59 research outputs found

    Contouring Accuracy Improvement Using an Adaptive Feedrate Planning Method for CNC Machine Tools

    Get PDF
    AbstractThe reduction of contour error plays an important role in achieving high accuracy machining. To reduce contour error, most of previous studies have focused on developing advanced control strategies. As an alternative strategy, contouring accuracy improvement using an adaptive feedrate planning method is proposed in this paper. First, a typical PID controller is adopted to build the contour error model, from which the feedrate can be scheduled in the contour error violated zones. Then, the relations between each constraint and the cutter tip feedrate are derived. After that, a linear programming model is applied to obtain the optimal feedrate profile on the sampling positions of the given tool path. Finally, illustrated examples are given to validate the feasibility and applicability of the proposed feedrate planning method. The comparison results show that the proposed method has a significant effect on improving contouring accuracy

    From computer-aided to intelligent machining: Recent advances in computer numerical control machining research

    Get PDF
    The aim of this paper is to provide an introduction and overview of recent advances in the key technologies and the supporting computerized systems, and to indicate the trend of research and development in the area of computational numerical control machining. Three main themes of recent research in CNC machining are simulation, optimization and automation, which form the key aspects of intelligent manufacturing in the digital and knowledge based manufacturing era. As the information and knowledge carrier, feature is the efficacious way to achieve intelligent manufacturing. From the regular shaped feature to freeform surface feature, the feature technology has been used in manufacturing of complex parts, such as aircraft structural parts. The authors’ latest research in intelligent machining is presented through a new concept of multi-perspective dynamic feature (MpDF), for future discussion and communication with readers of this special issue. The MpDF concept has been implemented and tested in real examples from the aerospace industry, and has the potential to make promising impact on the future research in the new paradigm of intelligent machining. The authors of this paper are the guest editors of this special issue on computational numerical control machining. The guest editors have extensive and complementary experiences in both academia and industry, gained in China, USA and UK

    Time-Optimal Feedrate Planning for Freeform Toolpaths for Manufacturing Applications

    Get PDF
    Optimality and computational efficiency are two desired yet competing attributes of time-optimal feedrate planning. A well-designed algorithm can vastly increase machining productivity, by reducing tool positioning time subject to limits of the machine tool and process kinematics. In the optimization, it is crucial to not overload the machining operation, saturate the actuators’ limits, or cause unwanted vibrations and contour errors. This presents a nonlinear optimization problem for achieving highest possible feedrates along a toolpath, while keeping the actuator level velocity, acceleration and jerk profiles limited. Methods proposed in literature either use highly elaborate nonlinear optimization solvers like Sequential Quadratic Programming (SQP), employ iterative heuristics which extends the computational time, or make conservative assumptions that reduces calculation time but lead to slower tool motion. This thesis proposes a new feedrate optimization algorithm, which combines recasting of the original problem into a Linear Programming (LP) form, and the development of a new windowing scheme to handle very long toolpaths. All constraint equations are linearized by applying B-spline discretization on the kinematic profiles, and approximating the nonlinear jerk equation with a linearized upper bound (so-called ‘pseudo-jerk’). The developed windowing algorithm first solves adjacent portions of the feed profile with zero boundary conditions at overlap points. Afterwards, using the Principle of Optimality, connection boundary conditions are identified that guarantee a feasible initial guess for blending the pre-solved adjacent feed profiles into one another, through a consecutive pass of LP. Experiments conducted at the sponsoring company of this research, Pratt & Whitney Canada (P&WC), show that the proposed algorithm is able to reliably reduce cycle time by up to 56% and 38% in two different contouring operations, without sacrificing dynamic positioning accuracy. Benchmarks carried out with respect to two earlier proposed feedrate optimization algorithms, validate both the time optimality and also drastic (nearly 60 times) reduction in the computational load, achieved with the new method. Part quality, robustness and feed drive positioning accuracy have also been validated in 3-axis surface machining of a part with 1030 waypoints and 10,000 constraint checkpoints

    Minimum Time Trajectory Optimization of CNC Machining with Tracking Error Constraints

    Get PDF
    An off-line optimization approach of high precision minimum time feedrate for CNC machining is proposed. Besides the ordinary considered velocity, acceleration, and jerk constraints, dynamic performance constraint of each servo drive is also considered in this optimization problem to improve the tracking precision along the optimized feedrate trajectory. Tracking error is applied to indicate the servo dynamic performance of each axis. By using variable substitution, the tracking error constrained minimum time trajectory planning problem is formulated as a nonlinear path constrained optimal control problem. Bang-bang constraints structure of the optimal trajectory is proved in this paper; then a novel constraint handling method is proposed to realize a convex optimization based solution of the nonlinear constrained optimal control problem. A simple ellipse feedrate planning test is presented to demonstrate the effectiveness of the approach. Then the practicability and robustness of the trajectory generated by the proposed approach are demonstrated by a butterfly contour machining example

    Cycle Time Reduction of 5-axis Laser Drilling via Time-optimal Trajectory Generation and Sequence Optimization

    Get PDF
    Cycle time reduction is one of the crucial tasks in manufacturing that needs to be achieved to maximize productivity and profits. Laser drilling processes, depending on the size and complexity of the parts, require few hundreds to few thousands of holes to be drilled. Therefore, cycle time is directly related to in what order and manner the holes are visited. In this thesis, a method of cycle time reduction for 5-axis percussion laser drilling process is presented via generation of time-optimal trajectory and optimization of hole visiting sequence. In percussion laser drilling, a series of laser pulses are fired to each hole while the workpiece is stationary. Once a hole is completely opened up, then drilling of the next hole continues by repositioning the workpiece with respect to the beam. This stop-and-go nature of the drilling process enables one to describe the sequence optimization problem as a well-known Traveling Salesman Problem (TSP) in combinatorial optimization. The objective of TSP is to find a minimum cost sequence of points when the point-to-point cost information for every possible pair is known. In the case of the minimum cycle time problem, the point-to-point cost is the travel time, and the objective of TSP is to find a sequence with the minimum overall travel time. In planning of time-optimal trajectory for point-to-point motion under a specified path, industry uses CNC controller’s G00 (rapid traverse) + TRAORI (5-axis transformation and tool orientation retaining tactic) commands. To be practically beneficial, time-optimal trajectory generation strategies discussed in this thesis is focused on closely estimating these CNC controller’s behaviors. A total of four strategies are studied, and the most accurate strategy is chosen by comparing the results with the experimentally measured CNC trajectories. The most accurate one specifies the tool paths in Workpiece Coordinates followed by iterative velocity profiling of the tool path parameter to achieve minimum time trajectory under the machine’s velocity, acceleration, and jerk limits. With every hole-to-hole travel time calculated from the above strategy, sequence optimization can be conducted. In this thesis, two methods from the industry partner, the proposed method, and the optimal solver method are discussed. Due to licensing limitations, the proposed method is developed in-house instead of using existing non-commercial TSP algorithms. The proposed method uses local search heuristics approach inspired by famous Lin-Kernighan heuristics. The iv results are compared to the optimal solutions generated from the non-commercial state-of-the-art TSP solver called Concorde for benchmarking purposes. To understand the impact of the research in a real environment, one sample part and its original drilling process information have been made available by the industry partner. Although the full experimental results are not yet acquired at the moment of writing this thesis, the simulation results show that the proposed sequencing optimization in conjunction with the proposed hole-to-hole trajectory generation strategy for correct estimation of travel time improves the overall cycle time by 26.0 %

    Control and Optimization of Batch Chemical Processes

    Get PDF
    A batch process is characterized by the repetition of time-varying operations of finite duration. Due to the repetition, there are two independent “time” variables, namely, the run time during a batch and the batch index. Accordingly, the control and optimization objectives can be defined for a given batch or over several batches. This chapter describes the various control and optimization strategies available for the operation of batch processes. These include online and run-to-run control on the one hand, and repeated numerical optimization and optimizing control on the other. Several case studies are presented to illustrate the various approaches

    Automatic tool path generation for numerically controlled machining of sculptured surfaces

    Get PDF
    This dissertation presents four new tool path generation approaches for numerically controlled machining of sculptured surfaces: TRI\sb-XYINDEX, FINISH, FIVEX\sb-INDEX, FIX\sb-AXIS\sb-INDEX. All of the above systems index the tool across the object surface in the Cartesian space so that evenly distributed tool paths are accomplished. TRI\sb-XYINDEX is a three-axis tool path generation system which uses a surface triangle set (STS) representation of the surface for tool position calculations. Surface edges are detected with local searching algorithms. Quick tool positioning is achieved by selecting candidate elements of polygons. Test results show that TRI\sb-XYINDEX is more efficient when machining surfaces which are relatively flat while the discrete point approach is faster for highly curved surfaces. FINISH was developed for generating three-axis ball-end tool paths for local surface finishing. It was based on the SPS. Given a surface with excess material represented by a set of discrete points, FINISH automatically identifies the undercut areas. Results show that FINISH provides significant improvements in machining efficiency. FIVEX\sb-INDEX is developed for generating five-axis flat-end tool paths. It uses an STS approximation. Contact points on the surface are derived from edge lists obtained from the intersections of vertical cutting planes with the polygon set. The distances between adjacent end points set an initial step-forward increment between surface contact points. To verify tool movements, some intermediate tool positions are interpolated. The key features of FIVEX\sb-INDEX are: (1) a polygon set representing an object which may be composed of multiple surfaces; (2) Surface contact point generation by cutting plane intersection; (3) simple tool incrementing and positioning algorithms; (4) minimal user interaction; (5) user controlled accuracy of resulting tool paths. FIX\sb-AXIS\sb-INDEX is a subsystem of FIVEX\sb-INDEX, generating tool paths for a tool with fixed orientations. Surface contact points are generated similar to FIVEX\sb-INDEX while tool positions are corrected with the highest point technique along the tool axis direction. Linear fitting is applied to output tool positions. FIX\sb-AXIS\sb-INDEX is preferred for machining surfaces curved in one direction, such as ruled surfaces. Test results show that FIX\sb-AXIS\sb-INDEX can serve as a three-axis tool path generation system but a five-axis machine is required to do it. (Abstract shortened by UMI.)

    Development of the UMAC-based control system with application to 5-axis ultraprecision micromilling machines

    Get PDF
    Increasing demands from end users in the fields of optics, defence, automotive, medical, aerospace, etc. for high precision 3D miniaturized components and microstructures from a range of materials have driven the development in micro and nano machining and changed the manufacturing realm. Conventional manufacturing processes such as chemical etching and LIGA are found unfavourable or limited due to production time required and have led mechanical micro machining to grow further. Mechanical micro machining is an ideal method to produce high accuracy micro components and micro milling is the most flexible enabling process and is thus able to generate a wider variety of complex micro components and microstructures. Ultraprecision micromilling machine tools are required so as to meet the accuracy, surface finish and geometrical complexity of components and parts. Typical manufacturing requirements are high dimensional accuracy being better than 1 micron, flatness and roundness better than 50 nm and surface finish ranging between 10 and 50 nm. Manufacture of high precision components and parts require very intricate material removal procedure. There are five key components that include machine tools, cutting tools, material properties, operation variables and environmental conditions, which constitute in manufacturing high quality components and parts. End users assess the performance of a machine tool based on the dimensional accuracy and surface quality of machined parts including the machining time. In this thesis, the emphasis is on the design and development of a control system for a 5-axis bench-type ultraprecision micromilling machine- Ultra-Mill. On the one hand, the developed control system is able to offer high motion and positioning accuracy, dynamic stiffness and thermal stability for motion control, which are essential for achieving the machining accuracy and surface finish desired. On the other hand, the control system is able to undertake in-process inspection and condition monitoring of the machine tool and process. The control of multi-axis precision machines with high-speed and high-accuracy motions and positioning are desirable to manufacture components with high accuracy and complex features to increase productivity and maintain machine stability, etc. The development of the control system has focused on fast, accurate and robust positioning requirements at the machine system design stage. Apart from the mechanical design, the performance of the entire precision systems is greatly dependent on diverse electrical and electronics subsystems, controllers, drive instruments, feedback devices, inspection and monitoring system and software. There are some variables that dynamically alter the system behaviour and sensitivity to disturbance that are not ignorable in the micro and nano machining realm. In this research, a structured framework has been developed and integrated to aid the design and development of the control system. The framework includes critically reviewing the state of the art of ultraprecision machining tools, understanding the control system technologies involved, highlighting the advantages and disadvantages of various control system methods for ultraprecision machines, understanding what is required by end-users and formulating what actually makes a machine tool be an ultraprecision machine particularly from the control system perspective. In the design and development stage, the possession of mechatronic know-how is essential as the design and development of the Ultra-Mill is a multidisciplinary field. Simulation and modelling tool such as Matlab/Simulink is used to model the most suitable control system design. The developed control system was validated through machining trials to observe the achievable accuracy, experiments and testing of subsystems individually (slide system, tooling system, monitoring system, etc.). This thesis has successfully demonstrated the design and development of the control system for a 5-axis ultraprecision machine tool- Ultra-Mill, with high performance characteristics, fast, accurate, precise, etc. for motion and positioning, high dynamic stiffness, robustness and thermal stability, whereby was provided and maintained by the control system.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    • 

    corecore