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Abstract  

The aim of this paper is to provide an introduction and overview of recent advances in the key 

technologies and the supporting computerized systems, and to indicate the trend of research and 

development in the area of computational numerical control machining. Three main themes of recent 

research in CNC machining are simulation, optimization and automation, which form the key aspects of 
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intelligent manufacturing in the digital and knowledge based manufacturing era. As the information and 

knowledge carrier, feature is the efficacious way to achieve intelligent manufacturing. From the regular 

shaped feature to freeform surface feature, the feature technology has been used in manufacturing of 

complex parts, such as aircraft structural parts. The authors’ latest research in intelligent machining is 

presented through a new concept of multi-perspective dynamic feature (MpDF), for future discussion and 

communication with readers of this special issue. The MpDF concept has been implemented and tested in 

real examples from the aerospace industry, and has the potential to make promising impact on the future 

research in the new paradigm of intelligent machining. The authors of this paper are the guest editors of 

this special issue on computational numerical control machining. The guest editors have extensive and 

complementary experiences in both academia and industry, gained in China, USA and UK. 

 

Keywords: Digital manufacturing, Optimisation, Process modeling and planning, CNC machining, 

Feature 

 

1. Introduction 

With conventional Computer Aided ‘x’ (CAx) technologies, including Computer Aided Design 

(CAD), Manufacturing (CAM), Engineering (CAE), Process Planning (CAPP), and Computer Numerical 

Control (CNC) in a more general sense, computerized programs serve the role of providing assistance 
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while engineering users are responsible for making process decisions. CAx systems produce process data 

(including product definitions, manufacturing process plans, cutting tool paths, and control commands) 

based on users’ inputs. Although reliable results are produced, the degree of efficiency depends on the 

users providing process parameters. In recent years, the advances in computational power, algorithms, 

and better understanding of the physics and mathematical models of machining processes enabled 

computerized programs to automate some of the process decisions. The goal is to automate and optimize, 

as much as possible, the process decisions traditionally taken by engineers. These technologies would 

eventually make the users more productive and the machining processes more efficient and optimized. 

This paper reports on state-of-the-art research in computerized intelligence, including automated 

decision-making and optimization, related to numerical control (NC) machining processes. As suggested 

in the title, the code name ‘intelligent machining’ is adopted to represent such computerized intelligence 

in machining processes. Computerized intelligence involves algorithm design, knowledge based 

engineering and computation activities. The scope of this paper is limited to aspects related to part 

machining covering most (but not all) of contemporary interests. This paper is not intended to be a 

historical review, but focus on recent trends, whilst some earlier publications were cited to provide 

contextual background. The reference list may leave out important (and older) papers that are corner 

stones of the topics. Section 2 of this paper provides an overview of advances in recent research from a 

specialized ‘technology’ point of view, while Section 3 provides review of research from an integrated 
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‘systems’ point of view. The authors’ proposed dynamic feature concept and latest research in intelligent 

machining is presented in Section 4, to share with readers of this special issue, and to encourage further 

discussions and communications in this topic. 

2. Advances in CNC Machining Technologies 

This Section reviews and introduces specific key technologies in the area of Computational 

Numerical Control. Each sub-section describes recent progress on computerized intelligence in a 

particular topic, and provides citations of relevant research papers for further information. 

2.1 Work Step Planning and Optimization 

Before the programming and execution of every machining operation (work step), it requires 

planning for the process operational conditions. The planning tasks include the selection of machine tools, 

cutters, and setup configurations. The decisions are made by experienced operators/engineers based on 

the existing resources/equipment in the shop floor. While the operators/engineers try to come up with best 

decisions, the results are not guaranteed to be optimal if the workers are not well trained, not given proper 

information, nor time to perform. Recent research attempted to perform some of the work step planning 

tasks with machine intelligence. The goal is to formulate the planning tasks as optimization problems that 

can be solved mathematically and numerically. This would enable automated solutions for work step 

planning, replacing some of the human decision-making tasks. 

Setup planning involves making a lot of decisions such as the location and orientation of the 
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workpiece on the machine table, the (clamping) positions of the fixtures to the workpiece, and the 

selection of fixtures. Setup configuration tasks can be automated based on various optimization criteria, 

including global avoidance during machining [1], machine kinematic efficiency [2], machine kinematic 

induced tracking errors [3], and clamping force based spatial arrangement of fixtures [4]. Cutter (tool) 

selection is another important task of work step planning. There are several factors to be considered for 

cutter selection. Among them are the size (radius) of the cutter for fitting into narrow regions 

(accessibility) [5] and cutting profile (at the bottom of the cutter) for fitting workpiece surface concavity 

(curvature) [6-7]. 

 

2.2. Optimal Tool-axis Computation 

When programming five-axis tool paths, the specification of tool-axis control is the most difficult 

task. The rotational motions are difficult to visualize and process mathematically. The fact that the 

workpiece and work table on the machine tool may rotate in some systems presents additional difficulty 

for the programmers to fully comprehend. There are two types of five-axis milling: Point and Flank. Point 

milling uses the tip (bottom) of the cutters to remove the material, whilst Flank milling, also known as 

Profile cutting and Peripheral milling, uses the side of the cutter to remove material. There are several key 

requirements to consider for tool-axis programming, as explained below: 

i) Collision avoidance. The programmed tool-axis orientation shall never cause the cutter head to 
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collide with any obstacles in the machine tool. This applies to both Point and Flank milling. 

ii) Shape accuracy. When the cutter orientation affects the amount of material to be removed, the 

overcut and undercut must be controlled. This applies mainly to Flank milling. 

iii) Cutting condition. Tool-axis determines the orientation of the cutter relative to the workpiece 

surface, hence influencing the physical interaction between the cutter and the material. This 

applies mainly to Point milling. 

iv) Machine kinematics/dynamics. The change of tool-axis is controlled by the two rotary axes. It 

is important to consider the kinematic limits and dynamic stability of the rotary axes in 

tool-axis computation. This applies to both Point and Flank milling. 

In state-of-the-art CAM systems, the tool-axis is specified according to the given spatial descriptions. 

The system provides many methods and the programmers choose one among them to describe the spatial 

definition of the tool-axis. The methods have no direct correlation to machining requirements so the 

programmer has to mentally work out the results and figure out which one is the best according to the 

requirements. It requires high-level understanding of the mathematics and geometry, plus many years of 

experiences in five-axis machining. Recently researchers began to compute the optimal orientation and 

positioning of tool-axis based on one or more of the above mentioned requirements, in lieu of 

user-controlled spatial specifications. The efforts are mainly for Flank milling, with different constraints 
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and optimization goals [8-9]. 

2.3. Path Shape Optimization 

Tool path computation consists of mathematical models and algorithms, and the resulting tool paths 

depend on the limitations and characteristics of the computation methods. In reality, the "perfect" 

algorithm for tool-path generation doesn't exist. Consequently the tool paths usually don't meet the 

highest quality demands, and are further degraded by the common practice of G-code representation. As a 

result, the tool paths generated by today's leading commercial CAM systems suffer from several common 

deficiencies, such as: 

i) Sudden change of direction caused by the algorithm of pattern computation, 

ii) Noisy and even jagged paths caused by geometry discretization or numerical instability, 

iii) Built-in G1 (tangent) discontinuity as a consequence of G01 (GOTO) code, and 

iv) Inconsistency among neighboring passes, due to the fact that the paths are usually computed 

one pass at a time without considering the neighboring passes. 

The goal of path shape optimization is to handle the above problems. The typical strategy is to 

modify the tool path shape after the tool paths are generated from the CAM systems, in either the post 

processing stage (after CAM before CNC) or within the CNC during axis command processing (also 
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known as control interpolation). Due to the fact that the post modification is performed without knowing 

the original part geometry, the modification must be limited to minor deviations (meaning the deviations 

are within the specified machining tolerance) from the given tool paths. 

One type of path shape optimization solution is to perform smoothing and B-spline or Non-Uniform 

Rational B-Spline (NURBS) fitting on the G01 code, to achieve continuous path trajectories and hence 

smooth surface finish and less speed fluctuation during machining. In the case of five-axis machining, it 

is common to represent a tool path with dual B-spline curves, one tracking the tool-end (bottom) point 

and the other tracking the upper end of the cutter. Examples were given by Yuen et al. [10] for 5-axis 

machining and Chen et al. [11] for 3-axis machining. Another type of path optimization solution is to 

perform corner rounding of the poly-line trajectories of G01. The deviations are confined to the 

neighborhood of each G01 points. Examples were given by Beudaert et al. [12] for 5-axis machining and 

Zhao et al. [13] for 3-axis machining. 

Although the path modification is usually performed after the path generation, it can be applied 

during the generation. The modification is localized, that is, applied to nearby GOTO points, during the 

path computation. Bouard et al. [14] applied localized smoothing to 2D, 3-axis machining, while 

Beudaert et al. [15] applied localized smoothing to tool-axis, both during tool path generation. 
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2.4. Net Shape Simulation 

Optimization of tool paths requires the computation of the net shape of the workpiece after the 

material has been removed by the cutter. The geometric net shape simulation is used to derive surface 

quality and volume removal rate. The former is important for finishing operation optimization, while the 

latter is the key to optimizing the material removal rate of roughing operations. Net shape simulation has 

two competing (and contradicting) requirements: accuracy and speed of computation. Satisfying both is 

particularly difficult for five-axis tool paths. Recent efforts focused on new algorithms to improve 

accuracy and computation speed for the net shape simulation of five-axis machining. 

Workpiece net shape is the complement of the swept volume of the cutter that is the core of the 

problem. There are two major approaches to computing cutter swept volume. One is computing the 

sweeping envelopes [16] and integrating them to form the surface of the swept volume [17-19]. This 

method is more suitable for surface finishing simulation. The other method is to use a global spatial 

structure (or spatial directory) to describe the shape, with one reported by Sullivan et al. [20] being an 

example. The second method is commonly used for volume removal computation. 

2.5. Optimized Feed Planning and Interpolation 

Tool paths generated from CAM systems come in two forms: either poly-line-based G-code or 

NURBS-based trajectories (see Section 4 - Path Shape Optimization, for more information). In either 

form, the tool-paths contain only the shape information, but no feed (velocity) function, at most the upper 
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bound of the feed is provided. The job of feed planning (feed scheduling) is left for the controllers to 

fulfill during real-time control, including the following two major tasks: 

i) Feed function: Given an axis-position path,  𝑷𝑷(𝑢𝑢) , compute the desirable (based on various 

constraints and goals) feed function, 𝑑𝑑𝑷𝑷
𝑑𝑑𝑑𝑑

, which is then used to derive the time derivative of the path 

parameter, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= �𝑑𝑑𝑷𝑷
𝑑𝑑𝑑𝑑
� �𝑑𝑑𝑷𝑷
𝑑𝑑𝑑𝑑
�
−1

. 

ii) Subdivision: Compute the parameter interval that corresponds to the cycle time (∆𝑡𝑡) of the drive, 

∆𝑢𝑢 = ∫ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑0+∆𝑑𝑑
𝑑𝑑0

𝑑𝑑𝑡𝑡 , then use it to get the sampling parameter, 𝑢𝑢𝑖𝑖 = 𝑢𝑢𝑖𝑖−1 + ∆𝑢𝑢, and sampling data, 

𝑷𝑷(𝑢𝑢𝑖𝑖), to be sent to the drive. 

Ideally the feed value should be as large as possible (to achieve least machining time), but it is 

limited by the following constraints: upper bound of axis speeds, upper bound of axis accelerations, upper 

bound of jerks, tracking errors from sampling (subdivision), and tracking errors due to the dynamic 

response characteristics of the servo drives. Mathematically speaking, computing feed function is a 

constrained optimization problem. The main challenge is to solve such constrained optimization problem 

in real time, with usually limited CPU speed and storage capacity. 

Compared to feed function, the task of subdivision is less demanding. The main work load is the 

numerical computation of the integral, ∆𝑢𝑢 = ∫ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑0+∆𝑑𝑑
𝑑𝑑0

𝑑𝑑𝑡𝑡. It has to be fast and accurate. 
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In commercial CNC systems, it is common to simplify the model and target a near-optimal (better 

solution), instead of the absolute optimal (best solution), in order to cope with real-time requirement and 

limited resources. To approach the best solution, the goal of recent research efforts is to come up with 

new algorithms that can solve the constrained optimization problem in real time. 

Beudaert et al. [21] and Guo et al. [22] proposed new algorithms to improve the accuracy and 

performance of feed function computation. Annoni et al. [23] combined feed function and subdivision 

tasks in the proposed algorithm to obtain better result. Other efforts focused on new subdivision method 

for improvement [24-25]. Instead of real-time computation, Lee et al. [26] proposed moving the feed 

function computation to non-real-time (ahead of actual machining) to eliminate the real-time limitations. 

2.6. Automated Contour Error Compensation 

When machining a part, the actual trajectory of the cutter relative to the workpiece is called the 

realized tool path. In theory, the realized tool path should coincide with the tool path generated from the 

CAM system. However, the realized tool path is never the same as the nominal tool path, and the 

differences between them are called contour errors. At this point, it is useful to briefly clarify the 

difference between tracking and contour errors. As explained in the previous Section, contour errors are 

defined in the workpiece coordinate system (WCS), which is also used by CAM-generated tool paths. 

Meanwhile, the tracking errors are defined in the axis-position space of the machine tool. Tracking errors 
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are sources of contour errors and a contour error caused by a tracking error is the forward kinematic 

transformation of the tracking error. 

This sub-section only covers the contour errors that are related to the characteristics and condition of 

the machine tool and its components. That is, the errors that depend on the machining process and the 

workpiece being machined (such as chip formation and cutting forces) are excluded. The following are 

the common sources of equipment-based contour errors: 

i) Kinematic errors due to the geometrical deviations of the machine tool components. The 

geometrical deviations could come from the dimensional errors or the fact that the components 

are not perfectly rigid. The dimensional errors are intrinsic and can be measured when the 

machine tool is stationary while the deformation from non-rigid-body effect depends on the 

acceleration of the machine tool components. 

ii) Tracking errors due to the dynamic response of the servo drives. When the servo drives are 

moving, they have to deal with the inertia of the moving components and friction at the 

junctions and tracking errors are unavoidable. The dynamic servo drive errors usually cease 

when the drives come to a complete stop. 

iii) Thermal deformation of machine tool components. Spindles operate at very high speed and 

generate considerable heat. The heat causes thermal deformation of the components near the 
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spindles and hence dimensional errors. Obviously, thermal deformation-induced contour errors 

are temperature dependent. 

iv) Axis position interpolation errors of five-axis machines. As discussed previously, subdivision 

(sampling) of axis-position paths causes tracking errors and hence contour errors. Furthermore, 

usually G-code paths are interpolated in the axis-position space (except some advanced CNC 

systems that offer the capability to interpolate in the WCS) and linear interpolation in the 

axis-position space produces non-linear errors in WCS. 

Study of contour errors and its compensation methods has been a popular topic in recent years. This 

is a complete reversal from the lack of progress previously. Most of the recent research work shares the 

common trait that covers three steps: the first step builds a (simplified) mathematical model to represent 

the contour errors; the second step performs measurements to populate the error model, and the final step 

modifies the tool paths based on the error model to compensate for the contour errors. This same trait 

applies to the research work of all four error sources listed above. 

Among the four major sources of contour errors, static machine tool geometrical deviation 

(dimension errors) is the easiest to study, because it can be measured when the machine tool is stationary. 

This topic also generates the most interest from researchers [27-32]. They experimented with various 

error models and measurement methods, but followed the same model-measurement-compensation 
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paradigm. Touch probing, ball-bar, and laser are the common choices for static contour error 

measurement. Since the contour errors are measured in WCS, it is easier to compensate the tool paths in 

WCS as well. If the compensation is made to the axis-position commands, its value must be brought to 

WCS via forward kinematic transformation for validation. 

The dynamic portion of geometrical deviation, i.e., the deformation from non-rigid-body effects, is 

harder than static geometrical deviation and little research [33] are found in this area. The topic of 

tracking error from dynamic servo response also generates popular interest lately. This topic is more 

difficult than geometrical deviation because (a) servo dynamic errors can't be measured when the machine 

is stationary and (b) the source is tracking error but the manifestation is contour error. To overcome the 

difficulty of measurement, it is common to rely on the mathematical model of servo drive response 

behavior. The second difficulty is dealt with using forward kinematic transformation and inverse 

kinematic transformation during validation. Zhang et al. [34] and Lin and Wu [35] provided the 

compensation solutions for dynamic servo tracking errors of five-axis machines. 

To improve the accuracy of modeling and compensating dynamic servo tracking errors, some 

researchers applied cross-coupling among different axes [36-38]. Presently these efforts are limited to the 

simple case of 2D machining (two axes only). There is considerably less research in thermal deformation 

[39] and five-axis interpolation errors [40]. 
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2.7. Prediction of Process-dependent Machining Errors 

Contour errors studies in the previous sub-section haven’t included the physical interactions between 

the cutter and workpiece. Only machine tool characteristics and conditions were taken into account. 

During machining, the cutter-workpiece interaction produces forces on the cutter and workpiece (and the 

chips broken away from the workpiece). These forces cause additional machining errors beyond the 

no-load contour errors discussed previously. The cutting forces depend on the cutting conditions, and the 

corresponding form errors depend on the material and shape of the workpiece. That is, the 

cutter-workpiece interaction-induced machining errors are process dependent. These machining errors 

cannot be computed without knowing the details of the machining process, including the tool path, cutter, 

and workpiece. 

When the cutting forces are present, both cutter and workpiece are deformed by the forces. On the 

workpiece side, there are elastic deformations and rigid-body position shift. Elastic deformation is 

significant when the portion of the workpiece being machined is thin (such as blades and pocket walls) or 

the material is highly elastic. The rigid-body shift of the workpiece is of importance if the machine tool 

has backlash problems or poor rigidity, or if the clamping of the fixture is not stable. For a very 

thin-walled workpiece, there could be a third type of deformation: plastic. Plastic deformation is smaller 

in magnitude than elastic deformation and also less studied. Similarly the force on the cutter causes elastic 

deformation and rigid-body shift. The elastic deformation on the cutter is known as tool deflection that is 
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usually much more significant than the rigid-body shift and of the tool assembly. 

The study of process-dependent errors involves the following four tasks: 

i) Computing the chip formation from the process data (tool path, cutter geometry, and workpiece 

shape), 

ii) Estimating the cutting forces from the chip formation and cutting condition, 

iii) Predicting the deformation on the cutter and/or workpiece from the estimated cutting forces, 

usually with the help of finite element (FE) simulation, and 

iv) Offering a compensation solution to offset the predicted deformation of cutter/workpiece. 

Several recent papers covered one or more of the above tasks. The effect of cutting forces induced 

machining errors is most severe in the situation of Flank milling on thin walls. Habibi et al. [41] and Wan 

et al. [42] provided the compensation solutions for, and the prediction of the form errors, from cutter and 

thin wall elastic deformation. Kang and Wang [43] also addressed the same cutter-thin wall elastic 

deformation problem, but only worked out the deformation prediction without offering the compensation 

solution. Wei et al. [44] introduced cutting force calculation using Z-map approximation. Liang and Yao 

[45] targeted chip formation calculation for ball-end cutters. 
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2.8. Optimization for Machine Tool Stability 

In the previous sub-section, the emphasis was on the value of cutting forces and the resulting 

machining errors. There is another aspect of cutting forces that requires careful study: periodicity. The 

periodicity of cutting forces is tied to machine chatter problems. Due to the geometrical symmetry of 

milling cutters, the cutting forces are periodic functions of time, and the frequency is the spindle rate 

(revolutions per second) times the number of teeth in the cutter. If the cutting force frequency is in 

harmonic with the natural frequency of the machine tool, then vibration occurs, known as chatter. 

The occurrence of chatter depends on two factors: spindle speed and depth of cut of the cutter in the 

axial direction. For a given cutter tooth configuration, the spindle speed determines frequency that in turn 

determines whether the harmonic with the machine tool takes place. Depth of cut in the axial direction is 

proportional to the chip volume and force. Hence, stability is a function of spindle speed and depth of cut, 

and can be illustrated as a curve in the depth of cut vs spindle speed diagram that divides the stable and 

unstable regions, known as stability lobe diagram (see Figure 1). 
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Figure 1. A typical stability lobe diagram. 

Experimental measurements to obtain the stability lobe diagram of a machine tool are expensive and 

time-consuming. It’s desirable to use mathematical models to predict it, although this is a complex and 

difficult computational problem. An example of stability prediction can be found in [46-48]. When the 

stability diagram is available, the stable region of the diagram can be applied as the constraint and 

optimize the machining parameters, to achieve optimal material removal rate [49], or surface variation 

[50]. 

3. Advances in CNC Machining Systems 

This Section reviews and introduces advances in CNC research from a systems and integration point 

of view. There are broadly three stages in the development of CNC machining systems, i.e., computer 

aided manufacturing, automatic manufacturing and intelligent manufacturing. As this paper focuses on 

part machining, the word ‘manufacturing’ is replaced by ‘machining’ in this paper.  Research and 
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development in feature technology has played an important role in the CNC machining from both 

technological and system integration point of view. Therefore some emphasis is given to the latest 

research in feature technology. 

3.1 Computer Aided Machining 

The introduction of computers frees engineers from manual drafting of parts and process planning. A 

distinguishing feature of this stage is the assistance of computers. Before the advent of CAD technology, 

engineering drawings were the most commonly used technological documents for product design and 

manufacturing. The shapes and sizes of the machining features are represented by the orthographic views 

and the cross-section views. And the manufacturing requirements of machining features are represented 

by symbols and notes. In order to prepare a process plan, engineers need to interpret the geometry and 

manufacturing information from 2D drawings. Apparently, the quality of process planning depends upon 

the experience of the engineers. The machining process knowledge is hard to be stored and re-used. 

In the mid-1960s, the first generation of CAD system was developed. Because it only provided 2D 

drafting function, strictly speaking early CAD systems should be called computer-aided drafting systems 

[51]. The digital files of 2D drawings have opened up the possibility of extracting machining features by 

computer programs. As an experiment, 2D drawings of the rotational parts were selected to verify the 

feasibility [52]. The application was extended to the prismatic parts gradually [53]. Then isolated and 
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non-intersecting features were extracted [54]. However, the intersecting features became the main 

obstacle [55]. Meanwhile, limited by the orthographic views, the features constructed by freeform 

surfaces were hard to extract. When the geometrical information was extracted, the dimensions of the 

machining features could be assigned automatically [56]. At present industrial practice, as the legacy data, 

2D drawings of older products are still useful. Some researchers developed technologies for the 

reconstruction of 3D part models from 2D drawings [57]. 

When the machining features are extracted from 2D drawings, they can be used for process planning. 

Considering the similarity of the parts, Group Technology (GT) has been applied to code mechanical parts 

in variant computer-aided process planning system. Indexing rules were built to retrieve previous similar 

process plans according to the codes. Apart from GT technology, parametric process plan templates were 

widely used to store and represent the machining process of features. Process plans were generated by 

engineers who retrieve and modify the template library and solve related constraints according to the 

parameters of machining features [58-59]. Then, the tool paths can be generated according to the 

machining feature parameters and the process information. 

Because the interpretation of 2D drawings is bound by the experience of the engineers, 3D CAD 

systems were later developed. Firstly, wireframe-based models were provided. The research work on 

feature extraction, process planning and NC programming based on wireframe model were reported 
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[60-61]. However, the 3D wireframe models were ambiguous, and were only suitable for quick display 

and verification of the geometry of simple feature models [62]. 

With the advances in CAD technology, solid models such as boundary representation (B-Rep) model 

and constructive solid geometry (CSG) models were proposed. A B-Rep model is capable of representing 

the lower-level geometric entities such as faces, edges and vertices for attaching dimensions, tolerances 

and other attributes. The CSG model is good at representing the higher-level primitives such as removal 

volumes and easy performance of feature operations such as add, delete and modify. Combining the 

advantages of the two models, hybrid CSG/B-Rep schemes were adopted in modern CAD/CAM systems. 

However, these models concentrate on the representation of geometry information. The machining 

process information were not properly stored and maintained in these models. 

3.2. Automatic Machining 

In the later stages of system development, automation is the goal of research in CNC systems. The 

representative technologies include feature recognition, data exchange between CAD/CAPP/CAM, and 

feature-based NC programming. 

3.2.1 Feature Recognition 

As an efficient and practical CAD/CAPP/CAM integration methodology, feature recognition 

methods can be categorized into graph-based method, volume-decomposition method, hint-based method, 
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artificial intelligence-based method and hybrid method, since the concept was first proposed. Some earlier 

research in the development of feature recognition methods before 2005 have been reviewed by Han et al. 

[63] and Corney et al. [64], more recent research on feature recognition is introduced below. 

Woo et al. [65] integrated graph-based, cell-based maximal volume decomposition and negative 

feature decomposition using convex decomposition into a hybrid feature recognition method. These three 

methods construct a sequential workflow in order to reduce the solution space gradually, to achieve 

relatively optimized recognition results. Dimov et al. [66] developed a hybrid feature recognition method 

which was mainly composed of feature learning and feature recognition. Knowledge acquisition 

techniques were applied for generating feature recognition rules and feature hints from training data. Then 

these rules and hints were used to identify machining features from the boundary representation model. 

The machining features that could be recognized can be extended to other domains using different 

training data. 

Arivazhagan et al. [67] depicted a machining volume identification method for finishing machining 

based on STEP AP 203-214. The machining volumes of the machining features defined in STEP AP 

203-214 were calculated by their proposed algorithm. Obviously, the universality of the method was 

limited by the specific machining processes of rough machining. Marchetta and Forradellas [68] 

presented an easily customized manufacturing feature recognition method through stripping the feature 
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definition and hints from the feature recognition algorithms. A knowledge-based model generator was 

built to describe the solid model of an input part by the declarative logic language. The features and their 

hints were also expressed by the declarative logic language. A general purpose artificial intelligence 

planner called Graphplan + was applied to recognize the manufacturing features from the 

knowledge-based representation of the part model.  

Heo et al. [69] presented a methodology to recognize pocket features, and to partition the machining 

regions of pockets. The attributes of pocket features were defined for high speed machining planning. 

They used the slicing method which was similar to the method mentioned in [70] to generate multiple 

layers. Each layer has the same type of machining parameters to plan for high speed machining. Chu et al. 

[71] presented a machining feature recognition method made up of two phases based on available 

resources of cutting tools. The machining surfaces which are machined by the same cutting tool form a 

machining feature. Rule-based reasoning is applied to optimize the recognized machining features which 

have the minimum number of setups. 

Yu et al. [70] described a feature recognition method for an aircraft integral panel generalized pocket. 

The approach imitates the slice-machining process to use several planes whose orientation is the Z-axis 

direction to slice the part model into multiple layers. A feature profile is the intersection of the slicing 

plane and the part, which is used for tool path generation. This is inaccurate and time-consuming when a 
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part consists of freeform surfaces. To improve this method, they proposed a principal face-based 

machining feature recognition approach [72]. The principal faces are extracted for defining the machining 

domains. The topological relationships between the principal face and its adjacent faces are used to 

identify the feature type of the machining domain. The number of types of machining features that could 

be recognized was extended. 

Zeng et al. [73] put forward a simulated rolling method for the recognition of outer profile faces of 

aircraft structural parts. A vertical, infinite and elastic revolving roller was imagined, and moved towards 

the part under the gravitation of the part. When the roller touch the part with rotation, the pressure force 

and frictional force are generated. The resultant force drove the roller to roll along the outer profile of the 

part until it reached the position where the roller touches the part for the first time. Then, the outer profile 

faces of the part were extracted. As a type of machining feature of aircraft structural parts, the machining 

of the outer profile was closely related to the fix method of the part. The bosses distributed around the 

outer profile of the part used for clamping divided the outer profile into multiple sections which were 

machined separately. Therefore, the practicality of the method still needed to be improved.  

Li et al. [74] proposed a feature recognition method based on a new concept called holistic attribute 

adjacency graph (HAAG) for aircraft structural parts. The HAAG extended the nodes and the attributes of 

the nodes in order to represent the geometrical and topological information of the part accurately. 
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Benefitting from the HAAG, the intersecting features, convex features and features consisted of freeform 

surface were able to be recognized. More research about feature recognition can be found in [75-77]. 

3.2.2 Data Exchange between CAD/CAPP/CAM 

Although the feature concept has been proposed for a long time, it is still difficult to give a uniform 

machining feature definition. International Standards Organization (ISO) tried to create a machining 

feature definition standard. The definitions or descriptions of different machining features are given in 

one of its application protocol (AP). ISO 10303 is an ISO standard for the computer-interpretable 

representation and exchange of product manufacturing information. It is known informally as STEP, 

which stands for Standard for the Exchange of Product data model. It follows the feature definitions of AP 

224. Recently STEP-NC has been proposed as a machine tool control language that extends the ISO 

10303 STEP standards. Many researchers took advantage of STEP and STEP-NC to generate tool paths 

automatically [78-80]. 

3.2.3 Feature-based NC programming 

In order to improve the control and information integration capability of an NC machining system, 

Zhang et al. [81] suggested an NC feature unit (NCFU), which was a feature-based basic control unit. The 

NCFU processed geometric form and control parameters so that they were used as an information 

exchange hub between NC systems and other manufacturing execution systems. Meanwhile, NCFU used 

a geometrically defined closed and non-gouging machined area. In such a way, a machining volume 

http://en.wikipedia.org/wiki/International_Organization_for_Standardization
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Representation
http://en.wikipedia.org/wiki/Trade
http://en.wikipedia.org/wiki/Product_Manufacturing_Information
http://en.wikipedia.org/wiki/Machine_tool
http://en.wikipedia.org/wiki/ISO_10303
http://en.wikipedia.org/wiki/ISO_10303
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object could be divided into a set of NCFUs to generate tool path in real-time. Hou and Faddis [82] 

discussed the automation of tool path generation in an integrated CAD/CAPP/CAM system based on 

machining features. An integration layer between FBMach and Unigraphics was implemented to achieve 

CAD/CAPP/CAM integration based on machining features. Li et al. [83] developed a feature-based rapid 

programming system for aircraft structural parts. Machining feature was employed as carrier of process 

knowledge to drive tool path generation automatically. 

3.3 Intelligent Machining 

The most recent research after automatic machining is intelligent machining. More knowledge with 

artificial intelligence technologies were applied to process planning, and to the prediction of on-line 

situations, and make real time decisions. The intermediate states of the machining features are considered 

in the process planning. And more complex situations such as machining of freeform surfaces were 

studied. The representative technologies include intelligent process planning, freeform surface feature 

machining, close-loop machining and definition of dynamic features. 

3.3.1 Computer Aided Process Planning 

Benefiting from the development of feature technology, process planning has made much progress. 

Automatic or semi-automatic process planning was made possible through machining features as 

semantic carrier of machining process. Process planning can be divided into three levels: multi-domain 

process planning, macro process planning and micro process planning [84]. Most previous research about 
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process planning focused on macro process planning and micro process planning. In macro level planning, 

the best sequence of multiple different processing steps and set-ups as well as the machines are selected. 

In micro level planning, the details of each individual machining operations are optimized to determine 

the best process parameters. Some researchers optimized the machining process by integrating macro and 

micro levels. 

Kafashi [85] presented a generative system and genetic algorithm (GA) to improve integrated setup 

planning and operation sequencing by adding tolerance relationships analysis in the problem constraints. 

Azab and ElMaraghy [86] gave a mathematical modeling method for reconfigurable process planning. 

Zhang and Ge [87] proposed an approach to determining optimal cutting tool sequences for machining 

multiple features in a single setup. Banerjee et al. [88] described an integrated process planning approach 

for optimal corner machining which combined tool path generation and machining parameter selection 

tasks. Rauch and Hascoet [89] proposed an approach to enhancing the implementation of plunge milling 

tool paths by computing the achievable material removal rate according to the tool path parameterization, 

the machine tool dynamics, and the machined feature properties. 

Harik et al. [90] developed a computer aided process planning system for aircraft manufacturing. A 

finer granularity machining feature called elementary manufacturing feature was proposed in their system. 

One elementary manufacturing feature consisting of a face or a face chain was associated with one 
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machining operation. However, it was difficult to optimize the global process plan. Villeneuve et al. [91] 

presented a strategy and two models to perform a CAPP system. A feature model was developed to match 

machining processes adapted to aircraft knowledge. An activity model was developed to identify and 

clarify the tasks to be performed and the process data involved in making planning decisions. A more 

comprehensive review of process planning is given in [92]. 

3.3.2 Freeform Surface Feature Machining 

Research on freeform surface feature machining can be divided into process planning and tool path 

optimization. Process planning for FSF focused on the optimization of machining operation sequencing 

and the selected manufacturing resources, such as machine tools and cutters. For different machining 

stages, different optimization criteria should be applied. Because roughing strives for the highest material 

removal rate, normally 3-axis machine tools combined with the flat-bottomed cutter is applied. Lee et al. 

[93] proposed a method to combine the cutters for machining different levels to improve the machining 

efficiency of roughing operations. Chen et al. [94] developed an integer programming (IP) method and a 

dynamic programming (DP) method to automate the traditional, experience-based cutter selection tasks 

and to reduce the total machining time in NC machining operations. 

Semi-finishing aims to achieve even machining allowance for finishing stage. Finishing is intended 

to achieve the high machining quality with high machining efficiency. For 3-axis machining, the cutter is 

http://www.jukuu.com/show-removal-0.html
http://www.jukuu.com/show-rate-0.html
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selected according to the curvature of freeform surface. For multiple-axis machining, Lee and Chang [95] 

represented the effective cutting radius of a cutter by a function of the cutter size and the cutter orientation 

angles, and selected the optimal cutter by geometric evaluation through the maximum effective cutting 

radius approach. Li and Zhang [96] developed a search algorithm which was able to find the accessible 

posture range for a given cutter in terms of the tilting and rotational angles. Then, the optimal cutter was 

selected to finish the entire surface without any interference. 

Tool path optimization for freeform surface features can be classified into cutting width optimization, 

feedrate optimization, cutting force optimization, cutter orientation, and the combination according to 

different objectives. Cutting width optimization is also called strip-width maximization machining which 

is intended to increase the effective cutting width as long as possible to achieve the shortest tool path and 

highest machining efficiency. Lee and Ji [97] established the relationship between the strip width and the 

cutter orientation, cutting direction and the geomerical parameters of the cutter to optimze the tool path. 

Cutting direction optimization indicated that the feedrate direction of every cutter location point was 

opimized under the limitation of the machine tool. Sencer et al [98] expressed the variation of the feed 

along the five-axis tool path in a cubic B-spline form and adjusted the feed control points of the B-spline 

to maximize the feed along the tool path without violating the programmed feed and the drives’ physical 

limits.  
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The cutting force should also be optimized to improve the machining stability. Guzel and Lazoglu 

[99] presented an mathematical model for the prediction of cutting force system in ball-end milling of 

sculpture surfaces, which was used for selecting varying and appropriate feed values along the tool path 

in order to reduce the cycle time in sculpture surface machining. Through optimizing the cutter 

orientation, the interference and the smoothness of cutter orientation change were improved. Wang and 

Tang [100] presented an algorithm which could automatically generate a 5-axis toolpath that was not only 

interference-free but also guaranteed the angular-velocity compliance. Sun et al. [101] proposed a cutter 

orientation adjustment method to obtain an optimized tool path which made best use of the kinematic 

characteristics of angular feed for five-axis machining. 

3.3.3 Closed-loop Machining 

Efforts have been made in on-line adjustment of cutting parameters and emergency actions, and 

on-line tool path compensation. Katz et al. [102] presented a closed-loop machining cell for turbine blade 

finishing that integrated a robotic surface finishing device with an electro-optical, non-contact precision 

measuring system. Lasemi [103] developed a manufacturing method by integrating inspection and tool 

path generation to improve manufacturing quality while reducing manufacturing efforts. Some error 

compensation models were established based on the on-line inspection results and the positive errors were 

compensated by adjusting the tool path [104-105] (Bohez et al., 2000, Ye and Xiong, 2008). Ridwan et al. 

[106] (2012) proposed a system that consisted of an optimization module, a process control module and a 
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knowledge-based evaluation module, where STEP-NC was the underlying data model for optimization. 

3.3.4 Dynamic Features 

In order to optimize the process plan of complex parts, the intermediate status of machining features 

need to be modeled [107]. Ramesh et al. [108] established a feature template library for automotive 

components. Each type of feature template defined the removal volume. When designing a part using the 

feature template library, the intermediate status of machining features could be generated automatically. 

Park [109-111] extracted the boundary of the machined face and extruded the boundary to generate the 

removal volume of the machined surface. The intersection of the removal volume and the swept volume 

of cutter was the actual removal volume. The actual removal volumes were subtracted from the 

workpiece to generate the intermediate status of machining features. Li et al. [112] presented a dynamic 

feature representation method for high value parts consisting of complex and intersecting features. The 

method first extracted features from the CAD model of a complex part. Then the dynamic status of each 

feature was established between various operations to be carried out during the whole manufacturing 

process. Each manufacturing and verification operation could be planned and optimized using the real 

conditions of a feature, thus enhancing accuracy, traceability and process control. The authors’ latest 

research in intelligent manufacturing based on a new dynamic feature concept is presented in Section 4 

below. 
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4. A Multi-perspective Dynamic Feature Concept for Intelligent Machining 

This Section presents the latest research outcome of the Authors’ research team in intelligent 

machining. The authors’ most important contribution to this research domain is a new concept of 

multi-perspective dynamic feature (MpDF) that has been implemented and applied to the aerospace 

industry. The authors recognised that, in current commercial and reported research prototype systems, 

features once defined normally remain unchanged in the whole manufacturing cycle, which are referred to 

as static features in this paper. Machining planning and optimisation based on static features often need 

manual corrections in response to various changes in dynamic production situations. Using the 

Multi-perspective Dynamic Feature (MpDF) concept, changes in feature geometry and associated 

technical information can be represented within and complementary to existing feature-based CAD 

models so that adaptive machining planning and optimisation can be carried out with accurate and actual 

component and resource information. 

4.1 Definition of Multi-perspective Dynamic Features 

Changes of a feature during machining are defined in three perspectives as shown in Figure 2: (i) the 

geometry of a feature in the depth-of-cut direction changes during different machining operations such as 

roughing, semi-finishing and finishing; (ii) changes across the surface: a surface may be divided into 

different machining regions (effectively sub-features) for the selection of appropriate manufacturing 

methods for each region such as different cutting tools, parameters, set-ups or machine tools; and (iii) 
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changes in resources or manufacturing capabilities may require the re-planning of depth-of-cuts, division 

of machining regions and manufacturing operations (machines, tools, set-ups and parameters). The MpDF 

concept could be used to support machining decision making of complex parts with complex structures 

(and with freeform surfaces), and can be formulated as: 

�
MpDF=⋃ IFi

N
i=1                          

IFi=Γ(OOT, MRT)
i (P)=⋃ SFj

M
j=1

 

Where IF refers to an interim feature with its sub-feature (SF) on part (P). Γ refers to the feature division 

algorithm. OOT and MRT are the optimisation objectives and manufacturing resources. With the MpDF 

concept, a feature information model in CAD systems can be defined dynamically in the whole 

manufacturing cycle, thus supporting on-line adaptive machining planning. 

 

Figure 2. Changes of a feature defined in MpDF. 
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4.2 Feature Dynamics in the Depth-of-cut Direction 

Feature dynamics in the depth-of-cut direction defines interim features to represent the information 

about real feature status and changes in its geometry between different machining operations [112]. 

Undesired machining effects like overcut and undercut in interim features are detected to evaluate 

existing process plans. Machining effects transition (MET) are then carried out by considering certain 

validity constraints to optimise the process plan in a much more global way. Moreover, interim features 

provide a possibility to define features for different machining stages like roughing, semi-finishing and 

finishing. By considering feature dynamics in this perspective, each manufacturing and verification 

operation can be planned and optimised using the real conditions of a feature, thus enhancing accuracy, 

traceability and process control. 

4.3 Feature Dynamics across the Feature Surface 

Feature dynamics across a surface indicates that the surface may have to be further divided into 

several machining regions (effectively sub-features) for the selection of appropriate manufacturing 

methods for individual machining regions including cutters, parameters, set-ups and machine tools. 

Surface subdivision aims for better machining results, for example, flat-end cutters may be chosen to 

machine convex and relatively flat regions, while ball-end cutters may be used to machine concave 

regions with small curvature to avoid gouging/overcutting. The authors’ developed a surface subdivision 

method based on tensor field and a boundary point classification principle. Existing freeform surface 
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machining optimisation methods are mainly based on scalar or vector which only represents the 

machining information in one feed direction at a time as shown in Figure 3. For example, only the 

directions with maximal cutting width are defined in Machining Potential Field [113]. Since the complex 

nature of geometry and machining operation, optimised results cannot be achieved everywhere in the 

freeform surface. Thus most of these methods are greedy, and only local optimised machining results can 

be achieved.  

 

Figure 3. Representations of optimisation objectives. 

To overcome the shortcoming, optimization objectives are represented based on a second-order 

tensor, i.e., 

O(u)=Tij(u)duiduj,(i,j=1 or 2)                                       

Where u ≡ [u1 u2]T, O(u) is the second order tensor with which a complete and continuous 
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representation of solutions at every cutter location could be obtained. Each Tij(u) has two eigenvalues: 

emax and emin. The eigenvectors of emax and emin refer to the directions with the maximum and minimum 

O(u) respectively. The sub-feature boundaries within the surface could be machined using both cutting 

methods of the adjacent features like cutters, parameters, set-ups or feed directions according to the 

optimisation objectives. Thus points located at sub-feature boundaries could be classified into two 

classes:  

i) The adjacent sub-features have different cutting methods to machine the point. However, both 

methods are optimised at this point. In this condition, emax equals to emin. Thus O(u) at every 

feasible feed direction refers to optimised machining result. This kind of boundary point is 

called degenerate boundary point (DBP); 

ii) The adjacent sub-features have the same cutting method to machine this point. In this condition, 

the maximum or minimum eigenvector at the point is coincident with the tangent vector of the 

tensor line crossing the point. This kind of boundary points is named as normal boundary point 

(NBP).  

A two-step procedure is developed to construct sub-feature boundaries as shown in Figure 4. DBPs 

in the surface are generated as the starts to construct sub-feature boundaries. Firstly, a tensor is selected 

based on the current {MOi, OOi
T, MRi

T} from a predefined tensor base. Then points with only one 

eigenvalue (emax ≡ emin) are extracted as DBPs. DBPs could be classified into trisector points, wedge 

points and merge wedge points [114]. Only trisector points are selected since there are no sub-feature 



 

 37 

 

boundaries crossing the other two types of DBPs. Points surrounding each trisector point are first 

extracted and potential sub-feature boundaries are constructed by connecting the surrounding points and 

the trisector point. θ is defined as the angle between the maximal eigenvector at the surrounding point and 

its potential sub-feature boundary. The surrounding points (where θ≅0) are selected as NBPs. For each 

trisector point, there are three NBPs which will be selected as the second points of the three sub-feature 

boundaries that start from this trisector point. Then NBP searching with minimal θ for each sub-feature 

boundary will be continued from the generated NBP. 

 

Figure 4. Procedure for sub-feature boundaries construction. 

Currently, the authors have obtained the tensor metrics for cutting width and machining time 

considering machine kinematics. Figure 5 shows two examples for cutting width maximisation in surface 
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finishing. The test surface is first divided into several sub-regions using the proposed tensor based method. 

Then in each sub-surface, tool paths will be generated by offseting the initial tool path curve which 

follows the optimal feed direction (with maximal machining strip width) at every discrete point. 

Compared with the iso-parametric tool paths, both the tool path length and machining time are much 

reduced by applying MpDF concept. 

 

Figure 5. Two cases for cutting width maximisation in surface finishing. 

4.3 Feature Dynamics due to Changes of Manufacturing Resources 

Feature dynamics due to changes of manufacturing resources is important for intelligent machining 
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in todays’ manufacturing industry which faces more and more uncertainties. Machine tools, cutters, 

fixtures as well as cutting parameters may have to be changed frequently due to factors like product 

changeover, urgent job insertion and broken tools. Normally machining operations and optimisation 

objectives, once planned, remain unchanged during the whole manufacturing cycle. However, the selected 

manufacturing resources in initial planning stage are often changed by engineers in real production. If the 

changes are due to re-scheduling of resources or machine breakdown, the planned machining operations 

as well as optimisation objectives may need to be re-planned which can lead to changes in both the 

interim features and the way sub-features are generated for each interim feature as shown in Figure 6. As 

a result, the MpDF information model would be updated, and thus adaptive machining planning is 

supported with the timely accurate information in the MpDF model. 

 

Figure 6. Feature changes due to changes of machining resources. 
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5. Summary and Future Outlook 

Section 2 of this paper provides an overview of the main theories, methods and technologies 

addressing a range of key engineering aspects of recent research in CNC machining, focusing on three 

themes, i.e. simulation, optimization and automation. Various physical aspects (including geometry and 

dynamics) are simulated in order to predict the results before actual machining takes place; using 

advanced mathematical models, algorithms and computing technologies to tackle complex problems and 

produce more reliable predictions, and improve process data (including tool paths) to achieve better 

machining outcome. 

There are various process (machining) parameters, and selecting the best set of parameters is an 

almost impossible task. Taking advantage of simulation, optimization, and automation, ‘near’ optimal 

machining processes may be derived, instead of merely usable processes. The optimization problems are 

usually solved numerically. These efforts substitute human decision making with mathematical reasoning. 

However, the technology is still at the early stage of intelligent machining, and there is still significant 

work to be done. 

Section 3 of this paper provides an introduction to the enabling information and computing 

technologies (ICT) that bring the methods and technologies in CNC together into integrated systems with 

various modeling and decision making modules to support intelligent machining. As the information and 

knowledge carrier, feature is the efficacious way to achieve intelligent manufacturing. From the regular 
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shaped feature to freeform surface feature, the feature technology has been used in manufacturing of 

complex parts, such as aircraft structural parts. Meanwhile, the dynamic feature definition provides a very 

efficient and effective mean of optimizing the complex machining process. 

To summarize this review, the authors believe that the research in CNC machining has entered a new 

phase: intelligent machining. It will be a flourishing research area and exciting new results and progress 

will be seen in the forth-coming years. Section 4 of this paper presented a comprehensive 

multi-perspective dynamic feature concept proposed by the authors, which has the potential to model the 

actual status of features during different operations in real production situations, thus supporting more 

accurate prediction, planning and optimization. As an initial contribution to the intelligent machining 

research, the authors anticipate more international research into this important research area. 
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