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Abstract 

 

Increasing demands from end users in the fields of optics, defence, automotive, medical, 

aerospace, etc. for high precision 3D miniaturized components and microstructures from 

a range of materials have driven the development in micro and nano machining and 

changed the manufacturing realm. Conventional manufacturing processes such as 

chemical etching and LIGA are found unfavourable or limited due to production time 

required and have led mechanical micro machining to grow further. Mechanical micro 

machining is an ideal method to produce high accuracy micro components and micro 

milling is the most flexible enabling process and is thus able to generate a wider variety 

of complex micro components and microstructures. 

 

Ultraprecision micromilling machine tools are required so as to meet the accuracy, 

surface finish and geometrical complexity of components and parts. Typical 

manufacturing requirements are high dimensional accuracy being better than 1 micron, 

flatness and roundness better than 50 nm and surface finish ranging between 10 and 50 

nm. Manufacture of high precision components and parts require very intricate material 

removal procedure. There are five key components that include machine tools, cutting 

tools, material properties, operation variables and environmental conditions, which 

constitute in manufacturing high quality components and parts.  End users assess the 

performance of a machine tool based on the dimensional accuracy and surface quality of 

machined parts including the machining time. 

 

In this thesis, the emphasis is on the design and development of a control system for a 5-

axis bench-type ultraprecision micromilling machine- Ultra-Mill. On the one hand, the 

developed control system is able to offer high motion and positioning accuracy, 

dynamic stiffness and thermal stability for motion control, which are essential for 

achieving the machining accuracy and surface finish desired. On the other hand, the 

control system is able to undertake in-process inspection and condition monitoring of 

the machine tool and process.  

 

The control of multi-axis precision machines with high-speed and high-accuracy 

motions and positioning are desirable to manufacture components with high accuracy 

and complex features to increase productivity and maintain machine stability, etc.  The 
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development of the control system has focused on fast, accurate and robust positioning 

requirements at the machine system design stage.  Apart from the mechanical design, 

the performance of the entire precision systems is greatly dependent on diverse 

electrical and electronics subsystems, controllers, drive instruments, feedback devices, 

inspection and monitoring system and software. There are some variables that 

dynamically alter the system behaviour and sensitivity to disturbance that are not 

ignorable in the micro and nano machining realm. 

 

In this research, a structured framework has been developed and integrated to aid the 

design and development of the control system. The framework includes critically 

reviewing the state of the art of ultraprecision machining tools, understanding the 

control system technologies involved, highlighting the advantages and disadvantages of 

various control system methods for ultraprecision machines, understanding what is 

required by end-users and formulating what actually makes a machine tool be an 

ultraprecision machine particularly from the control system perspective. 
 

In the design and development stage, the possession of mechatronic know-how is 

essential as the design and development of the Ultra-Mill is a multidisciplinary field. 

Simulation and modelling tool such as Matlab/Simulink is used to model the most 

suitable control system design. The developed control system was validated through 

machining trials to observe the achievable accuracy, experiments and testing of 

subsystems individually (slide system, tooling system, monitoring system, etc.). 

 

This thesis has successfully demonstrated the design and development of the control 

system for a 5-axis ultraprecision machine tool- Ultra-Mill, with high performance 

characteristics, fast, accurate, precise, etc. for motion and positioning, high dynamic 

stiffness, robustness and thermal stability,  whereby was provided and maintained by the 

control system.   
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Chapter 1 

 

Introduction 

 

 

1.1.  Background of the Research 

Precision and micro manufacturing is becoming a critical requirement due to the rapidly 

increasing need for high precision three dimensional miniature products or components 

with micro-features in the fields of optics, aerospace, medical, etc. In fulfilling these 

demands, the involvement of industries and university research groups in ultraprecision 

machine tool research, design and integration sectors have increased rapidly nowadays. 

Micro and nano manufacturing is  a timely and fast moving field with many product and 

equipment design concepts emerged and catering to the need of miniaturization 

(Mihalik, 2006). Figure 1.1 shows the timeline of achievable machining accuracy driven 

by precision and micro/nano manufacturing. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.1 The development of achievable machining accuracy (Byrne et al, 2003) 

 

Micro mechanical cutting is normally not common in fabrication of micro components. 

Research groups investigated the potential of employing LIGA (a photo-lithography 

method using a synchrotron), laser, ultrasonic, ion beam and micro-EDM machining 

processes for manufacture of micro components (Chae et al, 2006; Madou 1997; Alting 

et al, 2003; Masuzawa 2000) but these processes are not productive and limited 

compared to mechanical cutting. 
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Employing mechanical cutting process in the micro and nano region, certain mechanical 

and electrical requirements must be met. In terms of mechanical, the machine base and 

moving structures must be able to withstand mechanical force disturbances that could be 

seen as imperfections of the machined parts. Electrical wise, the control system 

employed must be able to provide fast, accurate, repeatable, smooth and robust. 

motions. This is an important requirement when machining at the level of micro and 

nano. Machining at pico level might lead to more usage of laser systems to guarantee 

the accuracies required. 

 

Observing the parts size in micro or nano machining and manufacturing, the size of 

current ultraprecision machine tools being employed on the shop floors are big. This 

could be uneconomical resulting in resources wastage. Designing and integrating 

smaller and compact ultraprecision machine tools which require smaller floor space and 

lower resources for manufacturing is the aim of many. At the same time, the 

performance of the ultraprecision machine tool should be compromised. 

 

In this thesis, research on the requirements of control systems for a micromilling 

machine is investigated. The research on the evolving precision engineering research is 

underlined and understood in this thesis. Apart from the requirements of the control 

system, the motivation for miniaturization of machine tools is also investigated and 

research on implementation is highlighted in the thesis. 

 

At Brunel University in conjunction with the EU MASMICRO (Mass-Manufacture of 

Miniature/Micro Products, contract no.: NMP2-CT-2004-500095-2) project two micro-

machining machines were built. For the EU MASMICRO project, the main aim is 

designing and building a 5-axis ultraprecision micromilling machine. In order to achieve 

the aim, a 3-axis diamond turning test-bed was built in the knowledge build-up stage. 

Several subsystems that will be employed in the micromilling were firstly tested using 

this test-bed. The research conducted in this thesis is focused on the control system 

design and requirements for micro-machining. 
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1.2. History of the CNC Control System 

The first known lathes for wood-working were used during the Biblical time. Henry 

Maudslay is responsible for inventing the first metal-working lathe in 1800. The design 

was relatively simple as it had a clamp for workpieces and a spindle. The rotation of the 

clamped workpiece would enable the cutting tool to machine its surface. The operator 

who observed controls the dials on the handwheels in order to move the workpiece 

accurately. Eli Whitney had invented in 1818 the first milling machine. The operating 

principles are similar to that of the lathe invented by Henry Maudslay. Operating these 

machines was really exhausting and the ability to produce the workpieces with same 

accuracy was limited. Consequently, the number of poorly machined and unusable 

workpeices was high. 

 

The initial attempt to invent an automated machine tool also dates back to the 1800s. 

This initiative for automatic control of the machine tool was inspired by the use of cams 

in musical boxes and cuckoo clocks. Between 1820s and 1830s, gun-stock-copying 

lathes were built by Thomas Blanchard. In 1870, Christopher Miner Spencer was 

responsible turret lathe into the screw machine. By World War 1, automation based on 

cams was already quite advanced. The cam-based machines were difficult to set up but 

once set up correctly, they are capable of producing excellent repeatability. 

 

The CNC machines operating now in many factory shopfloors or research centres are 

inspired by the work of John T. Parsons during the late 1940s and early 1950s. Parsons 

was involved in machining which required high precision. Since IBM was an 

established computer manufacturer at that time, Parsons decided to use an IBM 

computer to make more accurate contour guides. With this idea, Parsons was awarded a 

contract by the American Air Force for his invention of the automatic contour cutting 

machine invention. Using this invention with controlled servomotors, Parsons was able 

to machine large, complex and expensive parts for the American Air Force with high 

accuracy. The American Air Force and Massachusetts Institute of Technology (MIT) 

worked with Parsons on these projects. 

 

During the 1950s, General Motors (GM) was also active in machine tool field. They 

managed to build machine tools based on tracing technology. The approach was dubbed 
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“record and playback”. This approach used memory storage space to copy and record 

the movement of a machinist. 

 

The punch card technology emerged during the 1950s. The machines during time used 

direct current electric driven motors for machine movements. The electric signal that 

drives the movements came from tape or punched-cards. The holes in them dictated the 

movements. The electric pulses were managed by a computer which had no memory 

space from the tapes or cards moved the machines precisely. The machines were called 

Numerical Controlled (NC) machines. 

 

During 1960s, MIT was focused on CAD development and the development of APT 

programming language was conducted by Aircraft Industries Association (AIA) and 

Illinois Institute of Technology Research. During this time, the second batch of 

transistorized computers were available with larger information processing capabilities. 

During this time, prices of computers plunged due to introduction of minicomputers. 

This made it cheaper to employ computers for motor control and feedback handling and 

would enable every machine to be equipped with computers for process handling. 

 

The development of microprocessors in the 1970s has led the CNC technology to 

reduce in cost. In this time, General Motors developed the first Programmable Logic 

Controller (PLC). During the 1980s, digital control was introduced. At the same time, 

tool monitoring technologies and adaptive control for machine tools have evolved. 

 

With the introduction of Open Architecture Controller (OAC) in the 1990s, machine 

tool technologies have evolved. In computing, the definition of open architecture 

means: 

Open systems are computer systems that provide some combination of 

interoperability, portability, and open software standards. (It can also mean 

specific installations that are configured to allow unrestricted access by people 

and/or other computers)(Wikipedia, 2009a). 

 

Several key characteristics of open architecture controllers which appeal to the machine 

tool industries are (Asato et al, 2002): 

Transparent – the system should be known completely to the end users. 

http://en.wikipedia.org/wiki/Computer_system�
http://en.wikipedia.org/wiki/Interoperability�
http://en.wikipedia.org/wiki/Porting�
http://en.wikipedia.org/wiki/Open_standard�
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Transportable – the control software could be transported to a personal   

microcomputer. 

Transplantable – the control software could be modernized. 

Liveliness – the machine should be able to function immediately without extra cost 

after a changed in the software and hardware. 

Re-configurable – the user should be able to configure the controller functions more 

than once. 

 

During this period many university research groups working with industries research the 

potential of OAC for machine tools. OAC technology is driven by the rapid movement 

in the computing technologies. Adopting these technologies provides open-ended 

possibilities for what machine tools could achieve for the future.   

     

In the 2000s, came the introduction of machine tools adopting the linear motor 

technologies. During this period, the demand for multi-functional machine tools that 

could mill and turn has increased (Moriwaki, 2008). The machining accuracy currently 

has reached the nano meter level. Figure 1.3 illustrates the dimensional size in 

mechanical micro machining. 

 

 

 

 

 

 

Fig. 1.3 Trend of dimensional size in micro-mechanical machining (Chae et al, 2006) 

 

Achieving this, the need for ultraprecision machines with high accuracy, speed, 

repeatability, etc. is compulsory. At the moment, the technologies of motion controllers, 

drive systems, encoders/sensors, CAM packages, etc. are changing rapidly which would 

lead to more sophisticated user-friendly machine tools integration. The future requires 

the machine tools to automatically operate themselves with very little or no human 

intervention. Abilities for a machine to run the machining sequences, provide self-

condition monitoring/diagnosing, quality inspection, packaging, etc. is the vision for the 

future with low implementation cost. 
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1.3.   Nature of Micromilling 

As this research involves the development of a 5-axis ultraprecision micromilling 

machine, this section will discuss the nature of micromilling in brief. Micromilling is 

the scaled down version of traditional macro-milling which lies in the mechanical 

cutting category. In this category, the main element that is used to remove material is 

force. The cutting tools or micro-tools commonly used in micromilling ranges between 

20 and 500 µm in diameter. Micromilling processes typically employ high speed 

spindles with speeds starting from 100,000 rpm. Figure 1.4 illustrates examples of 

micro-tools. 

 

                                                                                      

 

(a) Ball nose endmill                                              (b) Micro-drill 

Fig. 1.4 Examples of micro-tools 

 

Micromilling processes have applications in lithography, medicine, optics and micro-

injection moulding. The micromilling processes is the most flexible to create 3D 

surfaces from a variety of engineering materials (Weck et al, 1997).  It has been found 

that in micromilling processes tungsten carbide tools are more suitable (Masuzawa, 

2000). 

 

In the micromilling realm, the knowledge of macro-milling cannot be directly applied. 

More research must be conducted to understand the micromilling cutting process 

dynamics.  The cutting forces involved in micromilling processes are minute compared 

to the forces in macro-milling. 

 

Generally, ultraprecision machine tools are used for micromilling processes. These 

machine tools are mechanically and electrically very robust. The machine tool structure 

must have high static and dynamic stiffness with high thermal stability which only 

allow minute deformation. From the control system point of view, the controller and the 

drive systems must provide accurate, fast and smooth motion and positioning with high 

repeatability. Common commercial ultraprecision machine tools are illustrated in  

Figure 1.5. 
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            (a) Robonano by Fanuc                (b) Microgantry nano 3/5x by Kugler 

 

 

 

 

 

 

 

 

  (c) Nanotech 250PL by Moore Technology      (d) Nanoform 250 Ultra by Precitech 

Fig. 1.5 Commercial ultraprecision machine tools 

 

1.3.1 Characteristics of the Control System for Micromilling Process 

In micromilling or micromanufacturing, there are two types of controls that are widely 

implemented, one being closed and the other being open architecture. Machine tool 

manufacturers employ these two kinds of architectures although many research groups 

emphasize the usage of open architecture control. 

 

The controllers are not only used for motion control but also for process control. 

Employment of various types of sensors enables the condition of the machine tool and 

machining process constantly being monitored. Table 1.1 illustrates the various types of 

commercially available controllers. 
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Control requirements in the micro realm are very different compared to the macro 

realm. In the micro realm, controllers have high speed, position counters with higher 

resolution capabilities, spline interpolation, higher order motion control and 

environmental control (Ehmann et al, 2005). 

 

As a first example, for smoother interpolation, higher control speed is required. The 

smoother the interpolation, the better are the trajectories of the axes and this would 

result in smoother and accurate surface finish. Secondly, servoing at high resolution, the 

demand of encoder tracking is at a very high speed. These are examples of motion 

related control. Encoders are used for positioning feedback. In the micro realm, high 

resolution encoders are required. Typical encoder resolution is 5nm. Combining the 

drive system and the feedback system, obtaining high positioning and motion accuracy 

with high stiffness is achievable. 

 

Apart from motion control requirements, process control is another element that must be 

monitored or controlled. All ultraprecision micromanufacturing machine tools must be 

thermally maintained at certain level. Thermal expansion would reduce the machine 

accuracy. Thermal sensors are normally installed within the machine enclosure for 

temperature monitoring. Other examples of non motion control related requirements are 

the control of coolant temperature, tool wear/breakage, etc. these are considered as the 

machine tool’s auxiliary functions. 

 

1.4.  Aims and Objectives of the Research 

 

1.4.1. Aims of Research 

The aims of this research is to research, design and develop the control system for a 

functional 5-axis ultraprecision micromilling machine which has the characteristics of 

high speed, accuracy, smooth, robust and repeatable motion and high machining form 

accuracy. By developing this machine, the aim is to achieve the same or better 

performance level of current existing commercial machines in the market. 

 

1.4.2. Objectives of the Research 

The distinct objectives of the research are: 
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• To undertake in depth literature survey to understand the past, present and future 

industrial requirements of the ultraprecision machine tools, particularly on their 

control systems. 

• To design, integrate and operate a functional 5-axis ultraprecision micromilling 

machine from the control system perspective. 

• To design a control system for a 5-axis ultraprecision micrommiling machine 

that is capable of accuracies of less than 1µm over total, repeatabilities of less 

than 1 µm, produces finishes of less than 10 nm Ra, robust and fully 

autonomous. 

• To develop an organized approach in machine tool control system design with 

the aid of scientific knowledge and analytical thinking equipped with relevant 

software tools. 

• To implement the approach developed for integration and operation of the 5-axis 

ultraprecision micromilling machine. 

• To investigate and evaluate the performance of the 5-axis ultraprecision 

micromilling machine from the control system design and requirements point of 

view. 

 

1.5. Scope of the Thesis  

This thesis is divided into nine chapters. The brief synopsis of each chapter is laid 

out as follows: 
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Fig. 1.6 Illustration of dissertation contents 

 

Chapter 1 introduces the research background and a chronological history of CNC 

machine tools evolution. It also highlights the aims and objectives of this research and 

the structure of the thesis. 

 

Chapter 2 provides a critical review to equip the author with the knowledge and 

understanding of past and current research stage. This literature study is responsible for 

the investigations of relevant and effective research to identify the related works that 

have been implemented in the area of 5-axis ultraprecision micromilling machine. This 

chapter includes a more in depth literature survey for Chapter 3 to Chapter 8 of this 

thesis.  

 

Introduction 
(Chapter 1) 

Literature Survey 
(Chapter 2) 

Architecture of Ultra-Mill 
(Chapter 3) 

Control 
System 
Design 

(Chapter 4) 

Development 
of Control 

Cabinet 
(Chapter 5) 

Tuning 
Strategies of  
Direct Drives 
(Chapter 6) 

Micro-
Handling 
and Tool 
Condition 

Monitoring 
(Chapter 7) 

Conclusions & Recommendations 
for Future Work 

(Chapter 9) 

Machining Experiments, 
Results & Analyses 

(Chapter 8) 
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Chapter 3 includes the brief description of the designed and integrated 5-axis 

ultraprecision micromilling machine. Here the specifications of the implemented 

technologies employed are discussed. 

 

Chapter 4 describes and discusses the area of control system design for the machine 

tool. Here the control system requirements for ultraprecision machining are backed up 

with scientific reasoning. 

 

Chapter 5 discusses the design and integration of the control cabinet for the 5-axis 

ultraprecision micromilling machine. In this chapter, the challenge of scaling down a 

machine tool is the main emphasize. This chapter highlights the design stage and the 

problems which had risen. 

 

Chapter 6 includes the discussion on the performance of the direct drive systems being 

implemented in the 5-axis ultraprecision micromilling machine. Discussion is on 

achieving the best performance in minimal time. 

 

Chapter 7 contains the topics of micro-handling and tool condition methods the 5-axis 

ultraprecision micromilling machine. This chapter will include the integration methods 

and the protocols used to establish the communication synchronization with the control 

system of the machine.  

 

Chapter 8 includes the investigated case studies. In this chapter, the experiment details 

and the evaluation of the control system will be described. The performance of the 

control system is evaluated through the machined parts. 

 

Chapter 9 summarizes the conclusions from the intense research work undertaken and 

makes further recommendations on improving this area of research in the future. 
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Chapter 2 

 

Literature Review 
 
 

 
2.1. Introduction 

A thorough and effective assessment is undertaken so as to recognize work that have 

been carried out on ultraprecision machine tool control system design and technology 

trends. This is to critically review the state of the art of the research field. It comprises 

of theory formulation, product exploration and analysis, evaluation of concepts, 

research closest existing areas and uncovers research areas as illustrated in Figure 2.1. 

Associations of information are done through journals, textbooks, white papers, 

magazines, product related literature, etc. 

 

 

 

 

 

 

 

 

 

 

 

 

The flow will be made in such a way that it will mirror the significance and relevance of 

the research phases. The key element is on the ultraprecision machine tool control 

system design and technology trends which will be implemented in the prototype 

machine and various analyses will be undertaken to study the performance of the 

prototype in the research. 

 

2.2. Control System Architecture for Ultraprecision Machine Tools 

The invention of Numerical Control (NC) machines was in the 1950s which led to the 

advancement to Computer Numerical Control (CNC) later in the 1970s (Liang et al. 

Fig. 2.1 Literature review components 

LITERATURE 
REVIEW 

Theory 
formulation 

Uncover 
research areas 

Product 
exploration 
and analysis 

 
 

Evaluation of 
concepts 

Research closest 
existing areas 
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2004). The architecture of CNC machine tool control system has evolved since then. 

The rapid movement in the computer industry has made the control system of machine 

tools more user friendly and most importantly more powerful. 

 

2.2.1. Conventional CNC 

The first NC machine was inspired and created by John T. Parsons at Massachusetts 

Institute of Technology (MIT) with collaboration wi th the Air Force. As quoted by 

Leatham-Jones (Leatham-Jones, 1986): 

 

 “Numerical Control (NC) is the technique of giving instructions to a machine in 

the form of a code which consists of numbers, letters of the alphabet, punctuation marks 

and certain other symbols. The machine responds to this coded information in a precise 

and ordered manner to carry out various machining functions.” 

 

After the emergence of NC, then comes the Computer Numerical Controller (CNC) in 

the 1970s. Compared to the NC, the CNC system utilizes computers to store and 

execute these NC codes. NC system utilized paper tapes (Luscombe et al, 1994). 

 

CNCs were categorized as (Koren, 1983): 

• Point to point only versus contouring and point to point. 

• Incremental versus absolute. 

• Open-loop versus closed loop control. 

• NC or CNC. 

 

Parts of the traditional CNC control system architecture still exist in modern day CNC 

machine tools. In the traditional CNC architecture, feedback information was only to be 

found at the servo level (Brien, 1995). The traditional CNC architecture is illustrated in 

Figure 2.2. 
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Fig. 2.2 The traditional CNC architecture (Brien, 1995) 

 

This type of architecture is only suitable in conventional machine tools. In 

manufacturing process today, where machining is at the micro and nano realm or 

commonly now known as micro and nano machining, more sophisticated control system 

architecture is needed. 

 

2.2.2. Ultraprecision CNC 

Compared to more than twenty years ago, most machine tools being fabricated 

nowadays implement PC-based control system architecture. The revolution of PC-based 

control architecture for machine tools is inspired by the emergence of Open 

Architecture Controllers (OAC) (Alique and Haber, 2008; Nor et al, 2007). Even though 
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the general scheme of CNC architecture does not change entirely, utilizing a PC and 

open architecture controller has made CNC machine tool more user-friendly and 

powerful. Figure 2.3 illustrates the hierarchy of CNC controllers. Adaptive Control 

Optimization (ACO) and Adaptive Control Constraints are adaptive strategies to vary 

the machining variables in as machining progress to enhanced productivity (Koren, 

1997). The Geometric Adaptive Compensation (GAC) applies real-time geometric error 

compensation techniques for impressions resulting from varying machining 

temperature, machine geometry, tool wear, etc. (Peklenik, 1970; Koren, 1997). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Fig. 2.3 Hierarchy of CNC controllers (Koren, 1997) 

 

In advanced ultraprecision machine tools, multi-level hierarchical control system 

architecture is implemented. The multi-level hierarchical control architecture is shown 

in Figure 2.4. 
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Fig. 2.4 The multi-level hierarchical control architecture (Alique and Haber, 2008) 

 

The overall control system architecture of one ultraprecision to another does not have 

many differences. Differences could be found in (Koren, 1997; Srinivasan and Tsao, 

1997; Suh et al, 2008): 

• Servo or feed drive system control loops. 

• Interpolation methods. 

• Error compensation methods. 

 

In ultraprecision machine tool control system, apart from the servo level, the emphasis 

is on the supervisory and process level. 
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2.2.3. PC-Based Control System 

PC-based control system is continually employed by machine tool manufacturers to 

reduce cost and improve the performance of machine tools. PC-based control 

technology offers reliability and functionality. PC-based control system is influenced by 

the evolution of computer technologies (Proctor, 1998). 

 

PC-based control system should have these characteristics (Gee, 2001): 

• Must provide deterministic operation- control must be treated as the highest 

priority and insure a predictable, repeatable response. 

• Must survive a Windows crash- machine control program should survive OS 

fault and resume normal operation. 

• Must be isolated from poorly behaved Windows applications and drivers- 

unstable applications or drivers cannot adversely affect control system. 

• Must survive hard disk crash- deterministic control should not be interrupted in 

the event of hard dish crash. 

• Must be based on a proven real time engine- control engine must have a proven 

record in mission critical applications. 

 

2.2.4. Open Architecture Control (OAC) 

The concept of Open Architecture Control (OAC) was proposed and introduced in the 

1990s. There are many industrial research groups which do intensive research on OAC. 

These groups are: 

• OSEC (Open System Environment for controller) from Japan (Fujita and 

Yoshida, 1996; Asato et al, 2002). 

• OSACA (Open System Architecture for Controls within Automation Systems) 

from Europe (Lutz and Sperling, 1997; Asato et al, 2002). 

• OMAC (Open Modular Architecture Controllers) from the USA (Asato et al, 

2002). 

 

These three controllers have similar fundamental architecture that include 

communication level, reference architecture and system configuration. The three groups 

mentioned above are motivated to develop new controllers for the area of industrial 

automation and machine tool communication and modernization. The OSACA 
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architecture is used mostly in the software area and whereas the OMAC and OSEC are 

frequently used in the industrial automation field (Asato et al, 2002). 

.  

With OAC, the machine tool controller should permit the integration of independent 

application program modules, control algorithms, sensor and computer hardware 

developed by various manufacturers (Pritschow et al, 1993; Wright et al, 1996; 

Schofield, 1996). 

 

Apart from industrial research groups, there are also academic researches conducted on 

OAC. These academic research groups are: 

• NGC (Next Generation Controller) sponsored by US Air Force which integrated 

CAD/CAM and sensor based machining (Pritschow and Lutz, 1993). 

• MOSAIC (Machine Tool Open System Advanced Intelligent Controller) by 

University of California which operates in UNIX (Wright and Schofield, 1998; 

Wright and Wang, 1998). 

• UMOAC (University of Michigan Open Architecture Controller) by University 

of Michigan which enables motion control reconfigurability (Koren, 1998).  

• UBCOAC (University of British Columbia Open Architecture Controller) by 

University of British Columbia (Yellowley et al, 2001). 

 

OAC is also the backbone of reconfigurable controllers which are modular, portable, 

customizable, reconfigurable at run-time and verifiable. 

 

2.2.5 Common CNC Architectures 

Alique and Haber have surveyed the most common commercially available CNC 

architectures that include (Alique and Haber, 2008): 

• PC front-end – Incorporates a PC in a traditional CNC system. The PC is used 

to improve the interface with the operator even though all the control tasks 

remain rooted in the CNC. 

• Motion control card with PC – Critical task (real-time functions) are carried out 

using digital signal processing (DSP) systems and PC regulates the non real-time 

tasks. 
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• Software based solution – All CNC functions are implemented using software 

running on a PC. 

• Fully digital – All system components being interconnected to each other using 

digital interfaces where some cases involve the usage of standard fieldbus like 

SERCOS or CAN. 

 

The above mentioned architecture is illustrated in Appendix ІІ. 

 

2.3. Ultraprecision Machine Design for Compactness 
 
The current state of the art of machining micro components or products is using large 

conventional ultraprecision machines. With small complex and high quality finish 

products demands, the machine performance is very critical. This will of course increase 

the investment and operation costs and make it difficult for SME manufacturers to 

access the technology and thus the high value-added manufacturing business (Luo, 

2003).  

 

With parts or components size getting smaller, it is uneconomical to produce products 

using large conventional ultraprecision machines (Park, 2005; Hansen, 2006). Currently 

there are three categories of machine tools that are used to machine micro components 

and parts. There are: 

• Conventional ultraprecision machine tools 

• Microfactories 

• Bench-top ultraprecision machine tools 

 

2.3.1. Conventional Ultraprecision Machine Tools 

The quality and size of the micro products depend on the properties of the machine tools 

which include the overall machine accuracy and dynamic performance (Park, 2005). 

Conventional or macro ultraprecision machine tools have several advantages including 

high rigidity, damping and the ability to actuate precisely using precision sensors and 

actuators (Takeuchi, 2000). 

 

Conventional ultraprecision machine tools can provide very high accelerations and 

typical accuracy achievable is ± 1 µm (Rooks, 2004; Masuzawa, 2000; Kern, 2009). 
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Figure 2.5 illustrates some commercially available conventional ultraprecision machine 

tools and floor space requirements are compared in Table 2.1. Even though these 

companies provide the floor space requirements but in some cases, it has been found the 

floor space requirements only refer to the machine tool floor space requirements 

excluding the control cabinet and other auxiliary equipment. The dimensions in Table 

2.1 only states the floor space required for the machine tool excluding the floor space 

required by other miscellaneous ( control system and pneumatic) cabinets.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.5 Commercially available conventional ultraprecision machine tools 

 

Table 2.1 Floor space requirement comparisons 

Machine Model Floor Space Requirement  

w × d × h (m) 

Kern Evo [Kern, 2009] 2.80 × 2.50 × 2.20 

Nanotech 350 FG [Nanotech, 2009] 1.93 × 1.80 × 2.00 

Nanoform 700 Ultra [Precitech, 2009] 1.44 × 1.93 × 2.04 

Micromaster [Kugler, 2009] 1.7 × 2.00 × 2.35 

 

 

 

 

 

Kern EVO MicroMaster 

Nanoform 700 Nanotech 350FG 
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2.3.2. Microfactory 

The microfactory which originated from Japan is a concept to design and develop 

miniaturized manufacturing systems to match the size of parts manufactured. Achieving 

the required precision machine tools do not need to be large (Okazaki et al, 2004). Since 

the parts machined are very small, research groups and companies are motivated to 

scale down the machine tools (Tanaka, 2001; Bang et al, 2004; Okazaki et al, 2004; 

Kussul et al, 2002; Kussul et al, 1996; Vogler, 2002). 

The motivations behind the microfactory concept are: 

• Portability with small footprint (Tanaka et al, 2001; Okazaki et al, 2004). 

• Lower energy consumption (Park et al, 2005; Hansen et al., 2006). 

• Space utilisation (Hansen et al, 2006; Okazaki et al, 2004). 

• Increased structural loop stiffness and resonant frequency (Hansen et al, 2006). 

 

Figure 2.6 shows examples of microfactory machine tools. 

 

 

 

 

 

 

 

 

Fig. 2.6 Examples of microfactory (Okazaki et al, 2004) 

 

2.3.3. Bench-Top Ultraprecision Machine Tools 

The bench-top ultraprecision machine tool concept is relatively new. Surveying 

available literature through the Internet, the term bench-top ultraprecision machine tool 

produces many references to the 5-axis ultraprecision micromilling machine tool 

developed by the research group at Brunel University. This micromilling machine tool 

is called Ultra-Mill. 

 

The concept of bench-top ultraprecision machine tool is a combination of the two 

concepts mentioned above. Comparing to the conventional ultraprecision machines, 
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bench-top machine tools benefit from cost saving production and operation, small space 

requirements, ease of localized environment control, etc. (Luo et al, 2005). 

 

Compared to the commercially available ultraprecision machine tools mentioned in 

Section 2.3.1, the distinctive feature of the Ultra-Mill is the small floor space 

requirement (Ultra-Mill, 2009). This particular machine integrates everything into one 

small footprint, enabling optimum portability. Figure 2.7 shows the Ultra-Mill 

micromilling machine. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.7 5-axis benchtop micromilling machine (Ultra-Mill, 2009) 

 

Comparing the conventional ultraprecision machine tools, microfactories and bench-top 

ultraprecision machine tools, the obvious difference is the size. Manufacturing micro or 

nano sized components on conventional ultraprecision machine tools is possible but is 

seen as uneconomical. Therefore from the survey, the bench-top ultraprecision machine 

tool is seen as a more economical method to manufacture micro or nano sized 

components as it possesses the precision requirements and portability characteristics. 
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2.4.  Servo Drive Performance Requirements for Ultraprecision Machine Tools 

 

2.4.1. Servo Drive Control 

 In the hierarchical levels in CNC controllers, the servo control layer is located at the 

lowest level as illustrated in Figure 2.2. The task of ensuring the output follows the 

reference signal as close as possible is performed by the servo control layer. Figure 2.8 

illustrates a servo control system (Dorf and Bishop, 2001; Franklin et al, 2006). 

 

 

 

 

 

 

 

Fig. 2.8 Servo control loop (Dorf and Bishop, 2001; Franklin et al, 2006) 

 

The general single axis control structure with an inner velocity and outer position loop 

in a cascaded form is illustrated in Figure 2.9. The control structure is designed so as to 

achieve a closed position loop bandwidth, steady state accuracy and disturbance 

rejections characteristics (Koren, 1997; Srinivasan and Tsao, 1997). 

 

 

 

 

 

Fig. 2.9 Closed loop control structure   (Koren, 1997; Srinivasan and Tsao, 1997) 

 

In (Koren, 1997), the dynamics of machine tool axes are categorized as a second order 

system where well known feedback controllers can be applied, i.e. Proportional-

Integral-Derivative (PID). In the PID controller, the integral part eradicates the steady 

state error in ramp tracking and so eliminates disturbances. The integral will cause 

significant overshoot. The adjustment signal of the controller is related to the 

proportional, integral and derivative of the position. Perturbations and model 

uncertainties could degrade the performance of PID controllers. 
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In order to improve tracking accuracy, feedforward controllers have been proposed by 

researchers (Koren, 1997; Srinivasan and Tsao, 1997). A feedforward controller forces 

the closed loop transfer function to approach unity by compensating the non-removable 

terms and delays in the axis dynamics. Improving overall axis performance, 

feedforward controllers are commonly combined with feedback controllers. The main 

aim of feedforward controllers is to reduce axis tracking errors. 

 

The Zero Pole Error Tracking Controller (ZPETC) by Tomizuka (Tomizuka, 1987) was 

based on pole and zero cancellation. The advantage of the ZPETC is the ability to 

amplify closed-loop bandwidth and therefore reduces the tracking errors. A drawback of 

the ZPTEC is that with large disturbances the machining performance is poor. 

 

In multi-axes machine tools, many servo control schemes have be introduced. One of 

the first and most famous bi-axis servo control schemes is the Cross Coupling 

Controller (CCC) proposed by Koren (Koren, 1980) as illustrated in Figure 2.10. The 

objective of the CCC is to construct a real time contour error model based on the 

feedback information from all axes. This is to identify an optimum compensating rule 

and then feed the correction back into the individual axes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.44: The Crooupling Controller (CCC) for bi-axis servo control 

Fig.  2.10 CCC control scheme for bi-axis control 
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Apart from the above mentioned servo control schemes, there are many other schemes 

such as repetitive control (Tung et al, 1993; Koren and Lo, 1992), predictive control 

(Boucher et al, 1990; Boucher et al, 1993; Dumur and Boucher, 1994; Dumur et al, 

1996), etc. A robust controller using quantitative feedback theory was created by Isaac 

Horowitz but is seldom found in servo control field (Houpis and Rasmussen, 1999). 

Even though there are many servo control schemes that come out of research, the most 

common control scheme used in industries is the PID controller (Wilson, 2004).   

 

2.4.2. Servo Drive Performance 

The servo or feed drives of the machine tool control the positioning and velocities of the 

axes. The positioning and velocities are calculated and generated by the CNC 

interpolators. Interpolators are generators of axis movement data from block data 

generated by the interpreter (Suh et al, 2008). The performances of feed drives include 

(Srinivasan and Tsao, 1997): 

• Control over a wide range of speed. 

• Precise control of position, desired accuracy of position control varying with 

application. Precision of position control during machining affects accuracy of 

part dimensions. 

• Ability to withstand machining loads while maintaining accuracy of position 

control. 

• Rapid response of drive system to command inputs from the machine tool CNC 

system. 

• Precise coordination of the control of multi-axes of the machine tool in 

contouring operations. 

 

Feed drive performance has benefited from the progress of drive actuation, sensing and 

drive control in real time. Feed drive performance is dependent on drive actuators, 

power electronics, power transmission devices, mechanical structures and sensors 

providing the feedback. 

 

Since the introduction of direct drive feed drive systems such as linear motors, machine 

manufacturers have now implemented this technology as the most viable solution. 

Direct drive has taken the place of mechanical related transmission such as ball screw 
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system, belt and pulley, rack and pinion, etc. (Pritschow, 1998; Weidner et al, 1999). 

The benefits and advantages of direct drive systems are (Barrett et al, 2000): 

• High speeds- maximum speed of the linear motor is only limited by the bus 

voltage and the speed of the control electronics. 

• High precision- accuracy, resolution and repeatability of the linear motor direct 

drive are controlled by the feedback device. 

• Fast response- response rate of a linear motor driven device and its actuation 

can be over 100 times that of a mechanical transmission. 

• Stiffness- no mechanical linkage has increased the stiffness of the drive system. 

• Zero backlash- without mechanical transmission components and thus there is 

no backlash. 

• Maintenance free- being free of mechanical transmission, moving parts have no 

contact and thus no friction and wear. 

 

Direct drive feed system is subjected to external disturbances during motion and 

machining. Lack of transmission element, the drive system is easily affected by friction, 

force ripple and machining or cutting force (Van Den Braembusshe et al, 1996; 

Srinivasan and Tsao, 1997). The performance of feed drive system is also affected by 

the type of bearings used in the drive systems (Slocum, 1992). 

 

Compared to mechanical transmission drives, direct drive systems are vulnerable to 

external disturbances, these drive systems must be able to supply added disturbance 

rejections. To offer disturbance rejection, steps must be taken to budget the disturbance 

and then cancelling it (Ohnishi et al, 1996). Disturbance rejection methods have been 

reviewed exhaustively by Radke and Gao (Radke and Goa, 2006). 

 

2.5.  Microhandling in Micromilling Processes 

Handling systems are widely employed in manufacturing systems. These are required in 

pick-and-place systems for loading and unloading of tools, workpieces, and 

components. The implementation of handling systems using robot systems are 

categorized widely for the flexible manufacturing system (FMS) realm (Rooks, 2003). 
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The term “machine tool tending” refers to the use of robot systems together with CNC 

machine tools (Rooks, 2003; Gardh, 2006). For machine tool tending in general, the size 

of the robot systems are big and the CNC machine tools involved are big as well. 

 

At the moment, there has not been found any literatures that involves a robot system and 

a benchtop micro machine tool. Maekawa (Maekawa et al, 2001) has developed a micro 

transfer arm for a microfactory. The micro transfer arm satisfied these requirements 

(Maekawa et al, 2001): 

• The arm is compact and compatible with the size of the microfactory. 

• The arm has a large envelope to enable transfer. 

• The arm has high mechanical stiffness to permit precise positioning. 

• The arm must only access the workpiece from the top. 

• The arm equipped with passive compliance and force sensor is capable of 

absorbing positional errors of the workpiece and detecting contact force. 

 

The microhandling systems must be able to allow coarse and fine motion and 

positioning (Bleuler et al, 2000; Maekawa et al, 2001). The gripping force must be 

adaptable to suite the necessary workpiece or tool to avoid geometrical changes or 

surface damage. 

 

From (Gardh, 2006, Maekawa et al, 2001), implementation of robot systems as handling 

systems at the moment is confined in two categories: production lines where large CNC 

machine tools are used and the microfactories. 

 

2.6. Tool Condition Monitoring (TCM) in Micromilling  

 

2.6.1. Tool Condition Monitoring in Macromachining 

It is well known that the cutting force is correlated to tool wear (Lister, 1993; Dimla, 

1999; Ko et al, 1994; Purushotthaman et al, 1994; Dornfeld, 1990). Tool wear 

contributes to diminished surface quality. There are many tool condition monitoring 

systems in the macromachining realm which has been explained by Dimla (Dimla, 

2000): 

• Acoustic emission (AE) 
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• Tool temperature. 

• Cutting forces. 

• Vibration signature. 

• Other miscellaneous methods include ultrasonic and optical measurements, 

workpiece surface finish quality, workpiece dimensions, stress/strain analysis 

and spindle motor current. 

 

The key element for a successful tool or process monitoring system is the sensor and the 

feedback signals (Jemielniak, 1995). 

 

2.6.2. Tool Condition Monitoring in Micromachining 

According to Tansel et al. (Tansel, et al. 1998), there are three types of breakage that 

occur in micromachning: 

• Chip clogging when chips are not removed rapidly. 

• Breakages resulting from tool wear. 

• Excessive stress leading to breakage due to tool deflection. 

 

In the micromachining realm, the tool condition monitoring systems have to be more 

accurate and operate at a higher bandwidth compared to those used in the 

macromachining realm (Malekian, et al. 2009).  

 

Even though machining at the micro scale, some of the tool condition monitoring 

systems for macromachining could still be used. Acoustic emission Dornfeld et al, 

2006), monitoring of cutting forces, vibration signature and motor current are systems 

which are also used in micromachining (Gandarias et al, 2005). 

  

In micromilling, the cutting tools used are in the range between 0.1 to 0.5 mm in 

diameter.  With tooling of this size in a misty machining surrounding, it is impossible 

for operators to visually detect breakage of cutters (Gandarias et al, 2005). 

 

Some of the reasons as to, why tool condition monitoring systems are not fully accepted 

by industries are the installation position of the sensors and the working environment on 

the shop floor (Oliveira et al, 2008; O’Donnell et al, 2001; Lister, 1993). As an 
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example, the position of the sensor must be as close as possible to the tool in 

micromilling while the sensor must not be interfering with the machining process. 

 

Recent reports have presented new methods in condition monitoring using the wireless 

method (Wang et al, 2006; Wright et al, 2008). 

 

At the moment, there is no standard tool condition monitoring method available for 

industrial implementation. Different methods are still being experimented by various 

research groups.  

 

2.6.3. Sensor Fusion 

As mentioned earlier in by Jemielniak (Jemielniak, 1995), the key element for a 

successful tool or process monitoring system is the sensor. Sensor fusion is the 

implementation of many different types of sensors to increase confidence in tool or 

process monitoring (Dimla, 2000; Schofield, 1993). 

 

Malekian (Malekian, 2009) experimented on tool wear monitoring in micromillimg 

operations. In his report, various types of sensors (dynamometer and AE sensors) were 

used to help detect tool wear. The best result according to Malekian was obtained from 

using both a dynamometer and AE sensors. 

 

The decision as to which sensor or number of sensors to implement for tool condition 

monitoring system is not easy. One consideration is the cost of successfully tapping any 

chosen sensor signal. Another issue is the ease of obtaining the signal. When these two 

issues have straight forward solutions, choosing the best sensor will be easier. Care and 

consideration must be taken so that the sensor does not intervene with the machining 

process and at the same time keeping the monitoring cost down (Dimla, 2000).  

 

2.7. Summary  

This chapter has presented a review on the previous studies in the objective areas. This 

chapter has highlighted the state of the art of the technology involved in the 

development of machine tools from the past to present. 
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The literature survey has provided the understanding relating to the trends in micro and 

nano manufacturing system and process requirements. This includes the technological 

and scientific know-how that influences the requirements and engineering specifications 

to design and develop an ultraprecision mechatronics system. 

  

The previous work presented are adapted and improved to produce a novel concept for 

the control system design and develop a functional prototype bench-top typed 5-axis 

micromilling machine.  The realization of the research elements are carried out from 

hardware design and construction, software programming applications, algorithms 

manipulations and experimental results, analysis and discussions and are the subject 

matters of the chapters to follow in this thesis. 
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Chapter 3 

 

Architecture of the 5-Axis Ultraprecision Micromilling Machine 

 

 

3.1. Introduction 

The configuration of the 5-axis ultraprecision micromilling machine named Ultra-Mill 

which was designed and constructed at Brunel University for a research project as 

illustrated in Figure 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1 5-axis micromilling machine (Ultra-Mill) 

 

The machine was built in conjunction with the EU MASMICRO (Mass-Manufacture of 

Miniature/Micro Products) project. The main aim of the project is designing and 

constructing a 5-axis ultraprecision micromilling machine with the emphasis of finding 

a solution for manufacturing of micro and miniature components or products with 

higher surface quality and dimensional/form accuracy with high repeatability rate. Even 

though the main machining application for Ultra-Mill is the micromilling process, Ultra-

Mill also has the abilities to provide micro-drilling, micro-grinding and micro-CMM 

processes. The machining envelope of Ultra-Mill is 150 mm x 150 mm x 80 mm and the 

overall floor space requirement is 1.1 m x 0.8 m x 2.1 m. 
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In the design stage, several possible 5-axis machine configurations were designed as 

illustrated in Figure 3.2 and analyzed to identify the best machine configuration for the 

purpose mentioned above and the feasibility in assembling the machine in terms of 

mechanical and electrical subsystems. As mentioned in Maj et al (2006), machine tool 

technology is a multi-discipline field which combined elements of mechanical and 

electronics engineering, in other words mechatronics engineering. 

 

 

 

 

 

 

 

 

 

 

                       (a) Design 1                                                   (b) Design 2 

 

 

 

 

 

 

 

 

 

                      (c) Design 3                                     (d) Final design 

Fig. 3.2 Conceptual and final designs of Ultra-Mill configuration 

 

3.2. Mechanical Structure 

In this section, the mechanical elements of the Ultra-Mill are briefly described. The 

machine base which all the axes are mounted on is made of granite. The granite 

structure has good wear resistance, high-stiffness and high thermal stability with good 

damping characteristics. These enable granite to become the common choice for 
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machine base for the ultraprecision machine tool industries (Luo et al, 2005).  Figure 

3.3 illustrates an exploded view of the Ultra-Mill. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.3 Exploded view of the Ultra-Mill. 

 

Luo also stated the machine design considerations include structural configuration, 

stiffness and damping, structural connectivity and interface and associated structural 

dynamics performance. 

 

Cast iron is used for the linear axes (slideways), rotary axes and spindle. The overall 

machine performance depends on the material selection. As an example, it is common 

nowadays to employ polymer concretes for machine tool mechanical structure. The 

advantages of polymer concretes are that the machine tools would be light weight with 

high damping capacity and rigidity. 
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The dynamic of a system is embodied in its mechanical resonances. These phenomena 

are excited during motion which in turn could reduce the control system stability 

margin. The mechanical vibration and resonance have influence on the positioning and 

tracking accuracy. 

 

For ultraprecision machine tools, the mechanical structure should have very low thermal 

expansion coefficient. Other than granite, super-invar, synthetic granite and Zerodur are 

types of materials which are commonly used for ultraprecision machine tool mechanical 

structure. 

 

3.3. Drives and Actuation 

In micromanufacturing, the ultraprecision machine tool axes must be friction free, 

without stick-slip, no backlash, smooth, easy maintenance and high acceleration 

capabilities to provide high accuracy motion and positioning at high or low machining 

speeds.  

 

In all latest ultraprecision machine tools, direct drive systems are implemented. The 

usage of drive system which converts rotational movement into linear movement is not 

popular now. With direct drive systems, there is no more mechanical transmission 

which results in wear. Faster and accurate motion will be achieved using direct drive 

systems. 

 

The bearings of the drives are equally important. Before, contact bearings such as roller 

bearings were widely implemented in machine tools. Roller bearings are no longer seen 

as suitable at high cutting speeds. Even oil lubricated bearings could not cope in high 

speed machining as there would be too much heat generated. Axes with air bearings are 

the best solution and becoming the norm in the latest commercial ultraprecision 

machine tools. 

 

A new technique in air-bearings design is called the groove technique (Luo et al, 2005). 

This design merges aerostatic and aerodynamic design principles for ultra-high speed 

performance optimization. By feeding pressurized air through the orifice restrictors, 

aerostatic lift is generated (Stanev et al, 2004). 
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3.3.1. Linear Axes 

As illustrated in Figure 3.3, the Y-axis slideway carries the rotary table (C-axis) and the 

X and Z axis slideways carry another rotary axis (B-axis) which houses the high speed 

spindle. The linear axes (X, Y, and Z) of the micromilling machine are equipped with 

aerostatic bearings fitted with squeeze film dampers to improve damping and eliminate 

friction and wear. Magnetic tracks are inserted to increase damping. 

 

These linear axes or slideways manufactured by Loadpoint Bearings Limited are driven 

by three phase DC brushless linear motors. Optical linear encoders by Renishaw were 

used as feedback for the all linear axes with a resolution of 20 µm before digital 

interpolation and 5 nm after digital interpolation to provide motion accuracy of less than 

1 µm over the total length of travel. Table 3.1 describes the linear axes specifications in 

more detail. 

 

 

 

 

 

 

 

 

Fig. 3.4 Brushless DC linear motor driven aerostatic slideway 

 

3.3.2. Rotary Axes 

Ultra-Mill, as shown in Figure 3.5, has two rotary axes where the B-axis is the spindle 

swivelling axis and the C-axis is the workpiece rotary table. The B-axis is equipped 

with precision ball bearings.  The workpiece rotary table (C-axis) is equipped with 

aerostatic bearings fitted with squeeze film dampers. Only the B-axis of the Ultra-Mill 

does not use aerostatic bearings. 

 

The rotary axes or tables are manufactured from cast iron. Both the B and C axes are 

driven by three phase DC brushless torque motors and equipped with 0.02 arcsec 

resolution optical rotary encoders by Renishaw as feedback.  Table 3.1 describes the 

rotary axes specifications in more detail. 

 

Magnetic tracks 
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      (a) B-axis                                                        (b) C-axis 

Fig. 3.5 Rotary axes of Ultra-Mill 

 

3.4. High-Speed Spindle 

The micromilling machine is fitted with a high speed spindle supported on aerostatic 

bearings capable of achieving a maximum speed of 250,000 rpm. The spindle stiffness 

is 4 N/µm in the radial direction and 3 N/µm in the axial direction.  

 

The high speed spindle is driven by a brushless DC motor. In the air bearing 

mechanisms, to improve the stability at high speeds, journal herringbone grooves were 

machined. This was manufactured by Loadpoint Bearings. 

 

The high speed spindle does not have a feedback system. A chiller is needed to cool the 

high speed spindle when running. This is to avoid unwanted thermal expansion that 

would lead to eccentricity of the tool due to expansion of the spindle shaft. Table 3.1 

describes the high speed spindle specifications in more detail. 

 

 

 

 

 

 

 

Fig. 3.6 Brushless DC motor driven aerostatic high-speed spindle 
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Table 3.1 Ultra-Mill specifications 

Linear Axes X Y Z 
Type Air bearing slides fitted with squeeze film dampers 
Stroke 230 mm 225 mm 160 mm 
Feedrate 0-3000 mm/min 0-3000 mm/min 0-3000 mm/min 
Drive System DC brushless linear 

motor 
DC brushless linear 
motor 

DC brushless linear 
motor 

Feedback Optical linear 
encoder 

Optical linear 
encoder 

Optical linear 
encoder 

Resolution 5 nm 5 nm  5 nm 
Motion Accuracy <1.0 µm over total 

travel  
<1.0 µm over total 
travel 

<1.0 µm over total 
travel 

    
Rotational Axes B (Spindle Swivelling) C (Workpiece Rotary Table) 
Type Precision ball bearing Air bearing fitted with squeeze 

film dampers 
Stroke ± 90° 360° 
Rotational Speed 0-30 rpm 0-100 rpm 
Drive System DC brushless torque motor DC brushless torque motor 
Feedback Optical rotary encoder Optical rotary encoder  
Resolution 0.026 arcsec 0.02 arcsec 
Motion Accuracy <1.0 µm over 180° in axial and 

radial direction 
<0.1 µm in axial and radial 
direction 

 
Machining Spindle Performance 
Type Water cooled aerostatic bearing 
Stiffness Radial: 4N/µm; Axial: 3N/µm 
Maximum Speed 200,000 rpm 
Load Capacity Radial: 55N at spindle nose; Axial: 45N 
Drive System DC brushless motor 
Power 400 Watts at 200,000 rpm 
Motion Accuracy <1.0 µm axial TIR and <2.0 µm radial TIR 
Tool Clamping 3 mm collet, manual or automatic (optional) 
 

3.5.  Control System 

In this section, the electrical subsystems of the micromilling machine will be discussed. 

The electrical subsystems include the controller, amplifiers, motors and sensors. Figure 

3.7 illustrates the architecture of the servo loop of the micromilling machine. 
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Fig.3.7 Servo loop architecture 

 

3.5.1.  Controller 

The Universal Motion and Automation Controller (UMAC) by Delta Tau Data Systems 

Inc. is an open architecture controller (OAC) and is used as the machine control unit 

(MCU) of the micromilling machine. Currently, the controller has employed the most 

basic main processor which is the 80MHz DSP56303 CPU. Other processor speeds are 

available in (Delta Tau 2008f) and the selection of processor speed is dependent on the 

application to be driven. 

 

The UMAC controller does all the interpretation, interpolation, servo loop computation, 

position control, etc. The controller could also be called Numerical Control unit. The 

UMAC has interfaces for amplifiers (drives) and feedback from encoders and would 

make the system a closed loop system.  There are input and output (I/O) interfaces on 

the controller which are used to drive or obtain signal feedback for auxiliary equipment 

or functions which are controlled by PLC programs. In the controller, lie the servo 

algorithms (PID plus feedforward). 

 

3.5.2. Amplifier 

The Ultra-Mill employs pulse width modulation (PWM) amplifiers for all the linear and 

rotary axes. The PWM amplifiers are products from Delta Tau Data Systems Inc. Each 

amplifier has two channels, which makes it possible to drive two motors with one 

amplifier. PWM amplifiers are used instead of linear amplifier due to the fact that linear 

amplifiers consume more power and PWM amplifiers are able to meet the motors 

performance requirements. 

 

Amplifier  Controller Motor Actual 
Output 

Command 
Input 

Position Feedback 

Current Feedback 

Electro-
mecha-
nical 

System 
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The high speed spindle is driven by an amplifier supplied from Kavo. This amplifier is 

also a PWM typed amplifier. This amplifier is able to drive the spindle up to a 

maximum speed of 250,000 rpm. 

 

3.5.3. Motor 

All the motors (direct drive systems) used in the micromilling machine are DC 

brushless motors. The linear motors are from Anorad and the rotary motors are from 

Micromech. The high speed spindle is also equipped with a DC brushless motor. 

 

3.5.4. Sensor 

The feedbacks used for all axes apart from the high speed spindle are optical glass 

encoders by Renishaw. The feedbacks are connected directly to the controller unit. All 

optical encoders have 20 µm resolution. After digital interpolation by the controller, the 

resolution is 5 nm. 

 

The Ultra-Mill is equipped with several sensors such as: 

• Pressure switch sensor- to monitor the pneumatic supply. 

• Proximity sensor- to monitor open/close machine guard status. 

• Non-contact tool monitoring system- to measure tool height, diameter and 

breakage.  

• Position switches- to detect axes position (positive or negative end limits, home 

position). 

 

3.6. CNC Control and Software Subsystem 

There are several programs and software packages used to set up and drive the 

micromilling machine. The programs that were used to set up the machine configuration 

are from Delta Tau Data Systems Inc. Listed below are the programs that were used to 

set up the micromilling machine:- 

• Turbo Set Up- Program to set up electrical drives parameters and feedback 

registers. 

• Pewin Pro (Delta Tau 2008a) - Monitoring motor status online. Parameters or 

variables could be adjusted in this program. Motion and PLC programs are 

written within this environment. 
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• PMAC Tuning Pro (Delta Tau 2008e) - This program is used to tune the servo 

and current loop of each axis.  Tuning of the PID plus feedforward can be done 

with the aid of step and sinusoidal moves. 

• PMAC Plot (Delta Tau 2008d) - The program is capable of recording or 

gathering motor current, command or actual position of motors, etc. data for 

monitoring and analyzing purposes. 

• PMAC HMI (Delta Tau 2008b) - A Visual Basic based package to enable the 

customization of the Human Machine Interface (HMI). This package enables the 

programmer to add extra or remove existing features. 

• NC Pro Runtime  (Delta Tau 2008c) - a Visual Basic based interface which 

displays the information such as part number, distance to go, current position, 

etc. to the machine operator. 

 

Apart from these programs from Delta Tau Data Systems, a Computer Aided 

Manufacturing (CAM) package has been added and integrated as part of the Ultra-Mill. 

The CAM package is PowerMill 8 by Delcam. This CAM package has the ability to 

generate machine codes (G-codes) for simultaneous 5-axis machining.  

 

Prior to the decision of opting for PowerMill, CAM packages such as DepoCam and 

Cimatron were researched and evaluated to determine the suitability for all the 

machining processes the Ultra-Mill is capable of.  Decisions were made by evaluating 

the advantages and disadvantages of each CAM package. 

  

The selection of the CAM software was based on: 

• User interface – ease to navigate, obtaining critical information, integration of 

user interface into third party program, etc. 

• CAD flexibility – ability to read most common CAD data files (iges, sat, etc.) 

• CAM functionality – cutting strategies optimization, feeds and speeds 

scheduling, collision detection capabilities, etc. 

• NC program generation – types of post-processor, types of NC program to suite 

machine tool controller, easy NC program editing, etc. 
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3.7. In-Process Inspection and Monitoring System 

Enhancing the functionality, reliability, sensitivity and accuracy of ultraprecision 

machine tools for micromanufacturing require high bandwidth sensors and fast signal 

processing capabilities. This category falls in the intelligent and smart machine tools 

where the goal is to minimize human interventions. 

 

In micromanufacturing, the machining processes involve machining of small parts or 

features using small diameter tools. With these, the energy emission during tool and 

workpiece engagement or the cutting forces involved are very minute compared to 

macromachining. As an example, operators are not able to determine if the micro-tool 

used is already broken due to the size of the tool and various machining condition. 

Therefore, it is required that the existence of the tool is determined by measuring 

system. 

 

Combination of various types of sensors is the key for in-process inspection and 

monitoring of machining and machine tool condition. The execution of the in-process 

inspection and monitoring system program are done using Programmable Logic Control 

(PLC) method.  

 

3.8.  Summary  

In this chapter, the key components and supporting technologies of the micromilling 

machine tool have been discussed and elaborated. The characteristics of each subsystem 

were fully explored, analyzed and experimented individually before integration. 

 

Key technological characteristics of each subsystem have been discussed in this chapter. 
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Chapter 4 
 
 

Control System Design for the 5-Axis Ultraprecision Micromilling Machine 

 

 

4.1. Introduction 

Manufacturing of high precision components or parts with sizes varying between a few 

hundred microns to a few millimetres or surface features in submicron and nanometre 

level are increasingly in demands for various industries, such as aerospace, 

biotechnology, optics, etc. The demands for ultraprecision machines have increased due 

the demands to meet the accuracy, surface finish and geometrical complexity of 

components and parts. Typical manufacturing requirements are high dimensional 

accuracy being better than 1 micron, flatness and roundness better than 50 nm and 

surface finish ranging between 10 and 50 nm. Manufacture of high precision 

components and parts requires very intricate material removal procedure. 

 

There are five main elements, namely machine tool, cutting tool, material properties and 

operating conditions and environmental conditions, which are conducive to good quality 

components and parts.  The attributes of the five mentioned elements are illustrated in 

Figure 4.1. End users evaluate the performance of a machine tool based on the 

dimensional accuracy and surface quality of machined parts including the machining 

time. 

 

The control of multi-axis precision systems with high-speed and high-accuracy motions 

and positioning are desirable to manufacture products with high accuracy, complex 

features, increase productivity, maintain machine stability, etc.  The evolution of 

nanoscale technology manufacturing has raised the requirements for fast, accurate and 

robust positioning at the machine system design stage.  Apart from the mechanical 

design, the performance of the entire precision systems is much dependent on various 

electrical and electronics subsystems, controllers, drive instruments, feedback devices, 

inspection and monitoring system and software.  On the other hand, understanding the 

machining processes is a necessity. There are some variables that dynamically alter the 

system behaviour and sensitivity to disturbance that could be ignorable in conventional 
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machines or machining processes but will be disastrous in micro and nano machining, 

which then is directly reflected on the components. 

 

This chapter emphasizes in the designing and development of the control systems for an 

ultraprecision machine tool, Ultra-Mill. In the design stage, the ultraprecision machine 

performance specifications are arranged in the precedence order. The issues that are 

highlighted in the design stage are motion accuracy, dynamic stiffness and thermal 

robustness.  As shown in Figure 4.1, the mechanical and electronics elements constitute 

to the overall achievable machine performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.1 Machined parts qualities factors 
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Having this in mind, the design and construction of the Ultra-Mill involves complex and 

complicated design know-how for a mechatronics system. Mechatronics is a 

multidisciplinary engineering field which integrates electrical, control, software and 

mechanical elements. Machine specialization during the design stage helps to reduce the 

risk of misimplementation of technologies which in turn could be expensive.  In this 

thesis, the main topic is the control system design and development for the Ultra-Mill. 

The mechanical design may be touched on slightly but will not be elaborated in depth as 

this is not the main aim. In the Ultra-Mill, the vital subsystems are the mechanical 

structure, spindle, drive and actuation, controller, feedback, monitoring and inspection 

systems and software. 

 

From the mechatronics point of view, the control system comprises of controllers, 

drives and actuators, sensors and software. In an ultraprecision machine tool control 

system structure, there are a number of controlled subsystems. These are the motion 

control, process control and control of other auxiliary functions. Motion control 

concentrates in moving the mechanical element, process control observes the real time 

condition and auxiliary functions enhance the overall machine functionality. Figure 4.2 

illustrates the ultraprecision machine tool mechatronics design constitutions. 

 

The control system must provide the three elements, motion accuracy, dynamic stiffness 

and thermal robustness, of the Ultra-Mill so as to have high stiffness, low thermal 

distortion and low motion errors. Since this chapter will concentrate on the control 

system design of the Ultra-Mill, the next few subtopics will be focusing in the controller 

dynamics, drive and actuation dynamics, feedback dynamics and software dynamics. 
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4.2. Control System Requirements and Characteristics 

As mentioned in Section 4.1, the control susbsystems consist of the controller, drive and 

actuation system, feedback, monitoring and inspection systems and software. These 

subsystems could be classified as machine level and monitoring level. These subsystems 

determined the speed, accuracy, etc. of the machine tool, monitors the changes in 

machine tool for anomalies and responsible in rectifying any problems raised. An 

ultraprecision machine tool must be able to quickly fault detect, fault determinate and 

fault correct. 

 

After conducting a survey, it has been decided that Ultra-Mill will be implementing PC-

based control system with open architecture as this architecture is dimensionally open 

ended. PC-based control system provides the freedom and expansion based on the 

flexibility it offers. Aside from that, the architecture is able to provide flexibility, 

precision, computational power, customization and is cost effective.  This is also 

contributed to the fact that this is a research project and potential future modifications of 

the Ultra-Mill are possible. The control system dynamics for Ultra-Mill is illustrated in 

Figure 4.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.3 Control system dynamics for Ultra-Mill 
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Combination of PC-based control with the latest measuring and operational system has 

led to a rise in both user time and precision, with the resulting decrease in down time and 

repairs and an increase in both quality and quantity of parts produced per measured unit 

of time (Alique and Haber 2008). 

 

In the next sections, the dynamics or characteristics elaboration of each control 

subsystem will be discussed. Figure 4.4 shows the control system architecture of the 

Ultra-Mill.  

 

Figure 4.6 illustrates the machining process framework and the location of the control 

system is highlighted in blue within that framework. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.4 Control system architecture of Ultra-Mill 

 

 

 

 

 

 

 

 

 

EPSON PC 

Controller - UMAC 

Amplifies 

 

User Interface  
(PMAC NC Pro2 standard or 

customized)  
  ) 

User Control Panel 
Control Pendant 

Keyboard, mouse 
Start button 

E-Stop button 
… 

 

 

Host PC 
(Advantage 900 PC) 

 

Display unit 

USB 

Robot control system   
(Epson PC) 

Condition monitoring 
system  

(NI PXI unit PC) 
 

 
 
 

Machine tool 

Spindle 
motor 

Servo  
motors 

 

encoders Other 
actuators 

I/O Interface 

Et
he

rn
et

 

Et
he

rn
et

 

 

Machining Program  
(RS 274 type part program  
/ PMAC motion program)  

 

HMI Development 
Enviroment 

(PMAC NC Pro2 designer) 

 

CAD/CAM 
 & Simulation 

(Pro/Engineer & PowerMill) 
 

Controller setup/configuration 

CNC program development HMI  development 

Control Panel Design 

 

PMAC Executive Program 
(Setup, Configure UMAC 

hardware, motor tuning, etc.  

 



Chapter 4. Control System Design for the 5-Axis Ultraprecision Micromilling Machine 
 

50 
 

Fi
g.

 4
.5

 C
on

tro
l s

ys
te

m
 a

rc
hi

te
ct

ur
e 

w
ith

 a
ttr

ib
ut

es
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4. Control System Design for the 5-Axis Ultraprecision Micromilling Machine 
 

51 
 

 

 

 

 

 

 

 

 

 

 

Fig. 4.6 Machining process framework 

 

4.2.1. Controller Dynamics 

As stated by Ikawa (Ikawa et al, 1991), high speed multi-axis CNC controllers are 

essential not only for the efficient control of, servo drives in high precision loop 

synchronism for contouring but also for the thermal and geometrical error compensation 

optimized tool setting and direct entry of shapes. The controller is the most important 

subsystem of the Ultra-Mill as the controller acts as the numerical controller unit which 

incorporates the interpreter, interpolator, position controller and servo computation 

functions. Apart from being the numerical controller, the controller observes and 

monitors the operational logic of the machine tool as a whole system. 

 

The stiffness of the axes refers to the ability to resist any external force that could cause 

a minor displacement or deformation. The servo algorithm which is embedded in the 

controller could lead to high servo stiffness which in turn will provide overall machine 

accuracy and sensitivity. 

 

The servo stiffness is not only dependent on the controller but is dependent on the 

combination of the controller with the drive and actuation system and the feedback 

system which also include some software parameter settings. In this section, the 

dynamics or characteristics of the controller will be discussed. These characteristics 

were understood in the design stage of the control system development. 
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In micromilling process, it is required that the cutting tool trajectory will involve micron 

level movements and positioning.  The control system must be able to provide micron 

level movements and positioning in a fast, accurate, repeatable and robust manner. The 

controller must have high servo frequency updates and high system bandwidth. These 

provide the servo stiffness required and in a case where the servo frequency update is 

low, the servo system will be less sensitive which in turn will diminish the disturbance 

rejection ability. 

 

High controller processing speed is required so as to avoid any delay in data transfer 

between the PC and the controller. The processing speed must be high enough to 

complete the servo cycle and sustain the computational rate of the controller. From 

experience, low processing speed has resulted in the servo loop cycle being incomplete. 

This has resulted in motion error whereby the axes of the machine tool ceased to 

function. 

 

Figure 4.7 describes the characteristics of various types of processing chips for motion 

control. The selection of motion control processors are based on processing speed and 

power, programming time and ease of programming.  

 

The sampling rate of the entire system is important in minimizing contour errors. In 

multi-axis simultaneous machining, the controller sampling rate must be adequate so as 

to provide overall system stiffness. Some controllers lack sufficient capability: as the 

number of axes increases, the slower is the sampling rate. 

 

As mentioned earlier in this section, the servo stiffness is not only dependent on the 

controller. The servo algorithm is embedded in the controller. To obtain good response 

and stiffness of the motors, the servo algorithm must be tuned. For the Ultra-Mill, the 

servo algorithm is a proportional, integral and derivative plus velocity and acceleration  
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Fig.4.7 Characteristics of various types of motion control processors 

 

feedforward controller. The tuning of the servo loop will be discussed more thoroughly 

in Chapter 6. 

 

In the case of Ultra-Mill, the DSP chip will execute the real-time motion control 

functions whereas the PC’s CPU acts as a host which executes the non-real time event 

processing and the human machine interface (HMI). DSP supplies optimal processing 

for feedback regulation, notch filtering, velocity estimation, motor commutation, 

running fast tool servos, etc. and will increase performances in terms of speed, 

precision, surface finish, machining cycle times, improving reliability and robustness. 

 

4.2.2. Drive and Actuation Dynamics 

As mentioned before, the Ultra-Mill uses direct drive systems with aerostatic bearings. 

Here no mechanical transmission is involved. During machining, disturbances impact 

directly on the axes. The disturbances come in the form of cutting force. Compared to 

screw-based systems, the direct drive system with aerostatic bearings are not as stiff. On 

the other hand, the screw-based systems have backlash, friction, etc. which would lead 

to wear. 
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The stiffness of the direct drive systems with aerostatic bearings is dependent on the 

control system, motor, amplifier and encoder. In micromilling, the cutting forces are 

considered minute compared to macromilling forces. These have been observed through 

experiments which will be elaborated in Chapter 7. These forces can be random as it 

could be a combination of effects due to machine vibration, chatters, etc. 

 

Direct drive systems have higher natural frequencies and higher stiffness than ball screw 

drives, because there is no elastic deformation involved in the drive system (Weidner et 

al, 1999). Other characteristics that influence the decision of implementing direct drive 

systems in the Ultra-Mill are described in Section 2.4.2. 

 

The dynamic stiffness of the servo loop is vital so as to achieve high performance 

micromilling characteristics. The stiffness will impact on how well the loop will react 

when disturbance is injected into the loop during machining. To predict the stiffness of 

the loop, modelling using a computer aided control engineering package (i.e. 

Matlab/Simulink) is used. This section will elaborate on the modelling on the servo loop 

of the direct drive system. Chapter 6 will explain more in depth of the simulation and 

modelling of the drive system. 

 

The Ultra-Mill adopts the proportional, integral and derivative (PID) plus velocity and 

acceleration feedforward servo algorithm. The feedforward scheme helps to reduce the 

following error. The command output of the UMAC controller is shown in Equation 

(4.1). 

 

                       19
232

128 1282
vff aff i d sv

out p sp

K CV K CA K IE K K AV
DAC K K FE−  +  

= + + −  
   

                  (4.1) 

 

DACout, Kp, Ksp, FE, Kvff, CV, Kaff, CA, Ki, IE, Kd, Ksv and AV represent the 16-bit 

servo cycle output command, proportional gain, internal position scaling term, 

following error, velocity feedforward gain, servo cycle commanded velocity, 

acceleration feedforward, servo cycle commanded acceleration, integral gain, servo 

cycle integrated following error, derivative gain, internal scaling position scaling term 

and servo cycle actual velocity. The output is in the form of voltage signal. This voltage 
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will then be converted into current signal so as to provide the thrust force for the 

motors. The thrust force is provided by the PWM amplifier and is proportional to the 

input current.  

 

Achieving robust, fast and accurate motions also depends on the hardware and software 

of the control system. Taking stiffness as an example, achieving high stiffness depends 

on the motor peak force, current available and the encoder resolution for hardware side. 

In the software paradigm, it depends on how well the servo loop is tuned. Most 

ultraprecision machine tools apply the simple PID (proportional, integral and derivative) 

with feedforward algorithms, although the research community are always developing 

newer advanced servo algorithms so as to accomplish enhanced motion performance. In 

ultraprecision machine tools, greater care is taken in their mechanical design in order to 

obtain higher stiffness and eliminate non-linearites such as friction and motor torque 

ripple, rather than improving the control system (Wilson, 2004). 

 

In the design stage for the drive systems, accomplishing overall excellent drive system 

performances in terms of speed, accuracy, etc. for motion and positioning, the drive 

systems must have these characteristics: 

• Sufficient voltage and current loop gain so as to achieve maximum speed. 

• Adequate force/torque to resist disturbance forces (i.e. cutting force, frictional 

force, etc.) and to accelerate the axis load. 

 

Sizing of the drive system is a part of the design. Mathematical formulas were used to 

calculate the correct motor size to provide maximum and adequate performance. 

Attention is given to motor power and stiffness requirements. These equations are as 

shown below. During the sizing stage, a few key motor behaviours must be established, 

i.e. peak speed, accelerating rate, length of travel, accelerating load, etc.: 

 

( ) p
p

t

f
PeakCurrent I

K
=  

(4.2)                                              
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( ) rms
rms

t

fContCurrent I
K

=  
(4.3) 

min ( ) ( )D p c emfV I R v B= × + ×  (4.4)                                                                                   

max ( )amp bus p c

emf

V I R
V

B
− ×

=
 

(4.5) 

2 2 2 2
1 1 2 2 3 3

1 2 3

...
...

n n
rms

n dwell

t f t f t f t ff
t t t t t
+ + + +

=
+ + + + +

 
(4.6) 

                                                                     

Ip, fp, Irms, frms, Kt, VDmin, Rc, v , Bemf, V, Vampmaxbus, t and f represent parameters for peak 

current, peak force, continuous current, continuous force, motor force constant, 

minimum drive voltage, coil resistance, velocity, back EMF, maximum speed, amplifier 

maximum bus voltage, time and force respectively. 

  

It is worthwhile to oversize the drive system during the design stage. Having more 

power will lead to motors running cooler, therefore will decrease thermal errors. In the 

Ultra-Mill, the mechanical structure (linear and rotary axes) is not as big and heavy 

compared to conventional machine tools.  With big masses, the structure behaves like a 

low pass filter.  

 

Once the motor sizing has been completed, the next step is choosing the amplifiers to 

drive these motors. For this application, an PWM amplifier was chosen. The PWM 

amplifier was chosen instead of, for example linear amplifier, is due to the fact the 

PWM amplifier is powerful and is of lower cost compared to a linear amplifier. Other 

considerations that were taken into account during the selection of the amplifiers are the 

gain, bandwidth, efficiency, linearity, noise, output dynamic range, slew rate, etc. The 

biggest advantage of PWM amplifier is the efficiency. The operating temperature of 

PWM amplifiers is much lower than that of linear amplifiers. 

 

However there is a limit to improving the machine dynamics and performance merely 

based on mechanical enhancement. Direct feed drive systems deliver a new dimension 
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for improving ultraprecision performance particularly in the framework of undertaking 

nano/micro machining. 

 

4.2.3. Feedback Dynamics 

In any mechatronics system, the feedback system is extremely important and the speed 

of detecting and fault correction is also essential. The feedback system is divided into 

two sections, (1) feedback for motion and (2) feedback for machine conditions and 

auxiliary functions. In-process conditions must be monitored in real time constantly to 

ensure no machine degradation and not forgetting to ensure the machine safety as well. 

The feedback signals are sent back to the machine controller for interpretation. 

 

For the axes motion and positioning feedback, encoders are able to provide the actual 

position reading. The velocity feedback is derived from position feedback.  In the 

design specification for motion and positioning accuracy, the Ultra-Mill required a 5 nm 

encoder resolution. The encoder scales that were used have 20 µm gratings. To obtain 5 

nm resolution from 20 µm gratings, electronics multiplication is implemented. With 

4,096 digital quantification of the physical resolution, 4.88 nm resolution is attained. 

The increase in the resolution will directly increase the axes stiffness provided the 

controller could digitally close the servo loop at a high frequency. Here, the 

combination of hardware and software is unavoidable so as to enhance overall system 

performance. 

 

The other type of feedback as mentioned earlier is for machine conditions and auxiliary 

functions. These sensory systems normally using limit switches, pressure switches, 

thermocouples, etc., operate by supplying a high or low signal to the controller for 

status changes.  

 

In ultraprecision micromilling machine, feedback systems are very important and when 

feasible, many feedback systems should be implemented so as to making the system 

more autonomous but at the same time keeping the cost of implementation low. As an 

example, many research groups use dynamometers to measure cutting forces so as to 

detect tool wear or tool breakage. The dynamometer is not a feasible instrument that 

machine tool manufacturers will consider implementing in all production machines as 

the dynamometer is very expensive. 
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As machining process involves small or miniature parts and components, microtools, 

microforces, micromovements and micropositioning, motion feedback, machine 

conditions and in-process monitoring systems must be implemented to increase the 

quality and productivity. 

 

4.2.4. Inspection, Monitoring and Auxiliary System 

Inspection and monitoring systems are required for high precision systems. These 

systems will monitor the machine and machining processes in real-time with the aid of 

sensor fusion to increase the functionality, consistency, sensitivity and precision. In 

micromachining processes the amount of energy and cutting forces are minute 

compared to macromachining. In addition, thermally induced error must be eliminated. 

 

The inspection and monitoring system is to observe the machining process and machine 

tool state. Sensory systems, normally electronic latches, limit switches, pressure 

switches, thermocouples, etc., for auxiliary functions operate by supplying a high or low 

signal to the controller for status changes. With these, machine conditions can be 

monitored in real time constantly. The operation of this feedback is governed through 

programmable logic controller (PLC) programs. 

 

Other than these auxiliary functions for monitoring the machine status or state, tool 

condition inspection and monitoring is very crucial. The microtool cannot be seen 

clearly with the naked eye and therefore making it very difficult for tool setting and 

inspection. For the Ultra-Mill, a non-contact laser tool setting system and a vision 

system using a camera are adopted. The non-contact laser tool setting system is used to 

inspect the condition of the microtools (i.e. tool height, diameter, and wear/breakage) 

before, during and after machining. In Chapter 7, tool condition monitoring is discussed 

in more detail. 

 

The Ultra-Mill has integrated a 3-axis SCARA robot from Epson for loading and 

unloading of tools and workpieces. The communication between the Ultra-Mill and the 

robotic arm is established via Ethernet using the client (Ultra-Mill) and server (robotic 

arm) program framework.  The communication enables the Ultra-Mill to select the 

usage of the robotic arm. Acknowledgements are sent and received between Ultra-Mill 

and the robotic before and after each completed task. This is so as to avoid any possible 
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collision between the robotic arm and the mechanical parts of the Ultra-Mill. There is a 

customized layout of the handlings system function incorporated into the HMI. 

 

4.2.5. Software Dynamics 

Software plays a vital role in the setting up and operating of the Ultra-Mill. The setting 

up part will not be discussed here. However this section will concentrate on the 

operational part. Operating the Ultra-Mill requires a human machine interface (HMI) to 

display information for operators. The interface allows the operator to input NC 

programs for machining. The interface displays information such as axes position, 

feedrate, spindle speed, etc. 

 

Under software dynamics, the concentration is on the computer aided manufacturing 

(CAM) packages characteristics. The CAM is considered as a part of the control system 

due to the fact the CAM generates the axes trajectory and coordination for machining. 

Within the CAM, there are many machining strategies to choose from. Apart from 

choosing the best strategies, parameters such as step over, step down, etc. also need to 

be configured. Fluent in operating the CAM alone does not guarantee high quality parts. 

It is also down to experience in choosing the correct cutting parameters, tooling, 

material, etc. 

 

It is understood that machining at the micro and nano realm involves a thorough optimal 

tool path and machining parameters planning. The strategies applied in macromachining 

are rarely applicable in micromachining. Delcam’s Powermill has been selected to be 

the CAM package for the Ultra-Mill. This package is integrated into the human machine 

interface. The integration allows the operator to generate NC programs and edit them 

when necessary. When preparing an NC program using the CAM package, five 

considerations must be observed in the selection of the tool path strategies (Korn, 2006): 

• Selection of optimal and appropriate tool path strategies. 

• Tool path selections must take parts size and complexity into consideration. 

• Roughing and finishing operations may need to merge when appropriate. 

• Cutting forces (dependent on spindle speed, feedrate, depth of cut, etc.) must be 

maintained throughout the process so as to produce repeatable accuracy. 
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• Awareness of CAD/CAM translation errors which could affect machining 

accuracy. 

 

In the design stage, as part of the CAM specification, the CAM must be able to 

accommodate simultaneous multi-axis machining. This required the machine to produce 

much more accurate components or parts finishing and minimize machining time and 

cost. Another point is the feedrate scheduling. Optimized feedrate scheduling increases 

parts finish accuracy and minimized tool wear and breakage. 

 

Since the parts machined are small, good 3D simulation functions of the tool trajectories 

are required to evaluate the chosen strategies before actually machine the parts. This 

will assist in understanding and optimizing the tool path selection. The 3D simulation of 

the actual trajectory during execution is beneficial to indicate how much material has 

been removed and the current position in the machining sequence. A CAM package 

with 3D simulation abilities and collision avoidance system is able to minimize the 

frequency of the tool running into vices and avoids any possible damage to the machine 

structure. 

 

Software dynamics is considered important as this is part of the motion control system. 

 

4.3. Ultra-Mill Control System Implementations 

This section will describe how the control system implementations were done. Selected 

subsystem implementation will be discussed. 

 

4.3.1. Servo Loop Setting Up 

Adequately setting up the servo loop is very vital to guarantee the desired performance. 

In the setup, parameters such as the PWM frequency, servo frequency, maximum 

voltage, maximum current, etc. are required so as to obtain the best performance and at 

the same time protect the motors.  

 

Figure 4.8 describes the step by step servo loop set up through a flowchart. The servo 

loop set up consists of three elements, namely controller settings, drive and actuation 

settings and feedback settings. All these are set up using the Turbo Setup package by 

Delta Tau. 
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In the controller settings, setting the PWM and servo frequencies adequately is very 

critical. These frequencies must be set within specific range for every drive or 

amplifiers. These frequencies must not be set too large as this could lead to excessive 

heating in drives or amplifiers. Setting them very low will result in low response, excess 

acoustic noise, vibration and motor overheating. 

 

The next procedure is related to settings of drive and actuation settings. These are set 

using the data sheet for each drives and motors to ensure the highest performance 

achievable and motor protection. 
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Fig. 4.8 Servo loop set up 
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The last step in the servo loop set up is to complete the feedback loop. The correct 

encoder channels must be known correctly for each drives. Selection of encoder type, 

encoder resolution, numbers of poles, markers for end limit or homing, feedback type, 

etc. are done in the feedback set up. 

 

Once the servo loop is adequately set up, the next is to perform the PID plus velocity 

and acceleration feedforward parameters to obtain servo performance with high 

robustness, responsive, low following error, etc. These are explained thoroughly in 

Chapter 6. 

 

4.3.2. Human Machine Interface (HMI) 

The HMI is the medium that supplies the operators with information regarding the 

machine statuses and conditions and machining parameters. The interface 

accommodates functionalities such as part program editing, various machine parameters 

setting, machine diagnostics, etc. for the benefit of the machine operator. 

 

The interface customisation was intended so as to ensure less adaptation of the operator 

to the system and design the interface to make machine operations and tasks 

management simpler and less complicated. The customisation involves making the 

interface having clear and readable display, include familiar features (i.e. mimicking 

Windows layout), easy manoeuvring to locate certain functions, information, etc.  

 

This section will describe the customization that was implemented for the Ultra-Mill 

interface. In the HMI design, several design principles were used to ensure the 

effectiveness of the elements (interface layout, colours, fonts, etc.) selected. The task of 

the HMI is to assist operators and making the job of operating the machine much 

simpler. In the design stage, design principles such as human factors engineering (HFE) 

and ergonomics and user-centred design were combined and simplified to that shown in 

Figure 4.9. 

 

The design and customisation of the HMI was executed in Visual Basic. Appendix ІV 

includes part of the HMI programming codes.  
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4.3.2.1. HFE and Ergonomics 

Human factors engineering (HFE) and ergonomics are sometimes defined as the science 

of fitting the work to the user instead of forcing the user to fit the work. This is 

however, a more primary principle rather than a definition. In the design stage, the 

designer has to weigh up and decide which approach would improve the performance of 

the user and the interaction between the user and the system. Any stressors a user may 

encounter when interacting with the system should be considered and evaluated if they 

could be minimized or eliminated.  

  

The main idea of this principle is products and tasks comfortable and efficient for the 

user. 
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4.3.2.2. User Centred Design 

User centred design involves how information is relayed to the user or machine 

operators. This information includes machine status, motor status, coolant level, 

warning alarm, etc. There are many ways to relay the information to user or operator.  

In the design stage, it is critical to highlight that the interface task is to aid the operator’s 

task. 

 

Here are some good design elements examples that were considered: 

• Clear and readable display- utilizing screen friendly fonts and using the correct 

colours for backgrounds, texts and function buttons. 

• Incorporate familiar features- to incorporate features used by Windows on its 

interface. 

• Redundancy gain- present statuses or alarms more than once with alternative 

physical forms. 

• Visual representation- variables should be represented in an obvious visual way 

whenever possible e.g. high and low feed rates are indicated using an indicator 

moving along a triangular slider. 

• Information access- minimizing the steps taken to access any information 

(frequently accessed sources to be located at the nearest possible position, drop 

down menus, etc.). 

 

Figure 4.10 illustrates the customizable interface for the Ultra-Mill. 

 

 

 

 

 

 

 

 

Fig. 4.10 Customization of HMI design 
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4.3.2.3. Auxiliary Functions 

Ultra-Mill has several auxiliary functions that are fitted as part of the control system. 

These auxiliary functions are divided into three groups: 

• Miscellaneous equipment: coolant, vacuum chuck, automatic spindle collet 

system, machine guard and pressure switch. 

• Handling system: 3-axis SCARA robotic arm for tool and workpiece loading 

and unloading. 

• Tool monitoring system: tool diameter and height measurement, tool breakage, 

tool wear, etc. 

 

These functions are required to reduce human intervention and make machine 

operations safer. All the auxiliary functions are connected to Ultra-Mill controller via 

the input-output board (I/O) board or Ethernet connection. 

 

The auxiliary functions are controlled through programmable logic controller (PLC) 

programs. PLC programs are relatively easy to construct and protocols controlled 

require a high or low signal to or from the I/O board. In the case of the Ultra-Mill, 

miscellaneous equipment and the tool monitoring system are connected to controller via 

the I/O board and the handling system utilises the Ethernet connection. 

 

Chapter 7 will discuss further the design, development and implementations of the 

handling system and the tool monitoring system. Figure 4.11 describes the Ultra-Mill 

operating flowchart. 

 

Appendix ІV illustrates some examples of the PLC programs. 
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   (b) 

 

Fig. 4.11 Ultra-Mill operating flowchart 

 

Safety guard open 
 

Switch on vacuum pump 
 
Clamp & align workpiece 
 

Insert the cutting tool 
into the spindle 

 

Setting workpiece datum 
 

Move the tool/probe slowly 
until it touches the workpiece 

surface/shim surface 

Setting workpiece 
datum point 

All axes? 

Select program operation mode 
 

Loading part program Writing program 

Simulation of the part 
program graphically 

Satisfied? 

Modify program on/off line 

Run full program Run program block by block 

 Finish? 

Safety checks 

Z axis brake 
engaged 

Safety guard 
close 

Motor home 

OK ? 

End 

Select other axis 

• Select part program origin as 
workpiece datum if possible 

• Lay a shim of know thickness d on 
it if necessary, then offset datum 
point by value d 

 

Safety guard close 
 

A 



Chapter 4. Control System Design for the 5-Axis Ultraprecision Micromilling Machine 
 

70 
 

4.4. Summary  

This chapter has described the design and development of the control system for the 

Ultra-Mill. In this design framework, theory is formulated in design requirements to 

meet crucial performance specifications. 

 

Firstly, the dynamics of the servo loop must be designed to ensure high dynamic 

stiffness to reject external disturbance without sacrificing the sensitivity, precision, 

speed, etc. for motion and positioning. This is all related to the motion control design 

and requirements. 

 

Secondly, the precision system and the processes must be monitored in real-time as long 

as the machine is executing any given task. Sensor fusion is required to obtain different 

signals for different change in conditions to provide confidence for problems 

identification. This is crucial especially in area of micromachining processes. The speed 

of fault detection and rectification is very important to avoid wastage of manufacturing 

resources.   

 

Thirdly, software manipulation is required to ensure the aimed performance is achieved. 

In terms of motion control for tool trajectory, a CAM package is required to generate 

the toolpath. Selection of suitable CAM package must ensure the suitability for 

micromachining.  

 

From here, it is known that, in achieving the best overall machine and machining 

process performance, the combination of hardware and software is required. This is to 

compensate the weakness or enhance any subsystem so as to manufacture products with 

high accuracy, complex features, increase productivity, maintain machine stability, etc.  
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Chapter 5 

 

Development of the Control Cabinet 

 

 

5.1. Introduction  

In the field of micromachining, the machines that are used to produce the parts or 

components are relatively large in size. Machining in the micro or nano meter scale is 

not economical by utilizing these large machines. Common precision machines would 

have key modules such as mechanical structure, control cabinet working with a control 

system, drives and actuation systems, tooling and fixturing and inspection system, etc. 

For the Ultra-Mill, the idea is to build and integrate these modules into one machine 

configuration which in turn will minimize the overall floor space and reduces the 

footprint of the machine tool. Table 5.1 illustrates the floor space requirements for 

various commercial machine tools compared to the Ultra-Mill. 

 

Table 5.1 Floor space requirements comparisons 

Machine Model Floor Space Requirement                      
w × d × h (m) 

Kern Evo [Kern, 2009 ] 2.80 × 2.50 × 2.20 

Nanotech 350 FG [Nanotech, 2009 ] 1.93 × 1.80 × 2.00 

Nanoform 700 Ultra [Precitech, 2009 ] 1.44 × 1.93 × 2.04 

Micromaster [Kugler, 2009] 1.7 × 2.00 × 2.35 

Ultra-Mill [Ultra-Mill, 2009] 1.1 ×  0.80 × 2.10 

 

Apart from minimizing the floor space, there are other reasons or motivations which are 

pushing machine builders and research groups to develop machines with small 

footprints.   

 

Motivations for miniaturization include:  

• Lower energy consumption, lower material cost and compactness (Chae et al, 

2006; Fukuda et al, 1998). 

• Decrease of heat deformation of the machine tools (Kussul et al, 2004). 
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• Vibration amplitudes of small machine tools are lower than large machine tools 

(Kussul et al, 2004). 

 

5.2. Design Issues 

In this chapter, the design issues section will cover only the development of the control 

cabinet for the Ultra-Mill which includes the design and implementation perspectives. 

Discussions on the miniaturization of the mechanical elements will not be discussed in 

this thesis. 

 

Designing the cabinet for Electromagnetic Compatibility (EMC) and thermal 

management is a not straight forward. In the design stage, contradictions between EMC 

and thermal management were observed. A small fraction of the design principles is 

dependent on each other. For example, thermal management design requires the 

apertures on the cabinet to be large to allow sufficient airflow for cooling but on the 

other hand, EMC management design requires the apertures to be as small as possible to 

avoid a decrease in the shielding effectiveness. 

 

In the design stage, EMC and thermal budgeting is done to obtain the best design 

layout. In the budgeting, enclosure sizing, airflow rate, etc. were taken into account. In 

the EMC management design stage, manufacturer guidelines and normal practiced 

standards (BSI and ISO) were observed. For the thermal management design, a 

Computational Fluid Dynamics (CFD) study was conducted. 

 

The control cabinet of the Ultra-Mill consists of CNC control unit, electrical control 

units (circuit breakers, contactors, etc.), filter, amplifiers, encoder interfaces, cables, etc. 

the installation of this equipment must comply with the manufacturers’ recommendation 

which complies with certified standards, e.g. BSI or ISO. Apart from design according 

to the recommendations, designing for easy maintenance is very crucial if there is a 

need for upgrading or repairing of equipment in the later stages. Complication arises 

when contradictions amongst standards, manufacturer installation guidelines and 

available mounting surface occurs. 
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Typical electrical cabinets have the equipment mounted on the back wall of the cabinet. 

Also for machine tool control cabinet, the normal location of the cabinet is standing 

next to the machine tool.  

 

The electrical cabinet for Ultra-Mill is custom fabricated to suit the machine base. The 

cabinet is fabricated so as to be able to fit nicely underneath the machine enclosure. The 

cabinet is fitted with a roller on two sides which enables it to operate like a drawer 

system as shown in Figure 5.1. 

 

 

 

 

  

 

 

 

 

 

 

 

 

Fig. 5.1 The control cabinet drawn out 

 

The dimension of the cabinet is 1020 mm × 480 mm × 790 mm (l × h × d) and is in 

horizontal position. For this type of enclosure, the height is a problem as it must 

accommodate the highest equipment with the height of 338 mm. mounting of cableways 

on top and below the equipment is essential for cable management and the minimum 

separation distance between the cableways and the equipment must be obeyed. 

 

According to manufacturer guidelines, the equipment must be mounted in the vertical 

position and this has resulted in the equipment being mounted on all vertical surfaces of 

the electrical cabinet as illustrated in Figure 5.2 and the complete cabinet layout is 

presented in Appendix V. The equipment is mounted on aluminium plates to allow for 

good grounding. 
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Fig. 5.2 Internal layout of the control cabinet 

 

5.2.1. EMC Issues 

In this section, design for EMC management will be discussed. EMC is a crucial design 

stage for any electrical or electronics design. Excellent EMC design will enable 

products to: 

• Operate without interfering with other systems. 

• Operate without interfering with itself. 

 

The design for EMC for this cabinet begins not at the components level but at the 

systems level. A checklist is important for excellent EMC design and must be obeyed 

when permissible. A few key points of good EMC design would be to: 

• Identify sensitive and noisy equipment. 

• Select suitable components. 

• Have good equipment and wiring layout. 

• Have grounding and filtering. 

 

The design for good EMC has been discussed in many standards and literature and 

therefore in this section, only certain parts of EMC design will be touched on as they 

were the issues which arose during the installation of equipment in the electrical 

cabinet. The European Conformity (CE) markcertifies a product has met the consumer 

safety, health and environmental requirements (Wikipedia, 2009c).  Typical thinking of 

control panel builders and system integrators on “CE + CE = CE” unfortunately does 

not apply (Armstrong, 2001). Figure 5.3 illustrates the design considerations for EMC 

management design. 
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Fig. 5.3 EMC design process 

 

This section will discuss and concentrate on the area of equipment layout, cable 

segregation and vents or apertures. These areas were the issues that arose while 

designing and integrating the electrical cabinet. The major contributor to these issues 

came from the limited mounting space for the equipment. Ideally the electrical cabinet 

should be placed in an anechoic chamber for electromagnetic interference (EMI) testing. 

The usage of the anechoic chamber is to attenuate the electromagnetic energy 
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two pieces of equipment. The minimum distance requirement could be for thermal 

management. The guidelines also indicate how the equipment should be mounted in an 

enclosed or not enclosed area. Standards require the equipment of different types 

(sensitive and noisy equipment) to be separated with a minimum separation distance 

(Schneider, 2007; Moore, 2003, Armstrong, 2001; Armstrong, 2000; Williams, 2000). 

The equipment in the electrical cabinet of the Ultra-Mill was arranged according to the 

equipment category and minimum separation between equipment of same category and 

different category were observed when permissible. Some minimum separation 

distances were unable to be followed accurately due to lack of mounting space. All 

equipment was mounted on aluminium plates which act as local RF reference for good 

grounding. 

 

5.2.1.2. Cable Management  

Cable management is an important element in the design stage of the electrical cabinet. 

The cables must be segregated according to the cable classes or types. Cable segregation 

is more or less the same with the arrangement of the equipment as there are the noisy 

and sensitive cables. In this case, the sensitive cables would be those carrying feedback 

signals from the encoders of the machine tool and the noisy cables are related to the 

motor power cables and the mains power supply. All the cables that were used in the 

electrical cabinet are shielded cables where some of them are twisted shielded cables. 

 

The cables are categorized according to their types and are placed within plastic 

cableways. These cableways are mounted on the aluminum plates. Plastic cableways 

were implemented so as to reduce the cost and mimicking another CNC machine 

electrical cabinet within the university premises. The cables are arranged so as to obey 

the minimum separation distance, i.e. minimum separation distance between encoder 

and power cables is 1 m, which are recommend and described in (Schneider, 2007; 

Armstrong, 2001; Armstrong, 2000; Williams, 2000). Cables with dissimilar classes 

should only cross over each other at right angles. 

 

As stated earlier, the space limitation is the biggest constraint in obtaining the best 

optimal cabinet design layout. Therefore this has resulted in some cables of different 

classes unable to be kept separated at recommended distances. The recommended 

guidelines are there to ensure safety. These compromises do not directly indicate that 
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the cabinet is not susceptible and emits interference to other equipment in the vicinity. 

Other than using shielded cables, these cables were correctly bonded and terminated at 

both ends as per recommendations of the EMC practice. 

 

Making partitions in the cableways to separate the different cable classes is another 

method of cable management for EMC. From observing another CNC machine 

electrical cabinet within the university premises and motor manufacturers, motor power 

cables and encoder cables were made to run parallel in the cableways. 

 

Once the control cabinet was completed, it was checked and certified to be powered on 

by an in-house electrical technician. Upon powering the Ultra-Mill, it was observed that 

it did not interfere with other equipment operations and it did not interfere with itself. 

 

5.2.1.3. Apertures 

Allowing adequate air flow in and out of a control cabinet, apertures or vents are 

required.  Shielding effectiveness would be compromised if the apertures or vents are 

too big (Johns, 2002). This would make any cable that runs near an aperture acting as an 

antenna. In a typical cabinet design, honeycomb shaped cavities are implemented for 

good air flow and yet maintain high shielding effectiveness. 

 

The designed cabinet has two holes that are used to pass the cables to the machine tool. 

At each hole, there is an energy chain connected to it. The cables are placed in the 

energy chains for tidiness as shown in Figure 5.4. These cables are placed in the energy 

chains due to the fact the cabinet operates like a drawer system. No honeycomb type 

vents were implemented in this electrical cabinet due to the high fabrication cost. 

 

 

 

 

 

 

 

 

Fig. 5.4 Energy chain connected to the electrical cabinet 
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5.3. EMC Analysis of the Cabinet 

A 3D electromagnetic simulation called Microstripes by CST was used to perform the 

EMC analysis of the electrical cabinet of the Ultra-Mill. The tool uses the time domain 

Transmission Line Matrix (TLM) method for solving the simulated analysis. For a 

thorough EMC analysis, the electric and magnetic fields source are required. The field 

source comes directly from the board level. In the case of the Ultra-Mill, no board level 

information was in hand. To obtain the board level information, all the PCB circuitry of 

each equipment must be constructed and then analysed. This is a time consuming task 

and is not the purpose of this research. 

 

In order to make the analysis easier and meaningful, simulation and analysis of the 

shielding effectiveness of the electrical cabinet was only considered. Shielding 

effectiveness means the ratio between the field strength without the barrier in position 

or to that when present. Shielding effectiveness (SE) is the summation of reflection, 

absorption and the re-reflection. 

 

                                         SE (dB) = R (dB) + A (dB) + b (dB)                                  (5.1) 

 

The electrical cabinet of the Ultra-Mill has five steel surfaces and a Perspex cover used 

as the sixth surface. The Perspex cover provides a viewing window inside the cabinet. 

The Perspex cover, from EMC point of view, provides no shielding. This has weakened 

the shielding effectiveness of the cabinet. As mentioned earlier the cabinet is placed 

underneath the machine enclosure. By placing the cabinet in the steel frame of the 

machine enclosure, the shielding effectiveness now is at an accepted value. Now the 

cabinet has steel surfaces all around whereas initially it only had five steel surfaces. 

 

5.3.1. EMC Analysis  

This section will elaborate on the EMC analysis that was conducted. The first analysis is 

on the SE on the electrical cabinet alone. The second analysis is the SE when the 

cabinet is placed underneath the machine enclosure. 

 

Two types of simulated condition were conducted, these are: 

• Applying an electrical pulse outside the cabinet and measuring from inside the 

cabinet. 
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• Applying an electrical pulse within the cabinet and measuring from outside the 

cabinet. 

 

The simulated condition is a similar method to a Hammer test (test for mechanical 

structure). The idea is to observe how the signal influences the structure and the 

duration taken for the signal to decay. For the EMC analysis, the observe signal is how 

much of the pulse enters or exits the cabinet. The less the pulse enters or exits indicates 

good shielding effectiveness. Shielding effectiveness is dependent on the material and 

the thickness of the cabinet. 

 

5.3.1.1. Analysed Models Results 

Stated are the analysed models: 

 

Model 1: Electrical cabinet only with five steel surfaces and Perspex cover. 

 

 

 

 

 

 

 

(a) Pulse in voltage in time domain 

 

 

 

 

 

 

 

 

(b) Pulse in voltage in frequency domain 
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(c) Radiated power in frequency domain 

Fig. 5.5 Results of electrical cabinet only with five steel surfaces and Perspex cover 

 

Model 2: Electrical cabinet only with six steel surfaces. 

 

 

 

 

 

 

 

 

(a) Pulse in voltage in time domain 

 

 

 

 

 

 

 

 

 

(b) Pulse in voltage in frequency domain 
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(c) Radiated power in frequency domain 

Fig. 5.6 Results of Electrical cabinet only with six steel surfaces 

 

Here are the comparisons between Model 1 and Model 2. 

 

 

 

 

 

 

 

 

(a) Comparisons of pulse in voltage in time domain 

 

 

 

 

 

 

 

 

(b) Comparisons of radiated power in frequency domain 

Fig. 5.7 Comparisons of results Model 1 and Model 2 
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From the simulated results, it is observed that having Perspex cover has reduced the 

shielding effectiveness tremendously. In Figure 5.7, the red signal is that of with 

Perspex cover and the black signal is with a steel cover instead. 

 

Model 3: Model 1 placed within machine enclosure. 

 

 

 

 

 

 

 

 

(a) Pulse in voltage in time domain 

 

 

 

 

 

 

 

 

 

(b) Pulse in voltage in frequency domain 

 

 

 

 

 

 

 

 

(c) Radiated power in frequency domain 

Fig. 5.8 Results of Model 3 within machine enclosure 
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Model 4: Model 2 placed within machine enclosure. 

 

 

 

 

 

 

 

 

(a)  Pulse in voltage in time domain 

 

 

 

 

 

 

 

 

(b) Pulse in voltage in frequency domain 

 

 

 

 

 

 

 

 

(c)  Radiated power in frequency domain 

Fig. 5.9 Results of Model 4 within machine enclosure 

 

Here are the comparisons between Model 3 and Model 4. 
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(a) Comparisons of pulse in voltage in time domain 

 

 

 

 

 

 

 

 

(b) Comparisons of radiated power in frequency domain 

Fig. 5.10 Comparisons of results for Model 3 and Model 4 

 

From the simulated results, the shielding effectiveness of Model 1 and Model 2 have 

increased by placing them in the machine enclosure. In Figure 5.8, the red signal is that 

of Model 3 and the black signal is for Model 4. 

 

5.4. Thermal Issues 

Thermal analysis was done based on the designed arrangements of the equipment as 

mentioned above. Each equipment that is placed in the electrical cabinet has a 

recommended ambient operating temperature. Excellent ventilation and cooling system 

must be implemented to maintain the ambient temperature within the cabinet below the 

limit. 

 

As mentioned in the Section 5.2.1.3, shielding effectiveness would be compromised if 

the apertures or vents are too big. The only two big apertures within the cabinet are 

those to pass through the cables to machine tool. Two additional apertures were created 

for placement of outlet and inlet fans for cooling. 
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5.4.1. Thermal Analysis of the Cabinet 

A series of thermal analyses were conducted for electrical cabinet. These analyses were 

conducted with aid of a Computational Fluid Dynamics (CFD) package called EFD 

Pro8 by Flomerics. This package operates within the Pro Engineer environment. 

 

In the thermal analyses, three parameters will be observed. These parameters are: 

• Solid temperature (equipment). 

• Fluid flow. 

• Fluid temperature. 

 

Several conceptual designs for best cooling and ventilation method will be presented in 

the next section. With these thermal analyses, fluid temperature, solid temperature, hot 

spots, etc. could be identified. An important criterion in thermal design is to ensure the 

air temperature is above dew point so as to avoid condensation (Schulter, 2002). 

 

5.4.2. Conceptual Designs 

Three conceptual designs were analyzed. The three ventilation designs are: 

• One inlet and one outlet fans with no vents (Type A). 

• Two outlet fans with no vents (Type B). 

• Two top outlet fans with honeycomb vents (Type C). 

 

The fans’ position of the Type A and Type B are the same apart from having one inlet 

and one outlet fan or two outlet fans. The Type C design has a chimney effect style 

flow.  Figure 5.11 illustrates the three ventilation designs. 
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(a) One inlet and one outlet fans with no vents (Type A) 

 

 

 

 

 

 

 

 

 

 

 

(b) Two outlet fans with no vents (Type B) 
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(c) Two top outlet fans with honeycomb vents (Type C) 

Fig. 5.11 Three ventilation design of the electrical cabinet 

 

5.4.3. Analysis and Results of the Conceptual Designs 

Through the thermal analyses, the fluid temperature, solid temperature and hot spots 

within the three designs were identified.  The hot spots are identified to be at the back 

position of the cabinet. Here all the motor amplifiers are mounted. These amplifiers 

generate the most heat compared to the other equipment. In the analyses, the emphasize 

is to find the best cooling solution especially for the back plate where the amplifiers are 

located. Table 5.2 illustrates the results from the thermal analyses: 

 

Table 5.2 Thermal analysis results 

Design Fluid 
temperature/Celsius 

Solid Temperature 
(Back)/Celsius 

Solid Temperature 
(Other)/Celsius 

min avg max min avg max min avg max 

(A) 30.11 35.88 39.56 32.15 36.77 39.67 29.52 31.06 33.89 

(B) 43.56 49.84 52.81 43.56 49.84 52.81 34.39 40.03 42.91 

(C) 28.07 28.79 30.18 23.942 24.33 25.85 23.77 24.18 24.85 

 

The implemented cooling design was selected based on the lowest temperature for solid 

and air, good air flow and cost. From the analyses, it was found that Type C has the best 

cooling design but due to fabrication cost, this design could not be implemented. This 
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indicates that Type A design will be the next best viable option.  Figure 5.12 shows the 

fluid flow with temperature and equipment temperature for the Type A design. 

 

 

 

 

 

 

 

 

 

 

(a) Solid or equipment temperature 

 

 

 

 

 

 

 

 

 

 

 

(b) Fluid flow with temperature 

Fig. 5.12 Thermal analysis results of design Type A 

 

Validation of the simulated results for Design A was conducted using a digital 

thermometer. The digital thermometer was placed inside the cabinet and the temperature 

measured was between 33 ºC to 36 ºC. This coincides with the value obtained from 

simulation. 
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5.5. Summary  

This chapter has discussed the development and design of control cabinet from the 

EMC and thermal management viewpoint. The biggest design constraint for this 

particular cabinet was the size of the cabinet. 

 

From the EMC management point of view, the machine tool did not interfere with other 

operating equipment in the vicinity. This indicates that even though not all 

recommendations were follow accurately, the machine tool has observed the design 

outcome for good EMC management. The simulated results showed the Perspex cover 

used for the cabinet has decreased the shielding effectiveness. 

 

With the aid of a CFD package, the best cooling option was determined. Thermal 

analyses could be done accurately in a short time. Although, the best cooling design 

(with honeycomb vents) option was not selected, the implemented cooling design is 

sufficient to maintain the machine performance. 
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Chapter 6 

 

Tuning Strategies for the Direct Drives 

 

 

6.1. Introduction 

In this chapter, the methods of tuning the direct drives will be elaborated. The direct 

drives that are implemented in the Ultra-Mill are DC brushless motors with air bearings. 

With aerostatic bearings, these axes are frictionless which would not result in any wear 

and tear during motion. For the Ultra-Mill, all electromechanical drive systems for each 

axis are the same. The only differences in the axis are the type of the motors, for 

example linear or rotary motor, motor electrical characteristics and the load (mass) each 

motor is accommodating. Figure 6.1 shows the simplified drive system loop that is 

applied to all the axes. 

 

Proper tuning of the axes ensures high stiffness and excellent disturbance rejection 

capabilities. Achieving robust, fast and accurate linear motions also depends on the 

control system involving both hardware and software. Taking stiffness as an example, 

achieving high stiffness depends on the motor peak force, current available and the 

feedback resolution in the hardware section. From the software point of view, it depends 

on the tuning parameters of the servo control algorithms. The aim is high servo stiffness 

and excellent disturbance rejection capabilities, the axes that hold the cutting tool and 

workpiece should have minimal positioning error or no deflection of workpiece and 

cutting tool during engagement. 

 

As stated in (Smith, 2008), the term servo lag is the difference between actual and 

commanded position. By tuning the motor adequately, the following error is minimized, 

motor stiffness is increased and directly decreases the servo lag. In multi-axis machine, 

individual axis error will contribute to the overall machining contouring error and 

volumetric errors. By ensuring the minimum following error of each individual axis, the 

contouring and volumetric errors of the machined parts will be therefore reduced and 

better surface finish obtained.  
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6.2. Electromechanical Modelling 

 

 

 

 

 

 

Fig. 6.1 Servo loop of the electromechanical system 

 

The UMAC controller implements a Proportional-Integral-Derivative (PID) plus 

Feedforward with notch filters servo algorithms for all axes. These axes have a closed 

loop structure apart from the high speed spindle. Figure 6.2 elaborates the servo 

algorithms structure and equation 6.1 explains the mathematics of the servo algorithms. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.2 UMAC servo algorithms (Delta Tau, 2008f) 

    

 

 

 

 

 

            

 

CMDout(n) = 2ˉ¹⁹   * Ixx30 * [{Ixx08 * [FE(n)+(Ixx32*CV(n)+Ixx35*CA(n))/128    
              + Ixx33 * IE (n)/2²³]} – Ixx31 * Ixx09 * AV (n)/128]                             (6-1) 
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From the equation 6-1, the definition of the constants are listed below (Delta Tau, 

2008f): 

CMDout(n) is the 16-bit output command in servo cycle n. 

Ixx30 is the proportional gain value motor xx. 

Ixx08 is an internal position scaling term for motor xx. 

FE(n) is the following error in counts in servo cycle n, which is the difference 

between the commanded position and actual position for the cycle. 

Ixx32 is the derivative gain value for motor xx. 

CV(n) is the commanded velocity in servo cycle n. 

Ixx35 is the acceleration feedforward gain value for motor xx. 

CA(n) is the commanded acceleration in servo cycle n. 

Ixx33 is the integral gain value for motor xx. 

IE(n) is the integrated following error in servo cycle n. 

Ixx31 is the velocity feedforward gain value for motor xx. 

Ixx09 is an internal position scaling term for motor xx. 

AV(n) is the actual velocity in servo cycle n. 

 

 

 

 

 

 

 

 

 

Figure 6.3: UMAC digital current loop [ ] 

Fig. 6.3 UMAC digital current loop structure (Delta Tau, 2008f) 

 

This would indicate that the electromechanical drive systems would have the identical 

mathematical model structure for system identification. In the case of Ultra-Mill, all 

linear axes have the same electrical characteristics apart from the load they are driving 

and the two rotary axes have different electrical characteristics.  
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6.2.1. Mathematical Modelling 

As mentioned in Chapter 3, the direct drive systems are equipped with aerostatic 

bearings. By adopting the aerostatic bearings with direct drive system technologies, the 

electromechanical system has very low or no damping at all (Schmidt, 1997; Schmidt et 

al, 1999) and is friction free. For the mathematical model, the electromechanical system 

is modelled as a lump of mass. As mentioned in (Slocum, 1992), aerostatic bearings 

have absolutely zero static friction and dynamic friction forces are negligible at low 

speeds (less than 2 m/s). 

 

With the absence of mechanical transmissions, the disturbance (i.e. friction forces, 

cutting forces, etc.)  affects immediately the electromechanical system. For the Ultra-

Mill, there are no friction forces acting on the moving parts apart from cutting forces. 

The primary equation of motion for the drive systems is: 

 

 

 

AmpK , MI , TF , M, v , B, υ and dF  represent amplifier gain, current, motor force, mass, 

acceleration, friction coefficient, feedrate and disturbance force. The motor force is a 

product of the motor force constant (N/A) and motor current (Arms). Since B = 0, the 

equation becomes: 

 

                                                               T dF Mv F= +                                                           

 

For DC brushless rotary motor with air bearings provided the term M for mass is 

changed with J which represents the total inertia. Now the equation should be: 

 

dT J B Fω ω= + +  

 

T, J, ω , B, ω and dF  represent motor torque, total inertia, acceleration, friction 

coefficient, feedrate and disturbance force. The motor torque is a product of the motor 

force constant (N/A) and motor current (Arms). Since B = 0, the equation becomes: 

 

dT J Fω= +  

(6-2) 

(6-3) 

(6-4) 

(6-5) 

Amp M T dK I F Mv Bv F= = + +

(6-2) 
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Figure 6.4 illustrates the mathematical model of servo loop of the direct drive system. 

This is derived from Figure 6.2 and 6.3. 

 

 

 

 

 

 

 

 

Fig. 6.4 Mathematical model of the servo loop 

 

From Figure 6.4, transfer functions with feedforward controller and without 

feedforward controller could be derived. The feedforward controller consists of the 

velocity feedforward and acceleration feedforward controllers. 

 

(a) Mathematical transfer functions with feedforward controller. 

Let Kvff s + Kaff (s)s = GFF (s) 
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(b) Mathematical transfer functions without feedforward controller. 
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(6-8) 

(6-9) 

(6-6) 

(6-7) 
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GFF, Kp, Ki, Kd, Kvff, Kaff, KAmp, KF, CMDOut, IAmp, FT, Fd, M, and E(s) represent gains 

for feedforward, proportional, integral, derivative, velocity feedforward, acceleration 

feedforward, amplifier, motor force constant, controller command output, amplifier 

current, thrust force, disturbance force, mass of moving part and feedback. Equation 6.7 

and 6.9 represents the servo stiffness. 

 

6.2.2. Electromechanical Modelling in Matlab/Simulink 

The mathematical model that was derived from the previous sections is now converted 

into Matlab/Simulink in the form of block diagrams for simulation purposes. The 

simulation is used to assess how the servo loop performs. 

 

The model uses discrete Z-transformation with the sampling period equal to the real 

servo interrupt frequency.  

 

Figure 6.5 illustrates the electromechanical drive system servo loop modelled in 

Matlab’s Simulink environment. 

 

In Figure 6.6, “PID Discrete” block represents the controller which contains the PID 

plus feedforward structure. The “Plant” block represents the electromechanical drive 

system including the current loop in described in Figure 6.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 6. Tuning Strategies for the Direct Drives 
 

96 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fi
g.

 6
.5

 S
im

pl
ifi

ed
 m

od
el

 o
f t

he
 e

le
ct

ro
m

ec
ha

ni
ca

l d
riv

e 
sy

st
em

 in
 S

im
ul

in
k 

en
vi

ro
nm

en
t 

 

 



Chapter 6. Tuning Strategies for the Direct Drives 
 

97 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fi
g.

 6
.6

 M
od

el
 o

f t
he

 c
ur

re
nt

 lo
op

 a
nd

 th
e 

el
ec

tro
m

ec
ha

ni
ca

l d
riv

e 
sy

st
em

 

  



Chapter 6. Tuning Strategies for the Direct Drives 
 

98 
 

6.3. Tuning Procedures 

There are steps in tuning the UMAC’s PID plus feedforward servo algorithms. Most 

controllers used in machine tools currently have an auto-tuning function.  Most 

engineers would utilize the auto-tuning utility initially. Auto-tuning is frequently seen as 

a means to formulate servo tuning more scientific and repeatable but in the real world, 

this is hardly ever the situation. The automatic tuning utility does not provide the best 

tuning parameters but it provides the starting parameters. To obtain the best parameters, 

manually tuning the servo algorithms is needed but this is time consuming. Figure 6.7 

illustrates the tuning procedures. During the tuning procedures, for the step response, 

the key parameters observed are rise time, overshoot and settling time and for the 

parabolic response, the key parameter of concerned is the maximum following error.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.7 Tuning steps 

 

 

Adjust Kd 
• minimize overshoot (rise time will increase) 
• observe response plot 

 

 

Begin step response 
• observe response plot 

 

 Adjust Kp 
• to attain fastest rise time 
• observe response plot 

  

 

Set Kvff equal to Kd 

 

Begin parabolic response 
• observe response plot 

 

 

Adjust Ki 
• to eliminate steady-state error 
• observe response plot 

  

 

Adjust Kaff 
• To reduce following error further 
• observe response plot 

  

 End 

Adjust Kvff 
• To reduce the following error 
• observe response plot 
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In the step response tuning, the variables Kp, Ki and Kd are tuned so as to achieving 

fastest response time, minimal overshoot and eliminating steady-state error. Decreasing 

the overshoot will result in rise in response time. Once the Kp and Kd parameters are 

fixed, the dynamic response of the system has been taken care of. By adjusting the Ki 

will make the system more responsive but overshoot will reappear but the dynamic 

response will not be disturbed. 

 

In the parabolic response tuning, the variables Kvff and Kaff are tuned so as to 

minimizing the following error the correlation between the velocity and acceleration. If 

the velocity correlation is minimized, the acceleration correlation will increase. If the 

acceleration correlation is minimized, the velocity correlation will increase. Even 

though this happens, the following error will still be small. 

 

6.4.  PID Tuning 

In the tuning sections, discussion will concentrate on the tuning of the linear axis. The 

tuning method is the same for all five axes and therefore this discussion will be based on 

tuning for just one direct drive system. The tuning principles and aims of the tuning are 

identical for all five axes. 

 

Firstly, tuning with a step move will be done using the model in the Simulink 

environment shown in the earlier sections. In this section, tuning of PID algorithm will 

be elaborated. 

 

Here the P, I and D tuning parameters are involved. The best combinations of these 

parameters are selected based on rise time, overshoot, settling time, etc. from the 

response of the step move input for the axis. From the step move input, tuning the P, I 

and D parameters so as to the axis is sensitive, high disturbance rejection, non-sluggish, 

low tracking error etc. in terms of motion and positioning performance.  

 

After the step move, parabolic move was used to observe the tracking error of the axis. 

When undergoing parabolic move test, if the tracking error is still unacceptable, the 

tuning process must be repeated until good motion and position performance is 

achieved. 
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6.4.1. Performance Evaluation 

Based on the tuned parameters, the best combination of parameters was selected based 

on the tracking error performance. The smaller the following error (FE), the stiffer the 

axis is and hence provides excellent disturbance rejection abilities. 

 

Table 6.1 Performance with parabolic move 

P gain I gain D gain Max. FE/counts Max. FE/um 
26258 16380 20958 93.4707 14.60479688 
50000 20000 30000 109.9496 17.179625 
60000 50000 20000 36.2467 5.663546875 
60000 100000 20000 21.929 3.42640625 
100000 100000 6000 7.7207 1.206359375 
200000 100000 5000 5.2227 0.816046875 
300000 100000 4000 4.8184 0.752875 
300000 100000 6000 4.9691 0.776421875 
400000 100000 4000 4.1445 0.647578125 
500000 100000 3000 error #VALUE! 

 

 

From Table 6.1, the blue region contains the gains that were obtained from autotuning. 

The yellow region indicates the best tuning gains accepted. The red region shows where 

the instability of the motor occurs. Figure 6.8 and Figure 6.9 illustrate the following 

error from autotuning and the accepted tuning gains. 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Step move 
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(b) Parabolic move 

 

Fig. 6.8 Following error from autotuning gains 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Step move 

 

 

 

 

 

 

 

 

 

 
 

  



Chapter 6. Tuning Strategies for the Direct Drives 
 

102 
 

 

 

 

 

 

 

 

 

 

 

 

(b) Parabolic move 

Fig. 6.9 Following error from accepted tuning gains 

 

6.5. PID plus Feedforward  Tuning   

Secondly, tuning with a step move will be done using the model in the Simulink 

environment shown in the earlier sections. In this section, tuning of PID plus 

feedforward algorithm will be elaborated. 

 

Here the P, I, D, Vff and Aff tuning parameters are of concerned. The best combinations 

of these parameters are selected based on rise time, overshoot, settling time, etc. from 

the response of the step move input for the axis. From the step move input, the tuning 

purpose is exactly the same with tuning the P, I and D parameters. The feedforward 

parameters will help to decrease the tracking error of the axis.  

 

After the step move, parabolic move was used to observe the tracking error of the axis. 

When undergoing parabolic move test, if the tracking error is still unacceptable, the 

tuning process must be repeated until good motion and position performance is 

achieved. 

 

6.5.1. Performance Evaluation 

Based on the tuned parameters, the best combination of parameters was selected based 

on the tracking error performance. The smaller the following error, the stiffer the axis is 

and hence provides excellent disturbance rejection abilities.  
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Table 6.2 Performance with parabolic move 

P gain I gain D gain Vff gain Aff gain Max. FE/counts Max. FE/um 
30000 100000 6000 1000 10000 4.4141 0.689703125 
30000 100000 6000 2000 20000 4.2191 0.659234375 
30000 100000 6000 3000 30000 3.9105 0.611015625 
30000 100000 6000 4000 40000 3.8652 0.6039375 
30000 100000 6000 5000 50000 3.8079 0.594984375 
30000 100000 6000 6000 60000 3.5215 0.550234375 
30000 100000 6000 500 5000 4.7936 0.749 
30000 100000 6000 700 7000 4.5941 0.717828125 
30000 100000 6000 800 8000 4.4105 0.689140625 
30000 100000 6000 900 9000 4.2344 0.661625 

 

Table 6.2 shows the tuning gains used to evaluate the motor performance. The gains in 

the yellow region are implemented in the motor based on the smallest following error 

obtained. Figure 6.10 illustrates following error from the implemented tuning gains. 

 

 

 

 

 

 

 

 

 

 

(a) Step Move 

 

 

 

 

 

 

 

 

 

 

 



Chapter 6. Tuning Strategies for the Direct Drives 
 

104 
 

 

 

 

 

 

 

 

 

 

 

. 

(b) Parabolic move 

Fig. 6.10 Following error from the implemented tuning gains 

 

6.6. Proposed Tuning Method  

In this section, a fast method of servo tuning is discussed. The proposed tuning method 

uses Matlab’s Simulink Design Optimization which includes the Parameter Estimation 

and Response Optimization toolboxes. 

 

Firstly the Parameter Estimation toolbox will be used to aid estimate any unknown 

model parameters. Unknown parameters are estimated using measured data from real 

setup and data generated by the Simulink model itself.  This toolbox is able to 

approximate model parameters or initial conditions of any single or multiple models 

using transient data (Matlab, 2009a). 

 

Secondly, Parameter Optimization toolbox will be employed to help obtained best 

parameters based on the constraint set on the desired responses. This toolbox optimizes 

parameters for a time domain design characteristics (i.e. step response behaviour, lower 

or upper bound signals, reference signal, etc.) (Matlab, 2009a). Here the toolbox 

formulates the time-domain characteristics as constrained optimization problems. In the 

optimization process, the toolbox simulates the simulink model and compares the 

simulated data with constrained objectives. 
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6.6.1. Modeling Optimization  

In order to get the modeling as accurate as possible, the Parameter Estimation tool was 

firstly used. The model of the controller is assumed as accurate as the model was 

constructed based on the mathematical equation representing the controller (Delta Tau, 

2008f). For the plant, we could not assume the model is accurate as there are some 

modelling uncertainties 

 

Enhancing the accuracy of the plant model, data were collected by running a couple of 

tuning procedures on the physical setup. Step move and parabolic move were conducted 

on the actual system and the data from the move were acquired. A flow chart of the 

optimization procedures is shown in Figure. 6.11.   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the system identification stage, the plant is treated as a grey box. The grey box 

(includes the current loop and the electromechanical drive system) consists of the plant 

transfer function with unknown constants which would be identified using the 

Parameter Estimation tool.  The collected data are the input and output signals of the 

plant. These data would help to identify the parameters within the plant transfer 

function. These unknown constants that would be obtained using the Parameter 

Fig. 6.11 Optimization flowchart 
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Estimation tool must match each other for the step and parabolic moves input into the 

plant. Figure 6.12 illustrates the procedure in identifying the unknown constants. 

Identification of the plant constants is essential. Once the plant constants are known, the 

next stage would be tuning the controller. 
 

 

 

 

 

 

 

 

 

 

 

Fig. 6.12 The identification process for unknown plant constants 

 

6.6.2. Controller Tuning using Parameter Optimization Toolbox 

The controller is tuned using the Signal Constraint block under Simulink’s Parameter 

Optimization toolbox. As stated in section 6.6, the signal constraint module helps to 

identify the parameters within the controller based on the design requirements i.e. rise 

time and overshoot, etc.  The signal function used to tune these parameters is the step 

input function. Figure 6.13 illustrates the controller tuning using the Signal Constraint 

block. 
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The Signal Constraint block or Parameter Optimization toolbox have different 

optimizing algorithms to tune the parameters based on the constraint set. Various 

algorithms have been tested to optimize the tuned parameters and genetic algorithm 

(GA) has been chosen as best results have been achieved compared to the other 

algorithms. Another important point in this optimization part is the number of iterations.  

The bigger the iteration, the better tuned parameters will be obtained. The acceptable 

PID plus feedfoward parameters must not exceed the permitted values limited by the 

controller of the actual physical system. 

 

The PID with the feed forward parameters is tuned to achieve the smallest possible 

following error. As stated in (Smith, 2008), the term servo lag is the difference between 

actual and commanded position. By tuning the motor adequately, the following error is 

minimized, motor stiffness is increased and directly decreases the servo lag. In multi-

axis machine, individual axis error will contribute to the overall machining contouring 

error and volumetric errors. By ensuring the minimum following error of each 

individual axis, the contouring and volumetric errors of the machining will be therefore 

reduced and better surface finish obtained.  

 

6.6.3. Performance Assessments 

Experiments of the proposed method are conducted on linear axis of 3-axis diamond 

turning machine as shown in Figure 6.14. The linear axis is identical to that of the linear 

axes of Ultra-Mill, DC brushless with air bearings. During the cutting experiments, face 

cutting of aluminium component is carried out through well-designed cutting protocols. 

As part of the assessment protocol, three cutting trial (face cutting) were conducted. 

Three face cutting experiments conducted: 

• Cutting Trial 1: Parameters obtained from the auto-tuning function of the 

controller. 

• Cutting Trial 2: Parameters obtained by manually tuning the controller after 

using the auto-tuning function. 

• Cutting Trial 3: Parameters obtained using the proposed method. 
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Fig. 6.14 3-axis diamond turning machine 

 

The reasons why the performance assessments were conducted on the 3-axis diamond 

turning machine are: 

• 3-axis diamond turning was setup as a testbed to understand the subsystems. 

• This testbed was completed well before the Ultra-Mill. 

• Linear axes used in 3-axis diamond turning machine are identical to that of 

linear axes of Ultra-Mill apart for the load each slide is accommodating. 

 

For these three cutting experiments, all the machining conditions are the same with the 

depth of cut, feed rate and spindle speed being 5 µm, 10 µm/rev and 3,000 rpm except 

for the parameters applied in the PID with feed-forward algorithms.  

 

For assessments of the selected tuning parameters, a 50 nm and 100 nm step move was 

conducted to observe the following errors. Figure 6.15 illustrates the step moves. 
 

 

 

  
(a) The 3-axis diamond turning 

machine developed at Brunel 

 

(b) Illustration of the linear motor 

direct drives on the machine. 
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(a) 50 nm step move 

 

 

 

 

 

 

 

(b) 100 nm step move 

Fig. 6.15 Step move of 50 nm and 100 nm 

 

In Figure 6.15, red signal represents actual position, green signal represents commanded 

position and blue signal represents following error. The green signal is not really visible 

in the graph due to the small deviation between the actual and commanded position. 

From these step moves, the following error obtained is ±15.625 nm.  

 

6.6.4. Surface Roughness Machined 

Figure 6.16 shows the surface roughness on the three face-turned components, 

measured by using a Zygo 3D Surface Profiler. The measured surface roughnesses on 

the three components are 15 nm, 9 nm and 6 nm Ra respectively.  The lowest surface 

roughness (6 nm Ra) obtained is through using the proposed tuning method. The 15 nm 

Ra and 9 nm Ra surface roughness is achieved using parameters obtained by auto-

tuning method only and manually tuning the controller after using the auto-tuning 

function. 
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Fig. 6.16 Component surface roughness measured by a Zygo 3D Surface Profiler 
 
 
6.7. Summary 
 
This chapter has described the requirements of adequate servo loop tuning. The 

performance of the servo loop tuning is reflected directly in the accuracies and surface 

finishes of workpieces. As mentioned earlier, servo tuning is a time consuming process 

even for the experts. 

 

This chapter has also showed the possibilities of making the servo tuning task slightly 

simpler and faster using a Computer Aided Control Engineering tool such as Matlab. In 

adopting this method, the hope of obtaining the best tuning parameters that are relevant 

and useable in the actual physical system lies in how well the electromechanical system  

is modelled. 

 

This proposed method was validated via well structured experimental setup. The results 

  

(a) 15 nm Ra 

  

(b) 9 nm Ra 

(c) 6 nm Ra 
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obtained were encouraging. Even though the experiments were conducted on the 3-axis 

diamond turning machine, as mentioned earlier, all the slide systems are identical to that 

of the Ultra-Mill and therefore this method is directly applicable to it. 

 

Although there might be some overshoot in the system, this does not mean the system is 

inadequate or unstable. In reality, some overshoot does exist in systems and at times 

making it more stable and more responsive.  
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Chapter 7 

 

Control for Microhandling and Tool Condition Monitoring 

 

 

7.1. Introduction 

This chapter will discuss further the design and implementation of the two topics, 

microhandling and tool condition monitoring systems. The first discussion in this 

chapter is on microhandling and the second discussion will be on tool conditioning 

monitoring systems. Ultra-Mill machines miniature parts or components using 

microtools. These tools have diameters less than 1 mm. In a typical machine tool, there 

is an automatic tool changing (ATC) system and the tools are inserted into a toolholder. 

This enables the tool changing process to be done automatically and fast. 

 

Ultra-Mill does not have a tool changing system and the tool is directly inserted into the 

high spindle collet system manually. The tool changing system was not included in 

design specification of the machine. To assist with tool changing, the decision of 

implementing a SCARA robot was taken. The SCARA robot is needed to load and 

unload cutting tools and workpieces to the machine tool. A tool magazine is placed 

outside the machine guard. 

 

Furthermore the SCARA robot is utilized for loading and unloading of workpieces in 

the machining envelope to and from the workpiece magazine which is also located. 

Handling miniature components or parts by hand is strictly avoided as this could 

damage the machined parts. The SCARA robot is able to maintain constant gripping 

forces throughout the process of loading and unloading. 

 

Tool condition monitoring (TCM) system is very important to assure the quality of parts 

produced. The tool condition monitoring system tracks the tool wear and tool failure or 

breakage. The monitoring of tool wear or tool breakage could reduce the cost of 

machining parts with bad surface finish or the time spent continuing air cutting when the 

tool is already broken. The tools used on Ultra-Mill are not easily inspected or judged 

with the naked eye. When using coolant in machining, it makes it even more difficult 

for the operator to detect tool breakage. 
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There are two kinds, online and offline, of tool monitoring systems. In this thesis, 

monitoring the tool using a non-contact tool setting and detection system is categorized 

as an offline method. Even though the tool checking sequence is included in the NC 

program, the checking of the tool is done away from machining process while the tool 

and the workpiece are not in contact. The online method is more preferable. This 

enables the system to monitor for tool wear or tool breakage continuously during 

machining. The differences will be discussed in depth later in this chapter. Comparison 

tests were conducted to evaluate the best implementation solution. 

 

7.2. Microhandling System 

The microhandling system was designed by Carinthian Tech Research AG (CTR) from 

Austria and the system was implemented by Brunel on the Ultra-Mill with the help of 

Carinthian Tech Research AG (CTR) from Austria. This company was a partner in the 

Masmicro research project in developing the Ultra-Mill. The microhandling system 

consists of a SCARA robot from EPSON. The task of the robotic arm is to load and 

unload the tools and workpieces to and from the Ultra-Mill. 

 

Microhandling system using a robotic arm is normally categorized as a flexible 

manufacturing system (FMS). Industries implement robot handling systems mainly in 

production lines of large factory shopfloor (i.e. pharmaceutical, food, etc.).  

 

This section will discuss the design and implementation of the robotic arm as the 

handling system of the Ultra-Mill. The robotic arm and Ultra-Mill merged into one 

system. Figure 7.1 shows the handling system mounted on the Ultra-Mill 

 

 

 

 

 

 

 

 

 

Fig. 7.1 Handling system mounted on Ultra-Mill 
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7.2.1. Microhandling System Description  

The handling system comes with an independent control system. The customization of 

the robot control system is done with help of CTR. The handling system itself comes 

with two robot systems. The first robot system is the Epson SCARA robot and the 

second is the minirobot fitted with a microgripper and a vision system. These two robots 

make the handling system. 

 

The Epson robot could also work independently of the minirobot. The end effector of 

the Epson robot could be its own macrogripper or the minirobot with the microgripper 

as shown in Figure 7.2. The selection of the end effector is dependent on the size of 

tools or workpieces. The Ultra-Mill uses small tools which are less than 1 mm in 

diameter with 3 mm shank diameter. 

 

 

 

 

 

 

 

 

 

                     (a) Macro gripper                                 (b) Minirobot with microgripper 

Fig. 7.2 Two different end effectors 

 

For loading and unloading of tools with 3 mm shank diameter, the handling system will 

use only the Epson robot with the macrogripper. In this operation, the visions system is 

not required.  Workpieces with dimensions smaller than 3 mm are transported between 

the Ultra-Mill and workpiece pallet using the Epson robot equipped with the minirobot. 

  

Working with minirobot, a visions system is needed to allow the handling system to 

know the location of the workpieces. This is required so as to ensure the minirobot grips 

the workpiece correctly relative to workpiece central point.  
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7.2.2. Communication and Control Protocol 

In this section the communication protocol between the handling system and Ultra-Mill 

is discussed. As mentioned earlier, the handling system and the Ultra-Mill have 

independent control system. For ensuring good performance characteristics, these two 

control systems must merge to become one. Both control systems are PC-based control 

system. 

 

7.2.2.1. Communication Protocol 

The communication connection between the handling system and Ultra-Mill is done via 

the Ethernet connection. Using the Ethernet connection, a static internet protocol (IP) 

address will be set up on both systems. This means that one of these systems would be a 

server and the other would be a client. 

 

The selection as to which control system should be the server or client is based on two 

reasons. The first step is deciding which control system is the primary system. The 

second is establishing which control system controls the other. The Ultra-Mill control 

system is considered to be the primary control system which in turn is the client system. 

This is because the operation or activity of the handling system is dictated by Ultra-Mill. 

Therefore upon powering on the system, the handling system will be in a listening 

mode. The handling system will wait for Ultra-Mill to establish the communication. 

 

The client and server program was programmed using the function libraries in Visual 

Basic. Both control systems use Visual Basic as a means for customization. Figure 7.3 

illustrates the communication protocol between the handling system and Ultra-Mill. 
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              Fig. 7.3 Communication protocol between handling system and Ultra-Mill 

 

7.2.2.2. Control Protocol 

A synchronized control protocol between the handling system and Ultra-Mill must be 

designed and established so as the entire system is free from errors. Errors in the control 

protocol will most likely damage one or more physical elements of the entire system 

(i.e. collision between the handling system with the machine guard, spindle collet 

system, etc.) during the loading and unloading tasks. 

 

Ensuring no errors occur during loading and unloading tasks, a thorough design of the 

protocol must be done. Here the protocols are designed by establishing the precedence 

order of the motion. To keep things simple, there should not be more that two 

movements occurring at one time. For example, the Ultra-Mill axes should already be in 

paused mode and ready in position waiting for the task of the handling system. In order 

to ensure safest working environment, acknowledgements are sent between the handling 

system and Ultra-Mill upon complementing a task. Before proceeding to the next task, 

acknowledgements must be sent and accepted between the two systems. Table 7.1 

below shows the tasks which require acknowledgements. The tasks of the robot are also 

displayed as part of the HMI of the Ultra-Mill as described in Figure 7.4. 
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Fig. 7.4 Displayed handling system tasks on the HMI 
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Table 7.1 List of tasks and acknowledgments  

Task Acknowledgements 

Robot initialized 0 
Robot received the command “Load work-
piece” 

1.0 

Tweezers is in Position for “Load work-
piece” 

1.1 

Robot received “Vacuum ON for Load 
work-piece” 

1.2 

Robot finished the “Load work-piece” 
process 

1.3 

Robot receive thed command "Remove 
work-piece" 

2.0 

Tweezers is in Position and Griped for 
“Remove work-piece” 

2.1 

Robot received “Vacuum OFF for 
Remove work-piece” 

2.2 

Robot finished the "Remove work-piece" 
process 

2.3 

Robot received the command "Load 
cutting tool" 

3.0 

Tweezers is in Position for “Load cutting 
tool” 

3.1 

Robot received “Vacuum ON for Load 
cutting tool” 

3.2 

Robot finished the "Load cutting tool" 
process 

3.3 

Robot receive the command "Remove 
cutting tool" 

4.0 

Tweezers is in Position and Griped for 
“Remove cutting tool” 

4.1 

Robot received “Vacuum OFF for 
Remove cutting tool” 

4.2 

Robot finished the "Remove cutting tool" 
process 

4.3 

Reference Position not found 20 
Tweezers not found 30 
Work-piece on tweezers not found 40 
Work-piece Reference Position not found 50 
Work-piece not found 60 
 

The flowchart shown in Figure 7.5 illustrates the operation protocol between the 

handling system and Ultra-Mill. 

 

To maximize the usage of these protocols in a production situation, the protocols 

involving loading and unloading is written as M-codes in the form of PLC programs. As 
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an example, for a proper manufacturing cycle of at least two job cycles without 

operator’s intervention, full automatic sequences must be implemented. These protocols 

would be a part of the NC program. 

 

The NC program example for machining process will have this structure: 

1. M-codes to open machine guard, load workpiece and close machine guard 

2. Run NC part program 

3. M-codes to open machine guard and unload workpiece 

4. M-codes to load workpiece 

5. M-codes to close machine guard  

6. Run NC part program 

7. M-codes to open machine guard and unload workpiece 

 

The NC program structure above is just an example for two jobs or cycles. For more 

jobs, the NC program will be running in loops. In the NC program example above, 

loading and unloading of tool is not considered. The loading and unloading tool protocol 

is implemented as M-codes, similar to loading and unloading of workpieces. 
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Fig. 7.5 Operation protocol between handling system and Ultra-Mill 

 

7.2.3. Sub-system Performance Evaluation 

The performance evaluation of the handling system is qualitatively evaluated. The 

performance is rated through how well the operational protocol functions and number of 

errors that happen. While assessing the protocol, some problems did occur which almost 

resulted in collision on the robotic arm with the machine guard. This problem was 

however rectified and further testing displayed no possible collision would occur. 

 

Test runs using NC programs with the M-codes corresponding to handling system tasks 

were conducted to evaluate the success of the implementation. Machining cycles were 

conducted and the loading and unloading of workpieces was according to operation 
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protocol. It is therefore safe to conclude that the synchronization between the two 

control systems was designed and implemented accurately. 

 

7.3. Tool Condition Monitoring System 

The tool condition monitoring (TCM) system design was initially the task of Patras 

University from Greece who was another Masmicro group partner. During the course of 

the Masmicro project, Patras University did not successfully design and implement an 

overall functional tool condition monitoring (TCM) system that is suitable for Ultra-

Mill. 

 

The initial proposed tool condition monitoring method was using the acoustic emission 

(AE) method. Acoustic emission is a naturally occurring phenomenon whereby external 

stimuli generate sources of waves when a small surface displacement of a material is 

removed. The waves are produced when there is a rapid release of energy (Wikipedia, 

2009b). Monitoring the tool using AE is an online method whereby the tool is 

monitored during the cutting process. 

 

Tests conducted by Patras University used only tools with 3 mm diameter. Tooling with 

diameter of less than 1 mm was never experimented. The system that Patras University 

proposed used an acoustic emission sensor mounted close to the tool and a data 

acquisition system using a PXI system from National Instruments (NI). 

 

Since Patras was unsuccessful to fulfil this requirement, the author decided to 

experiment two possible tool monitoring methods as solution for the Ultra-Mill. 

 

7.3.1. Assessed Tool Condition Monitoring Method for the Ultra-Mill 

Two tool condition monitoring methods were tested prior to implementation for the 

Ultra-Mill. The first method was using a 3-axis Dynamometer from Kistler and the 

second method was a non-contact laser-based tool system by Renishaw. These two 

methods must be able to detect these conditions as displayed in Figure 7.6. 
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Fig. 7.6 Tool monitoring system functions 

 

7.3.1.1. 3-Axis Dynamometer 

A 3-axis dynamometer is able to detect forces in tri-directional (X, Y, Z). The 

dynamometer has the capacity to identify small dynamic changes when acted by big 

forces. In the assessment stage, the MiniDyn 9256C by Kistler as illustrated in Figure 

7.7 was used to measure cutting forces for slot cutting. 

 

 

 

 

 

 

Fig. 7.7 Kistler’s MiniDyn 9256C 

 

The construction and operating principle of the dynamometer are explained in depth in 

(Kistler Minidyn 2008). The dynamometer is connected to a three channel charge 

amplifier which is then relayed to the PC for data acquisition. Dynoware by Kistler, was 

used to analyse data. As the function of the dynamometer is force detection, Figure 7.8 

illustrates the elements that influence the cutting forces during micro milling process.  
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7.3.1.1.1. Control Method using Dynamometer 

At this stage the TCM with dynamometer is itself a subsystem. This subsystem is 

required to detect tool failure, interpret the cutting forces on the fly and relay this 

information to the Ultra-Mill control system for decision making, therefore making this 

method an online method. The Ultra-Mill control system only accepts a high or low 

signal from this subsystem as inputs for the PLCs. Figure 7.9 shows the cutting force 

signal flow for fault detection and decision making. 
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Fig. 7.8 Cutting forces influences 
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Matlab’s Fuzzy Logic toolbox 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.9 Cutting force signal flow 
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Fig. 7.10 Fuzzy inference system (FIS) for tool monitoring system 

 

Figure 7.10 describes the fuzzy inference system (FIS) for the tool monitoring system. 

Inputs used are the three-direction cutting forces (Fxrms, Fyrms, Fzrms) and cutting 

parameters (spindle speed, feedrate and depth of cut) which are used as membership 

functions. Each function has its own level indicator (low, middle, high, etc.). For 

example spindle speed of 10,000 rpm is low, 50,000 rpm is middle and 100,000 rpm is 

high. The level of the inputs cannot be specifically determined in which have led to the 

use of fuzzy-logic toolbox. Fuzzy-logic is defined as it is all about the relative 

importance of precision which would lead to how important it is to be exactly right 

when a rough answer will be sufficient (Matlab, 2009b). 

 

Then a rule table must be constructed to obtain the output (tool condition) based on the 

input conditions. Figure 7.11 illustrates the rule-based table that was constructed. From 

experiments, 21 rules have been constructed based on inputs mentioned above. Tool 

condition which is the output has been categorized into three level (good, average, bad).  

Shown in Figure 7.11 is the rule table. 
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Fig. 7.11 Rule table 

 

Listed below are some examples of the rules: 

• If (Fx is low) and (Fy is low) and (Fz is low) and (F is low) and (S is low) and 
(DOC is low) then (TC is good) (1)  

• If (Fx is low) and (Fy is low) and (Fz is low) and (F is medium) and (S is 
medium) and (DOC is low) then (TC is good) (1)  

• If (Fx is medium) and (Fy is medium) and (Fz is medium) and (F is low) and (S 
is low) and (DOC is low) then (TC is ok) (1)  

• If (Fx is high) and (Fy is high) and (Fz is high) and (F is high) and (S is 
medium) and (DOC is low) then (TC is worn) (1)  

•  If (Fx is high) and (Fy is high) and (Fz is high) and (F is high) and (S is high) 
and (DOC is high) then (TC is worn) (1)  

 

Simulations were run to determine the effectiveness of the fuzzy-logic based model. 

Inputs from another set experiment were used as inputs (Fxrms, Fyrms, Fzrms, spindle speed, 

feedrate and depth of cut) and the output obtained did manage to provide the tool 

condition. 

 

In order to develop the tool failure detection and the ability to interpret cutting forces on 

the fly, many experiments must be done and a lot of signal processing tasks must be 

conducted using the data collected from the experiments. The signal processing and 

interpretation is done with aid of Matlab’s fuzzy logic toolbox. Signal processing using 

the experimental data and interpretation of behaviour associating cutting parameters and 
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cutting forces is required so as to understand when tool failure is achieved and to predict 

possible tool failure before actually failing.  

 

This subsystem development is limited only to fundamental design and has not fully 

achieved actual implementation for the Ultra-Mill as designing and researching of TCM 

is a different research on its own. 

 

7.3.1.1.2. Performance Assessments using Dynamometer 

As part of the performance assessment of the dynamometer, slot cutting experiments 

with aluminium and copper workpieces were conducted. In the experiments different 

combination of cutting parameters (i.e. feedrate, depth of cut, coolant on/off, spindle 

speed)  using ball end tungsten carbide tools with 200 µm diameter. 

 

The experiments were designed using DOE (Design on Experiments) with three cutting 

parameters have different levels.  The selected parameters are 70,000 rpm, 80,000 rpm 

and 90,000 rpm for spindle speed, 20 mm/min, 30 mm/min, and 40 mm/min for feedrate 

and 50 µm, 70 µm and 100 µm for depth of cut. Table 7.2 shows the cutting forces in X, 

Y and Z direction with respect to different cutting parameters. 
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Table 7.2 Cutting forces in X, Y and Z direction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results for other cutting experiments are in Appendix VІІ.  Figure 7.12 illustrates 

the magnitude of cutting forces against number of test run. Figure 7.13 describes the 

finishing of the slots. The cutting forces are dominant in the Y-direction as this was the 

cutting direction. 

 

 

 

 

  Factor 1 Factor 2 Factor 3       

Run Spindle speed Feedrate DOC Fx rms Fy rms Fz rms 
  rpm mm/min µm N N N 
1 70,000 20 50 0.03 0.39 0.08 
2 80,000 40 75 0.14 1.46 0.02 
3 90,000 20 50 0.12 1.39 0.04 
4 80,000 40 50 0.07 1.14 0.26 
5 70,000 30 100 0.1 1.07 0.1 
6 70,000 40 75 0.15 1.24 0.02 
7 90,000 40 50 0 0.41 0.1 
8 90,000 30 50 0.09 0.19 0.12 
9 80,000 40 100 0.17 0.36 0.07 

10 70,000 40 50 0.18 0.38 0.09 
11 80,000 20 50 0.06 1.1 0.16 
12 80,000 30 50 0.18 0.91 0 
13 80,000 30 75 0.06 0.19 0.03 
14 70,000 20 100 0.19 0.05 0.7 
15 90,000 20 100 0.14 0.78 0.02 
16 90,000 30 75 0.07 0.05 0.04 
17 90,000 30 100 0.26 0.34 0.09 
18 70,000 40 100 0.24 0.4 0.22 
19 70,000 30 75 0.17 0.14 0.03 
20 80,000 20 75 0.18 0.62 0.17 
21 90,000 40 75 0.2 1.22 0.07 
22 80,000 20 100 0.09 0.06 0.06 
23 80,000 30 100 0.23 0.37 0.09 
24 70,000 30 50 0.24 0.04 0.05 
25 70,000 20 75 0.04 0.01 0.03 
26 90,000 20 75 0.22 0.04 0.18 
27 90,000 40 100 0.22 0.13 0.18 
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(a) Fxrms, Fyrms and Fzrms for copper 

(b) Fxrms, Fyrms and Fzrms for copper 

(c) Fxrms, Fyrms and Fzrms for aluminum 

(d) Fxrms, Fyrms and Fzrms for aluminium without 
coolant 

Fig. 7.12 X, Y and Z cutting forces for copper and aluminium 
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(a) Completed 27 slots on copper 

 

 

 

 

 

 

 

(b) Incomplete, 21 slots only due to tool breakage on copper 

 

 

 

 

 

 

 

(c) Incomplete, 12 slots only due to tool breakage on aluminium without coolant 

Fig. 7.13 Slot finishing 

 

Figure 7.13 shows the finishes on the slots cut. Comparing Figure 7.13(a) and (b), the 

tool wear is clearly seen. For the experiment shown in Figure 7.13(b), the tool breakage 

was evident at slot 21. Whereas Figure 7.13(c) illustrates the finishes of the slot and the 

tool only completed 12 slots as this experiment was conducted without coolant. 

 

From these figures, it is clear that as the tool wears, the finish becomes worse and the 

tool eventually fails. Running a finger on the slots from the first to the last slot, the 

roughness of the slots could be felt increasingly as there exist many burrs. Use of 

coolant could prolong the tool life. 
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7.3.1.2. Non-Contact Laser-Based Tool System 

As mentioned earlier, the second method tested was using a non-contact laser-based tool 

system. The system used was the NC4+ (modular setup) by Renishaw. This system has 

a modular setup so as to accommodate the machine configurations. The NC4+ is able to 

provide fast tool setting and tool breakage detection. Using this system, the dimensions 

of the tool is the input. Figure 7.14 shows the NC4+ system and Table 7.3 describes the 

specifications of the system. Since the smallest tool diameter used on the Ultra-Mill at 

the moment is 200µm, the NC4+ is a suitable candidate for integration with the Ultra-

Mill. 

 

 

 

 

 

Fig. 7.14 NC4+ by Renishaw (Renishaw, 2009) 

 

The advantages of implementing this system are: 

• Detection of tools with minimum diameter of 0.03 mm. 

• Compact but modular system to suit machine tool with small machining 

envelope. 

• Accurate and precise tool length and diameter measurement and setup. 

• Controlled using standard M-code. 
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Table 7.3 NC4+ specifications (Renishaw 2009) 

Specification NC4 NC4+ 
Laser type Class 2, Visible red light < 1 mW 670 

nm 
Same 

Laser beam alignment Adjuster pack Optional mounting 
brackets 

Electrical connection Hard-wired cable on end of unit. Other 
options available on request. 

Hard-wired cable on 
underside of unit. 

Repeatability of trigger points 
(2 sigma) 

±1.0 µm at 1 m separation Same 

Minimum tool diameter for 
measurement 

Ø0.03 mm (0.001 in) or larger, 
depending on separation and set-up 

Ø0.3 mm at 0.5 m 
separation 

Ø1 mm at 5 m 
separation 

Minimum tool diameter for 
breakage detection 

Ø0.03 mm (0.001 in) or larger, 
depending on separation and set-up 

Ø0.1 mm at 0.5 m 
separation 

Ø0.3 mm at 5 m 
separation 

Air protection system Supply pressure greater than 3 bar. 
Air usage 8 litres / min. 

Same 

Power supply 120 mA @ 12 V, 70 mA @ 30 V Same 
Temperature limit Operating: +5 °C to + 50 °C 

Storage: -10 °C to + 70 °C 
Same 

Dimensions Refer to data sheet Ø30 mm x 35 mm long 
Separations available F300 - 225 mm air gap 

F230 - 170 mm air gap 
F115 - 55 mm air gap 
F95 - 23 mm air gap 

0.5 m to 0.8 m 
0.8 m to 1.5 m 
1.5 m to 2 m 
2 m to 3 m 
3 m to 5 m 

Other options available 
on request. 

Sealing IP X8 Same 
Mounting Single M10 / M12 fixing. 

Alternative fixing arrangement 
available. 

Fixing for M3 screws. 

Compatible interface NCi-5 NCi-5 
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NC4+ 
NCi-5 

UMAC 

7.3.1.2.1. Control Method using NC4+ 

 

 

 

 

 

 

Fig. 7.15 Signal flow using the NC4+ 

 

This section describes the control method for tool monitoring system using the NC4+. 

The status signal of the laser will be relayed to UMAC via the NCi-5 interface. This 

interface processes signals from theNC4+ and then convert the signals into a high or low 

signal (1 or 0). 

 

As mentioned earlier the non-contact tool setting system can determine the height and 

diameter of tools, cutting edge detection and tool breakage detection. All these are done 

by running the tool into the laser beam of the NC4+. Statuses will be determined by 

cutting or interruption in the laser direction. 

 

To ensure the tool could be detected by the laser, spindle speed and feederate are critical 

for detection. The spindle must be running and federate must low enough to for 

detection when the tool is moving through the laser beam. 

 

The tool measuring and fault detection are implemented via PLC programs. These 

macros are written to instruct the Ultra-Mill to follow the selected task. The macros 

appear as M-codes and are included within the NC program. These tool measuring and 

detection cycles are placed within the NC programs at carefully spaced intervals. It is 

not wise to run the these sequences too frequently as this would increase the machining 

time; on the other hand, running these sequences infrequently is problematic. The tool 

might have broken just after the last checking cycle and therefore wasting time until the 

next checking cycle is called. 

 

The PLC programs for the macros use the output signal from the NCi-5 interface as 

inputs to I/O board of the UMAC. The I/O board addresses are then used in the PLC 

 
 

 



Chapter 7. Control for Microhandling and Tool Condition Monitoring  
 

135 
 

programs for the macros of the M-codes. Some sections of the programming macros is 

described in Appendix VІІ. 

 

Once tool change is required, Ultra-Mill will then use the robotic arm for loading and 

unloading task as explained in the Section 7.2.2. 

 

7.3.1.2.2. Performance Assessments using Non-Contact System 

As part of the performance evaluation, qualitative testing of this subsystem is 

conducted. The test initially involves the detection of the tool using the laser system. 

From there, test for tool measuring and tool detection procedures are then tested. The 

tests conducted displayed the reliably of the laser beam in detecting the beam.  

 

Tests were conducted with the 200 µm tungsten carbide tool. At first, a few issues were 

noted. Detection was difficult and adjustments were made to the spindle speed and 

feedrate for the motion through the laser beam. Another difficulty was detecting the 

tooltip. The laser was cut by the tool neck not the tooltip. Cutting the laser with the 

tooltip will eventually give false measurements of the tool height and diameter. This 

could also lead to tool breakage not detected as the tool neck is there but tooltip might 

have broken or chipped off. 

 

After few trial and error steps, the balance for spindle speed and feedrate was eventually 

found and tooltip detection was possible. 

 

7.4. Summary 

Chapter 7 has described the development of two subsystems. Both subsystems are very 

critical to the Ultra-Mill as support systems. The advantages of each subsystem have 

been highlighted in the earlier sections of this chapter. 

 

As mentioned earlier, the robotic arm is required for tool loading and unloading 

purposes. This is used as a substitute for the ATC module. The subsystem functions 

really well in accommodating tool and workpiece loading and unloading. 

 

 The second subsystem that was discussed in this chapter was the TCM. TCM is 

required especially for micromachining machine tools. As the tools get smaller, the 
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more difficult it is to monitoring. Two sets of systems were tested, dynamometer and 

non-contact laser system, and evaluated. The dynamometer has advantages of 

monitoring the tool condition online and whereas the non-contact laser system checks 

the tool at selected intervals during the machining cycle. 

 

Even though the dynamometer is a better solution but it is not industrially possible due 

to the high cost. Therefore machine builders will not spend so much on this subsystem. 

The high cost is not only related to cost of the dynamometer itself but also the cost of 

conducting experiments and processing and interpreting the signals behaviour which 

will be regarded as software development. On the other hand, the non-contact laser 

system is easy to implement and minimal software programming required compared to 

the dynamometer. This has led to the Ultra-Mill adopting the non-contact laser system 

as the tool inspection and monitoring system.  
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Chapter 8 

 

Machining Experiments, Results and Analyses 

 

 

8.1. Machining Trials 

Machining trials were conducted on the Ultra-Mill with two different machine 

configurations. The first configuration is a 4-axis configuration with the spindle parallel 

in the Y-axis. The second configuration is the standard 5-axis configuration with the 

spindle parallel to the Z-axis and two rotary axes (B and C-axis). Figure 8.1 shows the 

two configurations on the Ultra-Mill. 

 

 

 

 

 

 

 

 

                 

                      (a) 5-axis configuration                    (b) 4-axis configuration 

                         Fig. 8.1 Two possible configurations for Ultra-Mill 

 

Both machining trials displayed the flexibility of Ultra-Mill depending on the job 

required to machine. Although the first configuration is not standard, the parts were 

machined with high accuracy and repeatability. In this chapter, machining trials, result 

and analyses from two case studies will be discussed. 
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8.1.1. Case Study 1: Aplix Components 

In this case study, the objective is to produce tooling for velcro (hook-and-loop 

fasteners) manufacturing as illustrated in Figure 8.2. This job is conducted with the 

assistance of a French company, Aplix, who required the tooling to be manufactured on 

the Ultra-Mill. 

 

 

 

 

 

 

 

 

 

Fig. 8.2 Hooks (left) and loops (right)  

 

The manufacturing process for the tooling is done by plunge milling using standard 

ball-nose tungsten carbide milling tools (diameter of 200 µm) and bespoke tapered ball-

nose tungsten carbide milling tools. Another conducted machining trial was machining 

with a bespoke diamond cutting tool. Figure 8.3 illustrates the brass rings and milling 

tools used. 

 

 

 

 

 

 

 

                              (a)                                                             (b) 
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                                                                   (c) 

Fig. 8.3 a) Standard ball-nose tungsten carbide milling tool, b) Bespoke tapered ball 

nose tungsten carbide milling tool, c) Brass ring 

 

The raw material used for the velcro tooling is brass rings with outer diameter of 236 

mm, inner diameter of 200 mm and thickness of 0.5 mm. On the outer diameter of the 

ring, 1376 cavities are required to be machined. The separations between two cavities 

required are 0.2616 degrees. The rings required both top and bottom to be machined. 

Each side took 105 minutes to complete the 1376 cavities.  

 

8.1.1.1. Experiment 1 

Machining trials were conducted with the milling tools mentioned above with the same 

cutting parameters. Table 8.1 illustrates the cutting parameters that were implemented 

for machining trials. 

 

These cutting trials were conducted in Aplix’s presence. Before these formal cutting 

trials, preliminary cutting trials were conducted using both the standard ball-nose 

tungsten carbide and bespoke tapered ball-nose tungsten carbide. These preliminary 

trials were conducted to understand the machining process and to find out the tool life 

with different cutting parameters in order to build machining confidence before moving 

on using the bespoke diamond cutting tools. No preliminary trials were done using the 

bespoke diamond cutting tools. 
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Table 8.1 Cutting parameters 

Tool Type Tool Diameter 

(µm) 

 

Feedrate 

(mm/min) 

Depth of Cut 

(mm) 

Spindle Speed 

(krpm) 

standard ball-

nose tungsten 

carbide 

200 20 0.5 70 

bespoke 

tapered ball-

nose tungsten 

carbide 

N/A 20 0.4 70 

bespoke 

diamond 

cutting tool 

N/A 1 ~ ½ of tool 

radius 

80 

 

During the preliminary trials, different spindle speeds and feedrate were implemented in 

the machining process. The depth of cut was kept constant according to the machined 

part specifications. From these trials, burrs built up by the edge of the cavities are 

significant with increased feedrate. The spindle speed was kept constant initially at 

70,000 rpm with different feedrate, burrs built up were significant. The burrs built up 

were also significant with increased spindle speed. From these preliminary trials, it is 

understood that burrs built up is dominantly related to the feedrate. The size of the 

cavities is the same. This implies that there is no thermal growth in the high speed 

spindle and if tool runout exists, this tool runout is constant. Mist coolant was used in 

all machining trials. No dry cutting was conducted as this would definitely result in 

worse finish and shorter tool life.  

 

Using a TESA V-200 vision system, the cavities were inspected. These cavities were 

machined with the cutting parameters displayed in Table 8.1. Table 8.2 describes the 

dimensions of the cavities. The cavities are measured at every 90º indexing of the rotary 

table. The depth of the cavities machined using bespoke tools was difficult to measure 

using the TESA V-200 vision system.  

 



Chapter 8. Machining Experiments, Results and Analyses 

141 
 

The inconsistency of the readings is related to how sharp the focus point is defined 

using the vision system operated by the operator and dependent on the operator’s 

judgements. Chips and burrs on the surface made it difficult to find a good clear edge 

for measurements to be taken. From the measurements taken, the machined cavities 

were within the tolerance of the product specification. The figures of these cavities with 

the burrs built up are shown in Appendix VІІІ. Figure 8.4 illustrates a 3D imaging of the 

cavities measured using VHX-600 Generation 2 digital microscope from Keyence. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.4 3D imaging of the cavities 
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Table 8.2 Slots dimensions taken at every 90 degrees 

 

 

Cutter type Ring marks Side Slots position Measuring parameters 
        Length (μm) Width (μm) Depth (μm) 

 Standard  

     first slot (0°) 551.3 219.8 93.5 
    90° 536.8 223 95.6 

One-side top 180° 581.8 221.9 93.5 
(1 of 3)   270° 552.2 216.7 93.6 

    last slot 553.4 218.9 87.3 
     first slot (0°) 547.9 223 101.5 
   90° 533.6 221.7 95.3 

 top 180° 580.9 219.7 100.4 

   270° 544.8 222.7 98.2 
Double-side   last slot 545 219.8 92.5 

(2 of 3)    first slot (0°) 548.1 226.4 93.5 
    90° 543.5 219 111 
  under 180° 585.1 218.1 84.1 
    270° 557.5 222.5 96.4 
    last slot 553.4 223.6 91.4 
     first slot (0°) 549.8 208.7 98.6 
    90° 557 212.8 91.7 

One-side top 180° 575.9 212.5 97.6 
(3 of 3)   270° 531.8 212.2 93.9 

    last slot 547.3 211.9 93 

Bespoke 

     first slot (0°) 552.3 170.5 N/A 
    90° 547 169.4 N/A 

One-side top 180° 581.4 174.1 N/A 
(1 of 3)   270° 566.5 164.5 N/A 

    last slot 551.9 166.4 N/A 
     first slot (0°) 546.3 166.4 N/A 
   90° 549.4 165.2 N/A 

 top 180° 585 169.1 N/A 

   270° 551.3 168 N/A 
Double-side   last slot 548.4 166.4 N/A 

(2 of 3)    first slot (0°) 552.9 170.5 N/A 
    90° 547 162 N/A 
  under 180° 585.3 169 N/A 
    270° 561.4 165.5 N/A 
    last slot 542.6 163.6 N/A 
     first slot (0°) 554.7 179.6 N/A 
    90° 538.1 180 N/A 

One-side top 180° 581.7 176.8 N/A 
(3 of 3)   270° 551.9 177.7 N/A 

    last slot 547 172.5 N/A 

       first slot  394.4 187.2 83.8 

Diamond One-side  top  third slot  397.4 183.7 84.7 

       fifth slot(last slot)  395.1 185.2 52.9(cutter 
broken) 
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The cavities were manufactured on circular rings with 200mm diameter. On each ring, 

there is a reference key for fixing the ring to fixture on the rotary table. Once machining 

have completed, the rings are placed on top of each other to observe the cavity 

positions. It was found that some position of the gear teeth on one ring is out of phase 

with another ring. Figure 8.5 describes the machined cavities. Some phasing error was 

detected. 

 

When measuring the distance between each cavity on all rings separately, it was found 

the separation distance is within the tolerance of cavities specifications. Since the rings 

were manufactured individually, the phasing errors came from the fixturing and have 

resulted in mechanical induced errors. When observed closely, the reference key on the 

rings are able to move once fixed onto the fixture and have resulted in the phasing errors 

between rings. 

 

8.1.1.2. Experiment 2  

Experiments were also conducted on this Aplix application to identify the cutting forces 

applied during machining. Tests were conducted using a dynamometer, MiniDyn 

provided by Kistler. The model of the dynamometer is MiniDyn 9256C2 and is 

connected to three charge amplifiers model 5011. The MiniDyn could output three axis 

force readings (X, Y and Z directions). A software package called Dynoware by Kistler 

was used for data acquisition. Figure 8.6 shows the dynamometer setup in the machine 

tool. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.6 Dynamometer set up on Ultra-Mill 
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In the experiments for the Aplix application using only the standard ball-nose tungsten 

carbide milling tools (diameter of 200 um), forces only in the Z-axis direction were 

observed. The forces in the Z-axis direction are most significant based on the motion for 

the machining process (plunge milling). Experiments were conducted with the same tool 

and workpiece used in the Aplix application. In the experiments, depth of cavities is 

kept constant according to the product requirements. However, the machining 

parameters which were changed were spindle speed and feedrate. 

 

These experiments were conducted to identify the best machining parameters with the 

emphasis of minimizing machining time and reduce the burrs of the slots. At the same, 

to view the cutting forces effects on the machine axes robustness. Table 8.3 shows the 

machining parameters with the cutting force in the Z-axis direction. 

 

Table 8.3 Machining parameters with Z-axis forces 

Experiment 
Spindle Speed 

(krpm) Feedrate (mm/min) 
Cutting Force 

(N) 
1 70 20 0.75 
2 80 20 0.7 
3 90 20 0.6 
4 100 20 0.5 
5 70 30 0.55 
6 80 30 0.45 
7 90 30 0.43 
8 100 30 0.47 
9 70 40 0.55 

10 80 40 0.56 
11 90 40 0.5 
12 100 40 0.5 

 

In the experiments, it was observed that machining forces in the Z-axis direction did not 

exceed 1 N. During the machining process, the biggest force observed was between 1 to 

1.4 N. These big forces are due to the tool touch or engagement with the workpiece. 

These peaks were observed consistently for every touch or engagement and reduce 

significantly when cutting process has started. Once the cutting process begins, the 

cutting forces are as illustrated in Table 8.3. Figure 8.7 illustrates forces during tool and 

wokpiece engagement. 
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(a) Cutting forces of Experiment 3 

 

(b) Cutting forces of Experiment 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                  

 

 

 

 

  

 

Fig. 8.7 Tool workpiece engagement forces 

 

For these experiments, the axis motion error in the Z direction is smaller than 1µm. this 

indicates the Z-axis is complying with the design specifications. The force which was 

exerted in the Z direction was too small and hence very insignificant when compared to 

Z-axis slide. With these experiments, the increase in feedrate in Z direction has resulted 

in burrs problems. Better finish was observed at slower feedrates (between 20 to 30 

mm/min). 
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8.1.2. Case Study 2: Bespoke L-Shaped Test Workpiece 

Case study 2 is conducted to evaluate the geometric accuracies. This test could 

determine the geometrical errors of the workpiece are influenced by mechanical errors 

or control system errors. Errors induced are normally associated with the manufacturing 

error or assembly error of the mechanical structures. 

 

The test part is machined out of aluminium using a 2 mm diameter tungsten carbide 

tools. The test is to evaluate the straightness, squareness, parallelism, etc. of the 

machined surfaces. The 3D model of the testpiece is presented in Figure 8.8. 

 

The workpiece consist of two parts. The first is a horizontal flat pyramid which will be 

machined in the XY plane and the second is a vertical flat pyramid which will be 

machined in the YZ plane. There are also microsteps which will be machined on the flat 

part of the pyramid as shown in Figure 8.8 and 8.9. The relationship (straightness, 

squareness, parallelism, etc.) between the XY and YZ planes is the objective of this test. 

Figure 8.9 illustrates the L-shaped workpiece on the Ultra-Mill. 

 

Once machined, the testpiece is sent to the National Physics Laboratory (NPL) for 

measurements using the F25 micro-CMM by Carl Zeiss. 
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Fig. 8.10 Machined testpiece on Ultra-Mill 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.9 Micro step features 
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8.1.2.1. Assessment and Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                                                                 (b) 

 

Fig. 8.11 Workpiece measurements identifier  

 

Figure 8.11 shows the measuring identifier with reference to 3D model to clearly 

understand the following measurement tables below. 

 

Table 8.4 Straightness readings of the horizontal pyramid 

Straightness           
        
  Top   Middle   Bottom 
  z = -1.0   z = -3.0   z = -5.0 
Edge 1 0.001044 Edge 1 0.001661 Edge 1 0.001047 
Edge 2 0.001308 Edge 2 0.001810 Edge 2 0.002235 
Edge 3 0.001832 Edge 3 0.000449 Edge 3 0.000947 
Edge 4 0.001388 Edge 4 0.001131 Edge 4 0.001802 
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Table 8.5 Parallelism readings of the horizontal pyramid 

Parallelism           
        
  Top   Middle   Bottom 
            
Edge 1 & edge 3 0.001925 Edge 1 & edge 3 0.001006 Edge 1 & edge 3 0.001324 
Edge 2 & edge 4 0.002141 Edge 2 & edge 4 0.005177 Edge 2 & edge 4 0.003735 
        
        
  Top & middle Top & bottom    
Edge 4 0.002414   0.002173     

 

Table 8.6 Perpendicular readings of the horizontal pyramid 

Perpendicularity           
        
  Top   Middle   Bottom 
            
Edge 1 0.001130 Edge 1 0.001796 Edge 1 0.001079 
Edge 3 0.002061 Edge 3 0.000900 Edge 3 0.001330 

 

Table 8.7 Angles measurements of the horizontal pyramid 

Angles           
        
  Top   Middle   Bottom 
            
Edge 1 to Edge 2 89.999085 Edge 1 to Edge 2 89.995699 Edge 1 to Edge 2 89.997783 
Edge 2 to Edge 3 89.999772 Edge 2 to Edge 3 90.002554 Edge 2 to Edge 3 90.000837 
Edge 3 to Edge 4 90.002586 Edge 3 to Edge 4 90.003286 Edge 3 to Edge 4 90.002940 
Edge 4 to Edge 1 89.998557 Edge 4 to Edge 1 89.998461 Edge 4 to Edge 1 89.998440 

 

Table 8.8: Length measurements of the horizontal pyramid 

 

 

 

 

Length 
 

 Top   Middle   Bottom  
 nominal = 51.00 mm  nominal = 54.00 mm  nominal = 57.00 mm 
         
Pt 1 50.991875  Pt 1 53.984635  Pt 1 56.984762  
Pt 2 50.990394  Pt 2 53.984571  Pt 2 56.983854  
Pt 3 50.991835  Pt 3 53.984514  Pt 3 56.984028  
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Table 8.9 Width measurements of the horizontal pyramid 

Width 
  
  
Top 
nominal = 26.00 mm 
  

  
Middle 
nominal = 29.00 mm 
  

  
Bottom 
nominal = 32.00 mm 
  

Pt 1 25.993312 Pt 1 28.986900 Pt 1 31.986544 
Pt 2 25.991640 Pt 2 28.982597 Pt 2 31.985697 
Pt 3 25.990759 Pt 3 29.006350 Pt 3 31.983858 

 

Table 8.10 Height measurement of the horizontal pyramid 

Height         
       
  Top to step 1   Top to step 2 
  nominal = 2.00 mm   nominal = 4.00 mm 
         
Pt 1 1.979254   Pt 1 3.976226 
Pt 2 2.012438   Pt 2 4.010168 
Pt 3 2.020126   Pt 3 4.020810 
Pt 4 1.998121   Pt 4 3.996811 

 

Table 8.11 Step width measurements of the horizontal pyramid 

Step width 
  
  Top edge to step 1 edge           
  nominal = 1.50 mm       
                
Edge 1   Edge 2   Edge 3   Edge 4   
                
Pt 1 1.499722 Pt 1 1.496372 Pt 1 1.493038 Pt 1 1.497217 
Pt 2 1.500358 Pt 2 1.495244 Pt 2 1.493819 Pt 2 1.495713 
Pt 3 1.499698 Pt 3 1.493831 Pt 3 1.492982 Pt 3 1.521760 

 
Top edge to step 2 edge 

  nominal = 3.00 mm       
          
Edge 1   Edge 2   Edge 3   Edge 4   
                
Pt 1 3.001104 Pt 1 2.995762 Pt 1 2.991784 Pt 1 2.997470 
Pt 2 3.001261 Pt 2 2.997044 Pt 2 2.992199 Pt 2 2.997013 
Pt 3 3.000922 Pt 3 2.994576 Pt 3 2.991271 Pt 3 2.998523 

 

 

 



Chapter 8. Machining Experiments, Results and Analyses 

153 
 

Table 8.12 Flatness measurements of the horizontal pyramid 

Flatness   
    
step 1 0.001029 
step 2 0.004410 

 

Table 8.13: Planes parallelism measurements of the horizontal pyramid 

Parallelism (planes) 
    
Top to step 1 0.080910 
step 1 to step 2 0.005664 

 

The results shown are for the horizontal flat pyramid and the results of the vertical 

pyramid are shown in Appendix VІІІ. After measuring using the F25 at NPL, these were 

found: 

• The surface quality is not too bad. 

• It does provide clear indication that Ultra-Mill is working pretty well. 

• Some absolute accuracy does lie outside the specifications and ideally should be 

smaller than 5 µm. 

 

Looking at the absolute accuracy, this could be influenced by: 

• Tooling quality (toolwear, actual size, etc.). 

• Top surface of workpiece was not ground properly. 

• Tool runout. 

 

Results for the vertical flat pyramid are illustrated in Appendix VІІІ. 

 

Unfortunately the relationship between the XY and YZ is yet to be confirmed. This is 

the limitation of sending out testpieces for measurements as it is still at NPL waiting to 

be determined. 

 

Other various machined components are described in Appendix VІІІ. 
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8.2. Control System Performance Evaluation Based on Machining Trials 

Through the two studies discussed in the earlier sections, the results obtained have 

proven in terms of control system performance is concerned, the control system is 

operating relatively well. 

 

Some results obtained may included some deviation compared to designed 

specifications and these have been categorized more as mechanically induced errors. 

Setting up, fixturing, tool quality, etc. are the key elements which could enhance the 

mechanical induced errors. 

 

8.2.1. Machine Dynamic Performance 

In terms of machining dynamics performance, various machining processes were 

conducted on the Ultra-Mill and have found the all the axes have sufficient or more than 

enough dynamic stiffness to reject disturbances injected into the direct drive systems. 

 

This was displayed on the axes tracking and following errors. During machining, the 

axes are able to have following or tracking errors of less than 1 µm. The cutting forces 

were not large enough to overcome the axes stiffness. 

 

The stiffness of the axes was supplied through excellent tuning of the servo loop. 

 

8.2.2. Volumetric Errors 

Machine tools with significant volumetric errors would produce workpieces having 

these errors embedded in the part accuracy, surface quality and form. These errors are 

influence by geometric, thermal and dynamic errors. These errors would provide an 

error signature which is related to the machine directly. Volumetric errors of a machine 

tool could be reduced with properly setting up the axes with emphasize of minimizing 

the straightness, squareness, parallelism and circularity errors of the axes and through 

software compensation. 

 

Stated in (ISO 230-6, 2002), volumetric performance is the ability of machine tool to 

perform the intended multi-axes functions anywhere within the working volume or a 

smaller volume as agreed between manufacturer and user. The correct definition of 3D 
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volumetric positioning error is the root mean square of the three linear axes 

displacement errors (Wang, 2009).  

 

8.2.2.1. Ultra-Mill 5-Axis Error Analysis  

 

 

 

 

 

 

 

 

 

 

Fig. 8.12 Ultra-Mill schematic and diagrammatic sketch 

 

Figure 8.12 describes the schematic and diagrammatic sketch of the Ultra-Mill for error 

analysis. Homogeneous transformation matrices (HTM) are adopted to derive the 

relative position of a rigid body in 3D space relative to designated coordinate system.  

Determining the geometrical errors for a machine tool, the relationship between the 

tooltip must be defined in a common reference coordinate system (Slocum 1992). 

 

The six degrees of a rigid body HTMs are represented as: 
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(b) Diagrammatic sketch of Ultra-Mill 
structures 

(a) Schematic of Ultra-Mill 
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A, B and C represent translations and αX, αY,    and αZ represent rotational in the X, Y 

and Z axes. 

 

Combination of the six individual HTMs is described as: 
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− 
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 
 
 

  

(8.7) 

 

 

A rigid body consists of translational errors (δX, δY and δZ) and rotational errors (εX, εY 

and εZ) associated with motion which is used in Equation 8.7, therefore error in linear 

motion is represented as: 

1
1

1
0 0 0 1

Z Y

Z X

Y X

A X
B Y

T
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ε ε δ
ε ε δ
ε ε δ

− + 
 − + =
 − +
 
 

 

(8.8) 

 

Errors in rotational axes (A, B and C) are represented as: 

1
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(8.9) 
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(8.11) 

 

From the general HTM, the HTM for the Ultra-Mill is derived. Axes notations are 

illustrated in Figure 8.12(a). 

 

In Equation 8.12, the left hand side represents the workpiece-machine base chain and 

the right hand side represents the tool-machine base chain. The individual 

transformation is represented in equations 8.13, 8.14, 8.15, 8.16 and 8.17. 
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(8.12) 
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(8.17) 

 

Notations of the equations as shown above are: 

 

• The positional errors in X, Y and Z directions are δX(X), δY(Y) and δZ(Z). 

• The radial and axial errors when the rotational axis is around X-axis of the 

reference coordinate frame are δX(B), δY(B) and δZ(B). 

• The radial and axial errors when the rotational axis is around X-axis of the 

reference coordinate frame are δX(C), δY(C) and δZ(C).  

• The straightness errors of X-axis in Y and Z directions are δY(X) and δZ(X). 

• The straightness errors of Y-axis in X and Z directions are δY(X) and δY(Z). 

• The straightness errors of Z-axis in X and Y directions are δZ(X) and δZ(Y). 

• The rotational errors of X-axis about X, Y and Z directions are εX(X), εY(X) and 

εZ(X). 

• The rotational errors of Y-axis about X, Y and Z directions are εX(Y), εY(Y) and 

εZ(Y). 

• The rotational errors of Z-axis about X, Y and Z directions are εX(Z), εY(Z) and 

εZ(Z). 

• The rotational errors of rotational axes about the Y-axis of the reference 

coordinate frame are εX(B) and, εZ(B). 
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• The rotational errors of rotational axes about the Z-axis of the reference 

coordinate frame are εX(C) and, εY(C). 

• Squareness errors between the XY, XZ and YZ planes are α, β1 and β2. 

 

The difference between the tooltip actual location and nominal location is defined as the 

volumetric errors. Substituting all error components with zero in Equation 8.12, the 

nominal tooltip location is defined as: 

 

cos ( cos sin ) sin ( )
sin ( cos sin ) cos ( )

sin cos

n Z t Y t Y Z t

n Z t Y t Y Z t

n t Y t Y

X X X Z Y Y
Y X X Z Y Y

Z Z X Z

α α α α
α α α α

α α

= + + + +
 = − + + + +
 = − +

 
(8.18) 

 

Hence, the final errors ( , , , )TX Y Z∆ ∆ ∆  could be defined as: 
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α
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 ∆ = − = − +

 
(8.19) 

 

The Ultra-Mill mechanical structure was set up using a straight edge, a clock and 

experience of the technicians. Laser inferometers were unavailable to use during the set 

up. Laser inferometers are nowadays regarded as the standard equipment used for 

machine tool setting up. According to (ISO 230-1, 1996; ISO 230-6, 2002), the 

measuring instruments that are needed for setting up are laser inferometers or other 

measuring systems with comparable accuracy may be used. With the method 

implemented while setting up the Ultra-Mill, tests must be made to identify the errors 

and these errors would be identified through the machined parts. 

 

Validating the HTM derived for Ultra-Mill requires data from the machining error 

assembly. These data will put into the HTM and then compared with error date of 

machined parts. Unfortunately at Brunel University, there is no such equipment that 

could be used to obtain these data in order to compare with the error from the machined 

part and the error calculated mathematically.  
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8.3. Summary 

This chapter has elaborated the experiments conducted to evaluate the performance of 

the Ultra-Mill. From the selected case studies in this chapter, it is correct to say that 

performance of the Ultra-Mill satisfies with its design specifications in terms of form 

and geometrical accuracies, motion and positioning accuracies and achievable surface 

finish. 

 

Through the cutting trials, the errors obtained are not related to the control system but 

are related to mechanical induced errors. These were found through careful analysis to 

eliminate the factors influencing these errors. Technically, these could easily be reduced 

by modifying the method of fixturing. 

 

Aside from errors caused by fixturing, the assembly errors or manufacturing errors 

could be compensated using software compensation method. In making this feasible, 

suitable measuring equipment must be used to determine these errors as these errors are 

very minute. Combination of these minute errors will cause a large error machining at 

the micro and nano scale. 

 

This chapter also described the types of errors involved with are related to the machined 

parts quality. The geometrical axes analysis for the Ultra-Mill has been derived using 

the HTM method. This mathematical formulation has provided the understanding on 

how small errors will lead to large errors. 
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Chapter 9 

 

Conclusions and Recommendations for Future Work 

 

 

9.1. Conclusions 

Referring to the discussions discussed and elaborated in the chapters of this thesis and 

supported by validations through simulated and experimental results, these conclusions 

are drawn: 

1) History of machine tools have been understood which is then used as 

understanding of the importance of machine tool used for manufacturing 

process. With the current requirements of 3D micro and nano products 

specifications, ultraprecision machine tools are the instrument to be used. 

2) The current state of art of machine tool control systems have been surveyed in 

Chapter 2 to keep abreast with current requirements of ultraprecision multi-axis 

machine tools to produce the highest level of performance in terms of motion 

control system and the control system of the whole mechatronics system. 

3) With the knowledge through the literature review, the design and development 

of the control system for the 5-axis ultraprecision micromilling machine, Ultra-

Mill, is constructed. The design framework includes and elaborated all the 

important elements so as to identify the requirements for each subsystem. 

4) Evaluation of the control system performance in terms of EMC and thermal 

effects have been simulated and validated to conclude that both the simulation 

values and real world values coincide. EMC and thermal have big influence in 

the control system in terms of electrical and electronics whereby these two 

elements could increase the potential of machine degradation. 

5) Understanding the requirements of servo loop performances have been 

highlighted in Chapter 6. The Ultra-Mill implements direct drive system with 

aerostatic bearings where the external disturbance will affect directly the axes 

motion and position. Requirements of servo tuning are understood to increase 

axis dynamic stiffness, sensitivity and responsiveness. 

6) The Ultra-Mill uses microtool with diameter less than 1mm and handling of the 

tools is critical since no ATC is present. An automated system was implemented 

by adopting a 3-axis SCARA robot for loading and unloading between the 
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spindle and tool magazine. The design of the communication between the Ultra-

Mill control system and the 3-axis SCARA robot is fully presented. 

7) Knowledge of tool monitoring is investigated in Chapter 7. Here the influences 

of tool wear and breakage were evaluated. A 3-axis dynamometer was used to 

measure the cutting forces during cutting trials and found that the cutting forces 

are minute. Tool condition monitoring was implemented using a non-contact 

laser system as this is the easiest solution and most importantly it is industrially 

feasible. 

8) The Ultra-Mill performance was tested through various types of machining trials 

ranging from the ultraprecision level and conventional level. Geometrical errors 

were evaluated through machining trials as well. Errors found from the 

geometrical error experiments were influenced by mechanical and assembly 

errors of the machine structure and not the control system. Software 

compensation is required to compensate for these errors. 

9) The research objectives highlighted in Section 1.4.2 have been achieved, 

analyzed and validated through experiment results. 

 

9.2. Contribution to Knowledge 

The innovation and contribution to knowledge from this research lie in: 

1) Proposing the approach and concept of designing the control systems for a multi-

axis micromilling ultraprecision machine tool which could be adopted as 

fundamental design protocol for other precision machine systems. 

2) Undertaking orderly evaluation and validation of the implemented control 

system design through structured design of experiments. 

3) Providing a framework for the relationship between control system 

design/requirements and machined components characteristics.  

4) Implementation of servo loop tuning using Simulink Design Optimization 

toolbox. 

 

9.3. Recommendations for Future Work 

As recommendations for future work, these are suggested: 

1) Re-evaluate the existing control system subsystems with comparison to existing 

commercial available ultraprecision machine tools for optimal overall 

performance.  
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2) Development of different types of servo algorithms. 

3) Design and implementation of more cost effective monitoring systems. 

4) Investigate the potential of simultaneous multi-axis servo loop tuning. 

5) Further research on thermal effects compensation through the control systems. 
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• CNC Architectures 
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(a) Architecture 1 

 

 

 

 

 

 

 

 

(b) Architecture 2 

 

Fig. A-2.1 PC front-end architecture (Alique and Haber, 2008) 
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Fig. A-2.2 Architecture for software-based (Alique and Haber, 2008) 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. A-2.3 Fully digital architecture (Heidenhain, 2007) 
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• Ultra-Mill Brochure with Specifications 
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        µµllttrraaMMiillll TM 

  5-axis Ultraprecision Bench-TopMicro Milling 
Machine 

 

 

 

 

 

 

  
  

 

 
 
 

 

 

  

 
 

 

Machine Features & Capabilities 

 Micro milling, drilling and grinding of fine surface features  
 Machining of ferrous and nonferrous metals, plastics and crystals 
 Aerostatic bearings incorporating squeeze film dampers and direct drives motors on 

all linear and one rotational axis so as to achieve smooth motion with exceptional 
accuracy and excellent dynamic performance 

 High speed aerostatic spindle capable of 200,000 rpm offers the highest machining 
efficiency for micro machining   

 Natural granite base provides excellent thermal stability and damping capacity 
 PC based CNC control system with Windows platform and customizable HMI 
 Optional extras include a robot-based tool/workpiece change and inspection 

subsystem and a condition monitoring subsystem 
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Specification  
 
The µµllttrraaMMiillll TM is an ultraprecision bench-top 5-axis CNC controlled milling machine 
specially designed for manufacture of 3 dimensional miniature mechanical components and 
micro-featured surfaces in a wide range of engineering materials. The µµllttrraaMMiillll TM is compact 
and has a resource/energy efficient design giving submicron precision and nanometric surface 
finishes.  
 
General Description 
System Configuration Ultra-precision 5-axis bench-top micro milling machine with gantry 

frame 
Base Material   Natural granite 
Machining Envelope 150 mm x 150 mm x 80 mm (vertical) 
Workpiece Material Ferrous or nonferrous metal, plastics and crystals  
Control System  Delta Tau PC-based multi-axis CNC motion controller (UMAC), in a 

Windows environment; Compact control enclosure - drawer cabinet 
mounted underneath the machine base to minimise overall 
machine footprint. 

CNC Front-End Delta Tau Advantage 900 system; 15’’ flat panel monitor; 
Customized CNC software with 5-axis machining capability; 
wireless or cable pendant.  

Space Requirement 1.1 m wide x 0.8 m deep x 2.1 m high 
    
Machining Spindle Performance 
Type Water cooled aerostatic bearing 
Stiffness Radial: 4N/µm; Axial: 3N/µm 
Maximum Speed 200,000 rpm 
Load Capacity Radial: 55N at spindle nose; Axial: 45N 
Drive System DC brushless motor 
Power 400 Watts at 200,000 rpm 
Motion Accuracy <1.0 µm axial TIR and <2.0 µm radial TIR 
Tool Clamping 3 mm collet, manual or automatic (optional) 
    
Linear Axes X Y Z 
Type Air bearing slides fitted with squeeze film dampers 
Stroke 230 mm 225 mm 160 mm 
Feedrate 0-3000 mm/min 0-3000 mm/min 0-3000 mm/min 
Drive System DC brushless linear 

motor 
DC brushless linear 
motor 

DC brushless linear 
motor 

Feedback Optical linear 
encoder 

Optical linear 
encoder 

Optical linear 
encoder 

Resolution 5 nm 5 nm  5 nm 
Motion Accuracy <1.0 µm over total 

travel  
<1.0 µm over total 
travel 

<1.0 µm over total 
travel 

    
Rotational Axes B (Spindle Swivelling) C (Workpiece Rotary Table) 
Type Precision ball bearing Air bearing fitted with squeeze 

film dampers 
Stroke ± 90° 360° 
Rotational Speed 0-30 rpm 0-100 rpm 
Drive System DC brushless torque motor DC brushless torque motor 
Feedback Optical rotary encoder Optical rotary encoder  
Resolution 0.026 arcsec 0.02 arcsec 
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Appendix ІV 

 

• Screenshots of HMI Programming 

• Part of the HMI Programming Codes 

• Part of the PLC Programming Codes 
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Fig. A-4.1 Screenshot of HMI customisation in VB 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. A-4.2 VB customisation window 
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Fig. A-4.3 Designed HMI for Ultra-Mill 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. A-4.4 Initial HMI design 
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Part of the HMI Programming Codes: 
 
' ---------------- Procedure DoFKey------------ 
' Handles F-Key functions for sub-menus 
' --------------------------------------------- 
Procedure DoFKey 
 NUM nKey = GetArg(0) 
 NUM CurrentMenu 
 NUM UserPanelMode 
  
 CurrentMenu = Query("DataTables.GlobalVars.CurrentMenu") 
 
' if (nKey = F12_KEY) 
'  Dlg.MsgBox("Current Menu Error","F12 Pressed") 
' Endif 
 if(CurrentMenu = 0) 
  if (nKey = F1_KEY) 
   Forms.SubMenuGroup.frmPositionMenu.Show 
  elseif (nKey = F2_KEY) 
   Forms.SubMenuGroup.frmProgramMenu.Show 
  elseif (nKey = F3_KEY) 
   Forms.SubMenuGroup.frmWorkOffsetMenu.Show 
  elseif (nKey = F4_KEY) 
   Forms.SubMenuGroup.frmToolMenu.Show 
  elseif (nKey = F5_KEY) 
   Forms.SubMenuGroup.frmEditorMenu.Show 
  elseif (nKey = F6_KEY) 
   Forms.SubMenuGroup.frmDiagnosticMenu.Show 
  elseif (nKey = F7_KEY) 
   Forms.SubMenuGroup.frmErrorsMenu.Show 
  elseif (nKey = F8_KEY) 
   UserPanelMode = Query("DataTables.GlobalVars.UserPanelMode") 
   if(UserPanelMode = 1) 
    Forms.SubMenuGroup.frmOperatorMenu.Show 
   Endif 
  endif 
 elseif(CurrentMenu = 1) 
  if (nKey = F1_KEY) 
   Forms.SubMenuGroup.frmMainMenu.Show 
  elseif (nKey = F2_KEY) 
   Devices.PmacNC1.SetOrigin(1) 
  elseif (nKey = F3_KEY) 
   Devices.PmacNC1.SetOrigin(0) 
  endif 
 elseif(CurrentMenu = 2) 
  if (nKey = F1_KEY) 
   Forms.SubMenuGroup.frmMainMenu.Show 
  elseif (nKey = F2_KEY) 
   VBA.frmProgramMenu.Load 
  elseif (nKey = F3_KEY) 
   Devices.PmacNC1.ProgramRewind 
  elseif (nKey = F4_KEY) 
   VBA.frmProgramMenu.Search 
  elseif (nKey = F5_KEY) 
   VBA.frmProgramMenu.SearchLine 
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Part of the PLC Programming Codes: 
 
OPEN PLC 8 CLEAR 

IF(M800>0) 

P806=M801 

IF(P805=0) 

IF(P806=0) 

M479=1 

M2000=1 

M2001=0 

M2006=0 

M2007=0 

M2008=0 

ELSE 

IF(P806=1) 

M480=1 

M2000=0 

M2001=1 

M2006=0 

M2007=0 

M2008=0 

ELSE 

IF(P806=6) 

M549=1 

M535=1 

M480=0 

M2000=0 

M2001=0 

M2006=1 

M2007=0 

M2008=0 

ELSE 

IF(P806=7) 

M549=1 

M536=1 

------------------------------------------------------------------------------------ 
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Appendix V 

 

• Electrical Drawings 

• EM Distribution Analysis 

• CFD Thermal Analysis 
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(a) 168 MHz 

 

 

 

 

 

 

 

 

(b) 746 MHz 

Fig. A-5.4 EM distribution of empty cabinet with lid 
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(a) 168 MHz 

 

 

 

 

 

 

 

 

(b) 746 MHz 

Fig. A-5.5 EM distribution of empty cabinet without lid 
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(a) 100 MHz 

 

 

 

 

 

 

 

 

(c) 1 GHz 

Fig. A-5.6 EM distribution of empty cabinet with lid within the machine frame 
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(a) 100 MHz 

 

 

 

 

 

 

 

 

(b) 1GHz 

Fig. A-5.7 EM distribution of empty cabinet without lid within the machine frame 
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(a) 168 MHz 

 

 

 

 

 

 

 

 

(b) 746 MHz 

Fig. A-5.8 EM distribution of cabinet with trunking with lid in the machine frame 
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(a) 168 MHz 

 

 

 

 

 

 

 

 

(b) 746 MHz 

Fig. A-5.9 EM distribution of cabinet with trunking without lid in the machine frame 
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(a) Cabinet temperature 

 

 

 

 

 

 

 

 

 

(b) Equipment temperature 

 

 

 

 

 

 

 

 

 

 

(c) Fluid temperature 

 

Fig. A-5.10 CFD analysis of implemented design 
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(a) Cabinet temperature 

 

 

 

 

 

 

 

 

 

 

(b) Equipment temperature 

 

 

 

 

 

 

 

 

 

(c) Fluid temperature 

 

Fig. A-5.11 CFD analysis with 2 input fans and 2 output fans 
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(a) Cabinet temperature 

 

 

 

 

 

 

 

 

 

(b) Equipment temperature 

 

 

 

 

 

 

 

 

 

 

(c) Fluid temperature 

 

Fig. A-5.12 CFD analysis with partitions (veins) 
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(a) Cabinet temperature                                               

 

 

 

 

 

 

 

 

 

 

(b) Equipment temperature 

 

Fig. A-5.13 CFD analysis with 2 output fans on the top 
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Appendix VІ 

 

• Servo Tuning Analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix VI 
 

207 
 

 

 

 
 
                                                          
 
 
 
 
 
 
 
 

(a) Step move for X-axis (motor 1) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Parabolic move for X-axis (motor 1) 
 
 

Fig. A-6.1 Performance analysis of X-axis 
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(a) Step move for Y-axis (motor 2) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Parabolic move for Y-axis (motor 2) 
 
 

Fig. A-6.2 Performance analysis of Y-axis 
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(a) Step move for Z-axis (motor 3) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) Parabolic move for Z-axis (motor 3) 
 
Fig. A-6.3 Performance analysis of Z-axis 
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(a) Step move for B-axis (motor 5) 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Parabolic move for B-axis (motor 5) 
 
 

Fig. A-6.4 Performance analysis of B-axis 
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(a) Step move for C-axis (motor 6) 
    
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Parabolic move for C-axis (motor 6) 
 

Fig. A-6.5 Performance analysis of C-axis 
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Appendix VІІ 

 

• Part of the Program for Robot Communication 

• Cutting Forces Results 

• Part of the Program for M-Code Macros 
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A section of the robot communication with Ultra-Mill 
 

Private SafetyGuardStatus As Integer 

Private VacuumStatus As Integer 

Private Sub Wsock_Disconnect() 

    MsgBox "Please Check the Connection to the Robot!", vbOKOnly + vbCritical, "Communication Warning!" 

    lblClosePort.ForeColor = vbYellow 

    lblClosePort = "The Communication to Robot is not Established" 

    lblLoadWorkpiece.ForeColor = vbBlue 

    lblRemoveWorkpiece.ForeColor = vbBlue 

    lblLoadCuttingTool.ForeColor = vbBlue 

    lblRemoveCuttingTool.ForeColor = vbBlue 

    Frame1.Enabled = False 

    Frame2.Enabled = True 

End Sub 

Private Sub cmdClosePort_Click() 

    Dim intReply As Integer 

    If Wsock.State <> sckConnected Then Exit Sub 

    intReply = MsgBox("Do you really want to close the connection to Robot?", vbYesNo + vbQuestion, "Close the Connection?") 

    If intReply = vbYes Then 

        Wsock.SendData "Close Port" 

        Wsock.Close 

        lblClosePort.ForeColor = vbYellow 

        lblClosePort = "Port has been closed" 

        lblLoadWorkpiece.ForeColor = vbBlue 

        lblRemoveWorkpiece.ForeColor = vbBlue 

        lblLoadCuttingTool.ForeColor = vbBlue 

        lblRemoveCuttingTool.ForeColor = vbBlue 

        Frame1.Enabled = False 

        Frame2.Enabled = True 

    End If 

End Sub 

Private Sub cmdConnection_Click() 

    Wsock.Close 

    Wsock.RemoteHost = txtIP.Text 

    Wsock.RemotePort = txtPort.Text 

    Wsock.Connect 

     

    Timer1.Enabled = True 

End Sub 
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Table A-7.1 Cutting forces in X, Y and Z on copper measured using a 3-axis Minidyn 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 Factor 1 Factor 2 Factor 3       

Run Spindle speed Feedrate DOC Fx rms Fy rms Fz rms 
  rpm mm/min µm N N N 
1 70,000 20 50 0.03 0.39 0.08 
2 80,000 40 75 0.14 1.46 0.02 
3 90,000 20 50 0.12 1.39 0.04 
4 80,000 40 50 0.07 1.14 0.26 
5 70,000 30 100 0.1 1.07 0.1 
6 70,000 40 75 0.15 1.24 0.02 
7 90,000 40 50 0 0.41 0.1 
8 90,000 30 50 0.09 0.19 0.12 
9 80,000 40 100 0.17 0.36 0.07 

10 70,000 40 50 0.18 0.38 0.09 
11 80,000 20 50 0.06 1.1 0.16 
12 80,000 30 50 0.18 0.91 0 
13 80,000 30 75 0.06 0.19 0.03 
14 70,000 20 100 0.19 0.05 0.7 
15 90,000 20 100 0.14 0.78 0.02 
16 90,000 30 75 0.07 0.05 0.04 
17 90,000 30 100 0.26 0.34 0.09 
18 70,000 40 100 0.24 0.4 0.22 
19 70,000 30 75 0.17 0.14 0.03 
20 80,000 20 75 0.18 0.62 0.17 
21 90,000 40 75 0.2 1.22 0.07 
22 80,000 20 100 0.09 0.06 0.06 
23 80,000 30 100 0.23 0.37 0.09 
24 70,000 30 50 0.24 0.04 0.05 
25 70,000 20 75 0.04 0.01 0.03 
26 90,000 20 75 0.22 0.04 0.18 
27 90,000 40 100 0.22 0.13 0.18 
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Table A-7.2 Cutting forces in X, Y and Z on aluminium measured using a 3-axis 

Minidyn 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Factor 1 Factor 2 Factor 3 Fx rms Fy rms Fz rms 
Run Spindle speed Feedrate DOC       

  rpm mm/min µm N N N 
1 70,000 20 50 0.12 0.08 0.22 
2 80,000 40 75 0.18 0.27 0.18 
3 90,000 20 50 0.21 0.46 0.31 
4 80,000 40 50 0.16 0.29 0.07 
5 70,000 30 100 0.19 0.39 0 
6 70,000 40 75 0.3 0.5 0.05 
7 90,000 40 50 0.17 0.27 0.13 
8 90,000 30 50 0.28 0.38 0.23 
9 80,000 40 100 0.3 0.66 0.18 

10 70,000 40 50 0.26 0.15 0.24 
11 80,000 20 50 0.34 0.23 0.19 
12 80,000 30 50 0.42 0.31 0.22 
13 80,000 30 75 0 0 0 
14 70,000 20 100 0 0 0 
15 90,000 20 100 0 0 0 
16 90,000 30 75 0 0 0 
17 90,000 30 100 0 0 0 
18 70,000 40 100 0 0 0 
19 70,000 30 75 0 0 0 
20 80,000 20 75 0 0 0 
21 90,000 40 75 0 0 0 
22 80,000 20 100 0 0 0 
23 80,000 30 100 0 0 0 
24 70,000 30 50 0 0 0 
25 70,000 20 75 0 0 0 
26 90,000 20 75 0 0 0 
27 90,000 40 100 0 0 0 
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A section of the M-code macros 

 

 
O9863 

(REN BRKN TOOL PLUNGE) 

IF[VRSTT NE 0]NRST 

M130 

PW=1(RPM CHK) 

CALL O9760 PA=PA PC=PC PS=PS 

PS=VC58 

VNCOM[1]=VC38 

IF[PH NE EMPTY]N1 

PH=.5*VC79 

N1 IF[PY NE EMPTY]N2 

PY=0 

N2 PT=VHCOD 

PA=2(NO MOVES) 

CALL O9761 PA=PA PT=PT 

PV14=VC35 

PV15=VC36 

PV16=VC37 

PV27=VC39 

PV31=[VC[VC70]/VC57*VC79]-PV14 

(MOVE TO XY CNTR) 

CALL O9764 PX=[[VC[VC70+3]/VC57*VC79]-PV16]  

(LASER OK CHK) 

PV28=[VAPAZ-VMOFZ-VZOFZ[VACOD]]-VC66 

PV29=PV28+[.1*VC50*VC79] 

CALL O9763 PA=VC73 PT=PV29 PF=100 PW=2 

IF[PH GE 0]N7 

(LONG TL CHK) 

PV27=0 

PV28=PV31+[[ABS[PH]]*VC50] 

(PV28=PV28+VTOFR[PT]) 

N6 CALL O9764 PZ=PV28 

PV29=PV28-[.1*VC50*VC79] 

CALL O9763 PA=VC73 PT=PV29 PF=100 

G4F.1 

VC98=0 

IF[ABS[VC81-PV28] GT [VC95*10]]N7(OK TL) 

VC98=2 

PV27=PV27+1 

IF[PV27 EQ 5]N9(BKN TL) 

GOTO N6 

N7 (SHORT TL CHK) 

IF[VC[VC70+8] EQ 9]N15 

IF[VC[VC70+8] NE EMPTY]N85 

N15 (NON LATCH METHOD) 

.......................................................... 

.......................................................... 
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Appendix VІІІ 

 

• Cutting Trial Results 

• Various Machined Test Parts 
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1st 
 

3rd 
 

5th 
 

 

 

 

 

 

(a) Cavities machined with standard tool. 

 

 

 

 

 

 

 

(b) Cavities machined with bespoke tool. 

 

 

 

 

 

   

 

(c) Cavities machined with diamond tool. 

 

Fig. A-8.1 Cavities machined with three different cutting tools 
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Fig. A-8.2 3D imaging of cavities 
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(a) 80,000 rpm and 20 mm/min 

 

 

 

 

 

 

 

 

(b) 80,000 rpm and 30 mm/min 

                                    

 

 

 

 

 

 

 

 

(c) 100,000 rpm and 40 mm/min 

 

Fig. A-8.3 Cutting forces from the Aplix job 
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(a)                                                                            (b) 

Fig. A-8.4 Workpiece measurements identifier 

 

Table A-8.1 Straightness measurements of the vertical pyramid 

Straightness           
        
  Top   Middle   Bottom 
  z = -1.0   z = -3.75  z = -5.75 

Edge 1 0.000769 Edge 1 0.000709 Edge 1 0.001733 
Edge 2 0.001590 Edge 2 0.001159 Edge 2 0.001289 
Edge 3 0.002575 Edge 3 0.000050 Edge 3 0.000804 
Edge 4 0.000369 Edge 4 0.001012 Edge 4 0.000955 
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Table A-8.2 Parallelism measurements of the vertical pyramid 

Parallelism           
        
  Top   Middle   Bottom 
           
Edge 1 & edge 3 0.001398 Edge 1 & edge 3 0.002215 Edge 1 & edge 3 0.001750 
Edge 2 & edge 4 0.001688 Edge 2 & edge 4 0.001271 Edge 2 & edge 4 0.001455 
            
        
  Top & middle Top & bottom    
Edge 4 0.003815   0.003242     

 

Table A-8.3 Perpendicularity measurements of the vertical pyramid 

Perpendicularity         
        
  Top   Middle   Bottom 
           
Edge 1 0.001967 Edge 1 0.000847 Edge 1 0.002018 
Edge 3 0.002602 Edge 3 0.002547 Edge 3 0.002707 

 

Table A-8.4 Angles measurements of the vertical pyramid 

Angles           
        
  Top   Middle   Bottom 
           
Edge 1 to Edge 2 90.000941 Edge 1 to Edge 2 89.997359 Edge 1 to Edge 2 89.999147 
Edge 2 to Edge 3 90.002157 Edge 2 to Edge 3 89.998797 Edge 2 to Edge 3 89.999761 
Edge 3 to Edge 4 89.998056 Edge 3 to Edge 4 90.002937 Edge 3 to Edge 4 90.000713 
Edge 4 to Edge 1 89.998846 Edge 4 to Edge 1 90.002937 Edge 4 to Edge 1 90.000379 

 

Table A-8.5 Length measurements of the vertical pyramid 

Length 

Top 
nominal = 51.00 mm 

Middle 
nominal = 54.00 mm 

Bottom 
nominal = 57.00 mm 

      
Pt 1 50.991875 Pt 1 53.984635 Pt 1 56.984762 
Pt 2 50.990394 Pt 2 53.984571 Pt 2 56.983854 
Pt 3 50.991835 Pt 3 53.984514 Pt 3 56.984028 
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Table A-8.6 Width measurements of the vertical pyramid 

Width                 
           
  Top     Middle     Bottom   
  nominal = 26.00 mm   nominal = 29.00 mm  nominal = 32.00 mm 
              
Pt 1 25.988736   Pt 1 28.989048   Pt 1 31.990154   
Pt 2 25.989438   Pt 2 28.989740   Pt 2 31.990244   
Pt 3 25.988297   Pt 3 28.993020   Pt 3 31.990687   

 

Table A-8.7 Height measurements of the vertical pyramid 

Height         
       
  Top to step 1   Top to step 2 
  nominal = 2.00 mm  nominal = 2.00 mm 

        

Pt 1 2.755981   Pt 1 1.999584 
Pt 2 2.749647   Pt 2 1.989631 
Pt 3 2.757844   Pt 3 1.999602 
Pt 4 2.760167   Pt 4 2.003377 

 

Table A-8.8 Step width measurements of the vertical pyramid 

Step width               
          
  Top edge to step 1 edge           
  nominal = 1.50 mm       
                
Edge 1   Edge 2   Edge 3   Edge 4   
                
Pt 1 1.496848 Pt 1 1.501276 Pt 1 1.498729 Pt 1 1.499036 
Pt 2 1.498036 Pt 2 1.501163 Pt 2 1.498723 Pt 2 1.499139 
Pt 3 1.497966 Pt 3 1.501584 Pt 3 1.497991 Pt 3 1.503139 
                
                
  Step 1 edge to step 2 edge       
  nominal = 1.50 mm       
                
Edge 1   Edge 2   Edge 3   Edge 4   
                
Pt 1 1.504604 Pt 1 1.500833 Pt 1 1.498899 Pt 1 1.500274 
Pt 2 1.504553 Pt 2 1.500625 Pt 2 1.499434 Pt 2 1.499879 
Pt 3 1.503542 Pt 3 1.501322 Pt 3 1.499518 Pt 3 1.496344 
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Table A-8.9 Flatness measurements of the vertical pyramid 

Flatness   
    
step 1 0.003575 
step 2 0.003111 

 

Table A-8.10 Planes parallelism measurements of the vertical pyramid 

Parallelism (planes) 

    
Top to step 1 0.011833 

Top to step 2 0.015465 
step 1 to step 2 0.005404 
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(a) 3D model 

 

 

 

 

 

 

(a) 3D model 

 

 

 

 

 

 

 

 

(b) Upstands machined 

 

Fig. A-8.5 Machining of 64 circular upstands on aluminium (5 mm diameter, 5 

mm height) using 3 mm tungsten carbide tool 
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Fig. A-8.6 Micro channel on brass without burrs using 400 µm diamond milling tool 

 

                                                    

 

 

 

 

 

 

 

Fig. A-8.7 CVD milled grooves with optical surface finish 
 

                                         

 

 

 

 

 

 

 

Fig. A-8.8 Micro drilling (200 μm carbide tools) 
 
 
 
 
 
 

 

100µm 

15µm 
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Fig. A-8.9 CVD milled trench with optical surface finish 
 
 
                                                                           
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. A-8.10 Diamond milled micro trenches 

(400 μm wide, 15 nm Ra) 
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