffering strategy of the Quarc NoC along with a hardware implementation of the Quarc

router is presented in this chapter. Chapter 4 discusses the network interface in the NoC

realm and provides a detailed design and implementation of the network interface in the

Quarc NoC.

Part III: Cost and performance evaluation Chapters 5 and 6 form Part III of

the thesis. Chapter 5 presents a cost and performance comparison between the Quarc

NoC and the Spidergon STNoC. A cost and performance comparison of the Quarc NoC

against a mesh-based architecture is covered in Chapter 6.

Part IV: Analytical performance modeling Part IV includes Chapters 7, 8, 9,

10 and 11. Chapter 7 presents an overview of the tools and techniques to evaluate the

performance of interconnection networks and investigates their suitability in the NoC

domain. Chapter 8 presents an analytical model to predict the message latency of uni-

cast communication in wormhole-routed interconnection networks. The unicast model
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presented in the chapter is used in the following chapters to evaluate the performance

of more complicated traffic. Chapter 9 introduces a novel analytical model to predict

the latency of multicast communication in wormhole-routed interconnection networks

employing all-port router. Chapter 10 covers the mechanisms employed to offer QoS

in interconnection networks and introduces an analytical model to predict the commu-

nication latency in QoS-aware wormhole-routed interconnection networks. Chapter 11

presents a model of broadcast communication in QoS-aware interconnection networks

by combining the models presented in Chapters 9 and 10.

Part V: Conclusion and trend for further research The concluding remarks

and the trend for future research are discussed in Chapter 12.



Chapter 2

Network on Chip Characteristics

The rich literature on the design of system-level interconnection networks can, to a large

extent, be applied to NoCs. However, on-chip networks present a number of unique chal-

lenges that require solutions distinct from the tried-and-tested system-level techniques.

Perhaps the biggest difference between system-level networks and NoCs is their cost

structure [3]. For system-level networks, the major cost lies in the links. The optimal

system-level network is one that delivers the required performance with a minimum

number of links (and in particular a minimum number of long, and hence costly, links).

In contrast, the on-chip links used to realize NoCs are constructed from inexpensive

on-chip wires. The dominating factors in cost of a NoC are switches and buffers, and

not the links. Hence, the optimal NoC is one that minimizes switch and buffer area,

often at the expense of more links [3]. This difference in cost structure motivates the

use of very different topologies, routing algorithms, and flow-control methods in a NoC

than would be used in a system-level network.

This chapter presents the characteristics of NoCs in terms of topology, routing algo-

rithms, switching techniques and buffering strategies. The chapter also provides an

overview of a number of NoC architectures.

2.1 Topology

The topology of a NoC describes the physical interconnection structure of the network

graph. Adopting a particular topology for a NoC is paramount and is typically the result

11
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of a trade-off between cross-cutting metrics such as performance and cost. The topology

of a network affects the scalability, performance, complexity of the routing elements,

fault tolerance and power consumption.

An on-chip network can be direct or indirect. In direct on-chip networks each router in

the architecture is connected to neighboring routers and using a network interface it is

also connected to an IP core e.g. processor, memory or DSP. In indirect on-chip networks

the number of routers in the architecture is larger than the number of IP cores. In such

on-chip networks, a number of routers are connected only to other routers. Example of

indirect networks are crossbars and multistage interconnection networks.

Similar to other interconnection networks, NoC topologies are evaluated by several met-

rics. Topology comparison is usually based on theoretical cost and performance measures

including number of nodes, network degree, diameter, average distance, bisection width,

number of edges, extendability, symmetry and routing strategy.

The NoC literature has witnessed several topology-dependent and topology-independent

architectures. The topology-dependent architectures are built on top of a regular topol-

ogy. The topology-dependent architectures can leverage the benefits of fully verified

research on their underlying topology. The topology-independent architectures, how-

ever, can offer more customizability which is important in NoC-based SoC development.

The following sections present an overview of the most widely-used regular topologies

in the NoC domain.

2.1.1 Multistage interconnection networks

Multistage interconnection networks (MINs) are a class of high performance indirect

networks. In MINs the input and output devices are connected by a number of stages of

crossbar switches. Omega [31] and delta [31] networks are examples of MINs. MINs were

first used in telephone switching application. They are also used as high performance

interconnection networks for parallel computers, e.g. Thinking Machines CM-5 [32].

MINs have been employed as NoC interconnection topologies. Fat tree [5] and butterfly

fat tree [33] are examples of NoCs adopting MINs as their network topologies. Despite a

rather large network cost and extendability, small locality, increased wire density (with
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many long interconnection wires), and rather expensive VLSI layout, some variations

of MINs can be considered for NoC realization in data parallel applications, such as

multimedia processing [30].

2.1.2 Mesh and torus

Two-dimensional mesh has been regarded as the most favored regular topology for NoC

architectures. This is mainly due to the regularity, scalability and ease of synthesis on

chip the topology offers. Mesh also can provide an acceptable wire cost and reasonably

high bandwidth.

The literature has witnessed extensive research on square mesh in a variety of applica-

tions including parallel computing and the NoC domain. In the NoC paradigm, however,

it is more likely that the chip has dimensions of different sizes and presents a rectangular

shape. The rectangular mesh may be considered as an appropriate candidate in such

circumstances. Despite its wide use, the work on rectangular mesh has been insignificant.

The adjacent nodes in a mesh may be connected by unidirectional or bidirectional links.

The mesh topology may be formally presented as follows. Suppose that the network has

m×n nodes where m and n are the number of nodes at x and y dimensions, respectively.

Each node in network is identified by its position at x and y dimensions. The indices

< i, j > where 0 ≤ i < m, 0 ≤ j < n are denoting the position of the node at x and

y dimensions, respectively. Typically, the node at the top-left corner is assigned label

< 0, 0 > and the x-dimension and y-dimension indices are incremented as we move to

the right and bottom, respectively. The label of each link in network may be determined

by the label of the node it is connected to and the relative position (N, S, E, W) of the

link to the node. For example, < i, j, E > is the label of the link connecting the node

< i, j > to node labeled < i + 1, j >.

In a mesh network deadlock may be avoided by adopting the XY routing algorithm. In

XY routing the packets pass the links in different dimensions according to a predefined

priority.

Having a relatively high network diameter is a drawback of the mesh topology. The two-

dimensional torus reduces the 2-D mesh diameter by adding wrap-around links. These
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links run between < i, n− 1 > and < i, 0 > for all 0 ≤ i < n, and between < n− 1, j >

and < 0, j > , for all 0 ≤ j < n.

A major benefit of torus compared to mesh is the smaller diameter (2 bn/2c vs. 2n− 2)

and larger bisection width (2n vs. n). Moreover, notice that compared to a mesh, a

torus has higher structural uniformity, since it is vertex- and edge-symmetric. Another

advantage of torus over mesh is that unlike mesh, torus distributes traffic more evenly

at network links. In mesh architectures using XY routing, the links in the middle of

network are more heavily utilized compared to the links near the edges. Figure 2.1

represents 4× 4 mesh and torus topologies.

(a) (b)

Figure 2.1: 4× 4 (a) mesh and (b) torus topologies.

2.1.3 Ring and chordal rings

Rings and variations of the ring topology have been heavily researched in interconnection

networks for parallel computers. Chordal rings are a variation of the ring topology. The

following section presents a brief description of the family of graphs that can formally

define chordal rings, followed by a discussion of rings and chordal rings.

2.1.3.1 Cayley graphs

Most constant degree topologies introduced for interconnection networks can be repre-

sented by the well known family of Cayley graphs [34, 35]. Cayley graphs are based on

algebraic group theory. Nodes of the Cayley graph are elements of a permutation group,

G. The edges of the graph are based on applying the group generator operator (⊕) .
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Node x connects to node y, iff x ⊕ γi = y for some γi ∈ S, where S is a set of group

generators for G. Cayley graphs share many interesting topological properties. For ex-

ample, all Cayley graphs are vertex symmetric. This rich family of graphs can be used

to generate small degree, low diameter networks. Moreover, almost all Cayley graphs

are Hamiltonian, and many are hierarchically recursive and optimally fault tolerant.

2.1.3.2 Circulant networks

Circulant networks (also called circulants) [30, 35] are special Cayley graphs and digraphs

defined on cyclic addition groups ZN , where N is a positive integer greater than or equal

to 3. Circulant networks are formally defined as follows. Let G(N ; s1, s2, · · ·, sk) be the

digraph with N nodes, labeled with elements from ZN , and each node x is adjacent

to k other nodes x + si, i = 1, 2, · · ·, k. The graph G(N ;±s1,±s2, · · ·,±sk) is the

undirected version of G(N ; s1, s2, · · ·, sk), where each node x is adjacent to 2k other

nodes x ± si, i = 1, 2, · · ·, k; naturally, s1, s2, · · ·, sk are called skip distances. The

addition or subtraction is taken modulo N .

2.1.3.3 Rings

The ring topology is a popular topology for many communications and parallel pro-

cessing applications. This is due to its structural simplicity and very efficient routing

protocols. These properties contribute to low implementation cost and high transmis-

sion throughput, with high latency being a potential drawback. Even though a single

node or link failure will not disconnect the nodes of an n-node ring, it has an effect on

the routing strategy and tends to further increase the transmission latency. More im-

portantly, two failures (node/node, link/link, or node/link) will almost certainly isolate

some parts of network.

2.1.3.4 Chordal rings

One approach to improve the robustness, network diameter and average distance of the

ring topology entails addition of skip links or chords to the ring network. The augmented

ring is called a chordal ring and can be formally defined as a Cayley graph on ZN , that
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is as circulant graphs, for which 1 and −1 belong to the set of generators. These graphs

are obtained from the cycle by adding chords to each vertex in a regular manner.

Chordal rings have been studied extensively for use as communication and parallel pro-

cessing networks [36–40]. Applications of chordal rings to parallel systems dates back

to very early in the history of parallel processing and have continued to date [41, 42],

although in some cases the interconnection structures include subtle variations and carry

different names, thus making it difficult to identify the underlying chordal ring networks.

The bulk of studies of chordal rings in relation to interconnection networks deal with

networks of small, fixed node degrees; most commonly, 3-6 for undirected (4 being most

heavily studied [43, 44]), and 2-3 for directed networks [45, 46].

2.2 Routing

The routing algorithm determines the path from source to destination. The routing

algorithm for an on-chip network or in general for an interconnection network is signif-

icantly affected by the topology of network. Numerous routing algorithms have been

proposed and adopted by the interconnection networks for parallel computers. How-

ever, the peculiarities of network on chip inhibits employing most of the contributions

in the on-chip domain. The NoCs must implement efficient routing algorithms without

using the routing tables and complex arbitration protocols, targeting small area and

high frequency implementation.

Following presents a brief introduction to the most widely-used techniques to implement

the routing algorithms in interconnection networks.

2.2.1 Deterministic routing

Deterministic routing is a type of distributed routing algorithm in which the path be-

tween source and destination is always the same. Due to resource constraints of the NoC

development, deterministic routing algorithms are the most favored options for on-chip

networks [47]. In a distributed routing algorithm, each intermediate router computes

the next link to be followed. The algorithm requires only the destination address for

deciding the next link. Deterministic routing algorithms mainly follow the shortest path.
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Because of the prevalence of the mesh topology in the NoC domain, the most widely

used type of deterministic routing is XY routing, a variation of dimensional routing.

2.2.2 Adaptive routing

Adaptive routing is another variation of distributed routing. In contrast to deterministic

routing, adaptive routing allows more than one path between source and destination.

In adaptive routing, the decision on the next link at each intermediate router is not

based on the destination address only. The traffic information at each possible route

is also taken into account. The adaptive routing algorithms may lead to non-minimal

paths, which are typically undesirable and more prone to deadlock and livelock. For

irregular traffic or hot spots, adaptive routers usually outperform deterministic ones

[30]. However, the incurred cost for implementing those algorithms is not affordable in

most NoC architectures. In addition to increasing the complexity at routers, employing

adaptive routing requires enough buffer at the destination to store the packets which

potentially arrive out of order.

2.2.3 Source routing

In source routing, the routing information on entire path is provided by the source node.

The packet includes the route, i.e. an ordered list of the addresses of all intermediate

nodes. On arrival to an intermediate router, the routing field is typically shifted in order

to expose the relevant routing choice for the next router on its path.

Source routing generally works with discovery packets that dynamically discover routes

from the source node to any required destination. So it is a very dynamic mechanism.

The drawback of course is that the header size grows with the number of nodes. Another

drawback is that the route discovery loads network.

Source routing represents a flexible and cheap solution for on-chip networks and has

been implemented in several NoCs including Æthereal [48] Chain [49] and Spidergon

[30]. Source routing is an appropriate candidate to handle potential network faults [50].
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2.3 Switching

The switching techniques determine when and how internal switches are set to connect

router inputs to outputs and the time at which message components may be transferred

along the paths. Switching typically has a more significant impact on performance than

routing and topology do [31]. An interconnection network may adopt circuit switching,

store-and-forward switching, virtual cut-through or wormhole switching.

2.3.1 Circuit switching

In circuit switching, a physical path from source to destination has to be established

before the message is transmitted. To establish the path a probe header is injected into

the network. The header contains the destination address and other control information.

As the header moves towards destination the links in the path are reserved. Once the

header reaches the destination an acknowledgment is sent back to source to inform it

to send data. The links will be released by source or destination after the information

transmission is accomplished.

Circuit switching is appropriate for situations in which messages are long in comparison

to the header and message exchange is infrequent. Otherwise, the network experiences

unacceptable latency and blocking rate.

In the NoC domain variations of circuit switching are adopted to offer guaranteed services

or multicast support [14, 51].

2.3.2 Store-and-forward switching

In store-and-forward switching each message is split into packets and each packet is sent

to the network individually. Each packet has routing information to reach destination.

At each intermediate router, after the entire packet is stored at the local buffer, the

routing information is extracted from the packet and an output port is determined

according to the routing algorithm.

In store-and-forward switching no reservation is required (unless QoS demands dictate

otherwise). Store-and-forward switching is considered to be an appropriate choice when



Chapter 2. Network on chip characteristics 19

messages are frequent and short. A major drawback of store-and-forward switching

is the large storage requirement at intermediate routers. The situation worsen when

packets are large and multiple packets must be buffered at a node. Moreover, in store-

and-forward switched networks the latency is distance-sensitive. These characteristics

are in contrast to the NoC demands for small buffers (at routers) and high performance

in terms of latency.

2.3.3 Virtual cut-through switching

In store-and-forward switching the decision on identifying the output port is made after

the entire message is placed at the local buffer of the intermediate router. Since the

routing information is usually in the first few bytes of the packet, it is possible to

make routing decision before the entire packet is received and send the incoming flow

to output buffers if any available. Similar to store-and-forward switching, if the output

port is busy the packet is stored at the buffer of the intermediate node. This modified

version of store-and-forward switching was presented by Kermani et al. and is called

virtual cut-through [52].

In the absence of blocking, the latency experienced by the header at each node is the

routing latency and propagation delay through the router and along the physical links.

At high network loads, in which header experience blocking at each router the latency

of virtual cut-through is the same as store-and-forward switching. Virtual cut-through

shares the drawback of the demand for large amount of buffers with store-and-forward

switching technique.

2.3.4 Wormhole switching

Wormhole switching [53, 54] has been introduced to resolve memory issues in store-and-

forward switching and virtual cut-through switching. In wormhole switching packets are

split into smaller units of flow control called flits. Flits are the smallest unit of data which

require synchronization between the sender and receiver before transmission. Flits are

comprised of phits. The size of a phit equals to bandwidth of the link and is transmitted

in only one clock cycle.
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The header flit has the routing information and the following flits pursue it in a pipelined

fashion. Each intermediate router has enough space for up to a few flits which is con-

siderably less than buffer size required in store-and-forward switching. Usually the flits

of a packet occupy several links and stay at their current link buffers, if the header flit

blocks.

Holding multiple links at the same time by a worm increases the channel dependency and

consequently makes network more prone to deadlock. This issue is specially important

when performing collective communication operations.

2.4 Deadlock and livelock

Mutual dependency among the resources occupied by two or more packets may lead

to deadlock [31]. In such situations none of the involved packets are able to move

further. The possibility of experiencing deadlock is in direct relation to the number of

links network must acquire to send a packet. In store-and-forward switched networks

dependency exists only between adjacent nodes. In contrast, in wormhole switched

networks a message can occupy several links at a time. Holding multiple links at the

same time may lead to mutual dependency between the links, if routing algorithm is not

deadlock free.

To resolve the deadlock problem, mutual dependencies among the network resources

must be broken. The solutions to prevent and avoid deadlock may be realized by em-

ploying appropriate routing algorithm, e.g. Dimension-ordered routing and Turn-model

routing [55] in mesh. Deadlock may also be avoided by employing virtual channels or

virtual networks. The Spidergon scheme [30] is an example of the network topologies

that breaks the channel dependencies by adding virtual channels to physical links. In

the Spidergon architecture a number of virtual channels are used only as escape channels

to avoid deadlock.

Livelock is similar to a deadlock, except that the states of the processes involved in

the livelock constantly change with regard to one another, none progressing. Adaptive

routing algorithms are more prone to livelock.
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2.5 Buffering strategies

The buffering strategy determines the location of the buffers inside the router. Typically,

a router may adopt an output queuing or input queuing strategy. In input queuing the

buffers are at the input of the router. There is requirement for queuing at each input. To

avoid contention, a scheduler decides which queues are connected to which output port.

The long-standing view has been that input-queued switches exhibit poor performance

due to head of line (HOL) blocking; if the packet/flit at the front of the queue is blocked,

other packets/flits in the queue cannot be forwarded to other unused inputs. For large-

degree routers, router utilization saturates at 59% of the network capacity [56].

A solution to the HOL issue is to employ an output queuing buffering strategy. In output

queuing the number of buffers at each output port equals to number of all inputs links.

From the inputs to the outputs there is a fully connected bipartite interconnect to allow

every input to write to every output. Output queuing has the best performance among

the buffering strategies, however, the interconnect will make the router wire dominated

and expensive already for small-degree routers.

Another version of input queuing is virtual output queuing (VOQ) [57]. VOQ combines

the advantages of input queuing and output queuing. It has a switch like in input

queuing and has the link utilization close to that of output queuing. VOQ has as many

buffers as output queuing strategy. However, the switch can operate at a lower frequency

[58].

In Networks-on-Chip, buffers are too costly in terms of area and power consumption [47].

Therefore, the VOQ and output queuing strategies are not considered as an appropriate

option in the NoC realm. Moreover, since most NoC schemes employ wormhole-switching

a packet typically spans several routers, and if the header flit is blocked other flits are

stalled. This is an undesirable feature of the wormhole switching. To overcome this

problem, most NoCs adopt input queuing along with employing virtual channels for a

smooth flow control.
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2.6 Router architecture

In direct interconnection networks, a router is connected to other neighboring routers

through a number of external links. The router is also connected to the local node via one

or more internal links. The architectures adopting only one internal link are referred to as

one-port architectures. Increasing the number of internal links significantly improves the

performance of the collective communication operations [123]. Architectures having an

internal link corresponding to each external link are referred to as all-port architectures.

The schematic of the router in a one-port and all-port router architectures are depicted

in Figure 2.2.

(a) (b)

Figure 2.2: (a) One-port versus (b) all-port router architecture.

2.7 Collective communication operations

The dominant type of communication in an interconnection network is one-to-one. In

such a communication only two processes are involved. There are however, situations

where more than two processes participate in communication. This type of operation is

referred to as a collective communication operation. Collective communications opera-

tions have been traditionally adopted to simplify the programming of applications for

parallel computers, facilitate the implementation of efficient communication schemes on

various machines, and promote the potability of applications across different architec-

tures [31]. These communication operations are particularly useful in applications which
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often require global data movement and global control in order to exchange data and

synchronize the execution among processes.

The collective communication operations can be classified into three categories: one-

to-many, many-to-one, and many-to-many. In one-to-many communication one process

sends a message to a number of processes in the system. The source may send the

same message to the destinations (multicast) or it may send different messages to dif-

ferent destinations (scatter). Many-to-one communications can be viewed as an inverse

of one-to-many communication. One process receives the message from a number of

other processes. An example of this communication is gather which allows the receiver

to collect information from other processes. In many-to-many communication, all pro-

cesses in a collective communication group are sender and receiver. An example of such

operation is all-to-all broadcast.

The collective communication operations defined above are based on an application per-

spective of the operations. This type of definition is useful for studying the semantics

of such operations. However, such a view may not be the most appropriate one when

the focus is on the interconnection network. Therefore, it is important to separate the

application perspective and system view of such operations. Since this work is more

concerned about the performance evaluation of the system level and physical intercon-

nection architecture issues, this study focuses on collective communication in terms of

physical network architecture.

2.7.1 Multicast implementation

Among the collective communication services, multicast is the most frequently used op-

eration. Multicast is adopted in control operations such as global synchronization and

to signal changes (e.g. faults) in network condition or availability of the IP cores. In dis-

tributed shared-memory paradigm, multicast is used to support shared data validation

and updating procedures for cache coherence protocols [118]. Moreover, multicast is used

to implement other collective communication operations such as barrier-synchronization.

Since these operations are typical operations in interconnection networks, a large body

of research has been allocated to provide platforms offering efficient multicast operation.
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The support for multicast communication may be implemented in two groups depend-

ing on whether the underlying technique requires special hardware support. In the first

class, which is called software-based, each multicast operation is reduced to a sequence

of exchanges of unicast messages. In software-based approach the multicast operation is

implemented as an enhancement layer sitting on top of an existing reliable unicast com-

munication service. In contrast, in hardware-based multicast implementation network

is enhanced via special hardware to support multi-destination message transmission.

2.7.1.1 Software implementation

Software-based schemes, which are also referred to as unicast-based, are implemented

as a sequence of unicast message exchange. Separate addressing is the most simple

unicast-based scheme, in which separate messages are sent to each destination [119].

This method performs poorly not only because it wastes network bandwidth due to

excessive traffic generated by only one node, but also because it involves several start-

up latencies and requires excessive time (especially in a single port architectures in which

a local processor may send only one message at a time).

To overcome this, efficient software-based multicast algorithms employing a divide and

conquer strategy have been proposed [119–122] and used in communication libraries

such as MPI and PVM. According to this approach, nodes form a tree structure which

is called a multicast tree. Although any multicast algorithm can also be used, for the

special case of broadcast, the design of the broadcast tree may be treated differently.

To multicast a message, a node transmits the message along a spanning tree rooted at

its own location; whereby a source node sends the message directly to a subset of desti-

nations, each of which then participate recursively (forming a tree) by re-transmitting

copies of the message to the remaining destination nodes. Eventually, all nodes will re-

ceive the multicast message. The software-based implementation uses underlying unicast

communication to deliver multicast messages and, therefore, does not require any addi-

tional hardware support. These schemes aim to reduce the number of start-up phases

by allowing some destinations to act like the source node after receiving the message.

The important issue to consider in software-based multicast implementation is reducing

the height of the tree and also reduce or eliminate the contention between the branches
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of multicast trees. Umesh [119] is proposed to address the contention free multicast

problem for mesh networks adopting dimension ordered-routing. The Umesh algorithm

is based on the recursive doubling technique. A drawback of the Umesh algorithm is its

poor performance in the presence of multiple multicast operations. To overcome this, the

SPUmesh [52] algorithm was proposed. The SPUmesh algorithm involves the position

of the source node in decision making on partitioning the multicast destinations.

2.7.1.2 Hardware implementation

Software-based approaches typically have limitations in delivering the required per-

formance. Implementing the required functionality partially or fully in hardware has

proved to improve performance of the collective operations. Depending on required

performance, the hardware support for collective communication may be achieved by

customizing the switching [53], routing, number of ports [123] or even allocating a ded-

icated network for collective communication operations as in the Connection Machine

CM-5 [32].

Obviously, employing dedicated hardware for supporting multicast operations signifi-

cantly improves the performance of the operations. A basic reason for hardware support

is to eliminate the need for creation and manipulation of the message at software stacks.

Moreover, hardware-based multicast can be designed such that a single multicast mes-

sage utilizes a common path to cover more than a single destination. Examples of useful

hardware support for multicast operations are absorb-and-forward and replication.

A message that is intended for more than one destination is referred to as a multi-

destination message [98]. Most of the hardware multicast support is dedicated to offering

services to multi-destination messages. The absorb-and-forward operation is a function

that may be offered by a hardware router to allow a message to be concurrently forwarded

and stored at the local IP core. In replication, the router has capacity to replicate the

incoming flits and forward them to different directions.

Hardware-based multicast schemes can be broadly classified into path-based and tree-

based schemes. In a path-based approach, the primary problem for multicasting is

finding the shortest path that covers all nodes in the network [31]. After path selection,

the intermediate destinations perform absorb-and-forward operation along the path.
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The Hamilton path-based algorithm [124, 125] and the Base Routing Conformed Path

(BRCP) approach [76, 126] are examples of path-based algorithms utilizing absorb-and-

forward property at hardware layer.

In the tree-based scheme, the multicast problem is finding a Steiner tree with a minimal

total length to cover all network nodes [127]. The tree operation introduces additional

network resource dependencies which could lead to deadlock and is difficult to avoid if

global information is not available [128]. Hence, in wormhole-routed direct networks,

the tree-based multicast is usually undesirable, unless the messages are very short.

2.7.2 Multicast support in NoC

Broadcast and multicast traffic in NoC is an important research field that has not re-

ceived much attention. A multicasting scheme for a circuit-switched NoC is proposed

in [17]. The scheme relies on the global network state using global traffic information

and is therefore not easily scalable. Multicast operation is supported by the Æthe-

real NoC [14]. However, Æthereal relies on a logical notion of global synchronicity

which is not trivial to implement as the system scales. In [16] a multicast scheme in

wormhole-switched NoCs is proposed. By this scheme, a multicast procedure consists

of establishment, communication and release phases. A multicast group can request

to reserve virtual channels during establishment and has priority on arbitration of link

bandwidth. In Nostrum [51] the multicast service is offered by allowing multiple desti-

nations on a virtual circuit. In Nostrum the virtual circuits are set up semi-statically,

in which the route is decided at design time, but the bandwidth is variable at run-time.

Performing a multicast operation in all approaches mentioned above requires setting up

a connection explicitly or implicitly before the transmission starts. In XHiNoC [18] the

detailed implementation of a wormhole router offering multicast communication service

is presented. The XHiNoC router transfers a flit to all its destinations in parallel. The

method resembles the tree-based multicast approach hence, sharing the similar draw-

backs. Unlike the connection-oriented methods, in the Quarc NoC architecture there is

no need for establishing a connection between source and destinations before the data

transmission commences. The Quarc NoC employs a BRCP multicast routing algorithm

and an all-port router architecture to offer high-efficient multicast operation.
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2.8 Literature overview

Since the on-chip network concept emerged, the SoC community has witnessed numerous

NoC architectures. Those architectures span a wide range from simple theoretical proof

of concept to full-fledged and commercial NoCs. A survey of the state of the art and

the majority of NoC architectures are presented in [59, 60]. This section represents a

selection of on-chip communication architectures.

SPIN: In [5] Guerrier and Grenier have proposed an architecture which is called

SPIN (Scalable, Programmable, Integrated Network). SPIN is one of the first concrete

implementations of switching networks on silicon chips. SPIN uses a 4-ary fat-tree

structure as network topology implemented using 8× 8 routers, wormhole routing and

input queuing. Fat-tree has been proved formally to be the most cost efficient for VLSI

realizations [61].

In the SPIN architecture the nodes are routers and the leaves constitute the IPs. The

total number of routers can grow as many as the number of IPs. Routing in SPIN is

typically adaptive and distributed. Increasing the level of stages reduces contention and

improves both message latency and network throughput. In SPIN each two points are

linked by two 36-bits wide unidirectional links.

SPIN adopts a credit-based flow control on the paths. The overflows at destination of

a path are checked at source. The receiver notifies the sender of every received data,

with a dedicated feedback wire. Although the introduction of dedicated control wires

is costly, it is shown that this architecture performs very well in terms of latency and

throughput [111].

In SPIN, there is no limit on packet size. Each packet consists of a sequence of 4-byte

flits, i.e. first flit, data flits and end of packet flit. The first flit (header) has a 1-byte

address and remaining bits for special services or routing options.

Figure 2.3 shows a SPIN architecture with 16 IPs and two levels of routers. In this ar-

chitecture the size of network grows as (n log n)/8 and the number of switches converges

to S = 3n/4, where n is the system size in terms of the number of functional IP cores.
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Figure 2.3: A SPIN architecture of 16 nodes.

The network interface in SPIN consists of two wrappers (VCI/SPIN and SPIN/VCI)

compliant to Virtual Component Interface (VCI) specifications for interfacing the SPIN

network with external IP core. A 32-port SPIN network was implemented in a 0.13µm

CMOS process [62] with total area of 4.6mm2 and peak bandwidth ∼ 100Gbits/s.

Butterfly fat tree: Pande et al. [33] proposed the butterfly fat-tree architecture.

In their network, the IP cores are placed at the leaves and switches at the vertices. A

pair of coordinates is used to label each node to denote the node’s level and its position

in the network. At the lowest level, there are N IP blocks which are connected through

the switches at higher levels. Each switch has four children and two parent ports. The

IP cores are connected to N/4 switches at first level. The number of levels depends

on number of IP cores i.e. log4 N . Figure 2.4 depicts a 16 nodes butterfly fat tree

architecture.

Butterfly fat-tree employs a packet based communication mechanism, adaptive shortest

path routing and employs wormhole switching. A packet consists of a header flit and

one or more data flits, where the number of data flits is included in the header flit.

This architecture enables simple traffic aggregation to/from a particular set of cores and

regular structuring of the switches in the layout, simplifying design. In fact, butterfly

fat-tree trades throughput for reducing area overhead and power efficiency, more than

the SPIN architecture.

MIT RAW: The MIT RAW microprocessor network addresses the challenge of

whether a future general-purpose microprocessor architecture could be built that runs a

greater subset of the ASIC applications, while still running the same existing ILP-based
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Figure 2.4: Butterfly fat-tree.

(Integer Linear Programming) sequential applications with reasonable performance in

the face of increasing wire delays [63, 64]. The RAW architecture supports an ISA that

provides a parallel interface to the gate, pin, and wiring resources of the chip through

suitable high level abstractions, enabling the programmer (or compiler) to determine

and implement the best allocation of resources for each possible application.

The MIT RAW design divides silicon area into 16 identical, programmable tiles. Each

tile consists of an eight-stage in order single issue MIPS processor, a four-stage pipelined

floating point unit, a 32-Kbyte data cache and 96-Kbytes of software-managed instruc-

tion cache. Each tile connects to north, east, south or west neighbor tiles using four full

duplex 32-bits wide networks, two static and two dynamic. The static router (routes

specified at compile time) is a five stage pipeline that controls two physical networks

used for point-to-point scalar (operand) transport among tiles. The dynamic routers

control two dynamic networks for the remaining traffic, e.g. memory, interrupt, I/O,

and message passing. This implementation reduces the longest wire, ensuring scalabil-

ity. Packets consist of a single header that specifies the destination tile, a user field and

packet length. RAW implements fine-grain communication between replicated process-

ing elements with local memory. Thus it is able to exploit parallelism in data parallel

applications, such as multimedia processing.

Cliche: The Chip-Level Integration of Communicating Heterogeneous Elements NoC

architecture (called Cliche) adopts a 2-D mesh topology with a packet switched commu-

nication protocol [7].

Each router is connected through input/output links to one external IP or proces-

sor/DSP resource and two, three or four other neighbor routers, depending on its location
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in the layout. The architecture defines four layered inter-resource communication pro-

tocol (physical, data-link, network and transport layer), which must be implemented in

the resource to network interface for every resource in the architecture. Connection to

the external resource may require network interfaces.

Folded torus NoC: In [3] Dally discussed the need for networks on chip as an

alternative to the bus-based approach. The paper adopted a folded torus as the topology

of the NoC architecture. The layout provides extra wiring, reducing the hop count for

any transmitted packet. However, reducing misrouted or dropped packets and avoiding

deadlock (through virtual channels) require a larger buffer size.

Embedded Chip-Level Integrated Parallel SupErcomputer (Eclipse): The

embedded chip-level integrated parallel supercomputer (Eclipse) [65] is a scalable, high

performance computing architecture for NoCs. An Eclipse consists of multi-threaded ar-

chitecture with chaining processors with dedicated instruction memory modules, highly

interleaved data memory modules, and a high-capacity sparse mesh interconnection

network. Because Eclipse’s memory system is cache-less, it has no cache coherency

problems. Eclipse’s structure is homogeneous, simplifying design and making it eas-

ier to integrate into a larger SoC. Eclipse features a completely software-based design

methodology to support flexibility and general-purpose operation.

Nostrum: Nostrum [15] targets low overhead in terms of hardware and energy usage

in combination with tolerance against network disturbance. In the Nostrum architecture,

a service of guaranteed bandwidth and latency has been implemented in addition to the

existing service of best-effort packet delivery. The guaranteed performance is offered via

virtual circuits. Virtual circuits are set up semi-statically, in which the route is decided

at design time, but the bandwidth is variable at run-time. To share the bandwidth

between a number of disjoint virtual circuits a variation of time division multiplexing

has been exploited which is referred to as Temporary Disjoint Networks (TDN). Nostrum

employs deflective switching to avoid congestion and require less hardware as no routing

tables or input/output queues are needed.

The drawbacks of the Nostrum concept are the potential waste of bandwidth in the

returning phase of the container in the loop, since the container might travel empty if
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the best-effort traffic is one-way. Also, the limited granularity of bandwidth possible to

subscribe to, might become a problem.

Æthereal: The Æthereal NoC is a full-fledged on-chip interconnect consisting of

generic routers and network interfaces [4, 8, 66–68]. The routers use input queuing,

deterministic source-based (destination tag) wormhole routing and link-level flow con-

trol. To provide time-related guarantees, such as throughput guarantees (on a finite

time scale) or latency bounds, interference of other traffic must be limited and char-

acterized. The Æthereal NoC facilitates software programming by offering a strong

end-to-end QoS paradigm that provides high-level services, such as transaction order-

ing or throughput and latency guarantees. The QoS protocol defines traffic classes for

throughput/latency guaranteed (GT) and best-effort (BE) services. While GT flits use

a connection-oriented, contention-free time-division-multiplexed circuit-switching based

on slot tables and appropriate packet headers, BE flits are scheduled to remaining output

ports using conventional wormhole routing, input or output queuing, and round-robin

arbitration.

The Æthereal network interface converts the OSI network layer of the routers to trans-

port layer services for the connected IP core. All end-to-end connection properties are

implemented by network interfaces, i.e. reordering, transaction completion and flow con-

trol. The IP cores negotiate with network interfaces to obtain connections by reserving

resources, such as network interface buffers, credit counters and slots in router tables.

Æthereal supports narrowcast, multicast or simple connections and shared memory-like

transactions, such as read, write, acknowledged write, test and set or flush.

Hermes: The Hermes infrastructure generates wormhole-routed NoCs based on basic

network components, such as routers and buffers [69]. Hermes employs different topolo-

gies, while adjusting flit and buffer size and routing algorithms. Hermes implements

three layers of the OSI reference model: physical wiring interface, an explicit handshake

data link protocol for transferring data reliably between routers and a network layer for

packet switching. It also supports OCP, ensuring enhanced re-usability of the infras-

tructure and connectivity to available compliant IP cores. The main component is the

Hermes router which aims at a 2-D mesh topology. It contains control logic and a set

of up to 5 bidirectional ports, i.e. east, west, north and south connections to 4 neighbor
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routers and local connection to an IP core. Hermes can use simple XY routing with

input queue buffers to enable practical small area implementation. In addition, dynamic

arbitration resolves conflicts when multiple packets arriving simultaneously at the router

require the same output port.

Mango: Mango’s implementation is based on clockless circuit techniques, and thus

inherently supports a modular, GALS-oriented design flow. The Mango router exploits

virtual channels to provide connection-oriented guaranteed service (GS), as well as con-

nectionless best-effort (BE) routing. The architecture is highly flexible, in that support

for different types of BE routing and GS arbitration can be easily plugged into the router.

The services are implemented using separate physical buffers and a smart scheduling

scheme called asynchronous latency guarantees [70]. Note that for this scheme, latency

guarantees are not inversely dependent on bandwidth guarantees, as is the case in TDM-

based scheduling. In addition, the mechanism adopted at routers makes global timing

robust, since no timing assumptions are necessary between routers. Mango interfaces

the asynchronous network to a clocked OCP-based standard socket through network

interfaces designed using primitive routing services of the clockless network.

QNoC: QNoC [9] introduces a design process that satisfies the QoS requirements of an

on-chip application at low cost. QNoC adopts a mesh topology. However, the process

may find some links not useful and trim them from the NoC. The routing algorithm

employed is shortest path XY routing algorithm. And the NoC employs wormhole

switching. QNoC defines presence of four different services namely, signaling, real-time,

read/write and block-transfer.

The routers have the capacity to accommodate a few flits of different classes. The design

process starts by defining and connecting modules in an ideal network. In the next step

the design is augmented with inter-module traffic. Further in the design process the

assumptions about the links traffic are validated and the modules placed in such a

way to minimize the system spatial density. By this stage the place and inter-module

communication requirements have been determined. During the next step the modules

are mapped to a NoC.
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Chain NoC: The Chain NoC [49] is topology-independent, implementing GALS

with asynchronous links to interconnect IP modules efficiently. Chain provides a flex-

ible, clock-independent solution, increasing bandwidth, reducing power consumption,

and resolving timing closure problems in deep submicron technology. A router imple-

mentation for Chain provides differentiated services with soft deadlines by prioritizing

virtual channels [12].

×pipes and the NetChip compiler: ×pipes and the NetChip compiler provide an

automated NoC design flow based on parametric network building blocks for application

specific NoC architectures [71]. The ×pipes library provides switches that support reli-

able communication for arbitrary link pipeline depths, and an OCP-compliant network

interface that connects to/from the IP cores. ×pipes supports regular and heterogeneous

architectures with source-based, wormhole routing.

Based on the final SoC architecture floor plan consisting of switches, links, network inter-

faces and IP blocks, the ×pipes compiler automatically extracts synthesizable SystemC

cycle- and signal-accurate executable specifications for all network components. Input to

the ×pipes compiler is provided either through a user-specified topology file, or using the

SUNMAP tool [72]. This tool automatically maps the IP cores onto the NoC topologies

selected from a library, considering different NoC routing strategies, such as dimension

ordered and shortest path. By utilizing floor plan information, SUNMAP can minimize

area or power dissipation requirements, and maximize performance characteristics.

Octagon: Octagon, proposed by ST Microelectronics [73], is an interesting circuit-

switched interconnect based on a regular point-to-point topology designed for targeting

the network processor domain. The basic Octagon configuration is shown in Figure

2.5(a), which is an eight node bidirectional ring with cross connections. Thus, each

processor is directly connected to two adjacent nodes and the node directly across. This

basic topology has small degree (3), diameter of just two hops, and allows for a simple

and efficient shortest path routing. The network provides a high concurrency, low la-

tency on-chip communication architecture, able to meet network processing needs. It

has significantly higher performance than bus-based on-chip communication, while hav-

ing less wiring complexity. The ST Microelectronics Octagon has two main drawbacks
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that limit flexibility, efficiency and scalability as a prospective NoC architecture: cir-

cuit switching based on centralized arbitration, and significant network extendability (8

nodes) which represents high granularity when scaling to a larger network configuration.

Figure 2.5(b) demonstrates an strategy to extend the Octagon architecture [73].

(a) (b)

Figure 2.5: (a) The Octagon basic topology, (b) Extending the Octagon topology.

2.9 Conclusion

On-Chip networks share significant similarities with system-level interconnects. This

section presented an overview of the characteristics of the interconnection networks in-

cluding topology, routing algorithm, switching technique and buffering strategy. Along

with the description of each feature, we showed how they suit the NoC paradigm. The

chapter has concluded that regular topologies, deterministic routing algorithms, worm-

hole switching and input buffering are more promising in the NoC paradigm. The section

also presented a brief literature review of a selection of NoC architectures.
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Chapter 3

The Quarc NoC Architecture

The NoC paradigm has witnessed numerous NoC architectures with different character-

istics and capabilities. The primary focus of those architectures has been on delivering

efficient unicast communication. Putting the effort on implementing efficient unicast

communication is a rational decision as unicast is the dominant on-chip traffic. Col-

lective communication operations form a part of overall on-chip traffic in a variety of

applications running on NoC-based applications. The current NoC architectures either

do not implement hardware support for performing collective communication opera-

tions, or the implementation involves significant overhead and is therefore not efficient.

In contrast to the existing NoC architectures, the collective communication operations

(in particular multicast and broadcast) have been the main motivator behind proposing

the Quarc NoC.

The Quarc NoC is introduced as a simple and efficient architecture. The Quarc NoC is

similar to the Spidergon STNoC architecture and it preserves all features of the archi-

tecture including the wormhole switching, deterministic shortest path routing algorithm

and the efficient on-chip layout. The Quarc NoC improves on the Spidergon STNoC by

applying modifications to the topology, routers and the network interfaces. The modi-

fications are mainly aimed at i) balancing traffic more evenly at network links and ii)

offering efficient multicast/broadcast operations. The Quarc NoC improves on the Spi-

dergon STNoC by applying the following modifications: i) doubling the across links, ii)

enhancing the one-port router architecture to an all-port router scheme and iii) enabling

the routers to absorb-and-forward flits simultaneously.

36
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This chapter presents a detailed representation and implementation of the Quarc archi-

tecture. The characteristics of the network including topology, routing, switching and

buffering strategies are described in details.

3.1 Topology

There is a large body of research on regular topologies for interconnection networks

both in parallel computers and the NoC domain. In general, it is highly desirable

to capture the traffic requirements of the application using a regular topology. On

the other hand, embedded multicore applications require customizable heterogeneous

communication infrastructures [30]. The customizability and heterogeneity spans a wide

range of configuration settings, including the network topology. Of course, customizing

the topology of a network may lead to irregular topologies, which are not desirable.

Simple topologies, such as rings, are cost-effective in terms of cost, but deliver relatively

poor performance [74], especially as the number of connected cores increases. On the

other hand, higher connectivity topologies, such as 2-D mesh, provide interesting the-

oretical metrics. However, the nature of the on-chip communication traffic, physical

characteristics of the IP cores and physical attributes of the final product, typically,

inhibits full exploitation of the offered features. Physical attributes of the IP cores are

likely to inhibit the topology to preserve its regular structure on chip. Moreover, physical

implementation limitations may also not allow or justify adopting a particular topology

to be built on chip.

Being inspired by the Spidergon topology, the Quarc topology, despite subtle differ-

ences, shares a significant similarity with the Spidergon topology. At a high level of

abstraction, where all implementation details are ignored, the topology of the Spider-

gon and the Quarc NoCs can be presented by the same graph. Due to this similarity

and to present a clear comparison between the two topologies, this section presents the

Spidergon topology in details, followed by a description of the Quarc topology.
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3.1.1 The Spidergon STNoC Topology

The Spidergon [30] topology was proposed by ST Microelectronics to address the need for

a fixed and optimized NoC topology to realize cost effective MPSoC development. The

Spidergon STNoC topology is a regular topology similar to a simple bidirectional ring,

except that each node has, in addition to links to its clockwise and counter-clockwise

neighboring nodes, a direct bidirectional link to its diagonally opposite neighbor. Figure

3.1 shows a 16 nodes Spidergon and a potential on-chip layout.

Figure 3.1: The Spidergon topology and the on chip layout.

Formally, the Spidergon graph belongs to the general family of undirected circulant

graphs. Within this family, the Spidergon network connects an even number of nodes

N = 2n, n = 1, 2... as a vertex-symmetric 3−circulant with k = 2, s1 = 1 and s2 =

(l + n)modulo(N). Thus, Spidergon consists of a bidirectional ring in both clockwise

(right), and anti-clockwise (left) directions; in addition, for each node there is a cross

connection, i.e. from node i, 0 ≤ i < N to node (i + n)modulo(N).

When it comes to implementation, the nodes of the Spidergon STNoC are connected

by unidirectional links. The Spidergon topology is a variation of the ring topology and

prone to deadlock. The Spidergon and the Quarc NoCs use similar approaches to avoid

deadlock. The deadlock avoidance strategies are discussed later when the routing is

discussed.

The key characteristics of the Spidergon topology include: good network diameter, low

node degree, homogeneous building blocks (the same router to compose the entire net-

work), vertex symmetry, low extendability granularity and simple routing scheme.

Compared to complex topologies, Spidergon offers a small number of links and simple

implementation. For current, realistic NoC configurations with up to 60 nodes, the
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proposed Spidergon graph has a smaller number of edges and a competitive network

diameter with respect to fat-tree or 2-D mesh topologies [74].

In contrast to the existing NoC architectures which are either based on a fixed regu-

lar topology, or are topology-independent, the Spidergon topology is introduced as a

pseudo-regular topology. Using this concept, NoC topology becomes an architectural

parameter that can be configured depending on the communication patterns exhibited

by the application. Thus, the Spidergon topology fills the gap between regularity and

customizability.

Depending on the application traffic, the Spidergon topology can be customized and

simplified. This feature allows the Spidergon to support different families of topologies.

These topologies are essentially degree 2 or 3 Spidergon sub-graphs that range from

rings and simple spanning trees to irregular chordal rings which are built using similar

building blocks. Figure 3.2 depicts different topologies supported by the Spidergon

topology. Moreover, the Spidergon STNoC allows traffic at injection and ejection links

to be aggregated to utilize the links more efficiently.

Figure 3.2: A number of topologies supported by the Spidergon NoC.

The Spidergon topology allows extending network as a hierarchical structure. Hierarchi-

cal network structures increase the performance, since they reduce conflicts by exploiting

locality, while ensuring global all-to-all connectivity. Figure 3.3 shows two hierarchical

network structures supported by the Spidergon STNoC.



Chapter 3. The Quarc NoC architecture 40

Figure 3.3: Hierarchical network structures supported by the Spidergon STNoC.

3.1.2 The Quarc NoC Topology

As mentioned earlier, the Spidergon allows adding or removing links between the nodes

on demand. In respect to this feature, the Quarc topology can be regarded as a variation

of the Spidergon. Similar to the Spidergon, the topology of the Quarc NoC can be

formally represented as a undirected circulant graph connecting N = 2n, n = 1, 2...

nodes as a vertex-symmetric 3−circulant with k = 2, s1 = 1 and s2 = (l + n)modN .

Thus, exactly as the Spidergon, the Quarc topology consists of a bidirectional ring in

both clockwise (right), and anti-clockwise (left) directions; in addition, for each node

there is a cross connection, i.e. from node i, 0 ≤ i < N to node (i + n)modN .

In the Spidergon topology, half of the nodes are accessed through the left and right

links; the rest of the nodes are accessible through the across links. Therefore, the across

links can become a bottleneck. On the implementation side, Quarc is distinguished from

Spidergon by using two physical links to separate the access to across-left and across-right

nodes. Adding this modification to the topology results in a more even distribution of

traffic on links. Moreover, it leads to simpler routing algorithms and, last but not least,

the effect of modification combined with the proper network interface implementation is

best manifested in performing multicast and broadcast communications. The resulting

topology for an 8-node Quarc and Spidergon topologies are compared in Figure 3.4.

Symmetry is an important feature affecting VLSI design issues and implementation of

efficient point-to-point routing algorithm. If an automorphism exists that maps any

node α into another node β the graph is vertex-symmetric. A vertex-symmetric graph

looks identical from any network node. Based on this definition, the Spidergon topology

is vertex-symmetric. Doubling across links does not affect this property. Therefore,
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(a) (b)

Figure 3.4: Topology of (a) Quarc and (b) Spidergon.

graph representation of the Quarc topology is vertex-symmetric. Figure 3.5 compares

the view of each Quarc and Spidergon node to the network, where Across-First routing

algorithm [30] is adopted. As will be shown, the difference between the two graphs which

is simply a result of doubling across links has a significant impact on routing decision

and particularly on the performance of multicast communication, while does not incur

extra cost at the routing elements.

(a) (b)

Figure 3.5: The graphs representing the view of each node to the (a) Quarc and (b)
Spidergon topologies.
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3.2 Packet format in the Quarc NoC

The Quarc NoC uses a simple deterministic routing discipline, therefore, the packet

format for unicast and collective communication is quite simple. For a Quarc NoC

employing flit size of 34 bits various flit types composing a packet are depicted in Table

3.1. Bits [1 : 0] denote the flit types namely, header, body and tail. Bits [7 : 2] and

[13 : 8] represent the source and destination addresses, respectively. Bits [30 : 14] in

case of multicast represent the bitString. Finally, the last 3 bits of header flits represent

traffic types which are shown for unicast, multicast and broadcast. Each packet must

have the header and tail flits.

Note that due to the scalability issues of the Quarc NoC, it is assumed that the network

size may be up to 64 nodes. However, larger networks may employ flits of larger size or

use multi-flit headers for specifying multi-addresses for multicast operations.

Bits [33:31] [30:14] [13:8] [7:2] [1:0]

Unicast header unused unused destination address source address 0

Broadcast header unused unused destination address source address 0

Multicast header unused bitstring destination address source address 0

Body Payload 1

Tail Payload 2

Table 3.1: Flit type formats in the Quarc NoC.

3.3 Routing algorithm

The routing algorithm for an on-chip network or in general for an interconnection net-

work is significantly affected by the topology of the network. Numerous routing algo-

rithms have been proposed and adopted by interconnection networks for parallel com-

puters. However, the peculiarities of NoCs inhibit employing most of the contributions

in the on-chip domain.

The following sections present unicast, multicast and broadcast routing algorithms in

the Spidergon and the Quarc NoCs.
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3.3.1 Unicast routing

Spidergon The Spidergon STNoC adopts a deterministic routing algorithms. The

routing schemes are simple since they leverage the symmetry and simplicity of the Spi-

dergon topology. Moreover, the relevant implementation of the on-chip routers is ex-

tremely efficient as it does not require expensive routing tables. The Spidergon STNoC

uses source routing to encode routing information in the packet header at network in-

jection points or network interfaces. Thus, routers can easily decode the path from the

header.

The routing in the Spidergon STNoC is programmable. The path from source to des-

tination is determined by a routing function executed at packet injection time. This

function can be changed during run-time through software reconfiguration, fully ex-

ploiting topological path redundancy. A primary advantage of routing programmability

is fault tolerance support which is foreseen to become mandatory in deep-submicron

technologies.

The Spidergon STNoC employs oblivious routing [30]. This means that packet routing

decisions are carried out using only local information available at each network node.

When a router receives the header flit, the routing algorithm compares the network

address of the current router to that of the destination router. If the two network

addresses match, flits are routed to the local port of the router. Otherwise, an attempt

is made to forward the flit towards a clockwise or counter-clockwise direction along

the ring, an across link, or in a hierarchical way to another instance of the Spidergon

topology family.

To follow the shortest path, the Spidergon STNoC may implement two algorithms. The

routing algorithms are distinguished based on when to take the across link. The first

algorithm, called Across-First, moves packets along the ring, in the proper direction,

to reach the destination nodes. The across links are used only once at the beginning

for destinations that are far away. Across-Last is another routing scheme that can be

used on the Spidergon STNoC. Instead of jumping through the across link as the first

hop and moving along the ring to reach the final destination, packets can first move

along the clockwise or counter-clockwise directions and finally take the across link to

the destination node.
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Quarc Similar to the Spidergon NoC, the Quarc NoC can implement a variety of

unicast routing algorithms. Depending on the position of the destination, a packet may

require taking an across link in the path. Employing the Across-First routing algorithm

in the the Quarc NoC can realize the routing algorithm using the minimum resources.

In this approach, if the shortest path requires taking an across link, this will be the

across link of the router corresponding to the source node.

Using the Across-First routing algorithm, unicast in the Quarc NoC is quite simple:

packets are either destined for the local port or forwarded to a single possible destina-

tion. Consequently, the proposed NoC switch requires no routing logic. The route is

completely determined by the port in which the packet is injected at the source node.

Of course, the network interface of the source IP core must make this decision and there-

fore calculate the quadrant as outlined above. However, calculating the quadrant in the

network interface incurs a negligible cost.

3.3.2 Deadlock avoidance

Given that the Across-First routing is adopted, the cyclic dependency graphs (CDGs)

of the Across-First routing scheme in the Spidergon and the Quarc NoCs are illustrated

in Figure 3.6. Due to cycles in corresponding CDGs, the Across-First routing in the

Spidergon and the Quarc NoCs are not deadlock free. Both topologies are regarded as

variations of chordal ring families. Thus, the cycles in both CDGs arise from dependen-

cies in bidirectional rings. Therefore, handling deadlock in the Spidergon and the Quarc

NoCs adopting Across-First routing is mandatory. This may be addressed by breaking

the cycles created from the ring.

Since the topology of the Quarc NoC is considered as a relative of the Spidergon, and

doubling the across links does not affect the channel dependency, the rest of this section

focuses on deadlock handling in the Spidergon NoC. Any solution can be readily applied

to the Quarc NoC.

As mentioned above, deadlock in Spidergon arises from bidirectional rings in the topol-

ogy. Hence, low-level deadlock in the Spidergon STNoC can be avoided analogous to

that in the ring topology. Adopting virtual channel is an approach to remove cyclic

dependencies in rings [75]. Consequently, the Across-First routing method presented in
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(a)

(b)

Figure 3.6: CDG of Across-First routing in the (a) Spidergon and (b) Quarc archi-
tectures.

Section 3.3.1 can be extended to the following virtual channel allocation algorithm to

avoid deadlock.

In a naive approach each physical link constituting the ring is shared by two virtual

channels, vc0 and vc1, where virtual channel vc0 is used, when required, as an escape

channel. Also, we assume that node 0 is the dateline. On entering the network, packets

use vc1 and continue using vc1 before meeting the dateline node. Upon crossing the

dateline node, the packet uses vc0 for the rest of its journey to destination. Adopting

this approach guarantees deadlock freedom. However, it performs poorly in terms of

virtual channel utilization. That is because only N
4 of vc0’s in the network are ever

used. N
4 is the maximum distance a packet may travel on the Spidergon ring after the

dateline node.

In the above naive deadlock avoidance scheme many buffers associated to vc0 are unused.

An optimized utilization of virtual channels can improve the performance by reducing

contention. For example, if a packet route does not cross the dateline, any virtual

channel can be used, i.e. virtual channel assignment for these packets is unconstrained.
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A simple origin-based virtual channel allocation algorithm is proposed to appropriately

combine deadlock avoidance and load balance on the Spidergon STNoC [30]. This

scheme is based on partitioning the Spidergon ring into two contiguous halves: nodes

0, N − 1, N − 2, ...N/2 + 1 are called type I, while nodes N/2, N/2− 1, ..., 1 are type II

nodes. As mentioned earlier, using shortest-path deterministic routing, the maximum

distance of an Across-First path on the ring is N/4. Thus, packets will change their

partitions at most once. With origin-based virtual channel allocation, packets that do

not cross the two dateline nodes (N/2 and 0) are assigned to any of the two virtual

channels, i.e. either vc0 or vc1. However, packets crossing the dateline nodes, i.e.

packets originating at type I nodes crossing node N/2, or packets originating at type II

nodes crossing node 0, are initially routed on vc0, and then upon crossing their dateline

they are shifted to vc1.

Assuming random traffic, the virtual channel assignment is fair on 2(N/4 − 1) nodes

with packets equally assigned on both virtual channels. It is in favor of vc0 by 2 : 1 on

N/4 nodes, in favor of vc1 by 2 : 1 on N/4 nodes, and completely unfair on only two

nodes (those required for deadlock-free operation).

Designing routing schemes that are free of dependency cycles by construction is another

way to avoid deadlock. This is normally achieved by restricting the possible paths in

the topology. However, such an approach is typically considered as application specific

and hard to adopt in a wide range of applications.

3.3.3 Broadcast routing

Spidergon Given that the Spidergon NoC does not provide hardware implementation

of the functionality to perform collective communication operations, broadcast in the

architecture can be handled most efficiently by unicast with a “unicast tree” algorithm

depicted in Figure 3.7. The initiating node, say node 0, sends a packet to node N/2;

nodes 0 and N/2 send a packet to N/4 and N/2+N/4; all 4 nodes send a packet to nodes

N/8, N/4+N/8, N/2+N/8, N/2+N/4+N/8 and so on. Because this is a multi-stage

process (log2N stages) the broadcast packet needs a decrementing count field to identify

the stage of the broadcast process. When a NoC router receives a broadcast packet, it

must take the following decisions:
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Figure 3.7: Broadcast in a 16 nodes Spidergon NoC.

1. Is the current node a destination node or a forwarding node? The rule for this

decision is: if the distance between the source address and the node address is

smaller than the value of the count field, the packet must be forwarded (on the

rim). Otherwise, the packet is received by the local node.

2. Is further broadcast required? The rule for this decision is: if the count field is 0,

no further broadcast is required.

3. If further broadcast is required, how many packets need to be sent? The number

of packets to be sent is given by the count field of the ingress packet. Essentially,

the switch decrements the count field and forwards the packet along the rim. This

means that the router or network interface must buffer the packet for the duration

of the broadcast and decrement the count field in the buffered packet before each

transmission, until the count is 0.

The problem with this scheme (and in general with broadcast-by-unicast) is that the

router or network interface requires buffer space to store a whole packet. If the required

space is not available, broadcast has to be performed using the simplest and least efficient

approach of sending unicast messages to each individual destination separately.

Quarc Broadcast, the key motivation behind the Quarc topology, is elegant and

efficient: The Quarc NoC adopts a BRCP (Base Routing Conformed Path) [76] approach

to perform multicast/broadcast communications. BRCP is a type of path-based routing

in which the collective communication operations follow the same route as unicasts do.

Since the base routing algorithm in the Quarc NoC is deadlock-free, adopting the BRCP
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technique ensures that the broadcast operation, regardless of the number of concurrent

broadcast operations, is also deadlock-free.

To perform a broadcast communication the network interface of the initiating node has

to broadcast the packet on each port of the all-port router. The network interface tags

the header flit of each of four packets destined to serve each branch as broadcast to

distinguish it from other types of traffic. The network interface also sets the destination

address of each packet as the address of the last node that the flits stream may traverse

according to the base routing. Each receiving node simply checks if the destination

address at the header flit matches its local address. If so, the packet is received by the

local node. Otherwise, if the header flit of the packet is tagged as broadcast, the flits

of the packet at the same time are received by the local node and forwarded along the

rim. This is simply achieved by setting a flag on the ingress multiplexer which causes it

to clone the flits. Using this algorithm, the Quarc NoC can deliver a broadcast message

in only one step.

Broadcast in a Quarc NoC of 16 nodes is depicted in Figure 3.8. Assuming that Node

0 initiates a broadcast, it tags the header flits of each stream as broadcast and sets the

destination address of packets as 4, 5, 11 and 12 which are the address of the last node

visited on left, across-left, across-right and right rims respectively. The intermediate

nodes receive and forward the broadcast flit streams, while the destination node absorbs

the stream.

Figure 3.8: Broadcast in a Quarc of 16 nodes.
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3.3.4 Multicast routing

Similar to broadcast, in the multicast operation, the last node to be visited must be

specified as the destination address on the rim in the header flit. For broadcast all

nodes in the path from source to destination are the receiving nodes. In the case of

multicast the target addresses are specified in the bitstring field. Each bit in the bitstring

represents a node; its hop-distance from the source node corresponds to position of the

bit in the bitstring. The status of each bit indicates whether the visited node is a target

of multicast or not. Consequently, broadcast is simply a special case of multicast where

every node is a target.

3.4 Switching technique

In the NoC domain the resources are scarce and the applications have typically some

performance requirements. A major challenge in the domain is therefore, to fulfill the

applications’ performance demands using the limited available resources. Resource con-

straints lead to employing those algorithms and techniques that will realize the required

functionality in a more cost effective fashion. Buffers account for a significant share of

the overall cost and the power consumption in NoCs. For instance, by increasing the

buffer size at each input channel from 2 to 3 words, the router area of a 4 × 4 NoC

increases by 30% or more [47]. Thus, the overall use of buffering resources has to be

minimized to reduce the implementation overhead in NoCs.

The switching technique employed by a network has a direct relation to the size of

the buffers at routers. Store-and-forward and cut-through switching techniques require

enough buffers to store a whole packet at each intermediate router. This does not

seem to be affordable by most NoC architectures. Moreover, storing the packet at each

intermediate router means that the message latency is directly related to the distance

between source and destination. The need for efficient communication at low cost leads

to adopting wormhole-switching as the dominant switching technique in the NoC realm

[3, 47].
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The Quarc NoC targets an area-efficient, low power, high performance implementation.

Therefore, it adopts wormhole-switching to leverage the low buffer demands and distance

insensitivity feature of the the switching technique and to minimize power consumption.

3.5 Buffering strategy

The Quarc NoC adopts input queuing at routers and employs virtual channels to improve

the network bandwidth and latency. To avoid deadlock, the basic Quarc architecture re-

quires sharing each physical link by two virtual channels. The optimal number of virtual

channels in the Quarc NoC depends on the application and the size of the network.

3.6 The router architecture

This section presents the router architecture of the Quarc NoC with multicast and

broadcast communication support. Figure 3.9 presents a minimal architecture for use

with deterministic routing, i.e. the hardware is tailored to the data-paths allowed by

the deterministic routing discipline.

Figure 3.9: Minimal router architecture in the Quarc NoC.

The Quarc router implements the OSI reference model services at network, data-link and

physical links. The Quarc router deals with switching, topology and routing schemes.
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QoS provisions can also be implemented by the router. However, the basic Quarc router

does not support QoS.

Figure 3.10 depicts a top level functional block diagram of the Quarc router for variable

virtual channels. As shown in Figure 3.10, the Quarc router consists of three fundamental

modules, namely, input port controller (IPC), switch, and output port controller (OPC).

Any flit entering the Quarc router passes through four stages, namely, input buffering,

routing, virtual channel allocation and switch allocation. We have developed an FPGA

implementation of the Quarc router using Verilog targeting the Xilinx Virtex- II Pro

(XCV2P30) FPGA.

Figure 3.10: Functional block diagram of the Quarc router.

3.6.1 Input port controller

The IPC performs two main operations on incoming flits: de-multiplexing and buffering.

A write-controller acts as the controller of the IPC. Its main job is to read the input

handshake signals and enable the buffer to store the flits at appropriate time. The IPC

also sends back the buffers status to the source router. The buffers in the IPC are

parametrized in width and depth.

3.6.2 The switch module

The switch module consists of three main sub modules, namely, crossbar, VC arbiter

and the flow control unit (FCU). The crossbar passes the flits to its destination, while
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the FCU acts as its main controller. The crossbar in the Quarc architecture is very

simple as a flit may be either destined to a local node or to be forwarded on the same

direction on the rim. This makes the Quarc router very light-weight compared to the

2-D mesh topology, where every input can have four possible destinations. The VC

arbiter arbitrates between flits received in more than one virtual channel and sends a

request (R) to the FCU for routing and switch allocation. The task of the FCU is in

three parts, i) to classify the traffic type, ii) to request appropriate OPC, and iii) to

enable the crossbar to pass the flits.

The traffic decoder shown in Figure 3.10 performs the traffic classification task. There

are three sub-units for three different types of traffic, namely, FCU unicast, FCU broad-

cast and FCU multicast. The advantage of the having three separate sub units is to

have two units switched off, while only one is functioning. As a result, dynamic power

consumption will be less in the FCU unit. The request unit is completely combinatorial

in nature and sends appropriate request (R) signals to the OPC.

3.6.3 Output port controller

The OPC consists of two sub-modules, namely, scheduler and the multiplexer. By

using suitable arbitration mechanism, the scheduler allows only one of the requests

received and sends back a grant (G) signal to corresponding FCU. The FCU forwards

the grant signal to the corresponding IPC and sets the crossbar to transmit the flit to the

proper destination. The scheduler also controls the OPC’s multiplexer by enabling the

appropriate flit to flow to the next router. The scheduler also generates the appropriate

handshake signals for synchronization and sends the flits to the next router.

It is important to note that the flit at the buffer of a local port is immediately consumed

by the network interface or the IP core. Therefore, multicast or broadcast traffic may

block only as the result of resource unavailability at the next router on the rim.

3.7 Conclusion

The chapter introduced the Quarc NoC as a simple and efficient architecture for on-chip

communication. The topology, routing algorithm, switching technique and buffering
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strategy in the architecture are described. A design and FPGA implementation of the

Quarc router is also demonstrated in the chapter. The topological attributes of the the

Quarc allows employing a simple packet format to send unicast, broadcast and multi-

cast communication. However, this should be combined with an appropriate network

interface. The Quarc network interface is covered in the next chapter.



Chapter 4

The Quarc Network Interface

Increasing design complexities and time-to-market pressures have made modular SoC

development inevitable. Obviously, the most fundamental requirement for a modular

SoC development is the ability to interconnect the cores with the minimum effort. Point-

to-point communication standards such as OCP (Open Core Protocol) [77], VCI (Virtual

Component Interface) [78] and AMBA AXI [79] were introduced to address this issue

in bus-based SoC development. The communication interfaces have been successfully

adopted to offer communication between an IP core and the bus, as well as between

two IP cores. The existing communication protocols adopted in bus-based development

can be used in the NoC realm to connect the IP cores to a NoC. However, the hop-by-

hop and (possibly) packet-based nature of interconnection in NoC requires a specifically

customised interface between the core and the interconnection network. In the NoC

paradigm such an interface is referred to as network interface (NI).

The NI functions as a glue between computation and communication by implementing

the interfaces to both the IP core and interconnection network. The IP core interface

implements a standard point-to-point protocol allowing core reuse across several plat-

forms. The most widely used core interface protocols include OCP [77], VCI [78], AMBA

AXI [79]. These interfaces assume the attributes of a socket, which captures all signaling

between the core and the system. This can offer a transaction-based model [68] of com-

munication which is backward compatible with bus-based SoCs. Message passing and

shared memory abstraction are two transaction-based programming models employed in

54
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the NoC domain. Shared memory is easier to implement, while message passing is more

scalable.

The NI core interface can be viewed as an implementation of the session layer in OSI

reference model. Traditionally, the session layer represents the user’s interface to the

network. It determines when the transaction session is opened, how long it will be used

and when to close it. Moreover, it controls the transmission of data during the session,

supports security and name lookup, enabling computers to locate each other. Flow

control strategies and QoS negotiations can be also implemented at this layer.

The communication services made available at the session layer must be implemented by

the transport layer, in order to make the communication behaviour fit to the intercon-

nect. The transport layer provides reliable, sequenced, and QoS-oriented data transfer.

This layer provides the basic end-to-end connection.

The transport layer provides transparent transfer of data between end nodes using the

services of the network layer. These services, together with those offered by the link and

physical layer are implemented in the network interface part of the NI. Data packeti-

zation and routing related functions are considered as essential tasks performed by the

network layer; offering a reliable links is considered as a service of the data-link layer.

Network interface design has been extensively researched for parallel computers [80–

82], and computer networks [83, 84]. The designs of the interface for such networks

are to optimise for performance (high throughput, low latency), and often consist of a

dedicated processor, and large amount of buffering, hence prohibitively costly for the

NoC paradigm. On-chip network interfaces must provide a low area overhead, because

the size of the IP modules attached to NoC is relatively small.

4.1 Network interface services

To successfully fulfil its functionality as a an interface between computation and com-

munication, the NI is expected to offer a variety of services to both sides. Scherrer

et al. in [85] presented a classification of services offered by NIs. The NI services span

from session and transport level services down to low-level ones such as packetization and
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clock-domain crossing. However, implementation of a service depends on the application

requirements and is a platform-instance-dependent decision.

4.1.1 Adaptation services

These are the basic wrapping services. Their role is to adapt the communication protocol

of the component to the communication protocol of the network. Of course, the challenge

here is to minimise performance loss in term of latency at minimal area/power cost.

Packetization To facilitate the communication with a packet-switched interconnec-

tion network, the NI should perform packetization on incoming messages. The packe-

tization must be compliant with the interconnection network communication protocol

and can be dynamic or static. This service selects the size of the packets based on the

characteristics of the messages and/or by trading-off between performance and energy.

For example, burst messages could be split into smaller packets to better fit the network

characteristics. Indeed the average packet size of a packet switched network affects the

performance and energy. Increasing the packet size will increase the energy dissipation

in network, it will decrease the energy consumption on cache and memory. Because

larger packet sizes will decrease the cache-miss rate, both cache energy consumption

and memory energy consumption will be reduced [86]. In QoS-aware NoCs, the protocol

adapter module equips the packets with relevant information.

The NI should also perform de-packetization of the incoming packets from NoC and

send the data to the IP cores according to the communication protocol between them.

In [87] a comparison of three approaches in implementing packetization and depack-

etisation services are provided. The results show that the hardware implementation

can be realised with much less resources and offer significantly better performance in

terms of latency compared to software implementation. Implementing the functional-

ity in hardware or software requires the IP core to offer the relevant programming or

reconfigurability services. For the cores that are neither programmable nor reconfig-

urable, an option for interfacing with the networking logic of the tile is to utilise a

wrapper. In [87] a wrapper is implemented which has the responsibility of packetizing

and depacketizing the cores requests and responses. Due to implementing the wrapper in

different technology than the software/hardware approach, the cost comparison was not
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available. However, the analysis revealed that wrappers offer a good trade-off between

cost and performance (latency). Employing wrappers is considered as the dominant

core-interconnect interfacing strategy.

Clock adaptation Synchronization of the IP cores is becoming hard to achieve

in future large SoCs. That is why future SoCs will be locally synchronous and globally

asynchronous. A NoC is composed of rather simple elements, and thus they could poten-

tially run at higher frequencies in order to decrease the latency seen by the components.

For example, the SOCBus micro-network designers expect it to run at 1.2 GHz [88],

which is higher than the frequency of average cores. Also, there are a number of NoC

architectures which are clockless [70]. Therefore, an important role of the NI is to adapt

between the IP core and network operation frequency.

Bandwidth and latency guarantees Most NoC architectures offer guaranteed

or best-effort services QoS. In such networks the NI has to utilize the QoS services of

NoC. This means for example to build and send the virtual circuit set-up or tear-down

packets, or to allocate multiple buffering resources and design complex packet schedulers

in the NI to handle traffic. Static reservation does not affect the NI.

Core interfacing The ability to develop a SoC in a plug-and-play and modular fash-

ion is essential to reduce the design time and time-to-market. A key factor in success

of such a development process is separating computation from communication, which

may be best realized through a well-defined layering of different functionality of compo-

nents of a system [89]. The seamless integration of components in such a development

environment requires standard communication protocols between different layers. In-

dustry has witnessed several successful protocols, such as OCP-IP [77] and AXI [79]

for point-to-point communication between SoC components. Since the components (IP,

bus and NoC) may expose different protocols, an adaptation between these protocols is

required. The network interface can be considered as an appropriate place to implement

such functionality.
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4.1.2 Network services

In a packet-switched NoC, the task of the interconnection network is to deliver the

packets from source to destination. The reliable communication between source and

destination, however, requires services which are mainly expected to be delivered by the

transport layer in computer networks. Their implementation strongly depends on the

features of the underlying network.

Transactions ordering In packet switched networks employing adaptive routing

algorithms, packets can potentially arrive unordered. In such circumstances, the NI must

reorder the transactions before forwarding them to the IP core. This typically requires

a large amount of buffering resources and that is the main reason that deterministic

routing is favored in the NoC paradigm. SPIN [5] uses adaptive routing in a fat tree

topology, therefore re-sequencing buffers is mandatory at the receiver’s network interface.

Reliable transactions According to some studies [90] the assumption that the on-

chip communication medium is an error-free medium is expected to be no longer true in

future deep sub-microns technologies. Thus, depending on the reliability of the medium,

the NI should implement an appropriate mechanism to deal with it (acknowledgment,

error-correcting codes).

Collective communication operation Most communication in a typical SoC is

between two IP cores. However, there are situations in which more than two IP cores

are involved in a communication. Multicast and broadcast are two widely used samples

of such operations. The NI can be regarded as an appropriate place to implement such

functionality.

Flow control When a given buffering resource in the network is full, there needs to

be a mechanism to stall the packet propagation and to propagate the stalling condition

upstream. The flow control mechanism is in charge of regulating the flow of packets

through the network, and of dealing with localized congestion. ACK/NACK and credit-

based are the most widely used strategies in the NoC schemes. Æthereal [48], Nostrum
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[15] and SPIN [5] are examples of the NoC architectures employing credit-based end-to-

end flow control.

4.1.3 Functional services

In addition to a reliable end-to-end communication, the NI can implement a number of

widely-used services such as cache coherence and security to the SoC. Of course, such

functions may also be implemented by the IP module or software. However, implement-

ing them at the NI enhances the design reuse.

Cache coherence Cache coherency can be achieved on a bus at a very low cost by

means of snoop devices, leveraging the shared nature of the communication medium.

Cache coherence on a network is no longer an easy task because snooping is not pos-

sible. Cache coherency is a traditional subject in the parallel processing. Due to the

similarities of the domain with NoC, the community can rely on related experiences in

parallel processing domain to implement efficient cache coherence services. The NI can

be regarded as one of the best candidates to host the functionality.

Low power Power customization is an important issue in SoCs. The power issue

becomes even more critical in presence of network-centric systems. In fact, early NoC

prototypes show a significant contribution of the NoC to the system power dissipation.

Beyond electrical and gate level low-power design techniques, higher level techniques

are likely to achieve larger savings. To this end much work can be done at design

time, but also at run time. Switching off some components and waking them up is for

example a good technique to save power, and it is believed that such techniques could

be implemented in the wrapper [85].

Security Currently security is not regarded as a crucial issue when it comes to

communication between the IP cores on a chip. However, the NI can implement the

desired authentication services, should future systems require the functionality.
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4.2 A review of network interface implementations in the

NoC domain

The NIs are expected to implement several essential services such as virtual channel

arbitration, frequency adaptation and routing strategies. There are other tasks that

maybe implemented by the IP core directly (e.g. packetization) or might need specific

customization. As a consequence, several NoC architectures [30, 48] have assigned the

functionality of the NI into kernel and shell modules, where the kernel module provides

essential functionality, and the shell modules offer instance-specific services. The com-

plexity of an NI depends on the services of the network and on the functionality the

attached IP cores demand for. This section presents the implementation of the network

interfaces in a number of NoC architectures.

Æthereal Æthereal offers a shared-memory abstraction to the connected modules

[68]. Communication is performed using a transaction-based protocol, where master

modules issue request messages that are executed by the slave modules, which may

respond with a response message. The Æthereal NoC offers its services by means of

connections. Connections allow differentiated services and guarantees offered to the at-

tached cores. The connection can be peer-to-peer, multicast or narrowcast.The Æthereal

network interface provides services at the transport layer in the OSI reference model [91].

The Æthereal network interface provides a modular NI, which can be configured at design

time. This is, the number of ports and their type (i.e., configuration port, master port,

or slave port), the number of connections at each port, memory allocated for the queues,

the level of services per port, and the interface to the IP modules are all configurable

at design (instantiation) time using an XML description. The NI allows flexible NoC

configuration at run time. Each connection can be configured individually, requiring

configurable NoC components (i.e., router and NI). However, instead of using a separate

control interconnect to program them, the NoC architecture is used to program itself.

This is performed through configuration ports using DTL-MMIO (memory-mapped IO)

transactions [92]. The NoC architecture can be configured in a distributed fashion (i.e.,

via multiple configuration ports), or centralized (i.e., via a single port).

The communication services of the Æthereal NoC are defined to meet the following goals:

i) decouple computation (IP modules) from communication (NoC), ii) provide backward
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compatibility to existing bus protocols, iii) provide support for real-time communication,

and iv) have a low-cost implementation.

The Æthereal NI consists of two parts, namely, the NI kernel and the NI shells. The NI

kernel implements the channels, packetizes messages, and schedules them to the routers,

implementing the end-to-end flow control and clock-domain crossing. The NI shells

implement the connections, transaction ordering and other high level issues.

In [68] a hardware implementation of the entire NI introduces a latency overhead of

between 4 and 10 cycles, pipelined to maximize throughput.

×pipes The ×pipes NI offers an OCP-compliant (Version 2.0), low overhead and high

performance network interface [93]. The NI is parameterizable in both the width of the

OCP fields and of ×pipes flits. This feature provides a wide range of NI deployment

flexibility. The communication in ×pipes is packet-switched, with source routing and

wormhole-switching.

The ×pipes NI functionality include the synchronization between OCP and ×pipes tim-

ings, the packetizing of OCP transactions into ×pipes flits and vice versa, the com-

putation of routing information, and the buffering of flits to improve performance. In

addition to the core OCP signals, the ×pipes supports the ability to perform both non-

posted or posted writes (i.e. writes with or without response) and various types of burst

transactions, including reads with single request and multiple responses. This allows for

thorough exploration of bandwidth/latency trade-offs in the design of a system. The

×pipes NI has a low area but it supports only a single outstanding read transaction.

In a ×pipes based NoC, a master-slave device will need two NIs, an initiator and a target

for operation. Each NI is additionally split in two loosely-coupled sub-modules; one for

the request and one for the response channel.

MANGO In [11] an OCP compliant NI architecture for the MANGO NoC is pre-

sented. The NI enables modular, GALS type SoC design by providing synchronous,

memory-mapped interfaces, based on the clockless message-passing services of the net-

work. The flexible architecture, which mixes clocked and clockless circuits, can easily be

configured for different sockets and/or networks. Unlike Æthereal and ×pipes which are
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purely clocked designs, MANGO leverages the advantages of both clocked and clockless

design styles by synchronizing clocked interface sockets with asynchronous NoC, thereby

more efficiently address issues related to global synchronization in large-scale SoC design

and at the same time enjoys the benefits of asynchronous implementation, including zero

idle power and low forward latency.

The MANGO NI adopts a transaction-based communication model, which assumes com-

municating cores of two different types: masters and slaves. The NI provides a number

of input and output network ports, each corresponding to a time-guaranteed connection

oriented services or to a best-effort connection-less service. Each port may be used by

several threads. The NI also implements services for threads.

4.3 The Quarc network interface

The Quarc adopts a modular approach in developing the NI to enable easy development

and upgrade of the modules and to enhance the re-usability of the IP cores. Similar to

Æthereal [68] and the Spidergon STNoC [30], the Quarc NI splits the services into two

categories, namely, essential services and instance-specific ones. The essential services

such as routing, virtual channel arbitration and flow control are provided by the NI

kernel, while the instance-specific services such as packetization, guaranteed services,

multicast, security, and clock-domain-crossing (CDC) are to be implemented by the NI

shells.

A modular Quarc NI with instant-specific shells allows connecting IPs with any pro-

prietary protocol to a Quarc NoC. Depending on the communication protocol between

the IP and the NI, the message structure may have different formats. However, the

message structure is irrelevant to the NI, as it just sees the messages as pieces of data

that must be molded into the Quarc compliant flits format. Moreover, a SoC designer

may choose to implement any shell module with specific functionality inside the NI. A

functional block diagram of the Quarc NI is shown in Figure 4.1. The following sections

describe the detailed functionality of the NI kernel and shell modules as the constituting

components of the Quarc NI. A message entering the NI may take a number of NI shells,

nevertheless the format of the output at the stage before the NI kernel must be Quarc

NoC compliant. Since the number of shells feeding the NI kernel is instance-specific, a
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IP core compliant
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Figure 4.1: Functional block diagram of the Quarc NI.

shell multiplexer is employed to manage flit transfer from a number of shells to the NI

kernel.

We have implemented the Quarc NI kernel, protocol adapter and multicast modules in

Verilog targeting the Xilinx Virtex- II Pro (XCV2P30) FPGA.

4.3.1 The Quarc NI kernel

The NI kernel offers the essential services of the Quarc NI. The NI kernel implements

the basic functionality to send and receive the Quarc compliant flits. It offers routing,

virtual channel arbitration and flow control services. The Quarc NI kernel communicates

with the NI shells via ports. The communication protocol between kernel and shells can

be customized as the kernel interfaces are not exposed beyond the NI boundaries. The

architecture of the Quarc NI kernel is shown in Figure 4.2.

Figure 4.2: Functional block diagram of the Quarc NI kernel.
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Upon receiving a header flit from any of the shell modules, the scheduler inside the NI

kernel informs the quadrant calculator to compute the appropriate quadrant to transmit

the packet. The scheduler allocates a virtual channel in the computed quadrant to the

packet and updates its internal status. The information stored in the scheduler can be

used to forward the remaining flits of the packet to the proper virtual channel without

the need to recompute the quadrant.

The decision on a flit’s transfer to the network is also made by the scheduler. The

decision is based on the information provided by the FCU (Flow Control Unit) and also

the scheduler service policy. The FCU manages the transfer of flits between NI and

routers by using an on/off flow control mechanism.

The functionality of the NI on receipt of a flit from the router is as follows. Similar to

the transmission to the network, the flow of incoming flits from the routers is controlled

by the FCU. After being granted the permission, the flit is transferred from the router

to the NI and is stored at an appropriate buffer inside the NI kernel. At this stage

the scheduler signals sending the flit to the output port of the NI kernel via receiver

multiplexer which then can be processed by either any shell modules or the IP core.

4.3.2 The Quarc NI shells

The NI kernel described in the previous section offers peer-to-peer connections. These

type of connections are useful in systems involving chains of modules communicating

peer-to-peer with one another. In the Quarc NI, more complicated communication such

as multicast, and the instance-specific services can be plugged into the NI as the shell

modules. The rest of this section present three widely used shell modules.

4.3.2.1 Protocol adapter

For the IP cores which are not customizable, the protocol adapter module serves as a

wrapper for packetizing and de-packetizing the messages. The packetization unit con-

verts the received transactions to the Quarc NoC compliant packets. The protocol

adapter in the Quarc architecture may be a master or a slave depending on the imple-

mentation and actual memory-map. A master protocol adapter converts transactions

from IP compliant protocol domain to packet format in the Quarc NoC. While, a slave
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Figure 4.3: Functional block diagram of (a) a master and (b) a slave protocol adapter
module.

protocol adapter converts packets from the NoC domain to transactions in IP compliant

domain. The diagrams in Figure 4.3 demonstrate the functional block diagram of a

master and a slave protocol adapter where the IP core lies in the AMBA 3 AHB-Lite

domain. The protocol adapter can be replaced with AMBA 3 AXI, OCP or any other

protocol without modifying the NI kernel. Algorithm 1 shows the steps involved in the

packetization unit at the master protocol adapter.

Algorithm 1 Packetization at the master protocol adapter
Begin

1. Translation of the addresses from the received address and setting up the packet
header with appropriate source and destination addresses.

2. Preparation of body or payload of the packets from the received control signals
and forwarding to the multiplexer.

3. Preparation of body or payload of the packet from the received data bits and
forwarding to the multiplexer.

4. Preparation of packet tail for error checking (currently not supported) and for-
warding the packet to the multiplexer.

End

4.3.2.2 Multicast shell module

Multicast is an important operation in the Quarc NoC. Figure 4.4 depicts the functional

block diagram of a multicast shell module. The top 4 buffers are dedicated to store

the destinations of the multicast at each quadrant. The buffers corresponding to each

quadrant include the address of the last destination to be visited and a bit-string which

indicates the potential destinations of the multicast message at each quadrant. The
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Figure 4.4: A schematic of the multicast module.

multicast and packet format in the Quarc NoC are described in Section 3.3 and Section

3.2, respectively. The remaining buffers store the payload.

The bit-string generator creates the bit-string associated to the destination nodes at

each quadrant. The algorithm presented in Algorithm 2 is implemented by bit-string

generator and is executed on arrival of each multicast destination. The bit-string is

used in the header flit of the multicast messages to indicate multicast destinations at a

quadrant. The scheduler in the multicast shell stores the information regarding the state

of flow at each quadrant. The scheduler holds the address of the next data at the buffer

to be transferred to the kernel. The relevant information regarding to each quadrant is

updated on transfer of each flit from multicast module to the NI kernel.

Algorithm 2 Bit-string generation.
// The algorithm is performed by bit-string generator on a multicast destination at
quadrant q.
// mcastAdrs: the multicast address
// srcAdrs: address of the source node
// dstAdrs[q]: indicates the last destination at quadrant q
Begin

If (|mcastAdrs− srcAdrs|) > |dstAdrs[q]− srcAdrs|)
Begin

dstAdrs[q] = mcastAdrs
End
UpdateBitString(mcastAdrs) // in either cases the bitstring has to be updated.

End
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4.3.2.3 CDC shell module

Clock adaptation is a vital service of an NI in GALS-based SoC paradigm. Clock

adaptation can be realized by employing FIFOs and logic to manage flow of data between

FIFOs [94, 95]. To address this demand efficiently, the Quarc NI shell offers an optional

CDC (clock domain crossing) module. The CDC module can transfer transactions from

IP’s clock domain to NoC’s clock domain and vice versa. Adopting CDC offers maximum

flexibility in plug-and-play and speed-up of the platform. CDC can also be implemented

using redundant memory on the IP cores. A functional block diagram of a CDC module

is shown in Figure 4.5. It is important to note that the area of CDC module will depend

on the number of links in the ingress and egress port of the NI, which eventually is a

characteristic of the IP complaint protocol. Note that the Quarc CDC shell module is

still at design stage.

Figure 4.5: Functional block diagram of a CDC module.

4.4 Conclusion

The network interface functions as an interface between the IP modules and the NoC

architecture. This chapter presented the services that an NI may offer. The chapter also

demonstrated the design and implementation of the Quarc NI. The Quarc NI implements

the essential services in the kernel module and delegates the instance-specific services

to the shell modules. Following this approach a Quarc NoC may be connected to any
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IP with proprietary communication protocol by adding a shell module implementing

the associated communication protocol. Moreover, the NI can be extended to offer any

desired functionality. The design and implementation of three shell modules offering

protocol adaptation, multicast communication and clock domain crossing have also been

covered in the chapter.
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Chapter 5

A Comparison Between the

Quarc and the Spidergon NoCs

The Quarc NoC improves on the Spidergon STNoC. It is therefore interesting to in-

vestigate how the applied modifications affect the performance and cost of the Spider-

gon STNoC. This chapter presents a comparison between the cost and performance of

the Quarc and the Spidergon NoCs. The link usage, router and network interface in

both NoCs are considered in cost comparisons. In evaluating performance, the average

message latency of unicast and broadcast traffic in different configuration settings are

compared in both architectures.

5.1 Cost

The following sections present a comparison between the building blocks of the Quarc

and the Spidergon NoCs.

5.1.1 Links

In the NoC domain the contribution of the links to the overall cost of the NoC architec-

ture is typically insignificant. Nevertheless, links and links management are paramount

issues in deep sub-microns. For a network of N nodes, the Spidergon STNoC requires 3N

70
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unidirectional links. As it doubles the across links, the Quarc NoC requires 4N unidi-

rectional links. Doubling the across links does not significantly affect design complexity

and the cost of the Quarc NoC compared to the Spidergon STNoC.

5.1.2 Router

Routers account for a significant fraction of a NoC cost. In this section we present the

router architectures of the Quarc and the Spidergon NoCs. Figure 5.1 shows simplified

diagrams for a Spidergon 4 × 4 router with 1 injection link and 3 network links (Fig-

ure 5.1(a)) and the Quarc router (Figure 5.1(b)) with 4 injection links and 4 network

links. Both diagrams show minimal architectures for use with deterministic routing, i.e.

hardware is tailored to the paths allowed by the routing discipline.

(a) (b)

Figure 5.1: Minimal switch architectures for (a) Spidergon and (b) Quarc with de-
terministic routing.

The main differences are the number of local ingress ports (4 for Quarc) and the doubling

of the across links. Further differences are not obvious from the figure. The Quarc router

performs a true broadcast, i.e. the ingress multiplexers have a state that clones the flit;

the decision logic is very simple (see Section 3.3.3). The Spidergon STNoC can only

broadcast by unicast, and therefore needs a more complex logic to decide if a router

needs to clone a broadcast packet; furthermore, the ingress packet is not simply cloned

but the header flit needs to be rewritten. Given that the Spidergon STNoC implements

the broadcast algorithm presented in Section 3.3.3, we assume that the broadcast packets

at intermediate routers are stored at the network interface.
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We demonstrate that the Quarc router is smaller in size and at the same time is less

complex than the Spidergon router and this saving in area outweighs the overheads

incurred by additional ports and the area for additional links. To present a comparison

between the two architectures, we have implemented 16, 32, and 64-bits wide flit versions

of both the Quarc and the Spidergon routers in Verilog targeting the Xilinx Virtex- II

Pro (XC2VP30) FPGA. The design is optimized for area without using any BlockRAM

or Distributed RAM. The silicon cost includes data path and the corresponding flow

control units.

For the 32-bits version of the Quarc router the number of occupied FPGA slices is 1, 453

the corresponding version of the Spidergon router occupies 1, 700 FPGA slices. Note

that the area occupied by the crossbar and flow control unit are small. This result

supports the argument that the Quarc NoC does not have complex crossbar or routing

logic, which saves area. A comparison of the cost analysis in terms of slice count for

various routers employing 16, 32 and 64 bits wide flits are presented in Figure 5.2. As

the graphs show, surprisingly, the Quarc router is smaller than the Spidergon router.

Figure 5.2: Cost comparison between the Quarc and the Spidergon routers.

5.1.3 The network interface

The size of a network interface is proportional to the functionality it offers and the

buffer requirements. To simplify the comparison between the network interface in the

Spidergon and the Quarc NoCs, we assume that the cost of implementing the logic in

both architectures is almost equal. This assumption is slightly in favor of the Spidergon

NoC, because while both architectures implement similar unicast functionality, broad-

cast in the Spidergon network interface requires more complicated logic. Therefore,
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in the comparison we take into account only the buffer requirements at each network

interface.

First, we investigate the buffer requirements in case of unicast communication and then

consider the extra buffer requirements to perform broadcast communication. The Spi-

dergon STNoC is a one-port router architecture; it has 1 flit buffer at injection port and

1 flit buffer at consumption port. While, the Quarc NoC is an all-port router and has 4

buffers at injection port and 3 buffers at consumption port.

In the comparison, we assume that each node in network may send broadcast communi-

cation. Given that the Spidergon STNoC implements the broadcast algorithm presented

in Section 3.3.3 indicates that the network interface at each node, when acting as an

intermediate node, must have enough buffer to store a whole packet. Although, in the

Quarc NoC the broadcast packets are not stored at intermediate nodes, the whole packet

must reside in the network interface before the broadcast operation commences. There-

fore, the buffers allocated for the broadcast operation in both architectures are almost

identical and slightly over a whole packet size.

According to the above analysis, it can be deduced that the Quarc network interface

buffer requirement is 5 flits more than that of the Spidergon network interface. This

investment in the network interface pays off in reducing the cost of routers and more

importantly, as will be shown in the next section, results in significant performance gain,

in particular in multicast and broadcast communication.

In scenarios where only particular nodes generate multicast traffic, the buffer require-

ments of the Quarc network interface is much less than that of the Spidergon network

interface. Assuming that network has 4n nodes and only one node sends the broad-

cast message. The Spidergon STNoC requires 2n intermediate nodes to have buffers

for a whole packet to implement the broadcast routing algorithm presented in Section

3.3.3. While, the Quarc needs buffer to store a whole packet only at the source network

interface.
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5.2 Performance comparison

The rest of the thesis employs simulation programs extensively to evaluate performance

of a variety of the NoC architectures or to validate the analytical models. The following

sections present the basic assumptions defined for all NoC simulators in the thesis,

demonstrates the basic Quarc simulator and compares the performance of the Spidergon

STNoC against the Quarc architecture.

5.2.1 The basic assumptions of the NoC simulators

The simulation programs model networks adopting different topologies e.g. mesh, Spi-

dergon and Quarc. In those architectures network may exchange unicast, multicast,

broadcast, QoS-aware traffic or a combination of these traffic types. Despite of the

differences between the NoC architectures they model, a number of assumptions are

common in all NoC simulators covered throughout the thesis. All NoC simulators share

the following assumptions:

• The size of the queue at source node is not limited.

• The destination node has infinite buffer to store the incoming flits.

• The time consumed to perform switching logic at routers is ignored.

• Regardless of the size of the link, the propagation delay at each link is one cycle.

• The network employs wormhole switching.

• The network adopts deterministic routing.

• Unicast traffic distribution is uniform.

• Latency of a unicast message is regarded as the time from generation of the unicast

message at the source node until the time when the last flit of the message is

absorbed by the sink at destination.

• The multicast message latency is the time from generation of the multicast message

at the source node until the time when the last flit of the message is absorbed by

the sink at the last receiver of the multicast message.
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• The broadcast message latency is the time from generation of the broadcast mes-

sage at the source node until the time when the last flit of the message is absorbed

by the sink at the last receiver of the broadcast message.

• The size of the messages are identical.

• The buffer depth at input buffer of the routers is one flit.

The rest of the thesis refer to the above assumptions as simulators basic assumptions.

5.2.2 The basic Quarc NoC simulator

The Quarc NoC simulator will be used to evaluate the performance of a variety of traffic

types in the following chapters. Exchanging different types of traffic requires applying

modifications to the architecture. For example, to offer the differentiated services-based

QoS, the Quarc network interface and the Quarc router must be QoS-aware. This

section demonstrates the architecture of a basic Quarc NoC simulator. The Quarc

NoC simulator is a discrete-event simulator operating at flit-level. It is developed using

OMNET++ [96]. The schematic of the components of each node in the basic Quarc

NoC is shown in Figure 5.3. Note that all connections are via unidirectional links.

Figure 5.3: The schematics of a node in the basic Quarc NoC.

Source: produces messages according to a distribution process.

Passive queue: stores the messages and defines the policy to send them to the router.

The passive queue is connected to the router through four injection links. The passive

queue has four queues for unicast messages corresponding to each quadrant; and one
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queue for multicast messages. Messages are served according to a FIFO policy. In the

Quarc NoC a multicast message starts its transmission only when i) it is generated before

all messages in the unicast queues and ii) all required injection links for transmission of

the multicast message are free. If the multicast message is generated before all messages

in the unicast queues and its transmission does not require access to one or more injection

links, the unicast messages at their corresponding queues can be served.

Router: The router implements the routing algorithms presented in Section 3.3. It

is connected to three neighbouring routers, a sink and a passive queue. The router is

connected to the sink via three consumption links.

Sink: absorbs the messages destined to its associated node.

In the the rest of the thesis we may modify one or more components of the above

architecture in order to address the required functionality; e.g. QoS and multicast.

5.2.3 Performing simulation runs

Each simulation experiment should be run until the network reaches its steady state, i.e.

until a further increase in the simulated network cycles does not change the collected

statistics appreciably. Typically a network exchanges various traffic types at different

rates. Therefore, the number of messages generated to suffice network reaching its

steady state depends on traffic distribution and hence, varies from one configuration to

another. The following algorithm is proposed to guarantee that the statistics gatherings

are collected at the network steady state.

The simulation run starts by generating enough messages to guarantee that each node

sends on average 1000 messages (it is an initial value) of the most minority traffic

type at each node. For example, if network generates unicast and multicast traffic, and

multicast forms 5% of the overall traffic, each node in network generates 20, 000 messages.

Therefore, a network of 64 nodes in this scenario exchanges 1, 280, 000 messages. Using

this approach the network simulation runs for 5 times using randomly generated seeds.

To avoid the start-up transients, the statistics gatherings of the first run are inhibited and

the collected statistics corresponding to runs 2 to 5 are compared against each other.
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If the collected statistics at all runs are reasonably close it indicates that generated

messages has been enough; averaging over the results from runs 2 to 5 will yield the

measures of interest.

A significant discrepancy between the results indicates that the number of messages at

each run must be increased. In such circumstances, the number of messages per node

are doubled and the simulation runs are repeated. The above steps are followed until the

desired accuracy is achieved. Algorithm 3 demonstrates the procedure for performing

simulation runs.

Algorithm 3 Performing simulation runs
// Input: θ = (ϕ1, ϕ2, ..., ϕn), ϕi denotes the fraction of the traffic of type i , where∑n

i=1 ϕi = 1
// Input: ε denotes the desired accuracy in variance

Step 1: message per node = 1000/minimum(θ)

Step 2: For i = 1..5 do

// ri stores the results gathered from ith run of simulation

2.1 ri = Run-Simulation(message per node, random seed)

Step 3: If V ar(r) > ε

3.1 Double up message per node

3.2 Go to Step 2

Step 4: If V ar(r) ≤ ε

4.1 Return 1
4

∑5
i=2 ri

4.2 Exit // End of the experiment

5.2.4 The NoC simulators

To evaluate and compare the performance of the Quarc and the Spidergon NoC ar-

chitectures, we have developed a discrete event simulator for both architectures. The

schematic of the components of each node in the Spidergon and the Quarc NoCs are

shown in Figure 5.4 and 5.3, respectively. The functionality of the Quarc NoC is as

the basic Quarc NoC described in Section 5.2.2. In the Spidergon STNoC, the passive

queue has two separate queues to store unicast and multicast messages. The messages
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at queues are served according to a FIFO policy. Moreover, in the Spidergon STNoC,

the passive queue-router and router-sink connection is via single links.

In both NoCs all nodes produce messages according to a Poisson distribution. The

reason we have chosen Poisson traffic distributions are i) Poisson distributions typically

offer a good estimate on the average performance of the measures of interest, ii) Poisson

distribution has been widely used in evaluation of interconnection networks, therefore,

the results can be compared against a wide range of networks evaluated using similar

assumptions, iii) specific assumptions on traffic pattern may better capture the measures

of interest for a limited number of applications, but they do not address many others.

The simulators operate on the assumptions defined in Section 5.2.1. Moreover, for the

Quarc and the Spidergon NoCs the simulators implements the unicast and broadcast

routing algorithms presented in Section 3.3.

Figure 5.4: The schematic of a sample simulation node in the Spidergon STNoC.

5.2.5 Analysis of the simulation results

The performance of the Quarc architecture has been evaluated against the Spidergon

NoC for numerous configurations by changing the network size, the message length

and the rate of broadcast traffic. The simulation runs are performed according to the

algorithm presented in Section 5.2.3.

In graphs, N , M and β represent the number of nodes, the message length and the rate

of broadcast traffic, respectively. The horizontal axis in the figures shows the message

rate per node per cycle, while the vertical axis describes the average message latency.

We have presented the comparisons in three different configuration settings. In each

configuration setting, two parameters (out of three parameters, namely, the network size,
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the message length and the broadcast rate) are fixed, while one parameter varies. Figure

5.5 shows the average latency experienced by unicast and broadcast traffic in the Quarc

and the Spidergon NoCs in configurations where network size N = 16 and broadcast

rate β = 5% are fixed, while the message length can be 8, 16 and 32 flits. As the graphs

show, doubling the message length almost halves the saturation point in network. This

shows that the network saturation depends on the number of flits exchanged in network

and it is less sensitive to the number of flits constituting a message.

Figure 5.6 compares the simulation results for networks having 16, 32 and 64 nodes with

a fixed message length of 16 flits and 10% broadcast traffic. The broadcast rate of 10%

may seem unlikely in a NoC-based application, however, it can clearly serve the purpose

of the performance comparison between the two NoC architectures. As it is evident from

the graphs, doubling the network size brings down the network saturation point. This

is due to increase in the number of packets competing for the network links.

Figure 5.5: Comparison of the Quarc and the Spidergon NoCs for the message lengths
of 8, 16 and 32 flits.

As can be seen from the figures, the Quarc NoC outperforms Spidergon over the complete

range of N , M and β . The most striking performance difference is clearly observed for

broadcast traffic, with almost an order of magnitude improvement on the average latency.
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Figure 5.6: Comparison of the Quarc and the Spidergon NoCs of 16, 32 and 64 nodes.

Note that larger networks show the performance gain more clearly. The unicast latency

is, on average, at least a factor of 2 lower.

The graphs in Figure 5.7 compare the average latency in the Quarc and the Spidergon

NoCs for the configuration where the network size N = 64 and the message length

M = 16 are fixed, while the broadcast rate, β, varies between 0%, 5% and 10%. The

graphs reveal that the Quarc NoC is highly capable of sustaining broadcast traffic. As

can be seen, the injection of broadcast traffic into the Spidergon NoC severely reduces the

sustainable load in network. While, in the Quarc NoC the adverse impact of broadcast

traffic on the sustainable load and on the performance of unicast is hardly appreciable.

5.3 Conclusion

The results presented in this chapter demonstrated that the architectural improvement

of the Spidergon STNoC to the Quarc NoC enhances the performance significantly, while

does not incur an appreciable extra cost. The simulation results have shown that the

Quarc NoC outperforms Spidergon in terms of the message latency over the complete



Chapter 5. A comparison between the Quarc and the Spidergon NoCs 81

Figure 5.7: Comparison of Quarc and the Spidergon for broadcast rates of 0%, 5%
and 10%.

range of number of nodes, the message lengths and the broadcast rate. In the absence

of broadcast traffic, the Quarc NoC slightly outperforms the Spidergon STNoC. The

superiority of the Quarc NoC will become evident once broadcast traffic is injected to

network. Our experiments revealed that, on average, the Quarc NoC delivers unicast

and broadcast traffic 2 times and 10 times faster than the Spidergon STNoC does.

Performance gain typically comes at a cost. The chapter compared the link usage, cost of

the router and the network interface in both the Quarc and the Spidergon architectures.

The analysis has demonstrated that by doubling the across links, the Quarc NoC requires

more physical links than the Spidergon scheme does. Given that Spidergon and Quarc

offer the same functionality, it is has been shown that in the extreme case, where every

node may generate broadcast traffic, the Quarc network interface is slightly larger than

the Spidergon network interface.

To compare the routers, an FPGA implementation of the routers in different configu-

ration settings for both architectures has been developed. The cost analysis has shown

that the Quarc router is smaller than the the Spidergon router. This is mainly due to

the simpler routing algorithm adopted in the Quarc NoC.
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A Comparison Between the

Quarc NoC and Mesh

The regular mesh is one of the most popular topologies for NoCs, used by e.g. Cliche

[7], aSoC [97] and Hermes [69]. These architectures have no or limited hardware support

for multicast communication. A number of topology-independent architectures such as

ı̈¿1
2thereal [14] offer mechanism to perform multicast communication. However, due to

resource constraints of the NoC development, they resort to techniques realizing the

feature with minimum cost. Thus, neither approaches fully exploit the potential of the

mesh topology to deliver multicast traffic.

In contrast, the Quarc NoC is designed for efficient multicast communication. This

chapter aims at comparing the Quarc NoC against a mesh-based NoC architecture. To

present a fair comparison between the two NoCs, based on the experiences in parallel

computers, we implement a most efficient multicast routing algorithm for the mesh-based

NoC and compare its performance and cost against the Quarc NoC.

The chapter begins by presenting the unicast and multicast routing algorithms in the

mesh topology. It follows by a description of the router and the network interface in a

mesh-based NoC architecture. And finally, the cost and performance comparisons are

presented.

82
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6.1 Routing

This section presents the unicast and broadcast routing algorithm in the mesh-based

NoC reference model.

6.1.1 Unicast routing

We assume that mesh adopts XY routing algorithm. The XY routing algorithm is

deadlock free and adheres to resource constraints of the NoC development. The network

uses unidirectional links to connect router-to-router and IP core-to-router.

6.1.2 Broadcast routing

Implementing fast and scalable multicast communication for wormhole-routed intercon-

nection networks has been extensively researched for parallel computers. The adopted

approaches can be broadly classified in two categories, depending on whether the system

performs collective communication merely by relying on unicast-based communication,

or offers hardware supports for multi-destination messages. Umesh [98] and SPUmesh

[99] are two unicast-based algorithms in which the objective is to minimize the height

of the multicast tree.

The systems supporting multi-destination message passing can perform collective com-

munication operations more efficiently by using hierarchical leader-based schemes [98,

100]. Given a multicast destination set, these schemes group the destinations in a hi-

erarchical manner to minimize the number of unicast/multi-destination worms required

to cover all destinations. The hierarchical leader-based routing algorithms presented

in [98, 100] perform poorly in presence of multiple multicast. That is because several

multicast sources use the same leader nodes. SQHL [99] and SCHL [99] were proposed

to improve the communication performance in the presence of multiple multicast mes-

sages. The SQHL and SCHL algorithms involve position of the source node in decision

making on selecting the leader nodes. In [31] it is shown that SCHL is the most effi-

cient algorithm to perform multicast communication in a mesh-based network. In [101]

Panda et. al. showed that adopting the BRCP for performing multicast communication

results in more efficient resource utilization, and at the same time improves the network
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Figure 6.1: Broadcast in mesh.

performance. Therefore, we assume that mesh adopts a BRCP-based SCHL algorithm

to perform the broadcast. The algorithm for leader selection for n-dimensional mesh is

presented in [99].

In the BRCP-based SCHL algorithm employed in mesh, the BRCP model provides three

different kinds of paths (R, C, and RC) on an XY routed 2D mesh. To avoid deadlock

in such a network, the router must have four consumption links [101].

Figure 6.1 demonstrates a broadcast scenario for a non-bordering node in mesh. The

source node sends the packets to the L2 (Level 2) leaders using multi-destination mes-

sages. Upon receiving the broadcast packets, the L2 leaders are responsible to send the

packets to the L1 leaders, which are on the same columns as the L2 leaders. To do so,

each L2 leader prepares a multi-destination packet destined to the possible L1 leaders.

Each intermediate L1 leader, between the L2 and the last L1 leader absorbs the flits and

forward them to the next L1 leader simultaneously. While, the last L1 leader consumes

the flits. Once the whole packet is received by an L1 leader, it creates a multi-destination

packet to serve the nodes located on a path conformed to the RC paths originating from

that L1 leader.

6.2 Implementation of a mesh-based NoC

The following sections present building blocks of a mesh-based NoC including physical

links, router and the network interface.
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6.2.1 Number of links

Given that the network has N nodes, the Quarc NoC and square mesh require 4N and

4
√

N(
√

N − 1) unidirectional links, respectively.

6.2.2 The mesh router

Figure 6.2 presents a functional block diagram of the architecture of a non-bordering

router in the mesh-based NoC. The router adopts input queuing and thus, must have

buffers to store the incoming flits from neighboring routers. Non-bordering, edge and

corner routers are connected to 4, 3 and 2 routers, respectively. We assume that the

depth of the buffers at input queues is one flit and their quantity at each input is

proportional to the number of virtual channels sharing the physical link. The router

implements wormhole switching and deterministic routing. The functional block dia-

gram of the mesh router is similar to the one described for the Quarc NoC presented in

Section 3.6.

Figure 6.2: Schematic of the structure of a non-bordering router in mesh.

6.2.3 The mesh network interface

Figure 6.3 depicts a schematic of the network interface in the mesh-based NoC. The

network interface has one buffer to store the flit at injection link and four buffers to store

the incoming flits at the consumption links. The transmission controller implements the

logic to route a flit from the local IP core or multicast buffer to the buffer at injection



Chapter 6. A Comparison between the Quarc NoC and mesh 86

link. The Flow control unit (FCU) at the transmission path (left FCU unit) decides

when a flit to leave the buffer at injection link. Moreover, it informs the transmission

control unit about the state of the buffer at injection link.

The reception controller decides whether a packet has to be sent only to the IP core

or it has to be forwarded to the multicast buffer and the IP core simultaneously. The

reception controller manages flows from buffers at consumption links to the IP core

or/and multicast buffer. The flow control unit (FCU) at consumption path manages

the flow of flits from the buffers at router to the buffer at the network interface. The

multicast buffer in the diagram is to store the packet only if the IP module is a leader

node.

Figure 6.3: The network interface in the mesh-based NoC.

6.3 Cost comparison

In this section, we present a detailed comparison between the FPGA implementations of

the routers and the network interfaces in the Quarc and the mesh-based architectures.

The comparison is performed for architectures with various configuration settings. We

assume that every tile of the NoC hosts an IP core, typically a microprocessor with local

memory.

To present a comparison between the two architectures, we have implemented 16, 32,

and 64-bits wide flit versions of both the Quarc and the mesh-based schemes with 2, 4, 6,

8 and 10 virtual channels in Verilog targeting the Xilinx Virtex-II Pro FPGA. Table 6.1

and Table 6.2 present the cost of the router and the network interface in both the Quarc
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and the mesh-based architectures, respectively. At router and the network interface in

both architectures, the buffers are synthesized using Xilinx Block SelectRAM+ (BRAM).

Note that as there is no notion of link in FPGA implementation, there is no need for

comparison between the link usage in the NoC architectures.

As expected, due to having multiple injection links and logic for quadrant calculation,

the network interface in the Quarc NoC is larger than in the mesh-based NoC. On the

other hand, the router in the Quarc NoC is smaller than the mesh-based architecture

router.

Router cost
16-bits 32-bits 64-bits

Quarc Mesh Quarc Mesh Quarc Mesh

No. of VCs Slice BRAM(bit) Slice BRAM(bit) Slice BRAM(bit) Slice BRAM(bit) Slice BRAM(bit) Slice BRAM(bit)

2 653 4(144) 1016 4(144) 832 4(272) 1327 4(272) 1188 8(528) 1944 8(528)

4 659 4(288) 1025 4(288) 841 4(544) 1340 4(544) 1204 8(1030) 1967 8(1030)

6 667 4(432) 1034 4(432) 852 4(816) 1355 4(816) 1222 8(1540) 1992 8(1540)

8 677 4(576) 1044 4(576) 865 4(1060) 1371 4(1060) 1242 8(2060) 2018 8(2060)

10 689 4(720) 1056 4(720) 880 4(1320) 1388 4(1320) 1264 8(2570) 2046 8(2570)

Table 6.1: The cost of router in the mesh-based and the Quarc architectures.

NI cost
16-bits 32-bits 64-bits

Quarc Mesh Quarc Mesh Quarc Mesh

No. of VCs Slice BRAM(bit) Slice BRAM(bit) Slice BRAM(bit) Slice BRAM(bit) Slice BRAM(bit) Slice BRAM(bit)

2 87 8(832) 36 6(756) 89 8(1568) 38 6(1428) 93 16(3040) 40 12(2772)

4 89 8(944) 38 6(900) 91 8(1776) 40 6(1700) 95 16(3440) 42 12(3300)

6 91 8(1056) 40 6(1044) 93 8(1984) 42 6(1972) 97 16(3840) 44 12(3828)

8 92 8(1168) 41 6(1188) 94 8(2192) 43 6(2244) 98 16(4240) 45 12(4356)

10 94 8(1280) 43 6(1332) 96 8(2400) 45 6(2516) 100 16(4640) 47 12(4884)

Table 6.2: The cost of the network interface in the mesh-based and the Quarc archi-
tectures.

A comparison between the overall cost of router and the network interface in terms

of slice count and bit storage count for various configurations in two architectures are

presented in Figure 6.4.

Comparing the Quarc and the mesh-based schemes in terms of the number of FPGA

slices occupied reveals that in 16, 32 and 64-bits implementations, on average, the mesh-

based NoC uses 41.6%, 47.8% and 54.4% more slices than its Quarc NoC counterpart. In

all implementations, the Quarc NoC uses 20% more BRAMs than the mesh-based NoC

does. However, surprisingly, the actual bit storage in the mesh-based NoCs employing
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(a) (b)

Figure 6.4: A comparison between the overall cost of router and the network interface
in the Quarc and the mesh-based architectures in terms of the number of (a) FPGA

slices and (b) bit storage.

V C > 6 virtual channels is more than bit storage in the Quarc NoC. This is of course

because the Quarc NoC has one consumption link less than the mesh-based NoC (given

that the injection links at both architectures are shared by two virtual channels). This

results clearly show that the ASIC implementation of the network interface in the Quarc

and the mesh-based schemes are expected to be realized at almost the same cost.

The reason for this is that BRAMs have a minimum size regardless of the number

of bits actually stored. In fact that is even true for Distributed RAMs. An ASIC

implementation would have exactly as much storage as required and would therefore be

much more area-efficient.

Also, note that in the Quarc network interface, the multicast buffer which accounts for

a significant proportion of the component size is required only if its corresponding IP

core is a potential source of multicast communication. Therefore, if the IP core is not a

source of multicast communication, the size of BRAMs in the Quarc network interface

will be less than the BRAMs in the mesh-based NoC.

These results show that the Quarc router does not occupy as much silicon area as the

mesh-based NoC does. On the other hand, the Quarc network interface requires more

memory (BRAM) to store flits than the mesh-based NoC does. This extra cost for the

Quarc network interface actually improves the performance of the Quarc NoC as shown

in the next section.
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6.4 Performance comparison

To evaluate and compare the performance of the two architectures we have developed the

Quarc and the mesh-based NoC simulators. The performance of the Quarc NoC can be

derived using the basic Quarc simulator demonstrated in Section 5.2.2. The schematics

of the components of a sample node in the mesh-based architecture is presented in Figure

6.5. Functionality of the components of the mesh-based NoC is identical to the ones

presented in Section 5.2.2 for the Quarc NoC. The passive queue in the mesh-based NoC

has a single queue to store unicast, multicast and broadcast messages.

Figure 6.5: The schematic of a sample node in a mesh-based NoC.

Both the Quarc and the mesh-based NoC simulators operate on the basic assumptions

defined in Section 5.2.1. Moreover, packets of equal size, 32-flits, are generated at each

node according to a Poisson process. It is assumed that network generates both unicast

and broadcast traffic, where broadcast is β = 0%, β = 10% and β = 20% of the overall

traffic generated at each node. Destinations of the unicast packets are randomly selected.

The unicast and broadcast routing algorithms employed by the Quarc architecture are

presented in Sections 3.3.1 and 3.3.3, respectively. The mesh-based architecture employs

XY [54] unicast routing algorithm. To perform broadcast, mesh adopts the routing

algorithms described in Section 6.1.2. Each simulation experiment runs according to

the algorithm presented in Section 5.2.3.

The performance comparison is conducted for the Quarc and the mesh-based networks

employing 2, 4, 6, 8 and 10 virtual channels. The performance of the Quarc architec-

ture is evaluated against the mesh-based NoC for numerous configurations. Figure 6.6

presents the comparisons for a number of configuration settings. The horizontal axis in

the graphs show the rate in terms of flit/cycle/tile, and the vertical axis describes the

latency.
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6.4.1 Message latency

Our experiments show that before approaching the saturation points, the mesh-based

and the Quarc NoCs deliver the unicast packets with almost equal performance. The

Quarc NoC outperforms the mesh-based NoC in smaller networks of up to around 30

nodes while, the mesh-based NoC performs better in larger networks.

Figure 6.6: A comparison of unicast and broadcast in the mesh-based and the Quarc
NoCs.

When it comes to broadcast, as the graphs in Figure 6.6 show, the Quarc NoC signifi-

cantly outperforms the mesh-based NoC in all configuration settings before saturation
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points. Our experiments demonstrate that, on average the Quarc NoC performs a broad-

cast operation over two times faster than the mesh-based NoC does.

6.4.2 Effect on unicast

It is generally desirable to implement the collective communication operations without

sacrificing the performance of unicast communication. The conducted experiments show

that injecting β = 10% (β = 20%) broadcast traffic to the mesh-based and the Quarc

NoCs, on average increases the unicast latency by 24.2% (72.2%) and 12.1% (28.6%),

respectively. Our findings also suggest that the performance of unicast communication

in smaller mesh-based networks is more adversely affected to the presence of broadcast

communication, in the Quarc NoC the adverse effect of broadcast communication is

much less than in the mesh-based NoC.

6.4.3 Broadcast tolerance

Parallel to observing the effect on the performance of unicast communication, we inves-

tigated the network sustainable load in response to injection of various broadcast traffic

rates. Table 6.3 shows how injecting broadcast traffic affects the network sustainable

load. The results reveal that injecting β = 10% (β = 20%) broadcast traffic to the

mesh-based and the Quarc NoCs on average decreases the network sustainable load by

51% (68.2%) and 38% (54%), respectively. These results combined with the effect on

the performance of unicast communication demonstrates that the Quarc NoC is clearly

more tolerant to the presence of multicast communication traffic.

6.4.4 Network saturation

From the graphs in Figure 6.6 it is evident that compared to the Quarc NoC, the mesh-

based NoC can sustain more traffic before it saturates. Explaining the reason why the

mesh-based NoC tolerates more traffic requires detailed traffic analysis at each link in

both architectures. In particular, we are interested in stochastic properties of the first

link that saturates in network. Obviously, this is the link that exchanges the highest

amount of traffic. Traffic distributions at network links while nodes generate messages

according to a Poisson process in the mesh-based and the Quarc networks can be found
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in [102] and [103], respectively. The results show that the links at the middle of mesh

and surrounding links in the Quarc NoC exchange the highest volume of traffic compared

to other links.

Let’s assume that (i) mesh is square, (ii) both mesh and the Quarc NoC have the same

number of nodes, (iii) each node sends messages to other nodes uniformly according

to a Poisson distribution with average rate of λ and (iv) network is stable. Moreover,

we denote by φQ and φM the traffic rate at the links exchanging the highest volume of

traffic in the Quarc NoC and the mesh-based NoC, respectively. Adopting results from

[102] and [103] shows that φQ > φM , for a fixed λ. Therefore the weakest link (and

consequently, network) in the Quarc NoC saturates earlier than mesh.

Broadcast rate

32-bits

16-bits 32-bits 64-bits

Quarc Mesh Quarc Mesh Quarc Mesh

0 0.7 0.79 0.27 0.48 0.14 0.37

10 0.43 0.49 0.16 0.23 .09 0.13

20 0.33 0.35 0.18 0.14 0.06 .08

Table 6.3: The effect of injecting broadcast traffic on the network sustainable load.

6.4.5 The effect of adding virtual channels on network saturation

Table 6.4 shows the network saturation improvement in response to adding virtual chan-

nels to a base network. We assume that the base network employs 2 virtual channels. In

the table, the first column represents the number of virtual channels sharing each physi-

cal link. The other columns show the network saturation improvement compared to the

base network. Our experiments reveal that the Quarc NoC responds more efficiently to

additional virtual channels.

Virtual channels

32-bits

16-bits 32-bits 64-bits

Quarc Mesh Quarc Mesh Quarc Mesh

4 %25 %18 %26 %17 %35 %16

6 %39 %25 %47 %28 %45 %30

8 %54 %34 %57 %33 %63 %33

10 %60 %37 %68 %38 %66 %38

Table 6.4: The effect of increasing virtual channels on network saturation.
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The reason for the different responses to additional virtual channels lies in topological

attributes of the architectures. Let’s assume that V virtual channels share each physical

link (including injection links). In mesh, V virtual channels of a non-bordering link may

receive messages from 3× V virtual channels from neighboring network links and from

V virtual channels from injection link. While, V virtual channels of a surrounding link

in the Quarc NoC receive messages from 2× V network link virtual channels and from

V injection link virtual channels. In other word, V virtual channels of a non-bordering

link in mesh and a surrounding link in the Quarc NoC are loaded by traffic from 4× V

and 3× V virtual channels, respectively. This means that in presence of high loads the

weakest link in mesh more quickly reaches the point where it exploits the full potential

that network can gain from virtual channel multiplexing. Therefore, the mesh-based

NoC responds more poorly to the addition of the virtual channels.

6.5 Conclusion

This chapter presented a comparison between a mesh-based NoC architecture and the

Quarc NoC. Performing efficient multicast/broadcast is the most outstanding feature of

the Quarc. Therefore, to demonstrate a fair comparison we have implemented a most

performant broadcast routing algorithm for the mesh-based NoC as well.

To compare the cost, we have developed FPGA implementations of the router and the

network interface in both architectures for numerous configuration settings in terms of

the flit width and the number of virtual channels. The cost comparison has shown that

the network interface in the mesh-based NoC can be realized using less resources com-

pared to the Quarc network interface, while the Quarc router implementation requires

less resources compared to router in the mesh-based NoC. The analysis has shown that

overall cost of implementing the router and the network interface in both architectures

are almost equal.

The simulation experiments have shown that in operational range (before saturation

point) the Quarc outperforms the mesh-based NoCs in delivering unicast messages in

small networks of up to 30 nodes. Whereas, mesh-based NoC exchanges unicast messages

faster in larger networks. The Quarc NoC significantly outperforms mesh in performing

broadcast communication. Moreover, the analysis of the results has demonstrated that
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the Quarc NoC is more tolerant to the presence of multicast traffic and responds more

effectively to the additional virtual channels.



Part IV

Analytical Performance Models of

Communication in the Quarc

NoC
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Chapter 7

Performance Evaluation Tools

and Techniques

The successful operation of a NoC-based application depends to a large extent on the

performance of the underlying communication architecture. Thus, it is crucial to ensure

that the network can deliver the performance requirements of the application. This can

be achieved by comparing the performance demands of the application against the per-

formance measures derived when the network operates based on widely used assumptions

or benchmarks. The most widely used approaches to derive the performance measures of

a communication architectures are analytical models and simulation programs. Depend-

ing on the characteristics of the system to be evaluated, accepted accuracy and cost,

one technique may be given preference to others. This chapter presents the performance

evaluation tools and techniques and investigates their applicability into the NoC realm.

7.1 Analytical models

Analytical models are regarded as a cost-effective method to evaluate the performance of

the systems [110]. Most analytical performance models for interconnection networks are

based on stochastic processes and queuing theory. This section presents a brief review

of Markov models and queuing networks.
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7.1.1 Markov process

Markov processes belong to a class of stochastic processes which is characterized by its

limited historical dependency or memory-less property. Like other stochastic processes,

a Markov process is defined as {X(t) : t ∈ τ}. X(t) is a random variable which represent

the state of the process at time t and can assume any values from state space S. And

τ is regarded as time. The dynamic behavior of a Markov process is determined by the

time spent at each state and transitions between the states. Finding the steady state

probability distribution of a Markov process is achieved by solving a generator matrix

which its elements are the transition rate from one state to other potential states.

A fundamental characteristic of any Markov process is its memory-less or Markovian

property. The Markovian property simply says that the whole history of a process is

summarized in its current state. In other words, the holding time in the current state

and the transition to the next state is independent of the times spent in the previous

states and sample path taken to reach to the current state.

The memory-less view of the system is compatible with behavior of many activities in

communication and computer systems. This property when combined with the simple

and well-know methods of solving a Markov process is probably the reason behind the

versatile and successful use of Markov processes in modeling a wide range of systems.

Markov processes can be used to derive the stationary distribution of large class of birth-

death processes. They are widely used in evaluating variations of M/M/1 queues which

are derived by changing the number of servers and buffer size of the queue [104].

The mathematical notations of Markov processes typically are not intuitive enough to

give an insight into the functionality of the system they model. Moreover, as the sys-

tem complexity and consequently the state space grows, it is not easy to capture all

details in a diagram. To abstract the complexity of Markov models, a number of tools

and languages are introduced such as SPA (stochastic process algebra) [105] and SPN

(stochastic Petri nets) [106]. The primitive notations of these tools and modeling lan-

guages map to their counterpart in a Markov process. In fact, the analytical results these

tools provide are mainly produced by the underlying Markov processes corresponding

to the models.
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The major drawback of Markov models is the size of the state space. As the size of the

state space grows solving the generator matrix and deriving the performance measures

is not a trivial task or even impossible with current methods and technology support.

A traditional challenge in the domain has been to solve the Markov processes of large

systems.

To investigate the suitability of Markov-based techniques to evaluate the performance

of NoCs, we have presented a PEPA [105] model for a simple network [107]. The sys-

tem consists of three nodes communicating through unidirectional links using wormhole

switching. We assume having a uniform traffic in which each node chooses destinations

arbitrarily, and there is an equal Poisson traffic between each pair of nodes in the system.

Implementing such a small system, as is shown [107], involves a large PEPA program

with over 18, 000 states which prohibitively grows as the network size increases. Thus,

modification, verification and debug of such models in a system consisting of tens of

nodes is not unlikely to be impractical.

We selected PEPA to evaluate the performance of the simple system mentioned above.

Although it offers a level of abstraction over using a Markov process directly, the model

is still too complex to handle and unlikely to scale. It is not very hard to deduce

that modeling the system with stochastic Petri nets (SPN) [106] would be almost as

complicated as the PEPA model. This is because both PEPA and SPN eventually map

to an underlying Markov process. Therefore, to handle complexity and size of the real

NoC models, which are at least hundreds of times larger and more complicated than the

simple system analyzed in [107], employing higher level techniques are necessary.

7.1.2 Queuing networks

Queuing theory and queuing networks have been used extensively to evaluate the per-

formance of computer and communication systems. In particular the interest is on the

product form queuing networks. In a product form queuing network, the stationary

distribution of the network is the product of the distribution of each queue analyzed in

isolation from the network. In other words, queuing networks provide a compositional

approach to handle complexity involved in analysis of large systems consisted of smaller

subsystems.
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Using the already established concepts, deriving the measures of interest at each queue

requires arrival and service rate at each queue. Once the characteristics of each queue

is known, it is possible to represent the state of the system as a product of individual

queues. Of course, such an approach is very limited in respect to the type of arrival and

service time of the queues.

7.2 Simulation programs

Simulators are computer programs that mimic the operations of the real world systems.

Developing simulation programs for large systems is often a non-trivial task and running

the application requires powerful computer systems in operation for a long period of time.

As capturing all details of the real system in a simulation program may not be feasible

or cost-efficient, usually the system is modeled at a higher level of abstraction.

Simulation programs have a few advantages over analytical models. In contrast to an-

alytical models which typically assume simple traffic distributions, in simulation the

inter-event times are not restricted. Also, since there is no concerns about the state

space, models can be more realistic and larger. Moreover, simulations enable studying

the transient behavior of the models which is not often easily derived from analytical

models. And finally, in contrast to analytical models, the measures derived from sim-

ulation programs are not only mean values, and it is possible to derive minimum and

maximum of the measures of interest.

The general simulation tools may be used for evaluating NoCs. However, due to pe-

culiarities in the field, a number of simulators have been developed for the domain.

Following introduces a number of tools that might be employed for simulating NoCs.

• The On-Chip Communication Network (OCCN) [108] tool is an efficient, open-

source research and development framework built on top of SystemC for specifica-

tion, modeling and simulation of the on-chip communication architectures.

• OMNeT++ [96] is a public-source, component-based, modular and open-architecture

simulation environment with strong graphical user interface support and an embed-

dable simulation kernel. Its primary use is simulation of communication networks.

However, due to its generic and flexible architecture, it has been successfully used
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in other areas such as IT systems, queuing networks, hardware architectures and

business processes as well.

• As the dominant switching method in on-chip networks is wormhole switching a

number of simulators have been developed to model wormhole switched networks.

The flit level simulator proposed by Smith [109] is an example of such simulators.

7.3 A comparison between performance evaluation tech-

niques

The performance evaluation techniques reviewed so far are the most widely used tech-

niques in analysis of computer and communication systems. This section compare these

techniques in respect to i) learning time, ii) assumptions, iii) size and scalability and

iv) accuracy and reliability.

7.3.1 Learning

Most Markov-based tools provide a graphical representations of the interaction between

the components of the system, this feature makes them more intuitive and easier to

assimilate, in particular for small systems. Learning stochastic process algebras require

more time to use efficiently. Queuing networks, if viewed at a high level of abstraction can

be manipulated by simple algebra. However, understanding the underlying concept in

queues and queuing networks and mastering them is time consuming. Simulation models

generally require writing and debugging a complex computer program. Developing a

good simulation model often requires detailed knowledge of the system being represented

as well as a thorough understanding of the statistical techniques.

7.3.2 Assumptions

A fundamental assumption in Markov-based models is the memory-less property of the

system. This assumption conforms to the behavior of many activities in computer

and communication domain. In queuing networks, typically the product form of the

queues provide the measures of interest. The assumption in such systems is that the
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system is quasi-reversible [110]. This assumption is hardly met in reality. Simulation

programs typically are able to investigate the model in almost every situation and no

severe assumptions are enforced.

7.3.3 Size and scalability

The major handicap in Markov processes is the size of the model. These techniques

typically require the whole state space to be manipulated by math software programs.

The maximum size of the state space which these tools can handle depends on the

hardware and software employed. However, it is too common to fail to handle the state

space, even for the systems of a moderate size. This situation is referred to as state

space explosion.

The size is not a major problem in the product form queuing networks because every

queue is handled in isolation form the rest of the system. Thus, they are more scalable

than Markov processes.

In the case of simulation, the complexity of coding and debugging is proportional to the

size of the system and the desired level of accuracy. Moreover, running large simulation

programs requires powerful computer systems.

7.3.4 Accuracy

Since the assumptions in the Markov-based tools are compatible with the system they

model, it is rational to expect reasonable results. In queuing networks the assumptions

are more severe and more unrealistic. Nevertheless, queuing networks typically provide

a good trade-off between cost and performance measures they offer.

Since the simulation programs are run rather than solved, performance measures are

observed rather than derived. Simulation programs offer a great deal of freedom in how

measures can be defined. However, several observations with a variety of parameters

should be carried out to improve the accuracy.
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7.4 Conclusion

In this chapter we presented the most widely used tools and techniques adopted to

evaluate the performance of computer systems and networks. The investigation of the

strength and weakness of the evaluation techniques has shown that queuing networks and

the simulation programs are more suitable candidates in the NoC realm. The rest of the

thesis presents the analytical models along with the simulation programs to evaluate the

performance of interconnection networks exchanging a variety of communication types

including unicast, multicast and QoS-aware traffic. The rational behind presenting the

models is mainly to show the strength and accuracy of the analytical models as a cost-

effective performance evaluation tool.



Chapter 8

Modeling Unicast Communication

Unicast is the most common type of on-chip communication. In unicast communication

a process sends a message to another process. The communicating processes may both

reside at the same node, or they might be at different nodes. In this work we are more

concerned and interested in performance of the communication architecture. Therefore,

we assume that the communicating processes are at different nodes.

Due to the dominant nature of unicast communication on a chip, designers tend to em-

ploy architectures offering high performance unicast delivery. Simulation programs are

the dominant tools to evaluate the performance measures (such as message latency) of

the NoC architectures [74, 111]. Since NoCs are in concept similar to interconnection

network for parallel computers with multiple processors, the analytical modeling tech-

niques from the latter can be readily applied to the former. Guz et. al. [112] presented

an analytical model to compute the network delay in application-specific wormhole-

routed NoCs. They model the links as M/D/1 queues and their approximation does

not capture inter-link dependencies. Therefore, as they have mentioned, the model is

generally too optimistic for medium and high loads.

This chapter presents an analytical model to compute average message latency in wormhole-

routed interconnection networks. The model is developed based on queuing theory and

has been used to predict the unicast message latency in other interconnection networks

[19, 113–115]. The reason we present the model is twofold. Firstly, to present a reliable

unicast model for the Quarc NoC. And secondly, the unicast model will be used as a

basis for more complicated analytical models to evaluate the performance of multicast
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and QoS-aware traffic in the following chapters. The model is applied to the Quarc

NoC and its predictions are validated by comparison against the results derived from a

flit-level simulator developed using OMNET++ [96].

8.1 The basic assumptions of the analytical models

Developing analytical models of communication in interconnection networks requires

defining a number of assumptions. These assumptions include, but are not limited

to network topology, routing algorithm, switching technique and message generation

functions. The rest of the thesis is dedicated to developing analytical models for various

communication patterns in NoCs. The models are developed based on a number of

common assumptions in addition to the instance-specific ones. The common assumptions

that are shared by all analytical models in this thesis are widely used in the literature

[19, 114, 116] and are defined as:

• The network adopts deterministic routing.

• The network employs wormhole switching.

• Local queues corresponding to each injection link in a given source node have

infinite capacity.

• The messages are transferred to the local IP core as soon as they arrive at desti-

nations.

• The messages are all the same size. The message size is larger than the network

diameter.

• Unicast traffic is uniform.

• Propagation delay at each link, regardless of the link size, is one cycle.

• The latency of a unicast message is regarded as the time from generation of the

unicast message at the source node to the time when the last flit of the message

is absorbed by the sink at destination.

• The multicast message latency is the time from generation of the multicast message

at the source node until the time when the last flit of the message is absorbed by

the sink at the last destination of the multicast message.
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• The broadcast message latency is the time from generation of the broadcast mes-

sage at the source node until the time when the last flit of the message is absorbed

by the sink at the last destination of the broadcast message.

8.2 The analysis method

The objective of this section is to introduce a model to evaluate the average message

latency in interconnection networks employing wormhole switching. The model is de-

veloped on the following assumptions:

• The basic assumptions defined in Section 8.1.

• Nodes are generating unicast traffic independently of each other, following a Pois-

son process.

• The messages length is msg flits.

We view our network as a network of queues, where each link is modeled as an M/G/1

queue. For an M/G/1 queue the average waiting time is [117]

WM/G/1 =
λρ

2(1− λx)
(1 +

σ2

x2
) (8.1)

ρ = λx (8.2)

where λ is the mean arrival rate, x is the mean service time and σ2 is the variance of

the service time distribution.

We define xj as the service time at link `j . The service time is defined as the time when

the link is reserved by the header flit to the time when the last flit of the message leaves

the link. And, the waiting time, wj , at link `j is the average time required for the header

flit to be granted the access to the link.

During the journey towards a destination, a message passes through a number of links.

Since in wormhole routing flits follow the header flit, the waiting time needs to be

evaluated only for the header flit. Since msg is larger than the network diameter, the
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latency may be defined as the total waiting and the service times experienced at the

injection link plus a number of extra cycles that is equal to the hop distance from source

to destination. Thus, for an arbitrary node, γj , in the network, the latency may be

expressed as

Lj = wSj + xSj + Dj − 1 (8.3)

where wSj and xSj are the average waiting and the service time experienced at injec-

tion link. And Dj is the average hop distance between the source node, γj , and all

destinations accessible from this node.

Averaging over all nodes yields the average message latency in network as

L =
1
N

∑

j

Lj =
1
N

∑

j

(wSj + xSj + Dj)− 1. (8.4)

As we modeled each link as an M/G/1 queue, wSj will be derived once the mean service

time and its variance are known. Since in wormhole routing a message typically spans

several links at each time, the service time at each link depends on the waiting time and

the service time at its subsequent links. Therefore, to analyze the service time at each

link, the waiting time and the service time at all possible successive links are required.

Figure 8.1 can aid in analyzing the service time at an arbitrary link `i.

Figure 8.1: The service time at link `i depends on n successive links.

Figure 8.1 illustrates that traffic leaving link `i, may be injected to any of its n subsequent

links, where n is a non-negative integer. We denote by Pi→j the probability that traffic

enters link `j immediately after leaving link `i. The average service time experienced at
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link `i therefore, can be expressed as

xin
i =

∑

j

(wj + xj + 1)Pi→j . (8.5)

This equation states that the service time at each link is derived once the waiting time

and the service time of its successive links are known. The mean waiting time, wj , may

be approximated using an M/G/1 queuing model with the service time xj .

Draper and Ghosh [19] suggested that the variance of the service time at each link to

be defined as

σ2 = (x−msg)2 (8.6)

thus, the waiting time for an M/G/1 queuing system which is used for modeling worm-

hole routing may be approximated by

Wj =
λjx

2
j

2(1− λjxj)
(1 +

(xj −msg)2

x2
j

). (8.7)

The above waiting time, Wj , is the mean waiting time for a server in which messages

arrive at rate λj and no message may block other messages. In wormhole-routed net-

works, however, a message may block other messages and therefore, Wj will not equal

to wj . In fact, when a message occupies a link, there is no competing traffic from this

link to the subsequent links. Traffic at the link competes only with the incoming traffic

from other links. This means that the mean wj is less than the mean Wj . The effect of

blocking is addressed by introducing a blocking probability which is defined as

Pbli→j = 1− λin
i

λj
Pi→j (8.8)

where λin
i is the incoming traffic at `j from `i, λj is the total traffic rate at `j and Pi→j

is the probability that `j is traversed immediately after leaving `i.

Finally, wj may be obtained as the product of Wj and Pbli→j

wj = Wj .Pbli→j (8.9)
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By combining Equations 8.5, 8.8 and 8.9 we obtain the service time at an intermediate

link as

xin
i =

∑

j

((1− λin
i

λj
Pi→j)Wj + xj + 1)Pi→j (8.10)

where, Wj is approximated using Equation 8.7 and xj is the mean service time at link

`j .

Given that the service time at the consumption link is msg. Equation 8.10 can be

adopted to compute the service time at all links from the consumption link at destination

back to the injection link at the source node. Once the service time at the injection link

is known, the average message latency experienced at the node and consequently the

average latency in network is computed using Equations 8.3 and 8.4, respectively.

8.3 Traffic analysis in the Quarc NoC

Computing the average message latency in a network requires knowledge of traffic at all

network links. We assume that the Quarc network adopts Across-First routing algorithm

[30]. Traffic at each link is comprised of several incoming links and will be transmitted to

a number of successive links. This section presents the traffic rate at each link of a Quarc

NoC. As traffic distribution is slightly different, depending on whether the number of

nodes is a factor of four (N = 4x) or only a factor of two (N = 4x+2), we present them

separately when required.

We denote by λg the traffic rate from a node to each individual destination. Depending

on the destination address a message may take any of the four injection links. The traffic

rate at injection links for traffic heading to right surrounding link, left surrounding link,

across-right link and across-left link are denoted by λSright
, λSleft

, λS×right
and λS×left

,

respectively, and equal to

λSright
= λSleft

=
⌈

N

4

⌉
λg (8.11)

λS×right
=

⌊
N

4

⌋
λg (8.12)
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λS×left
= (

⌊
N

4

⌋
− 1)λg. (8.13)

The traffic rate at each surrounding link, λA, is comprised of traffic from three sources,

i) across-network link, ii) previous link and iii) injection link. Traffic rates at each

surrounding link is

λA =





⌈
N
4

⌉2
λg N = 4x

(
⌊

N
4

⌋2 +
⌊

N
4

⌋
+ 1)λg N = 4x + 2

. (8.14)

Traffic rates at right, left and across-left ejection links are denoted by λeright
, λeleft

and

λe×left
, respectively, and equal to

λeright
= λeleft

= (
N

2
− 1)λg (8.15)

λe×left
= λg (8.16)

And finally, the traffic rate at right-cross network link, λCr , and left-cross network link,

λCl
, are equal to

λCr = λS×right
(8.17)

λCl
= λS×left

(8.18)

8.4 Validation and analysis

To validate the unicast communication model, we apply the model to the Quarc NoC

and compare the model prediction against the Quarc NoC simulator. The basic Quarc

simulator presented in Section 5.2.2 is used to derive the unicast message latency. The

simulator operates on the assumption defined in Section 5.2.1. Moreover, the unicast

messages are generated at each node according to a Poisson process.
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Figure 8.2: Analytical model against the simulation results.

The model is compared against the simulation results for numerous configurations by

changing the message length and the network size. Figure 8.2 compare the simulation

results against the analysis for networks of 16, 32, 64 and 128 nodes, while the message

length is set to 16, 32, 48 and 64. Each simulation experiment is run according to the

algorithm presented in Section 5.2.3.

In the graphs, N and M stand for the number of nodes and the message length, re-

spectively. The horizontal axis of the graphs show the message rate per node per cycle,

while, the vertical axis presents the average message latency. As can be seen from the

the figures, the analytical model presents a good approximation of the network latency
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in the presence of light to heavy traffic. In particular the figures reveal that the model

predicts the network saturation points accurately.

8.5 Conclusion

The performance models of unicast communication have been widely reported in the

literature. The chapter presented a model based on queuing theory concepts. The

analytical model has been applied to the Quarc NoC and the predictions verified against

the results produced by a flit-level simulator. The analytical model presented in this

chapter will be employed in the following sections to model more complicated traffic.

The next chapter uses the model to predict the average message latency of multicast

traffic in all-port router architectures.



Chapter 9

A Performance Model of

Multicast Communication

The literature has witnessed numerous analytical performance models of unicast traffic

[19, 20] and analysis of unicast traffic in the presence of broadcast traffic [115] in parallel

computers and the NoC domain. In [21] Shahrabi et al. introduced a model to compute

the broadcast communication latency in Hypercube. However, in their system under

model only unicast is wormhole-routed and broadcast communication is not wormhole-

routed. Also, their model is developed for the architectures adopting one-port router

scheme. This section presents a novel analytical model to compute the average multicast

communication latency in a system adopting wormhole-routing for both unicast and

multicast communication.

In an interconnection network employing a multi-port router scheme, the multicast la-

tency is defined as the time from generation of the message at source until the time when

the last flit of the multicast message is absorbed by the last destination of the multi-

cast message among messages leaving m injection ports. The novelty of the approach

introduced in this section lies in its ability to predict the average latency of multicast in

networks adopting all-port or multi-port router architecture; in which there is no syn-

chronization between messages emerging from each port. Otherwise, the model could

be classified as a variation of the available analytical models of unicast communication.

112
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9.1 An analytical model of multicast communication

The model adopts the following assumptions:

• The basic assumptions defined in Section 8.1.

• There are two types of messages in the network: multicast and unicast. A multicast

message is delivered to all destinations identified in the header flit(s). A unicast

message is sent to other nodes in the network with equal probability. When a

message is generated at a source node, it has a finite probability 0 ≤ α ≤ 1 of

being multicast and probability (1− α) of being unicast.

• Nodes generate traffic independently of each other, according to a Poisson process

with a mean rate of λg message/cycle.

• The messages length is msg flits.

In a multi-port router architecture employing deterministic routing, depending on the

position of the destination node, the appropriate injection link should be taken to trans-

mit the message through. We define Sjc as the subset of the network nodes receiving

the multi-destination message sent from node γj through injection port Φjc ,

Sjc = {γi : (γi ∈ Mj) and (<j→i passes through portΦjc)} (9.1)

where

• 1 ≤ c ≤ m, denotes the index of injection port Φjc at node γj ,

• Mj denotes a set of multicast destinations to be reached from node γj ,

• <j→i denotes a set of links whose member determine the path from node γj to

node γi and,

• The multicast destination set associated with a port is disjoint from the multicast

destination sets associated with other ports, i.e.

m⋂

c=1

Sjc = ∅. (9.2)
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To multicast a message, it should be sent to disjoint sub-networks through one or more

ports of the router. It can be argued that the message latency experienced by the

largest sub-network can be regarded as the multicast communication latency. Although

this justification sounds reasonable in most situations, the dynamic behavior of traffic in

different sub-networks may easily lead to situations where, smaller sub-networks deliver

the message later than larger sub-networks do. Therefore, it is desirable to find a more

reliable solution based on the latencies experienced at each sub-network connected to

different ports.

By adopting the analytical model explained in Chapter 8, this section presents an ap-

proach to compute the mean multicast message latency in a wormhole-routed inter-

connection network employing asynchronous all-port routers. It is important to note

that, there is no form of synchronization between flit streams leaving different ports

of a router. This means that each injection port of the router transmits the multicast

messages independently of the other injection ports.

The communication latency experienced by a message is a factor of three components,

namely, the message length, the number of hops and the total waiting time at interme-

diate links. Among those parameters, the message length and the number of hops are

fixed, while the waiting time varies. The total waiting times at all intermediate links

from source to destination may be any non-negative real time number. Nevertheless,

its average is the total of the waiting times which may be computed using the method

explained in Chapter 8.

Using the above definition, the average latency of unicast traffic at injection port Φjc at

node γj may be expressed as

Ljc =
∑

l

wl + msg + ψjc − 1 (9.3)

where

• Ljc is the average communication latency experienced by a message leaving injec-

tion port Φjc at node γj .

• wl is the waiting time experienced by the header flit of a message before being

granted access to link ` ∈ <j→dst (dst denotes destination). wl can be computed

using the approach presented in Section 8.2.
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• ψjc denotes the number of hops traversed by a message in sub-network Sjc origi-

nating from node γj .

The total waiting times at all intermediate links from source to destination,
∑

` w`, may

be any non-negative real time number. This average is the total of the waiting times

which may be computed using the method explained in Section 8.2. Therefore, for each

individual injection port, Φjc (1 ≤ c ≤ m), of an all-port router at node γj , we are able

to define an exponential distribution, E1,µjc
, which its expected time is the total waiting

times (from source to destination) experienced by the header flit of the message leaving

injection port Φjc at node γj .

Using the above definition, µjc is expressed as:

µjc =
1∑

l

wl

1 ≤ c ≤ m, 1 ≤ j ≤ N. (9.4)

By associating the waiting times at each port of the routers to independent exponentially

distributed random variables and recalling the definition of the message latency, the

multicast waiting time will be defined as the expected time for the occurrence of the

last event among m independent exponentially distributed random variables. Which is

of course, the expected total waiting time experienced by the last message delivered to

its destination among m messages transmitted at injection ports of the router.

To compute the expected time of the last event, we use two properties of the exponential

distributions.

• The exponential distributions are memory-less.

• The minimum of independent exponential distributions is exponentially distributed

[110]. i.e.

P [min {E1,µ1,E1,µ2} > t] = e−(µ1+µ2)t. (9.5)

Using the above two properties, we first compute the expected time for the last event in

case of only two independent exponentially distributed random variables, E[max {E1,µ1,E1,µ2}],
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and then generalize the method for m ≥ 2 independent exponentially distributed random

variables.

According to Equation 9.5 the expected time for occurrence of the first event between

two independent exponential distributions is

E [min {E1,µ1,E1,µ2}] =
1

µ1 + µ2
(9.6)

Due to the memory-less property of the exponential distributions, the expected time for

the next event after the occurrence of the first event is 1
µ2

or 1
µ1

depending on whether

the first event has been fired by E1,µ1or E1,µ2 , respectively. The probability that E1,µ1or

E1,µ2 has been the first event, however, is related to µ1 and µ2. In other words, the

probability that E1,µ1has been the first event is PE1,µ1
= µ1

µ1+µ2
and the probability that

E1,µ2 has been the first event is PE1,µ2
= µ2

µ1+µ2
. Therefore, the expected time for the

last event between two independent exponentially distributed random variables is

E [max {E1,µ1,E1,µ2}] =
1

µ1 + µ2
+ PE1,µ1

×E[E1,µ2 ] + PE1,µ2
× E[E1,µ1 ]. (9.7)

Generalizing the solution for m ≥ 2 yields the expected time for occurrence of the last

event between m independent exponentially distributed events as

E [max {E1,µ1,E1,µ2 , ..., E1,µm}] =
1

µ1 + µ2 + ... + µm
+

µ1

µ1 + µ2 + ... + µm
E [max {E1,µ2,E1,µ3 , ..., E1,µm}] +

µ2

µ1 + µ2 + ... + µm
E [max {E1,µ1,E1,µ3 , ..., E1,µm}] + ...

µm

µ1 + µ2 + ... + µm
E

[
max

{
E1,µ1,E1,µ2 , ..., E1,µm−1

}]
.

(9.8)

Adopting the above analysis, the expected waiting time experienced by the last message

(among m independent branches of a multicast message leaving node γj) delivered to

its destinations, Wj , may be computed as

Wj = E
[
max

{
E1,µj,1 , E1,µj,2 , ..., E1,µj,m

}]
. (9.9)



Chapter 9. A performance model of multicast communication 117

Therefore, the average multicast latency at node γj , Lj , may be expressed as

Lj = Wj + msg + ψj − 1 (9.10)

where

ψj = Max(ψjc) 1 ≤ c ≤ m (9.11)

is the maximum hops traversed among m sub-networks connected to node γj .

Averaging over all nodes in the network yields the average multicast message latency as

L =
1
N

N∑

j

Lj . (9.12)

9.2 Traffic analysis

To evaluate the service and the waiting time at each link, the detailed traffic information

at the link is required. This section presents traffic at each link in the Quarc NoC

adopting the assumptions defined in Section 9.1. Moreover, we assume that the Quarc

NoC employs Across-First unicast routing algorithm and adopts the multicast routing

algorithm presented in Section 3.3.4.

The Quarc NoC employs an all-port router scheme, depending on the multicast desti-

nations set one or more injection links are used to transmit the message to destinations

at each quadrant. After leaving the injection link, a multi-destination message at each

quadrant travels towards the address specified in the destination address of the header

flit. On the way to destination, it is absorbed by multicast destinations specified by

bit-string in the header flit. In analysis of network traffic, as will be shown, the final

destination at each rim affects traffic in the network. We denote by ψr, ψl, ψcr and

ψcl the relative position of the last multicast destination at right, left, across-right and

across-left rims, respectively, to a node.

We denote by λg the total traffic rate generated at each node. This traffic consists of

unicast and multicast traffic. It is assumed that α, 0 ≤ α ≤ 1, represents the rate of

multicast generation at each node. Therefore, the total traffic at each node may be
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represented as

λg = (1− α)λg + αλg. (9.13)

To simplify traffic analysis, we define λm, the average rate of multicast traffic at each

node, as

λm = αλg (9.14)

and λu, the average unicast traffic rate to each individual node in the network, as

λu =
(1− α)λg

N − 1
. (9.15)

Applying λu to equations presented in Section 8.3 yields unicast traffic at each link.

The rate of multicast traffic at right, left, across-right and across-left injection links are

denoted by λSmr
, λSml

, λSm×r
and λSm×l

, respectively. The traffic rate at those links are

zero if their corresponding rim does not include any multicast destinations. Otherwise,

they equal to λm. The rate at ejection links depends on the number of sources targeting

a node as a multicast destination.

The multicast traffic rate at each surrounding link at right and left to a node are denoted

by λAmr
and λAml

, respectively, and equal to

λAmr
=





(ψr + ψcl − 1)λm ψcl > 0

ψr.λm ψcl = 0
(9.16)

and

λAml
=





(ψl + ψcr − 1)λm ψcr > 0

ψl.λm ψcr = 0
. (9.17)

And finally, the multicast traffic rate at each across-right and across-left links are denoted

by λCmr
and λCml

, respectively, and equal to
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λCmr
=





λm ψcl > 0

0 ψcl = 0
(9.18)

and

λCml
=





λm ψcr > 0

0 ψcr = 0
. (9.19)

9.3 Validation

To validate the analysis we apply the model to the Quarc NoC and compare its pre-

dictions against the results derived from the basic Quarc simulator presented in Section

5.2.2. The simulator operates on the basic assumption defined in Section 5.2.1. More-

over, we assume that source produces the messages according to a Poisson distribution.

A message may be unicast or multicast. Multicast destinations are selected randomly

at the beginning of the simulation run and remain fixed during the experiment.

Figure 9.1: Model validation for localized multicast destinations.
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The model predictions are compared against the simulation results for numerous con-

figurations by changing the Quarc network size, the message length and the rate of

multicast traffic. The model is validated against the simulation results for three differ-

ent scenarios, i) multicast destination are at local proximity of each other, ii) unordered

multicast destinations and iii) broadcast.

Figures 9.1, 9.2 and 9.3 compare the simulation results against the analysis for networks

having 16, 32, 48, 64 or 128 nodes. The message length can be 16, 32, 48 or 64 flits. Mul-

ticast traffic comprises 3%, 5% or 10% of the overall traffic. Each simulation experiment

is run according to the algorithm presented in Section 5.2.3.

In the graphs, N , M and α represent the number of nodes in the Quarc NoC, the message

length and the rate of multicast traffic, respectively. L, R, LO and RO denote the bit-

strings corresponding to multicast destinations at left, right, across-left and across-right

of the node, respectively. The horizontal axis in the figures shows the message rate,

while the vertical axis describes the latency.

9.3.1 Localized multicast

In the Quarc NoC placing multicast destinations at one rim can offer the most efficient

approach to multicast a message. In such a scenario, multicast can be viewed as a

unicast communication with the target destination being the last node to be visited.

The model has been verified to predict the multicast message latency when destinations

are in spatial locality of each other and can be reached by only one rim. The graphs

in Figure 9.1 represent such scenarios that the destination nodes are at one single rim

relative to the source node.

9.3.2 Multicast

The graphs in Figure 9.2 show the configurations in which multicast destinations are

selected randomly. This is the most common type of multicast, where destinations are

situated in different locations in the network.



Chapter 9. A performance model of multicast communication 121

Figure 9.2: Model validation for random multicast destinations.

9.3.3 Broadcast

Broadcast, in which a node sends a message to all other nodes in the network, is con-

sidered as the most fundamental collective communication operation. To validate the

model for the extreme case, we present the comparison of the model predictions against

the simulation results for broadcast traffic. The comparisons are demonstrated in Figure
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9.3. In contrast to multicast communication, broadcast communication does not require

setting the bit-string in the header flit.

As can be seen from the figures, the analytical model presents a good approximation of

the average latency for multicast and broadcast in a wide range of configuration settings.

Figure 9.3: Model validation for broadcast traffic.
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9.4 Conclusion

In this chapter we presented a new analytical model to predict the message latency of

multicast communication in all-port wormhole-routed interconnection networks. The

model is developed using queuing theory and stochastic properties of the exponentially

distributed random variables. The model evaluates the average message latency of mul-

ticast, while network exchanges both unicast and multicast traffic. The model has been

applied to the Quarc NoC in a wide range of configuration settings. The comparison

between the model predictions and the results derived from a flit level simulator has

verified the accuracy of the model.



Chapter 10

Modeling Differentiated

Services-based Quality of Service

in Wormhole-routed NoCs

Meeting a minimum quality of service (QoS) is necessary for a wide range of performance

sensitive applications and system services to perform their intended tasks successfully.

The performance demands of the application are typically expressed as the need for a

certain bandwidth, a maximum message latency or bounds on jitter. The NoC archi-

tectures may offer QoS as best-effort service, guaranteed service or a combination of

both. This chapter presents an overview of a number of architectures offering QoS sup-

port in the NoC paradigm. The chapter follows by introducing a performance model of

differentiated services-based QoS traffic in wormhole-routed interconnection networks.

10.1 The QoS support in the NoC domain

In the NoC domain QoS is implemented as best-effort service and/or guaranteed service.

This section presents a brief description of each approach and introduces a number of

NoC architectures implementing QoS support.

124
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10.1.1 Best-effort service

Employing best-effort services is a widely used approach to support QoS. In this method

QoS is achieved by relatively prioritizing traffic in networks employing connection-less

communication mechanisms. For each traffic class, the packets are treated differently at

the routers (Per-Hop-Behavior) to e.g. minimize end-to-end delay, jitter or packet loss.

Best-effort services typically utilize the network resources more efficiently as they do not

require resource reservation. However, the major drawback of best-effort QoS is failure

to offer predictability or performance guarantees.

Bolotin et al. [9] , Rostislav et al. [23] and Beigne et al. [22] exploited best-effort service

in NoCs by designing the routers that support QoS based on differentiated services.

QNoC [9] introduces a design process that satisfies the QoS requirements of an on-chip

application at low cost. In the architecture, traffic may belong to four classes of service

namely, signaling, real-time, read/write and block-transfer. Traffic with higher priority

win the competition on using the resources.

Rostislav et al. [23] designed synchronous and asynchronous routers for both single and

multiple service levels and compared their performance. The routers can support pri-

oritized best-effort service. They showed both synchronous and asynchronous routers

provide almost similar throughput. Nevertheless, asynchronous routers require less re-

sources to implement.

Beigne et al. [22] proposed a complete asynchronous NoC architecture which integrates

QoS. Each physical link is shared by two virtual channels. The first one which is dedi-

cated to real-time, low latency traffic has higher priority and can suspend the streams

on the other virtual channel. While the other one is employed to exchange best-effort

traffic.

10.1.2 Guaranteed service

Employing best-effort service is not appropriate in the systems demanding stringent QoS

requirements. Unlike best-effort service, implementing guaranteed service can support

predictability and guarantee in the performance. Reserving the resources to guaran-

tee a level of service may be performed at design time or dynamically at run-time.
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Most architecture designated to support guaranteed service are offering best-effort QoS

to utilize the available bandwidth more efficiently. Implementing a hybrid of best-

effort/guaranteed QoS was first pointed out by Rijpkem et al. [24].

The ı̈¿1
2thereal NoC [14] supports both best-effort and guaranteed QoS. Support for real-

time communication is achieved by providing throughput, latency and jitter guarantees.

In ı̈¿1
2thereal, this is implemented by configuring connections as pipelined time-division

multiplexed circuits over network. Time multiplexing is only possible when the network

routers have a notion of synchronicity which allows slots to be reserved consecutively in

a sequence of routers [8, 67]. Throughput guarantees are given by the number of slot

allocated for a connection. A slot corresponds to a given bandwidth Bi and, therefore,

reserving N slots for a connection results in a total bandwidth of N ×Bi. The latency

bound is given by the waiting time until the reserved slot arrives and the number of

routers between source and destination. Since all network routers implement a common

notion of time in a slot counter, link contention for GT packets is completely avoided

by controlling the time they enter the network using a local slot allocation table. Notice

that slot allocation can be performed statically during initialization. In recent versions,

in order to save area, slot tables have been removed, while this information is provided in

the GT packet header. BE traffic is scheduled to non-reserved, and reserved but unused

slots with a non optimal algorithm based on parallel iterative matching. The logically

separated guaranteed (GT) and best-effort (BE) routers are combined to share link and

data path resources.

In the Nostrum architecture [51], a service of guaranteed bandwidth and latency has

been implemented in addition to the existing service of best-effort packet delivery. The

guaranteed performance is offered via virtual circuits. Virtual circuits are set up semi-

statically in which the route is decided at design time, but the bandwidth is variable at

run-time.

MANGO [70] offers connection-oriented guaranteed service as well as connection-less

best-effort service. MANGO adopts virtual circuits to support guaranteed-services.

Sathe et al.[25] presented an architecture to provide best-effort and soft guaranteed

services. In their approach, using best-effort delivery a circuit is established between

source and destination and is canceled once the communication is over. Although their

approach may utilize resources more efficiently as they are not statistically allocated,



Chapter 10. Modeling QoS-aware traffic 127

the overhead to establish and cancel the connections may not be acceptable in some

applications.

Liang et al. [26] introduced aSoC, a modular communication architecture for on-chip

network interconnects. In their architecture communication between two nodes takes

place via a point-to-point pipelined connections which can be established statically at

design time or dynamically at run-time.

In the architectures exploiting a hybrid of best-effort and guaranteed QoS, the resources

for guaranteed service must be reserved for the worst case scenarios. In such architec-

tures the reserved resources may not be utilized efficiently in periods when there is no

communication takes place. Andreasson et. al. [28] proposed a scheme to more effi-

ciently use the slack-time not used by guaranteed service for improving the quality of

best-effort traffic.

10.2 Communication modeling of differentiated services-

based QoS

The above review of the QoS support in NoCs clearly shows that best-effort service is

implemented in majority of NoCs as the main approach to support QoS or as an ad-

ditional service to guaranteed service. Due to ubiquitous nature of best-effort service

in the NoC architectures offering QoS, this section introduces a model to evaluate the

average message latency in wormhole-routed interconnection networks offering differen-

tiated services-based QoS. The concept of differentiated services (of which the DiffServ

specification [130] is the best known example) is that traffic is divided into classes which

have a different priority. In the simplest case, there are two categories of traffic, e.g.

high priority and best effort.

The model is developed on the following assumptions:

• The basic assumptions defined in Section 8.1.

• Nodes are generating the messages independently and according to a Poisson pro-

cess.
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• Upon creation of a message, it is assigned a class of service cp (1 ≤ p ≤ P ). Where

a message from class cp+1 has priority over a message belonging to class cp.

• The message length is msg flits.

• The network supports differentiated services-based QoS.

The network is modeled as a queuing network, where each link is modeled as a priority

M/G/1 queue. For a priority M/G/1 queue with customers belonging to P classes of

service the average waiting time is [131]

Wp =
W0

(1− σp)(1− σp+1)
(10.1)

W0 =
P∑

i=1

λix2
i

2xi
(10.2)

σp =
P∑

i=p

ρi (10.3)

ρ = λx (10.4)

where λi, xi and x2
i are the arrival rate, the service time and the second moment of the

service time distribution, respectively, for customers belonging to class ci. In the model,

M/G/1 queues are non-preemptive and any arriving customer, regardless of its priority,

is not allowed to interrupt the execution of the current customer. The average time for

the execution of the current customer is called residual time and is denoted by W0.

For an arbitrary node γj in the network, the latency experienced by a message belonging

to class cp may be expressed as

Ljp = wSjp
+ xSjp

+ Dj − 1 (10.5)

where wSjp
and xSjp

are the average waiting and the service time at injection link for

the messages belonging to class cp and Dj is the average distance in terms of the number

of links traversed by the messages leaving node γj .
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Averaging over all nodes yields the average latency for class cp traffic in the network as

Lp =
1
N

∑

j

Ljp =
1
N

∑

j

(wSjp
+ xSjp

+ Dj)− 1 (10.6)

As we modeled each link as an M/G/1 queue, wSjp
will be derived once the mean service

time and its variance are known.

Since in wormhole-routed networks a message typically spans several links at each time,

the service time at each link depends on the waiting and the service time of its subsequent

links. Therefore, to analyze the service time at each link the waiting time and the service

time at all possible successive links are required. i.e.

xin
ip =

∑

j

(wjp + xjp + 1)Pi→j (10.7)

where xjp and wjp represent the service time and the waiting time at link `j , respectively.

And Pi→j denotes the probability that traffic enters link `j after leaving link `i.

To compute the average waiting time at a priority M/G/1 queue, the second moment

of the service time is required. The second moment of the service time can be derived,

once the variance of the service time is known. We define the variance as

V ar = (xj − xj−1)2 (10.8)

where link `j−1 is taken immediately after leaving link `j .

The variance defined above may be adopted to compute the second moment of the

service time which consequently can be used to derive W0 and Wjp using Equations 10.1

and 10.2 as

Wjp =
W0

(1− σp)(1− σp+1)
(10.9)
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W0 =
P∑

i=1

λipx
2
ip

2xip

. (10.10)

As explained in Section 8.3, in wormhole-routed networks, once a link is allocated to

a message, flits of other messages are unable to use the link. This feature reduces the

competing traffic for accessing the subsequent links. In other words, Wjp and wjp are

not equal. The situation is addressed by introducing a blocking probability as

Pbli → j = 1− λin
i

λj
Pi→j (10.11)

where λin
i is the incoming traffic at link `j from link `i, λj is the total traffic rate at link

`j and Pi→j denotes the probability that link `j is traversed after leaving link `i.

Finally, wjp is obtained as the product of Wjp and Pbli→j as

wjp = Wjp .Pbli→j . (10.12)

By combining Equations 10.7 and 10.11 we obtain the service time at an intermediate

link as

xin
ip =

∑

j

((1− λin
i

λj
Pi→j)Wjp + xjp)Pi→j (10.13)

where Wjp is approximated by Equation 10.9 using xjp as the mean service time.

Given that the service time at ejection link is msg cycles, using Equation 10.13, the

service time at all links from the ejection link at destination back to the injection link at

source can be derived. Applying the service time at the injection link to Equation 10.5

and averaging over all nodes will yield the average latency experienced by each class of

traffic in the network.

10.3 Validation

In this section we validate the analytical model by comparing its prediction against

the results derived from a simulator. The basic version of the Quarc NoC presented in
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Part II of the thesis does not support QoS. To verify the model, we have developed a

discrete event simulator of the Quarc NoC supporting differentiated services-based QoS.

The simulator which is developed using OMNET++ [96] improves on the basic Quarc

simulator (Section 5.2.2) by modifying the passive queue and the router. The schematic

of the components in each node is shown in Figure 10.1. The passive queue has eight

queues to store the messages belonging to high and normal traffic corresponding to each

quadrant. The passive queue sends the messages based on their priority and creation

time. Should the high priority queue be not empty, the messages in the high priority

queues are served according to a FIFO policy. Otherwise, the messages in the normal

priority queue are served as a FIFO queue.

Figure 10.1: The components of a sample node in the QoS-aware Quarc architecture.

Similar to the assumptions defined for the model, resources are non-preemptive. While

servicing a message, if other messages try to receive service, the routers record their

information. After the last flit of the current message leaves the router, the router

investigates the messages waiting on the recently released resource. Should the waiting

messages have different priorities, the message with higher priority wins the competition

and the corresponding router or passive queue is notified to start transmission. In

situation where the messages have equal priority, the messages are served according to a

FIFO policy. The routers serve the packets according to their relative priority. Packets

with equal priorities are served as FIFO.

The simulator operates on the assumption defined in Section 5.2.1. Moreover, we assume

that source produces the messages according to a Poisson distribution. A message

generated at the source node has a finite probability 0 ≤ α ≤ 1 of being a high priority

message and probability (1− α) of being normal priority.
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Figure 10.2: Validation of the model against the simulation results for networks of
16 and 32 nodes.

Traffic at each link in the model equals to traffic presented in Section 8.3. The high and

normal traffic rate at each link is proportional to the rate of the high priority generated

at source nodes. The model is compared against the simulation results for numerous

configurations by changing the network size, the message length and the rate of high

priority traffic. Figures 10.2 and 10.3 compare the simulation results against the analysis

for networks having 16, 32, 64 or 128 nodes. The message length can be 16, 32 or 64 flits.

And the high priority traffic, α, may comprise 5%, 10% or 20% of the overall traffic.

Each simulation experiment runs according to the algorithm presented in Section 5.2.3.

In graphs M and α represent the message length and the rate of high priority traffic,

respectively. The priority may be high or normal, which shows whether the graph

presents the comparison for privileged or normal traffic. The horizontal axis in the

figures show the message per cycle per node. While, the vertical axis describes the

average message latency. As can be seen from the figures, the analytical model presents

a good approximation of the network latency in a wide range of configurations.

The analysis also reveals that increasing the high priority traffic rate, α, adversely affects
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the message latency of high priority traffic. That is apparently because increasing the

rate of high priority traffic raises the competition between the high priority messages,

which in turn reduces the effect of traffic prioritization.

Our findings also suggests that regardless of the size of network, as long as traffic load is

not high, there is no appreciable difference between the variance of the message latency

corresponding to high and low priority traffic. The difference between the variance of

the two is widening as the network exchanges more load.

Figure 10.3: Validation of the model against the simulation results for networks of
64 and 128 nodes.

10.4 Conclusion

The applications running on a NoC-based SoC typically must meet a minimum perfor-

mance to successfully perform their intended tasks. Employing differentiated services is

a widely used approach to support QoS by relatively prioritizing traffic in the networks

employing connection-less communication mechanisms. This chapter presented a novel

performance model for predicting differentiated services-based QoS in wormhole-routed
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interconnection networks. The comparison with the results produced by a flit-level sim-

ulator showed that the model predicts the latency of high and normal traffic with a good

degree of accuracy in a wide range of configuration settings.



Chapter 11

An Analytical Model of

Broadcast in QoS-Aware

Wormhole-Routed NoCs

The previous two chapters presented two models for predicting message latency of mul-

ticast traffic and differentiated services-based QoS. Those two models are an improve-

ment to earlier modeling of unicast communication in wormhole-routed interconnection

networks. However, traffic at a network is typically a mix of unicast and collective

communication operations, where each communication has its own attributes in terms

of performance demands. Built on the models presented in the last two chapters, this

chapter introduces a model to evaluate the average latency of broadcast communica-

tion in multi-port wormhole-routed interconnection networks supporting differentiated

services-based QoS.

11.1 Modeling QoS-aware broadcast communication

The model adopts the following assumptions:

• The basic assumption presented in Section 8.1.

• There are two types of messages in the network: unicast and broadcast. A broad-

cast message is delivered to all nodes in network. A unicast message is sent to
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other nodes in the network with equal probability. When a message is generated

at a source node, it has a finite probability 0 ≤ β ≤ 1 of being a broadcast message

and probability (1− β) of being unicast.

• Nodes generate traffic independently of each other, according to a Poisson process.

• The network adopts multi-port routers scheme.

• The network supports differentiated services-based QoS.

The model combines the features of the previous models in Chapters 9 and 10, therefore,

it shares a significant similarities with them. To avoid repeating the contents of those

chapters, we only present a guideline of how to merge those two analytical models.

Similar to the analysis of multicast communication, the prediction of QoS-aware broad-

cast is performed at two stages. At the the first stage, the model adopts the analysis of

differentiated services-based QoS presented in Chapter 10 to obtain the total of the av-

erage waiting times experienced by a message belonging to a particular class of service.

This is the total of the waiting times at all intermediate hops from source to destination.

The second stage relies on the analysis presented in Section 9.1 to compute the average

latency of broadcast traffic at each node, using the results of the first stage. Averaging

over all nodes in the network yields the average broadcast communication latency.

11.2 Validation

To validate the analysis presented in this chapter we apply the model to a QoS-aware

Quarc NoC simulator in which broadcast traffic has priority over unicast. Of course, the

model is still valid if unicast is given higher priority, or both unicast and broadcast are

assigned an equal priority.

To validate the analytical model we have developed a discrete event simulator of the

Quarc NoC supporting differentiated services-based QoS using OMNET++ [96]. The

simulator improves on the basic Quarc simulator (Section 5.2.2) by applying modifica-

tions to the passive queue and the router.
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Figure 11.1: The components of a sample node in the architecture.

The schematic of the components of the enhanced simulator are depicted in Figure

11.1. The passive queue has a queue to store the broadcast messages and four queues

corresponding to each injection link for unicast traffic. The passive queue sends messages

based on their priority and creation time. If the broadcast message queue is not empty,

messages in the broadcast queue are served according to a FIFO policy. Otherwise,

the unicast messages at each rim are served independently as a FIFO queue. Also, the

router implements differentiated services-based QoS.

The simulator operates on the assumption defined in Section 5.2.1. Moreover we assume

that source produces messages according to a Poisson distribution.

The model is compared against the simulation results for numerous configurations by

changing the network size, message length and the rate of broadcast traffic. Figure 11.2

compares the simulation results against the analysis for networks having 16, 32, 48, 64

or 128 nodes. The message length can be 16, 32 or 64 flits. And broadcast traffic may

comprise 3%, 5% or 10% of the total traffic. Each simulation experiment runs according

to the algorithm presented in Section 5.2.3.

In graphs, N , M and β represent the number of nodes, message length and the rate

of broadcast traffic, respectively. The horizontal axis in the figures shows the message

rate per cycle per node, while the vertical axis describes the average broadcast latency.

As can be seen from the the figures, the analytical model predicts QoS-aware broadcast

communication with a good degree of accuracy.
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Figure 11.2: Comparison of the analytical model against the simulation results.

11.3 Conclusion

The chapter demonstrated that the analytical models presented in previous chapters can

be combined to predict more sophisticated traffic. By adopting the models to compute

multicast and QoS-aware traffic, the chapter has presented a model to predict broad-

cast communication in all-port wormhole-routed interconnection networks supporting

differentiated services-based QoS. The model predictions have been extensively verified

against the results derived from a simulator.



Part V

Conclusion and Trends for

Further Research
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Chapter 12

Conclusion and Future Work

The traditional SoC communication mediums such as buses and point-to-point connec-

tions are being stretched to their limits. Networks on chip (NoCs) are regarded as

the most promising communication architecture addressing the design and technological

challenges of communication in future large SoCs. NoCs offer a scalable, structured,

power efficient and reliable communication medium.

Multicast communication, the most widely-used collective communication operation,

typically forms a part of on-chip traffic. By leveraging the shared nature of the medium,

buses have been highly efficient in performing such an operation in traditional SoCs.

The segmented nature of NoCs, however, does not allow multicast to be as efficient as

in buses. Due to similarities between NoCs and interconnection networks for parallel

computers, the rich literature on the design of the platforms performing efficient multi-

cast communication at system-level may seem to be a panacea. However, the difference

between the cost structure of the system-level networks and NoCs inhibits employing

the majority of the solutions in the former to be applied to the latter. As such, the NoC

architectures perform poorly in delivering multicast traffic.

The novel Quarc NoC is proposed to offer a highly efficient multicast communication in

the NoC realm. The thesis has presented the design and implementation of the building

blocks of the Quarc NoC, compared the architecture against a number of existing archi-

tectures and proposed novel analytical models to predict the average message latency of

complicated traffic patterns.
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12.1 Contributions of the thesis

The thesis contributions are classified in three categories, namely, architecture, perfor-

mance modeling and performance/cost comparison. The most outstanding contribution

of the thesis is indeed the Quarc NoC. The Quarc NoC improves on the Spidergon

STNoC; targeting an area-efficient, low power, high performance implementation. The

Quarc NoC balances traffic on network links, and offers a highly efficient multicast com-

munication. The Quarc NoC employs deterministic routing and wormhole switching.

The unique topological properties of the Quarc NoC enables adopting a simple packet

format for all types of traffic. Interestingly, in the Quarc NoC the path-based and

tree-based graphs corresponding to multicast communication are identical.

The Quarc NoC owes its high performance to a large extent to the ability of the network

interface which leverages the unique topological attributes of the Quarc architecture.

The Quarc network interface is developed in a modular approach in order to allow easy

upgrade and customization of the network interface. In the Quarc network interface,

the essential services are performed by the kernel module, while, the instance-specific

services are delegated to the shell modules. Following such a modular approach, the

Quarc NoC may communicate to any IP with proprietary or emerging communication

protocols. Moreover, it facilitates enriching the network interface with new functionality

as desired.

To evaluate the performance and cost of the Quarc NoC, the thesis has presented a cost

and performance comparison of the Quarc NoC with the Spidergon STNoC and a mesh-

based NoC. The Spidergon STNoC has been selected due to the similarities between the

architecture and the Quarc NoC, while, the mesh-based NoC is employed as a reference

NoC because of the popularity of the topology.

The comparison between the Spidergon STNoC and the Quarc NoC revealed that the

Quarc NoC outperforms the Spidergon STNoC significantly, while both architectures

can be realized at almost the same cost. The simulation results have shown that the

performance of the Quarc NoC is superior to that of the Spidergon architecture in all

configuration settings. The most striking performance gain is achieved in the presence of

multicast traffic. In the presence of both unicast and broadcast traffic, our experiments
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revealed that, on average, the Quarc NoC delivers unicast and broadcast traffic 2 times

and 10 times faster than the Spidergon STNoC does.

The FPGA implementation of the Quarc and the Spidergon routers demonstrated that

the Quarc router is smaller than the Spidergon router. The comparison between the

network interfaces in the architectures showed that in the extreme case, where every

node may generate broadcast traffic, the Quarc network interface is slightly larger than

the Spidergon network interface.

To compare the Quarc NoC against a mesh-based NoC architecture we have imple-

mented a most performant broadcast routing algorithm for the mesh-based NoC. The

FPGA implementation of the router and the network interface in both architectures were

prepared to compare the cost of the two architectures. The implementation carried out

for architectures with numerous configuration settings in terms of the flit width and the

number of virtual channels. The cost comparison showed that the network interface in

the mesh-based NoC can be realized using less resources compared to the Quarc network

interface. However, the Quarc router implementation requires less resources compared

to the router in a mesh-based NoC. Nonetheless, the overall cost of implementing the

router and network interface in both architectures are almost equal.

The simulation experiments demonstrated that the Quarc NoC significantly outperforms

the mesh-based NoC in performing broadcast communication, while, the Quarc and

mesh-based NoCs deliver unicast messages almost with equal performance. Moreover,

the analysis of the results revealed that the Quarc NoC is more tolerant to the presence

of multicast traffic and responds more effectively to the additional virtual channels.

The thesis demonstrated that analytical modeling based on queuing networks serve as

a fast and cost-efficient technique to evaluate performance of interconnection networks.

The thesis presented novel analytical models to predict multicast and differentiated

services-based QoS traffic. Both models are the first of their kinds. The multicast

model computes the message latency of multicast communication in all-port wormhole-

routed interconnection networks. The model has been developed using queuing theory

and the stochastic properties of the exponentially distributed random variables. The

model predicts the average message latency of multicast communication, while network

exchanges both unicast and multicast traffic.
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The analytical evaluation of differentiated services-based QoS has been performed by

modeling the network as a queuing network, where each queue is an M/G/1 priority

queue. By combining the models predicting multicast and differentiated services-based

QoS, the thesis has developed an analytical model to compute the average message la-

tency of broadcast communication in QoS-aware wormhole-routed interconnection net-

works.

All three models have been applied to the Quarc NoC in a wide range of configuration

settings. The comparison between the model predictions and the results derived from a

flit level simulator has proved that the models predict the average message latency with

an excellent degree of accuracy.

12.2 Direction for future work

The thesis covered the basic elements of the Quarc NoC. There are several interesting

issues and open problems that require further investigation. A selection of such problems

is listed below.

In the basic version of the Quarc NoC, no provision for QoS is implemented. Our aim is

to enhance the router and the network interface to meet the performance requirements

of the applications statically at design time and dynamically at run-time.

In the current version of the Quarc NoC, the flow control between the adjacent routers

is governed by a link-level on/off protocol; and there is no mechanism to offer end-to-

end flow control. Addressing the end-to-end flow control guarantees that packets are

not experiencing delays at network interface of the destination nodes, thereby, reducing

the network congestion. End-to-end flow control is more crucial in wormhole-routed

networks due to adverse effect of the blocked worms on the flow of other worms.

In communication centric SoC development, low power consumption is a paramount

feature of the communication architecture. The Quarc NoC is targeting a low power

architecture, however, this has to be measured precisely. We are interested in measur-

ing the power consumption in the Quarc NoC and potentially improve the the power

consumption of the architecture.
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To serve as a successful interconnection in GALS-based SoC paradigm, the Quarc must

perform clock-domain-crossing efficiently. Implementing a CDC shell module in the

Quarc network interface is another objective we pursue. In particular we are interested

in investigating the feasibility of merging the area required by CDC and the multicast

module in order to customize the buffer utilization.

We are also interested in implementing services that are built on top of multicast com-

munication, an outstanding examples of such services is cache coherency.

The thesis demonstrated the performance of the Quarc NoC by comparisons against

the Spidergon and the mesh-based NoCs. Since the purpose of the thesis has been

an introduction to the Quarc NoC, we mainly focused at network level; consequently

the evaluations have been carried out based on rather theoretical traffic distributions

without considering realistic application level traffic. For a future work we are interested

to evaluate the performance of the Quarc NoC, where it serves as an interconnection

network for SoCs exchanging real-world traffic.
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