225 research outputs found

    Contributions in image and video coding

    Get PDF
    Orientador: Max Henrique Machado CostaTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: A comunidade de codificação de imagens e vídeo vem também trabalhando em inovações que vão além das tradicionais técnicas de codificação de imagens e vídeo. Este trabalho é um conjunto de contribuições a vários tópicos que têm recebido crescente interesse de pesquisadores na comunidade, nominalmente, codificação escalável, codificação de baixa complexidade para dispositivos móveis, codificação de vídeo de múltiplas vistas e codificação adaptativa em tempo real. A primeira contribuição estuda o desempenho de três transformadas 3-D rápidas por blocos em um codificador de vídeo de baixa complexidade. O codificador recebeu o nome de Fast Embedded Video Codec (FEVC). Novos métodos de implementação e ordens de varredura são propostos para as transformadas. Os coeficiente 3-D são codificados por planos de bits pelos codificadores de entropia, produzindo um fluxo de bits (bitstream) de saída totalmente embutida. Todas as implementações são feitas usando arquitetura com aritmética inteira de 16 bits. Somente adições e deslocamentos de bits são necessários, o que reduz a complexidade computacional. Mesmo com essas restrições, um bom desempenho em termos de taxa de bits versus distorção pôde ser obtido e os tempos de codificação são significativamente menores (em torno de 160 vezes) quando comparados ao padrão H.264/AVC. A segunda contribuição é a otimização de uma recente abordagem proposta para codificação de vídeo de múltiplas vistas em aplicações de video-conferência e outras aplicações do tipo "unicast" similares. O cenário alvo nessa abordagem é fornecer vídeo com percepção real em 3-D e ponto de vista livre a boas taxas de compressão. Para atingir tal objetivo, pesos são atribuídos a cada vista e mapeados em parâmetros de quantização. Neste trabalho, o mapeamento ad-hoc anteriormente proposto entre pesos e parâmetros de quantização é mostrado ser quase-ótimo para uma fonte Gaussiana e um mapeamento ótimo é derivado para fonte típicas de vídeo. A terceira contribuição explora várias estratégias para varredura adaptativa dos coeficientes da transformada no padrão JPEG XR. A ordem de varredura original, global e adaptativa do JPEG XR é comparada com os métodos de varredura localizados e híbridos propostos neste trabalho. Essas novas ordens não requerem mudanças nem nos outros estágios de codificação e decodificação, nem na definição da bitstream A quarta e última contribuição propõe uma transformada por blocos dependente do sinal. As transformadas hierárquicas usualmente exploram a informação residual entre os níveis no estágio da codificação de entropia, mas não no estágio da transformada. A transformada proposta neste trabalho é uma técnica de compactação de energia que também explora as similaridades estruturais entre os níveis de resolução. A idéia central da técnica é incluir na transformada hierárquica um número de funções de base adaptativas derivadas da resolução menor do sinal. Um codificador de imagens completo foi desenvolvido para medir o desempenho da nova transformada e os resultados obtidos são discutidos neste trabalhoAbstract: The image and video coding community has often been working on new advances that go beyond traditional image and video architectures. This work is a set of contributions to various topics that have received increasing attention from researchers in the community, namely, scalable coding, low-complexity coding for portable devices, multiview video coding and run-time adaptive coding. The first contribution studies the performance of three fast block-based 3-D transforms in a low complexity video codec. The codec has received the name Fast Embedded Video Codec (FEVC). New implementation methods and scanning orders are proposed for the transforms. The 3-D coefficients are encoded bit-plane by bit-plane by entropy coders, producing a fully embedded output bitstream. All implementation is performed using 16-bit integer arithmetic. Only additions and bit shifts are necessary, thus lowering computational complexity. Even with these constraints, reasonable rate versus distortion performance can be achieved and the encoding time is significantly smaller (around 160 times) when compared to the H.264/AVC standard. The second contribution is the optimization of a recent approach proposed for multiview video coding in videoconferencing applications or other similar unicast-like applications. The target scenario in this approach is providing realistic 3-D video with free viewpoint video at good compression rates. To achieve such an objective, weights are computed for each view and mapped into quantization parameters. In this work, the previously proposed ad-hoc mapping between weights and quantization parameters is shown to be quasi-optimum for a Gaussian source and an optimum mapping is derived for a typical video source. The third contribution exploits several strategies for adaptive scanning of transform coefficients in the JPEG XR standard. The original global adaptive scanning order applied in JPEG XR is compared with the localized and hybrid scanning methods proposed in this work. These new orders do not require changes in either the other coding and decoding stages or in the bitstream definition. The fourth and last contribution proposes an hierarchical signal dependent block-based transform. Hierarchical transforms usually exploit the residual cross-level information at the entropy coding step, but not at the transform step. The transform proposed in this work is an energy compaction technique that can also exploit these cross-resolution-level structural similarities. The core idea of the technique is to include in the hierarchical transform a number of adaptive basis functions derived from the lower resolution of the signal. A full image codec is developed in order to measure the performance of the new transform and the obtained results are discussed in this workDoutoradoTelecomunicações e TelemáticaDoutor em Engenharia Elétric

    Evaluation of transform based image coders, using different transforms and techniques in the transform domain

    Get PDF
    This paper addresses the most relevant aspects of lossy image coding techniques, and presents an evaluation study on this subject, using several transforms and different methods in the transform domain. We developed different transform based image coders/decoders (codecs) using different transforms, such as the discrete cosine transform, the discrete wavelet transform and the S transform. Besides JPEG Baseline, we also use other techniques and methods in the transform domain such as a DWT based JPEG-like (JPEG DWT), a JPEG DWT with visual threshold (JPEG-VT), a JPEG–like coder based on the ST, and an EZW coder. The codecs were programmed in MATLAB™, using custom and built-in functions. The structures of the codecs are presented, also as some experimental results which allow us evaluate them, and support this study

    Real-time scalable video coding for surveillance applications on embedded architectures

    Get PDF

    A comparative study of DCT- and wavelet-based image coding

    Full text link

    A Complete Video Coding Chain Based on Multi-Dimensional Discrete Cosine Transform

    Get PDF
    The paper deals with a video compression method based on the multi-dimensional discrete cosine transform. In the text, the encoder and decoder architectures including the definitions of all mathematical operations like the forward and inverse 3-D DCT, quantization and thresholding are presented. According to the particular number of currently processed pictures, the new quantization tables and entropy code dictionaries are proposed in the paper. The practical properties of the 3-D DCT coding chain compared with the modern video compression methods (such as H.264 and WebM) and the computing complexity are presented as well. It will be proved the best compress properties could be achieved by complex H.264 codec. On the other hand the computing complexity - especially on the encoding side - is lower for the 3-D DCT method

    On the design of fast and efficient wavelet image coders with reduced memory usage

    Full text link
    Image compression is of great importance in multimedia systems and applications because it drastically reduces bandwidth requirements for transmission and memory requirements for storage. Although earlier standards for image compression were based on the Discrete Cosine Transform (DCT), a recently developed mathematical technique, called Discrete Wavelet Transform (DWT), has been found to be more efficient for image coding. Despite improvements in compression efficiency, wavelet image coders significantly increase memory usage and complexity when compared with DCT-based coders. A major reason for the high memory requirements is that the usual algorithm to compute the wavelet transform requires the entire image to be in memory. Although some proposals reduce the memory usage, they present problems that hinder their implementation. In addition, some wavelet image coders, like SPIHT (which has become a benchmark for wavelet coding), always need to hold the entire image in memory. Regarding the complexity of the coders, SPIHT can be considered quite complex because it performs bit-plane coding with multiple image scans. The wavelet-based JPEG 2000 standard is still more complex because it improves coding efficiency through time-consuming methods, such as an iterative optimization algorithm based on the Lagrange multiplier method, and high-order context modeling. In this thesis, we aim to reduce memory usage and complexity in wavelet-based image coding, while preserving compression efficiency. To this end, a run-length encoder and a tree-based wavelet encoder are proposed. In addition, a new algorithm to efficiently compute the wavelet transform is presented. This algorithm achieves low memory consumption using line-by-line processing, and it employs recursion to automatically place the order in which the wavelet transform is computed, solving some synchronization problems that have not been tackled by previous proposals. The proposed encodeOliver Gil, JS. (2006). On the design of fast and efficient wavelet image coders with reduced memory usage [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/1826Palanci

    MASCOT : metadata for advanced scalable video coding tools : final report

    Get PDF
    The goal of the MASCOT project was to develop new video coding schemes and tools that provide both an increased coding efficiency as well as extended scalability features compared to technology that was available at the beginning of the project. Towards that goal the following tools would be used: - metadata-based coding tools; - new spatiotemporal decompositions; - new prediction schemes. Although the initial goal was to develop one single codec architecture that was able to combine all new coding tools that were foreseen when the project was formulated, it became clear that this would limit the selection of the new tools. Therefore the consortium decided to develop two codec frameworks within the project, a standard hybrid DCT-based codec and a 3D wavelet-based codec, which together are able to accommodate all tools developed during the course of the project

    A family of stereoscopic image compression algorithms using wavelet transforms

    Get PDF
    With the standardization of JPEG-2000, wavelet-based image and video compression technologies are gradually replacing the popular DCT-based methods. In parallel to this, recent developments in autostereoscopic display technology is now threatening to revolutionize the way in which consumers are used to enjoying the traditional 2-D display based electronic media such as television, computer and movies. However, due to the two-fold bandwidth/storage space requirement of stereoscopic imaging, an essential requirement of a stereo imaging system is efficient data compression. In this thesis, seven wavelet-based stereo image compression algorithms are proposed, to take advantage of the higher data compaction capability and better flexibility of wavelets. [Continues.

    A family of stereoscopic image compression algorithms using wavelet transforms

    Get PDF
    With the standardization of JPEG-2000, wavelet-based image and video compression technologies are gradually replacing the popular DCT-based methods. In parallel to this, recent developments in autostereoscopic display technology is now threatening to revolutionize the way in which consumers are used to enjoying the traditional 2D display based electronic media such as television, computer and movies. However, due to the two-fold bandwidth/storage space requirement of stereoscopic imaging, an essential requirement of a stereo imaging system is efficient data compression. In this thesis, seven wavelet-based stereo image compression algorithms are proposed, to take advantage of the higher data compaction capability and better flexibility of wavelets. In the proposed CODEC I, block-based disparity estimation/compensation (DE/DC) is performed in pixel domain. However, this results in an inefficiency when DWT is applied on the whole predictive error image that results from the DE process. This is because of the existence of artificial block boundaries between error blocks in the predictive error image. To overcome this problem, in the remaining proposed CODECs, DE/DC is performed in the wavelet domain. Due to the multiresolution nature of the wavelet domain, two methods of disparity estimation and compensation have been proposed. The first method is performing DEJDC in each subband of the lowest/coarsest resolution level and then propagating the disparity vectors obtained to the corresponding subbands of higher/finer resolution. Note that DE is not performed in every subband due to the high overhead bits that could be required for the coding of disparity vectors of all subbands. This method is being used in CODEC II. In the second method, DEJDC is performed m the wavelet-block domain. This enables disparity estimation to be performed m all subbands simultaneously without increasing the overhead bits required for the coding disparity vectors. This method is used by CODEC III. However, performing disparity estimation/compensation in all subbands would result in a significant improvement of CODEC III. To further improve the performance of CODEC ill, pioneering wavelet-block search technique is implemented in CODEC IV. The pioneering wavelet-block search technique enables the right/predicted image to be reconstructed at the decoder end without the need of transmitting the disparity vectors. In proposed CODEC V, pioneering block search is performed in all subbands of DWT decomposition which results in an improvement of its performance. Further, the CODEC IV and V are able to perform at very low bit rates(< 0.15 bpp). In CODEC VI and CODEC VII, Overlapped Block Disparity Compensation (OBDC) is used with & without the need of coding disparity vector. Our experiment results showed that no significant coding gains could be obtained for these CODECs over CODEC IV & V. All proposed CODECs m this thesis are wavelet-based stereo image coding algorithms that maximise the flexibility and benefits offered by wavelet transform technology when applied to stereo imaging. In addition the use of a baseline-JPEG coding architecture would enable the easy adaptation of the proposed algorithms within systems originally built for DCT-based coding. This is an important feature that would be useful during an era where DCT-based technology is only slowly being phased out to give way for DWT based compression technology. In addition, this thesis proposed a stereo image coding algorithm that uses JPEG-2000 technology as the basic compression engine. The proposed CODEC, named RASTER is a rate scalable stereo image CODEC that has a unique ability to preserve the image quality at binocular depth boundaries, which is an important requirement in the design of stereo image CODEC. The experimental results have shown that the proposed CODEC is able to achieve PSNR gains of up to 3.7 dB as compared to directly transmitting the right frame using JPEG-2000

    Development of Novel Image Compression Algorithms for Portable Multimedia Applications

    Get PDF
    Portable multimedia devices such as digital camera, mobile d evices, personal digtal assistants (PDAs), etc. have limited memory, battery life and processing power. Real time processing and transmission using these devices requires image compression algorithms that can compress efficiently with reduced complexity. Due to limited resources, it is not always possible to implement the best algorithms inside these devices. In uncompressed form, both raw and image data occupy an unreasonably large space. However, both raw and image data have a significant amount of statistical and visual redundancy. Consequently, the used storage space can be efficiently reduced by compression. In this thesis, some novel low complexity and embedded image compression algorithms are developed especially suitable for low bit rate image compression using these devices. Despite the rapid progress in the Internet and multimedia technology, demand for data storage and data transmission bandwidth continues to outstrip the capabil- ities of available technology. The browsing of images over In ternet from the image data sets using these devices requires fast encoding and decodin g speed with better rate-distortion performance. With progressive picture build up of the wavelet based coded images, the recent multimedia applications demand goo d quality images at the earlier stages of transmission. This is particularly important if the image is browsed over wireless lines where limited channel capacity, storage and computation are the deciding parameters. Unfortunately, the performance of JPEG codec degrades at low bit rates because of underlying block based DCT transforms. Altho ugh wavelet based codecs provide substantial improvements in progressive picture quality at lower bit rates, these coders do not fully exploit the coding performance at lower bit rates. It is evident from the statistics of transformed images that the number of significant coefficients having magnitude higher than earlier thresholds are very few. These wavelet based codecs code zero to each insignificant subband as it moves from coarsest to finest subbands. It is also demonstrated that there could be six to sev en bit plane passes where wavelet coders encode many zeros as many subbands are likely to be insignificant with respect to early thresholds. Bits indicating insignificance of a coefficient or subband are required, but they don’t code information that reduces distortion of the reconstructed image. This leads to reduction of zero distortion for an increase in non zero bit-rate. Another problem associated with wavelet based coders such as Set partitioning in hierarchical trees (SPIHT), Set partitioning embedded block (SPECK), Wavelet block-tree coding (WBTC) is because of the use of auxiliary lists. The size of list data structures increase exponentially as more and more eleme nts are added, removed or moved in each bitplane pass. This increases the dynamic memory requirement of the codec, which is a less efficient feature for hardware implementations. Later, many listless variants of SPIHT and SPECK, e.g. No list SPIHT (NLS) and Listless SPECK (LSK) respectively are developed. However, these algorithms have similar rate distortion performances, like the list based coders. An improved LSK (ILSK)algorithm proposed in this dissertation that improves the low b it rate performance of LSK by encoding much lesser number of symbols (i.e. zeros) to several insignificant subbands. Further, the ILSK is combined with a block based transform known as discrete Tchebichef transform (DTT). The proposed new coder isnamed as Hierar-chical listless DTT (HLDTT). DTT is chosen over DCT because of it’s similar energy compaction property like discrete cosine transform (DCT). It is demonstrated that the decoded image quality using HLDTT has better visual performance (i.e., Mean Structural Similarity) than the images decoded using DCT based embedded coders in most of the bit rates. The ILSK algorithm is also combined with Lift based wavelet tra nsform to show the superiority over JPEG2000 at lower rates in terms of peak signal-to-noise ratio (PSNR). A full-scalable and random access decodable listless algorithm is also developed which is based on lift based ILSK. The proposed algorithm named as scalable listless embedded block partitioning (S-LEBP) generates bit stream that offer increasing signal-to-noise ratio and spatial resolution. These are very useful features for transmission of images in a heterogeneous network that optimally service each user according to available bandwidth and computing needs. Random access decoding is a very useful feature for extracting/manipulating certain ar ea of an image with minimal decoding work. The idea used in ILSK is also extended to encode and decode color images. The proposed algorithm for coding color images is named as Color listless embedded block partitioning (CLEBP) algorithm. The coding efficiency of CLEBP is compared with Color SPIHT (CSPIHT) and color variant of WBTC algorithm. From the simulation results, it is shown that CLEBP exhibits a significant PSNR performance improvement over the later two algorithms on various types of images. Although many modifications to NLS and LSK have been made, the listless modification to WBTC algorithm has not been reported in the literature. Therefore,a listless variant of WBTC (named as LBTC) algorithm is proposed. LBTC not only reduces the memory requirement by 88-89% but also increases the encoding and decoding speed, while preserving the rate-distortion perform ance at the same time. Further, the combination of DCT with LBTC (named as DCT LBT) and DTT with LBTC (named as Hierarchical listless DTT, HLBTDTT) are compared with some state-of-the-art DCT based embedded coders. It is also shown that the proposed DCT-LBT and HLBT-DTT show significant PSNR improvements over almost all the embedded coders in most of the bit rates. In some multimedia applications e.g., digital camera, camco rders etc., the images always need to have a fixed pre-determined high quality. The extra effort required for quality scalability is wasted. Therefore, non-embedded algo rithms are best suited for these applications. The proposed algorithms can be made non-embedded by encoding a fixed set of bit planes at a time. Instead, a sparse orthogonal transform matrix is proposed, which can be integrated in a JEPG baseline coder. The proposed matrix promises a substantial reduction in hardware complexity with amarginal loss of image quality on a considerable range of bit rates than block based DCT or Integer DCT
    corecore