
THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Dual Data Rate Network-on-Chip Architectures

AHSEN EJAZ

Division of Computer Engineering
Department of Computer Science & Engineering

Chalmers University of Technology
Göteborg, Sweden, 2021

Dual Data Rate Network-on-Chip Architectures

AHSEN EJAZ

Advisor: Ioannis Sourdis, Professor at Chalmers University of Technology
Co-Advisor: Vassilios Papaefstathiou, Researcher at FORTH-ICS, Greece

Examiner: Per Stenström, Professor at Chalmers University of Technology

Thesis Opponent:
Tushar Krishna, Assistant Professor at Georgia Institute of Technology, USA

Grading Committee:
Giorgos Dimitrakopoulos, Associate Professor at Democritus Univ. of Thrace, Greece
Boris Grot, Associate Professor at University of Edinburgh, UK
Jens Sparsø, Professor at Technical University of Denmark, Denmark
Lars Svensson, Senior Lecturer at Chalmers Univ. of Technology (deputy member)

Copyright ©2021 Ahsen Ejaz
except where otherwise stated.
All rights reserved.

ISBN: 978-91-7905-497-7
Doktorsavhandlingar vid Chalmers tekniska högskola.
Series number: 4964
ISSN: 0346-718X
Technical report number: 197D

Department of Computer Science & Engineering
Division of Computer Engineering
Chalmers University of Technology
Göteborg, Sweden

This thesis has been prepared using LATEX.
Printed by Chalmers Reproservice,
Göteborg, Sweden 2021.

ii

Abstract
Networks-on-Chip (NoCs) are becoming increasing important for the performance
of modern multi-core systems-on-chip. The performance of current NoCs is limited,
among others, by two factors: their limited clock frequency and long router pipeline.
The clock frequency of a network defines the limits of its saturation throughput.
However, for high throughput routers, clock is constrained by the control logic (for
virtual channel and switch allocation) whereas the datapath (crossbar switch and links)
possesses significant slack. This slack in the datapath wastes network throughput
potential. Secondly, routers require flits to go through a large number of pipeline stages
increasing packet latency at low traffic loads. These stages include router resource
allocation, switch traversal (ST) and link traversal (LT). The allocation stages are used
to manage contention among flits attempting to simultaneously access switch and
links, and the ST stage is needed to change the routing dimension. In some cases,
these stages are not needed and then requiring flits to go through them increases packet
latency. The aim of this thesis is to improve NoC performance, in terms of network
throughput, by removing the slack in the router datapath, and in terms of average
packet latency, by enabling incoming flits to bypass, when possible, allocation and ST
stages. More precisely, this thesis introduces Dual Data-Rate (DDR) NoC architectures
which exploit the slack present in the NoC datapath to operate it at DDR. This requires
a clock with period twice the datapath delay and removes the control logic from the
critical path. DDR datapaths enable throughput higher than existing single data-rate
(SDR) networks where the clock period is defined by the control logic. Additionally,
this thesis supplements DDR NoC architectures with varying levels of pipeline stage
bypassing capabilities to reduce low-load packet latency. In order to avoid complex
logic required for bypassing from all inputs to all outputs, this thesis implements and
evaluates a simplified bypassing approach. DDR NoC routers support bypassing of
the allocation stage for flits propagating an in-network straight hop (i.e. East to West,
North to South and vice versa) and when entering or exiting the network. Disabling
bypassing during XY-turns limits its benefits, but, for most routing algorithms under
low traffic loads, flits encounter at most one XY-turn on their way to the destination.
Bypassing allocation stage enables incoming flits to directly initiate ST, when required
conditions are met, and propagate at one cycle per hop. Furthermore, DDR NoC
routers allow flits to bypass the ST stage when propagating a straight hop from the
head of a specific input VC. Restricting ST bypassing from a specific VC further
simplifies check logic to have clock period defined by datapath delays. Bypassing ST
requires dedicated bypass paths from non-local input ports to opposite output ports.
It enables flits to propagate half a cycle per hop. This thesis shows that compared
to current state-of-the-art SDR NoCs, operating router’s datapath at DDR improves
throughput by up to 20%. Adding to a DDR NoC an allocation bypassing mechanism
for straight hops reduces its packet latency by up to 45%, while maintaining the
DDR throughput advantage. Enhancing allocation bypassing to include flits entering
and exiting the network further reduces latency by another 24%. Finally, adding ST
bypassing further reduces latency by another 32%. Overall, DDR NoCs offer up to
40% lower latency and about 20% higher throughput compared to the SDR networks.

Keywords
Network-on-Chip, On-Chip Interconnect, System-on-Chip, Dual Data-Rate, Multipro-
cessor System-on-Chip, Chip Multiprocessors

Acknowledgment

First of all, I would like to express my gratitude to my PhD supervisor Ioannis Sourdis
for giving me the opportunity to pursue a PhD degree under his supervision. Ioannis
has been very patient and supportive during my research and has kept me motivated
since I started on this path to a PhD degree.

I am also grateful to my co-supervisor, Vassilis Papaefstathiou, for his valuable
comments and feedback based on his deep insight of the field, during our meetings.

I would also like to thank my PhD research examiner, Per Stenström, and PhD
follow-up committee members Jan Jonsson, Agneta Nilsson, Wolfgang Ahrendt and
Nir Piterman, for their constructive feedback and support over the years.

I am also very grateful to Lars Svensson for his useful critiques of my research
and for his support with setting up the physical design tools I needed.

Place-and-Route of the networks I designed had been a daunting and time consum-
ing task, and it would have taken much longer had it not been for the useful impromptu
discussions with Kevin Cushon, Christoffer Fougstedt, Erik Ryman and Victor Åberg.
Thanks guys.

I would also like to thank the administrative staff of the department, Eva Axels-
son, Monica Månhammar, Marianne Pleen-Schreiber, Nadja Johansson, Lars Norén,
Michael Morin and Rune Ljungbjörn for their help and support.

I am also thankful to my colleagues in the Department of Computer Science and
Engineering, Muhammad Waqar Azhar, Evangelos Vasilakis, Prajith Ramakrishnan
Geethakumari, Albin Eldstal-Damlin, Stefano Ribes, Mehrzad Nejat, Petros Voudouris,
Bhavishya Goel, Madhavan Manivannan and Pedro Petersen Moura Trancoso for our
various discussions and for creating a positive work environment.

I would also like to thank my office mates over the long years, Alirad Malek,
Stavros Tzilis and Piyumal Ranawaka for keeping me motivated and entertained.

This work has been partly funded by EUROSERVER project (grant agreement
610456), EuroLab-4-HPC project (grant agreement 371610) and Horizon 2020 Pro-
gramme ECOSCALE project (grant agreement 671632).

Finally, none of this would have been possible without the unfaltering support,
encouragement and prayers of my parents, my siblings and my wife. I am really
grateful to have them by my side.

Ahsen Ejaz
Göteborg, May 2021

v

List of Publications

This thesis is based on the following publications:

1. Ahsen Ejaz, Vassilios Papaefstathiou and Ioannis Sourdis, “DDRNoC: Dual
Data-Rate Network-on-Chip”, ACM Transactions on Architecture and Code
Optimization (TACO), vol. 15, no. 2, June 2018.

2. Ahsen Ejaz, Vassilios Papaefstathiou and Ioannis Sourdis, “FreewayNoC: a
DDR NoC with Pipeline Bypassing”, IEEE/ACM International Symposium on
Networks-on-Chip, 2018.

3. Ahsen Ejaz, Vassilios Papaefstathiou and Ioannis Sourdis, “HighwayNoC:
Approaching Ideal NoC Performance With Dual Data Rate Routers”, IEEE/ACM
Transactions on Networking, vol. 29, no. 1, pp. 318-331, 2021.

4. Ahsen Ejaz and Ioannis Sourdis, “FastTrackNoC: A NoC with FastTrack
Router Datapaths”, Under submission, 2021.

vii

viii

Contents

Abstract iii

Acknowledgement v

List of Publications vii

1 Introduction 1
1.1 Problem Statement . 2

1.1.1 Router Control Logic Limits NoC Throughput 2
1.1.2 Deep Router Pipeline Increases Packet Latency 3

1.2 Thesis Objectives . 3
1.2.1 Improving NoC Throughput 3

1.2.1.1 Related Work . 3
1.2.1.2 Objective 1: Increase Network Throughput with

DDR Datapath . 4
1.2.2 Reducing NoC Packet Latency 5

1.2.2.1 Related Work . 6
1.2.2.2 Objective 2: Reduce Packet Latency with Control

Forwarding in a DDR Router 6
1.2.2.3 Objective 3: Reduce Packet Latency with Alloca-

tion Bypassing in a DDR Router 6
1.2.2.4 Objective 4: Reduce Packet Latency with ST By-

passing . 8
1.3 Thesis Outline . 8

2 Related Work 9
2.1 Increasing NoC Throughput . 9
2.2 Reducing NoC Packet Latency . 11
2.3 Summary . 14

3 The DDRNoC Architecture 15
3.1 Router Datapath . 15
3.2 Timing . 17
3.3 Zero-Load Latency Analysis . 19
3.4 DDRNoC Control . 20

3.4.1 Virtual Channel Allocation 20
3.4.2 Switch Allocation . 20
3.4.3 Flow Control and Minimum Buffer Size 21

ix

x CONTENTS

3.5 Discussion . 22
3.6 Summary . 22

4 The FreewayNoC Architecture 23
4.1 Router Datapath . 24

4.1.1 DDR Flit Datapath . 24
4.1.2 Datapath of Forwarded Control signals 25

4.2 Timing Example . 25
4.3 Zero-Load Latency Analysis . 26
4.4 Router Control . 27

4.4.1 Combined VC and Switch Allocation 27
4.4.2 Allocation Bypassing . 29
4.4.3 Next Route Computation . 30
4.4.4 Flow Control and Minimum Buffer Size 30
4.4.5 Control Path Analysis . 31

4.5 Summary . 31

5 The HighwayNoC Architecture 33
5.1 Router Datapath . 34

5.1.1 DDR Flit Datapath . 34
5.1.2 Datapath of Forwarded Control Bits 35

5.2 Timing . 37
5.3 Zero-Load Latency Analysis . 38
5.4 Router Control . 39

5.4.1 Combined VC and Switch Allocation 39
5.4.2 Allocation Bypassing . 41
5.4.3 Next Route Computation . 43
5.4.4 Flow Control and Minimum Buffer Size 44
5.4.5 Control Path Analysis . 44

5.5 Summary . 45

6 The FastTrackNoC Architecture 47
6.1 Router Datapath . 48

6.1.1 DDR Flit Datapath . 49
6.1.2 Datapath of Forwarded Control Signals 50

6.2 Router Control . 52
6.2.1 Combined VC and Switch Allocation 52
6.2.2 Allocation Bypassing Controller 53
6.2.3 FastTrack Controller . 53
6.2.4 Next Route Computation . 55
6.2.5 Flow Control and Minimum Buffer Size 55

6.3 Zero-Load Latency Analysis . 56
6.4 Timing Example . 57
6.5 Summary . 59

CONTENTS xi

7 Evaluation 61
7.1 Experimental Setup . 61
7.2 Implementation Results . 63
7.3 Performance Evaluation . 65

7.3.1 Performance with Synthetic Traffic 65
7.3.2 Performance Comparison against Networks with Longer

Links . 66
7.3.3 Performance Comparison against Networks with DDR

Links . 74
7.3.4 Energy Efficiency . 74
7.3.5 Trading DDRNoC Performance Advantage for Energy

Efficiency . 77
7.3.6 Evaluation with Application Driven Traffic 79
7.3.7 Measuring the Impact of DDRNoC Throughput Gain on Sys-

tem Performance . 80
7.4 Summary . 82

8 Conclusions 83
8.1 Summary . 83
8.2 Contributions . 84
8.3 Future Work . 86

Bibliography 89

xii CONTENTS

Chapter 1

Introduction

Chip Multiprocessors (CMP) are one of the most promising solutions for supporting
the continuous need for single chip performance improvement. Shrinking transistor ge-
ometries still allow more cores to be integrated on a die [1–3]. The increasing number
of cores as well as the increasingly complex workloads place stringent requirements
over the underlying communication fabric. On one hand, applications that exhibit
small transfers at low loads are often more sensitive to network latency [4]. On the
other hand, systems that run concurrent scale-out applications are more demanding,
push the network close to its saturation point, and are more sensitive to network
throughput [4, 5]. Moreover, power constraints prevent chips from fully utilizing all
these cores at their maximum performance potential [6]. The on-chip interconnection
network is a critical component for power efficiency as well [7] since roughly a sixth
of the available chip power budget, if not more, goes to its interconnects [8–14]. As a
consequence, the design of high-performance and low-power networks-on-chip (NoCs)
is essential for many-core scaling.

In the past decades, NoC designs have improved their performance substantially,
both in terms of throughput and in terms of latency.

Network throughput has increased with the use of better topologies [15] and
multiple sub-networks [16,17] as well as with improvements in allocation [18]. Higher
throughput is also achieved by splitting switch traversal (ST) and link traversal (LT)
into two pipeline stages. Currently, NoCs require complex control logic to implement
various allocation schemes which allocate available network resources to propagating
packets and flits. For high throughput networks, the delay of their control is longer
than the datapath, which then leads to define the NoC clock period [18–21]. The
datapath in such a case possesses some slack, which essentially wastes bandwidth.
Compared to an ideal network which would operate at a clock rate defined only by the
datapath delay, current 2D-mesh NoC architectures with virtual channel (VC) flow
control still offer lower throughput. This is because an ideal network would deliver
more packets per node as a consequence of improved datapath utilization achieved
by removing the slack present in the datapath. Higher network throughput obtained
from increased datapath utilization would also improve the performance of the entire
system.

Furthermore, packet latency has previously been reduced with improvements in the
network topology [22], the routing algorithm [23] and the router architecture [24, 25].
In theory, the latency for a single hop, i.e., crossing a tile, can be as short as the (register

1

2 CHAPTER 1. INTRODUCTION

to register) delay of a link that traverses the tile dimension. Some existing networks
such as single-cycle multi-hop routers [26], routers with express links [22, 27], or
routerless rings [28] offer low latency, but sacrifice substantially their throughput.
Current high throughput NoC routers have reduced their minimum hop latency to the
time spent for ST + LT [13, 29, 30]. This is achieved by a combination of techniques,
such as precomputed routing [24], speculative switch allocation (SA) [25], lookahead
control signalling [13, 29], and allocation bypassing [13, 30]. Then, considering that
ST and LT are pipelined and their delays are split evenly, the minimum hop latency of
current NoC routers [30] is roughly twice the above theoretical minimum, i.e. 2×LT.

This introductory Chapter provides a brief overview of the work presented in this
thesis. The remainder of this Chapter is organized as follows: Section 1.1 presents the
main problem statement of this research. Section 1.2 discusses the key objectives of
this thesis.

1.1 Problem Statement

A NoC router has two sets of components: router datapath and control logic. Router
datapath is composed of input/output link wires, VC buffers, crossbar and output
registers. It is used to either store flits in NoC routers due to contention or unavailability
of required resources, or to move them forward through the network towards their
destination. The control logic, on the other hand, is responsible for managing the flow
of flits propagating through the network by allocating router datapath resources to
them. It also resolves contention among flits competing to use shared router resources
at the same time. It comprises next route computation (NRC) logic, VC allocators (VA)
and switch allocators (SA). In order to increase network clock frequency, the control
logic and the datapath of NoC routers are divided into smaller and faster pipeline
stages. The delay of the control stages is longer than the datapath stages because of
greater complexity of allocators. This leads to an imbalance in router pipeline which
limits network’s clock frequency and prevents it from achieving throughput close to
an ideal network with a balanced router pipeline. Furthermore, a flit must go through
many pipeline stages to traverse a router. Traversing pipeline stages when they are not
needed delays packets and increases average packet latency unnecessarily. These two
inefficiencies are further discussed below.

1.1.1 Router Control Logic Limits NoC Throughput

As shown in literature and confirmed by our experiments, the critical path of existing
2D-mesh routers with multiple VCs, is in its control logic [18, 19, 21, 24]. More
specifically, the clock period of a typical 3-stage (NRC/VA/SA, switch traversal
(ST), link traversal (LT)) router [24] is dictated by the VA/SA stage of the router
pipeline. Even for one of the fastest state-of-the-art NoC routers with VC-flow control,
ShortPath [30], a significant fraction (about 20%) of the clock period is reserved for
router control. Consequently, the datapath possesses considerable slack and is used
only for a fraction of the clock cycle to forward the flit and remains idle otherwise.
This reduces network datapath utilization, wastes link bandwidth and hinders the
NoC from achieving its maximum performance potential by limiting its saturation
throughput and increasing packet latency.

1.2. THESIS OBJECTIVES 3

1.1.2 Deep Router Pipeline Increases Packet Latency
Conventional NoC routers have three pipeline stages: (i) VA/SA, (ii) ST and (ii) LT, but
going through all these stages is not always necessary. For example, the VA/SA stage,
which allocates switch resources to flits, is not needed in the absence of competing flits
and can be bypassed. Similarly, ST stage is needed for changing the routing dimension
but it could be bypassed when propagating in a single dimension. Many previous NoC
architectures allow incoming flits to bypass the SA stage and save a clock cycle per
hop [13, 29, 30]. These networks, however, do not allow flits to bypass the ST stage,
which could further reduce packet latency.

1.2 Thesis Objectives
In this thesis, we target the slack in the datapath as well as long pipeline of NoC
routers. VC based 2D-mesh NoC architectures are targeted aiming to increase NoC
datapath utilization and to avoid delays caused by deep router pipeline. We aim at
designing a NoC router architecture capable of achieving throughput defined solely
by the network datapath delays and minimum hop latency close to the LT delay. The
implications of such a network on throughput and latency are presented below along
with a brief description of related works.

1.2.1 Improving NoC Throughput
One of the factors limiting the throughput of high performance single data-rate (SDR)
networks is the under-utilization of its datapath during a clock cycle. It is caused by
an imbalance in the datapath and the control logic path delays of SDR NoC routers, as
shown in Figure 1.1. This imbalance exists because the complex allocation schemes
employed to control these routers are substantially slower than the datapath. Then the
clock period of the resulting NoC router is longer than the datapath delay and leads
to datapath under-utilization during the cycle. We analyze the throughput of one of
the fastest state-of-the-art SDR NoC architectures, called the ShortPath network [30]
and compare it to the throughput of an ideal (ShortPath) network with clock period
defined purely by datapath delays. The results for 32×32 2D-mesh networks with
uniform random traffic of 1 and 5 flit packets, presented in Figure 1.2, indicate about
20% throughput gap between the ShortPath network operated at its maximum clock
frequency versus the clock frequency defined by its datapath delays. This is because
clock period for ShortPath routers is shared by both its datapath and control logic
making it about 20% longer than the datapath delays.

1.2.1.1 Related Work

Existing NoC architectures attempt to either reduce or exploit the imbalance between
the router datapath and control aiming to improve performance. Many architectural
techniques try to simplify VA and SA to reduce allocation complexity and thereby the
router critical path delay [13, 30]. Others employ low level implementation techniques
like time stealing (or retiming), currently supported by CAD tools, to balance the
pipeline of a router and have a clock period equal to the average delay of all router
stages [20]. Nevertheless, for all these techniques, the control logic either ends up
with a delay larger than the datapath delay or it adds to the datapath delay causing a

4 CHAPTER 1. INTRODUCTION

Figure 1.1: For a conventional SDR network, the clock period is completely (or partly)
determined by the control logic. The DDR network extends the clock period to twice
the datapath delay, implements control logic capable of allocating datapath resources
to two flits per cycle per port and also enables the datapath (ST and LT) to propagate
two flits per cycle. The clock period is now defined only by the datapath delays. This
improves datapath utilization and enhances network throughput.

single clock cycle to be sequentially shared by a part of both the control logic and the
datapath. Both these cases result in a router critical path which includes some control
logic, require a clock with a period larger than the datapath delay and lead to NoC
datapath under-utilization. The router architecture we present in this thesis minimizes
the share of the control logic in the network clock period by using DDR datapaths.

In the past, NoC research community has proposed router architectures which
employ DDR flit traversal but only in parts of a NoC. Such NoC routers either use
double-pumped crossbars [9] or DDR links [17, 31, 32]. These designs employ DDR
over a part of the router’s datapath to improve either area, power or performance but
they do not eliminate the slack in the router datapath, so they still allow its under-
utilization. Contrary to these works, our approach increases network throughput by
enabling DDR flit propagation over all parts of the router datapath to route flits at a
rate determined by the datapath delays rather than by the control logic delays.

1.2.1.2 Objective 1: Increase Network Throughput with DDR Datapath

The first objective of this thesis is to improve NoC throughput by removing the slack
present in the router’s datapath and having its clock frequency defined by datapath
delays. Figure 1.2 shows the targeted gap in the throughput of ShortPath [30], one
of the fastest SDR NoCs, when operated at its maximum clock frequency versus the
clock frequency defined solely by its datapath delays. In order to cover this throughput
gap, this thesis proposes the DDRNoC architecture, presented in Chapter 3, which
operates the router datapath at DDR allowing two flits to propagate in a single cycle as
shown in Figure 1.1. Contrary to current SDR routers which have clock period defined
by slow control logic, the clock period of DDRNoC is equal to twice the delay of the

1.2. THESIS OBJECTIVES 5

Figure 1.2: Throughput and latency of one of the fastest SDR networks, called the
ShortPath network [30], is presented in comparison to the ideal network throughput
and latency. Network size of 32×32 is considered with uniform random traffic of
1 and 5 flit packets. Ideal throughput is the saturation throughput of the ShortPath
network when operated at a clock frequency defined solely by the datapath (ST and
LT) delays. Ideal latency is for a (pipelined) direct connection between the source
and the destination nodes, separated by a hop distance equal to the average hop
count with uniform random traffic in a 32×32 2D-mesh network. The link for this
direct connection is pipelined considering tile dimensions similar to ShortPath and
it considers a packet containing 3 flits. All networks are operated at their maximum
clock frequency.

slowest datapath stage (2×max(ST,LT)). DDR transmission of flits in the network
ensures that the datapath can potentially be utilized for the complete duration of a
cycle, serving a flit during both high and low clock phases. For a balanced router
datapath, where the ST and LT delays are almost the same, this removes the slack from
the router datapath and shifts it to the control logic as shown in Figure 1.1. DDRNoC
uses this slack to modify the SA of the router to allocate input and output ports of the
crossbar switch to up to two flits in a clock cycle. It is important to note that whereas
the datapath of the DDRNoC (crossbar and link) can be used twice in a single cycle,
the control logic (VA and SA) uses a complete cycle to make allocation decisions. The
logic delay of VA and SA is less than twice the delay of the longest datapath stage (ST
or LT), so the NoC routers can operate at a rate defined by datapath delays and achieve
higher throughput.

1.2.2 Reducing NoC Packet Latency

Although the DDR traversal of flits over the NoC datapath significantly improves the
throughput of the network compared to SDR networks, the latency of packets in the
network suffers because the network operates at a lower clock frequency (although
at DDR). In order to improve packet latency this thesis supplements the DDR flit
traversal in a router with techniques that reduce average packet latency.

6 CHAPTER 1. INTRODUCTION

1.2.2.1 Related Work

On the packet latency front, previous NoC designs use control forwarding (also
called lookahead signaling) to inform the downstream router of incoming flits one
clock cycle earlier. This enables the downstream router to complete VA and SA for
incoming flits before their arrival [13, 33, 34], effectively hiding the cycle required for
these allocation stages for each hop. Moreover, networks which allow flits to bypass
allocation stages in the absence of contention, usually under low network load, have
also been proposed [29, 30, 34]. These networks enable incoming flits to bypass the
allocation stages when no competing requests exist. We analyze the performance of
the ShortPath network [30], one of the fastest SDR networks which enables incoming
flits to bypass allocation stages, when required conditions are met, and compare its
average packet latency to that of an ideal pipelined connection between source and
destination nodes. The results, presented in Figure 1.2, demonstrate that ShortPath
has 3.3× higher packet latency compared to the ideal at low loads. This is because
of two reasons: (i) all flits must spend at least 2 cycles per hop to go through ST and
LT stages and (ii) clock period of the ShortPath network is about 20% longer than its
ST delay which not only increases packet latency but also wastes datapath bandwidth.
Our aim is to reduce the low-load packet latency gap by utilizing control forwarding
and bypassing both SA and ST stages when possible. We analyze the application of
these techniques in routers where both the control and the datapath allow flits to be
routed at DDR. Moreover, we implement these techniques while ensuring that the
critical path remains with in the datapath of the router.

1.2.2.2 Objective 2: Reduce Packet Latency with Control Forwarding in a
DDR Router

The second objective of this thesis is to implement control forwarding in DDR NoC
routers, to reduce packet latency. Control forwarding is used to transmit and register
control signals at the downstream router one cycle before their corresponding flits
are received. This enables the downstream router to initiate VA/SA in advance and
to prepare the input VC registers to register the (up to) two incoming flits at the
proper clock edge (negative clock edge for the flit propagating link during the high
clock phase and vice versa). By the time the (up to) two incoming flits (per input
port) are registered in the input VC buffers of the downstream router, their allocation
decisions are already made, which, if successful, allow the flits to initiate ST without
any allocation overhead. Control forwarding overlaps LT stage of the current router
with VA/SA stage of the downstream router and hides the cycle a flit needs at each
hop for allocation. For DDR NoC architectures, control forwarding reduces packet
zero-load latency by one cycle per hop. It is implemented using dedicated crossbar
switches (for control switch traversal), link wires (for control link traversal) and bypass
paths which are separate from the flit datapath. Control forwarding is described in
more detail in Chapter 3 of this thesis for the DDRNoC architecture.

1.2.2.3 Objective 3: Reduce Packet Latency with Allocation Bypassing in a
DDR Router

The third objective of this thesis is to allow incoming flits in a DDR router to bypass
the SA pipeline stage, when required network resources available and free from
contention, and immediately initiate ST, followed by LT, in order to reduce packet

1.2. THESIS OBJECTIVES 7

Figure 1.3: Percentage of non-turning hops in 2D-mesh networks of size N×N with
dimension order routing for uniform random traffic.

latency. Allocation bypassing targets end-to-end packet latency at low traffic loads
when packets encounter reduced contention on their way to the destination. By
allowing the incoming flits at a router input port to bypass the allocation stage, in the
absence of contention, and immediately undergo ST, followed by LT, if downstream
buffer resources are available, the amount of time a flit spends in the network is
significantly reduced. To this end, this thesis proposes the FreewayNoC (described in
Chapter 4) and the HighwayNoC (described in Chapter 5) router architectures which
improve over the DDRNoC, by implementing allocation bypassing at different levels,
in order to reduce zero-load packet latency.

The FreewayNoC architecture, which implements the simplest form of allocation
bypassing, allows incoming flits to bypass the SA stage when propagating straight
through a router (i.e. N to S, E to W and vice versa). Here, SA bypassing is supported
only for straight flits because offering complete bypassing, from all inputs to all
outputs, would require complex checks to ensure conflict-free ST and LT. The delay
of these checks is prohibitively large and it would reduce the clock frequency of the
network. So, FreewayNoC reduces the complexity of bypassing check logic by only
enabling flits propagating a straight hop to bypass SA stage. This reduces the benefit
of allocation bypassing, however, for most routing algorithms for 2D mesh networks,
the number of turns a flit takes during its journey under low network loads are only
two or three (to/from local port and an XY turn). Moreover, as shown in Figure 1.3,
within the network, non-turning hops are more common than turning hops for uniform
random traffic, specially for larger 2D-mesh network sizes. Further details of the
FreewayNoC architecture are presented in Chapter 4 of this thesis.

The HighwayNoC improves over the FreewayNoC by enhancing the allocation
bypassing support. In addition to allowing flits to bypass the allocation stage when
propagating a straight hop, HighwayNoC further allows flits entering or exiting the net-
work to bypass allocation as well. Flits entering through the local port and attempting
to bypass to a non-local output can face competition from flits already in the network
which are also trying to bypass to the same non-local output. HighwayNoC resolves
this contention by always giving priority to in-network bypassing flits and requiring
competing flits entering through the local input to request SA. Similarly, a router
can simultaneously receive flits at multiple non-local inputs attempting to bypass to
the local output port. In order to resolve contention in this case, HighwayNoC uses
a simple fixed priority arbiter which selects the non-local input port which will be
allowed to bypass allocation and directly switch incoming flits to the local output port.
Other competing flits have to request allocation. HighwayNoC tolerates bypassing

8 CHAPTER 1. INTRODUCTION

check logic delays at the local port by utilizing the fact that there is a shorter link
(relative to inter-router links) connecting the local port of a router to the network
interface. Further details of the HighwayNoC architecture are presented in Chapter 5
of this thesis.

1.2.2.4 Objective 4: Reduce Packet Latency with ST Bypassing

The fourth objective of this thesis is to enable incoming flits in a DDR NoC router to
bypass the ST stage, in addition to the SA stage, when required network resources are
available and free from contention, and immediately initiate LT, in order to reduce
packet latency. To this end, this thesis proposes the FastTrackNoC architecture which
improves over the HighwayNoC and allows incoming flits propagating an in-network
straight hop to bypass the ST stage as well as the SA stage and directly initiate LT,
in half a clock cycle. It utilizes dedicated intra-router bypass paths which allow
both the data and the forwarded control information to bypass the crossbar switch in
order to initiate LT. To reduce complexity of the bypass paths and satisfy tight timing
constraints, ST bypassing requires pre-computation of the required checks and is
restricted to flits at the head of a specific input VC propagating an in-network straight
hop. As a result, FastTrackNoC maintains the clock period of previously described
DDR NoC routers which do not offer ST bypassing and is able to reduce the low-load
packet latency gap to ideal, shown in Figure 1.2. Further details on the FastTrackNoC
architecture are presented in Chapter 6 of this thesis.

The contributions of this thesis towards the above mentioned objectives are pre-
sented at the end of this thesis, in Section 8.2.

1.3 Thesis Outline
The remainder of this thesis is organized as follows: Chapter 2 discusses the related
work. Chapter 3 describes the design details of the DDRNoC network architecture
which implements DDR datapaths to improve network throughput. Chapter 4 describes
the design details of the FreewayNoC network architecture which enables incoming
flits propagating an in-network straight hop to bypass allocation stage of the DDR
router to reduce packet latency. Chapter 5 describes the design details of the High-
wayNoC network architecture which extends allocation bypassing support offered in
the FreewayNoC to also include flits entering and exiting through the local port, in
order to further reduce packet latency. Chapter 6 describes the design details of the
FastTrackNoC network architecture which enhances the HighwayNoC architecture by
enabling incoming flits to bypass the ST stage as well as the allocation stage, in order
to further improve packet latency. Chapter 7 presents the implementation, performance,
power and energy efficiency results of the four DDR networks and compares them to
relevant related work. Chapter 8 offers concluding remarks and possible directions for
future work.

Chapter 2

Related Work

This Chapter presents an overview of techniques in the router architecture for in-
creasing network throughput and reducing packet latency. The switching rate and
minimum hop latency, define the limits for network throughput and packet latency,
respectively. At the end of this Chapter, we report these two parameters for various
state-of-the-art NoC routers measured in FO4 delays as reported in the published
articles and confirmed by our post place and router (P&R) implementations.

2.1 Increasing NoC Throughput

There are three main approaches of improving throughput of single data rate (SDR)
networks. They are: (i) use path diversity [35] and flow control to avoid congestion
[36–38], (ii) improve matching quality of VC and switch allocators [18, 39, 40] and
(iii) increase network switching rate by increasing network clock frequency. On one
hand, the first two approaches improve the utilization per cycle of the network datapath
resources to increase throughput and are orthogonal to the proposed DDR NoCs.
On the other hand, the third approach enables the NoC datapath to propagate flits
at a faster rate and increase network throughput. Previous NoC architectures have
improved network clock frequency, and thereby the switching rate of their datapath,
by increasing router pipeline depth, balancing the delay of different pipeline stages
and simplifying or pipelining control (allocation) stages of a router.

A first step towards increasing clock frequency is to pipeline router’s datapath.
Typically, the datapath of a NoC router is divided into two stages, namely, the switch
and the link traversal stages (ST and LT). Deeper pipelining of the datapath can further
improve clock frequency at the cost of packet latency. One such example is Intel’s
full custom input buffered wormhole-switched NoC router which splits ST into two
stages [9]. It achieves higher clock frequency by simplifying the datapath and the
control stages and using a deeper pipeline with 6 stages per hop. Its simple datapath is
only 32 bits wide and it has only two lanes (VCs) per input port to reduce the delay
and complexity of the crossbar. It uses a crossbar of half the datapath width to save
area, but operates it at DDR to maintain full throughput. Furthermore, it statically
assigns VCs to packets and determines the route a packet will take in the network at
the source node in order to avoid VC allocation and route computation, respectively,
in the routers. This enables it to achieve a clock period of 15 FO4 delays and deliver

9

10 CHAPTER 2. RELATED WORK

high throughput. However, this comes at a high cost of minimum hop latency of 90
FO4 delays per hop, as presented in Table 2.1.

In order to avoid the high hop latency overhead of many pipeline stages, a router’s
datapath is typically split into two stages, ST and LT. Although this offers reasonably
high clock frequency, it places router’s control in the critical path and leads to wasteful
slack in the datapath stages [18, 20]. This creates an imbalance in the router’s pipeline
stages because of which the control of the router (and not its datapath) defines the
network clock frequency and the rate at which flits are switched. This reduces the
throughput potential of the network because of the slack introduced in the datapath
stages. This slack can be reduced, and the network throughput increased, by either
retiming the router’s pipeline stages or pipelining and simplifying its control logic.

Time stealing (or automatic retiming), currently supported by CAD tools, can be
used to balance the pipeline of a router. Mishra et al. used time stealing to boost
routers performance [20]. In doing so, a router would have a clock period equal to
the average of all router stages. Although time stealing improves baseline operating
frequency and throughput by up to 25%, by reducing the slack present in the datapath,
there is room for improvement because the clock period is still longer than than the
datapath delays.

Next step towards increasing network clock frequency is to either pipeline or
simplify the control (allocation) stages of a router. An SDR NoC which pipelines
switch allocation (SA) into two stages and improves clock frequency is SCORPIO [13].
It also utilizes several other architectural techniques, which include combined VC and
switch allocation [41], control forwarding (also called lookahead signaling) [42] and
allocation bypassing, to improve network performance. Implemented on a 36-core
chip, SCORPIO demonstrates low latency and short cycle time of 28 FO4 delays.

More recently, ShortPath [30] was proposed, the fastest previous SDR NoC archi-
tecture. ShortPath not only splits SA into two pipeline stages, but also simplifies it
by using allocation request queues to reduce the number of simultaneous allocation
request from each input port. It also pipelines its datapath into two stages (ST and
LT). ShortPath employs a dynamic allocation bypassing mechanism, but as opposed
to SCORPIO, without relying on speculation or control forwarding and it operates at a
higher clock frequency compared to SCORPIO. Considering 2D mesh topology and 4
VCs, the critical path of ShortPath is shared by part of its control logic and ST and
is estimated to be 25 FO4 delays, which is still about 20% slower than its ST delay.
As a consequence, ShortPath offers about 20% lower throughput than what could be
achieved if the critical path was on the ST stage.

Trying to gain more throughput by further simplifying allocation to improve net-
work clock frequency does not offer significant benefit because deteriorating matching
quality of simple allocators reduces datapath utilization at high traffic [24]. One way
to move beyond this limitation is to operate some parts of the router’s datapath, which
have sufficient slack, at DDR to improve their throughput. In the past, DDR datapaths
have been used in isolated parts of NoC routers (crossbars or links), primarily to
reduce area and power cost of the datapath. For example, Intel’s full custom NoC
router [9], described above, used a single DDR crossbar to support two network lanes.
Xu et al. built DDR Wave-Pipelined (DWP) links interconnecting asynchronously
NoC router ports to reduce the number of link-wires [31]. A router converts the data to
be transmitted through a DWP link from SDR to DDR format by sending odd bits on
the positive level of the clock and even bits on the negative level of the clock. NMOS
transmission gates are used for this purpose. A separate wire is used to transmit a

2.2. REDUCING NOC PACKET LATENCY 11

reference clock signal to the downstream router, along with the data. This clock signal
is used by the semi-static double-edge-triggered-flip-flops (SDETFFs) located at the
input of the downstream router to latch the incoming data at both rising and falling
edges of the clock. Since this data is being transmitted in DDR mode, the transmitted
clock signal needs to toggle at the rate of data transmission.

More recently, RapidLink was proposed which used DDR links in a NoC architec-
ture [32], based on the consideration that links can operate at double the frequency
of a router. RapidLink improves throughput and latency because of two underlying
mechanisms. Firstly, it splits a 4-VC NoC in to two parallel physical sub-networks, of
2 VCs each, which share common links. In effect, RapidLink achieves the throughput
of two sub-networks that have separate links at half the link cost [16, 43]. Secondly,
consecutive sub-routers operate at different clock edges allowing them to perform LT
in half a cycle and therefore reduce per hop latency. In Rapidlink, link contention
between the two sub-networks is avoided, however, contention within a sub-network
router is not addressed. On the contrary, our DDR NoC routers allow all parts of a NoC
datapath (input VC buffers, input and output port multiplexers and links) to operate
at DDR. This enables DDR NoCs to route at DDR flits of the same or of different
packets (stored in VCs of the same or different input ports) rather than only flits of two
different sub-networks. RapidLink requires links to have limited length to be twice as
fast as the routers.

This last limitation of RapidLink was addressed by the authors in their recent
design (henceforth called Rapidlink2) where they proposed to pipeline the network
links using Dual Stream (DS) elastic buffers with support for VCs and consider them
as part of VC buffers [17]. Thereby, links are no longer in the critical path. However,
according to our experiments the energy cost for transmitting a bit (for 128 bits wide
flit) over a link that is pipelined using one or two sets of DS elastic buffers with support
for 4 VCs increases versus a non-pipelined one by 1.8× and 2.5×, respectively. This
is because a register is needed per VC, along with a 4-to-1 mux and an arbiter for each
pipeline stage. In any case, DDR NoC routers with similar datapath modifications
–router split in two sub-networks and replicated, rather than pipelined, links– can
achieve better throughput than RapidLink2, as presented in the Section 7.3.3.

The DDR NoC architectures we propose in this thesis utilize the slack present
in the router’s datapath to improve network throughput, by operating the complete
datapath at DDR. Then, the control has an entire, longer than ShortPath, cycle available
to make allocation decisions. The clock period of a DDR NoC is 42 FO4 delays, twice
its ST delay, and the switching rate of its datapath is half of that, i.e., 21 FO4 delays.
As a consequence, the control logic is not in the critical path of a DDR NoC router
and the ST delay defines the switching rate, which is about 20% higher than the fastest
SDR NoC router, ShortPath.

2.2 Reducing NoC Packet Latency

There is a plethora of designs that aim at minimizing packet latency of SDR NoCs.
Other than the strategies presented in the previous Section to increase network clock
frequency (which will also reduce packet latency), there are four main approaches of
reducing packet latency. They are: (i) deploying NoCs with low diameter topologies
(i.e. with low maximum distance to other nodes), (ii) transferring flits across multiple
hops or tiles in a single cycle, (iii) using routers with simpler datapaths to increase

12 CHAPTER 2. RELATED WORK

clock frequency and (iv) reducing the number of pipeline stages a flit must traverse
per hop. These approaches are further discussed below.

In the past, various networks have exploited a lower, relative to the router, link delay
to transfer flits across multiple hops. This has been supported by richer topologies with
longer links to non-neighboring routers, e.g. 2D-torus, flattened butterfly topology
[15, 44], multidrop express channels (MECS) [22], and express links [4, 27, 45]. Such
low diameter topologies require high radix routers and long inter-router links spanning
multiple hops. But, routers with high radix require complex allocators and larger
crossbar switches which reduces their clock frequency and throughput. Long inter-
router links, if not pipelined, increase LT delay and reduce network clock frequency.
Moreover, such topological changes can be considered orthogonal to the techniques
incorporated by the proposed DDR NoC router architectures to reduce packet latency.

Another way to reduce packet latency is to transfer flits across multiple hops in
a single cycle, as implemented in SMART NoC [26]. SMART NoC exploits low
link delay to transfer flits across multiple hops in a single cycle using intra-router
bypass paths across input VC buffers. Although such multi-hop links enable SMART
networks to offer minimum latency per hop close to ST +LT , fitting multiple hops in
a single cycle slows down network clock frequency and reduces offered throughput. It
also requires complex allocators with inputs from neighboring routers for multi-hop
setup requests.

One way to increase NoC clock frequency while also reducing its area is to simplify
its datapath. More precisely, bufferless NoCs remove input VCs and FIFO buffers from
routers to simplify datapath and control logic and increase clock frequency [46,47]. In
the best case (if control logic is not in the critical path), bufferless network can offer
minimum hop latency of ST +LT , with ST delay equal to a (P−1) : 1 multiplexer
compared to ((P− 1)×V ×B) : 1 multiplexer for a network with VC based flow
control with P ports per router, V VCs per port and B flit registers per VC buffer.
However, bufferless networks offer lower throughput compared to buffered networks
because of deflection routing [47–49] or dropping flits at high load, making them
unsuitable for applications with high throughput requirements.

More recently proposed Routerless NoC removes the router from NoC and uses
on-chip wiring resources to create loops (rings) to connect its nodes. It can operate
at a very high clock frequency and offer minimum hop latency equal to the delay of
the inter-router link plus a 2:1 multiplexer. Compared to the proposed DDR NoC
architecture which offers bypassing of SA and ST stages (called the FastTrackNoC),
the Routerless NoC minimum hop latency is one 2:1 multiplexer delay less. However,
the Routerless NoC has several significant disadvantages. Using fixed loops limits the
routing options. The Routerless NoC alleviates this problem by using n overlapping
loops in an n×n network. However, this requires partitioning of the wire resources
to n paths that are n times narrower substantially limiting throughput compared to
conventional 2D-mesh networks with the equal wire resources. Moreover, Routerless
NoC requires large buffers at their network interface to fit an entire packet in order to
resolve conflicts. In turn, Routerless NoCs can offer slightly lower latency than the
FastTrackNoC described in Chapter 6, however, their fixed loops either limit routing
options and thus increase latency, or call for multiple overlapping loops which limit
throughput considering equal wire resources.

Packet latency can also be reduced by reducing the number of pipeline stages a flit
needs to go through to traverse a hop. Typically, NoC routers require flits to go through
five stages per hop, which are: route computation (RC), VC allocation (VA), switch

2.2. REDUCING NOC PACKET LATENCY 13

allocation (SA), switch traversal (ST) and link traversal (LT). Pre-configured routing
speculatively forwards incoming flits in preferred output directions without waiting
for the result of allocation stage, saving one cycle per hop [50]. However, it has to
tolerate misrouted, eagerly forwarded, dead flits. Similarly, XOR-based crossbars
also allow switching to be performed without waiting for the arbitration result but
require router datapath to be modified to encode and decode flits [51]. Less wasteful
approaches have been the backbone of current state-of-the-art NoC routers. Lookahead
routing allows to perform VC and switch allocation immediately after a header flit
arrives as the route of the flit has already been computed by the upstream router [24].
Combined allocation [41] allows VA and SA to be performed in parallel and saves a
cycle in the router pipeline [25]. Control forwarding enables allocation to start before
the incoming flit is received [13, 29]. It is inspired by off-chip network designs [42]
and uses a separate, narrow link to forward the control of a flit a cycle ahead of the
data enabling the downstream router to process it one cycle earlier [13, 29]. Finally,
pipeline stage bypassing allows incoming flits which do not encounter any contention
in a router to bypass some or all control stages of that router and proceed faster to the
switch traversal stage [13, 30, 52].

ShortPath [30], described in the previous Section, utilizes, among others, lookahead
routing and allocation bypassing (of VA and SA stages) to offer minimum hop latency
of ST +LT stages i.e., 50 FO4 delays, as presented in Table 2.1. Since the clock period
of ShortPath (25 FO4 delays) is defined by the router’s control delays and is longer
than its ST delays, there is potential to further reduce minimum latency by eliminating
the slack present in the datapath stages (ST and LT) and operating it at a faster rate.

On the contrary, the DDR NoC architectures described in this thesis have a clock
period defined by the datapath (ST) delays and they also implement lookahead routing,
control forwarding, combined allocation and pipeline bypassing of the allocation
stage to offer minimum hop latency of ST + LT delays, i.e., 42 FO4 delays. It is
important to note that, although, minimum hop latency for ShortPath and proposed
DDR NoCs (which do not offer ST bypassing) is ST +LT , DDR NoCs offer lower
latency because of their faster switching rate, as presented in Table 2.1. Furthermore,
our best proposed DDR NoC architecture, called the FastTrackNoC, enhances the
bypassing capabilities of previous networks and allows incoming flits to bypass ST as
well as SA stages, when required conditions are met, and directly initiate LT in half a
clock cycle. Consequently, it can offer minimum hop latency of only 21 FO4 delays.

The challenge of supporting pipeline bypassing in a DDR router is that it adds
complexity to the datapath of the router and this in turn affects throughput by reducing
network clock frequency. More precisely, an incoming flit candidate for bypassing
would need to compete with other concurrently arriving candidate flits, so checking
whether the path is free adds logic to the ST and LT stages. On the other hand, the main
performance advantage of DDR router relies on the fact that its critical path, which
determines the rate at which flits are routed, is defined by the ST (or LT) delay without
any additional control overhead. So, our proposed DDR NoC architectures need to
preserve this throughput advantage by not offering allocation bypassing options to
in-network turning flits (i.e., xy and yx turns), while, only offering ST bypassing to flits
propagating an in-network straight hop (i.e. north to south, east to west and vice versa)
from the head of a particular input VC. This significantly reduces contention among
flits competing to bypass SA or ST stages at the same time as well as the overhead of
bypass paths needed to support bypassing. The FreewayNoC and the HighwayNoC
architectures, presented in Chapter 4 and 5, respectively, implement different levels of

14 CHAPTER 2. RELATED WORK

Table 2.1: State-of-the-art NoC router architectures.

Network Data rate Pipeline
bypass

No. of pl.
stages

Switching
rate

Min. hop
latency

Intel [9] (DDR) 5+LT 1/15 FO4 90 FO4
SCORPIO [13] SDR (SA) 3+LT 1/28 FO4 56 FO4
ShortPath [30] SDR VA, SA 3+LT 1/25 FO4 50 FO4
DDRNoC DDR 2+LT 1/21 FO4 84 FO4
FreewayNoC DDR (SA) 2+LT 1/21 FO4 42 FO4
HighwayNoC DDR SA 2+LT 1/21 FO4 42 FO4
FastTrackNoC DDR SA, ST 2+LT 1/21 FO4 21 FO4

allocation bypassing to reduce packet latency. Finally, the FastTrackNoC architecture,
presented in Chapter 6, offers both SA and ST bypassing to incoming flits in order to
reduce packet latency.

2.3 Summary
Table 2.1 summarizes the main characteristics of competing designs including perfor-
mance estimations measured in FO4 delays either taken from the respective papers [9]
or based on post place and route results on 28nm technology, as explained in Chapter
7. The aforementioned Intel design offers a very fast router with oversimplified control
and datapath which achieves the fastest rate of routing flits (1/15 FO4), however
without pipeline bypassing it suffers long hop latency of 90 FO4 delays [9]. SCORPIO
is a 3-stage SDR router that offers speculative allocation, control forwarding, and
some pipeline bypassing support, and exhibits a cycle time of 28 FO4 delays [13].
It offers low hop latency of 56 FO4 delays achieved by bypassing router pipeline
stages. ShortPath is a faster 3-stage SDR router with better pipeline bypassing and
shorter critical path (25 FO4 delays) than SCORPIO [30]. It offers a minimum hop
latency of 50 FO4 delays. DDRNoC, presented in this thesis, is the first fully DDR
router that increases the rate of routing flits to one flit per 21 FO4 delays (every half
a cycle) offering higher throughput. It offers pre-computed routing, speculative SA,
and control forwarding, however it has no pipeline bypassing support so it suffers high
packet latency. FreewayNoC improves on the DDRNoC offering limited in-network
pipeline bypassing to non-turning flits, improving packet latency and HighwayNoC
adds bypassing support for flits that enter or exit the network. Finally, FastTrackNoC
is applied to a DDR router so it maintains the fast switching rates and reduces the
minimum router latency to half (21 FO4 delays) employing ST bypassing.

Chapter 3

The DDRNoC Architecture

This Chapter describes the first DDR NoC architecture, called the DDRNoC. The
DDRNoC is based on the observation that NoC clock frequency is defined by its
control logic, while its datapath contains slack which reduces maximum achievable
network throughput. The DDRNoC is an on-chip interconnect composed of routers
that have a double-pumped datapath. As opposed to a conventional SDR NoC router,
the critical path of a DDRNoC router is on its switch and link traversal rather than
on the control. This allows packets to be routed at a faster rate increasing network
throughput. Without loss of generality, our DDRNoC design considers a 2D-mesh
network, with look-ahead XY-routing, composed of routers with virtual channels and
credit-based flow control.

The top-level view of the DDRNoC router is shown in Figure 3.1. The datapath is
composed of two stages: Switch Traversal (ST) and Link Traversal (LT). Each stage is
able to handle two flits per cycle, one at the high phase and one at the low phase of the
clock. There are three main control blocks in the router: Virtual Channel Allocation
(VA), Speculative Switch Allocation (SA) and Next-Next-Route-Computation (N2RC)
which are explained in detail below.

The rest of this Chapter is organized as follows. In the next Section, we describe
the DDR datapath of the DDRNoC. In Section 3.2, we describe the timing details
of flits and forwarded control information propagating through DDRNoC routers,
illustrated using a timing example. In Section 3.3 we analyze the zero-load latency of
DDRNoC. In Section 3.4, we describe the control modules of of a DDRNoC router.
In Section 3.5, we discuss some of our design decisions. Finally, in Section 3.6, we
summarize the main aspects of the DDRNoC architecture.

3.1 Router Datapath
The input port of a DDRNoC router is able to receive two flits per cycle, one at each
phase of the clock. As shown in Figure 3.2, the VC buffers are composed of registers
that are selectively triggered either at the rising or at the falling edge of the clock to
store a flit arriving at the low or the high phase, respectively. This enables two flits per
cycle to be enqueued in a single VC buffer because they are stored in different registers
of the buffer. Dequeuing two flits per cycle from a single VC buffer is enabled by the
DDR VC en signal, which allows two different VC registers to be selected during two
consecutive clock phases. Similarly, dequeuing two flits from different VCs within a

15

16 CHAPTER 3. THE DDRNOC ARCHITECTURE

Figure 3.1: The DDRNoC router architecture.

cycle is enabled by the DDR IN en signal, which is used by the input port multiplexer
to implement two input arbitration decisions (VC Sel0 and VC Sel1). Besides the flit
data, the input port receives once every cycle early forwarded control information for
the (up to two) received flits (FC+, FC−). As explained later, this information refers
to flits that arrive a cycle later, thus it is called f orwarded control.

Besides the input port multiplexer, the ST stage includes the output port multiplexer,
which applies up-to two output arbitration decisions per cycle (Port Sel0, Port Sel1)
using the DDR OUT en signal. This allows two different input ports to send a flit to
the same output port during the high or the low phase of a clock cycle.

A positive edge triggered output register (Reg+) and a negative edge triggered
one (Reg−) are used to store the flits switched in the low and the high phase of a
cycle, respectively. Subsequently, a multiplexer selects one of the two registers to send
a flit through the link. Using the DDR LINK en signal, this multiplexer allows LT
of two flits in a cycle. For packet header flits, the N2RC module computes routing
information for two-hops ahead in half a cycle and the result (2-bits) is embedded in
the header flit data before LT.

In general, DDR mode is selected in two cases. Firstly, when flits of multiple
packets in different VCs compete for the same datapath part (input port multiplexer,
output port multiplexer, or link). Secondly, when multiple flits of a single packet are
available in a VC buffer and their requested datapath is not allocated to any other
packet during the same cycle. Figure 3.3, illustrates more precisely all alternative
uses of the DDRNoC datapath. In Figure 3.3a, two flits in different VCs of the same
input port are sent to the same output port in DDR (DDR IN en and DDR LINK en
enabled). Figure 3.3b shows two flits from different input ports sent to the same output
port in DDR (DDR OUT en and DDR LINK en enabled). Two flits from different
VCs of the same input in DDR going to different outputs are illustrated in Figure 3.3c
(DDR IN en is enabled). Figure 3.3d shows two flits of the same packet (same input

3.2. TIMING 17

Figure 3.2: DDRNoC VC buffers. Signals en n and en p signals indicate whether
there is a valid flit in the high and low clock phase. Tail and header pointers as well
as a write enable signal (per register) are updated based on these two signals.

(a)

(b) (c)

(d)

(e)

Figure 3.3: Alternative ways to propagate a flit through the DDRNoC router datapath.

VC) in DDR (DDR VC en and DDR LINK en enabled). Finally, a flit sent in SDR is
depicted in Figure 3.3e.

In parallel to the ST of (up to) two flits, their control information (FC+ and FC−)
is forwarded separately. As explained next, both FC+ and FC− are switched during
the first half of a cycle and traverse the link during the second half. This is possible as
the minimum ST and LT delay in a DDRNoC router is half a cycle.

3.2 Timing
Despite operating at SDR or DDR, a flit always spends half a clock cycle in each
datapath stage (ST or LT), separated by another half a clock cycle which is used for
route computation. In DDR mode, a flit utilizes either the high or the low phase of
the clock. We call a flit using the high clock phase f lit+ and one using the low phase
f lit−. A f lit+ is switched during the first half of a cycle and registered by the negative
edge triggered output register Reg−, it uses again the high phase of the next cycle for
LT and is stored at the input VC of the downstream router in the next negative clock
edge. Similarly, a f lit− uses for both ST and LT two consecutive low clock phases, it
is registered in the positive edge triggered output register Reg+ and is stored in a VC

18 CHAPTER 3. THE DDRNOC ARCHITECTURE

Figure 3.4: Timing of two packets traversing two hops through the same input and
output ports (different VCs) of two routers.

buffer of the downstream router in the next positive clock edge. Finally, a flit switched
at SDR (f lit±) propagates in a manner similar to f lit+.

Besides data, a flit usually carries additional control bits that indicate flit type,
allocated VC, or the computed next route. In a baseline SDR router, these control
bits pass through ST and LT together with the data of a flit. On the contrary, in a
DDRNoC router, the control bits of flit(s) travel ahead of the data so as to enable the
SA in the downstream router a cycle earlier and reduce packet latency. During ST of
flits, f lit+ and f lit−, their control bits FC+ and FC− perform both ST and LT (half
a cycle each). In effect, during the cycle f lit+ and f lit− perform LT, their control bits
are already in the downstream router and are considered in the SA and VA, saving
one cycle. We call the above technique control forwarding. Control forwarding is
possible in our router architecture for two reasons: firstly, due to the fact that switch
and link traversal have a latency of half a cycle, and secondly, because a flit performs
ST and LT in two consecutive cycles (instead of a single cycle). A flit does not enter a
new datapath stage in the middle of a cycle to avoid misalignment with the SA in the
downstream router, which anyway starts at the positive clock edge and takes an entire
cycle to complete. Although the data of a flit are routed slower than they potentially
could, sending the control of the flits ahead, enables the downstream router to start SA
a cycle earlier recovering the wasted time.

In order to perform the NRC in parallel with the VA and SA in a router with control
forwarding, the entire destination address of a packet should be forwarded together
with the rest of the control bits (earlier than the actual header flit). That would be
quite costly as it would require for a 16×16 2D-mesh, 16 more link wires for the two
flits in flight. To avoid this, we perform the NRC in the output of the upstream router,
effectively, performing a routing computation for two hops ahead (Next-Next Route
Computation: N2RC). A flit takes half a cycle to traverse a link, during either the high
or low clock phase, but it is sitting idle in an output register (Reg+, Reg−) for the
other half of the cycle. N2RC is performed during this idle half cycle. The N2RC
module is placed after the output registers and before the link multiplexer. When a

3.3. ZERO-LOAD LATENCY ANALYSIS 19

head flit is registered in the output after ST, N2RC is performed for half a cycle, the
result of the N2RC overwrites the (two) respective header bits and is sent to the link
multiplexer before LT. Note that the two output registers are triggered in different
clock edges, so the same N2RC module can be used by one of them in each half of the
cycle.

For the header flit, SA speculates on the VA allocation result. Thereby, the VA can
be performed in parallel with the SA. The header flit zero-load latency is then reduced
by one cycle when the speculation is successful.

Figure 3.4 illustrates the timing of two DDRNoC routers, putting all the above
together. In the example, a packet of five flits and a packet of three flits traverse the
same two routers. In the first router, VA and SA is performed during the first cycle
for the head flits of the two packets. Subsequently, ST is performed for the header
flits (ST+ and ST−), each using half of a cycle. In parallel, during cycle 2, control
information for the head flits is traversing the switch (CST+ and CST− for flit+ and
flit−, respectively) and the link (CLT+ and CLT−). H1 traverses the switch in the
high phase of clock 2 and is stored in the output register Reg− at the falling edge
of cycle 2 enabling N2RC to be performed in the second half of cycle 2. Similarly,
H2 traverses the switch in the low phase of clock 2, it is stored in the output register
Reg+ at the rising edge of cycle 3 enabling N2RC to be performed in the first half
of cycle 3. LT is then performed by H1 and H2 after their N2RC during the first and
second half of cycle 3, respectively. In parallel during the same cycle (cycle 3), SA and
VA are performed in the downstream router for the two header flits, as their control
information has arrived a cycle earlier. The subsequent flits of the two packets follow,
sharing the datapath of the two routers, having one cycle latency per ST and LT stage
and throughput of two flits per cycle. Note, that packet 2 is two flits shorter than packet
1 and therefore the last two flits of packet 1 are routed in DDR mode through the two
routers, similar to the example of Figure 3.3d.

3.3 Zero-Load Latency Analysis
The zero-load latency (ZLL) in a DDRNoC1 is equal to one cycle for the first SA
plus two cycles per hop for the head flit and an additional half a cycle for each of the
remaining flits2:

ZLLDDRNoC = 1+2×hops+(N−2)/2 cycles (3.1)

where, hops is the number of hops traversed by the packet, and N the number of flits
per packet.

Moreover, the ShortPath router which uses dynamic pipeline bypassing to reduce
pipeline stages to 2 (VA, SA and ST in one cycle and LT in the other) has a zero load
latency of:

ZLLShortPath = 2×hops+N−1 cycles (3.2)

As mentioned in the introduction and confirmed in our evaluation, the ST/LT
stages in a router can be clocked about 18% faster than ShortPath. The ST or LT delay

1We consider that the VC buffer size is sufficient to support the credit round-trip time, as explained in
3.4.3.

2In zero load, a single packet can send its flits in DDR having serialization latency of half a cycle per flit
(Figure 3.3d). In case of contention, the serialization latency would increase at least to one cycle per flit.

20 CHAPTER 3. THE DDRNOC ARCHITECTURE

is then 83% the delay of the ShortPath NoCs. Considering that the DDRNoC can have
a clock period of 2× the ST (or LT) delay, then one DDRNoC cycle is equal to about
1.67 ShortPath cycles. So, for a packet with 3 flits, propagating between 2 and 32 hops,
zero-load latency for the DDRNoC is about 53-66% longer than ShortPath.

3.4 DDRNoC Control

3.4.1 Virtual Channel Allocation

Despite the increasing load of the VA in a DDRNoC router, we choose to use the SDR
baseline VA unmodified. That is a VA with round-robin priority-based output-first
separable allocator as described by Becker and Dally [39]. For a router with P output
ports and V VCs per port, the VA uses PV : 1 and V : 1 arbiters for the output and
input arbitration, respectively, and takes one cycle to complete allocation. In DDR
mode, up to two head flits per cycle may arrive at an input port of a router, which (in
the worst case) would result in ten new VA requests per cycle, compared to five in
the baseline. Although this may lower the VA matching quality, we did not observe
any significant performance drawbacks in our experiments for packet sizes based on
application driven workloads.

3.4.2 Switch Allocation

The DDRNoC routers, as well as the baseline SDR ones, use a single-cycle speculative
SA to resolve contention among flits requesting the same input and output ports of the
crossbar. The speculative SA gives higher priority to requests which have already been
allocated a downstream VC. The DDRNoC SA, shown in Figure 3.5a is a modified
version of the output-first separable allocator described in [39]. It makes two input
and output arbitration decisions every cycle, one for the high (g+[i]) and one for the
low (g−[i]) phase of the clock. The output arbiter for a single output port, shown in
Figure 3.5b, accepts P×V arbitration requests and a one-hot priority vector (which
updates in round-robin) to generate two grant signals for each input request. At most
one of these two grant signals would be asserted per input request. Moreover, at most
one g+ and one g− signal would be asserted as a result of each output port arbitration.
The second stage of the SA performs (input) arbitration among the VCs of an input
port, which after the output arbitration might have two or more of its VCs granted
access to the switch on the same half of the cycle. Two V:1 input arbiters per port are
required, one to arbitrate among grants received for the high half of the cycle and the
other among the grants received for the low half. After input arbitration a maximum of
two grants (one per clock edge, grant+ and grant−) are asserted for each input port.
The DDRNoC SA described so far is not yet able to allow two flits of the same packet
to be switched in DDR mode. This is performed using additional logic appended to
the above SA. In particular, based on the above grant decisions, a single packet, with
an allocated downstream VC, will be allowed to send two flits through the switch
in a cycle when all following conditions are met: (i) that packet has received a SA
grant, (ii) more than one flits of the packet are available in the input VC, (iii) there
are enough credits for them, (iv) no other packet has been granted the same input or
output of the switch. After SA, the grant+ and grant- signals are registered and the
DDR enable signals are generated. These are the signals that control the DDR mode

3.4. DDRNOC CONTROL 21

(a) DDRNoC dual grant Switch Allocator.

(b) PV:2 output arbiter.

Figure 3.5: Block diagram of the DDRNoC Switch Allocator.

in each VC buffer (DDR VC en), input port multiplexer (DDR IN en), output port
multiplexer (DDR OUT en), and output (DDR LINK en).

3.4.3 Flow Control and Minimum Buffer Size
The DDRNoC uses credit based flow control. Since flits from two different input VCs
can be granted access to the switch in a single cycle, credits for up to two different VCs
need to be transmitted to the upstream router simultaneously. This is implemented
using one wire per VC for sending credits3. Moreover, a single VC can also forward
two flits of a packet in a single cycle. In order to send back two credits to a single
VC in a cycle, one additional wire per port is used to inform the upstream router that
the credit counter of the VC receiving credit(s) should be incremented by 1 or 2. A
credit consumed after switch grant, can successfully be received back in a minimum
of 4 cycles after SA of the flit in the downstream router. This means that using 4

3This is sufficient for 4 VCs per port considered in our implementation, but as the number of VCs per
port increases, it becomes more scalable to send the ids of the two granted VCs, instead of a bitmask.

22 CHAPTER 3. THE DDRNOC ARCHITECTURE

registers per VC would be sufficient to cover the credit-round-trip-time (tcrt). This is
true however only if a single VC sends one flit per cycle. In case a single VC sends two
flits at DDR (Fig. 3.3d) then it occupies 2 downstream buffers per cycle increasing the
the minimum VC buffer size to 8 (although the tcrt remains the same). In comparison,
the 3-stage baseline NoC has a tcrt of 5 cycles and uses VC buffers of 5 flits.

3.5 Discussion
We discuss below some of the DDRNoC design decisions and other alternatives. As
opposed to a baseline SDR router, the critical path of DDRNoC router is moved to the
datapath (2×max(ST,LT)) allowing the DDRNoC control to have significant slack
(about 30% of the cycle). In our current design, this slack in the DDRNoC control is
largely unexploited. Although the DDRNoC SA is more complex than the baseline
SA, it is almost as slow as the VA block, which is the same for both the baseline and
the DDRNoC. Consequently, more advanced SA and VA modules can be explored
in the DDRNoC without affecting its cycle time. Another observation is that instead
of operating at DDR using both clock edges, similar throughput could be achieved
by a NoC that has a clock twice as fast as the DDRNoC clock and makes allocation
decisions every two cycles using a pipelined SA. Such design would have many
similarities with the proposed DDRNoC although it might be slightly less challenging
to implement. However, offering two cycles for the allocation decisions, even if the
allocators were pipelined, would affect the efficiency of the speculative SA. Moreover,
the clock distribution power would be double than that of the DDRNoC and hence the
total NoC power would be about 20% higher. Even compared to the baseline SDR
NoC, the total power consumption of such a network would be expected to be about
9% higher due to a 45% faster clock. Moreover, packets in such a router would spend
4 cycles per hop because of increased router pipeline depth, which would require 6
registers per VC buffer to cover the tcrt of 6 cycles.

3.6 Summary
The DDRNoC architecture, introduced in this Chapter, uses routers with double-
pumped datapath. It is based on the observation that conventional SDR 2D-mesh NoC
routers have significant slack in their datapath stages. DDRNoC uses this slack by
allowing two flits to share the same datapath within a cycle at DDR. It also employs
control forwarding and speculative SA to reduce packet latency, which compared to
SDR routers with pipeline bypassing still suffers at low injection rates.

Chapter 4

The FreewayNoC Architecture

The DDRNoC architecture presented in the previous Chapter operated its datapath
at DDR in order to improve network throughput. It is based on the observation that
clock frequency of previous SDR networks is defined by its control, while slack in the
router’s datapath reduces achievable network throughput. By operating the datapath
at DDR, the DDRNoC is able to remove the slack present in the datapath stages,
route flits at a rate defined solely by datapath delays and improve network throughput.
However, the DDRNoC offers higher latency to packets compared to an SDR NoC.
This is because DDRNoC operates at a lower clock frequency than an SDR network.

One simple way in which NoCs in the past have improved packet latency is
by allowing incoming flits to bypass allocation stage, in the absence of contention,
and directly initiate ST, followed by LT. This Chapter presents the FreewayNoC
architecture, an enhancement of the DDRNoC architecture, which offers allocation
bypassing capabilities. As opposed to the DDRNoC, FreewayNoC allows incoming
flits to directly traverse the switch and link without undergoing an allocation step when
their way to the output port is free, henceforth referred to as allocation bypassing
(AB). FreewayNoC exploits a control forwarding (lookahead signaling) mechanism,
similar to the one utilized in the DDRNoC, which allows the control of flits to precede
the flit data, enabling allocation a cycle earlier; in our design control forwarding is
also used for AB checks as well as for next-route computation (NRC). FreewayNoC
uses a virtual channel selection (VS) mechanism at the output ports, rather than VC
allocation in the DDRNoC, to better accommodate AB. It further restricts AB to
flits propagating an in-network straight hop in order to minimize the overheads of
bypassing logic. FreewayNoC achieves to not add any complexity to routers datapath
preserving the DDR packet rate, while reducing packet latency. Without loss of
generality, our FreewayNoC design considers a 2D-mesh network, with lookahead
XY-routing, composed of routers with virtual-channels and credit-based flow control.

The top-level view of the FreewayNoC router is shown in Figure 4.1. The datapath
is composed of two stages: Switch Traversal (ST) and Link Traversal (LT), separated by
the input VC buffers and the two output registers (one for each clock edge multiplexed
before the link). In addition, the FreewayNoC router has the following control blocks:
a combined allocator composed of the Virtual Channel Select (VS) and a Switch
Allocation (SA), Next-Route-Computation (NRC) and AB check logic at the input
and output ports.

23

24 CHAPTER 4. THE FREEWAYNOC ARCHITECTURE

Figure 4.1: The FreewayNoC router architecture.

The rest of this Chapter is organized as follows. In the next Section, we describe
the DDR datapath of the data flit, as well as the datapath of the forwarded control
signals in a FreewayNoC router. In Section 4.2, we describe the timing details of
flits and forwarded control information propagating through FreewayNoC routers,
illustrated using a timing example. In Section 4.3 we analyze the zero-load latency of
FreewayNoC. In Section 4.4, we describe the control modules of of a FreewayNoC
router. Finally, in Section 4.5, we summarize the main aspects of the FreewayNoC
architecture.

4.1 Router Datapath
The FreewayNoC router datapath has two parts: the datapath of the data flits and the
datapath of the control bits forwarded separately to support control forwarding. Each
of them is described separately below.

4.1.1 DDR Flit Datapath
The DDR flit datapath of a FreewayNoC router, illustrated in Figure 4.1, is similar to
the DDRNoC router datapath described in Section 3.1. It also supports two flits per
cycle per port, one at each phase of the clock and offers the same alternative ways to
propagate flits at DDR and SDR, as presented in Figure 3.3. However, the control and

4.2. TIMING EXAMPLE 25

the timing of the flits differ in the FreewayNoC router compared to the DDRNoC, both
when flits are routed regularly as well as in AB. The relative timings of switch and
link traversal of flits and their control information is discussed in detail in Section 4.2

4.1.2 Datapath of Forwarded Control signals

The FreewayNoC also forwards control information of the two propagating flits to
the downstream router one cycle ahead. The Forwarded Control (FC) uses a separate
path (crossbar and link wires) to perform control switch traversal (CST) and control
link traversal (CLT) in a single cycle as depicted in the bottom part of Figure 4.1. The
FC bits carry the type of the flit (head, body, tail or a single flit packet), the id of
the assigned downstream VC, the next route of the flits and the destination address.
Moreover, there is a separate path for FC signals, which bypasses the regular CST
connecting each input port with its straight output port (N to S, E to W and vice versa),
except for the local port. This path is used to carry the FC signals of a bypassing flit to
the output port through the AB FC mux and send them for CLT instead of the regular
CST signals. Two sets of FC signals exist, one for the flit propagating in the high
phase of the next cycle (FC+) and one for the flit propagating in the low phase (FC-),
each set of FC signals uses a separate CST, CLT and bypass path.

The AB logic checks the respective input and output port availability, as well as
for available VC and credits, to determine whether bypassing is possible. This is
performed in parallel to the regular CST shown in Figure 4.1. Then, depending on the
AB check, a 2:1 multiplexer is used to send the bypassed FC to CLT instead of the
regular FC. This 2:1 multiplexer is the only addition to the FC path delay required for
AB. Still, CST and CLT are not in the critical path because, as opposed to data ST and
LT, they do not need a register between them and the FC path is substantially narrower
than the datapath requiring a smaller crossbar.

4.2 Timing Example

The timing of a FreewayNoC router is described using an example of a five-flit packet
traversing three routers, illustrated in Figure 4.2. In the source and destination router,
the packet flits take a turn as they move from and to a local port, respectively. In our
example, we consider that all routers are aligned and therefore flits passing through
the second router go straight and have the opportunity for AB. Note that the LT and
ST for flits that traverse the link in the high clock phase are marked in the example
with “+”, and for flits that traverse the link in the low clock phase are marked with “-”.

In cycle zero, router-1 receives the forwarded control (FC) of the two first flits
(H, B1) which carries flit types, assigned VC, next route and destination. The packet
comes from the local port, so it takes a tur n and therefore there is no option for
bypassing. Then, flits enter the allocation in cycle 1 using the next route information.
In the same cycle. the head flit enables the NRC computation as well as the VC
selection, which provides an output VC. In parallel, the data flits of H and B1 arrive
and get stored in the input VC buffer in the first and second half of cycle 1, respectively.
Considering that there are no other competing packets, both H and B1 flits get a grant
for the switch at the end of cycle 1. Then, during cycle 2 the control information of
the two flits can be forwarded to router 2 (CST & CLT). In the second half of cycle
2 the H flit traverses the switch of router-1 (ST+) and is registered in Reg+ before

26 CHAPTER 4. THE FREEWAYNOC ARCHITECTURE

Figure 4.2: Timing diagram showing the flow of a five flit packet through three router
of the FreewayNoC.

it performs LT in the first half of cycle 3 (LT+). B1 flit follows half a cycle later. It
performs ST and LT in the first and second half of cycle 3, respectively (ST-, LT-). The
remaining flits are routed through router-1 in a similar way.

Following again H and B1 flits, their control information arrives in router-2 at the
end of cycle 2, enabling AB or allocation in cycle 3. AB check is positive, therefore
the flits are not considered for allocation. As the first flit is a header, NRC and VC
select (VS) are performed, too. NRC, VS, and AB check are performed in parallel
to form the control information of the bypassing flits which will bypass the regular
CST and traverse the link (CLT) to reach router-3 at the end of cycle 3. Bypassing
flit H arrives in router-2 after the first half of cycle 3 and subsequently goes through
ST and LT in the second half of cycle 3 and the first half of cycle 4. Bypassing flit
B1 follows half a cycle later. Flits B2 and B3 pass through router-2 similarly with
bypassing, however the tail flit finds the requested output busy and therefore has to go
through allocation spending an additional cycle in router-2.

The control information for H and B1 arrive in router-3 at the end of cycle 3,
enabling allocation in cycle 4 as they go to a local port and AB is not an option. Then,
in cycle 5 their control is forwarded to the local port and in cycle 6 they traverse the
local link. A cycle later B2 and B3 do the same. Finally, the tail flit arrives with an
extra cycle delay due to unsuccessful bypassing in router-2.

4.3 Zero-Load Latency Analysis
The Zero-Load Latency (ZLL) of a packet in FreewayNoC is as follows: one cycle
for the SA of the first hop as there is no control forwarding yet to cover it; all hops
spend at least a cycle; turning hops require an additional cycle as AB is not allowed;
the serialization latency is half a cycle per flit for all but the first 2 flits that arrive on
the first cycle:

ZLLFreewayNoC = 1+hops+hopsturn +(N−2)/2 cycles (4.1)

The ZLL of a packet in DDRNoC and ShortPath networks is given in Eq. 3.1 and
3.2, respectively. Moreover, the ZLL of an ideal network with two stages per hop (ST

4.4. ROUTER CONTROL 27

Figure 4.3: ZLL analysis of FreewayNoC, DDRNoC and ShortPath with respect to the
number of hops versus minimum packet latency considering ST+LT delay per hop.

and LT) can also be derived from the ShortPath ZLL equation, although its cycle time
would be shorter.

As shown in Section 7, the FreewayNoC cycle time is equal to the DDRNoC cycle
and about 68% longer than the ShortPath cycle. Moreover, the minimum hop-latency
for a NoC router, without any control overhead, is ST + LT. Considering ST and LT
are balanced, the cycle time of such a network would be ST (or LT), i.e. 50% of the
FreewayNoC cycle.

Taking into account these cycle times and the above ZLL equations we perform a
sensitivity analysis of the ZLL with respect to the number of hops a packet traverses
depicted in Figure 4.3. We assume a 3-flit packet and that the packet besides the
two local port turns also takes a third one (X to Y or vice versa) if the hop count
allows. The DDRNoC ZLL scales worse than the other two networks and is up to
50% higher for large number of hops. For low hop counts, ShortPath is better than
FreewayNoC, i.e., 35% better for 2-3 hops, but above 18 hops FreewayNoC exhibits
lower packet latency, i.e., 2.2% and 7.8% for 20 and 32 hops, respectively. It is worth
noting that FreewayNoC scales to the number of hops better than ShortPath. Actually,
FreewayNoC scalability is equal to the ST+LT hop latency. It can be observed that
FreewayNoC ZLL has a constant offset of 3 to 4 ST+LT delays, depending on the
number of turns, with respect to the minimum ST+LT hop latency. This enables
FreewayNoC to approach a ZLL that is only 10% higher than the minimum ST+LT
hop latency for 32 hops.

4.4 Router Control

4.4.1 Combined VC and Switch Allocation
The FreewayNoC utilizes a combined allocator to grant the requesting flits access to
the switch and to assign available output VCs to the head flits of new packets, which
are then inherited by the packet. It is composed of a VC Selection (VS) and a Switch
Allocation (SA) module as depicted in the top part of Figure 4.1.

The VS maintains a bit-vector per output port keeping track of the free VCs (VCs
currently not assigned to a particular packet) in the downstream router. A free VC with

28 CHAPTER 4. THE FREEWAYNOC ARCHITECTURE

available credits constitutes an available VC. The VS keeps a count of the available
VCs per output port as shown in Figure 4.4. Moreover, the bit vector indicating
available VCs undergoes a V:2 round-robin priority arbitration to select up to two
available VCs which are provided to new packets when their head flits win SA, as
illustrated in Figure 4.5.

Figure 4.4: VC availability check and count

Figure 4.5: FreewayNoC VC selection

4.4. ROUTER CONTROL 29

Parallel to the VS, the SA receives requests for switch access from flits going to
particular outputs. In case of a head flit request, the allocation logic only considers it if
VS indicates one or more available output VCs, otherwise the request is ignored. If the
head flit is granted access to the switch, then it is also assigned an available output VC,
selected by the VS arbiter, which is then marked as busy. Note that the VS arbitration
and the SA are performed in parallel. A non-head flit request, is first checked for
availability of credits at the already assigned output VC before it is considered by the
SA. For a router with P ports and V VCs per port, this requires (P-1)V:1 multiplexing
on the credit counters. Besides filtering out requests that lack a VC or credits, SA
ignores requests from flits that are allowed to bypass the allocation stage. So the
logic that determines whether a flit can perform allocation-bypassing provides input to
the SA. This logic is parallel to the the logic that computes the number of available
output VCs and communicates their credits. All remaining requests undergo switch
allocation using a separable output first dual grant switch allocator based on P PV:2
output arbiters (OA) and 2×P V:1 input arbiters (two per input port) with round-robin
priority arbitration. Head flits selected after OA for a particular output port are at most
two and less than VC available count for that output. The switch allocator design is
identical to the one used in the DDRNoC. The SA can grant the two phases of the next
cycle to flits of different or same packets.

4.4.2 Allocation Bypassing

The FreewayNoC reduces end-to-end packet latency by allowing packets to skip the
SA stage under low load. At the same time it also aims for the critical path of the
router to be defined only by the datapath and be independent of the control logic.
FreewayNoC achieves this by simplifying the bypass mechanism, by providing bypass
paths for the FC signals in the router as well as by operating all control components of
the bypass logic in parallel.

Having full AB support from one input port to any other output port requires
multiplexing of output port status bits (busy, credit and available VC counters) to
verify whether the incoming flits can safely bypass SA in the current cycle. These
checks introduce control logic in the datapath which defines the clock period and goes
against one of the design goals of the FreewayNoC. Moreover, arbitration or kill logic
would also be needed to either resolve contention or disable multiple flits attempting
Ab in the same clock cycle. To avoid the latter problems, FreewayNoC supports AB
only for flits going straight through the router, i.e., move along one direction. Then,
the output port to which each input port allows AB is already known. This means that
registered status bits at the output (and input) port can be directly used to decide if AB
can occur. Finally, contention resolution is not required at the output port as it only
allows bypassing from one input port.

After receiving the FC bits of incoming flits, the input port determines the eligibility
of an incoming flit to bypass by checking whether: (a) The flit is going straight (i.e.
not turning); (b) The input VC of the flit is empty; (c) For incoming f lit+ (f lit−), the
ST+ (ST−) timeslot for the input multiplexer of the crossbar is not allocated to any
input VC; (d) For a head flit the output port has available VCs (VC Selector signal:
Available VC Count6= 0); (e) For a non-head flit, the allocated output VC has credits.

In case these input AB checks are successful, the new FC of the bypassing flit(s)
is updated with the following, before it is forwarded to the AB FC mux at the output
port: (i) the NRC result computed using the destination included in the incoming FC,

30 CHAPTER 4. THE FREEWAYNOC ARCHITECTURE

(ii) an output VC-id provided by the VS. Although, NRC, VS, and input AB checks
are performed in parallel based on registered information, they would add delay to
the FC path (CST & CLT) and would make it slower. FreewayNoC remedies this by
providing a bypass path around CST from each input port (except the local port) to
its opposite output port as shown in Figure 4.1. The input AB checks, NRC and VS
now safely occur in parallel to each other and in parallel to the normal CST path after
which the FC bits reach the AB FC mux shown in Figure 4.1.

Parallel to input AB checks, the output AB check uses output port availability to
set the select of AB FC mux. If the output port is free, the output AB check allows the
bypassing FC to undergo CLT after passing input AB checks. It also informs input
VC controller, SA and VS about a successful bypass.

After a successful input and output AB check, the SA aligns the input and output
multiplexers of the crossbar to the input VC from where the bypassed incoming flits
will undergo ST during the second half of the current cycle or the first half of the
next, as shown in the example of Figure 4.2, cycles 3-4, router 2. The FreewayNoC
performs the above checks in the clock half that precedes the arrival of the incoming
flit1 and the time margin is sufficient. As soon as the flit arrives, it has been decided
whether it will wait in VC buffers for SA or it will immediately proceed to ST.

A normal SA allocation request is always created when an incoming flit is an-
nounced by its preceding FC bits. Then, the SA checks the availability of output
VCs (for head flits) or credits (non head flits) and in parallel the input AB checks are
performed. If the input AB checks pass, the VC controller speculates that output AB
checks will also pass and sets the AB Req to block the respective SA request before it
enters the arbitration stages. This adds only a small delay of a 2-input AND gate after
the downstream buffer availability checks are performed by the SA. In essence, an SA
request that passes the input AB check is canceled speculatively without confirming
that the output AB check is also positive. We opted for this design decision to avoid
creating a longer path before SA arbitration. We have observed that this speculation
has negligible impact on performance because: (i) under low load the speculation is
mostly correct (output AB check is positive), (ii) under high load the input AB checks
are not successful and thus their respective SA requests are seldom canceled, (iii) in
case of mis-speculation, other flits can still allocate the output port reducing the chance
of bandwidth waste.

4.4.3 Next Route Computation
Next Route Computation (NRC) is based on the destination carried by the forwarded
control (FC) of a flit after the FC is registered. In case the flit is allowed to perform AB,
the result of the NRC is put to the new FC that bypasses the regular FC. Otherwise,
the NRC result is registered and used in the regular FC a subsequent cycle. The NRC
is performed in parallel to the AB check so it does not add to its delay.

4.4.4 Flow Control and Minimum Buffer Size
FreewayNoC uses credit based flow control, with one wire per VC indicating to the
upstream router the release of VC credits and an additional wire per port to signal

1For an FC that arrives at a rising clock edge, its first out of the two data flits, f lit+, is registered in
an input VC at the next falling edge, and can perform ST (ST+) in the second half of the cycle. AB has
completed its checks in the first half of the cycle.

4.5. SUMMARY 31

Figure 4.6: FreewayNoC control path analysis.

the release of two credits of one VC. Moreover, in case of a regular flit propagation,
credits can be reused after four clock cycles. However, between nodes propagating
flit in AB mode, credits can be reused after two clock cycles because the flits do not
require SA pipeline stage in either of the two routers.

4.4.5 Control Path Analysis
Figure 4.6 illustrates the various register to register paths of the control logic. The
FreewayNoC architecture offers an entire cycle for these paths to complete, as opposed
to the datapath parts (ST, LT) which have half a cycle available to transfer a flit. It
can be observed that, Input AB check, NRC, and VS selection are in parallel and give
input to the CLT. They are also in parallel to the other checks of the SA needed for
filtering SA requests before SA arbitration. Finally, the CST is in sequence with the
output AB check, the AB FC mux and the CLT, while VC selection arbitration is in
sequence with a P×P crossbar for sending the output VC-ids to the input ports.

4.5 Summary
The FreewayNoC router architecture achieves a performance solely dependent on
datapath delays. FreewayNoC routes packets at DDR maximizing throughput at a
rate defined by the longest datapath stage (ST or LT). It further provides simplified
allocation bypassing to improve latency, which per hop is at best equal to the sum of
the ST and LT delays. FreewayNoC matches the throughput of previous DDR NoC
and achieves a zero-load latency that scales to the number of hops better than previous
state-of-the-art NoCs and equally well with a network that has no control overheads.

32 CHAPTER 4. THE FREEWAYNOC ARCHITECTURE

Chapter 5

The HighwayNoC Architecture

The previously presented DDR NoC design (FreewayNoC) offered DDR datapaths to
improve NoC throughput and allocation bypassing support to reduce packet latency.
However, it only allowed flits propagating an in-network straight hop to bypass the
allocation stage, in order to reduce the complexity of bypassing logic. It offered no
bypassing support for turning flits, i.e., flits entering and exiting the network through
the local port, as well as flits performing an in-network XY (or YX) turn. However,
turns to and from the local port represent a special case, because local ports use shorter
links, relative to inter-router links, to connect to the network interface placed in close
proximity. So, local links have some slack because of their short length, which can be
used to support allocation bypassing for flits entering and exiting the network through
these links.

This Chapter presents the HighwayNoC router architecture, which enhances the
allocation bypassing support offered by the previous FreewayNoC architecture to
also include the local port. HighwayNoC uses a DDR datapath to improve network
throughput and allows incoming flits to directly traverse the switch and link without
undergoing an allocation step when their way to the output port is free, henceforth
referred to as allocation bypassing (AB). Contrary to the FreewayNoC designs, this is
possible for all hops except the in-network turns, including entering and exiting the
network. HighwayNoC also forwards control information of routed flits to the down-
stream router a cycle before the flits, to start earlier the allocation of datapath resources
as well as the AB checks and next-route computation. In parallel to allocation, a VC
is selected out of the available free ones and given to the (header) flit which wins the
allocation. Without loss of generality, our HighwayNoC design considers a 2D-mesh
network, with look-ahead XY-routing, composed of routers with virtual-channels and
credit-based flow control.

The top-level view of the HighwayNoC router is shown in Figure 5.1. The datapath
is composed of two stages: Switch Traversal (ST) and Link Traversal (LT), separated
by the input VC buffers and the two output registers (one for each clock edge), which
are multiplexed before the link. Each stage can handle two flits per cycle, one at the
high and one at the low phase of the clock. In addition, the HighwayNoC router has
the following control blocks: a combined allocator composed of the Virtual Channel
Select (VS) and a Switch Allocation (SA), Next-Route-Computation (NRC) and AB
check logic at the input and output ports.

33

34 CHAPTER 5. THE HIGHWAYNOC ARCHITECTURE

Figure 5.1: The HighwayNoC router architecture.

The rest of this Chapter is organized as follows. In the next Section, we describe
the DDR datapath of the data flit, as well as the datapath of the forwarded control
signals in a HighwayNoC router. In Section 5.2, we describe the timing details of
flits and forwarded control information propagating through HighwayNoC routers,
illustrated using a timing example. In Section 5.3 we analyze the zero-load latency of
HighwayNoC. In Section 5.4, we describe the control modules of of a HighwayNoC
router. Finally, in Section 5.5, we summarize the main aspects of the HighwayNoC
architecture.

5.1 Router Datapath
The HighwayNoC router datapath has two parts: the datapath of the data flits and the
datapath of the control bits forwarded separately to support control forwarding. Each
of the two is described separately below.

5.1.1 DDR Flit Datapath
The DDR flit datapath of a HighwayNoC router, illustrated in Figure 5.1, is similar to
the FreewayNoC router datapath described in Section 4.1.1. It also supports two flits
per cycle per port, one at each phase of the clock and offers the same alternative ways
to propagate flits at DDR and SDR, as presented in Figure 3.3.

In summary, each of the four types of multiplexers1 along the HighwayNoC
datapath can be controlled separately to operate in DDR mode in order to allow two
flits per cycle to pass, one at each clock phase. Then, as illustrated in Figure 3.3, the
HighwayNoC datapath supports the following cases of DDR: (a) DDR per packet,

1These multiplexers are the following: the multiplexer of a VC buffer, the multiplexer for the input
arbitration, the one for the output arbitration, and the multiplexer that selects one of the two output registers
before the link.

5.1. ROUTER DATAPATH 35

sending two flits from the same input VC to the same output, (b) sending two flits of
different VCs of the same input to a single output, (c) sending two flits of different
VCs of the same input to two different outputs and (d) sending two flits of different
input ports to a single output. In addition, a datapath part can operate at SDR, then, the
select of the respective multiplexer will remain unchanged through the entire cycle.

5.1.2 Datapath of Forwarded Control Bits

Control information for each of the two outgoing flits is forwarded to the downstream
router one cycle ahead. This mechanism is termed as control forwarding [42]. This
forwarded control (FC) uses a separate path (crossbar and link wires) from the datapath
to perform control switch traversal (CST) and control link traversal (CLT) in a single
cycle as depicted in the lower part of Figure 5.1 and elaborated in Figure 5.2a. Two
sets of FC signals exist, one for the flit traversing the link during the high phase of the
next cycle (FC+) and one for the flit propagating in the low phase (FC-). Each set of
FC signals uses separate CST and CLT paths. Moreover, as shown in the lower part of
Figure 5.2a, within the router there are additional paths for FC signals to support AB.
These paths bypass the regular CST and send FC of bypassing flits, which either (i)
traverse an in-network straight hop, (ii) enter the network or (iii) exit the network. In
the first case, each non-local input port (Nin) sends FC of bypassing flits to its straight
non-local output port (Nout), in particular West to East (shown in Figure 5.2a), North
to South and vice versa. In the second case, FC of bypassing flits goes from the local
input port (Lin) to each Nout . In the third case, each Nin sends FC to the local output
port (Lout). During AB, these bypass paths carry FC signals to the output port for CLT
through the AB FC mux.

The AB logic checks the respective input and output port availability, as well as
for available VC and credits, to determine whether bypassing is possible. These AB
checks are performed in parallel to the regular CST. A successful AB check at an input
port will enable the FC of the bypassing flit to be sent through the 2:1 AB FC mux
multiplexer directly to CLT overriding the regular FC, as shown in Figure 5.2a. Note
that flits coming from the Nin as well as from the Lin may want to bypass to the
same output; in that case the in-network flit has priority as explained in Section 5.4.2
and selected by the 2:1 multiplexer AB input selection mux. The two paths of the
forwarded control signals, namely 〈CST+CL〉 and 〈AB checks+CLT 〉 are not in
the critical path of the router. To their advantage is that, unlike the data ST and LT,
FC signals do need to be registered at the output port because they are not sent at
DDR and in addition the FC path is substantially narrower than the data-path requiring
a smaller crossbar. As shown in Figure 5.2, the local input and output ports have
different AB support than the in-network ports. When bypassing from the Lin to the
network, bypassing FC signals generated after AB checks (shown in Figure 5.2b) are
multiplexed with the bypassing FC signals of the Nin using the AB input selection mux
as discussed above. Finally, when bypassing to the Lout , a 4:1 multiplexer is needed
before the 2:1 AB FC mux (shown in Figure 5.2c) to select one of the Nin for bypassing
using static priority. This adds latency to the bypassing FC path which is however
compensated by the shorter CLT of the Lout ; that is because there is a shorter link
(relative to inter-router links) connecting the local output port of a router to the network
interface. In case the local link is not short enough, as previously assumed, AB at
the local port cannot be performed. This would have a negative impact to the packet
latency of the HighwayNoC and in the worst case may fall back to the latency of the

36 CHAPTER 5. THE HIGHWAYNOC ARCHITECTURE

(a) Regular and bypassing FC+ paths from a non-local input port (West) to its straight non-local
output port (East) in HighwayNoC.

(b) Bypassing FC+ path and enable signals originating from the AB
controller at the local input port.

(c) Multiplexing of regular and bypassing FC+
signals at the local output.

Figure 5.2: AB controller and FC+ paths at the HighwayNoC input and output ports.
FC- paths are identical to FC+ paths.

FreewayNoC, if all local links need to be long.
The FC signals contain the following fields: two sets of VC-ids and NRC results

(one for each incoming flit), flit type and finally destination addresses of header flits
required for the NRC when bypassing as explained later. In our implementation,
we allow only one header flit to bypass per cycle in order to reduce the number of
FC bits; then only one destination address needs to be carried. In addition, when
non-header flits are transmitted, the NRC field is not used; then the NRC bits are

5.2. TIMING 37

reused to distinguish between body and tail flits.

5.2 Timing

The timing of a HighwayNoC router is described using an example of a five-flit packet
traversing four routers from source to destination node, illustrated in Figure 5.3. In our
example, we consider that Router 1, Router 2 and Router 3 are aligned and therefore
flits passing through the second router go straight and have the opportunity for AB.
Router 4 is not aligned with Router 1 and Router 2, therefore flits entering Router 3
cannot bypass SA as they need to turn in order to propagate towards Router 4. Note
that the LT and ST for flits that traverse the link in the high clock phase are marked
in the example with “+”, and for flits that traverse the link in the low clock phase are
marked with “-”.

In cycle zero, router-1 receives the forwarded control (FC) of the two first flits
(H, B1) which carries flit types, assigned VC, next route and destination. The packet
comes from the local port, so depending on the AB checks, it can either undergo or
bypass SA stage in cycle 1. AB check performed in the first half of cycle 1 is positive,
therefore the flits are not considered for allocation. In parallel, the data flits of H and
B1 arrive and get stored in the input VC buffer in the first and second half of cycle 1,
respectively. As the first flit is a header, NRC and VC select (VS) are performed, too.
NRC, VS, and AB check are performed in parallel to form the control information of
the bypassing flits which will bypass the regular CST and traverse the link (CLT) to
reach router-2 at the end of cycle 1. In the second half of cycle 1 the H flit traverses
the switch of router-1 (ST+) and is registered in Reg+ before it performs LT in the
first half of cycle 2 (LT+). B1 flit follows half a cycle later. It performs ST and LT in
the first and second half of cycle 2, respectively (ST-, LT-). The remaining flits are
routed through router-1 in a similar way.

Following again H and B1 flits, their control information arrives in router-2 at
the end of cycle 1 while the data flits are received in cycle 2. These flits are routed
through router-2 in a manner similar to router-1 because they are passing straight
through the router and can bypass the allocation stage. Flits B2 and B3 pass through
router-2 similarly with bypassing, however the tail flit finds the requested output busy
and therefore has to go through allocation spending an additional cycle in router-2.
It is important to mention that depending on the checks which disable AB, switch
allocation request for the tail flit can be sent either in cycle 4 (as in this example) or in
cycle 5. For more details on AB, see Section 5.4.2.

Following again H and B1 flits, their control information arrives in router-3 at the
end of cycle 2 while the data flits are received in cycle 3. Packet route in the received
FC informs router-3 that incoming flits need to turn to be directed towards router-4.
This disables AB in router-3 for the incoming packet; instead, SA is performed in
cycle 3. In the second half of cycle 3, NRC is also performed using the destination
address in the header flit received during the first half of cycle 3. The results of SA
and NRC are both ready at the end of cycle 3. After successful SA, FC bits undergo
CST and CLT in cycle 4, whereas the corresponding H and B1 flits undergo LT in
cycle 5. Remaining flits (B2, B3 and T) of the packet pass through router-3 in a similar
manner.

The control information for H and B1 arrive in router-4 at the end of cycle 4 while
the control information for the B2 and B3 arrive at the end of cycle 5. Now these flits

38 CHAPTER 5. THE HIGHWAYNOC ARCHITECTURE

Figure 5.3: Timing diagram showing the flow of a five flit packet through four routers
of the HighwayNoC.

have to be routed to the local output port. Successful AB check leads to these flits
propagating through router-4 in a similar way as router-1. Finally, the tail flit arrives
with an extra cycle delay due to unsuccessful bypassing in router-2.

5.3 Zero-Load Latency Analysis
Next, the Zero-Load Latency (ZLL) of HighwayNoC, FreewayNoC and ShortPath
networks are analyzed and compared to the minimum ST+LT latency for the hops
(described earlier in Section 4.3). The networks have the same topology, number
of VCs and a datapath pipelined in two stages: ST and LT2. The analysis takes into
account the maximum operating frequency of each network, implemented as described
in Chapter 7.

The ZLL of a HighwayNoC packet is as follows: FC signals are registered at local
input at rising clock edge; each hop takes a cycle except turning hops that take two
because there is no AB; the serialization latency is half a cycle per flit:

ZLLHighwayNoC = hops+hopsturn +N/2 cycles (5.1)

The ZLL of FreewayNoC and ShortPath networks is given in Equation 4.1 and
3.2, respectively. Taking into account the cycle time of these networks and their
ZLL equations, we perform a sensitivity analysis of the ZLL with respect to the
number of hops a packet traverses. We consider a 3-flit packet and assume it always

2Although a network with single stage datapath (ST and LT performed in one cycle) would offer slightly
lower latency, it would achieve only half of the throughput and therefore is considered a worse option.

5.4. ROUTER CONTROL 39

Figure 5.4: ZLL analysis with respect to hop count with the HighwayNoC, the Free-
wayNoC and the ShortPath networks versus an ideal network that has a delay of
ST+LT per hop.

takes an xy-turn if the hop count allows. As shown in Figure 5.4, the ShortPath
network scales worse than the FreewayNoC and the HighwayNoC and has 20%
higher zero-load latency compared to the minimum ST+LT latency. This is because
ShortPath introduces control logic in its critical path which leads to slower clock.
FreewayNoC scales better than ShortPath because its datapath operates at DDR to
have a critical path independent of control logic and offers limited allocation bypassing
support. With higher number of hop, ZLL of FreewayNoC is 7% lower compared
to ShortPath. HighwayNoC scales even better than FreewayNoC. It is worth noting
that HighwayNoC scales to the number of hops better than ShortPath. Actually,
HighwayNoC scalability is equal to the minimum ST+LT latency. It can be observed
that HighwayNoC ZLL has a constant offset of 1.5×(ST+LT) delays with respect to
the minimum ST+LT latency. Two thirds of this offset is due to the considered turn.
The remaining 1

3 of the offset is due to the bypassing checks required before the first
hop. This second overhead can be hidden in cases where the control of a packet can
be generated before the actual data arrive; this is common in network interfaces [53]
as well as in cache accesses where tag matching is faster than reading data [54]. The
fact that HighwayNoC ZLL has a constant offset relative to the ideal ZLL enables it
to be only 4.4% slower than the ideal network for 32 hops at zero load, or only 1.5%
when there is no turn in the path.

5.4 Router Control
The control of the HighwayNoC router is described next. First the DDR allocation
algorithm is described, which is simplified compared to previous DDR NoCs. Then,
the AB control is detailed, which is extended to support bypassing at the local ports.
Subsequently, the route computation and flow control are discussed. Finally, the delay
of the control paths is analysed.

5.4.1 Combined VC and Switch Allocation
The HighwayNoC utilizes a combined allocator to grant requesting flits access to the
switch and assigns available output VCs to head flits of new packets. It is composed

40 CHAPTER 5. THE HIGHWAYNOC ARCHITECTURE

Figure 5.5: HighwayNoC dual grant input first Switch Allocator

of a VC Selection (VS) and a Switch Allocation (SA) module as depicted in the top
part of Figure 5.1. The implementation of VS is similar to that of the FreewayNoC
VS, described in Section 4.4.1. Moreover, the mechanism with which the SA in the
HighwayNoC removes allocation requests with insufficient downstream credits or VCs
and requests from flits allowed to bypass allocation, is also similar to the FreewayNoC
and described in Section 4.4.1. However, the HighwayNoC utilizes separable input
first dual grant switch allocator as opposed to the output first dual grant allocator in
the DDRNoC and the FreewayNoC networks. Input first allocators reduce complexity,
area and power costs while offering throughput similar to output first allocators [39].
The HighwayNoC SA is DDR and can grant the two phases of the next cycle to flits of
different or same packets.

The HighwayNoC SA shown in Figure 5.5 utilizes a dual grant V:2 round-robin
priority input arbiter (IA), identical to the arbiter used for VC selection in Figure 4.5,
to select at most two requesting input VCs per input port, one for high phase (g+[i])
and one for low phase (g−[i]) of the clock. The input VCs selected by IA for the
high clock phase for all the input ports send arbitration requests to P P:1 round-robin
priority output arbiters (OA+). The grants by the IA for the high clock phase are
combined with grants by OA+ to determine whether requests by input VCs are granted
for high clock phase and to generate grant+ signals for input port VCs.

The output arbitration for low clock phase grants OA− is different from output
arbitration for high clock phase. This is because OA+ gets priority over OA− to the
available output VCs. So, when there is only one output port VC available (vc -
available count=1 in Figure 4.4) and OA+ gets it (op vc grant+ in Figure 5.5 is set)
then OA− should not grant a head flit request. This creates a dependence between the
final output of the OA+ and the beginning of OA−. In order to optimize for clock speed
and parallelize output arbitration for high and low clock phase, we use two sets of P:1
round-robin priority output arbiters per output port for the low clock phase, one for all
g−[i] requests including header flits (denoted as OA−) and one for only body/tail flit
g−[i] requests (denoted as OA∗−). Both arbiters operate in parallel and the output of
one of them is selected depending on the op vc grant+ signal. In case op vc grant+
is set then at the low phase of the clock only non-header flits should be granted the
switch (OA∗− outputs are selected) otherwise all types of flits can be granted (OA−

outputs are selected) and the grants are combined with g−[i] from IA to produce final

5.4. ROUTER CONTROL 41

grants for input port VCs at the low clock phase.
The SA described so far is not yet able to allow two flits of the same packet to

be switched in DDR mode. This is accomplished using additional logic appended to
the above SA as presented in Chapter 3 for the DDRNoC architecture. Briefly, when
an input VC receives an SA grant a second packet flit can follow if available under
the condition that (i) there is enough space in the downstream VC buffer and (ii) the
required input and output ports have not been promised by the SA to another flit.

5.4.2 Allocation Bypassing

The HighwayNoC reduces end-to-end packet latency by allowing packets to skip the
SA stage in the absence of contention. At the same time, it also aims for the critical
path of the router to be defined only by the datapath and remain independent of the
control logic. HighwayNoC achieves this with a simplified AB mechanism, offered in
all but the in-network turning paths, which would require excessively complex logic.

Offering complete AB from each input port to any other output port would require
multiplexing of output port status bits (busy, credit and available VC counters) to
verify whether the incoming flits can safely bypass SA in the current cycle. These
checks would introduce control logic in the datapath, which defines the clock period
and goes against one of the design goals of the HighwayNoC. Moreover, arbitration
or kill logic would also be needed to either resolve contention or disable multiple
flits attempting to concurrently bypass to the same output. To avoid these problems,
HighwayNoC supports AB only for:

• in-network flits that go straight through the router, i.e., move along one direction,
and therefore turning flits do not compete with them for bypassing;

• flits that enter the network, having lower priority compared to in-network by-
passing flits;

• flits that exit the network, exploiting the shorter link traversal to perform a fixed
arbitration between them.

This requires two AB check modules at each non-local input port (Nin) to determine
bypassing feasibility to the straight non-local output port (Nout) and to the local output
port (Lout and one AB check module at the local input port (Lin) for bypassing to any
Nout as shown in Figure 5.2.

Each input port determines eligibility of its incoming flits to bypass by performing
AB checks based on flit route indicated in the received FC bits. As shown in Figure
5.6, a set of some initial bypassing checks determine whether an allocation request
should be sent to SA. These checks verify that:

• the flit traverses in a direction which supports bypassing;

• there are no buffered flits in the input VC which will receive the incoming flit
(to ensure in-order delivery of flits in a packet);

• The input port is free, i.e. for incoming f lit+ (f lit−), the ST+ (ST−) timeslot
for the input multiplexer of the crossbar is not allocated by the SA to any input
VC;

42 CHAPTER 5. THE HIGHWAYNOC ARCHITECTURE

Figure 5.6: Checks performed in order to guarantee conflict free propagation of
bypassing flits.

• The output port is free, i.e. for incoming f lit+ (f lit−), the ST+ (ST−) timeslot
for the output multiplexer of the crossbar (which corresponds to LT+ (LT−)
from the output port) is not allocated by the SA to any input port.

During this phase, our HighwayNoC implementation additionally checks that up to
one header flit bypasses per input port per cycle. As explained in Section 5.1.2, this
restriction is imposed only to limit the number of FC bits.

These initial checks are performed based on already registered status information
in the router input and output and require little logic3. Passing these initial checks does
not guarantee successful bypassing, however, they are used to filter out SA requests by
incoming flits, holding back those that pass the initial checks. Performing a complete
AB check before SA would be too slow to fit in the targeted cycle time. However, using
these initial AB checks is still more efficient than naı̈vely allowing all SA requests to
be processed and then to kill the granted ones which also pass complete AB checks,
like [29], because this would affect throughput.

As shown in Figure 5.6, parallel to the initial AB checks, the received FC bits of
incoming head and body/tail flits are used to check downstream buffer availability by
accessing counters of available VCs and credits, respectively. Higher priority access
to available downstream VCs is given to bypassing header flits already in the network
over those coming from the local input. However, none of the bypassing header flits
has priority to available VCs over non-bypassing flits.

Upon successful initial bypassing and buffer availability checks, the new FC of
the bypassing flit(s) is generated, before it is forwarded to the AB input selection mux
at the output port as shown in Figure 5.2. The fields of the new FC are computed as
follows:

• The next route is updated in the FC of a header flit after it is computed using the
destination address carried by the received FC. The next route of a body/tail flit
is copied from the VC state register.

• The output VC-id of a header flit is provided by the VS and that of a body/tail
flit by a VC state register.

3A V:1 multiplexer is needed to check whether the input VC is empty and a P-1:1 multiplexer only at
Lin to check whether the requested Nout is free.

5.4. ROUTER CONTROL 43

• Finally, the flit type and the destination address bits (only for header flits) are
copied from the received FC.

After the generation of the bypass FC signals, bypassing header flits need to finally
confirm they did not violate priority over non-bypassing header flits when getting a
VC.

Additional bypassing checks need to be performed for flits that enter or exit the
network, as depicted in Figure 5.6.

Multiple incoming flits may fulfil the initial bypassing and buffering criteria to
bypass to the Lout . Therefore, bypassing to the Lout calls for conflict resolution between
the non-local inputs. In order to resolve conflicts, HighwayNoC uses two P-1:1 fixed
priority arbiters, one for each clock phase (FC+s, FC−s). The delay of these arbiters
can be easily accommodated exploiting the slack present in the shorter Lout link. An
arbitration request is only sent to these arbiters when the received FC satisfies initial
bypassing checks as shown in the left part of Figure 5.6.

Finally, bypassing from the Lin to a Nout is allowed only when there is no other flit,
already in-network, bypassing to the same output. In order to fit our time-budget, this
condition is not fully checked for in-network header flits. In that cases, it is assumed
that an in-network flit is bypassing before its VC-id is confirmed. This may result in
unnecessarily missed opportunities for bypassing, which yield to a negligible (less
than 1%) increase in latency at high injection rates.

Although, NRC, VS, and all the above input AB checks are performed in parallel
based on registered information, they would add delay to the FC path (CST & CLT)
and would make it slower. HighwayNoC remedies this by providing a bypass path
around CST between each input-output bypassing pair. The input AB checks, NRC
and VS now safely occur in parallel to each other and in parallel to the normal CST
path after which the FC bits reach the bypassing input selection mux as shown in
Figure 5.2.

After a successful AB check, the SA aligns input and output multiplexers of the
crossbar to the input VC of the bypassing flit to enable ST during the second half of the
current cycle or the first half of the next. Figure 5.3 shows AB examples in Router-1
from the Lin to a Nout , in Router-2 from a Nin to its straight Nout , and in Router-4 from
a Nin to the Lout .

5.4.3 Next Route Computation

Next Route Computation (NRC) is performed only for header flits and its result is
stored in the input VC state registers to be used by the subsequent flits of the packet.
As discussed in Section 5.2, NRC is performed at different timing for bypassing and
non-bypassing flits. Bypassing flits have their destination address carried by the FC.
Then NRC is performed after FC is registered and before the new FC is created and
sent to the downstream router. Figure 5.3 shows an example of NRC in Router-1 for
bypassing header flit in cycle 1.

Non-bypassing flits that are transmitted in the low phase of the clock use the same
approach as bypassing flits in order to have NRC ready together with allocation results.
On the contrary, non-bypassing flits sent during the high phase of the clock are treated
differently. For these flits, the FC does not need to carry their destination address.
The header flit arrives during the first half of the cycle and carries its own destination
address which is registered at the falling edge of the clock. Then, NRC is performed

44 CHAPTER 5. THE HIGHWAYNOC ARCHITECTURE

Figure 5.7: HighwayNoC control path analysis.

during the second half of the cycle to be ready together with their allocation result.
Such a scenario is illustrated in cycle 3 of Figure 5.3 for Router-3.

The tight time budget of the bypassing logic, which has NRC of bypassing flits
in sequence with the bypassing multiplexers and CLT, limits the routing algorithm
alternatives. So, when a bypassing path is chosen, the routing algorithm needs to be
simple to fit in the available time budget (about 5-6 FO4 stages). In our implementation
we use XY routing, but any other (dimension-order) routing algorithm with similar
complexity could also be used.

However, when a flit is not bypassing then half a cycle is available for NRC,
which allows more complex routing algorithms to be implemented. On one hand,
AB is enabled when there is no congestion. On the other hand, advanced algorithms
yield most of their performance benefits when there is contention and congestion.
Therefore, HighwayNoC could use more advanced algorithms when a header flit is
routed normally and fall back to dimension-order routing when bypassing, as long as
deadlocks are avoided.

5.4.4 Flow Control and Minimum Buffer Size

HighwayNoC uses credit based flow control, with one wire per VC indicating to the
upstream router the release of VC credits and an additional wire per port to signal
the release of two credits of one VC. Moreover, in case of a regular flit propagation,
credits can be reused after four clock cycles. However, between nodes propagating
flit in AB mode, credits can be reused after two clock cycles because the flits do not
require SA pipeline stage in either of the two routers.

5.4.5 Control Path Analysis

Figure 5.7 illustrates the various register to register paths of the control logic. The
HighwayNoC architecture offers an entire cycle for these paths to complete, as opposed
to the datapath parts (ST, LT) which have half a cycle available to transfer a flit. It

5.5. SUMMARY 45

can be observed that, AB controller, NRC, and VS selection are in parallel and give
input to the CLT. They are also in parallel to the P-1:1 fixed priority arbiters needed
to resolve conflicts among bypassing requests to the local output port and the buffer
availability checks of the SA needed for filtering allocation requests before input
arbitration. Finally, the CST is also parallel to the AB controller and the Bypass -
Input Selection mux and in sequence with the AB FC mux and the CLT, while VC
selection arbitration is in sequence with a P×P crossbar for sending the output VC-ids
to the input ports.

5.5 Summary
The HighwayNoC router architecture offers an average packet latency and throughput
which depends solely on its datapath delays and remains independent of control delays.
HighwayNoC routes packets at DDR maximizing throughput at a rate defined by the
longest datapath stage (ST or LT). Its packet latency can be as low as the sum of the
ST and LT delays for all hops except the in-network turns. Mostly due to its slower
turns, HighwayNoC adds a constant latency overhead of 1.5 cycles to each end to end
packet transition. Still, its zero-load latency scales to the number of hops equally well
with an ideal network that has no control overheads.

46 CHAPTER 5. THE HIGHWAYNOC ARCHITECTURE

Chapter 6

The FastTrackNoC
Architecture

The previously presented DDR NoC architecture (HighwayNoC) operated its datapath
at DDR, in order to improve network throughput, and offered allocation bypassing
support for flits propagating an in-network straight hop as well as flits enter and exiting
the network through the local port, in order to reduce packet latency. Allocation
stage can be bypassed because it is used to resolve contention among competing flits
and is not needed in the absence of contention. Following the same line of thought,
we may also be able to bypass the ST stage in some cases. ST stage is needed to
change the routing dimension of a flit. It can be bypassed when a flit traverses a hop
without changing its dimension. Bypassing the ST stage, however, requires fast bypass
paths from the input port to the requested output port. In order to optimize for the
common case, these bypass paths can be provided from every network input port to its
straight output port, because a packet mostly propagates straight and has at most one
in-network XY-turn.

This Chapter presents the FastTrackNoC architecture which offers an extra bypass-
ing path between every input port and its opposite output as shown in Figure 6.1. This
enables flits to proceed directly to the link without passing through the switch, thereby
reducing latency. FastTrackNoC datapath uses both clock edges, i.e., it is able to route
up to two flits per port per cycle at Dual Data Rate (DDR), to maximize its switching
rate.

In a regular mode of routing a flit, FastTrackNoC spends two cycles per hop. More
precisely, one cycle for control, i.e., allocation, next route computation (NRC), and
other checks, half a cycle for switch traversal (ST) and half a cycle for link traversal
(LT) as shown in Figure 6.2. Using lookahead signalling, forwarded control (FC)
information arrives at the downstream router a cycle before the flits to enable the
control stage a cycle before flits arrive. Depending on contention and the flit direction,
the FastTrackNoC router can offer two faster ways to route a flit. A non-turning flit
arriving at the head of VC-0 can use the FastTrack (FT) path if the output is free and
proceed directly to link traversal (LT) spending half a cycle per hop. If that is not
possible, incoming flits may still be able to bypass the control (allocation) stage and
directly traverse switch and link when their way to the output is free. This is possible
for all VCs and hops including entering and exiting the network, except of in-network
turns, and allows flits to be routed with a latency of one cycle per hop.

47

48 CHAPTER 6. THE FASTTRACKNOC ARCHITECTURE

Figure 6.1: FastTrackNoC router architecture; west input to east output.

Without loss of generality, our FastTrackNoC design considers a 2D-mesh network,
with lookahead XY-routing, composed of routers with virtual-channels and credit-
based flow control. The datapath, illustrated in Figure 6.1, is composed of two stages:
Switch Traversal (ST) and Link Traversal (LT), separated by the input VC buffers and
the two output registers (one for each clock edge), which are multiplexed before the
link. Alternate bypass paths also exist to support FT traversal by multiplexing flits
stored in input VC-0 on the output link. Each stage can handle two flits per cycle,
one at the high and one at the low phase of the clock. In addition, the FastTrackNoC
router has the following control blocks: a combined allocator composed of the Virtual
Channel Select (VS) and a Switch Allocation (SA), Next-Route-Computation (NRC)
and bypassing check logic at the input and output ports.

The rest of this Chapter is organized as follows. In the next Section, we describe the
DDR datapath of the data flit, as well as the datapath of the forwarded control signals
in a FastTrackNoC router. In Section 6.2, we describe the control modules of a Fast-
TrackNoC router. In Section 6.3 we analyze the zero-load latency of FastTrackNoC. In
Section 6.4, we illustrate the timing details of flits and forwarded control information
propagating through FastTrackNoC routers using a timing example. Finally, in Section
6.5, we summarize the main aspects of the FastTrackNoC architecture.

6.1 Router Datapath

The FastTrackNoC router datapath has two parts: the datapath of the data flits, which
is further divided to the regular and the FastTrack path, and the datapath of the control
bits forwarded separately to support lookahead signalling. Each of them is described
separately below.

6.1. ROUTER DATAPATH 49

6.1.1 DDR Flit Datapath

The datapath of the flits carries flits from an input to an output port. It is composed of
two parallel intra-router paths, namely, the regular datapath and the FastTrack datapath,
which are multiplexed at the output before the link.

Regular flit path: The regular datapath is composed of input VCs, crossbar switch,
output registers and link wires and it is illustrated in Figure 6.1. This path is similar
to the regular datapath of DDR NoC routers presented in previous Chapters. It can
transfer two flits per cycle per port, one at each phase of the clock. At the input side,
each register in a VC buffer can be loaded selectively, either at the negative or the
positive clock edge, to allow the VC to store up to two incoming flits per cycle. The
multiplexer of the input VC buffer along with the input and output multiplexers of the
crossbar then transfer flits stored in the input VCs to the requested output port. These
multiplexers operate at DDR and can transfer up to two flits from one or two different
VCs in a single clock cycle, i.e., one flit per clock phase. This is accomplished by
changing the select signals of these multiplexers during each clock phase. After the
output multiplexer of the crossbar, flits are registered in one of the two output registers
(Reg+ and Reg−), one using the positive clock edge and the other the negative. Then,
the contents of these registers are multiplexed to the link and sent to the downstream
router at DDR.

FastTrack flit path: The FT datapath is parallel to the crossbar switch and the
output registers, as shown in Figure 6.1, and transfers flits in FT mode. FT mode allows
incoming flits to bypass SA and ST stages, in the absence of contention, and directly
traverse the link in half a clock cycle, as shown in Figure 6.2c. It offers FT support to
flits traversing an in-network straight hop; in particular, from west to east (shown in
Figure 6.1), north to south and vice versa. FT support is limited to flits that arrive at the
head of input VC-0. Connecting the FT path to only the head of VC-0 minimizes the
logic of the path and thus the delay added to the link as it avoids multiplexing among
(VC) buffer registers and input multiplexing. This restriction is however independent
of the allocated output VC. More precisely, the FT path propagates only incoming
flits stored at the head, registers 0 and 1, of an otherwise empty input VC-0 buffer. So,
VC-0 FIFO implementation prioritizes storing its incoming flits in registers 0 and 1
when it is empty (contrary to a simple circular FIFO for other VCs) to facilitate FT
traversal. As a consequence, selecting incoming flits for FT requires a 2:1 multiplexer
(FT in mux) rather than (B×V) : 1, where B is the buffer size of a VC and V the
number of VCs. The FT in mux operates at DDR using a gated-clock for select to
allow the FT path to send two flits in a cycle using both clock edges. It is worth noting
that, SDR NoC router would support ST bypassing with an FT path that starts only
from the head register-0 of VC-0 and thus FT in mux would not be needed. At the
other end of the FT path, a 2:1 multiplexer (FT out mux) is used to multiplex the
FT and the regular path of the router to the link. This is a 2:1 rather than (P-1):1
multiplexer as FT traversal is restricted to only in-network straight hops.

The two aforementioned optimizations at the two ends of the FT path, reduce its
delay, which is in the critical path of the router as shown in Section 7.2. More precisely,
the latency added to the LT delay is the delay of the two 2:1 multiplexers (FT in mux,
FT out mux) plus the wire delay from input to opposite output. This can affect either
the maximum network clock frequency or the link length. Our implementation opts
for the latter to ensure that the FastTrackNoC offers maximum switching rate and
hence maximum throughput.

50 CHAPTER 6. THE FASTTRACKNOC ARCHITECTURE

(a) Regular routing mode. Cycle-0: forwarded control (FC) signals arrive. Cycle-1: allocation
and NRC performed, incoming flits buffered. Cycle-2: new FC signals go through ST (CST) and
LT (CLT). Second half of Cycle-2 and Cycle-3: the two flits (+/-) perform ST and LT.

(b) Allocation Bypassing (AB) mode. Cycle-1, first half: NRC and checks for bypassing
allocation. Cycle-1, second half: new FC is sent through the link and ST of first flit (+). Cycle-2:
ST of the second flit (-) and LT of both flits.

(c) FastTrack (FT) mode. Cycle-1, first half: FT checks, NRC and FC sent through the link.
Cycle-1, second half: LT of first flit via FT path. Cycle-2, first half: LT of second flit via FT
path.

Figure 6.2: Modes of routing a flit in a FastTrackNoC router.

6.1.2 Datapath of Forwarded Control Signals

The FastTrackNoC uses lookahead signalling [42] to forward control information
ahead of the flits. This forwarded control (FC) information is received by the down-
stream router, half or one full cycle, before the arrival of the flits using separate link
wires. This information not only allows allocation stage in a router to be overlapped
with LT stage of the upstream router, saving a cycle in regular mode of flit traversal,
but it also informs downstream input VC registers to store subsequent incoming flits at
the appropriate clock edges. There are two sets of FC signals, one for the flit traversing
the link during the high phase of the clock cycle (FC+) and one for the flit traversing
in the low phase (FC-). Within the router, there are three parallel alternative FC paths,
one for each of the routing modes, namely the regular, allocation bypassing (AB), and
FT mode. The signals of the three FC paths are generated by the respective controller
(for regular, AB and FT routing)and are multiplexed on the output link as shown in
Figure 6.3.

Regular Forwarded Control Paths: The regular forwarded control (FC) path
transfers once every cycle control information of up to two flits (FC+, FC-) routed in
regular mode in the two phases of the subsequent cycle. When a flit at the input port
is granted access to the switch by SA, its FC signals first undergo a switch traversal,
called control switch traversal (CST), to reach the requested output port and then they
are multiplexed on the link for a control link traversal (CLT). CST and CLT together
take one complete cycle, as shown in Figure 6.2a and are not pipelined as opposed to

6.1. ROUTER DATAPATH 51

Figure 6.3: Datapaths of the forwarded control (FC) signals for the regular, AB and
FT routing modes. FC+ is depicted, FC- paths are identical.

the ST ad LT of the flits.
Forwarded Control Paths for Allocation Bypassing: Control information of flits

traversing the router in Allocation Bypassing (AB) mode is also forwarded once a
cycle using separate FC paths in the router, which skip CST and are multiplexed with
the regular FC path at the output port. CST is not needed for this path because, as
in the HighwayNoC, AB is supported for non-turning flits, or flits that enter or exit
the network. For non-turning flits, each non-local input port sends FC of respective
flits to its straight non-local output, as shown in Figure 6.3 for west to east. Flits
entering the network, can also bypass allocation with a lower priority compared to
concurrently arriving in-network flits, then, their FC signals go from the local input
port to each output and are multiplexed with the FC of in-network AB flits (using

“AB in mux”). Finally, for exiting flits, each input sends FC to the local output port
where an arbitration is performed with static priority and FC of winning input is
selected using an additional 4:1 multiplexer. This adds extra delay to the local output
FC path, which is however compensated by its shorter local link traversal.

Forwarded Control Paths for FastTrack Mode: FC signals of incoming flits routed
in FT-mode are forwarded through separate FC paths in the router. They are generated
in the FT controller, detailed in Section 6.2.3, and carried to the opposite output, where
they are multiplexed last with the regular and AB FC paths through a 2:1 multiplexer
(FT FC mux) before they traverse the link. The FC path for FastTrack mode is a half
cycle path and can be active during either of the two phases of a cycle. This requires
that a negative edge triggered register is added parallel to the regular positive edge
triggered one to store FC sent in the high pulse of the clock, as shown in Figure 6.3.
It is worth noting that the path for the FT-mode is the most critical out of the three
FC paths because it is a half cycle path and it includes the LT delay. Besides the
above 2:1 multiplexer and the link delay, this path also includes the delay of the FT
controller, which has a latency of about two 2:1 multiplexers as is discussed in Section
6.2.3. The FT controller used at every non-local input port checks whether incoming
flits can continue in FastTrack mode, generates the FC signals and allows them to
go out through the link. As explained in detail in Section 6.2.3, FT controller relies
on two bits of registered information to minimize its logic: (i) one bit indicating that

52 CHAPTER 6. THE FASTTRACKNOC ARCHITECTURE

the required router resources are available to support FastTrack mode for in the next
half cycle, and (ii) a bit carried by received FC indicating that the incoming flit(s) can
continue in FastTrack mode. The logic AND of the two bits determines whether FT
mode can be turned on and allows the FC signals of this path to traverse the link. One
more module that is in the critical path of generating the new FC signals in FT mode
is the Next Route Computation (NRC). As explained in Section 6.2.4, FastTrackNoC
simplifies NRC for FT traversal reducing its delay by hard-coding the comparison of
the destination address with next-node id.

FC Signals Format: The FC signals at each port contain the following fields: two
sets of VC-ids and NRC results (one for each incoming flit), encoded flit types of two
flits, destination addresses of header flits required for the NRC when bypassing (as
explained in Section 6.2.4), a bit to indicate if FC is valid in negative or positive clock
edge (FT Active), and a bit indicating whether incoming flits can continue routing
in FT mode (FT Capable). Similar to the HighwayNoC, various optimizations are
performed to reduce the number of FC bits. In particular, only one header flit is
allowed to bypass per cycle, in order to require only one destination address in the FC
bits, moreover, when non-header flits are transmitted, the unused NRC bits are reused
to distinguish between body and tail flit types.

6.2 Router Control

The control of the FastTrackNoC router includes a combined DDR allocator, the
control logic for FT and AB modes, as well as the next route computation and flow
control logic.

6.2.1 Combined VC and Switch Allocation

The FastTrackNoC utilizes a combined allocator which grants requesting flits access
to the switch and assigns available output VCs to head flits of new packets. It is
composed of a VC Selection (VS) and Switch Allocation (SA) module and is similar
to the HighwayNoC allocator. In a nutshell, the VS performs V:2 fixed priority
arbitration of available VCs (unassigned downstream VCs with credits) to select up to
two VCs which are provided to new packets in the next cycle, when their header flits
bypass SA or ST stages or win SA. The VS uses fixed priority arbitration and gives to
packets higher priority access to output VC-0 which supports FT traversal, thereby,
improving chances for flits to be routed in the FT-mode. Parallel to the VS, the SA
receives requests for switch access from flits going to particular outputs. A head flit
SA request is considered only if the VS indicates one or more available downstream
VCs. Similarly, a non-head flit SA request is first checked for availability of credits in
the assigned output VC. Besides filtering out requests that lack a VC or credits, SA
also ignores requests from flits that propagate using FT or AB modes. All remaining
requests undergo allocation using a separable input-first dual grant switch allocator,
similar to the one used in the HighwayNoC presented in Chapter 5. In the first stage of
the allocator, input arbitration is performed on requests from input VCs. This uses P
V:2 arbiters, one per input port. After input arbitration, up to two winning requests (one
for each clock phase) from each input port, undergo P:1 output arbitration using two
different sets of output arbiters, one per clock phase. Finally, SA uses additional logic
to allow two flits of the same packet to be granted access to the switch in DDR mode.

6.2. ROUTER CONTROL 53

When an input VC receives an SA grant, a second flit of the same packet, if available,
can follow under the condition that (i) there is enough space in the downstream VC
buffer and (ii) the required input and output ports have not been promised by the SA
to another flit.

6.2.2 Allocation Bypassing Controller
AB-mode allows incoming flits to bypass SA stage in three cases: when flits go straight
in the network, when they enter or exit the network. AB is not offered for in-network
turns as this would require arbitration among concurrently arriving flits and would be
too slow. An AB check module is located at each input port and determines eligibility
of incoming flits to bypass the SA stage. The AB checks are split in two types: (i)
initial AB checks, and (ii) buffer availability checks.

Initial AB checks use simple logic on registered information to filter out requests
that otherwise would enter SA. For a flit to successfully pass the initial checks is a
necessary but not sufficient condition for AB and includes the following:

• The flit traverses in a direction that supports AB.
• There are no buffered flits in the input VC that receives the flit (to ensure in-order

delivery of flits in a packet).
• FT-checks failed and the flit cannot be sent in FT-mode.
• The input and output ports are free, i.e., the respective ST and LT slot is not

allocated elsewhere by SA.

Parallel to the initial AB checks, the received FC bits of incoming head and body/tail
flits are used to check downstream buffer availability by accessing counters of available
VCs and credits, respectively. Higher priority access to available downstream VCs is
given to AB header flits already in the network over those coming from the local input.
However, none of the AB header flits has priority to available VCs over non-bypassing
flits.

Additional bypassing checks need to be performed for flits that enter or exit the
network. Bypassing from the local input is allowed only when there is no other flit,
already in-network, eligible to bypass to the same output. For flits exiting the network,
a P-1:1 fixed priority arbiter is used to resolve contention if multiple concurrently
incoming flits fulfill the criteria to bypass to the local output port. The delay of these
arbiters is compensated by the shorter local output link.

All AB checks and generation of new bypassing FC signals occur in parallel to
each other and in parallel to the normal CST path after which they are multiplexed as
shown in Figure 6.3. Finally, after a successful AB check, the crossbar is set to allow
the bypassing flit to traverse the switch during the second half of the current cycle or
the first half of the next, as shown in Figure 6.2b.

6.2.3 FastTrack Controller
FastTrack mode is possible for in-network, non-turning flits arriving at the head of
VC-0. Therefore, FastTrack checks are carried in all, except the local input ports and
have a very tight time budget, as explained in Section 6.1.2. The time constraint is
met by having most of the checks performed and registered before the clock ticks. In
particular, two registered bits of information are used as shown in Figure 6.4: (i) one

54 CHAPTER 6. THE FASTTRACKNOC ARCHITECTURE

bit in the forwarded control of an incoming flit, called FT capable, which indicates
whether the flit is capable to continue in FT mode and (ii) another bit, called FT ready
that indicates the router, for the particular input-output combination, is ready to allow
FT traversal of a flit.

Figure 6.4: FT Controller updates the FastTrack version of the FC information and
sets FastTrack enable signal (FT en) before CLT.

FT capable: The incoming flit can perform an FT traversal (FT capable set) when
the following conditions are met: there is valid incoming flit, its NRC result indicates
it is not turning, and it uses VC-0 to be stored. This should be checked for up to two
incoming flits arriving in a cycle to identify if one or both of these flits can traverse
the hop in FT-mode. Note that for a flit that performs multiple hops in FT-mode, a
new FT capable signal needs to be generated before going forward (FT capable new
in Figure 6.4). FastTrackNoC simplifies the (pre-)computation of FT capable by
allowing only flits of the same packet to use FT-path within the same cycle, therefore
having to deal with only one VC selection and one direction-check using a hard-coded
value. Another simplification is that the same FT capable signal is used for both flits
in a cycle, disabling the option of only one out of two valid flits to be FT capable. This
last constraint costs 1% in average packet latency. The above reduce the complexity of
generating a new FT capable to a 2-bit AND gate with the inputs indicating that (i)
VC-0 is granted and (ii) the flit direction is straight. The later signal is generated by
the NRC and takes as input half of the destination address for the dimension currently
traversed. Overall, the longest path of the FT controller starts from the registered
FC signals and includes (i) a 2:1 multiplexer and (ii) the NRC (or half of NRC logic
plus the AND-gate for FT capable new), summing up to roughly the delay of two 2:1
multiplexers.

FT ready: The particular input and output of a router is able to support a FT
traversal (FT ready set) when the following conditions are met:

• Input VC-0 is empty for the next cycle to store the up to two flits at the head of
VC-0 (registers 0 and 1).

• The input port is free for a complete cycle.
• The output port is free to send forwarded control (FT) signals through the link

for the respective slot.
• The output port is free for the respective slot.
• Free downstream VCs will be available in case incoming flit is a header.
• At least two credits of the allocated output VC will be available for non-header

6.2. ROUTER CONTROL 55

incoming flits.

It is worth noting that the FC signals of FT-propagated flits may arrive at either
clock edge. So, the router prepares two FT ready bits, registered separately in a
positive and a negative-edge triggered register, as shown in Figure 6.4, and uses the
appropriate one according to the FC timing.

In summary, FastTrack is enabled when incoming flit(s) are capable of FastTrack
and the router is ready to support it.

6.2.4 Next Route Computation

Next Route Computation (NRC) is performed only for header flits and its result is
stored in the input VC state registers to be used by the subsequent flits of the packet.
Its timing differs for flits routed in regular, AB and FT modes, as shown in Figure
6.2a. Bypassing (FT and AB) flits have a tighter time budget and therefore rely on
their FC signals to carry their destination address. As FC bits increase the link width,
FC carries only one destination address for only one of the two flits it represents. This
decision limits each input to support bypassing of up to one header flit per cycle. Then,
NRC of bypassing flits is performed after their FC is registered and before the new
FC is created and sent to the downstream router. On the other hand, regularly routed
header flits can carry their destination address in their data. Therefore, routing two
incoming header flits in regular mode, as shown in Figure 6.2a, uses the destination
address carried by the FC for the NRC of the latest arriving flit, and the destination
address carried in the header flit for the earliest arriving one.

When bypassing (allocation or ST), NRC is in the critical path and the timing
constraints are very tight, especially in FT-mode. So, when a bypassing mode is
selected (FT or AB), the routing algorithm needs to be simple to fit in the available
time budget (approximately 5-6 FO4 stages). In our implementation, we use XY
routing, but any other (dimension-order) routing algorithm with similar complexity
would suffice. To further simplify NRC for FT mode, FastTrackNoC implementation
exploits the fact that with simple dimension-order routing, a single downstream router-
ID can be hard coded at each input of a particular router corresponding to its opposite
output port. This minimizes the NRC logic for FT-mode, e.g. for an 8×8 networks to
a 6-input logic, as shown in Figure 6.4. This is not applicable to AB-mode because it
needs to support flits sent from the local input port to any of the outputs and therefore
the router-ID is not known a priori and therefore cannot be hardcoded.

On the contrary, when a flit is not bypassing then half a cycle is available for
NRC, which allows more complex routing algorithms to be implemented. On one
hand, allocation-bypassing and ST-bypassing are enabled when there is no congestion.
On the other hand, advanced algorithms yield most of their performance benefits
when there is contention and congestion. Therefore, FastTrackNoC could use more
advanced algorithms when a header flit is routed in regular mode and fall back to
dimension-order routing when bypassing, as long as deadlocks are avoided.

6.2.5 Flow Control and Minimum Buffer Size

FastTrackNoC uses credit based flow control, with one wire per VC indicating to the
upstream router the release of VC credits and an additional wire per port to signal the
release of two credits of one VC. Except for the FT- mode, all other modes of traversal

56 CHAPTER 6. THE FASTTRACKNOC ARCHITECTURE

have one complete cycle available to transmit the credit upstream and to update the
credit counters. FT-mode is different because it is activated in the middle of a clock
cycle and it has only half of a cycle available to transmit the credit upstream and to
update the credit counters, which is insufficient. In this case the credit is registered
locally and then transmitted upstream in the next cycle. Finally, the latency of credit
reuse differs for different routing modes: (i) in regular mode it is four cycles, (ii) in
AB mode it is two cycles because flits skip allocation, and (iii) in FT mode, it is two
cycles determined by the delay of credits transmission.

6.3 Zero-Load Latency Analysis
In order to show the potential of FastTrackNoC, we analyze the Zero-Load Latency
(ZLL) of FastTrackNoC, and compare it with the best DDR and SDR networks,
HighwayNoC and ShortPath [30], with parameters presented in Table 2.1 and used
further in our evaluation in Chapter 7. The above are also compared with the theoretical
minimum latency of a direct connection, registered at every hop, as describe in Chapter
1. Note that not registering such a direct connection at every hop could offer lower
single flit latency, but high serialization latency and thus is considered worse. The
analysis takes into account the minimum clock period of each network, 42 FO4 for
FastTrackNoC and HighwayNoC, and 25 FO4 for ShortPath, as well as the theoretical
latency of a direct connection that is 15.6 FO4 per hop, considering 2.1 mm tile
dimension in 28 nm as explained in Chapter 7.

The ZLL of a FastTrackNoC packet is as follows: FC is received at local input at
rising clock edge; in-network straight hops take half a cycle because of FT support
- here an extra half a cycle is required when FC signals are received at falling clock
edge at an odd hop to exit the network and need to wait until the next cycle to be
considered; then, entering and exiting the network takes an additional half a cycle each
because of using AB; in-network turns take 1.5 cycles more than a FT hop because
they require regular-mode routing; again an extra half cycle is also required when FC
is received at falling clock edge at an odd turning-hop and need to wait until the next
cycle; finally, the serialization latency is half a cycle per flit. Considering all the above
the worst case FastTrackNoC ZLL is:

ZLLFastTrackNoC = 1+ dhops/2e+1.5×hopsturn +odd hopsturn/2+N/2 cycles

The ZLL of a packet in HighwayNoC and ShortPath networks is presented in
Equations 5.1 and 3.2, respectively. Finally, the ideal latency of a direct connection is
one cycle per hop, requiring one hop less than the previous cases because there is no
delay in entering a network. In addition, it has serialization latency of one cycle per
flit:

Ideal Latency = hops+N−2 cycles

Taking into account the cycle time of these networks and the above ZLL equations,
we perform a sensitivity analysis of the ZLL, measured in FO4 delays, with respect
to the number of hops a packet traverses. We consider a 3-flit packet and for Fast-
TrackNoC we show the margins of both the worst case ZLL describe above, as well
as the best case of not having a turn. As shown in Figure 6.5, the ShortPath network
scales worse than HighwayNoC due to its slower switching rate and its latency is up to
3.3× higher than the ideal latency for large number of hops. HighwayNoC operates its
datapath at DDR offering higher switching rate, but cannot bypass ST offering 2.9×

6.4. TIMING EXAMPLE 57

higher ZLL than the ideal at high hop counts. Employing ST bypassing, FastTrac-
kNoC reduces ZLL to half compared to HighwayNoC and ShortPath, closing the gap
with the ideal direct connection to only 1.6-1.75× longer latency for 32 hops. More
importantly, the ZLL of FastTrackNoC scales with the number of hops substantially
better than the best previous SDR and DDR networks promising significant latency
gains for large network sizes.

∗A range of ZLLs is plotted, as ZLL for a particular number of hops varies depending on particular conditions, i.e.,

presence and timing of a turning hop.

Figure 6.5: ZLL analysis with respect to hop count of the FastTrackNoC, HighwayNoC
and ShortPath NoCs vs. an ideal pipelined connection.

6.4 Timing Example
A timing example is described next of a 5-flit packet traversing three routers in
a FastTrackNoC network illustrated in Figure 6.6. The example does not include
entering or exiting of the packet and consider all three routers are aligned across one
dimension. As a consequence, flits passing through the routers are not turning and
hence have the opportunity to use all three modes of traversal (FT, AB and regular
mode). The example is contracted with some artificial contention (marked in red color)
to demonstrate all three routing modes. Note that LT and ST for flits that traverse the
link in high clock phase are marked with “+”, and for flits that traverse the link in low
clock phase are marked with “-”.

In cycle 0, router-1 receives the FC for the first two flits (H, B1), which carries flit
types, assigned VC, next route, destination and an asserted FT Capable bit indicating
the flits are eligible for FT traversal. H and B1 flits arrive in a non-local input and are
eligible to be routed both in FT and AB mode. This is checked in the beginning of
cycle-1 and FT-mode is followed as it has higher priority allowing H and B1 to bypass
both SA and ST stages. The data of H and B1 flits are stored in registers 0 and 1 of the
empty input VC-0 buffer in the first and second half of cycle 1, respectively. As the
first flit is a header, NRC is performed and an output VC-id is acquired from registered
output of VC select (VS). Additionally, the FT Capable bit is set because output VC-0
is allocated to the packet and it traverses an in-network straight hop in the downstream

58 CHAPTER 6. THE FASTTRACKNOC ARCHITECTURE

Figure 6.6: Timing of 5-flit packet through three FastTrackNoC routers.

router. Moreover, the FT Active bit is set to indicate output FC signals should be
registered at the falling edge of cycle 1 in router-2. After new FC is generated in
router-1 using the result of NRC and the allocated output VC, it traverses the link to
reach router-2 at the falling edge of cycle 1. In the second half of cycle 1, the H flit
stored in VC-0, register 0 uses FT path to traverse the link. B1 follows half a cycle
later and the remaining flits are routed through router-1 similarly in cycles 2 and 3.

Following again H and B1 flits, their control information arrives in router-2 at the
falling edge of cycle 1 while the data flits are received in the second half of cycle 1 and
first half of cycle 2. During the second half of cycle 1, it is assumed that these flits are
unable to initiate FT-mode in router-2 because of a busy output port. The flits attempt
to utilize the AB-mode in the next cycle. In first half of cycle 2, AB check for these
flits is successful, indicating no contention on router switch and link, allowing SA to
be bypassed. In parallel, to AB check, NRC is performed, output VC-id acquired from
VS and the FT Capable bit is set because once again output VC-0 has been allocated
to the packet and it traverses an in-network straight hop to the downstream router. The
updated FC signals bypass the regular CST and go directly to control link traversal
(CLT) reaching router-3 at the beginning of cycle 3. In the second half of cycle 2,
the H flit traverses the switch of router-2 (ST+) and is registered (in Reg+) before
it performs LT in the first half of cycle 3 (LT+). B1 flit follows half a cycle later. It
performs ST and LT in the first and second half of cycle 3, respectively (ST-, LT-). The
remaining flits of the packet cannot use the FT-mode in router-2 either because the
output port is busy transferring the previous flits of this packet, e.g., H and B1 flits use
LT of router-2 in cycle 3, which would be needed for a FT traversal of B2 and B3. As
a consequence, the remaining flits of the packet are also routed through router-2 as H
and B1 flits using AB-mode.

Finally, the control information of H and B1 flits arrives in router-3 at the end of
cycle 2 while their data flits are received in cycle 3. The FT Capable bit in the received
FC is set and the router-3 is FT capable for the respective input-output ports. Therefore,
these flits are routed using FT-mode in a manner similar to router-1. Updated FC
signals for H and B1 are generated and traverse the link (CLT) in the first half of cycle

6.5. SUMMARY 59

3. H and B1 flits traverse router-3 and LT in FastTrack in the second half of cycle 3 and
first half of cycle 4, respectively. Assuming lack of credits in the used VC downstream,
flits B2 and B3 cannot be routed using the FT-mode. Then, they attempt AB in cycle 4,
which also fails because output port appears busy during cycle 5. Allocation requests
for flits B2 and B3 are then sent to SA in cycle 4. After successful SA, the FC of these
flits undergo switch traversal and link traversal (CST, CLT) in cycle 5. Subsequently,
the actual B2 flit undergoes ST in the second half of cycle 5 (ST+) and LT in the first
half of cycle 6 (LT+) and B3 flit follows half a cycle later. Finally, T flit received in
the first half of cycle 5 cannot bypass any router-3 stage because the used VC still
contains previously buffered flits. So, flit T requests SA and is routed similar to B2
and B3 flits.

6.5 Summary
This Chapter described the FastTrackNoC router architecture. FastTrackNoC exploits
the fact that the direction of traffic through a NoC router is biased. It offers a bypassing
path between each input port and its preferred output and in the absence of contention
allows to skip switch traversal stage. In the best case, FastTrackNoC allows incoming
flits to directly proceed to link traversal after they are buffered at the input substantially,
reducing packet latency. FastTrackNoC applies ST bypassing to a NoC with DDR
datapaths to improve its switching rate and hence increase network throughput.

60 CHAPTER 6. THE FASTTRACKNOC ARCHITECTURE

Chapter 7

Evaluation

Now that the design details of the proposed DDR NoC architectures have been pre-
sented, we compare the performance, area and power consumption of these networks
with state-of-the-art ShortPath [30] network. ShortPath improves network throughput
by simplifying allocation to increase clock frequency and reduces minimum hop la-
tency by implementing dynamic pipeline bypassing. This makes ShortPath one of the
fastest single data rate (SDR) NoCs in the literature.

In this Chapter, we first discuss the experimental setup and present post place-and-
route (P&R) implementation results for operating frequency and silicon area of the
networks being analyzed. Then we evaluate and compare the performance and energy
characteristics of DDR NoC architectures using synthetic traffic as well as traces of
application-driven workloads.

7.1 Experimental Setup
In order to reliably evaluate the proposed DDR networks and compare them to the
ShortPath network, they were fully implemented in Register Transfer Level (RTL)
abstraction to accurately determine their operating frequency, area and power consump-
tion. A simple 4-stage Baseline SDR NoC [24] was also designed and implemented for
performance evaluation during the early phase of the DDRNoC design. All networks
were also modeled in SystemC at a cycle accurate level to obtain performance results
for longer simulations. Table 7.1 lists the implementation details of all NoC routers.

The networks were implemented in 28nm CMOS FDSOI (Fully Depleted Silicon
on Insulator) 1.10V standard cell technology. The designs were placed and routed
with Cadence Design Systems Innovus Implementation System 17.1. We considered
square tiles with 2.1 mm long sides based on the Chip multiprocessors parameters
used by Sewell et al., after scaling down to 28 nm (CPU core with 32kB L1 I- and
D-cache and a 512kB L2 cache slice) [55]. The length of the local links is considered
to be 0.5 mm. Finally, the registers in the datapath support clock gating to reduce
power consumption when idle.

Power analysis is performed by simulating post-P&R netlists of the NoCs in
QuestaSim with back-annotated delays. Then, gate-level switching activity for each
router in a network is recorded in a VCD file which is then used to get power estimates
of the entire NoC using Synopsys PrimeTime PX.

61

62 CHAPTER 7. EVALUATION

Ta
bl

e
7.

1:
Im

pl
em

en
ta

tio
n

pa
ra

m
et

er
s

of
th

e
ev

al
ua

te
d

N
oC

ar
ch

ite
ct

ur
es

.

D
es

ig
n

D
D

R
N

oC
Fr

ee
w

ay
N

oC
H

ig
hw

ay
N

oC
Fa

st
Tr

ac
kN

oC
Sh

or
tP

at
h

[3
0]

B
as

el
in

e
[2

4]
R

ou
te

r
ar

ch
ite

ct
ur

e
2-

st
ag

es
:S

T,
LT

.
C

on
tr

ol
fo

rw
ar

di
ng

4-
st

ag
es

:
VA

,
SA

1,
SA

2/
ST

,L
T

4-
st

ag
es

:
VA

,
SA

,
ST

,L
T

ST
by

pa
ss

in
g

N
o

Fr
om

no
n-

lo
ca

l
in

pu
t

to
no

n-
lo

ca
l

st
ra

ig
ht

ou
tp

ut

N
o

N
o

A
llo

ca
tio

n
by

pa
ss

in
g

N
o

Fr
om

no
n-

lo
ca

l
in

-
pu

t
to

st
ra

ig
ht

ou
t-

pu
t

(i
)N

on
-l

oc
al

in
pu

tt
o

st
ra

ig
ht

ou
tp

ut
(i

i)
N

on
-l

oc
al

in
pu

tt
o

lo
ca

lo
ut

pu
t

(i
ii)

L
oc

al
in

pu
tt

o
no

n-
lo

ca
lo

ut
pu

t

D
yn

am
ic

pi
pe

lin
e

by
pa

ss
in

g
fr

om
al

l
in

pu
ts

to
al

lo
ut

pu
ts

N
o

Fl
ow

co
nt

ro
l

C
re

di
tb

as
ed

flo
w

co
nt

ro
l

L
in

k
w

id
th

12
8b

da
ta

,
4b

+1
b

cr
ed

its
FC

:-
2×

3b
fli

t
ty

pe
,

2×
2b

V
C

-i
d,

2×
2b

N
2 R

C

To
ta

l:-
14

7

12
8b

da
ta

,
4b

+1
b

cr
ed

its
FC

:-
2×

3b
fli

t
ty

pe
,

2×
2b

V
C

-i
d,

2×
2b

N
R

C
,

2×
6b

de
st

.
ad

dr
.

To
ta

l:-
15

9

12
8b

da
ta

,
4+

1b
cr

ed
its

FC
:-

3b
fli

t
ty

pe
1 ,

2×
2b

V
C

-i
d,

2×
2b

N
R

C
,6

b
de

st
.2

To
ta

l:-
15

0

12
8b

da
ta

,
4+

1b
cr

ed
its

FC
:-

1b
FT

A
ct

iv
e,

1b
FT

C
ap

ab
le

,
3b

fli
t

ty
pe

1 ,
2×

2b
V

C
-i

d,
2×

2b
N

R
C

,
6b

de
st

.2

To
ta

l:-
15

2

12
8b

da
ta

,
4b

fli
t-

cr
ed

its
,

1b
pk

t-
cr

ed
it,

3b
fli

t
ty

pe
,

2b
V

C
-i

d

To
ta

l:-
13

8
bi

ts

12
8b

da
ta

,
4b

fli
t-

cr
ed

its
,

3b
fli

t
ty

pe
,

2b
V

C
-i

d

To
ta

l:-
13

7
bi

ts
C

yc
le

s
(F

O
4

de
la

y)
pe

r
ho

p
2

(8
4)

M
in

:1
(4

2)
,

M
ax

:2
(8

4)
M

in
:1

(4
2)

,
M

ax
:2

(8
4)

M
in

:0
.5

(2
1)

,
M

ax
:

2
(8

4)
M

in
:2

(5
0)

,
M

ax
:4

(1
00

)
M

in
:3

(9
3)

,
M

ax
:4

(1
24

)
V

C
C

on
fig

.
4

V
C

s
pe

ri
np

ut
po

rt
.

B
uf

fe
r

si
ze

5-
fli

tfl
ip

-fl
op

ba
se

d
V

C
bu

ff
er

s.
3

V
C

al
lo

ca
to

r
O

ut
pu

t-
fir

st
se

pa
r.

al
lo

c.
,

R
R

,
PV

:1
ou

t-
ar

b.
,V

:1
in

-a
rb

.

V
C

Se
le

ct
w

ith
V

:2
ar

bi
te

r,
R

R
pr

io
ri

ty
.

V
C

Se
le

ct
w

ith
V

:2
ar

bi
te

r,
fix

ed
pr

io
r-

ity
.

V
:1

in
-a

rb
.,

P:
1

ou
t-

ar
b.

V
C

al
lo

c.
R

eq
Q

de
pt

h
=

8.

O
ut

pu
t-

fir
st

se
pa

ra
-

bl
e

al
lo

c.
,R

R
,P

V
:1

ou
t-

ar
b.

,V
:1

in
-a

rb
.

Sw
itc

h
al

lo
ca

to
r

Sp
ec

ul
at

iv
e

ou
tp

ut
-

fir
st

se
pa

r.
al

lo
c.

,
R

R
pr

io
ri

ty
,

PV
:2

ou
t-

ar
b.

,V
:1

in
-a

rb
.

O
ut

-fi
rs

t
se

pa
ra

bl
e

al
lo

c.
,

R
R

pr
io

ri
ty

,
PV

:2
ou

t-
ar

b.
,

V
:1

in
-a

rb
.

In
pu

t-
fir

st
se

pa
ra

bl
e

al
lo

ca
to

r,
R

R
pr

io
r-

ity
,V

:2
in

-a
rb

.,
P:

1
ou

t-
ar

b.
2-

st
ag

e
pi

pe
lin

ed
:

SA
1:

V
:1

in
-a

rb
.,

SA
2:

P:
1

ou
t-

ar
b.

SA
R

eq
Q

de
pt

h
=

2.

Sp
ec

ul
at

iv
e

ou
tp

ut
-

fir
st

se
pa

ra
bl

e
al

lo
c.

,
R

R
pr

io
ri

ty
,

PV
:1

ou
t-

ar
b.

,V
:1

in
-a

rb
.

R
ou

tin
g

X
Y

ro
ut

in
g

w
ith

N
2 R

C
X

Y
ro

ut
in

g
w

ith
N

R
C

1 Fo
rn

on
-h

ea
de

rfl
its

,N
R

C
bi

ts
ar

e
re

us
ed

to
di

st
in

gu
is

h
bo

dy
/ta

il
fli

ts
.

2 T
hi

s
de

st
in

at
io

n
ad

dr
es

s
fie

ld
in

di
ca

te
s

th
e

de
st

in
at

io
n

ad
dr

es
s

of
on

e
he

ad
er

fli
tt

o
be

us
ed

fo
rN

R
C

.
3 T

hi
s

is
su

ffi
ci

en
tf

or
Sh

or
tP

at
h

as
it

ha
s

a
cr

ed
it-

ro
un

d-
tr

ip
-t

im
e

of
5

cy
cl

es
an

d
fo

rD
D

R
N

oC
s

as
th

ey
ha

nd
le

up
to

5
fli

ts
pa

ck
et

s.

7.2. IMPLEMENTATION RESULTS 63

Table 7.2: Post place & route implementation results.

Voltage Design Area (# Gates) Max. Freq. (GHz) FO4 delay

1.10 V

DDRNoC 167 185 1.53 21∗

FreewayNoC 177 984 1.53 21∗

HighwayNoC 170 688 1.53 21∗

FastTrackNoC 178 654 1.53 21∗

ShortPath 157 810 2.56 25
Baseline 161 290 2.1 31

0.95 V DDRNoC 134 879 1.15 28∗

Baseline 135 564 1.76 37
∗ Half cycle FO4 delay is reported for DDR NoC routers, which is the delay for a ST in DDRNoC, FreewayNoC and

HighwayNoC networks and for the FastTrack path in FastTrackNoC. Moreover, for the considered tile size of
2.1×2.1mm2, the delay of FastTrack path and ST is similar.

Performance is measured by injecting synthetic traffic as well as application-driven
traffic into the network. Synthetic traffic injects data packets of 80 bytes (5 flits) and
control packets of 16 bytes (1 flit) with the following traffic patterns: (i) uniform
random (UR), (ii) hotspots (HS) with 25% of the traffic going to 4 hotspots, one
at each NoC corner, and the rest of the traffic being uniform random, (iii) nearest
neighbor (NN), and (iv) bit reverse (BR). In addition, traffic traces based on application
driven workloads are obtained using SynFull [56]. These traces capture the application
behavior of PARSEC [57] and SPLASH-2 [58] benchmarks including messages
generated by the cache coherence protocol and message dependencies. Simulations
run until completion, all below 100 million cycles, generating control and data packets
of 16 and 80 bytes, respectively, for a 32 node (4×8) network. In these experiments,
average packet latency is measured per benchmark.

7.2 Implementation Results

Table 7.2 summarizes the post P&R results of a single router for all networks at
1.10V, as well as results for the DDRNoC and the Baseline network at 0.95 V 4. At
1.10 V, balancing ST and LT delays, the delay of the DDRNoC, FreewayNoC and
HighwayNoC datapath stages is 327 ps. The target cycle time of these networks is
then double the above delay as two flits per cycle traverse ST (or LT). Post P&R results
confirm that these networks have a clock period of 654 ps because they do not have
control in the critical path as it fits in the target clock period. For the FastTrackNoC
the critical path is the FastTrack path, shown in Figure 6.1, which is 327 ps (similar to
ST delay). Thus the FastTrackNoC also has a clock frequency of 1.53 GHz, similar to
other DDR networks. According to Psarras et al., ShortPath’s control logic is in the
critical path; more precisely its cycle time is defined by the delays of credit-check,
an N:1 arbiter (for the second part of SA), two 2:1 multiplexers and the crossbar
delay [30]. Our physical implementation of the ShortPath router in 28 nm technology
confirms the above, indicating that the maximum operating frequency of ShortPath
is 2.56 GHz. The Baseline network has a clock period of 476 ps (2.1 GHz), with
VA in the critical path. Baseline network clock is slower than ShortPath because
ShortPath simplifies VA and SA by using allocation request queues [30]. At 0.95 V,

4Implementation at 1.10 V is always assumed for all networks, unless otherwise stated.

64 CHAPTER 7. EVALUATION

the DDRNoC operates at 1.15 GHz and it does not have control logic in the critical
path, whereas Baseline network operates at 1.76 GHz with VA in its critical path.

At 1.10 V, DDRNoC requires up to 6.3% more gates compared to a ShortPath
router, mostly due to extra bits required in the paths for forwarding control infor-
mation, an additional register-multiplexer pair per output port and more complex
allocation logic. FreewayNoC, which implements simplified allocation bypassing
(AB), requires an additional 6% gates. HighwayNoC, which enhances AB support
in the the FreewayNoC to also include the local port, requires 4% less gates than the
FreewayNoC because it simplifies VA and SA. FastTrackNoC, which supports both
SA and ST bypassing, requires 4.7% and 13.3% more gates than the HighwayNoC
and ShortPath routers, respectively, because it requires intra-router bypass paths for
flits and forwarded control bits. Finally, the SDR Baseline requires 2.5% more gates
compared to ShortPath because it uses more complex VA and SA.

Operating Frequency for Higher Radix Routers
Our implementation focuses on 2D-mesh networks. However, interesting questions
arise regarding the impact of the router’s radix on the operating frequency of the
design. For instance, it is crucial for the performance of the proposed DDR networks
that the critical path of a router remains in the datapath. In order to verify that, we
implemented the DDR NoC routers and the ShortPath router with radices 3×3, 5×5,
9×9, and 17×17 keeping the cell/area utilization constant to 50% and measured their
maximum operating frequency. Figure 7.1 plots the results showing the clock period
of the ShortPath and, for better comparison, half of the clock period of the proposed
DDR networks; that is for all the networks the latency of a flit performing a switch
traversal. As it can be observed, the frequency of the DDR networks scales better with
higher radices than the ShortPath. More precisely, ShortPath and DDR networks get
affected by the higher wire congestion in higher radix routers, however, the critical
path of the DDR networks still remains in the datapath (crossbar) and is decoupled
from the control. For a DDR NoC router, the control logic does not become slower
than its datapath at any router radix, therefore, its operating frequency depends only on
the way the datapath delay scales. On the contrary, ShortPath’s critical path includes
parts of control (credit-check and switch allocation) and ST (output multiplexing) in
sequence. The delay of these components of a ShortPath router increases with higher
router radices (at least linear to the number of inputs), and results in worse scalability
compared to the proposed DDR NoCs.

Figure 7.1: Scalability of ShortPath’s clock period and, for better comparison, half
clock period of a DDR NoC to the router radix.

7.3. PERFORMANCE EVALUATION 65

7.3 Performance Evaluation

7.3.1 Performance with Synthetic Traffic

The performance of DDR and ShortPath networks of 8×8, 16×16 and 32×32 sizes
is measured using four different traffic patterns: (i) uniform random (UR), (ii) hotspots
(HS), (iii) nearest neighbor (NN), and (iv) bit reverse (BR). All networks are operated
at their maximum clock frequencies, as presented in Table 7.2.

Figures 7.2a, 7.3a, 7.4a and 7.5a show the performance of 8×8 networks for UR,
HS, BR and NN traffic patterns, respectively. The throughput of the DDR networks
is 16-20% higher compared to the ShortPath network for all traffic patterns. DDR
NoCs gain throughput because their DDR datapath can switch every half a clock
cycle (327 ps) as opposed to ShortPath network datapath which switches every cycle
(390 ps). At low injection rates, average latency of packets through the DDRNoC
is 58-63% higher than the ShortPath network, because minimum hop latency for
DDRNoC (84 FO4 delays) is higher than the ShortPath (50 FO4 delays), as presented
in Table 2.1. FreewayNoC, which implements AB for flits propagating an in-network
straight hop, offers 17-25% lower and 21-35% higher packet latency compared to
DDRNoC and ShortPath, respectively, for all traffic patterns except NN where it
offers latency similar to DDRNoC because traffic sent to immediate neighbours cannot
utilize simplified AB. HighwayNoC, which extends AB to also support the local port,
reduces average packet latency by 16-24%, compared to the FreewayNoC, for all
traffic patterns except NN where latency is reduced by 33%. Compared to ShortPath,
HighwayNoC has 1-3% higher packet latency. FastTrackNoC reduces packet latency
by 11-13% compared to HighwayNoC for UR, HS and BR traffic patterns. This is
attributed to the FT-mode traversal supported in FastTrackNoC. As indicated in Figure
7.6a for UR traffic, FastTrackNoC uses FT-mode in 45-50% of the hops and AB mode
for another 36-39%, while HighwayNoC offers only AB mode for 83-85% of the
cases. For NN traffic, the average packet latency through FastTrackNoC is similar to
the HighwayNoC because traffic is sent to immediate neighbours and cannot utilize
FT-mode of traversal. Similarly, compared to ShortPath, FastTrackNoC packet latency
is 9-11% lower for UR, HS and BR traffic and for NN traffic average latency is 3%
higher.

Figures 7.2b, 7.3b, 7.4b and 7.5b show the performance of 16×16 networks for
UR, HS, BR and NN traffic patterns, respectively. The throughput of the DDR networks
is 15-19% higher compared to the ShortPath network for all traffic patterns. At low
injection rates, average latency of packets through the DDRNoC is 37-55% higher
than the ShortPath network, for all traffic patterns. FreewayNoC offers 33-35% lower
and 4-10% higher packet latency compared to DDRNoC and ShortPath, respectively,
for all traffic patterns except NN where it offers latency similar to DDRNoC (which
is 53% higher than ShortPath). HighwayNoC packet latency is 8-12% lower than
FreewayNoC and 4-5% lower than ShortPath for traffic patterns with high average hop
count (UR, HS and BR). For NN traffic, HighwayNoC latency is 30% lower compared
to FreewayNoC and 4% higher compared to ShortPath. FastTrackNoC packet latency
is 17-21% lower than HighwayNoC and 20-25% lower than ShortPath for traffic
patterns with high average hop count (UR, HS and BR). For NN traffic, FastTrackNoC
latency is similar to the HighwayNoC and 4% higher than ShortPath. We observe
that the latency of FreewayNoC, HighwayNoC and FastTrackNoC improves relative
to DDRNoC and ShortPath with increasing network size where flits have a higher

66 CHAPTER 7. EVALUATION

average hop count. This confirms our ZLL analysis in Sections 5.3 and 6.3, which
showed that packet latency in FreewayNoC scales better with increasing hop count
compared to DDRNoC and ShortPath. Similarly, HighwayNoC latency scales better
than FreewayNoC and FastTrackNoC latency scales better than HighwayNoC.

Figures 7.2c, 7.3c, 7.4c and 7.5c show the performance of 32×32 networks for
UR, HS, BR and NN traffic patterns, respectively. Here, again, the throughput of the
DDR networks is 16-19% higher compared to the ShortPath network for all traffic
patterns. At low injection rates, average latency of packets through the DDRNoC is
54-70% higher than the ShortPath network, for all traffic patterns. FreewayNoC offers
38-45% lower and 3% higher to 4% lower packet latency compared to DDRNoC
and ShortPath, respectively, for all traffic patterns except NN where it offers latency
similar to DDRNoC (which is 54% higher than ShortPath). HighwayNoC packet
latency is 7-12% lower than FreewayNoC and 10% lower than ShortPath for traffic
patterns with high average hop count (UR, HS and BR). For NN traffic, HighwayNoC
latency is 32% lower compared to FreewayNoC and 4% higher compared to ShortPath.
FastTrackNoC packet latency is 30-32% lower than HighwayNoC and 38-40% lower
than ShortPath for traffic patterns with high average hop count (UR, HS and BR). For
NN traffic, FastTrackNoC latency is similar to the HighwayNoC and 4% higher than
ShortPath.

Figure 7.6 summarizes for different network sizes, the percentage of hops that
bypass some router stage in the four competing NoCs which support bypassing. In
particular, for FreewayNoC and HighwayNoC the AB-mode bypassing hops are
measured, for FastTrackNoC the FT-mode and AB-mode bypassing hops and for
ShortPath hops which bypass one or two of the 4 stages (including LT) are recorded.
FreewayNoC has the lowest percentage of bypassing cases compared to other networks
because it does not support AB for in-network turns and when entering and exiting
the network. HighwayNoC and FastTrackNoC have lower percentage of accumulated
bypassing cases compared to ShortPath as they support bypassing only for non-turning
flits, however their bypassing yields higher latency gains and so offers lower average
packet latency. That is especially evident for FastTrackNoC where the FT-mode is a
large fraction of its recorded bypassing cases, especially for larger networks and lower
injection rates. For instance, it is work noting that in a 32×32 FastTrackNoC 45-80%
of the traffic can use the FastTrack path in low and medium injection rates.

7.3.2 Performance Comparison against Networks with Longer
Links

In the previous evaluation, the considered tile size in 28 nm technology is 2.1×2.1mm2

as explained in Section 7.1, which fits a regular size core including L1 and its L2 slice.
FastTrackNoC is able to support this tile size without reducing its maximum operating
frequency, restricting the router to 1

16 of the tile area. In other words, for 2.1×2.1mm2

tiles the FastTrackNoC LT delay, including the FastTrack logic overhead, is similar to
the ST delay and therefore results in a well balanced design. In comparison SMART
NoC considers 1mm tile dimension in 45nm [26]. Still, NoC routers with slower
switching rate than DDR networks (1/327ps) could support longer links. For example,
ShortPath could handle up to 4.6mm tile dimensions, without pipelining the link.

7.3. PERFORMANCE EVALUATION 67

(a) Network size: 8×8

(b) Network size: 16×16

(c) Network size: 32×32

Figure 7.2: Average packet latency with uniform random (UR) traffic pattern for
2D-mesh networks of different sizes.

68 CHAPTER 7. EVALUATION

(a) Network size: 8×8

(b) Network size: 16×16

(c) Network size: 32×32

Figure 7.3: Average packet latency with hotspot (HS) traffic pattern for 2D-mesh
networks of different sizes.

7.3. PERFORMANCE EVALUATION 69

(a) Network size: 8×8

(b) Network size: 16×16

(c) Network size: 32×32

Figure 7.4: Average packet latency with bit reverse (BR) traffic pattern for 2D-mesh
networks of different sizes.

70 CHAPTER 7. EVALUATION

(a) Network size: 8×8

(b) Network size: 16×16

(c) Network size: 32×32

Figure 7.5: Average packet latency with nearest neighbour (NN) traffic pattern for 2-
mesh networks of different sizes.

7.3. PERFORMANCE EVALUATION 71

0%

25%

50%

75%

100%

0.15 0.30 0.45 0.60 0.78 0.91 1.06 1.28
Injection Rate (Flits/node/ns)

P
er

ce
nt

ag
e

of
 B

yp
as

si
ng

 F
lit

s

(a) Network size: 8×8

0%

25%

50%

75%

100%

0.08 0.18 0.28 0.39 0.49 0.60
Injection Rate (Flits/node/ns)

P
er

ce
nt

ag
e

of
 B

yp
as

si
ng

 F
lit

s

(b) Network size: 16×16

0%

25%

50%

75%

100%

0.02 0.07 0.13 0.19 0.25 0.32
Injection Rate (Flits/node/ns)

P
er

ce
nt

ag
e

of
 B

yp
as

si
ng

 F
lit

s

(c) Network size: 32×32

Figure 7.6: Percentage of bypassing flits in FreewayNoC, HighwayNoC, FastTrackNoC
and ShortPath networks for UR traffic. Bars are not shown for ShortPath network
after saturation.

72 CHAPTER 7. EVALUATION

Figure 7.7: Minimum hop latency with respect to hop distance for HighwayNoC,
FastTrackNoC and ShortPath networks as well as for an ideal un-pipelined link with
registered end-points.

In order to transfer flits over a longer hop, links need to be pipelined to avoid
slowing down network clock frequencies and to maintain their throughput. Under this
assumption, Figure 7.7 shows the minimum hop latency of the networks for different
tile dimensions (hop distances). Although FastTrackNoC would need to pipeline
its link for tile dimensions smaller than the other networks, it can still offer lower
minimum hop latency over long distances due to its ST bypassing support.

Next, we evaluate the networks considering that the LT delay is equal to the
ShortPath cycle time (390ps); this would add roughly 2.5 mm to the link length
leading to tile size of 4.6×4.6mm2. Then, the HighwayNoC and the FastTrackNoC
networks require one DDR pipeline stage on the inter-router flit and FC link wires, as
indicated in Figure 7.7. Wires transmitting credits upstream are not pipelined because
they operate at SDR and can traverse tile dimension in a single cycle. Similarly, link
wires at the local port are also not pipelined considering there is a shorter link (relative
to inter-router links) connecting the local port of a router to the network interface.

Figure 7.8 shows the performance of the HighwayNoC, FastTrackNoC and Short-
Path with long links for 8×8, 16×16 and 32×32 networks and with uniform random
traffic. The throughput of the DDR NoCs remain unaffected because they operate at
the same clock frequency as when the links are shorter and not pipelined. So, High-
wayNoC and FastTrackNoC have 17-19% higher throughput compared to ShortPath
network. The latency of the DDR networks increases because flits need to spend
an extra half a clock cycle per hop. Increase in latency is more pronounced at low
injection rates where additional delay of pipelined link causes average packet latency
to become higher than the ShortPath for 8×8 and 16×16 networks. Average latency
of HighwayNoC is about 25% higher than ShortPath at low injection rates for all
three network sizes. Average latency of FastTrackNoC is 13% and 6% higher than
ShortPath at low injection rates for 8×8 and 16×16 network sizes, whereas it is 3%
lower for 32×32 network. In summary, pipelined longer links reduce the latency
advantage of the FastTrackNoC over ShortPath and force it to have up to 13% higher
latency in smaller network sizes. However, as the number of hops increase, FastTrac-
kNoC latency scales better than ShortPath because flits can more effectively utilize
the FT-mode of traversal.

7.3. PERFORMANCE EVALUATION 73

(a) Network size: 8×8

(b) Network size: 16×16

(c) Network size: 32×32

Figure 7.8: Average packet latency for UR traffic through HighwayNoC, FastTrackNoC
and ShortPath networks considering large tiles of size 4.6×4.6mm2, which is defined
by the cycle time of the ShortPath router (390 ps). Inter-router links are pipelined for
HighwayNoC and FastTrackNoC.

74 CHAPTER 7. EVALUATION

7.3.3 Performance Comparison against Networks with DDR
Links

Another existing technique for improving network performance has been to time-
multiplex two SDR sub-networks on a shared link operating at DDR, called RapidLink
[17, 32]. Assuming each link is fast enough to carry two flits in a single cycle without
compromising network clock frequency, applying RapidLink to an SDR network,
such as ShortPath, can improve network throughput. We compare the performance of
RapidLink network with a FastTrackNoC design that exhibits similar router datapath
modifications. More, precisely, we consider a FastTrackNoC with two sub-networks
(denoted as FastTrackNoC-2SubNet); its routers are split into two sub-routers (each
with 4 VCs) similar to RapidLink, while the links are replicated as they already operate
at DDR and cannot be shared by the sub-routers. In 28nm technology used for our
implementation, replicated links can be supported in the low resistance intermediate
Bx metal layers using a small fraction of the available wires – 5% to 10% depending
on spacing and shielding. Figure 7.9 shows the average packet latency through 8×8
2D-mesh RapidLink and modified FastTrackNoC networks with UR traffic pattern.
Compared to the RapidLink version of ShortPath NoC, a FastTrackNoC with two
sub-networks offers about 10% lower packet latency at low traffic injection rate and
supports about 22% higher throughput. That is similar latency and throughput gain as
a regular FastTrackNoC versus a regular ShortPath network, as presented in 7.3.1.

Figure 7.9: Average packet latency through RapidLink and FastTrackNoC with two
sub-networks. Network size of 8×8 and UR traffic pattern is considered.

7.3.4 Energy Efficiency

Figures 7.10 and 7.11 summarizes the energy efficiency results on an 8×8 2D-mesh
with UR traffic for DDRNoC, FreewayNoC, HighwayNoC, FastTrackNoC and Short-
Path networks. The following are measured: total power, energy per transferred bit
(EPB), energy-delay product (EDP), and energy throughput ratio (ETR).

Compared to ShortPath network, DDRNoC power is about 20% higher at low
injection rates because it uses a DDR datapath, more complex control logic and
lookahead signalling. However, at the saturation throughput of ShortPath, DDRNoC

7.3. PERFORMANCE EVALUATION 75

(a) Total power

(b) Energy per bit

Figure 7.10: Power and energy per transferred bit costs of 8×8 DDR NoCs and
ShortPath network with uniform random traffic.

power is only 2.3% higher. EPB and ETR with DDRNoC are up to 16% higher at
low traffic but similar at the saturation throughput of ShortPath. EDP is up to 83%
higher with DDRNoC at low injection rates because of its high minimum hop latency
(84 FO4 delays) relative to ShortPath (50 FO4 delays). FreewayNoC power is up
to 31% higher than ShortPath at low injection rates, but it is only 3% higher at the
saturation throughput of ShortPath. EPB and ETR with FreewayNoC are up to 31%
higher at low injection rate but similar at the saturation throughput of ShortPath. EDP
is up to 67% higher with FreewayNoC at low injection rates. HighwayNoC power
is up to 26% higher than ShortPath at low injection rates. However, at the saturation
throughput of ShortPath, HighwayNoC power is only 5.7% higher. EPB and ETR
with HighwayNoC are up to 26% higher at low injection rate and 5% higher at the
saturation throughput of ShortPath. EDP is up to 28% higher with HighwayNoC at
low injection rates. FastTrackNoC has up to 31% higher power than ShortPath at low
injection rates because it has FastTrack bypass paths for flits and forwarded control
bits. However, at the saturation throughput of ShortPath, FastTrackNoC power is
only 5.2% higher as the two networks converge to the same percentage of bypassing
cases. EPB and ETR with FastTrackNoC are up to 31% higher at low injection rate
but similar at the saturation throughput of ShortPath. At the saturation throughput of
FastTrackNoC, its ETR is 14% lower than ShortPath. EDP is up to 19% higher with

76 CHAPTER 7. EVALUATION

(a) Energy-throughput ratio

(b) Energy-delay product

Figure 7.11: Energy-throughput ratio and energy-delay product of 8×8 DDR NoCs
and ShortPath network with uniform random traffic.

HighwayNoC at low injection rates.

Compared to DDRNoC, FreewayNoC consumes 10% more power at low injection
rates and similar power at saturation throughput. This is also reflected in EPB and
ETR, both of which increase for the FreewayNoC by about 10% compared to the
DDRNoC. The EDP of FreewayNoC is up to 12% lower than DDRNoC at low
injection rates because FreewayNoC supports AB for flits propagating a straight hop.
HighwayNoC consumes up to 3% more power compared to FreewayNoC. This is also
reflected in EPB and ETR, both of which increase by about 3% for the HighwayNoC.
EDP of HighwayNoC is 48-56% lower compared to FreewayNoC. Compared to
the HighwayNoC, FastTrackNoC power consumption is 5% higher when idle, 3.7%
higher at low injection rates and 1.6% higher at high injection rates, mostly due to
the FastTrack bypass paths. This is also reflected in the energy per bit and ETR,
both of which increase by 1.6% to 3.7% for the FastTrackNoC. Finally, EDP of the
FastTrackNoC is up to 8% lower at low injection rates, in spite of the higher power
consumption, because of the significant latency reduction achieved by bypassing SA
and ST stages. At the saturation throughput of FastTrackNoC, where FT-mode is
active for less than 3% of the hops (as depicted in Figure 7.6a), EDP increases by
about 3%.

7.3. PERFORMANCE EVALUATION 77

7.3.5 Trading DDRNoC Performance Advantage for Energy
Efficiency

During the early phases of the DDRNoC design we also performed physical imple-
mentation of SDR Baseline and DDRNoC networks at 0.95 V, in addition to 1.10 V, in
order to analyze the pros and cons of DDRNoC when its performance is traded-off
for energy efficiency. We implemented a 4-stage (VA, SA, ST and LT) SDR Baseline
with speculative SA, lookahead routing, 4 VCs per input port and credit based flow
control [24]. Area and frequency results of these networks after physical implementa-
tion at 1.10 V and 0.95 V are presented in Table 7.2. We compared the performance
of low voltage implementations of these networks with their high voltage (1.10 V)
counterparts, considering 8×8 2D-mesh networks and synthetic traffic. Performance
evaluated in terms of average packet latency is presented in Figure 7.12 for UR traffic
pattern. We further report total power consumption and energy efficiency results
measured in terms of energy per transferred bit (EPB), energy delay product (EDP)
and energy throughput ratio (ETR). These results are presented in Figures 7.13 and
7.14 for UR traffic pattern.

Figure 7.12: DDRNoC performance compared to the Baseline SDR NoC using 1.10 V
and 0.95 V implementations of both networks. Performance is evaluated for UR traffic
through 8×8 2D-mesh networks.

Compared to the SDR Baseline at 1.10 V, the DDRNoC at 1.10 V improves
throughput by about 45% and offers up to 4% lower packet latency at low traffic
injection rate. The power consumption of the DDRNoC at 1.10 V is up to 21% higher
than the Baseline network at low traffic injection rate. At the Baseline saturation point,
power consumption is up to 10% higher for the DDRNoC. At the maximum DDRNoC
throughput, the 45% throughput gain costs about 51% more power than the Baseline.
The DDRNoC has 10% to 21% higher EPB compared to the Baseline network. ETR
is 17% higher (at low injection rate) to 26% lower (at high injection rate) for the
DDRNoC. EDP is 16% lower at low traffic injection rate for the DDRNoC network.

For 0.95 V network implementations, DDRNoC improves throughput by about
30%, which represents a lower throughput gain compared to 1.10 V implementations
due to a larger gap between operating frequencies of 0.95 V Baseline and DDRNoC
routers. The DDRNoC at 0.95 V has up to 7% higher latency at low traffic injection rate,
compared to the Baseline network at the same voltage. At low injection rates, the power

78 CHAPTER 7. EVALUATION

consumption of the DDRNoC is up to 45% lower than the Baseline network because
of lower clock frequency of the DDRNoC. At the Baseline saturation throughput,
power consumption is up to 16% higher for DDRNoC. At the maximum DDRNoC
throughput, the 30% throughput gain costs about 31% more power than the Baseline.
The DDRNoC has about 15% lower (at low injection rate) to 17% higher (at high
injection rate) EPB compared to the Baseline network. ETR is about 7% higher (at
low injection rate) to 8% lower (at high injection rate) for the DDRNoC. EDP is up to
11% lower at low traffic injection rate for the DDRNoC.

(a) Total power

(b) Energy per transferred bit

Figure 7.13: Power consumption and energy per transferred bit results are presented
for DDRNoC and Baseline SDR NoC using 1.10 V and 0.95 V implementations of both
2D-mesh networks of size 8×8. Networks are evaluated for UR traffic.

An interesting comparison is between the 1.10 V Baseline and the 0.95 V DDRNoC.
This DDRNoC design point attempts to capitalize the slack present in the datapath
gaining mostly energy efficiency rather than performance. Still, compared to Baseline
network at 1.10 V, throughput of DDRNoC at 0.95 V is about 8% higher for UR traffic
pattern, while packet latency is 27% higher due to its slower clock. On the other hand,
power consumption of DDRNoC is 32% to 63% lower. This translates to 23% to 41%
lower energy per transferred bit, 5% to 25% lower EDP, and 24% to 33% lower ETR

7.3. PERFORMANCE EVALUATION 79

(a) Energy throughput ratio

(b) Energy-delay product

Figure 7.14: Energy-throughput ratio and energy-delay product results are presented
for DDRNoC and Baseline SDR NoC using 1.10 V and 0.95 V implementations of both
2D-mesh networks of size 8×8. Networks are evaluated for UR traffic.

for the DDRNoC.

7.3.6 Evaluation with Application Driven Traffic

Using SynFull, we measure the average packet latency of 32-node (4×8) networks for
various PARSEC and SPLASH-2 benchmarks. In order to stress networks throughput,
in these experiments we considered 32-bit network datapaths, rather than 128-bits and
SynFull packet generator step of 200ps (400ps for fft and radix benchmarks which
saturate all networks). Average throughput does not provide any useful insight and
therefore is not reported since for all networks the traffic generated by a benchmark is
entirely delivered.

Figures 7.15 reports the average packet latency per benchmark as well as the
geometric mean for each of the four DDR networks and the ShortPath network.
Compared to ShortPath network, DDRNoC reduces average packet latency by about
4%. FreewayNoC and HighwayNoC networks offer 14% and 23% lower average

80 CHAPTER 7. EVALUATION

latency, respectively, compared to ShortPath. FastTrackNoC offers the lowest latency
for all benchmarks. On average, FastTrackNoC reduces packet latency by about 26%
compared to ShortPath due to its significant throughput advantage and competitive
router latency. Compared to HighwayNoC, FastTrackNoC reduces packet latency by
3.7% due to its extended bypassing support. The average percentage of bypassing
traffic in FastTrackNoC is similar to the HighwayNoC, however, 38% of this bypassing
traffic bypasses both SA and ST stages using the FT-mode supported only by the
FastTrackNoC. Moreover, FastTrackNoC offers about 3

4 of the bypassing opportunities
compared to ShortPath as it does not support bypassing for turning flits.

Figure 7.15: Normalized packet latency for application driven traffic.

7.3.7 Measuring the Impact of DDRNoC Throughput Gain on
System Performance

In order to appreciate the impact of the improved DDRNoC network throughput to
the application execution time and energy efficiency we finally performed full system
simulations using GEM5 [59] system simulator, Ruby based memory subsystem
models, and Baseline and DDRNoC 1.10 V models based on modified GARNET [60].
The detailed system configuration is presented in Table 7.3. We run medium-sized
multi-threaded benchmarks from PARSEC-2.1 benchmark suite and measure the
execution time of the parallel phase of the application called the Region of Interest
(ROI).In order to estimate system power and EDP we used McPAT considering 28nm
technology.

Figure 7.16 shows the normalized execution time with respect to the Baseline
network of the ROI of 10 different PARSEC2.1 benchmarks. The largest network
we could simulate within a reasonable time was a 4×4 2D-mesh. Despite the small
network size we can observe that DDRNoC reduces application execution time by up
to 11% and on average by 6% in the benchmarks used. As discussed in the introduction,
the benefits of improving network throughput have been studied in more detail by
Bakhoda et al. showing that doubling the network bandwidth improved execution time
of applications up to 2× [61]. In addition, DDRNoC achieves lower EDP compared to
the Baseline network by up to 20% and on average 10%, as shown in Figure 7.17.

7.3. PERFORMANCE EVALUATION 81

Table 7.3: System and NoC configurations for Gem5 full system simulations.

System Parameters
Cores 16 in-order Alpha ISA, 2.0GHz
Private L1 I/D cache 32 KB, 4 way set associative
Shared distributed L2 cache 8 MB, 8 way set associative, 16 directories
Cache line size 64 Bytes
Replacement policy Pseudo-LRU
Cache coherency MESI protocol
Topology 4x4 2D-mesh
Memory size 1 GB

Network Parameters

Virtual networks and VCs
3 VNs, 2 VCs/VN
1 buffer per ctrl VC
4 buffers per data VC

Packet size Ctrl: 2 flits
Data: 18 flits

Links 32 bits, 1 cycle latency

Figure 7.16: Normalized application execution time for PARSEC-2.1 benchmarks
using full system simulations.

Figure 7.17: Normalized processor EDP for PARSEC-2.1 benchmarks using full
system simulations.

82 CHAPTER 7. EVALUATION

7.4 Summary
This Chapter presents the physical implementation, performance evaluation, power
and energy efficiency results of the DDR NoC architectures and compares them to the
ShortPath network. The DDR NoCs routers require 6-13% more gates compared to
the ShortPath network, because of extra bits required in the datapath for forwarded
control signals, more complex allocation logic and inter-router bypass paths for
flits and forwarded control signals. Critical path analysis of a DDR NoC router
demonstrates that its clock frequency is defined by the datapath (crossbar) delay. As
a result, our DDR NoCs offer 16-20% higher throughput compared to the ShortPath
network. Moreover, DDR NoCs offer 50% higher to 40% lower average packet latency,
compared to the ShortPath network, depending on the bypassing opportunities (SA
and ST bypassing) the DDR NoC offers and the network size.

Chapter 8

Conclusions

Shrinking transistor geometries still allow integration of more cores on a chip increas-
ing its performance potential. However, the performance of a single chip system is
often affected by the performance of its on-chip interconnects [7, 13, 61]. Depend-
ing on the workload characteristics and communication needs, network latency and
throughput can both be crucial for high performance. Moreover, some workloads may
be more sensitive to packet latency, e.g. workloads that exhibit small transfers at low
loads [4]. Others may be more sensitive to network throughput, for instance concurrent
scale-out applications, which push the network close to its saturation point [4, 5]. As
a consequence, the design of high-performance NoC architectures is essential for
many-core scaling.

8.1 Summary
Chapter 3 introduced the DDRNoC router architecture which uses double-pumped
datapaths in order to improve network throughput. It is based on the observation that
conventional SDR 2D-mesh interconnects with VC flow control have significant slack
in their datapath stages while their control logic defines the critical path. This slack
in the datapath wastes NoC bandwidth. DDRNoC uses this slack to enable two flits
to share the same datapath in a single clock cycle at DDR. Both the allocation logic
and the datapath are modified to facilitate conflict free DDR transmission of flits. The
DDRNoC offers significant throughput improvement over a SDR network by routing
packets at a rate determined only by datapath stages (2×max(ST,LT)), rather than the
control. Packet latency is improved at high injection rates due to reduced contention.

Chapter 4 introduced the FreewayNoC router architecture which improves over
the DDRNoC by implementing simplified pipeline stage bypassing in order to reduce
packet latency at low injection rates. It allows incoming flits to bypass the SA stage
when required router resources are available. Offering full pipeline bypassing, from
all inputs to all outputs, requires complex checks and it could introduce control logic
in the datapath which defines the clock period. This goes against one of the key design
goals. Therefore, FreewayNoC supports pipeline bypassing only for flits propagating
an in-network straight hop.

Chapter 5 introduced the HighwayNoC router architecture which enhances
pipeline bypassing support offered by the FreewayNoC. It not only allows bypassing
of the SA stage for flits propagating a straight hop, similar to the FreewayNoC, but

83

84 CHAPTER 8. CONCLUSIONS

also for flits entering and exiting the network through the local port. HighwayNoC is
able to improve allocation bypassing, while manage contention among simultaneous
incoming flits attempting to bypass at the same time, without adding any delay to the
critical path of the DDRNoC router. Allocation bypassing candidate flits propagating
an in-network straight hop can only face competition from simultaneous incoming flits
entering the local input port. In this case priority is always given to in-network flits,
avoiding the need for any arbitration. Moreover, HighwayNoC also exploits the fact
that the local port of a router has a shorter (local) link traversal and uses the available
slack for fixed priority arbitration to choose a bypassing flit among the candidates that
exit the network. Furthermore, bypassing logic for flits that enter the network also fits
without increasing the cycle time.

Chapter 6 introduced the FastTrackNoC router architecture which enables straight
flits to bypass the ST stage as well as the SA stage similar to the HighwayNoC. Fast-
TrackNoC capitalizes on the observation that with xy-routing a flit performs at most
one in-network turn and offers a direct connection between each input port and its
straight output thereby bypassing the ST stage and reducing hop latency when required
conditions are met. In particular, an extra FastTrack datapath is added to a 2D-mesh
router between the head of a specific Virtual Channel (VC) at each input port of the
router and its preferred, straight output port. Then, incoming non-turning flits arriving
at this specific VC have the opportunity to directly traverse the link using the FastTrack
path when input and output ports are available.

8.2 Contributions
Chapter 3 introduced the DDRNoC architecture. It is based on the observation that
clock frequency of typical SDR NoC routers is based on its control logic delays, while
the slack present in the datapath wastes network bandwidth. In order to improve NoC
throughput, DDRNoC operates it datapath at DDR and has a clock frequency defined
only by datapath delays. The main contributions of the DDRNoC architecture are
listed below:

• DDRNoC offers 17-20% higher throughput compared to one of the fastest SDR
NoC (ShortPath).

• Compared to the ShortPath network, DDRNoC has up to 50% higher average
packet latency, at low injection rates with synthetic traffic. This is mainly
because of slower clock frequency of DDRNoC and lack of pipeline stage
bypassing capabilities.

• DDRNoC reduces energy per transferred bit, energy delay product and energy
throughput ratio due to a slower clock and higher network throughput.

• A low-voltage DDRNoC implementation reduces power consumption by up to
40%, at the cost of 26-40% higher latency, still however offering similar or better
throughput when compared to a high-voltage implementation of a conventional
SDR NoC. This low voltage implementation further improves energy efficiency,
offering a substantially better energy-performance trade-off.

Chapter 4 introduced the FreewayNoC architecture, which allows incoming flits
to bypass the allocation stage in order to reduce packet latency. FreewayNoC reduces

8.2. CONTRIBUTIONS 85

complexity of bypassing check logic by only allowing flits propagating an in-network
straight hop to bypass allocation. Main contributions of the FreewayNoC architecture
are listed below:

• FreewayNoC offers a minimum hop latency equal to the datapath delay (ST +
LT), for all in-network non-turning hops. This is accomplished by allowing
incoming flits to bypass the allocation stage in the absence of contention.

• FreewayNoC matches or improves the throughput offered by DDRNoC archi-
tecture and offers 17-20% higher throughput compared to ShortPath.

• FreewayNoC offers up to 25% lower packet latency compared to the DDRNoC
for synthetic traffic patterns.

• FreewayNoC achieves a zero-load latency that scales to the number of hops
better than DDRNoC and ShortPath networks, and equally well as a network
that offers minimum ST +LT hop latency. This is because, for a balanced router
datapath (ST = LT), per hop packet latency with FreewayNoC is at best equal to
the sum of the ST and LT delays.

Chapter 5 introduced the HighwayNoC architecture, which enhances the allo-
cation bypassing capabilities of the FreewayNoC. It allows incoming flits to bypass
allocation when entering and exiting the network through the local port, as well as
when propagating an in-network straight hop. Main contributions of the HighwayNoC
architecture are listed below:

• HighwayNoC offers packet latency as low as ST +LT datapath delay for all
hops except the in-network turns, including entry into and exit from the network
through the local port.

• Throughput of HighwayNoC is similar to DDRNoC architecture and 17-20%
higher than ShortPath network.

• HighwayNoC offers up to 3% higher packet latency compared to ShortPath for
small network sizes (8×8), which it can be up to 10% lower for larger networks
(32×32).

• HighwayNoC offers 16-33% lower packet latency compared to FreewayNoC
for small network sizes (8×8) and 7-32% lower for larger networks (32×32).

• Zero-load latency of FastTrackNoC is lower than FreewayNoC and scales to the
number of hops equally well as a network that offers minimum ST +LT hop
latency.

• HighwayNoC reduces the number of control wires per link by using a more
efficient encoding and by restricting the number of bypassing header flits to one
(rather than two) per port, per cycle.

Chapter 6 introduced the fourth and the fastest DDR NoC architecture, the Fast-
TrackNoC, which offers intra-router FastTrack paths to allow incoming flits, propagat-
ing an in-network straight hop, to bypass ST and SA pipeline stages, when required
conditions are met, to directly initiate LT and reduce packet latency. This is in addition
to bypassing only the SA stage when incoming flits propagate straight or enter and exit
the network. Main contributions of the FastTrackNoC architecture are listed below:

86 CHAPTER 8. CONCLUSIONS

• FastTrackNoC is able to achieve a hop latency at best similar to the link traversal
delay. It allows flits to propagate a hop in half a clock cycle when traveling
straight, compared to one cycle for the HighwayNoC and the FreewayNoC and
two cycles for the SDR networks.

• Throughput of FastTrackNoC is similar to DDRNoC and 17-19% higher com-
pared to ShortPath.

• FastTrackNoC reduces packet latency by up to 32% and 40% (for 32×32 2D-
mesh) compared to HighwayNoC and existing SDR networks, respectively, at
low traffic injection rates.

• Zero-load latency of FastTrackNoC scales to the number of hops much better
than HighwayNoC and ShortPath networks.

In summary, this thesis proposes DDR NoC architectures which reduce, compared
to previous NoCs, the performance gap with ideal network in terms of throughput
and latency, as shown in Figure 8.1. Compared to the fastest previous NoCs in the
literature, ShortPath, the overall contributions of the DDR NoC architectures are listed
below:

• They offer up to 20% higher throughput.

• They reduce average packet latency by up to 40%.

• Their packet latency is more scalable to the number of hops.

8.3 Future Work
There are several directions for future research which can improve and complement
the work presented here. In the following, we identify and list some of them:

Interconnects in 3D Stacked Chips: Presently, the semiconductor industry is
targeting interposer based 2.5D [62–64] and 3D [65–67] stacked chips in order to
address scaling challenges of 2D chips. Such 2.5D and 3D chips utilize vertical
wires called through silicon vias (TSVs) to establish communication between different
layers. TSVs are slower and consume more area and power compared to 2D metal
wires and pose a challenge for 3D NoC designs [68]. It would be interesting to analyze
the contribution of delays of different components (control logic, ST, 2D wires and
TSVs) of current 3D NoC routers to the clock period in order to figure out pipeline
delay imbalances and inefficiencies in these designs. It is important to note that a NoC
operates at maximal efficiency when pipeline stages of its routers are well balanced
and its clock period is defined by the datapath delays. If some parts of 3D NoC router’s
datapath are faster than others, then they can be operated at DDR to improve network
performance.

Support For Different Topologies: This thesis only evaluated 2D-mesh topologies
of DDR NoC. However, other 2D NoC topologies also exist which offer benefits in
terms of higher path diversity, lower packet latency and increased throughput. These
topologies include 2D-torus, flattened butterfly, multidrop express channels [22] and
express links [4] spanning multiple hops. The critical path for these topologies is also
in the router control logic. Operating the datapath of these routers at DDR can offer
significant throughput and latency improvements.

8.3. FUTURE WORK 87

Figure 8.1: Throughput and latency of one of the fastest SDR networks, called the
ShortPath network [30], and the final proposed DDR network which supports SA
and ST bypassing, called the FastTrackNoC, is presented in comparison to the ideal
network throughput and latency. Network size of 32×32 is considered with uniform
random traffic of 1 and 5 flit packets. Ideal throughput is the saturation throughput
of the ShortPath network when operating at a clock frequency defined solely by the
datapath (ST and LT) delays. Ideal latency is for a (pipelined) direct connection
between the source and the destination nodes, separated by a hop distance equal to
the average hop count with uniform random traffic in a 32×32 2D-mesh network.
The link for this direct connection is pipelined considering tile dimensions similar to
ShortPath and it considers a packet containing 3 flits. All networks are operated at
their maximum clock frequency.

Allocation Bypassing for In-Network Turns The DDR NoC routers do not support
bypassing (SA or ST) for flits performing an in-network turn. Bypassing ST stage
when turning is not possible because that would require more FastTrack bypass paths
and slow down network clock frequency. However, it may be possible to implement
allocation bypassing for incoming turning flits. This is because DDR NoC routers
already have the forwarded control and flit datapaths which would be needed to
forward data and control if turning flits are allowed to bypass allocation. However,
satisfying tight timing constraints for these paths, along with more complex bypassing
check logic for turns, is challenging. It would be interesting to explore if bypassing
checks for turns can somehow be simplified to support allocation bypassing when
turning while also satisfying the required timing constraints of DDR NoCs.

88 CHAPTER 8. CONCLUSIONS

Bibliography

[1] H. Fu, J. Liao, J. Yang, L. Wang, Z. Song, X. Huang, C. Yang, W. Xue, F. Liu,
F. Qiao, and et al., “The Sunway TaihuLight supercomputer: system and applica-
tions,” Science China Information Sciences, vol. 59, no. 7, 2016.

[2] B. Bohnenstiehl, A. Stillmaker, J. Pimentel, T. Andreas, B. Liu, A. Tran,
E. Adeagbo, and B. Baas, “KiloCore: A fine-grained 1,000-processor array
for task-parallel applications,” IEEE Micro, vol. 37, no. 2, pp. 63–69, 2017.

[3] A. Olofsson, “Epiphany-V: A 1024 processor 64-bit RISC system-on-chip,”
2016.

[4] A. Psathakis, V. Papaefstathiou, N. Chrysos, F. Chaix, E. Vasilakis, D. Pnev-
matikatos, and M. Katevenis, “A systematic evaluation of emerging mesh-like
CMP NoCs,” in ANCS, 2015, pp. 159–170.

[5] P. Lotfi-Kamran, B. Grot, and B. Falsafi, “NOC-Out: Microarchitecting a scale-
out processor,” in 2012 45th Annual IEEE/ACM Int. Symp. on Microarchitecture,
Dec 2012, pp. 177–187.

[6] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger,
“Dark silicon and the end of multicore scaling,” in ISCA, 2011, pp. 365–376.

[7] S. Borkar, “How to stop interconnects from hindering the future of computing!”
in 2013 Optical Interconnects Conf., May 2013, pp. 96–97.

[8] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald, H. Hoff-
man, P. Johnson, J.-W. Lee, W. Lee et al., “The raw microprocessor: A computa-
tional fabric for software circuits and general-purpose programs,” IEEE micro,
vol. 22, no. 2, pp. 25–35, 2002.

[9] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar, “A 5-GHz mesh
interconnect for a teraflops processor,” IEEE Micro, vol. 27, no. 5, pp. 51–61,
2007.

[10] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, J. MacKay,
M. Reif, L. Bao, J. Brown et al., “Tile64-processor: A 64-core SoC with mesh
interconnect,” in IEEE Int. Solid-State Circuits Conf., 2008, pp. 88–598.

[11] P. Salihundam, S. Jain, T. Jacob, S. Kumar, V. Erraguntla, Y. Hoskote, S. Vangal,
G. Ruhl, and N. Borkar, “A 2 Tb/s 6 x 4 mesh network for a single-chip cloud
computer with DVFS in 45 nm CMOS,” IEEE J. of Solid-State Circuits, vol. 46,
no. 4, pp. 757–766, April 2011.

89

90 BIBLIOGRAPHY

[12] J. Howard, S. Dighe, S. R. Vangal, G. Ruhl, N. Borkar, S. Jain, V. Erraguntla,
M. Konow, M. Riepen, M. Gries, G. Droege, T. Lund-Larsen, S. Steibl, S. Borkar,
V. K. De, and R. V. D. Wijngaart, “A 48-core IA-32 processor in 45 nm CMOS
using on-die message-passing and DVFS for performance and power scaling,”
IEEE Journal of Solid-State Circuits, vol. 46, no. 1, pp. 173–183, Jan 2011.

[13] B. K. Daya, C.-H. O. Chen, S. Subramanian, W.-C. Kwon, S. Park, T. Krishna,
J. Holt, A. P. Chandrakasan, and L.-S. Peh, “SCORPIO: A 36-core research
chip demonstrating snoopy coherence on a scalable mesh NoC with in-network
ordering,” in Int. Symp. on Computer Architecuture, ser. ISCA ’14, 2014, pp.
25–36.

[14] B. Bohnenstiehl, A. Stillmaker, J. J. Pimentel, T. Andreas, B. Liu, A. T. Tran,
E. Adeagbo, and B. M. Baas, “KiloCore: A 32-nm 1000-processor computational
array,” IEEE Journal of Solid-State Circuits, vol. 52, no. 4, pp. 891–902, April
2017.

[15] J. Kim, J. Balfour, and W. Dally, “Flattened butterfly topology for on-chip
networks,” in MICRO-40, 2007, pp. 172–182.

[16] J. Balfour and W. J. Dally, “Design tradeoffs for tiled CMP on-chip networks,”
in Int. Conf. on Supercomputing, 2006, pp. 187–198.

[17] A. Psarras, S. Moisidis, C. Nicopoulos, and G. Dimitrakopoulos, “Networks-on-
chip with double-data-rate links,” IEEE Trans. on Circuits and Systems, vol. 64,
no. 12, pp. 3103–3114, 2017.

[18] S. Rao, S. Jeloka, R. Das, D. Blaauw, R. Dreslinski, and T. Mudge, “VIX: Virtual
input crossbar for efficient switch allocation,” in Design Automation Conf. (DAC),
2014, pp. 103:1–103:6.

[19] H. Kim, A. Vitkovskiy, P. V. Gratz, and V. Soteriou, “Use it or lose it: Wear-out
and lifetime in future chip multiprocessors,” in MICRO-46, 2013, pp. 136–147.

[20] A. K. Mishra, R. Das, S. Eachempati, R. Iyer, N. Vijaykrishnan, and C. R. Das,
“A case for dynamic frequency tuning in on-chip networks,” in MICRO-42, 2009,
pp. 292–303.

[21] C. Nicopoulos, V. Narayanan, and C. R. Das, Network-on-Chip Architectures - A
Holistic Design Exploration, ser. Lecture Notes in Elect. Eng. Springer, 2010,
vol. 45.

[22] B. Grot, J. Hestness, S. W. Keckler, and O. Mutlu, “Express cube topologies for
on-chip interconnects,” in HPCA, Feb 2009, pp. 163–174.

[23] J. Kim, D. Park, T. Theocharides, N. Vijaykrishnan, and C. R. Das, “A low latency
router supporting adaptivity for on-chip interconnects,” in Design Automation
Conf. (DAC), 2005, pp. 559–564.

[24] W. Dally and B. Towles, Principles and Practices of Interconnection Networks.
Morgan Kaufmann Publishers, 2004.

[25] L.-S. Peh and W. J. Dally, “A delay model and speculative architecture for
pipelined routers,” in Int. Symp. on HPCA, 2001.

BIBLIOGRAPHY 91

[26] C. O. Chen, S. Park, T. Krishna, S. Subramanian, A. P. Chandrakasan, and
L. Peh, “SMART: A single-cycle reconfigurable NoC for SoC applications,” in
2013 Design, Automation Test in Europe Conference Exhibition (DATE), 2013,
pp. 338–343.

[27] A. Kumar, L.-S. Peh, P. Kundu, and N. K. Jha, “Express virtual channels: To-
wards the ideal interconnection fabric,” SIGARCH Comput. Archit. News, vol. 35,
no. 2, 2007.

[28] F. Alazemi, A. Azizimazreah, B. Bose, and L. Chen, “Routerless network-on-
chip,” in IEEE Int’l Symp. on High Performance Computer Architecture (HPCA),
2018, pp. 492–503.

[29] T. Krishna, J. Postman, C. Edmonds, L.-S. Peh, and P. Chiang, “SWIFT: A
swing-reduced interconnect for a token-based network-on-chip in 90nm CMOS,”
in 2010 IEEE International Conference on Computer Design, 2010, pp. 439–446.

[30] C. N. Anastasios Psarras, Ioannis Seitanidis and G. Dimitrakopoulos., “ShortPath:
A network-on-chip router with fine-grained pipeline bypassing,” IEEE Trans. on
Computers, vol. 65, no. 10, pp. 3136–3147, 2016.

[31] J. Xu, W. Wolf, and W. Zhang, “Double-data-rate, wave-pipelined interconnect
for asynchronous NoCs,” IEEE Micro, vol. 29, no. 3, pp. 20–30, May 2009.

[32] A. Psarras, S. Moisidis, C. Nicopoulos, and G. Dimitrakopoulos, “RapidLink:
A network-on-chip architecture with double-data-rate links,” in 2016 IEEE
International Conference on Electronics, Circuits and Systems, ICECS, 2016, pp.
93–96.

[33] A. Kumary, P. Kunduz, A. P. Singhx, L.-S. Pehy, and N. K. Jhay, “A 4.6Tbits/s
3.6GHz single-cycle NoC router with a novel switch allocator in 65nm CMOS,”
in 2007 25th International Conference on Computer Design, 2007, pp. 63–70.

[34] S. Park, T. Krishna, C. H. Chen, B. Daya, A. Chandrakasan, and L. S. Peh,
“Approaching the theoretical limits of a mesh NoC with a 16-node chip prototype
in 45nm SOI,” in DAC Design Automation Conference 2012, June 2012, pp.
398–405.

[35] M. Li, Q.-A. Zeng, and W.-B. Jone, “DyXY - a proximity congestion-aware
deadlock-free dynamic routing method for network on chip,” in 2006 43rd
ACM/IEEE Design Automation Conference, 2006, pp. 849–852.

[36] C. Wang, W.-H. Hu, and N. Bagherzadeh, “Scalable load balancing
congestion-aware network-on-chip router architecture,” Journal of Computer
and System Sciences, vol. 79, no. 4, pp. 421–439, 2013, jCSS CADS
2010. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0022000012001432

[37] G. P. Nychis, C. Fallin, T. Moscibroda, O. Mutlu, and S. Seshan,
“On-chip networks from a networking perspective: Congestion and
scalability in many-core interconnects,” SIGCOMM Comput. Commun.
Rev., vol. 42, no. 4, p. 407–418, Aug. 2012. [Online]. Available:
https://doi.org/10.1145/2377677.2377757

92 BIBLIOGRAPHY

[38] C. Wang, W.-H. Hu, and N. Bagherzadeh, “Congestion-aware network-on-chip
router architecture,” in 2010 15th CSI International Symposium on Computer
Architecture and Digital Systems, 2010, pp. 137–144.

[39] D. U. Becker and W. J. Dally, “Allocator implementations for network-on-chip
routers,” in Conf. on HPC Net., Stor. and Analysis, ser. SC ’09, 2009, pp. 52:1–
52:12.

[40] S. Liu, A. Jantsch, and Z. Lu, “A fair and maximal allocator for single-cycle
on-chip homogeneous resource allocation,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 22, no. 10, pp. 2230–2234, 2014.

[41] Y. Lu, C. Chen, J. McCanny, and S. Sezer, “Design of interlock-free combined
allocators for networks-on-chip,” in 2012 IEEE International SOC Conference,
2012.

[42] M. Galles, “Spider: A high-speed network interconnect,” IEEE Micro, vol. 17,
no. 1, pp. 34–39, Jan. 1997.

[43] Y. J. Yoon, N. Concer, M. Petracca, and L. P. Carloni, “Virtual channels and
multiple physical networks: Two alternatives to improve NoC performance,”
in IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 2013.

[44] J. Kim, W. J. Dally, and D. Abts, “Flattened butterfly: A cost-
efficient topology for high-radix networks,” SIGARCH Comput. Archit.
News, vol. 35, no. 2, p. 126–137, Jun. 2007. [Online]. Available:
https://doi.org/10.1145/1273440.1250679

[45] C. H. O. Chen, N. Agarwal, T. Krishna, K. H. Koo, L. S. Peh, and K. C. Saraswat,
“Physical vs. virtual express topologies with low-swing links for future many-core
nocs,” in NOCS, 2010, pp. 173–180.

[46] T. Moscibroda and O. Mutlu, “A case for bufferless routing in on-chip
networks,” in Proceedings of the 36th Annual International Symposium
on Computer Architecture, ser. ISCA ’09. New York, NY, USA:
Association for Computing Machinery, 2009, p. 196–207. [Online]. Available:
https://doi.org/10.1145/1555754.1555781

[47] H. Kim, C. Kim, M. Kim, K. Won, and J. Kim, “Extending bufferless on-chip net-
works to high-throughput workloads,” in 2014 Eighth IEEE/ACM International
Symposium on Networks-on-Chip (NoCS), 2014, pp. 9–16.

[48] C. Feng, Z. Liao, Z. Lu, A. Jantsch, and Z. Zhao, “Performance analysis of on-
chip bufferless router with multi-ejection ports,” in 2015 IEEE 11th International
Conference on ASIC (ASICON), 2015, pp. 1–4.

[49] G. Michelogiannakis, D. Sanchez, W. J. Dally, and C. Kozyrakis, “Evaluat-
ing bufferless flow control for on-chip networks,” in 2010 Fourth ACM/IEEE
International Symposium on Networks-on-Chip, 2010, pp. 9–16.

[50] G. Michelogiannakis, D. Pnevmatikatos, and M. Katevenis, “Approaching ideal
NoC latency with pre-configured routes,” in Int’l Symp. on NOCS, May 2007, pp.
153–162.

BIBLIOGRAPHY 93

[51] M. Hayenga and M. Lipasti, “The NoX router,” in MICRO-44, 2011.

[52] M. Azimi, D. Dai, A. Kumar, A. Mejia, D. Park, R. Saharoy, and A. S. Vaidya,
“Flexible and adaptive on-chip interconnect for tera-scale architectures,” Intel
Technology Journal, vol. 13, no. 4, pp. 62–77, 2009.

[53] L. Chen, D. Zhu, M. Pedram, and T. M. Pinkston, “Power punch: Towards
non-blocking power-gating of NoC routers,” in HPCA, 2015.

[54] P. Lotfi-Kamran, M. Modarressi, and H. Sarbazi-Azad, “Near-ideal networks-on-
chip for servers,” in HPCA, 2017.

[55] K. Sewell, R. G. Dreslinski, T. Manville, S. Satpathy, N. R. Pinckney, G. Blake,
M. Cieslak, R. Das, T. F. Wenisch, D. Sylvester, D. Blaauw, and T. N. Mudge,
“Swizzle-switch networks for many-core systems.” IEEE J. Emerg. Sel. Topics
Circuits Syst., vol. 2, no. 2, pp. 278–294, 2012.

[56] M. Badr and N. E. Jerger, “SynFull: Synthetic traffic models capturing cache
coherent behaviour,” in ACM/IEEE ISCA, June 2014, pp. 109–120.

[57] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation, Depart-
ment of Computer Science, Princeton, NJ, USA, 2011.

[58] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The SPLASH-
2 programs: Characterization and methodological considerations,” SIGARCH
Comp. Archit. News, vol. 23, no. 2, pp. 24–36, 1995.

[59] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hes-
tness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib,
N. Vaish, M. D. Hill, and D. A. Wood, “The Gem5 simulator,” SIGARCH Com-
put. Archit. News, vol. 39, no. 2, pp. 1–7, Aug. 2011.

[60] N. Agarwal, T. Krishna, L. S. Peh, and N. K. Jha, “GARNET: A detailed on-
chip network model inside a full-system simulator,” in IEEE Int. Symp. on
Performance Analysis of Systems and Software, April 2009, pp. 33–42.

[61] A. Bakhoda, J. Kim, and T. M. Aamodt, “Throughput-effective on-chip networks
for manycore accelerators,” in MICRO-43, 2010, pp. 421–432.

[62] I. Akgun, J. Zhan, Y. Wang, and Y. Xie, “Scalable memory fabric for silicon
interposer-based multi-core systems,” in 2016 IEEE 34th International Confer-
ence on Computer Design (ICCD), 2016, pp. 33–40.

[63] A. Kannan, N. E. Jerger, and G. H. Loh, “Exploiting interposer technologies to
disintegrate and reintegrate multicore processors,” IEEE Micro, vol. 36, no. 3,
pp. 84–93, 2016.

[64] D. Stow, Y. Xie, T. Siddiqua, and G. H. Loh, “Cost-effective design of scal-
able high-performance systems using active and passive interposers,” in 2017
IEEE/ACM International Conference on Computer-Aided Design (ICCAD), 2017,
pp. 728–735.

94 BIBLIOGRAPHY

[65] D. Stow, I. Akgun, W. Huangfu, Y. Xie, X. Li, and G. H. Loh, “Invited: Efficient
system architecture in the era of monolithic 3D: Dynamic inter-tier intercon-
nect and processing-in-memory,” in 2019 56th ACM/IEEE Design Automation
Conference (DAC), 2019, pp. 1–4.

[66] G. H. Loh and Y. Xie, “3D stacked microprocessor: Are we there yet?” IEEE
Micro, vol. 30, no. 3, pp. 60–64, 2010.

[67] G. H. Loh, “3D-stacked memory architectures for multi-core processors,” in
2008 International Symposium on Computer Architecture, 2008, pp. 453–464.

[68] H. Matsutani, “Research challenges on 2-D and 3-D network-on-chips,” in 2013
First International Symposium on Computing and Networking, 2013, pp. 24–25.

