21 research outputs found

    Throughput-Smoothness Trade-offs in Multicasting of an Ordered Packet Stream

    Get PDF
    An increasing number of streaming applications need packets to be strictly in-order at the receiver. This paper provides a framework for analyzing in-order packet delivery in such applications. We consider the problem of multicasting an ordered stream of packets to two users over independent erasure channels with instantaneous feedback to the source. Depending upon the channel erasures, a packet which is in-order for one user, may be redundant for the other. Thus there is an inter-dependence between throughput and the smoothness of in-order packet delivery to the two users. We use a Markov chain model of packet decoding to analyze these throughput-smoothness trade-offs of the users, and propose coding schemes that can span different points on each trade-off.Comment: Accepted to NetCod 201

    Analysis domain model for shared virtual environments

    Get PDF
    The field of shared virtual environments, which also encompasses online games and social 3D environments, has a system landscape consisting of multiple solutions that share great functional overlap. However, there is little system interoperability between the different solutions. A shared virtual environment has an associated problem domain that is highly complex raising difficult challenges to the development process, starting with the architectural design of the underlying system. This paper has two main contributions. The first contribution is a broad domain analysis of shared virtual environments, which enables developers to have a better understanding of the whole rather than the part(s). The second contribution is a reference domain model for discussing and describing solutions - the Analysis Domain Model

    Scaleable audio for collaborative environments

    Get PDF
    This thesis is concerned with supporting natural audio communication in collaborative environments across the Internet. Recent experience with Collaborative Virtual Environments, for example, to support large on-line communities and highly interactive social events, suggest that in the future there will be applications in which many users speak at the same time. Such applications will generate large and dynamically changing volumes of audio traffic that can cause congestion and hence packet loss in the network and so seriously impair audio quality. This thesis reveals that no current approach to audio distribution can combine support for large number of simultaneous speakers with TCP-fair responsiveness to congestion. A model for audio distribution called Distributed Partial Mixing (DPM) is proposed that dynamically adapts both to varying numbers of active audio streams in collaborative environments and to congestion in the network. Each DPM component adaptively mixes subsets of its input audio streams into one or more mixed streams, which it then forwards to the other components along with any unmixed streams. DPM minimises the amount of mixing performed so that end users receive as many separate audio streams as possible within prevailing network resource constraints. This is important in order to allow maximum flexibility of audio presentation (especially spatialisation) to the end user. A distributed partial mixing prototype is realised as part of the audio service in MASSIVE-3. A series of experiments over a single network link demonstrate that DPM gracefully manages the tradeoff between preserving stable audio quality and being responsive to congestion and achieving fairness towards competing TCP traffic. The problem of large scale deployment of DPM over heterogeneous networks is also addressed. The thesis proposes that a shared tree of DPM servers and clients, where the nodes of the tree can perform distributed partial mixing, is an effective basis for wide area deployment. Two models for realising this in two contrasting situations are then explored in more detail: a static, centralised, subscription-based DPM service suitable for fully managed networks, and a fully distributed self-organising DPM service suitable for unmanaged networks (such as the current Internet)

    QoS Contract Negotiation in Distributed Component-Based Software

    Get PDF
    Currently, several mature and commercial component models (for e.g. EJB, .NET, COM+) exist on the market. These technologies were designed largely for applications with business-oriented non-functional requirements such as data persistence, confidentiality, and transactional support. They provide only limited support for the development of components and applications with non-functional properties (NFPs) like QoS (e.g. throughput, response time). The integration of QoS into component infrastructure requires among other things the support of components’ QoS contract specification, negotiation, adaptation, etc. This thesis focuses on contract negotiation. For applications in which the consideration of non-functional properties (NFPs) is essential (e.g. Video-on-Demand, eCommerce), a component-based solution demands the appropriate composition of the QoS contracts specified at the different ports of the collaborating components. The ports must be properly connected so that the QoS level required by one is matched by the QoS level provided by the other. Generally, QoS contracts of components depend on run-time resources (e.g. network bandwidth, CPU time) or quality attributes to be established dynamically and are usually specified in multiple QoS-Profiles. QoS contract negotiation enables the selection of appropriate concrete QoS contracts between collaborating components. In our approach, the component containers perform the contract negotiation at run-time. This thesis addresses the QoS contract negotiation problem by first modelling it as a constraint satisfaction optimization problem (CSOP). As a basis for this modelling, the provided and required QoS as well as resource demand are specified at the component level. The notion of utility is applied to select a good solution according to some negotiation goal (e.g. user’s satisfaction). We argue that performing QoS contract negotiation in multiple phases simplifies the negotiation process and makes it more efficient. Based on such classification, the thesis presents heuristic algorithms that comprise coarse-grained and fine-grained negotiations for collaborating components deployed in distributed nodes in the following scenarios: (i) single-client - single-server, (ii) multiple-clients, and (iii) multi-tier scenarios. To motivate the problem as well as to validate the proposed approach, we have examined three componentized distributed applications. These are: (i) video streaming, (ii) stock quote, and (iii) billing (to evaluate certain security properties). An experiment has been conducted to specify the QoS contracts of the collaborating components in one of the applications we studied. In a run-time system that implements our algorithm, we simulated different behaviors concerning: (i) user’s QoS requirements and preferences, (ii) resource availability conditions concerning the client, server, and network bandwidth, and (iii) the specified QoS-Profiles of the collaborating components. Under various conditions, the outcome of the negotiation confirms the claim we made with regard to obtaining a good solution

    QoS Contract Negotiation in Distributed Component-Based Software

    Get PDF
    Currently, several mature and commercial component models (for e.g. EJB, .NET, COM+) exist on the market. These technologies were designed largely for applications with business-oriented non-functional requirements such as data persistence, confidentiality, and transactional support. They provide only limited support for the development of components and applications with non-functional properties (NFPs) like QoS (e.g. throughput, response time). The integration of QoS into component infrastructure requires among other things the support of components’ QoS contract specification, negotiation, adaptation, etc. This thesis focuses on contract negotiation. For applications in which the consideration of non-functional properties (NFPs) is essential (e.g. Video-on-Demand, eCommerce), a component-based solution demands the appropriate composition of the QoS contracts specified at the different ports of the collaborating components. The ports must be properly connected so that the QoS level required by one is matched by the QoS level provided by the other. Generally, QoS contracts of components depend on run-time resources (e.g. network bandwidth, CPU time) or quality attributes to be established dynamically and are usually specified in multiple QoS-Profiles. QoS contract negotiation enables the selection of appropriate concrete QoS contracts between collaborating components. In our approach, the component containers perform the contract negotiation at run-time. This thesis addresses the QoS contract negotiation problem by first modelling it as a constraint satisfaction optimization problem (CSOP). As a basis for this modelling, the provided and required QoS as well as resource demand are specified at the component level. The notion of utility is applied to select a good solution according to some negotiation goal (e.g. user’s satisfaction). We argue that performing QoS contract negotiation in multiple phases simplifies the negotiation process and makes it more efficient. Based on such classification, the thesis presents heuristic algorithms that comprise coarse-grained and fine-grained negotiations for collaborating components deployed in distributed nodes in the following scenarios: (i) single-client - single-server, (ii) multiple-clients, and (iii) multi-tier scenarios. To motivate the problem as well as to validate the proposed approach, we have examined three componentized distributed applications. These are: (i) video streaming, (ii) stock quote, and (iii) billing (to evaluate certain security properties). An experiment has been conducted to specify the QoS contracts of the collaborating components in one of the applications we studied. In a run-time system that implements our algorithm, we simulated different behaviors concerning: (i) user’s QoS requirements and preferences, (ii) resource availability conditions concerning the client, server, and network bandwidth, and (iii) the specified QoS-Profiles of the collaborating components. Under various conditions, the outcome of the negotiation confirms the claim we made with regard to obtaining a good solution

    Scaleable audio for collaborative environments

    Get PDF
    This thesis is concerned with supporting natural audio communication in collaborative environments across the Internet. Recent experience with Collaborative Virtual Environments, for example, to support large on-line communities and highly interactive social events, suggest that in the future there will be applications in which many users speak at the same time. Such applications will generate large and dynamically changing volumes of audio traffic that can cause congestion and hence packet loss in the network and so seriously impair audio quality. This thesis reveals that no current approach to audio distribution can combine support for large number of simultaneous speakers with TCP-fair responsiveness to congestion. A model for audio distribution called Distributed Partial Mixing (DPM) is proposed that dynamically adapts both to varying numbers of active audio streams in collaborative environments and to congestion in the network. Each DPM component adaptively mixes subsets of its input audio streams into one or more mixed streams, which it then forwards to the other components along with any unmixed streams. DPM minimises the amount of mixing performed so that end users receive as many separate audio streams as possible within prevailing network resource constraints. This is important in order to allow maximum flexibility of audio presentation (especially spatialisation) to the end user. A distributed partial mixing prototype is realised as part of the audio service in MASSIVE-3. A series of experiments over a single network link demonstrate that DPM gracefully manages the tradeoff between preserving stable audio quality and being responsive to congestion and achieving fairness towards competing TCP traffic. The problem of large scale deployment of DPM over heterogeneous networks is also addressed. The thesis proposes that a shared tree of DPM servers and clients, where the nodes of the tree can perform distributed partial mixing, is an effective basis for wide area deployment. Two models for realising this in two contrasting situations are then explored in more detail: a static, centralised, subscription-based DPM service suitable for fully managed networks, and a fully distributed self-organising DPM service suitable for unmanaged networks (such as the current Internet)

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of-the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: quality-of-service and video communication, routing protocol and cross-layer design. A few interesting problems about security and delay-tolerant networks are also discussed. This book is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    Instantly Decodable Network Coding: From Point to Multi-Point to Device-to-Device Communications

    Get PDF
    The network coding paradigm enhances transmission efficiency by combining information flows and has drawn significant attention in information theory, networking, communications and data storage. Instantly decodable network coding (IDNC), a subclass of network coding, has demonstrated its ability to improve the quality of service of time critical applications thanks to its attractive properties, namely the throughput enhancement, delay reduction, simple XOR-based encoding and decoding, and small coefficient overhead. Nonetheless, for point to multi-point (PMP) networks, IDNC cannot guarantee the decoding of a specific new packet at individual devices in each transmission. Furthermore, for device-to-device (D2D) networks, the transmitting devices may possess only a subset of packets, which can be used to form coded packets. These challenges require the optimization of IDNC algorithms to be suitable for different application requirements and network configurations. In this thesis, we first study a scalable live video broadcast over a wireless PMP network, where the devices receive video packets from a base station. Such layered live video has a hard deadline and imposes a decoding order on the video layers. We design two prioritized IDNC algorithms that provide a high level of priority to the most important video layer before considering additional video layers in coding decisions. These prioritized algorithms are shown to increase the number of decoded video layers at the devices compared to the existing network coding schemes. We then study video distribution over a partially connected D2D network, where a group of devices cooperate with each other to recover their missing video content. We introduce a cooperation aware IDNC graph that defines all feasible coding and transmission conflictfree decisions. Using this graph, we propose an IDNC solution that avoids coding and transmission conflicts, and meets the hard deadline for high importance video packets. It is demonstrated that the proposed solution delivers an improved video quality to the devices compared to the video and cooperation oblivious coding schemes. We also consider a heterogeneous network wherein devices use two wireless interfaces to receive packets from the base station and another device concurrently. For such network, we are interested in applications with reliable in-order packet delivery requirements. We represent all feasible coding opportunities and conflict-free transmissions using a dual interface IDNC graph. We select a maximal independent set over the graph by considering dual interfaces of individual devices, in-order delivery requirements of packets and lossy channel conditions. This graph based solution is shown to reduce the in-order delivery delay compared to the existing network coding schemes. Finally, we consider a D2D network with a group of devices experiencing heterogeneous channel capacities. For such cooperative scenarios, we address the problem of minimizing the completion time required for recovering all missing packets at the devices using IDNC and physical layer rate adaptation. Our proposed IDNC algorithm balances between the adopted transmission rate and the number of targeted devices that can successfully receive the transmitted packet. We show that the proposed rate aware IDNC algorithm reduces the completion time compared to the rate oblivious coding scheme
    corecore