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Summary

Video surveillance systems are rapidly evolving from analog to digital systems,
but this transition encounters several bottlenecks. Furthermore, a large diversity
is emerging in: (1) the scale of video surveillance systems, from a few cameras
in a small office to hundreds of cameras in a public area, and (2) the differen-
tiation in computing power between decoding systems, from hand-held devices
to central video-surveillance rooms. These aspects and the system requirements
of professional surveillance hampers the straightforward use of broadly accepted
video compression standards. In practice, a surveillance system is subject to seri-
ous design and cost constraints, hence it should typically be a resource-constrained
system with limited cost.

The above-mentioned aspects and requirements motivate the work described
in this thesis, which aims at the design of a specific video coding system for surveil-
lance. For this purpose, we investigate a flexible scalable video coding strategy
that avoids recoding of video signals, while its complexity enables mapping on
resource-constrained systems. Three sub-systems are investigated: scalable image
coding, scalable temporal coding and motion estimation.

Prior to addressing these three sub-systems, Chapter 2 introduces the reader
to various aspects of Scalable Video Coding. We concentrate on wavelet-based
scalable coding, first by introducing common wavelet transforms and algorithms
from 1D to multi-level 2D, after which the discussion moves to two state-of-the art
wavelet coefficient encoding algorithms. More specifically, we present SPIHT (Set
Partitioning in Hierarchical Trees) and SPECK (Set Partition Embedded bloCK),
and provide a detailed example for each, illustrating their inner working.

Chapter 3 has a clear focus on the algorithms for encoding of wavelet coeffi-
cients. First, the complexity of the SPIHT and SPECK coding algorithms is inves-
tigated, after which we propose a hardware-efficient scalable image coder based
on SPECK, called TSSP (Two-Stage SPECK), which creates an output stream iden-
tical to SPECK. We propose several enhancements that significantly improve the
algorithm efficiency, to facilitate embedded implementations. To control the com-
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plexity, we split the coefficient processing into a data-independent stage and a
data-dependent stage. The algorithm eliminates the need for dynamic lists, and
processing in the second stage is performed for all bit planes in parallel. The algo-
rithm is enhanced with high scalability, allowing parsing of the bitstream without
payload decoding. This enables the creation of a bitstream of any desired quality,
resolution and order, which is attractive for surveillance.

Chapter 4 explores the trade-off between complexity and performance in scal-
able wavelet coders in the temporal domain. We present a framework to evaluate
various temporal configurations of the coding system and adopt a special configu-
ration (BDLD) suited for video surveillance applications, featuring low memory
access and low end-to-end delay, while still achieving a sufficiently high qual-
ity. We also introduce two extensions to the framework. The first improves the
energy correction in the temporal lifting tree and significantly reduces computa-
tional complexity and the associated memory bandwidth. The second extension
improves the average quality of the frames within a GOP and significantly re-
duces quality fluctuations, which is also expressed by a 30% reduction of the PSNR
variance, while clearly improving the perceptual quality. As a result, the coding
quality approaches that of H.264 SVC within 1 dB.

In Chapter 5 we present a novel motion estimator, designed specifically for
scalable video coding, which is based on hardware acceleration features. The pro-
posed Highly Parallel Predictive Search (HPPS) algorithm features two candidate
vectors and supplements these positions with additional refinement candidates
arranged in a Parallelogram-Shaped Scanning (PSS) pattern. The PSS pattern re-
duces SAD test points up to 50% compared a full search around the two candidate
vectors, without reducing the accuracy of the found motion vectors. HPPS also
features hierarchical, multi-level candidate prediction, so that large motion vec-
tors can still be found. Compared to other motion estimators, the computational
load of HPPS is fixed, regardless of scene activity and temporal distance, thereby
ensuring an efficient mapping on computing cores.

Chapter 6 describes a complete implementation of our scalable video codec
system consisting of optimized implementations of two-dimensional wavelet fil-
tering, the TSSP wavelet coefficient encoder and the temporal filtering framework.
For a custom-designed surveillance camera and video encoder, we first investigate
possible target architectures for its embedded computing platform. Then based on
cost, size and power consumption requirements, a programmable DSP is adopted.
Using this platform, we achieve efficient implementations by using SIMD (Single
Instruction Multiple Data) instructions for data and computational parallelism.
Furthermore, we exploit Direct Memory Access (DMA) to transfer data to and
from our self-managed Level-2 cache, parallel to computations. The platform ob-
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tains an execution time of 6.08 ms to perform a 4-level wavelet transform at 4CIF
resolution and 75 TSSP encodings per second. Finally, we integrate the full tempo-
ral filtering, but without motion estimation and compensation, due to architectural
limitations. The fully scalable video encoding system executes at 20 fps.

The proposed algorithms and their mapping and execution on an embedded
DSP architecture have shown that it is possible to specifically enhance algorithms
during the design phase for future mapping on a target architecture. We can there-
fore conclude that scalable coding is feasible for video surveillance systems, and
that enhanced algorithms can even be executed on a resource-constrained embed-
ded system. Despite the feasibility, the large-scale introduction of the above cod-
ing techniques is hampered by the large technical variation in architectures and
implementations at customer premises, often leading to customized solutions per
manufacturer.
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Samenvatting

Videobewakingssystemen ontwikkelen zich in rap tempo van analoge naar digi-
tale systemen, maar deze overgang brengt verschillende complicaties aan het licht.
In de praktijk heeft een videobewakingssysteem te maken met diverse systeem-
beperkingen, zoals een beperkte rekenkracht door vermogensconsumptie en een
gangbare gelimiteerde kostprijs van bepaalde componenten. Videobewakingssys-
temen hebben een grote diversiteit in de volgende aspecten: (1) de schaal van het
systeem, die kan variëren tussen een paar camera’s in een klein kantoor tot hon-
derden camera’s voor publieke ruimtes, en (2) de differentiatie in rekenkracht tus-
sen verschillende decodeersystemen, variërend van draagbare systemen tot cen-
trale ruimtes voor videobewaking met speciale apparatuur. Tevens wijken de ei-
sen aan de videocompressie in een professioneel videobewakingssysteem af van
de eisen voor consumentenproducten. De voorgaande aspecten bemoeilijken het
rechtstreeks toepassen van reeds gestandaardiseerde videocompressietechnieken.

Dit proefschrift gaat over het ontwerpen van een speciaal videocompressie-
systeem voor videobewaking, waarbij zoveel mogelijk de bovengenoemde beper-
kingen worden gedisconteerd. Dit speciaal ontworpen videocompressiesysteem
heeft als eigenschap dat de video maar eenmaal gecomprimeerd hoeft te worden,
waarna een videosignaal met afwijkende resolutie, kwaliteit en aantal beelden per
seconden hiervan kan worden afgeleid (schaalbaarheid). Tevens is dit compressie-
systeem zodanig ontworpen dat een efficiënte afbeelding mogelijk is op een hard-
warearchitectuur met beperkte middelen, zoals rekenkracht, geheugen en koeling.
De volgende drie deelsystemen worden onderzocht: schaalbare codering van af-
beeldingen, schaalbare codering van video, en bewegingsschatting binnen de vi-
deocodering. Tenslotte worden de nieuw ontworpen deelsystemen samengevoegd
in een experimenteel ontwerp, dat wordt getest op zowel beeldkwaliteit als com-
pressieperformance.

Hoofdstuk 2 geeft een overzicht van verschillende facetten van schaalbare vi-
deocodering, waarbij de focus ligt op videocompressie gebaseerd op wavelets.
Eerst worden verschillende wavelet transformaties en compressietechnieken be-
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sproken, gevolgd door een- en twee-dimensionale transformaties met verschil-
lende representaties van de beeldinformatie met betrekking tot resolutie. Hierna
worden twee geavanceerde compressiealgoritmes specifiek voor wavelets bespro-
ken: SPIHT (Set Partitioning in Hierarchical Trees) en SPECK (Set Partition Em-
bedded bloCK). Voor deze algoritmes wordt een gedetailleerd voorbeeld gegeven
dat de manier van berekenen illustreert.

Hoofdstuk 3 beschouwt de algoritmes voor het coderen van waveletcoëfficiënten.
Allereerst wordt de complexiteit van de SPIHT en SPECK algoritmes vergele-
ken, waarna een schaalbaar videocompressiealgoritme wordt voorgesteld dat ef-
ficiënt afgebeeld kan worden op een architectuur met specifiek voor multimedia
geschikte hardwarecomponenten. Dit algoritme produceert een gecomprimeerde
informatiestroom identiek aan SPECK, en wordt TSSP (Two-Stage SPECK) ge-
noemd. Daarbij worden verschillende optimalisaties gepresenteerd, die de schaal-
baarheid van het compressiesysteem en de implementatie op een hardwarearchi-
tectuur met beperkte rekenkracht verbeteren. Hiervoor scheidt het algoritme gege-
vensafhankelijke berekeningen van gegevensonafhankelijke berekeningen in twee
stappen. Daarnaast worden dynamische lijsten geëlimineerd en berekeningen in
de tweede stap worden gelijktijdig uitgevoerd voor alle bitlagen. De schaalbaar-
heid wordt verbeterd zodat het gecodeerde videosignaal eenvoudig kan worden
getransformeerd naar een signaal met andere coderingsparameters, zonder dit sig-
naal te decoderen. Deze transformatie kan een videosignaal creëren met variaties
in kwaliteit, resolutie en volgorde van gegevens en dit maakt TSSP zeer aantrek-
kelijk voor toepassing in een videobewakingssysteem.

Hoofdstuk 4 onderzoekt de afweging tussen complexiteit en kwaliteit in schaal-
bare compressiesystemen voor video. Het hoofdstuk start met een kader om ver-
schillende temporele structuren te evalueren, hetgeen uiteindelijk leidt tot een spe-
ciale structuur (BDLD) die geschikt is voor videobewakingssystemen door zijn
lage vertraging, beperkte complexiteit en goede beeldkwaliteit. Tevens worden
er twee uitbreidingen gepresenteerd voor het compressiesysteem. De eerste uit-
breiding verbetert de temporele energiebalans tussen de verschillende beeldrepre-
sentaties door het reduceren van de complexiteit en de benodigde geheugenband-
breedte. De tweede uitbreiding verbetert de gemiddelde kwaliteit en reduceert
fluctuaties van de kwaliteit binnen een periodieke groep van videobeelden. Deze
verbetering is meetbaar in de vorm van een meer constante kwaliteit (30% minder
fluctuaties) en ook als een duidelijke visuele verbetering. Met beide uitbreidingen
benadert het voorgestelde videosysteem de kwaliteit van de H.264-SVC standaard
binnen 1 dB.

In Hoofdstuk 5 wordt een nieuwe bewegingsschatter gepresenteerd, die spe-
cifiek ontworpen is voor schaalbare videocompressie en een efficiënte afbeelding

vi



mogelijk maakt op systemen met hardwarematige versnelling van berekeningen.
Deze bewegingsschatter wordt Highly Parallel Predictive Search (HPPS) genoemd
en gebruikt twee kandidaatvectoren die elk omringt worden door aanvullende lo-
caties geplaatst in een patroon gevormd naar een parallellogram (PSS). Dit patroon
reduceert het aantal SAD berekeningen met 50% vergeleken met een normaal vier-
kant zoekgebied, zonder verlies van de nauwkeurigheid van de gevonden bewe-
gingsvectoren. HPPS heeft ook een vectorpropagatie tussen verschillende tempo-
rele beeldrepresentaties, waardoor ook grote bewegingen gevonden kunnen wor-
den. In tegenstelling tot vele andere bewegingsschatters is de complexiteit van
HPPS constant en onafhankelijk van de inhoud van de video en de afstand tus-
sen de beelden. Dit heeft als gevolg dat HPPS zeer geschikt is voor een real-time
implementatie.

Hoofdstuk 6 presenteert de implementatie van het schaalbare compressiesys-
teem uit de voorgaande hoofdstukken en beschrijft geoptimaliseerde implemen-
taties van de twee-dimensionale wavelet transformatie, het TSSP compressiealgo-
ritme en de temporele filterstructuur. Verschillende hardwarearchitecturen wor-
den onderzocht voor toepassing in een speciaal voor videobewaking ontworpen
camera. Een programmeerbare DSP is gekozen gebaseerd op kostprijs, opgeno-
men vermogen en benodigde ruimte. Parallellisatie van berekeningen en gegevens
is bereikt door veelvuldig gebruik te maken van SIMD (Single Instruction Multi-
ple Data). Daarnaast is Direct Memory Access (DMA) gebruikt voor het gelijktijdig
berekenen en verplaatsen van gegevens naar de Level-2 cache, zodat de cache toe-
gang volledig handmatig wordt beheerd. Voor 4CIF resolutie wordt de wavelet
transformatie met 4 lagen berekend in 6.08 ms en voor TSSP kunnen 75 coderings-
iteraties per seconde worden uitgevoerd. Wanneer ook de volledige temporele
transformatie wordt toegepast (zonder bewegingsschatter, vanwege beperkingen
van de hardwarearchitectuur), codeert het volledig schaalbare systeem 20 beelden
per seconde.

De algoritmebeschrijvingen gecombineerd met de implementatie en de metin-
gen op een DSP architectuur hebben aangetoond dat het mogelijk is om algoritmes
voor schaalbare videocodering zodanig te ontwerpen dat een zeer efficiënte afbeel-
ding kan worden gerealiseerd op een architectuur met specifiek voor multimedia
geschikte hardwarecomponenten. Dit heeft geleid tot een innovatief ontwerp van
een speciaal ontworpen videobewakingscamera. Een directe grootschalige intro-
ductie van de beschreven technieken wordt echter afgeremd door de grote variatie
van systemen in videobewaking die reeds in gebruik zijn bij klanten, met speci-
fieke implementaties per producent.
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Introduction

All truths are easy to understand once they are discovered,

the point is to discover them.

GALILEO GALILEI

Abstract

This thesis begins with a brief history of video surveillance, the migration from analog to digital
systems, and presents the components of a modern video surveillance system. Then the focus is on
video surveillance systems, where it is motivated why their requirements and observers differ from
consumer video distribution systems, and what design constraints a practical surveillance system
has to satisfy. From this we derive requirements for the coding system, which allows us to construct
a detailed problem statement for this thesis. The outline of the individual chapters is presented in a
structured manner to guide the reader throughout this thesis, and for each chapter the contributions
and their related publications are listed.
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1. INTRODUCTION

1.1 Brief history of video surveillance

Emergence of video surveillance

With the advent of all-electronic video camera technology based on cathode ray
tubes in the 1940s, the basis was created for CCTV (Closed-Circuit TeleVision).
One of the first known CCTV systems was installed in Germany by Siemens, to
observe the launch of V2 rockets in 1942. However, only when the VCR (Video
Cassette Recorder) was introduced in the 1970s, CCTV became more widespread,
as events could be recorded and reviewed at later times, without the need of con-
tinuous human observation. Since then, the usage of CCTV has expanded strongly,
so that such systems have arrived at a status where numerous cameras are de-
ployed. For example, according to the BBC in 2009 [1], in London alone, almost
7,500 surveillance cameras are operated by the authorities. This excludes surveil-
lance cameras operated by private businesses, such as those inside shops and for
example the surveillance cameras present in and around Automated Teller Ma-
chines (ATMs). When taking into account all surveillance cameras, both indoor
and outdoor, a 2011 study [2] estimates the total number of surveillance cameras
in the UK to be around 1.8 million, which translates to one camera for every 32 UK
citizens. While the UK is known to be heavily monitored by CCTV, it does give an
indication of the prevalence of surveillance cameras in our daily lives. Although
the social aspects of video surveillance are a very interesting and important topic,
the rest of this thesis will focus on the technical aspects of these systems.

Migration to digital recording systems

Until fairly recently, video surveillance systems were predominantly analog sytems.
Images were initially captured by a cathode ray tube, and later through CCD
(Charge-Coupled Device) and CMOS (Complementary MetalOxide Semiconduc-
tor) sensors, which convert light to electrical signals. This electric signal is trans-
ferred along an extensive cable network to a central surveillance room, where the
video is displayed on monitors and/or recorded on magnetic tapes by a VCR, usu-
ally one for each camera. These systems require frequent changing of tapes, and
an equal amount of machines in the field (the cameras) and in the central surveil-
lance room (the VCRs). As a result, these systems required large investments in
infrastructure and considerable operational costs due to staffing and maintenance.

With the continuous growth of processing power and storage capabilities of
personal computers, digitization of analog video signals has become a viable op-
tion. The handling of digital video signals became feasible when video compres-
sion was gradually introduced, to reduce the recording bandwidth of digital video
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1.1. Brief history of video surveillance

signals. To put the amount of data that a single video camera produces in per-
spective, a digitized color video signal at standard-definition broadcast resolution
generates enough data to fill one CD-ROM every 22 seconds. To handle this vast
amount of data, digital recording systems utilize two data reducing strategies. The
first involves reducing the number of frames stored per second, from 25 per sec-
ond contained in the original signal to, for example, one frame per second, thereby
effectively reducing the amount of video data by a factor of 25. Secondly, each
frame is compressed using advanced image coding algorithms, to remove visual
redundancies, typically capable of reducing the amount of data by a factor of 20
without a significant loss in visual quality. Both strategies combined reduce the
amount of data by a factor of 500, allowing a single CD-ROM to store 3 hours of
video surveillance. Most of the video surveillance systems in use today still utilize
these strategies.

Recently, due to the prevalence of use of H.2641 on the Internet and Blu-ray
Disc, systems are released that utilize H.264 video compression. Without frame-
rate decimation, H.264 is capable of reducing the data by a factor 50-60, retaining
much better motion resolution. However, due to the complexity of this codec,
encoding and decoding requires significant resources, so that it is usually per-
formed by a dedicated hardware chip, capable of coding a single high-quality
video stream. Furthermore, due to the dependency on previously decoded frames,
severe artifacts can occur when a small portion of the video stream is lost, or when
coding deadlines are not satisfied. These characteristics have hampered the speed
of introduction of H.264 in large-scale surveillance applications, despite its excel-
lent compression ratio.

Migration to digital distribution networks

With the rapid growth of the Internet, IP-based (Internet Protocol) networks have
grown in popularity. A similar popularity can be witnessed in CCTV applications,
where the traditional analog connections have been replaced by extensive Local
Area Networks (LANs) dedicated for video surveillance. The change of analog
distribution to digital distribution has also significantly changed the composition
of the video surveillance system, shifting the Analog-to-Digital (AD) conversion
and compression of the video signal from the central surveillance location, to each
individual camera. Since video signals are now transported digitally, the quality
loss over large distances, common for analog systems, is avoided. Furthermore,
due to the networked technology, a dedicated cable to the central location is not

1In the MPEG community, this standard is also known as MPEG-4 AVC.
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1. INTRODUCTION

required anymore, thereby simplifying the infrastructure and greatly improving
the extensibility of the system.

1.2 Components of modern video surveillance systems

Figure 1.1 gives an overview of the components typically present in a modern
video surveillance system. At the left side, we observe a large amount of net-
worked cameras, both static and motion controlled. These cameras are connected
through several network switches to a dedicated LAN, shielded from other net-
worked applications for security reasons. To this dedicated network various ob-
servers are connected, each with their own characteristics. Storage servers record
the video data on large sets of hard disks, allowing video information to be re-
tained for days, weeks or months, depending on customer requirements and local
legislation. Usually, a central surveillance location is an integral part of the infras-
tructure, to offer joint control and overview of all captured streams using multi-
ple monitors. Due to the large amount of video streams, typically an overview is
given of all the video streams in small windows, while the video streams that are
currently of interest, are enlarged to full screen. At other locations in the building,
a single observation monitor can be present, for example at a reception desk, to
specifically observe the entrance. Mobile devices with a range of screen sizes and
processing power may be connected wirelessly, such as laptops, tablets and smart-
phones. Finally, the surveillance system can be connected to the outside world by
means of a modem or a specific and protected network connection, so that videos
can be observed from remote locations. Recently, the list of observers has been ex-
panded with automated video processing systems, that utilize advanced machine
learning techniques to gain understanding of the behavior of objects in the video
stream. For example, these systems can perform face and license plate recogni-
tion, tracking of persons or objects and analysis of the behavior of people, such as
flow of crowds or posture estimation. A recent elaborate coverage of the use of
automated systems in object categorization and detection in the domain of video
surveillance can be found in Wijnhoven’s thesis [3].

From Figure 1.1, we can derive different use cases for a video coding system,
leading to the following key observations.

• A video surveillance system has a large amount of video capturing devices.

• The video capturing devices are usually small, low-powered systems, and
can be enhanced with embedded system technology.
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Tablet
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Figure 1.1: Components in a modern video surveillance system.

• A large network is present that connects all video capturing devices, storage
servers and observers together, with limited bandwidth along connections.

• It is possible that a large amount of video information flows to a single loca-
tion, such as a storage server, or a central surveillance location.

• Usually there is a limited amount of observers, but there is a rather large di-
versity between them. This diversity ranges from smartphones with limited
processing power, to central surveillance locations with a large amount of
screens and processing power, to enormous storage servers that allow stor-
age of the captured video of hundreds of cameras for multiple years.

• Observers are not necessarily human, there is a fast growing segment of com-
puters, processing and analyzing the video information autonomously.

We can foresee that these key observations will have an impact on the design
of the video coding in a video surveillance system. First of all, we observe a differ-
entiation of requirements when compared to traditional consumer video distribu-
tion systems. The number of video sources and observers is different, and special
observer patterns are present, such as trick play, and non-human autonomous sys-
tems. Second, some form of scalability should be included due to the large differ-
ences between observers. Finally, due to the high number of low-power, low-cost
systems and convergence of large amounts of data at a single location, complex-
ity is of utmost importance. These impacts on video coding form the basis for the
research scope of this thesis, which is discussed in more detail in the next section.
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1.3 Research scope

Up to this point, key observations for the domain of video surveillance have been
formulated from a broad system perspective. This section explores these key ob-
servations in more detail and distillates the impact of the domain constraints on
the video coding algorithms and architecture within the video surveillance system.
In the previous section, we have identified three areas of interest: (1) the different
requirements of video surveillance systems compared to consumer video distribu-
tion systems, (2) a large differentiation between observers, requiring some form of
scalability in the video coding, and (3) the need for controlled complexity, to fa-
cilitate low-cost, low-powered devices and data convergence at a single location.
These areas of interest will be explored in more detail in the following sections.

Requirement differentiation for video surveillance systems

Compared to consumer video distribution systems, video surveillance systems
have very different properties. A few of these can be directly derived from the
key observations, of which a selection of the most critical properties are collected
in Table 1.1.

Table 1.1: Differentiation of requirements between consumer video distribution and video
surveillance systems. Number are not exact, but indicate orders of magnitude.

Aspect Consumer distribution Video surveillance
Number of simultaneous sources 1-2 1-1000
Number of observers Millions 1-10
Diversity of observers Standardized Very high and dynamic
Allowed encoding complexity Very high Very limited
Allowed decoder complexity Very low Moderate
Simultaneous sources observed 1-2 1-1000
Camera control No Yes
Latency constraints 10 seconds (live) to none 1/5th of a second
Special playback modes Limited importance High importance

Because of the above differentiation of requirements, consumer video encod-
ing standards are not optimal, as they have been defined mostly for the case of
inexpensive, large-scale video distribution, not video surveillance. The following
conclusions can be drawn if we take into account the special requirements of video
surveillance systems.
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1. Encoder complexity is very important because of the high number of video
sources in the system and the cost-constrained nature of the video capturing
devices.

2. A powerful single observer and control room should be able to decode tens to
hundreds of streams simultaneously, where some quality degradation is ac-
ceptable, as long as it can be controlled.

3. Live viewing with optional camera control of the camera occurs frequently;
therefore, end-to-end delay is a critical parameter.

4. The system should allow for integrated special playback modes such as slow
motion and backwards play for analysis purposes and high-speed playback
for searching key events.

Observer variation: novel observers and event dependencies

As mentioned previously, not all observers are human. Video analysis plays an
increasingly important role in modern systems. Moreover, the use of visual sig-
nals in analysis depends on the application. For example, a high-quality image
at a high frame rate is required for tracking, posture analysis and fall detection.
Some applications investigate only the contents of the video on a per image ba-
sis, e.g. face recognition, and require only a single high-quality image at a fixed
interval. Other applications investigate motion patterns and require only reduced
image quality, but at a high frame rate. In this category falls for example the esti-
mation of traffic-flow patterns in traffic video for congestion detection or detection
of a ghost driver. In his work related to healthcare video processing, Albers [4]
concludes that analysis video processing is characterized by occasional interrupts,
only requesting information when needed, which results in much more variable
access patterns when compared to traditional stream-oriented video processing.

The quality of the video that is required for a certain task can also be dependent
on events, such as turning on a PTZ (Pan Tilt Zoom) camera. Alternatively, a
desire for modified quality can also occur due to a change of scene events. For
example, the resolution and frame rate for surveilling an empty car park can be
relatively low, but when objects start moving around, a high quality and frame
rate is desired. This adaptive requirement of quality does not occur only on live
video, but is also present for stored video. Recent video capturings demand a high
quality in case that analysis of the video is required, but archived video may be
reduced in quality in order to save storage space.

From this observer variation, we can conclude there is a strong requirement
for flexible access with respect to three system parameters: quality, resolution and
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frame rate of the same video data. This leads to the exploration of three degrees of
scalability, based on these three system parameters. The degree of scalability can
be optimized specifically for the observer of the video, for both live and recorded
video. To ensure a fluent use between such forms of scalability, this scalability
should be realized without any recoding, but by simply discarding parts of the
coded information.

Design constraints for practical surveillance systems

For a practical video surveillance system, the use of resource-constrained systems
is unavoidable. The following items lead to constraints for the video coding sys-
tem.

• The video cameras are distributed over a certain premises. Due to the high
number of cameras, their cost should be reasonable and size should be small,
while power consumption / heat dissipation should be limited.

• The global cost and size constraint on the applied video cameras in a system
limits the amount of intelligence that can be incorporated inside.

• Data storage servers and the control room should be able to cope with the
large amount of video data that converges at these locations, which is partic-
ularly critical when this information is decoded on site.

• Display of these large amounts of data in the control room should be pos-
sible. However, reduced-scale display on a per camera basis is allowed, as
long as the scale can be adjusted in an instance. This option should also be
available for recorded video.

• Observation of the scene by PTZ cameras should be nearly instant, to allow
human operators fine control of the camera movements.

• The video coding algorithms should allow these flexible modes of observa-
tion, without resorting to computationally expensive recoding of video in-
formation.

Derived video coding system requirements

In the previous sections, we have highlighted several system aspects that define
the scope of the research in this thesis. We have first discussed the different re-
quirements for video surveillance systems compared to consumer video systems
in Section 1.3, followed by a explanation on the variation of observers, both novel
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observers and event dependencies in Section 1.3. Finally, in Section 1.3, we have
presented the design constraints that a practical surveillance system imposes to
the system architect. From these sections, we can distill three critical system re-
quirements for a video coding system applicable to video surveillance, which are
as follows.

1. The most critical is the need for scalability in the video codec. This is re-
quired for all of the above items: different video coding requirements for
video surveillance (Section 1.3), observer differentiation (Section 1.3) and the
capability for processing large amounts of converging video streams by a
single observer without recoding (Section 1.3).

2. Furthermore, the complexity of the video coding is of utmost importance, and
has a special focus on encoder complexity. This is due to the high number of
encoding sources, limited in cost and processing ability (Section 1.3). Simi-
larly, the decoding complexity is important for observers that need to handle
large amounts of streams converging at a single location (Section 1.3).

3. The video coding should be specifically designed for the video surveillance do-
main and incorporate limitations on end-to-end delay and feature a feasible
implementation of special playback modes (Sections 1.3 and 1.3).

1.4 Problem statement and research questions

Definition of problem statement

The requirements formulated at the end of the previous section have been used to
delineate the problem statement for this thesis, which is summarized as follows:

To design a video coding system suited for video surveillance, featuring flexible scalable
video coding that avoids recoding of video signals, while its complexity enables mapping
on resource-constrained embedded systems.

This problem statement embodies three critical aspects: (1) the main objective,
(2) the feature requirements and (3) the domain constraints. In the following, we
will elaborate on these three critical aspects.

Objective To design a video coding system suited for video surveillance. Preceding sec-
tions have clearly illustrated the specific nature of video surveillance systems
and their requirements. Due to the high number of encoders, the complex-
ity of the encoding algorithm is very important. Furthermore, we have to
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consider that all videos should be potentially processed by a single powerful
observer, yet still with finite processing power and a broad variety of devices.

Scalability and trick-play requirements Flexible scalable video coding that avoids re-
coding of video signals. A flexible scalable video system will facilitate playback
by any type of observer by providing access to various qualities, resolutions
or frame rates that the observer requires or can handle. The system should
also provide video surveillance specific features, such as trick play and mech-
anisms for gradually erasing earlier recordings. Furthermore, the features
should be obtained without video signals, to minimize the complexity.

Domain constraints While its complexity enables mapping on resource-constrained em-
bedded systems. Most of the video capturing devices in the video surveillance
system will be cameras distributed over a certain premises. Due to the large
amount of cameras in a typical surveillance system, they should be of rea-
sonable cost, limited size, and should not require large amounts of power
or forced cooling. Most video capturing devices are therefore likely to be
resource-constrained embedded systems, which should be considered from
the first design onwards.

Research questions

Since the objective, scalability and trick-play requirements and domain constraints
are defined, it is possible to formulate four clusters for our research questions:
(1) a high-performance coefficient coding algorithm is required to encode scalable
transformed image and video data, (2) we need an framework for and complex-
ity estimation of scalable temporal video coding, (3) the requirement of adapting
motion estimation to scalable video coding and (4) the coefficient and temporal
coding need to be mapped and verified on embedded architectures. These clusters
lead to the following Research Questions (RQs) for this thesis.

RQ1: Efficient Variable Length Coding (VLC) of scalable transformed image
and video data.

RQ1a: Is it possible to design an alternative high-performance scalable video coefficient
coding algorithm without losing coding fidelity?

RQ1b: Can we extend beyond the scalable properties of current scalable codecs, and pro-
vide highly flexible coding, with only a limited increase of codec complexity?

RQ1c: Is it better to implement scalable variable length coding in a quality-progressive
way, or to process multiple qualities in parallel?
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RQ2: Framework for and complexity estimation of scalable temporal video
coding.

RQ2a: Can we identify a suitable framework for scalable temporal coding?
RQ2b: What is the trade-off between temporal coding complexity, end-to-end coding delay

and corresponding visual quality?
RQ2c: Based on the outcomes of the previous trade-offs, is the chosen temporal coding

structure suited for video surveillance?

RQ3: Motion estimation in scalable video coding and its implementation
efficiency.

RQ3a: Can we develop a motion estimation algorithm that is suitable for a temporal
scalable wavelet coding system and that elegantly propagates motion information
within such a system?

RQ3b: Is it possible to design a motion estimation algorithm that is not only efficient,
but also based on the hardware media processing kernels of modern computing
platforms?

RQ4: Verification of scalable VLC and scalable temporal coding on embedded
architectures.

RQ4a: What embedded execution architecture would be suitable for implementing a scal-
able video coding algorithm?

RQ4b: How can a combination of the high-performance scalable video coefficient coding
and the scalable temporal coding be mapped on a resource-constrained embedded
architecture, and can real-time performance be obtained?

1.5 Contributions of this thesis

The contributions of this thesis are fully related to the design of a wavelet trans-
formation based video codec, featuring motion estimation and compensation, and
advanced wavelet coefficient coding. The details of the coding stages of such a
coding system are explained in Chapter 2. Here we summarize the scientific and
other technical contributions that were made in those coding stages.
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Hardware-efficient encoding of wavelet coefficients

Our first contribution involves the re-design of one of the best wavelet coefficient
encoding algorithms, called SPECK. The SPECK algorithm is a variant of the well-
known SPIHT algorithm, but more efficient in terms of exploiting local coeffi-
cient correlation. We have designed a new SPECK-based coding algorithm that
splits the algorithm in two processing stages: one data-independent stage and one
data-dependent stage. This new concept has the advantage that it facilitates data-
independent processing, which enables a significant improvement in deploying
optimization techniques such as parallel computing and efficient memory man-
agement by avoiding the expensive use of coefficient memory lists. Furthermore,
we propose a novel coded-coefficient data partitioning that groups coefficients at
resolution and bit-plane levels, so that the scalability of the bitstream for data visu-
alization is significantly increased. This new partitioning enabled flexible scalabil-
ity without recoding, or a need to decode the payload, with a negligible increase
in complexity or decrease of coding efficiency. Besides the above key innovations,
we contribute a few other efficiency improvements. First, pixels are processed for
all bit planes in parallel, instead of a per bit-plane strategy, thereby significantly
increasing the processing speed. Second, we propose an enhancement for the def-
inition of energy bands to use the lossless 5/3 integer wavelet, to enable efficient
coding in a range from lossy to lossless.

Complexity analysis of scalable wavelet coding systems for video

We contribute with a flexible scalable coding framework based on four basic build-
ing blocks based on wavelet lifting configurations, which facilitate the creation of
various temporal configurations in a flexible way. This contribution enables easy
complexity analysis and control in the temporal domain. To this end, we inves-
tigate the computational complexity of various temporal configurations in terms
of motion estimation complexity, memory usage and end-to-end delay. As a re-
sult of this broad analysis, we propose a special temporal configuration for video
surveillance, which features good coding capabilities, low end-to-end delay and
manageable complexity.

Architecture-driven motion estimation algorithm

As a consequence of using a special temporal configuration, we have developed
a novel motion estimator with the following contributions. First, the algorithm is
designed in such a way that it utilizes hardware-accelerated block-difference cal-
culators and block-shifter units as fundamental operations, to smoothly fit with
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programmable media processing kernels. Here, an attractive additional feature
is that the algorithm has a fixed processing time for all cases. Second, motion-
vector propagation of the motion estimator is matched to the hierarchical repre-
sentation by propagating motion vectors from low-resolution wavelet levels to
high-resolution wavelet levels in the temporal direction. Third, we evaluate this
motion-vector propagation strategy for both the proposed motion estimation algo-
rithm and a non-scalable state-of-the-art motion estimation algorithm.

Verification of designs on a resource-constrained embedded system in real-time

The above innovations and algorithms have been verified by executing them on
a selected commonly available embedded system platform. These implementa-
tion studies have resulted in a number of efficiency improvements. First, we have
found a highly efficient multi-level 2D integer wavelet transform implementation,
utilizing SIMD parallelization and highly efficient background memory transfers
using DMA to offload the CPU. These techniques are also exploited for a highly ef-
ficient implementation of the hardware-efficient encoding of wavelet coefficients.
Furthermore, we validate the new temporal configuration of the scalable coding
system with an evaluation of the practical implementation. Together, the previous
points offer a prototype of the scalable video coding system, executing in real-time
on a programmable state-of-the-art digital signal processor.

1.6 Thesis outline and related publications

This section gives an overview of the contents of this thesis and visualizes the
relation between the chapters by means of Figure 1.2. In this figure, the topics
are organized in the horizontal direction, and conceptual levels in the vertical di-
rection. Chapter 2 provides an introduction to scalable wavelet video coding and
introduces the four main concepts of scalable video coding: the wavelet transform,
scalable spatial coding, scalable temporal coding and motion estimation. The main
contributions of this thesis are presented in Chapters 3, 4 and 5, following the
structure of Chapter 2. The validation and related efficiency improvements are
presented in Chapter 6, while the conclusions and future work are discussed in
Chapter 7. The individual chapters and their related scientific background are
now briefly presented in more detail.

Chapter 2 introduces the reader to various aspects of Scalable Video Coding. It
starts with motivating the use of video compression and gives a short his-
tory of current image and video coding. Then the focus is on wavelet-based
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Chapter 4 Chapter 5Chapter 3

Chapter 6: Verification through implementation on embedded architecture

Chapter 2: Introduction to Scalable Video Coding

Discrete Wavelet 
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Hardware 
optimized ME
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Figure 1.2: Research scope of this thesis, following the main structure of a scalable video
codec in horizontal direction and different conceptual levels in vertical direction.

scalable coding, first by introducing common wavelet transforms and algo-
rithms from 1D to multi-level 2D, after which two state-of-the art wavelet
coefficient encoding algorithms are discussed. More specifically, we present
SPIHT (Set Partitioning in Hierarchical Trees) and SPECK (Set Partition Em-
bedded bloCK) and provide a detailed example for each, illustrating their
inner working.

Chapter 3 has a clear focus on the algorithms for encoding wavelet coefficients,
starting with image coding. We first investigate the complexity of the SPIHT
and SPECK coding algorithms, after which we propose a hardware-efficient
scalable image coder based on SPECK, called TSSP (Two-Stage SPECK), which
creates an output stream identical to SPECK. We propose several enhance-
ments that significantly improve the algorithm efficiency, to facilitate em-
bedded system implementations. First, we split processing into one data-
independent stage and one data-dependent stage. A highly efficient buffer
eliminates the need for dynamic lists, while processing in the second stage
is performed for all bit planes in parallel. An enhancement of the algorithm
is the Highly Scalable (HS) extension, which allows parsing of the bitstream
without payload decoding, thereby creating a bitstream of any desired qual-
ity, resolution and bitstream order. The second enhancement, 5/3 Energy
Correction (53EC), retains the perfect reconstruction feature of the 5/3 inte-
ger wavelet, while significantly improving lossy coding performance.
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The contributions of this chapter have been presented at the ICCE 2011 [5]
and ICIP 2013 [6] conferences and further published in the IEEE Transactions
on Consumer Electronics in 2011 [7].

Chapter 4 explores the trade-off between complexity and performance in scal-
able wavelet coders in the temporal domain. The chapter presents a frame-
work to evaluate various temporal configurations of the coding system. We
adopt a special configuration for video surveillance applications, featuring
low memory access and low end-to-end delay, while still achieving suffi-
ciently high quality. We also introduce two extensions to the framework.
The first improves energy correction in the temporal lifting tree and signif-
icantly reduces computational complexity and the required memory band-
width. The second improves the average quality of the frames within a GOP
and reduces quality fluctuations significantly, which is also expressed by a
reduction of variance of the PSNR by 30%. The second extension also signifi-
cantly improves the perceptual quality. In all, the coding quality approaches
that of H.264 SVC within 1 dB.

Contributions from this chapter have been presented at the WIC 2007 [8] and
VCIP 2008 [9] conferences with respect to the temporal complexity estima-
tion. The proposed enhancements have been presented at the PCS 2010 [9].

Chapter 5 presents a novel motion estimator designed specifically for scalable
video coding, which is based on hardware-acceleration features. The pro-
posed Highly Parallel Predictive Search (HPPS) algorithm features two can-
didate motion vectors and supplements these positions with additional re-
finement candidates arranged in a Parallelogram-Shaped Scanning (PSS) pat-
tern. The PSS pattern reduces SAD test points up to 50% without signifi-
cantly reducing the accuracy of the found motion vectors. HPPS also fea-
tures hierarchical, multi-level candidate prediction so that large motion vec-
tors can still be found. In contrast with many other motion estimators, the
computational load of HPPS is fixed, regardless of scene activity and tempo-
ral distance, thereby ensuring an efficient mapping on processing cores.

The HPPS motion estimation algorithm, and enhancement to its predictions
were presented at the ICIP 2009 [10] and ICIP 2010 [11], respectively.

Chapter 6 presents optimized implementations of two-dimensional wavelet filter-
ing, the TSSP wavelet coefficient encoder and the temporal filtering frame-
work. The chapter describes a complete implementation of the proposed
scalable video codec system using a common embedded DSP platform. We
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achieve efficient implementations by using SIMD (Single Instruction Mul-
tiple Data) instructions for data and computational parallelism, while ex-
ploiting Direct Memory Access (DMA) to transfer data to and from a self-
managed Level-2 cache, parallel to computations. We are able to execute a
4-level wavelet transform at 4CIF (CCIR-601) broadcast resolution in 6.08 ms,
while for TSSP, a real-time performance is obtained. Finally, the full temporal
filtering is integrated, but without motion estimation and compensation, due
to architectural limitations. The implementation of the fully scalable video
encoding system obtains a frame rate of 20 fps.

The wavelet implementation was presented at the DSP 2009 conference [12],
the TSSP codec implementation at the VCIP 2011 conference [13], and the
combined video system at both the ICME 2009 [14] and VCIP 2011 [13] con-
ferences.

Chapter 7. The final chapter in this thesis summarizes the achieved results and
provides conclusions per chapter. Then the research questions of this thesis
are addressed. We conclude that scalable coding is feasible for video surveil-
lance systems and that it can be executed on resource-constrained embedded
systems. The chapter concludes with a view beyond this thesis, and suggests
areas of interest for future research, such as object-based video coding, com-
bined with video analysis.
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All this time the guard was looking at her, first through a

telescope, then through a microscope, and then through an

opera glass.

Through the Looking Glass
LEWIS CARROLL

Abstract

This chapter introduces the reader to various aspects of Scalable Video Coding. It commences with
explaining the need for video compression and presents a short history of current image and video
coding. From there, the attention shifts to wavelet-based scalable video coding, first by introducing
common wavelet transforms and algorithms from 1D to multi-level 2D. After this, we discuss in
more detail two state-of-the art wavelet coefficient encoding algorithms: SPIHT (Set Partitioning
in Hierarchical Trees) and SPECK (Set Partition Embedded bloCK). For each coding technique, a
detailed example is provided, which illustrates their operation.
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2.1 Introduction

The first chapter has defined the scope of the thesis by discussing a brief history of
video surveillance, the migration from analog to digital systems, and presenting
the components of a modern video surveillance system. It has been clarified that
the requirements of video surveillance systems differ from consumer video dis-
tribution systems and that a practical surveillance system has design constraints,
from which requirements for the coding system can be derived.

This chapter provides a background for the reader in the area of video coding,
with an emphasis on wavelet-based scalable coding. The organization of this chap-
ter is visualized by the block diagram of Figure 2.1. In the first section (Block A)
coding systems are discussed, while in the following sections the structure of scal-
able wavelet video coding is followed, as depicted in Block B in the figure. The four
blocks in Block B indicate the relevant areas regarding various parts of this struc-
ture: the wavelet transform, coefficient coding, scalable video coding and motion
estimation. The first two areas (Blocks C and D) are of introductory nature and
will be discussed in dedicated sections in this chapter. The remaining blocks in
Block B, on scalable temporal coding and motion estimation, and Block D provide
the input to the contributing chapters of this thesis.

In Section 2.2 coding systems are discussed, presenting the two mostly used
pseudo-frequency-domain transforms for image and video coding: the DCT and
wavelet transformation. It also provides a brief discussion on the H.264 standard,
which is the most prominent compression standard at this moment. Section 2.3
concentrates on the wavelet transform and discusses the lifting framework, multi-
level wavelets, energy correction for both 1D and 2D wavelets and integer wavelet
transforms. Section 2.3 presents two state-of-the-art wavelet coefficient coding
techniques: SPIHT (Set Partitioning in Hierarchical Trees) and SPECK (Set Par-
tition Embedded bloCK). The section also illustrates the operation of these coding
techniques with examples. The discussion of these two coding techniques provide
a good primer for the contributions presented in the next chapter on hardware-
efficient scalable video coding, where we improve the SPECK codec.

2.2 Coding systems

The need for compression

Natural images captured by still and video cameras contain a large amount of
digital information. Multiple Bytes are used per pixel to represent full-color in-
formation, while pixel resolutions are in the order of a million pixels per image.
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Figure 2.1: Layout of Chapter 2, based on the scalable wavelet video coding structure with
relations to relevant techniques described in this chapter and upcoming chapters.

For video systems, tens of these images are captured per second, thereby creating
a continuous stream of data in the order of 10-300 MegaBytes per second. Two
common video formats in use today are based on SD (Standard-Definition) and
HD (High-Definition) resolution. SD video has a spatial resolution of 720× 576
pixels, with a refresh rate of 25 frames per second in Europe, while HD video has a
resolution of 1920× 1080 pixels, with refresh rates of 24, 25, 30 and even 60 frames
per second. For compression, both formats typically use a color space with one
luminance component (Y) and two color components (CrCb), which are commonly
sub-sampled by a factor of two in both the horizontal and vertical dimension. This
color space and sub-sampling is denoted in abbreviated form by the term 4:2:0.

Table 2.1 presents the amount of data generated by video systems at various
spatio-temporal resolutions. Several common SD and HD formats are listed, to-
gether with the raw and target data rates. These rates lead to a desired compres-
sion ratio and associated storage requirements for 1 hour of video. It can be no-
ticed that high compression ratios are required for practical feasibility of systems.
At these ratios, it is evident that forms of information content is lost, such as high-
frequency details.
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2. DEVELOPMENTS IN WAVELET IMAGE AND VIDEO CODING

Table 2.1: Bandwidth and storage requirements for 1 hour of SD (720× 576 pixels) and HD
(1920× 1080 pixels) quality video with 4:2:0 color sampling at different compression ratios.

Resolution Frames Raw rate Target rate Compression

[pixels] per sec. [Mb/s] [GB/hr] [Mb/s] [GB/hr] factor

1920× 1080 60 1493 672 20 9.00 75:1

1920× 1080 30 746 336 10 4.50 75:1

1920× 1080 15 373 168 5 2.25 75:1

1920× 1080 10 249 112 3 1.35 83:1

720× 576 30 149 67.2 4 1.80 37:1

720× 576 15 74.6 33.6 2 0.90 37:1

720× 576 10 49.8 22.4 1 0.45 50:1

Discrete Cosine Transform (DCT) coding

Most image and video compression systems in use today utilize the DCT (Dis-
crete Cosine Transform) as the first stage for the compression algorithm, which
decorrelates the image coefficients by converting them to a pseudo-frequency do-
main. Well-known examples of DCT-based compression are the JPEG standard
for encoding of still images and the MPEG-2 standard for television broadcasting,
which is also used for disc-based storage (DVD). DCT compression systems typi-
cally split the full-color image planes in blocks of 8× 8 pixels, which are individ-
ually transformed to the DCT coefficient domain, resembling to some extend the
Fourier frequency domain. After transformation, the DCT coefficients are quan-
tized and variable-length coded. For video signals, temporal redundancy is ad-
ditionally exploited by estimating the movement of objects in the video, using a
block-based motion estimator. The current video frame is predicted from the esti-
mated motion, going from one frame to another, while only the difference between
this predicted image and the actual image is encoded. This coding principle sig-
nificantly reduces the required bit rate for a certain visual quality.

The vast majority of current video compression systems employ DCT compres-
sion techniques, since it is the best fixed transform for compression. Although
this class of systems outperforms all other fixed transforms, DCT coding systems
can still show visual artifacts when the bit rate is set too low, leading to blocking,
mosquito noise and poor gradient rendering.
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Video coding

At present, H.264/MPEG-4 AVC [15] is the most prominent HD video coding stan-
dard. It is used for many applications, such as Blu-ray Discs and HD Digital Video
Broadcasting (DVB) on terrestrial, cable and satellite (DVB-T, DVB-C and DVB-S,
respectively). It is also commonly used for video streaming on the Internet from
various well-known websites and on-demand movies1.

H.264 has evolved from previous DCT-based standards, such as H.263 and
MPEG-2. It significantly improves coding performance by adding many new cod-
ing features at each processing stage. Similar to previous standards, it uses block-
based motion compensation and DCT, but it differs from previous standards in the
following ways.

• Multiple previously decoded pictures can be used as a reference, allowing up
to 16 reference frames for a single frame, in contrast to the single reference P-
pictures, and the double reference B-pictures in MPEG-1/2 and related stan-
dards.

• Variable Block-Size Motion Compensation (VBSMC) with up to quarter-pixel
precision and advanced multi-tap sub-pixel prediction. Various block sizes can
be used, ranging from 16× 16, 16× 8, 8× 16, 8× 8, 8× 4, 4× 8 to 4× 4. For
the larger block sizes, i.e. 8× 8 and above, each block can point to a different
reference frame.

• Advanced spatial prediction of blocks from previously decoded neighbouring
blocks. Various directions for prediction of DCT coefficients into the new block
can be used.

• New integer 4 × 4 and 8 × 8 transforms, based on the non-integer 8 × 8 DCT
transform.

• An integrated adaptive deblocking filter within the prediction loop to prevent
blocking artifacts.

• A choice of two advanced entropy coders: Context-Adaptive Binary Arithmetic
Coding (CABAC) and Context-Adaptive Variable-Length Coding (CAVLC). The
CABAC performs better than CAVLC, but is also considerably more complex.

These techniques significantly improve the performance of H.264 over previ-
ous standards such as MPEG-2, yielding a factor of two higher compression or
even more. It features various techniques to reduce the blocking artifacts associ-
ated with DCT-based coding, such as the in-loop deblocking filter, a new transform
and flexible block sizes. This performance is obtained at the expense of a 3-4 fold
complexity increase. As an alternative to the block-based DCT, wavelet transforms

1These services are commercially exploited under the names of YouTube, Vimeo, and iTunes.
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are emerging for high-quality video coding such as digital cinema. The next sec-
tion provides an introduction of the wavelet transforms used in image and video
coding.

Discrete Wavelet Transform (DWT) coding

To alleviate the coding artifacts of block-based DCT coding systems, alternative
transforms have been proposed. One of the most promising techniques is the
wavelet transform, which is based on splitting the video signal into multiple fre-
quency bands. In contrast to the block-based DCT transform, the wavelet trans-
form is applied to the whole image, sequentially addressing both dimensions. This
approach splits the image into four frequency bands: LL, LH, HL and HH, with
each having half of the horizontal and vertical resolution of the input image. The
LL-band is then transformed again, using the same wavelet filters for a predeter-
mined number of levels, creating a hierarchical representation of the coefficients.
This particular hierarchical representation using halved frequency bands is called
a dyadic wavelet decomposition, which is shown in Figure 2.2 for two hierarchical
levels.

HH1

HL0

HH0LH0

HL1

LH1

LL1

(a) (b)

Figure 2.2: Two-level dyadic wavelet decomposition: (a) hierarchical split in wavelet fre-
quency bands and (b) wavelet coefficients for the Lena image. For better display, high-pass
wavelet coefficients are extracted at 8-bit resolution and offset with a value of 127 to grey.

From this figure, it can be observed that the wavelet transform effectively decor-
relates natural images and compacts most of the image energy in the LL subband.
Figure 2.2(b) is also a clear demonstration of the multi-resolution nature of the
dyadic wavelet decomposition, thereby providing an inherently natural support
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for scalable image and video coding. The following section provides an in-depth
introduction to wavelet transforms and their application to scalable coding.

2.3 Wavelets for image and video coding

This section provides an overview of wavelets for image and video coding. It com-
mences with discussing the literature of the wavelet transform, after the lifting
framework and integer-to-integer wavelets are presented, which are commonly
abbreviated as integer wavelets. Furthermore, also 1D, 2D and multi-level en-
ergy correction are explained. Section 2.3 addresses efficient coding techniques for
wavelet coefficients.

Brief overview of literature

The multi-resolution representation of images using the Laplacian pyramid [16] is
closely related to both subband coding and wavelet decompositions. Mallat [17,
18, 19] used this concept of multi-resolution analysis and wavelets for the ap-
plication to data compression in image coding, texture discrimination and frac-
tal analysis. He has also introduced the dyadic decomposition structure of Fig-
ure 2.2. Daubechies [20] [21] has significantly accelerated coding research, by
designing and publishing compact orthogonal wavelet filters, such as the well-
known floating-point 9/7 filter 2. When good orthogonal wavelet transforms be-
came known and available, research emerged to reduce the complexity of these
transforms.

One way to reduce the computational complexity of wavelet filters involves
replacing the floating-point wavelet filters and arithmetic by custom-designed in-
teger transforms, as proposed by Calderbank et al. [22, 23] ((2,2) and (4,4)), Le
Gall and Tabatabai [24] and Cohen et al. [25] (5/3), Said and Pearlman [26] (S+P)
and Antonini et al. [27] (9/7). These integer wavelets enable an efficient imple-
mentation on fixed-point arithmetic and have the additional benefit of being fully
reversible, thereby enabling lossless compression.

Another way to reduce computational complexity of the wavelet transform is
achieved by replacing the Finite Impulse Response (FIR) filters by other means of
calculation. Sweldens [28, 29] has proposed that wavelet filters can be computed
using the lifting framework, where the FIR filter is replaced by a series of so-called
predict and update steps. Daubechies and Sweldens [30] later showed that any dis-
crete wavelet transform can be decomposed into a finite sequence of lifting stages.

2Due to the publicly available coefficients of the filter design, these filters have become known as
Daubechies filters.
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The following parts present more details on the specific system aspects: the lifting
framework, integer wavelet transforms and multi-level 2D wavelet transforms.

Lifting framework and integer wavelets

Using the lifting framework [28], the wavelet can be implemented with less multi-
pliers and adders than the straightforward FIR implementation. Figure 2.3 shows
the principle of the lifting framework. Input samples are split into odd and even
samples, after which the even samples are filtered and used to adjust the odd sam-
ples in the predict step. Likewise, the odd samples are then filtered and used to
adjust the even samples in the update step. Finally, a multiplication is performed
on both outputs to normalize signal energy.

Lazy Wavelet Predict Update

K

1/K

Input

Odd samples

Even samples

High pass

Low pass

+

+

+

-

Figure 2.3: Principle of lifting framework for wavelet filtering.

Figure 2.3 shows a single combination of an update and a predict step, which
is sufficient to implement the 5/3 wavelet filter. For more complex wavelet filters,
more sets of update and predict steps should be cascaded. For example, the 9/7-F
integer filter has two sets of update and predict steps. The multiplication factor
is needed to normalize signal energy contained in the low- and high-pass bands.
The single lifting combination of the 5/3 integer wavelet allows an implementation
without any output multiplication. For this filter, the predict and update steps are
defined by Equations (2.1) and (2.2), respectively, which are specified by

d[n] = d0[n]−
⌊

s0[n + 1] + s0[n]
2

⌋
, (2.1)

s[n] = s0[n]+
⌊

d[n] + d[n− 1]
4

+
1
2

⌋
. (2.2)

As can be derived from these formulas, the multiplication factors in the pre-
dict and update steps are powers of two, so that the complete 5/3 wavelet can be
implemented with only adders and simple bit-shift arithmetic without any mul-
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tipliers. This makes the 5/3 integer wavelet a perfect candidate for fixed-point
embedded implementations, in which complexity is of primary concern.

The more complex 9/7-F integer wavelet consists of two update and predict
steps and is defined by Equations (2.3)–(2.6), such that

d1[n] = d0[n] +
⌊

203(−s0[n + 1]− s0[n])
128

+
1
2

⌋
, (2.3)

s1[n] = s0[n] +
⌊

217(−d1[n]− d1[n− 1])
4096

+
1
2

⌋
, (2.4)

d[n] = d1[n] +
⌊

113(s1[n + 1] + s1[n])
128

+
1
2

⌋
, (2.5)

s[n] = s1[n] +
⌊

1817(d1[n] + d1[n− 1])
4096

+
1
2

⌋
. (2.6)

Both the 5/3 and 9/7-F integer wavelet are fully reversible and thus lossless.
Note that there is no energy correction or scaling factor utilized for these integer
wavelets, so that they offer perfect reconstruction.

Multi-level 2D dyadic wavelet decomposition

In wavelet-based image coding, the input image is transformed into the wavelet
domain by two-dimensional (2D) separable wavelet filters. The result of the 2D
wavelet transform consists of four frequency bands, commonly referred to as the
LL, HL, LH and HH bands. The LL band represents the low-pass image in both
horizontal and vertical direction and can be seen as a down-scaled version of the
original image. The HL, LH and HH bands contain high-pass image information.
The LL band still contains a large amount of spatial correlation and therefore, the
2D wavelet transform can be re-applied to this band, even for several times, up
to a predetermined typical number of iterations. The chosen number of iterations
is a trade-off by remaining resolution of the final LL band, the total number of
decomposition stages, the required number of bits to represent the LL coefficients
and the coding performance. The dyadic wavelet decomposition for two iterations
was already visualized in Figure 2.2.

1D, 2D and multi-level energy correction

Single-level energy correction

To balance the energy between the low- and high-pass output of the 5/3 wavelet,
the output scaling factor K present in the lifting framework (see Figure 2.3) is ma-
nipulated. For the standard 1D wavelet, K =

√
2 is a good factor for the low-pass
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output, which leads to using the reciprocal value for the high-pass output. These
factors are well-defined real numbers and thus not suited for fixed-point imple-
mentation.

Since the 2D wavelet transform is separable, two 1D wavelet filtering steps are
performed in succession. For better precision, we convert both the 1D scaling fac-
tors into two alternative 2D scaling factors after the 2D transform has completed.
Using the initial 1D scaling factor of K =

√
2, this results in the 2D scaling factors,

as presented in Table 2.2. These 2D scaling factors can be very efficiently imple-
mented in fixed-point arithmetic with bit-shifting.

Table 2.2: 2D scaling factors for the 5/3 integer wavelet.

Horizontal

Low-pass High-pass

Low-pass
√

2×
√

2 = 2 1√
2
×
√

2 = 1
Vertical

High-pass
√

2× 1√
2
= 1 1√

2
× 1√

2
= 1

2

Although scalable wavelet coding is a relatively new paradigm in picture cod-
ing applications, the optimization techniques were already applied to early pic-
ture coding systems several decades ago, such as the normalization factors used in
DCT-based coding.

Despite the simplicity of the HH-band scaling factor of 1
2 , the result of that

scaling in fixed-point arithmetic leads to imperfect reconstruction, as the effective
result is y = b 1

2 xc. For lossy image coding, this is not an issue, but for lossless
image coding, a reversible transform is required. As a compromise, the HH-band
scaling factor can be omitted, which makes the transform reversible again at the
cost of a reduced energy balance, thereby decreasing lossy coding performance.
Furthermore, the lossless coding efficiency is most likely also reduced, due to the
LL-band scaling factor.

Multi-level 2D energy correction

The dyadic wavelet decomposition consists of multiple filtering operations of the
2D wavelet transform over several scales, as discussed in Section 2.3. It is now also
possible to extend the 2D energy corrections to the multi-level framework, which
will result in the scaling factors of Figure 2.4(a). These numbers are found to be
identical to those proposed by Zhang Li-bao and Wang Ke [31]. The scaling factors
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for the energy correction that retains lossless coding, are presented in Figure 2.4(b).
This multi-level 2D energy correction is applied after completion of the multi-level
wavelet image transformation.
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Figure 2.4: Energy correction for a three-level dyadic wavelet decomposition with (a) both
LL- and HH-band scaling and (b) only LL-band scaling.

The energy balance of the 9/7-F integer wavelets is better than the 5/3 integer
wavelets, but it is still not fully balanced. We propose to use similar 2D integer
scaling factors, as introduced for the 5/3 wavelet, to further improve the energy
balance. The resulting scaling factors are found in Table 2.3, which were designed
such that the energy balance of the 9/7-F integer wavelet matches the energy bal-
ance of the 9/7 floating-point wavelet.

Table 2.3: 2D scaling factors for the 9/7-F integer wavelet.

Horizontal

Low-pass High-pass

Low-pass × 5413
4096 ×1

Vertical
High-pass ×1 × 3099

4096

In this section we have considered various aspects of the wavelet transform as
used for image and video coding. We have presented the lifting framework and
integer-to-integer wavelets, commonly abbreviated as integer wavelets. Finally,
we have discussed 1D, 2D and multi-level energy correction strategies to provide
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wavelet coefficients with good energy balance. In the following section, we discuss
the next step in the scalable video coding structure, addressing efficient coding
techniques for wavelet coefficients.

Wavelet coefficient coding

After wavelet transformation discussed in the previous section, let us now turn
to the following stage, concentrating on the efficient coding of the wavelet coeffi-
cients. Over the years, several wavelet coefficient encoding algorithms have been
proposed in literature. Most of these algorithms utilize the multi-resolution rep-
resentation of images and the property that the high-pass wavelet coefficients are
sparsely distributed non-zero coefficient values, which also have inter-band cor-
relations. Since wavelets maintain a certain form of spatial information in their
frequency analysis, unlike the Fast Fourier Transform (FFT), the correlation be-
tween bands of the same resolution and/or correlation across resolutions, can be
exploited for higher coding efficiency. An example of such correlation phenomena
is created by a sharp signal transient that introduces significant wavelet coeffi-
cients across different frequency scales at approximately the same spatial location.

Lewis and Knowles [32] were the first to exploit the inter-resolution correla-
tions of the multi-resolution representation of images. The EZW (Embedded Ze-
rotree Wavelet) algorithm proposed by Shapiro [33, 34, 35] exploits these inter-
resolution correlations, by introducing the concept of zerotrees. Zerotrees can be
used to effectively encode large regions of insignificant wavelet coefficients across
spatial resolutions. The coding algorithm provides progressive transmission, en-
coding the largest coefficients first, which are organized and then processed from
the highest bit plane downwards [36]. More specifically, the coding commences
with the most significant bit plane and codes the coefficients present in that bit
plane, as a sequence of zeros and ones, followed by a bit plane lower, and so on.
Consequently, each following bit-plane layer refines the accuracy of the descrip-
tion of the coefficients, which refers to progressive transmission of quality. For
compression, these refinement layers allow the bitstream to be terminated at any
given bit, while still providing a suitable partial image reconstruction. This con-
cept has the attractive feature that it yields the best possible image reconstruction
for that bit rate, related to the point of terminating the bitstream. This attractive
truncation feature can be exploited at any stage in the video communication chain,
e.g. in the encoder, decoder and in post-processing. Furthermore, every addi-
tional bit encoded/decoded from the bitstream layer increases the quality of the
image. Shapiro improved EZW by proposing a fast technique for identifying ze-
rotrees [37]. Creusere added regional decompression at a minor loss in compres-
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sion efficiency [38], also improving robustness in case of transmission errors [39].
Said and Pearlman improved on the concept of zerotrees [40], by introducing a

set partitioning algorithm, which has later evolved to the well-known SPIHT [41]
(Set Partitioning in Hierarchical Trees) algorithm proposed by the same authors.
SPIHT outperforms EZW in terms of coding efficiency and complexity and is often
used as a quality reference in wavelet image compression literature.

Outside the wavelet domain, quadtree partitioning has been used for image
coding with variable results results [42, 43]. However, for wavelet coding, Islam
and Pearlman [44] and Islam et al.[45] applied quadtree partitioning to the wavelet
coefficients in their proposed SPECK algorithm. SPECK (Set Partition Embedded
bloCK) exploits the sparse distribution of significant wavelet coefficients at vari-
ous bit planes like EZW and SPIHT, but isolates the significant coefficients by per-
forming quadtree partitioning individually for each of the wavelet bands (blocks).
At a first glance, it seems unfortunate that the correlation of coefficients between
frequency and/or resolution bands is not utilized. However, the processing of
individual bands has the benefit of being fully based on local data only, allow-
ing highly efficient cache memories usage, which speeds up the algorithm signif-
icantly. Moreover, it offers the possibility of parallel implementations, in which
different frequency bands and resolutions can be processed simultaneously. De-
spite missing the cross-frequency band correlations and cross-resolution correla-
tions, SPECK still rivals EZW and SPIHT in coding performance. Wheeler and
Pearlman [46] has combined concepts from SPIHT and SPECK, in order to slightly
improve coding performance, at the cost of additional computational complexity.

Finally, EBCOT (Embedded Block Coding with Optimal Truncation) was pro-
posed by Taubman [47, 48] and later adopted in the JPEG 2000 standard [49, 50].
EBCOT provides excellent compression performance and includes resolution scal-
ability, SNR scalability and a random-access capability. However, to provide all
of these features simultaneously, the algorithmic complexity of EBCOT is signifi-
cant, and processing single bit planes requires several coding passes. The random-
access capability, as required by the JPEG 2000 committee, was also added to
SPIHT by Wheeler and Pearlman [51].

Fortunately, JPEG 2000 has been adopted for digital cinema, which has revived
the importance of the standard and recently another high-end application of JPEG
2000 has emerged in the area of high-quality (Ultra-HD) professional video surveil-
lance [52, 53]. Since the application area of this thesis is more related to high-
volume surveillance at broadcast resolution, we will adopt the low-complexity
SPIHT and SPECK codecs as a basis for our exploration. The following sections
will discuss these two codecs in more detail, and provide an elaborate example to
illustrate the operation of both algorithms.
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2.4 SPIHT coding (Set Partitioning in Hierarchical Trees)

This section gives an elaborate overview of the SPIHT coding technique proposed
by Said and Pearlman [41], together with an example to understand its operation.
SPIHT coefficient coding is based on three concepts. First, the wavelet coefficients
are ordered by magnitude, following a spatial ordering algorithm that is dupli-
cated at the decoder. Second, refinement bits are transmitted in ranking order of
the bit planes, from most significant to least significant bits. Third, the similarity of
significant wavelet coefficients is exploited, at different locations, both locally and
across different scales. These three concepts will be explored in more detail in the
following paragraphs.

Transmission of coefficients

Said and Pearlman show that for a unitary transform, coefficients with a larger
magnitude contribute most to decreasing the Mean Square Error (MSE) of the
decoded image and that these coefficients should be transmitted first because of
their larger information content. This concept follows the progressive transmis-
sion method proposed by DeVore et al. [54].

In coding, coefficients are commonly represented in a fixed-point binary for-
mat. In this case, magnitude ordering of coefficients can be obtained by ordering
them, based on the number of bits required to represent the absolute value of the
coefficient, transmitting bits from the most significant to the least significant bit
plane. Figure 2.5 shows the binary representation of 16 coefficients, ordered by
magnitude. It should be noted that these coefficients can have varying locations
and signs. They are solely ordered based on the absolute value of the coefficient.
We adopt the definition that the bits in the highest and the lowest bit planes are
considered to be the most and least significant, respectively.

For successful transmission and decoding of these coefficients, several pieces of
information need to be transmitted: (1) the highest utilized bit-plane index of the
most significant coefficient, (2) information regarding the ordering of the coeffi-
cients, (3) the number of coefficients that are significant when observed at a certain
bit plane, and (4) sign information and refinement bits.

All bits in a row have the same contribution in reducing the MSE, and therefore
the bits can be transferred sequentially per bit plane as indicated by the arrows in
Figure 2.5. Furthermore, the ‘0’s and the first ‘1’ of each coefficient are not transmit-
ted, as they can be inferred from the transmission order and number of significant
coefficients per bit plane.

An algorithm to encode the coefficients based on the magnitude ordering is
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position (0,0) (1,1) (1,0) (0,1) (1,2) (2,3) (0,2) (0,3) (2,1) (3,2) (1,3) (2,0) (3,0) (3,3) (3,1) (2,2)

MSB: bit 5 1 1

sign + +

bit 4

bit 3

bit 2

bit 1

LSB: bit 0

0 0

+ +

1 1 0 0

+ −

1 1

0 0

0 0

+ +

1 1

0 0

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

− + + − − + − +

order 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 2.5: Binary representation of the magnitude-ordered coefficients.

given in Algorithm 2.1. With this algorithm, images of good quality can be re-
constructed, even when a small fraction of the coefficients have been transmitted.
However, the transmission of locations in the magnitude sorting pass is very ineffi-
cient and therefore SPIHT proposes a sophisticated approach to implicitly convey
the sorting information. This is discussed next.

Algorithm 2.1 Progressive transmission of magnitude-ordered coefficients
1: Transmit maxBitPlane = blog2(max(abs(coe f f icients))c
2: for bitPlane = maxBitPlane to 0, step -1 do

� Sorting pass:
3: Determine new significant coefficients for this bitPlane
4: Transmit number of new significant coefficients
5: Transmit location of new significant coefficients
6: Transmit sign of new significant coefficients

� Refinement pass:
7: Transmit bits at current bitPlane of previously significant coefficients
8: end for

Set partitioning sorting algorithm

SPIHT does not transmit the order of wavelet coefficients explicitly, but embeds a
magnitude-based ordering strategy within the algorithm by implementing a coef-
ficient sorting algorithm. If both the encoder and decoder utilize the same sorting

31



2. DEVELOPMENTS IN WAVELET IMAGE AND VIDEO CODING

algorithm, the decoder can follow the coefficient ordering by observing the results
of the sorting decisions of the encoder.

The sorting decisions in the encoder are based on a magnitude comparison
function which determines if a certain coefficient is significant or not. The co-
efficient c at location (i, j) is considered significant for a certain bit plane n, if
|ci,j| ≥ 2n. The set significance S for a certain group of coefficients τ at bit plane n
is consequently determined by:

Sn(τ) =

1, if max
(i,j)∈τ

{|ci,j|} ≥ 2n,

0, otherwise.
(2.7)

If a certain subset τ is considered insignificant, Sn(τ) = 0, which means that all
coefficients in this subset are insignificant. If the subset is considered significant,
Sn(τ) = 1, which indicates that at least one or more coefficients in this subset are
significant. To determine which coefficient magnitudes exceed bit plane n, both the
encoder and decoder split the subset into new subsets following a fixed strategy,
while each of the subsets is tested in the same way, until each significant coefficient
is identified. This partitioning into subsets is based on spatial orientation trees.

Spatial orientation trees

The spatial orientation tree, as displayed in Figure 2.6(a), is used to perform sub-
set partitioning, and describes the relation between wavelet coefficients. Through
this tree, also location information of sets and individual coefficients are implic-
itly transferred from the encoder to the decoder. Its hierarchical representation is
based on the fact that coefficients at approximately the same spatial location have
a strong self-similarity (correlation) between subbands. This can be easily under-
stood if we look at the low-activity areas in Figure 2.6(b), where large areas of
near-zero coefficients are replicated at lower levels of the pyramidal structure at
approximately the same spatial location. Similar reasoning holds for areas with
high activity, such as strong edges and boundaries.

The tree is defined in such a way that each node either has no offspring (the
leafs at the lowest level of the pyramid), or an offspring of 4 children forming
a group of 2 × 2 adjacent coefficients. The arrows in Figure 2.6(a) indicate this
relationship. At the highest pyramid level, indicated by grey shading in the figure,
coefficients are the tree roots. Their offspring rule is different and the top-left node
in a group of 4 does not have any offspring, which is indicated in the figure by
the ‘×’ symbol. Within the spatial orientation tree, several sets of coordinates are
defined, which are listed in Table 2.4.
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x x

(a) (b)

Figure 2.6: (a) Examples of parent-offspring relations in the spatial orientation tree. The
grey area indicates the highest pyramid level, where the elements marked with an ‘×’ sym-
bol have no offspring. (b) Wavelet coefficients describing an area of self-similarity (e.g. the
hat) can be found within different subbands, visual as remaining edges.

Table 2.4: Set of coordinates defined in SPIHT.

Set Contains

H Set of coordinates of all spatial orientation tree roots

O(i, j) Set of coordinates of all offspring of node (i, j)

D(i, j) Set of coordinates of all descendants of node (i, j)

L(i, j) D(i, j)−O(i, j) (All descendants that are not offspring)

The offspring of all nodes, except for the highest and lowest pyramid levels, is
defined for node (i, j) by:

O(i, j) = {(2i, 2j), (2i + 1, 2j), (2i, 2j + 1), (2i + 1, 2j + 1)}. (2.8)

Now that relations are established by the spatial orientation tree and we have
a notation for coordinate sets in SPIHT, the following set partitioning rules can be
defined:

1. The initial partition is formed with the sets (i, j) and D(i, j), for all (i, j) ∈ H,
2. If D(i, j) is significant, then it is partitioned into L(i, j) and 4 coefficient loca-

tions (k, j), with (k, l) ∈ O(i, j),
3. If L(i, j) is significant, it is partitioned into the four sets D(k, l), with (k, l) ∈
O(i, j).
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Previous paragraphs have defined the set partitioning algorithm, spatial ori-
entation trees and the set partitioning rules. They all come together in the SPIHT
coding algorithm, which is discussed in the following section.

SPIHT coding algorithm

To synchronize encoder and decoder, both need to keep track of the processing or-
der of the subsets. In SPIHT, the significance information is stored in three ordered
lists: a List of Insignificant Pixels (LIP), a List of Significant Pixels (LSP) and a List
of Insignificant Sets (LIS), in which entries are stored by their location (i, j). The
LIP and LSP memorize individual coefficient positions, while the LIS stores sets,
either D(i, j) or L(i, j), which are differentiated in the LIS as sets of type A and B,
respectively. This is denoted by (i, j)t, with t the type of the set.

The coding algorithm of SPIHT is similar to Algorithm 2.1, which processes
coefficients per bit plane, using a sorting and a refinement pass. In contrast to
Algorithm 2.1, locations of significant coefficients are not explicitly transmitted,
and SPIHT utilizes the set partitioning sorting algorithm and spatial orientation
trees to synchronize the encoder and the decoder.

This synchronization is performed by redefining the sorting and refinement
passes. In the sorting pass, the significance of all coefficients in the LIP are tested,
and newly significant coefficients are moved to the LSP. The same is performed for
the LIS, and all insignificant sets are re-evaluated, and if found significant, they are
removed from the LIS and partitioned into subsets. Insignificant subsets remain in
the LIS, and once the leafs are reached, the individual coefficients are either added
to the LIS or the LIP, depending on their significance. In the refinement pass, the
existing coefficients in the LSP are processed, and their bits are send out in the
pre-defined order of the spatial orientation trees.

The complete coding algorithm of SPIHT is represented in pseudo-code in Al-
gorithm 2.2, with two parts of the sorting pass detailed in Algorithms 2.3 and 2.4.
It should be noted that during the sorting pass, elements are added to the LIS and
these new elements should be processed during the same sorting pass.

The decoding algorithm is nearly identical to the encoding algorithm, but with
send actions replaced by receive actions. In this way, the decoder follows an iden-
tical execution path as the encoder and has the same data in its LIP, LSP and LIS
lists. Additionally, the decoder performs a refinement step during the creation of
newly significant coefficients. It is known that when a coefficient is moved to the
LSP (newly significant), its value |ci,j| is between 2n and 2n+1, so that the decoder
stores the value 1.5× 2n. During refinement of these significant coefficients, this
behavior is repeated for lower bit planes.
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Algorithm 2.2 SPIHT coding algorithm using the set partitioning sorting algorithm
and spatial orientation trees.

y Initialization
1: Transmit maxBitPlane = blog2(max(abs(coe f f icients))c
2: Clear the LSP, add (i, j) ∈ H to the LIP . Set partitioning rule 1
3: Add (i, j) ∈ H with descendants to the LIS . Set partitioning rule 1
4: for n = maxBitPlane to 0, step -1 do

� Sorting pass:
5: Perform sorting pass on elements in the LIP . See Algorithm 2.3
6: Perform sorting pass on elements in the LIS . See Algorithm 2.4

� Refinement pass:
7: for each entry of the LSP not added in the last sorting pass do
8: Transmit n-th bit of |ci,j| . Refine already significant coefficients
9: end for

10: end for

Algorithm 2.3 SPIHT sorting of elements in LIP.
1: for all entries in the LIP do
2: Transmit Sn(i, j) . So that the decoder can follow
3: if Sn(i, j) = 1 then . If coefficient is newly significant then
4: Transmit sign of ci,j

5: Move coefficient location to LSP
6: end if
7: end for

SPHIT encoding example

To clarify the working of SPIHT and its lists, a small example is presented using
a set of 4× 4 coefficients. Table 2.5(a) shows the arrangement of coefficients, and
Table 2.5(b) the contents of the lists used by SPIHT at the start of the algorithm.

y Initialization
The number of bit planes is n = blog2(29)c = 4, which is transmitted to the de-
coder, and the lists are initialized to the state shown in Table 2.5(b).
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Algorithm 2.4 SPIHT sorting of elements in LIS.
1: for all entries in the LIS do
2: if entry is type A then . Type A sets represent D(i, j)
3: Transmit Sn(D(i, j)) . So that the decoder can follow
4: if Sn(D(i, j)) = 1 then . If set is newly significant then
5: for each (k, l) ∈ O(i, j) do . Set partitioning rule 2
6: Transmit Sn(k, l) . So that the decoder can follow
7: if Sn(k, j) = 1 then . If coefficient is newly significant then
8: Transmit sign of ci,j

9: Add coefficient location (k, j) to LSP
10: else
11: Add coefficient location (k, j) to LIP
12: end if
13: end for
14: if L(i, j) 6= ∅ then . Set partitioning rule 2
15: Move (i, j) to end of LIS as type B
16: else
17: Remove (i, j) from the LIS
18: end if
19: end if
20: end if
21: if entry is type B then . Type B sets represent L(i, j)
22: Transmit Sn(L(i, j)) . So that the decoder can follow
23: if Sn(L(i, j)) = 1 then . If set is newly significant then
24: Add each (k, l) ∈ O(i, j) to the LIS as type A . Set partitioning rule 3
25: Remove (i, j) from the LIS
26: end if
27: end if
28: end for

0 1 2 3

0 29 15 6 -5

1 12 10 -4 9

2 -5 2 1 -1

3 -6 3 -1 0

(a)

List Contents

LIP { (0, 0), (0, 1), (1, 0), (1, 1) }

LIS { (0, 1)A, (1, 0)A, (1, 1)A }

LSP { empty }

(b)

Table 2.5: Example of the SPIHT encoding process: (a) input coefficients, (b) SPIHT lists
and their contents at the start of the algorithm.
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� First sorting pass
First the LIP is processed, and c0,0 is found to be significant. Bit string ‘10’ is trans-
mitted to indicate its significance and its positive sign and (0, 0) is moved to the
LSP. The other three coefficients in the LIP are insignificant, for which ‘000’ is trans-
mitted. Next the LIS is processed and all three sets are found to be insignificant,
for which bit string ‘000’ is transmitted.

→ Status
So far ‘10000000’ was transmitted, so that the contents of the lists is as follows.

LIP { (0, 1), (1, 0), (1, 1) }

LIS { (0, 1)A, (1, 0)A, (1, 1)A }

LSP { (0, 0) }

� First refinement pass
No refinement pass is performed during the first pass, as the LSP is empty at the
start.

� Second sorting pass
Now n = 3 and the significance threshold T = 23 = 8. First the LIP is processed,
and all elements are significant. Bit string ‘10’ is transmitted for each of them (sig-
nificant=1, sign=0) and they are moved to the LSP. Next the LIS is processed and
set (0, 1)A is significant because one of its values is significant (c1,3 = 9), which is
transmitted by a ‘1’. The offspring of set (0, 1) is processed and the first three val-
ues (c0,2, c0,3 and c1,2) are insignificant and added to the LIP and ‘000’ is transmit-
ted. Coefficient c1,3 is significant and positive, thus ‘10’ is transmitted. Its location
(1, 3) is added to the LSP. The remaining sets (1, 0)A and (1, 1)A are insignificant
and a ‘0’ is transmitted for each. Since L(0, 1) = ∅, set (0, 1)A is removed from the
LIS.

� Second refinement pass
The only location that was already in the LSP at the start of the second pass is (0, 0).
The fourth bit (n = 3) from the Least Significant Bit (LSB) of c0,0 is transmitted and
since |c0,0| = 29 =0b11101, the underlined bit of this string is transmitted, which
is a ‘1’.
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→ Status
During the second pass ‘101010100010001’ was transmitted, the lists are below.

LIP { (0, 2), (0, 3), (1, 2) }

LIS { (1, 0)A, (1, 1)A }

LSP { (0, 0), (0, 1), (1, 0), (1, 1), (1, 3) }

� Third sorting pass
Now n = 2 and T = 4. For the LIP, move (0, 2), (0, 3), (1, 2) → LSP and transmit
‘10’, ‘11’ and ‘11’. For the LIS, set (1, 0)A is significant, transmit ‘1’ and process
its offspring: (2, 0), (2, 1), (3, 0) and (3, 1). Coefficient (2, 0) is significant → LSP,
transmit ‘11’, (2, 1) is insignificant→ LIP, transmit ‘0’, (3, 0) is significant→ LSP,
transmit ‘11’, (3, 1) is insignificant → LIP, transmit ‘0’. Set L(1, 0) = ∅, so that
(1, 0)A is removed from the LIS. Set (1, 1)A is insignificant, transmit ‘0’.

� Third refinement pass
Transmit the 3rd bit (n = 2) from the LSB of locations (0, 0) (29 = 0b11101), (0, 1)
(15 = 0b01111), (1, 0) (12 = 0b01100), (1, 1) (10 = 0b01010), (1, 3) (9 = 0b01001),
which cascades to ‘11100’.

→ Status
During the third pass ‘1011111110110011100’ was transmitted, leading to the fol-
lowing lists.

LIP { (2, 1), (3, 1) }

LIS { (1, 1)A }

LSP { (0, 0), (0, 1), (1, 0), (1, 1), (1, 3), (0, 2), (0, 3), (1, 2), (2, 0), (3, 0) }

This process continues until n = 0 and all coefficients are processed. Using the
created bitstream, we will give an example of the decoding process in SPIHT.

SPIHT decoding example

As mentioned before, the decoding process follows the exact execution path of
the encoder, which has the same data in its LIP, LSP and LIS lists, so that this
information will not be repeated. The decoder does perform an additional step
during the creation of newly significant coefficients by estimating the expected
value between bit-plane boundaries. To visualize the decoding of the bitstream by
the decoder, the contents of the output are given in Table 2.6 for the same moments
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in time as the encoder example above. Table 2.7 gives the results of the SPIHT
encoding/decoding process after decoding 42 bits. It can be seen that the average
absolute error is only unity.

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

(a)

24 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

(b)

24 12 0 0

12 12 0 12

0 0 0 0

0 0 0 0

(c)

28 12 0 0

12 12 0 12

0 0 0 0

0 0 0 0

(d)

28 12 6 -6

12 12 -6 12

-6 0 0 0

-6 0 0 0

(e)

30 14 6 -6

14 10 -6 10

-6 0 0 0

-6 0 0 0

(f)

Table 2.6: SPIHT decoded output after: (a) initialization, (b) 1st sorting pass, (c) 2nd sorting
pass, (d) 2nd refinement pass, (e) 3rd sorting pass, (f) 3rd refinement pass.

29 15 6 -5

12 10 -4 9

-5 2 1 -1

-6 3 -1 0

(a)

30 14 6 -6

14 10 -6 10

-6 0 0 0

-6 0 0 0

(b)

1 -1 0 -1

2 0 -2 1

-1 2 -1 1

0 3 1 0

(c)

Table 2.7: Results of the SPIHT encoding/decoding process: (a) input, (b) output after de-
coding 42 bits, (c) difference between input and output.

2.5 SPECK codec (Set Partition Embedded bloCK)

In line with the previous section, this section will give a brief overview of the
SPECK codec as proposed by Islam et al. [44, 45], together with a small example.
SPECK utilizes the sparse distribution of significant wavelet coefficients at various
bit planes just like SPIHT, but isolates the significant coefficients by performing
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quadtree partitioning on each of the wavelet bands (blocks). The following para-
graphs will discuss the similarities and the differences between SPIHT and SPECK,
following the same structure used to describe SPIHT in Section 2.4.

Transmission of coefficients

Similar to SPIHT, coefficients with larger magnitudes are transmitted first, as they
contribute most to decreasing the MSE of the decoded image. Transmission fol-
lows a similar magnitude ordering scheme as SPIHT and the same information
has to be transmitted: (1) the highest utilized bit-plane index of the most signifi-
cant coefficient, (2) information regarding the ordering of the coefficients, (3) the
number of coefficients that are significant when observed at a certain bit plane,
and (4) sign information and refinement bits.

Set partitioning sorting algorithm

The sorting decisions in the SPECK encoder are based on the same magnitude
comparison function as in SPIHT, which determines if a certain coefficient or set
of coefficients is significant or not. For clarity, we recall Equation (2.7) of SPIHT
below, which defines that the set significance S for a certain group of coefficients τ

at bit plane n is determined by:

Sn(τ) =

1, if max
(i,j)∈τ

{|ci,j|} ≥ 2n,

0, otherwise,

where ci,j denotes the value of the coefficient at location (i, j).
Up this point, SPIHT and SPECK are very similar, utilizing the same concept

of magnitude-ordered coefficient transmission and employing an identical signif-
icance test for coefficients and sets. However, SPECK deviates from SPIHT in the
way how the sets are defined. Sets in SPECK are based on rectangular coefficient
regions, describing corresponding regions of the image, which are referred to as
sets of type S. A coefficient set S can be of varying dimensions, based on the size
of the original image, and the subband level of the pyramid. The size of coefficient
set S is defined as the cardinality C, or in other words, the number of elements in
the set. This is expressed as:

size(S) = C(S) ≡ |S |. (2.9)

During processing, sets of different sizes are formed, including sets of only a
single coefficient, where size(S) = 1. Besides sets of type S, another coefficient set
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exists of type I. This set comprises of the coefficients of the image, with a square
region removed from the top-left corner. An example of an image X divided into
the two typical sets S and I, is shown in Figure 2.7(a), forming the initial parti-
tioning of the image3. The sets of coordinates defined in this initial partitioning
are given in Table 2.8.

I

S

X

(a) Initial partitioning

O(S) O(S)

O(S) O(S)

S

(b) Quadtree partitioning

I

S

SS

new I

(c) Octave band partitioning

Figure 2.7: SPECK Partitioning: (a) Initial partitioning of image X into sets S and I, (b)
quadtree partitioning of set S, creating four offspring sets O(S) and (c) octave band parti-
tioning of set I, creating three sets S and a new I set.

Table 2.8: Sets of coordinates defined in SPECK.

Set Contains

X Complete image

S Root set containing top-left region at the highest pyramid level
of the dyadic decomposition

I Remainder of image: I = X − S

Another difference between SPIHT and SPECK is the way how these sets are
partitioned in the case of significance. This partitioning into subsets is based on
quadtree partitioning for sets of type S and octave band partitioning for sets of
type I.

3It should be noted that the flow of partitioning in SPECK follows the inverse order of that dyadic
wavelet decomposition of images, where the image is initially split in four quadrants, and then the
upper-left is again split, and so on.
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Quadtree partitioning

If a set S is found to be significant at bit plane n, it is partitioned into an offspring
of four children. The division is based on quadtree partitioning, resulting in four
subsets O(S) of approximately one-fourth the size of set S. This quadtree parti-
tioning is visualized in Figure 2.7(b).

Each of the subsets O(S) is considered as a new set S, and processed recur-
sively, until individual coefficients are reached at the leafs of the quadtree, where
size(S) = 1. The quadtree partitioning is motivated by the fact that we want to
specify the location of significant coefficients fastly and efficiently, focusing quickly
on areas of high-energy content. Once all significant coefficients are found and no
other sets are considered significant at the current bit plane n, the set I is parti-
tioned through octave band partitioning.

Octave band partitioning

After completing sets of type S, set I is tested against the same significance magni-
tude. If it is found to be significant, it is partitioned using octave band partitioning,
which is illustrated in Figure 2.7(c). Set I is hereby split into four sets: three of type
S and a new set I. The size of each of the three sets S is identical to the area of the
already processed section of image X . The remaining coordinates are placed in the
new I set. Once the lowest level of the pyramidal structure is reached, set I has
become an empty set.

The reasoning behind this partitioning scheme is to follow the pyramidal struc-
ture of the dyadic wavelet transform and to exploit the fact that most of the energy
is concentrated at the highest levels (i.e. at the top-left LPF corner) of the trans-
form.

The definition of the partitioning rules and the ordering algorithm, enables us
to fuse them in the SPECK coding algorithm, which is discussed in the following
section.

SPECK coding algorithm

The complete coding algorithm of SPECK is represented in pseudo-code in Algo-
rithms 2.5- 2.9 and visualized in Figure 2.8. In the figure, the grey blocks represent
the individual algorithms and the big white arrows represent one algorithm calling
another.

SPECK utilizes two lists to keep track of the processing order of the subsets,
which in turn synchronize the encoder and decoder. The significance informa-
tion is stored in two ordered lists: a List of Significant Pixels (LSP) and a List of
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Algorithm 2.6: Process set of type S

Add to LIS 
if not there

Algorithm 2.5: 
SPECK coding 

algorithm

Sorting pass: 
Process set 

of type S

Refinement 
Pass

Sorting pass: 
Process set 

of type I

Set significant?

Set size = 1? Code set S

Code S and
add to LSP

Algorithm 2.7: Code set of type S

Add to LIS

Set significant?

Set size = 1?

Code set S

Code S and
add to LSP

Partition S into 
4x offspring

No

Yes

No

Yes

No

Yes

No

Yes

Remove S 
from LIS

For each of the 4 offspring

Algorithm 2.8: Process set I

Set significant? Code set I

Algorithm 2.9: Code set I

Yes

Partition I into 
3x S and 1x I

1. For each 
S set (3x)

2. For the I set

Figure 2.8: Graphical representation of the coding algorithms in SPECK. The large white
arrows indicate one algorithm (recursively) calling another.

Insignificant Sets (LIS). The LSP stores individual coefficient positions of already
significant coefficients, while the LIS stores sets of type S of varying sizes which
are not yet considered significant for n.

The coding algorithm is divided into a sorting and a refinement pass per bit
plane n. Both the encoder and the decoder follow the same sorting and set par-
titioning rules, thereby synchronizing the encoder and the decoder and implicitly
conveying coefficient position information of significant positions and insignifi-
cant sets.
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The main algorithm (Algorithm 2.5) contains the functionality that calls the
sorting and refinement passes for each of the bit planes. Sorting for sets of type S
is performed by the ProcessS and CodeS algorithms, represented by Algorithm 2.6
and Algorithm 2.7, respectively. After the sets of type S are processed, the I set is
processed and coded using the ProcessI and CodeI algorithms, defined by Algo-
rithm 2.8 and Algorithm 2.9, respectively.

Algorithm 2.5 SPECK coding algorithm
y Initialization

1: Partition image X into root set S and set I = X − S . See Figure 2.7a
2: Transmit maxBitPlane = blog2(max(abs(coe f f icients))c
3: Add set S to the LIS
4: Set LSP = ∅
5: for n = maxBitPlane to 0, step -1 do

� Sorting pass:
6: for each set S ∈ LIS in increasing order of size(S) do
7: Process set S . See Algorithm 2.6
8: end for
9: Process set I . See Algorithm 2.8

� Refinement pass:
10: for each entry of the LSP not added in the last sorting pass do
11: Transmit n-th bit of |ci,j| . Refine already significant coefficients
12: end for
13: end for

Algorithm 2.6 SPECK process set of type S
1: Transmit Sn(S) . So that the decoder can follow
2: if Sn(S) = 1 then . If set is newly significant then
3: if size(S) = 1 then . Is set one coefficient?
4: Transmit sign of S and add S to LSP
5: else
6: Code set S . Includes partitioning of set S, see Algorithm 2.7
7: end if
8: if S ∈ LIS then
9: Remove S from LIS . Added to LSP or partitioned

10: end if
11: else
12: if S /∈ LIS then
13: Add S to LIS . Set is not significant, add to LIS if not there
14: end if
15: end if
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Algorithm 2.7 SPECK code set of type S
1: Partition S into four subsets O(S) . See Figure 2.7b
2: for each set O(S) do
3: Transmit Sn(O(S)) . So that the decoder can follow
4: if Sn(O(S)) = 1 then . If subset is newly significant then
5: if size(O(S)) = 1 then . Is set one coefficient?
6: Transmit sign of O(S) and add O(S) to LSP
7: else
8: Code set O(S) . Recursive call of this algorithm
9: end if

10: else
11: Add O(S) to LIS . Subset is not significant, add to LIS
12: end if
13: end for

Algorithm 2.8 SPECK process set of type I
1: Transmit Sn(I) . So that the decoder can follow
2: if Sn(I) = 1 then . If set is newly significant then
3: Code set I . Includes partitioning of set I, see Algorithm 2.9
4: end if

Algorithm 2.9 SPECK code set of type I
1: Partition I into four subsets, three S and one new I . See Figure 2.7c
2: for each of the three sets S do
3: Process set S . Recursive call to Algorithm 2.6
4: end for
5: Process set I . Recursive call to Algorithm 2.8

As can be seen in the figure and the pseudo-code algorithms, coding is recur-
sive for several functions. For example, the CodeS algorithm uses quad splits to
divide significant sets into smaller sets and calls itself on each offspring. Further-
more, the ProcessI algorithm uses octree partitioning to create new sets of type S,
after which it calls the ProcessS algorithm for each of them, which in turn relies on
the recursive CodeS algorithm. These recursive processes continue until all newly
significant coefficients have been isolated through quad-tree partitioning for a par-
ticular bit plane. Finally, the previously found significant coefficients are refined
and the process restarts for the next bit plane.

In SPECK, the decoding algorithm is nearly identical to the encoding algo-
rithm, but with send actions replaced by receive actions. When moving a coef-
ficient to the LSP (newly significant), the decoder stores its value as 1.5× 2n, the
mid-range of the bit plane where it is significant. During refinement of these sig-
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nificant coefficients, this behavior is repeated for lower bit planes.

SPECK encoding example

To clarify the operation of SPECK and its lists, we present a small example using
the same set of 4× 4 coefficients that we used for the example of SPIHT. Table 2.9(a)
shows the coefficient region, and Table 2.9(b) the contents of the lists and sets used
by SPECK at the start of the algorithm. In this table and the following section, the
notation proposed by Pearlman is used:

• Sk(i, j) denotes a 2k × 2k set with (i, j) being the top-left corner coordinate for
points or sets,

• (i, j)k denotes a 2k × 2k set with (i, j) being the top-left corner coordinate in the
LIS and LSP,

• (i, j) in the LSP always refers to single points.

0 1 2 3

0 29 15 6 -5

1 12 10 -4 9

2 -5 2 1 -1

3 -6 3 -1 0

(a)

List/Set Contents

LIS { initial set S }

LSP { empty }

S { S0(0, 0) }

I { remaining 15 values }

(b)

Table 2.9: Example of the SPECK encoding process: (a) matrix of input coefficients, (b)
SPECK lists and their contents at the start of the algorithm.

y Initialization
The number of bit planes n is equal to n = blog2(29)c = 4, which is transmitted
to the decoder. The lists and sets S and I are initialized to the state shown in
Table 2.9(b).

� First sorting pass
At this point, n = 4 and the significance threshold T = 2n = 16. First the LIS
is processed, which only contains one set S = (0, 0). Since S4(S) = 1, the set is
considered significant and for this a ‘1’ is transmitted. The set only contains one
coefficient thus size(S) = 1 and the sign of the coefficient is transmitted, being
‘0’. The coefficient is added to the LSP. Since S ∈ LIS, it is removed from this list.
Now that the LIS is completely processed, set I is processed. Parameter S4(I) = 0,
which is insignificant, for which a ‘0’ is transmitted.

46



2.5. SPECK codec (Set Partition Embedded bloCK)

� First refinement pass
No refinement pass is performed during the first pass, as the LSP is empty at the
start.

� Second sorting pass
Now n = 3 and the significance threshold T is 2n = 8. First the LIS is processed
and skipped, because it is empty. Then, set I is processed and S3(I) = 1, which
is significant, for which a ‘1’ is transmitted. Set I is then partitioned into 3 sets
S and a new I. The sets S1(0, 1), S1(1, 0) and S1(1, 1) are processed similarly as
S1(0, 0) and tested for significance. All three are single significant and positive
coefficients and ‘10’ is transmitted for each of them (significance=1,sign=0). The
three coefficients are added to the LSP. Again set I is processed and S3(I) = 1,
for which a ‘1’ is transmitted. Set I is partitioned into 3 sets S and a new I. The
sets S1(0, 2), S1(2, 0) and S1(2, 2) are then processed sequentially. Set S1(0, 2) is
significant, so that a ‘1’ is transmitted and the set is quad-split into 4 points. The
first three coefficients (0, 2), (0, 3) and (1, 2) are insignificant and placed in the LIS
and ‘000’ is transmitted. The last coefficient is significant and ‘10’ is sent. Sets
S1(2, 0) and S1(2, 2) are both insignificant, resulting in bit string ‘00’. Set I is
empty, so that sorting is finished for this bit plane.

� Second refinement pass
The only location that was already in the LSP at the start of the second pass is (0, 0).
The fourth bit (n = 3) from the Least Significant Bit (LSB) of c0,0 is transmitted, and
since |c0,0| = 29 =0b11101, the underlined bit of this string is transmitted, which
is a ‘1’.

→ Status
During the first and second pass, ‘10011010101100010001’ was transmitted and the
lists now contain the following elements.

LIS { (0, 2)0, (0, 3)0, (1, 2)0, (2, 0)1, (2, 2)1 }

LSP { (0, 0), (0, 1), (1, 0), (1, 1), (1, 3) }

I { empty }

� Third sorting pass
Now n = 2 and T = 4. For process LIS, coefficients (0, 2)0, (0, 3)0, (1, 2)0 are
significant, move → LSP and transmit ‘10’, ‘11’ and ‘11’. Quad-split set (2, 0)1,
transmit ‘1’ and process its offspring: (2, 0), (2, 1), (3, 0) and (3, 1). Coefficient
(2, 0) is significant → LSP, transmit ‘11’, (2, 1) insignificant → LIS, transmit ‘0’,
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(3, 0) significant → LSP, transmit ‘11’, (3, 1) insignificant → LIS, transmit ‘0’. Set
(2, 2)1 is still insignificant, transmit ‘0’.

� Third refinement pass
Transmit the 3rd bit (n = 2) from the LSB of locations (0, 0) (29 = 0b11101), (0, 1)
(15 = 0b01111), (1, 0) (12 = 0b01100), (1, 1) (10 = 0b01010), (1, 3) (9 = 0b01001),
which cascades to ‘11100’.

→ Status
During the third pass, ‘1011111110110011100’ was transmitted and the lists now
contain the following elements.

LIS { (2, 1)0, (3, 1)0, (2, 2)1 }

LSP { (0, 0), (0, 1), (1, 0), (1, 1), (1, 3), (0, 2), (0, 3), (1, 2), (2, 0), (3, 0) }

I { empty }

This process continues until n = 0 and all coefficients are processed. Using the
created bitstream, we will give an example of the decoding process in SPECK and
compare the intermediate results to SPIHT.

SPECK decoding example

Identical to SPIHT, the decoding process follows the exact execution path of the en-
coder, so that it has the same data in its LIS and LSP lists. To visualize the decoding
of the SPECK bitstream by the decoder, the contents of the output are given in Ta-
ble 2.10 for the same moments in time as the encoder example above. Table 2.11
gives the results of the SPECK encoding/decoding process after decoding 39 bits.
When comparing the tables with those from SPIHT (Table 2.6 and Table 2.7), it is
observed that the decoded coefficients are identical, but SPECK accomplishes this
transmission with 3 bits less and without relying on inter-band correlations.

Furthermore, it can be noticed that during the third pass, SPIHT and SPECK
create an identical bitstream. Even though the algorithms use different partition-
ing methods, they both converge to a state where the coefficients are processed in
the same order. For more complex coefficient fields, this occasional identical or-
der will not hold, but the example does nicely illustrate similarities between the
underlying algorithms. Furthermore, the example shows how they exploit the hi-
erarchical nature of the wavelet transform and the associated correlations between
wavelet coefficients.
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0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

(a)

24 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

(b)

24 12 0 0

12 12 0 12

0 0 0 0

0 0 0 0

(c)

28 12 0 0

12 12 0 12

0 0 0 0

0 0 0 0

(d)

28 12 6 -6

12 12 -6 12

-6 0 0 0

-6 0 0 0

(e)

30 14 6 -6

14 10 -6 10

-6 0 0 0

-6 0 0 0

(f)

Table 2.10: SPECK decoded output after: (a) initialization, (b) 1st sorting pass,
(c) 2nd sorting pass, (d) 2nd refinement pass, (e) 3rd sorting pass, (f) 3rd refinement pass.

29 15 6 -5

12 10 -4 9

-5 2 1 -1

-6 3 -1 0

(a)

30 14 6 -6

14 10 -6 10

-6 0 0 0

-6 0 0 0

(b)

1 -1 0 -1

2 0 -2 1

-1 2 -1 1

0 3 1 0

(c)

Table 2.11: Results of the SPECK encoding/decoding process: (a) input, (b) output after
decoding 39 bits, (c) difference between input and output.

2.6 Conclusion

This chapter has introduced various aspects of Scalable Video Coding, starting
with the need for video compression and providing a short history of current im-
age and video coding, discussing both traditional systems based on the DCT trans-
form and novel DWT-based coding.

To further elaborate on DWT-based coding, we have used a typical scalable
wavelet video coding structure as a guideline in this chapter. We have then in-
troduced common wavelet transforms and algorithms from 1D to multi-level 2D,

49



2. DEVELOPMENTS IN WAVELET IMAGE AND VIDEO CODING

after which two state-of-the art wavelet coefficient encoding algorithms have been
discussed in significant detail: SPIHT (Set Partitioning in Hierarchical Trees) and
SPECK (Set Partition Embedded bloCK). By providing a detailed example for each
of them, their operation was clearly illustrated.

The algorithm presentations provide a solid basis understanding of the up-
coming chapters in this thesis, which focus on our main contributions. Next, in
Chapter 3, we will investigate the complexity of the SPIHT and SPECK codec dis-
cussed in this chapter. Once the bottlenecks of these algorithms are known, we
propose several enhancements to the SPECK codec, in order to simultaneously
improve its processing speed, as well as its scalability and coding performance for
fast integer-based wavelets.
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coefficient coding

There are 10 types of people in the world:

Those who understand binary, and those who don’t.
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Abstract

This chapter concentrates on the algorithms for efficient encoding of wavelet coefficients in the area
of image coding. It starts by investigating the complexity of the SPIHT and SPECK codecs, af-
ter which we propose a hardware-efficient scalable wavelet coefficient coder based on SPECK, named
TSSP (Two-Stage SPECK). The proposed codec creates an output stream that is identical to SPECK.
Then several enhancements are discussed that significantly improve the efficient implementation of
the algorithm as an embedded system. To this end, processing is split into two stages, one data-
dependent and one data-independent stage. A highly efficient buffer eliminates the need for dy-
namic lists and processing in the second stage is performed for all bit planes in parallel. A further
advantage is that parallel processing is also facilitated at any level in the hierarchical tree structure.
Furthermore, we propose two enhancements. First, the Highly Scalable (HS) extension allows pars-
ing of the bitstream without payload decoding, thereby creating a bitstream of any desired quality,
resolution and bitstream order. Second, the 5/3 Energy Correction (53EC) extension retains the
perfect reconstruction feature of the 5/3 integer wavelet, while significantly improving lossy coding
performance.
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3.1 Introduction

In Chapter 2, recent developments in image and video coding have been discussed
and various requirements for surveillance image and video coding have been spec-
ified. From these specific requirements, we have concluded that scalable video
coding based on wavelets is a good candidate to fulfill all functional requirements,
but with the considerable complexity of this type of coding, it is difficult to satisfy
the system complexity requirement. Therefore, our contribution in this chapter
is based on reconsidering the SPECK coding algorithm already at the algorithmic
level and modifying the algorithm such that an excellent starting point for obtain-
ing an efficient implementation of the SPECK coding algorithm is enabled, without
sacrificing important properties, such as scalability and compatibility. First, the
complexities of the wavelet coefficient codecs from Chapter 2 (EZW, SPIHT and
SPECK) are investigated, after which a new hardware-efficient scalable wavelet
coefficient coding algorithm is proposed.

In the previous chapter, several well-known wavelet coefficient encoding algo-
rithms were discussed: EZW (Embedded Zerotree Wavelet), SPIHT (Set Partition-
ing in Hierarchical Trees), SPECK (Set Partition Embedded bloCK) and EBCOT
(Embedded Block Coding with Optimal Truncation). SPIHT and SPECK have
state-of-the-art coding performance and moderate algorithmic complexity. For this
reason, these two algorithms have been presented in significantly more detail by
discussing their encoding and decoding algorithms and associated examples for
both algorithms. These algorithm discussions form a preparation for the compu-
tational complexity discussion that follows in this chapter.

Related work. EZW, SPIHT and SPECK all utilize ordered lists to keep track of
significant coefficients during bit-plane passes, which results in significant com-
putational complexity for maintaining these lists. Several solutions have been pro-
posed to eliminate the use of lists in these algorithms. Wen-Kuo Lin et al. [55,
56] proposed a listless version of SPIHT, named LZC (Listless Zerotree Coding)
without lists and with reduced memory requirements, with a small loss in rate-
distortion performance. The same authors later improved LZC using raster tree
search in [57]. Wheeler and Pearlman [58] proposed NLS (No List SPIHT), storing
significance information in a one-dimensional array, similar to Schelkens et al. [59],
while Jiangling Guo et al. [60, 61] suggested to merge the wavelet filter and SPIHT
and process the wavelet tree backwards, going from the high- to the low-frequency
components, while generating the bitstream simultaneously.

EZW and SPIHT utilize cross-resolution correlations of wavelet coefficients.
Especially for large images, this creates significant problems in cache management,
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as the algorithms continuously switch between the resolution bands. This was
also confirmed for SPIHT by Taubman during his development of EBCOT in [48].
Creusere [62] modified EZW to process the zerotree in so-called partitions, which
fit in the local cache memories of a processor.

Due to the embedded nature of the mentioned wavelet coefficient coders, a
single wavelet coefficient is passed multiple times during bit-plane coding. As the
coefficients in the image are effectively passed 8 to 12 times, it requires a signifi-
cant memory bandwidth. Creusere [62] has modified EZW to process several bit
planes and resolution layers together, albeit at the cost of losing some scalability
and rate-distortion performance. The wavelet coefficient coders from literature
are also highly data-dependent during the decision making process, as they se-
quentially test the significance of pixels at the time of coding. This corresponding
decision making in the critical path of processing works out poorly for pipelined
architectures, which will have to erase various caches at a regular basis.

This discussion brings us to the detailed problem statement of this chapter. The
primary question is to employ a highly-efficient wavelet coefficient coder such as
SPIHT or SPECK, while at the same time realizing such an advanced coding algo-
rithm at only a fraction of the original complexity. This involves an algorithm that
features the following properties: (1) good data-locality, (2) suitability for parallel
implementations and (3) a reduction of data-dependency in the processing chain.
We have selected SPECK as a basis for our proposal, as it has good data-locality
properties and is suited for parallel implementation because it relies on quadtree
partitioning.

In our proposal, we will elaborate on and attempt to optimize the use of data
lists for improving the data-dependency properties. Furthermore, the wavelet co-
efficient processing for multiple bit planes is addressed, which also affects data-
locality and the decision making process. These two concepts are then applied
to the SPECK algorithm in order to significantly reduce the complexity. This in-
volves a.o. splitting the SPECK codec in two stages, resulting in Two-Stage SPECK
(TSSP). Besides the previous details, enhancements are also proposed that allow
for a highly scalable bitstream representation and special support for the very fast
and efficient 5/3 integer wavelet.

This chapter is organized as follows. In Section 3.2, Two-Stage SPECK (TSSP)
and the proposed algorithmic changes alleviating the computational bottlenecks
of SPECK, are presented. A detailed functional description of TSSP is provided by
Section 3.3. Section 3.4 discusses two extensions to TSSP: (1) a highly scalable mode
and (2) an energy-correction mode. The highly scalable mode allows full scalability
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in all dimensions without the need to decode any part of the bitstream (3.4). The
energy-correction mode significantly improves the rate-distortion performance of
the 5/3 integer wavelet (Section 3.4). Experimental results regarding the lossless
and lossy coding efficiency with and without the proposed extensions are given in
Section 3.5, while Section 3.6 concludes the chapter.

3.2 Two-Stage SPECK (TSSP)

In this section, a new form of SPECK coding is proposed, called Two-Stage SPECK
(TSSP), which includes adaptations for more efficient coefficient stream handling
and the motivation for these adaptations.

Adaptations to SPECK

We propose three adaptations to SPECK, which improve memory usage and pro-
cessing speed without changing the final bitstream, so that bitstream compatibil-
ity is preserved. The first adaptation is to split the SPECK coder in two stages,
enabling cascaded processing of SPECK. This stage splitting is discussed in Sec-
tion 3.2. In the sequel, this architecture is called Two-Stage SPECK (TSSP). For the
second adaptation, an intermediate buffer is introduced between the two stages
to store the significance level of all blocks in the image. This intermediate buffer
is a key feature of TSSP and is addressed in Section 3.2. The third adaptation of
the SPECK coder is to process all bit planes in parallel in Stage 2. This means cod-
ing decisions involved with coding individual coefficients are made at once for all
bit planes simultaneously, so that a significant coefficient is accessed only once in
Stage 2. Section 3.2 addresses this one-time reading benefit in more detail. When
these three adaptations are incorporated, the block diagram of TSSP becomes as
visualized in Figure 3.1.

Motivation for two-stage processing

The two-stage processing in TSSP enables cascaded processing. The first data-
independent stage has a fixed pre-determined access pattern, through which it
populates a temporary buffer with information about the significance of quadtree
partitioning elements. This is called the Significance Level (SL) buffer, which is
depicted at the bottom of Figure 3.1 (further discussed in the next section). The
first stage has strong optimization possibilities and it can be easily split in several
independent processing areas with identical computing structures and thus equal

54



3.2. Two-Stage SPECK (TSSP)

Significance Level (SL) buffer

TSSP Stage 1

Quadtree Partitioning

Determines the 
significance level 

of all quadtree blocks

Contains the significance level of all quadtree blocks

TSSP Stage 2

Encodes significant 
blocks for all bit-planes 

in parallel

Division of image in blocks using quadtrees

Wavelet Coefficients

Result of 
wavelet 

transform

Output Stream

SPECK 
compatible

Uses Uses

Figure 3.1: Functional blocks of Two-Stage SPECK (TSSP).

computation times, thereby enabling parallel processing on multi-core architec-
tures.

The second data-dependent stage does not need to investigate the significance
of individual wavelet coefficients, but utilizes the temporary buffer populated at
the first stage. From this buffer, significance information of the quadtree is used
to create sorting information for significant coefficient regions and to skip large
insignificant coefficient regions. Similar to the first stage, the computing structure
can be also split in independent processing areas, but the computation will contain
data dependencies, leading to variations in computation time.

Motivation for intermediate Significance Level (SL) buffer

The intermediate SL buffer is introduced for four reasons. First, it separates the
data-independent processing of Stage 1 from the data-dependent processing of
Stage 2, transferring the results of Stage 1 to Stage 2. Second, it collects signifi-
cance information on a per-block basis, for all levels in the quadtree, which is also
stored in a specific order. The information in the SL buffer is the sole information
needed in Stage 2 for all partitioning decisions. Third, the specific order of stor-
ing the significance level information is designed in such a way, that read-access
in Stage 2 is always in a forward fashion and insignificant parts can be quickly
skipped. Fourth, by only storing block-based significance information, but no pixel
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information, the SL buffer remains small enough to be implemented in very fast
(second level) cache memory of a processor. For example, for a typical image size
of 1280× 720 pixels, the SL buffer requires only 85.3 kB of memory space.

Motivation for parallel bit-plane processing

The main reason to process all bit planes in parallel is total computational time,
combined with the quality that can be obtained after a certain computational time.
When processing bit planes one by one, the output stream is generated in an op-
timal embedded fashion over time, as seen at the left side of Figure 3.2. However,
since most coefficient values are examined multiple times for each bit plane, a
large amount of memory bandwidth is used. Since memory bandwidth is one of
the bottlenecks in most Digital Signal Processing (DSP) systems, this processing
approach is not optimal in terms of processing speed. Therefore, all bit planes
are processed in parallel, requiring only the memory transfers equivalent to the
last bit-plane pass of the approach when sequential bit-plane processing was used.
The time required to retrieve all significant coefficients is equal to the time required
to retrieve all coefficients during the last bit-plane pass. This is shown at the left
and right side of Figure 3.2 by the parameter tall−coe f . Because processing is per-
formed progressively in resolution instead of progressively in quality, the quality
increase over time is less effective, since less significant bits of a lower resolution
are processed prior to more significant bits at higher resolutions. However, when
comparing the quality improvement over time, it is clear that the quality after any
given processing time, is always equal or better than when sequential bit-plane
processing is used.

Time

Quality

tall-coef

(a) Bit-plane by bit-plane coding

Quality

Time

tall-coef

(b) Parallel bit-plane coding

Figure 3.2: Graph of quality vs. processing time for (a) sequential bit-plane coding and (b)
parallel bit-plane coding.
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3.3 Functional description of TSSP

In this section, TSSP is described in detail, explaining the functional blocks of TSSP
of Figure 3.1 in dedicated sections. First, quadtree partitioning is discussed, which
is designed to facilitate encoding of non power-of-two image sizes (Section 3.3).
Then the data-independent Stage 1 and the data-dependent Stage 2 processing of
TSSP are presented separately, in Sections 3.3 and Section 3.3, respectively.

Quadtree partitioning of images

To facilitate arbitrary image sizes, special care is taken in TSSP to provide quadtree
partitioning for non power-of-two image sizes. The depth of the quadtree NQTdepth
is defined by the number of quadtree partitioning steps that can be made until the
remaining areas of coefficients have a width or height of 2 or 3 coefficients. This
can be calculated iteratively using the following pseudo code in Algorithm 3.1,
with QTdepth denoting the depth of the quadtree.

Algorithm 3.1 Pseudo code to calculate quadtree depth.
1: procedure QTDEPTH(width, height) . Width and height of input image
2: QTdepth← 0
3: while width ≥ 4 and height ≥ 4 do . Perform quadtree partitioning
4: width← bwidth/2c
5: height← bheight/2c
6: QTdepth← QTdepth + 1
7: end while
8: return QTdepth . Reached leaf of quadtree
9: end procedure

At a certain point in the partitioning process, when the width or height of
blocks becomes odd, they cannot be split anymore into 4 blocks of equal size and a
decision needs to be made on how the block is further partitioned. TSSP supports
two quadtree partitioning methods. First, a partition called ‘top-left floor’, which
means that the size of the top-left partition is determined with the floor operator
(bxc). The second partition is called ‘top-left ceiling’, which is based on the ceil-
ing operator (dxe). These two partitioning methods are visualized in Figure 3.3
for an image with a resolution of 1920×1088 pixels, for which the quadtree par-
titioning becomes irregular at level 6, where the block size is 30×17 pixels. For
the wavelet transform, the same rounding of the size of low- and high-pass bands
should be used. The top-left floor partitioning is recommended for regular use, so
that the low-pass band of the wavelet will have the smallest size, thereby improv-
ing compression efficiency. However, for shape-adaptive wavelets, it is desirable

57



3. HARDWARE-EFFICIENT SCALABLE WAVELET COEFFICIENT CODING

4x2

15
30

15
87

4x2

4x2 4x2

3x2

3x2

4x2

4x2

4x2 4x2

4x2 4x2

3x2

3x2

4x2

4x2

4x2 4x2

4x2 4x2

3x2

3x2

4x2

4x2

1
7

9
8

5
4

4
4

4x2 4x23x2 4x2

4x3 4x33x3 4x3

87

4x2 4x2

4x2 4x2

3x2

3x2

4x2

4x2

4x2 4x2

4x2 4x2

3x2

3x2

4x2

4x2

4x2 4x2

4x2 4x2

3x2

3x2

4x2

4x2

4x2 4x23x2 4x2

4x3 4x33x3 4x3

(a) Quadtree partitioning using the floor operator for assigning top-left partition sizes
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(b) Quadtree partitioning using the ceiling operator for assigning top-left partition sizes

Figure 3.3: Size-invariant quadtree partition for a 30×17 pixel region, based on (a) floor and
(b) ceiling functions for calculation of the top-left partition size. The displayed region is rep-
resentative for an image with 1920×1088 pixels, for which the quadtree becomes irregular
after the 6th decomposition step at the level of 30×17 pixel regions.
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to generate a larger low-pass band to preserve DC information, so that the top-left
ceiling partitioning is preferred.

The number of elements in the quadtree NQTelem with l quadtree levels can be
calculated by the recursive Equation (3.1), which is defined by

NQTelem(l) = 4 · NQTelem(l − 1) + 1, (3.1)

with NQTelem(0) = 1 and l > 0. To give the reader an understanding of the sizes
of the quadtree, for an image of 1280×720 pixels, the quadtree depth is 8 and the
quadtree size is 87,381 elements. This topic will be discussed in more depth in
Chapter 6, which covers mapping TSSP on an embedded architecture.

Stage 1: decisionless pre-processing

In the first stage of the TSSP, the Significance Level (SL) of every node of the
quadtree is stored in a buffer. The buffer is organized such that the first element
contains the SL of the whole image, the second element the SL of the top-left quad-
rant, etc. Since the SL of a block is equal to the ceiling of the base-2 logarithm of
the maximum of its four quadrants, this buffer is generated from the quadtree leafs
up to the root of the tree. Figure 3.5 shows the recursive process used in Stage 1,
which is presented in pseudo-code by Algorithm 3.2. The first block that initiates
processing consists of the whole image. The quadtree partitioning discussed in
the previous section, then recursively divides the image into smaller blocks, until
a block cannot be split anymore. At this point, the maximum significance level is
calculated of all coefficients combined and written to the SL buffer. Also, when
all four quadrants of a split block have been processed, their four SL values are
combined into the joined SL value representing the complete block, which is also
stored in the SL buffer.

By starting the calculations at the bottom-right of the image and progressing
in a reversed Morton-order, the SL buffer is generated backwards. This ordering
process is visualized in Figure 3.4 for a quadtree of depth 3 with 85 elements. The
SL of the bottom-right four leafs is calculated first, after which the SL of the node
can be calculated, indicated in the figure by white dots. Once all four nodes at
that level are calculated, the SL of the parent node can be calculated, indicated in
the figure by the grey dots. Finally, the SL of the whole image can be calculated,
referring to the black dot in the middle of the figure. This quadtree consists of
64 leafs, 16 level-2 nodes (white dots), 4 level-1 nodes (grey dots) and 1 level-0
node (black dot), leading to a total of 64 + 16 + 4 + 1 = 85 quadtree elements.
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Figure 3.4: Reversed Morton-order scanning in Stage 1 of the TSSP.
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Figure 3.5: Flow chart of block processing in Stage 1 of TSSP.

Stage 2: block and coefficient processing

In the second stage of the TSSP, the SL buffer created at the first stage is used to
make data-dependent coding decisions. Based on the SL level of a node in the
quadtree, it is determined if this node is significant and should be partitioned fur-
ther, or if it should be skipped. Individual coefficients do not need to be observed,
since only information from the SL buffer is used for decision making.

The order in the SL buffer is designed in such a way that the reading is always
in the forward direction. As long as the blocks and their partitions are significant,
the next value from the SL buffer is read. Once an insignificant block is encoun-
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Algorithm 3.2 TSSP Stage 1: recursively fills significance level backwards
1: if the block can be divided then
2: Split block into 4 quadrants
3: Process bottom-right block (Recursive call to this algorithm)
4: Process bottom-left block (Recursive call to this algorithm)
5: Process top-right block (Recursive call to this algorithm)
6: Process top-left block (Recursive call to this algorithm)
7: Calculate significance level of this block from offspring
8: else
9: Read coefficient values from image buffer

10: Calculate maximum significance level
11: end if
12: Write block Significance Level (SL) to buffer
13: Move index in SL buffer backward
14: Return block significance level

tered, the whole quadtree below this block is insignificant by definition and will
be skipped. The values in the SL buffer that represent this insignificant part of the
quadtree can be skipped as well. The number of SL values to skip (∆index) can be
calculated directly from the current level in the quadtree NQTlevel by

∆index =
NQTlevel

∑
l=0

(4l)− 1 =
4NQTlevel+1 − 1

3
− 1. (3.2)

Sorting and refinement data is generated for all bit planes in parallel for each
block and coefficient coding step. When blocks are split or skipped, sorting data
is generated and when the end of the quadtree is reached, individual coefficients
are encoded, generating sorting and refinement data. Since data is generated for
multiple bit planes at once, temporary sorting and refinement buffers for each of
the bit planes are utilized. These buffers are cascaded at the end of the coding stage
to create the final progressive-quality or progressive-resolution bitstream.

The encoding quality is adjusted by the minimum level of significance of the
wavelet coefficients, indicated by the Bit-Plane Reduction (BPR) parameter, im-
plementing coarse-grain quality control. Any wavelet coefficient with an absolute
value smaller than 2BPR is considered insignificant. The encoding process of blocks
and individual coefficients is described in the following sections.

Block encoding process
Blocks are encoded by reading their SL from the buffer created in Stage 1. Fig-
ure 3.6 shows the process of block encoding and Algorithm 3.3 describes the pro-
cess in pseudo-code. Following the figure and the algorithm, it can be observed
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that if a block is considered significant (SL ≥ BPR), a ‘1’ is written to the sorting
buffer for the bit plane that has become significant and a ‘0’ in the sorting buffers
for each bit plane above that, to indicate their insignificance at that bit-plane level.
Afterwards, the block is split into 4 quadrants according to the TSSP partitioning
scheme and the process repeats itself, using the next SL value from the SL buffer.
If the block is considered insignificant (SL < BPR), a ‘0’ is written to the sorting
buffer for all bit planes and the underlying tree is skipped. The index skip of the
SL buffer is calculated based on the current quadtree depth using Equation (3.2).
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Figure 3.6: Flow chart of the block processing in Stage 2 of TSSP.

Coefficient encoding process
Individual coefficients are encoded once a significant block cannot be split into
4 quadrants, which occurs at the leafs of the quadtree, e.g. the 3× 2 top-left block
in Figure 3.3(a). The coefficients in the block are encoded row-by-row, starting
at the top-left corner. Figure 3.7 shows the process of single coefficient encoding
and Algorithm 3.4 describes the process in pseudo-code. Following the figure and
the algorithm, it can be observed that first the coefficient value is retrieved from
the image buffer. It should be noted that the sorting and refinement buffers are
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Algorithm 3.3 TSSP Stage 2 block encoding process
1: Read the SL of current block from the SL buffer created in Stage 1.
2: if the block is considered significant (SL ≥ BPR) then
3: Write a ‘1’ to the sorting buffer for the bit plane that has become significant
4: for each of the sorting buffers above do
5: Write a ‘0’, indicating the block is not yet significant for those levels
6: end for
7: if the block is larger than the minimum leaf size in the quadtree then
8: Split the block into 4 quadrants
9: Process top-left block, top-right, bottom-left and bottom-right block

10: else
11: Process individual coefficients using Algorithm 3.4
12: end if
13: else
14: Write a ‘0’ to the sorting buffer for all bit planes
15: Calculate the index skip for the SL buffer using Equation (3.2)
16: Skip underlying tree by moving the index in the SL buffer
17: end if

layered similar to the bit-plane layers which can be best understood at Figure 3.7.
The numbering in this figure is such that the LSBs refer to the lowest level numbers
and the MSBs to the highest.

If the pixel is not significant (SL ≤ BPR), ‘0’s are written to all layers of the
corresponding sorting buffers and processing is finished. If the pixel is considered
significant (SL ≥ BPR), a ‘1’ is written to the sorting buffer layer, associated with
the bit plane at which the pixel is first significant, followed by a ‘1’ if the coeffi-
cient value is positive and a ‘0’ in case of a negative coefficient value. Next, a ‘0’ is
written in the sorting buffer layers with a higher layer index, to indicate their in-
significance at that bit-plane level. Then ‘0’s are written to all sorting buffers with
a higher layer index and the refinement bits are written to all refinement buffers
with a lower layer index.

Example
The individual coefficient encoding process is explained by providing an encod-
ing example for a coefficient of value 12,289. This coefficient coding process is
visualized in Figure 3.8. The value of 12,289 has its first significant bit at bit-plane
level 13. Therefore, a ‘1’ is written to the sorting buffer associated with bit plane 13,
followed by a ‘0’ indicating the positive sign. For each of the sorting buffers with
a higher layer index, a ‘0’ is written, indicating the coefficient is not yet significant
for those levels. For bit-plane levels 0. . . 12, the refinement bits are written to the
corresponding refinement buffers.

63



3. HARDWARE-EFFICIENT SCALABLE WAVELET COEFFICIENT CODING

Read 
coefficient 

value
Start

Write ‘1’ to 
sorting 

buffer at SL
Image buffer

Write ‘1’ to 
sorting 

buffer at SL

Is the value 
positive? YesNo

End

Calculate 
significance 

level of 
coefficient

Write ‘0’ to 
all sorting 

buffers 
above SL

Write ‘0’ to 
sorting 

buffer at SL

Write 
refinement 

bits to 
buffers

Sorting
buffers

Refinement 
buffers

Is coefficient 
significant?

Write ‘0’ to 
all sorting 

buffers

YesNo

Figure 3.7: Flow chart of the individual coefficient processing in Stage 2 of TSSP.

After all parts of a wavelet decomposition level are coded, the separate sorting
and refinement buffers are re-ordered. They can be simply cascaded to generate
a progressive-quality bitstream identical to the original SPECK bitstream, or they
can be segmented in separate data blocks for each resolution and bit plane to facili-
tate highly scalable coding. This highly scalable concept will be further elaborated
in the following section.

Course-grain quality control
As mentioned in the beginning of this section, the encoding quality in TSSP is ad-
justed by the Bit-Plane Reduction (BPR) parameter. The BPR parameter reduces
the amount of bit planes involved during the block and coefficient encoding pro-
cess in Stage 2 and allows for an elegant coarse-grain quality control, with minimal
computational complexity.

Furthermore, in general, the computational complexity of TSSP and bit-plane
based coders can be reduced by moving this coarse-grain quality control to earlier
stages in the encoding process, such as the integer wavelet transform and Stage 1
of TSSP. This exceeds the scope of this chapter, but is presented in Appendix A
for the interested reader. Because it builds on concepts of TSSP described in this
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Algorithm 3.4 TSSP Stage 2 individual coefficient encoding process
1: Determine significance level of coefficient
2: if coefficient is significant then
3: Write a ‘1’ to the sorting buffer at SL bit plane
4: if sign of coefficient is positive then
5: Write a ‘0’ to the same sorting buffer indicating a positive value
6: else
7: Write a ‘1’ to the same sorting buffer indicating a negative value
8: end if
9: for each of the sorting buffers above do

10: Write a ‘0’, indicating the coefficient is not yet significant for those levels
11: end for
12: for each of the refinement buffers below do
13: Write the refinement bits, extracted from the coefficient value
14: end for
15: else
16: Write ‘0’s to all sorting buffers
17: end if
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Figure 3.8: Individual coefficient encoding process in Stage 2 of the TSSP for an example
int16 coefficient value of 12,289.

chapter, it is recommended to read the appendix after this chapter.
In summary, Appendix A shows that both methods show a significant and sim-

ilar reduction in processing time. We have found that for TSSP, bit-plane dropping
in Stage 1 is preferred in terms of complexity and processing time, as it does not re-
quire any modifications to the wavelet transform. A processing time reduction can
be observed for TSSP compared to the standard TSSP, up to 48%. In the scenario of
images with 1920× 1080 pixels and a typical level of quality control (3 bit planes
dropped), an average processing time reduction of 28% is achieved. Furthermore,
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it has been found that moving quality control out of the entropy coding into the
wavelet transformation is generically applicable to other coding algorithms using
bit-plane based quality control, while offering nearly the same processing time re-
duction, thus leading to a higher processing speed.

TSSP as described up to this point will generate a bitstream identical to SPECK
for the same set of wavelet coefficients. The following section presents two exten-
sions to TSSP, which will enhance its scalability and coding performance, albeit
losing compatibility with the SPECK bitstream.

3.4 TSSP extensions: deviation from the SPECK bitstream

In this section, two extensions to TSSP are discussed. The first extension features a
highly scalable mode providing full scalability in all dimensions, without a need to
decode any part of the bitstream (Section 3.4). The second extension is an energy-
correction mode, which significantly improves the rate-distortion performance of
the 5/3 integer wavelet (Section 3.4). With these modifications, we improve the
functionality of TSSP over SPECK, but also lose compatibility between the TSSP
and SPECK bitstream.

Highly Scalable (HS) mode

The basic TSSP bitstream only provides fine-grain quality scalability by truncation
of the bitstream, which retains compatibility of the bitstream for a regular SPECK
decoder. To facilitate full scalability in resolution and quality and to enable the
use of the TSSP parser and decoder, the highly scalable TSSP bitstream consists
of separate data blocks, each with the bitstream of a particular bit plane and res-
olution level. If this Highly Scalable (HS) mode is used, the TSSP decoder can be
constructed using the same principles and benefits as the TSSP encoder, such as
parallel processing of separate data blocks.

The standard SPECK stream and the Highly Scalable (HS) TSSP stream are
compared in Figure 3.9. The SPECK bitstream only contains some metadata infor-
mation about the image, such as the width and height of the image, the number of
wavelet decompositions and resolution levels, followed by a continuous bitstream.
For TSSP with the HS mode, additional header information is included, which con-
tains indication bits about the chosen filters and indication bits for stream align-
ment. Standard stream alignment is at Byte level, to avoid complicated bit manip-
ulations within a Byte. Additionally, alternative alignment configurations can be
indicated in the header as well, e.g. larger word-length alignments to match with
the memory bus width, at the cost of a slightly less efficient bitstream.
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Figure 3.9: Comparison between SPECK and Highly Scalable TSSP bitstream.

Furthermore, two tables are included in the header, the first with the minimum
and maximum bit planes for each of the resolution layers. The second table in-
dicates the number of sorting and refinement bits per resolution/bit-plane block.
The header is followed by the data blocks, which are aligned to the boundaries
specified in the header. So for a Byte-aligned bitstream, each data block starts at
a Byte boundary. This may lead to small gaps in between the data blocks, which
are filled with 0’s. In the original SPECK bitstream, resolution scalability cannot be
achieved without decoding the bitstream. The HS-TSSP bitstream allows for scal-
ability without detailed coding operations, which is achieved by simply removing
data blocks and updating the header.

The TSSP bitstream can be ordered in a progressive-quality or a progressive-
resolution order. For the progressive-quality order, data blocks of bit planes of each
resolution layer are stored consecutively, followed by the data blocks for all reso-
lution levels of the next bit plane. For the progressive-resolution order, data blocks
for all bit planes of one resolution layer are stored consecutively, followed by the
bit planes of the next resolution layer. These two progressive bitstreams produce
different quality vs. rate curves. Figure 3.10 shows the two quality-rate curves
(QR curves) for (a) one quality-progressive bitstream and (b) one resolution-
progressive bitstream. In sub-figure (b), the vertical dotted lines represent the
separation between resolution layers. From Figure 3.10 it can be concluded that
it is generally preferable to store the information in a quality-progressive order,
since a sudden (unintended) termination of the bitstream will yield the highest
quality image up to the point that the information was received.

Scalability is achieved through the use of the TSSP parser, which prunes and
reorders the TSSP bitstream at any time after encoding, to create a bitstream with
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Figure 3.10: (a) Quality-progressive and (b) resolution-progressive bitstreams decoded at
full resolution up to a certain point of reception.

a desired quality, resolution and progression order. This parser only utilizes in-
formation from the header and does not need any payload-data decoding from
the data packets. As a result, the parser only creates a new header and reorders
the bitstream using simple and efficient memory copy operations. In a network
environment, data blocks can also be assigned different Quality-Of-Service (QOS)
levels, thereby enabling graceful quality/resolution degradation in case of net-
work congestion. Furthermore, by removing the headers and alignment bits, the
original SPECK bitstream can be recreated for backwards compatibility.

A detailed description of the highly scalable TSSP bitstream is beyond the scope
of this chapter and is therefore specified in Appendix B. It should be noticed that
this bitstream description is complete and enables full decoding.

5/3 Energy-Correction mode (53EC)

Here, TSSP is extended with energy correction for the well-known 5/3 integer
wavelet. The 2D energy-correction factors derived in Section 2.3 for the 5/3 wavelet
are powers of two. Instead of correcting the wavelet coefficients, the bit-plane trun-
cation of the scalable TSSP codec is altered to achieve a similar result. With this
codec modification, the original 5/3 integer wavelet can be used, while achieving
better lossy coding performance and still supporting lossless coding.

In the regular TSSP, the LH, HL and HH wavelet frequency bands carry equal
weight and their bitstreams are combined in a single data block. In the 5/3 energy-
correction mode, the data order in the TSSP codec is modified to match the 2D
energy correction visualized in Figure 2.4(a). For the proposed 2D energy correc-
tion, corrections need to be applied to the LH and HL wavelet frequency bands,
which are different from the correction applied to the HH wavelet frequency band.
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Figure 3.11: Highly Scalable TSSP bitstream without and with 5/3 Energy Correction.

Therefore, in the modified data order, two separate data blocks occur: one for the
joined LH–HL wavelet frequency bands and one for the HH wavelet frequency
band.

Figure 3.11 shows the difference in stream organization when the 5/3 energy-
correction mode is activated for a simple scenario of only 1 iteration of wavelet
decomposition and 2 bit planes. From the figure, it can be seen that the data blocks
representing the high-pass bands of the wavelet are split into two separate data
blocks: one for the joined LH–HL bands and one for the HH band. The stream can
now be re-organized to provide better lossy coding performance, by placing the
blocks in the correct order, according to their contribution to the image quality.

This principle effectively implements energy correction through stream reorga-
nization and this principle can be expanded to any number of decompositions and
bit planes. Figure 3.12(a) shows the data order of the regular scalable TSSP codec
for a 3-level dyadic decomposition, with frequency band labels identical to those
used in Section 2.3. The encoded data for each frequency band and bit-plane level
is visualized by the blocks, while the order in the bitstream is indicated by the ar-
rows between the blocks. The new data order in 5/3 energy-corrected TSSP, based
on the additional data blocks and energy correction, is visualized in Figure 3.12(b).
It should be noted that even though the energy correction is the same, it is not
possible to combine the HH1 band with the LH2 and HL2 bands, as it will destroy
resolution scalability. Furthermore, additional descriptive information has to be
included in the header, in the form of extra alignment bits for the extra blocks,
which will slightly increase the size of the bitstream.

Figure 3.12(c) shows the data order of the 5/3 energy-correction mode, but
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now stretched vertically, to visualize the effective energy correction of the blocks
with factors ×8, ×4, ×2 and × 1

2 , identical to the 2D energy correction shown in
Figure 2.4(a).

3.5 Experimental results

In this section, both the lossless and lossy coding performance of the proposed
TSSP algorithm (Section 3.3) is presented, with and without the highly-scalable
and the 5/3 energy-correction extensions from Section 3.4. The experimental re-
sults in the following sections are performed on the set of raw test images shown at
the end of this chapter in Figure 3.13, with their properties given in Table 3.1. The
full-HD images are enlarged slightly by mirroring top and bottom image rows, to
allow for 6 levels of dyadic wavelet decompositions required for the SPECK codec
implementation. As discussed before, the TSSP codec is capable of encoding arbi-
trary image sizes.

Table 3.1: Details of the raw images used for experimentation.

Color space / Resolution Uncompressed size

Image color sub-sampling [pixels] [kB]

Videoclip YCbCr / 4:2:0 1920×1088 3,060

Bob Marley YCbCr / 4:2:0 1920×1088 3,060

Dude YCbCr / 4:2:0 1920×1088 3,060

Pipe YCbCr / 4:2:0 1920×1088 3,060

Eye Grayscale 1920×1088 2,040

City still YCbCr / 4:2:0 704×576 594

Crew still YCbCr / 4:2:0 704×576 594

Lena YCbCr / 4:2:0 512×512 384

Evaluation of lossless coding performance

Table 3.2 shows the compressed data sizes for the complete set of test images gen-
erated by the TSSP codec with and without the Highly Scalable (HS) mode and for
the SPECK codec, where lossless compression factors are represented by the fac-
tor indicated between the brackets. The compressed data sizes and compression
factors for TSSP without HS mode and SPECK are identical, which is expected as
they create identical bitstreams.
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The bitstream of TSSP with HS mode includes additional header information
and alignment bits, which enables highly scalable parsing of the bitstream without
payload-data decoding and facilitates computational parallelism on multi-core ar-
chitectures for the decoder. From the table, it can be observed that the HS mode
increases the data sizes by only 0.1%, which is insignificant when compared to the
additional benefits that this mode brings.

Table 3.2: Lossless performance comparison using the 5/3 integer wavelet for TSSP with
and without HS (Highly Scalable) mode and SPECK.

SPECK TSSP, HS mode off TSSP, HS mode on

Image (compr. factor) (compr. factor) (compr. factor)

Videoclip 1102 kB (2.78×) 1102 kB (2.78×) 1103 kB (2.78×)

Bob Marley 1058 kB (2.89×) 1058 kB (2.89×) 1059 kB (2.89×)

Dude 966 kB (3.17×) 966 kB (3.17×) 967 kB (3.17×)

Pipe 915 kB (3.35×) 915 kB (3.35×) 915 kB (3.34×)

Eye 763 kB (2.67×) 763 kB (2.67×) 764 kB (2.67×)

City still 274 kB (2.17×) 274 kB (2.17×) 275 kB (2.16×)

Crew still 219 kB (2.72×) 219 kB (2.72×) 220 kB (2.71×)

Lena 144 kB (2.67×) 144 kB (2.67×) 145 kB (2.66×)

The lossless-compressed data sizes using the TSSP codec with activated HS
mode is evaluated for three cases: (1) using the 5/3 integer wavelet without En-
ergy Correction (EC), (2) using the 5/3 integer wavelet with codec-based EC and
(3) applying the 9/7-F integer wavelet. The results for these cases are listed in
Table 3.3. It can be observed that the 5/3 integer wavelet without EC has the
best lossless coding performance, but the difference with the modified codec with
EC is negligible and is only 0.1%. This small difference is due to the small extra
overhead caused by the split of the high-pass data into two data blocks, which in-
evitably increases overhead in header information and alignment bits. The 9/7-F
integer wavelet shows a slightly worse lossless performance of 3.5% compared to
the 5/3 integer wavelet.

Visual evaluation of lossy coding performance

Now that the lossless coding performance of TSSP has been evaluated, lossy cod-
ing performance is investigated, starting with a visual evaluation. On the oppos-
ing page of the raw test images of Figure 3.13, the same images are shown in Fig-
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Table 3.3: TSSP lossless performance evaluation for integer wavelets with HS (Highly Scal-
able) mode on, with and without EC (Energy Correction). Compression factors are based
on the original bit-rate values, the presented bit rates are rounded.

Image 5/3 wavelet, no EC 5/3 wavelet, with EC 9/7F wavelet

Videoclip 1103 kB (2.78×) 1104 kB (2.77×) 1142 kB (2.68×)

Bob Marley 1059 kB (2.89×) 1060 kB (2.89×) 1099 kB (2.79×)

Dude 967 kB (3.17×) 968 kB (3.16×) 1018 kB (3.01×)

Pipe 915 kB (3.34×) 916 kB (3.34×) 977 kB (3.13×)

Eye 764 kB (2.67×) 764 kB (2.67×) 792 kB (2.58×)

City still 275 kB (2.16×) 276 kB (2.16×) 282 kB (2.11×)

Crew still 220 kB (2.71×) 220 kB (2.70×) 226 kB (2.64×)

Lena 145 kB (2.66×) 145 kB (2.65×) 145 kB (2.65×)

ure 3.14, but decompressed1 at a Bit-Plane Reduction (BPR) count of 4. This level
of compression is significant and ranges from a factor 41 to 99× for HD images
and 15 to 41× for SD images. As can be seen from the figure, even at these high
compression ratios, the visual quality is still very good. It is also observed that
for the same BPR value, the compression factor varies based on the complexity of
the image, as the coding algorithm assigns more bits to achieve the desired quality
set by the BPR value. The Bob Marley and City images in Figure 3.14(a) and (f),
contain many small details and distinct edges, which contain considerable infor-
mation, requiring a higher bit rate for encoding. On the other side of the spectrum,
Dude and Videoclip in Figure 3.14(b) and (d), both have a blurred background due
to the limited depth of field of the camera, whereas Crew (Figure 3.14(h)) contains
large flat patches without detail. These aspects reduce high-frequency information
and lead to a higher compression factor.

Figures 3.15 and 3.16 compare the visual compression artifacts for different lev-
els of BPR for the Pipe and Dude images, respectively. At the left side, the complete
image is shown with at the right side a magnified view. At the top, the original im-
age is shown, with decoded images below at gradually increasing levels of com-
pression. Even at high compression ratios, the visual quality is considered very
good and the lack of blocking artifacts makes the wavelet transform very suitable
for the coding of natural images. For the higher compression ratios, some loss of
detail occurs in flat areas, but edges remain well represented. Visually, this is also

1All images are compressed only once using HS-TSSP and the 9/7 floating-point wavelet trans-
form and then decompressed at various qualities and resolutions, but always derived from the same
compressed bitstream.
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perceived as a form of noise reduction.
Finally, Figures 3.17 and 3.18 show the visual quality of reduced-resolution de-

coding of the Pipe and Dude images, respectively. These reduced-resolution im-
ages are all decoded from the same original bitstream. Reduced resolution means
here that the original image at the left of the figures is coded at near broadcast to
approximately CIF resolution. These images are decoded at resolutions available
from the 6-level dyadic wavelet decomposition. Although the compressed files are
only several tens of kilobytes, they still offer a very good visual quality. At these
resolution levels or somewhat lower, the coding performance decreases because a
lower level of hierarchical wavelet decomposition leads to a lower decorrelation of
the image. This phenomenon is also observed when comparing the compression
factors between HD and SD images, where it was also noticeable that the compres-
sion performance increases for higher resolution images, such as Ultra-HD images
with a resolution of 3840× 2160 pixels.

Analytical evaluation of lossy coding performance

Figures 3.19(a)–(f) show the rate-distortion curves for several images with diverse
resolutions and using various lossy and lossless wavelet transforms. The curves
are generated with the proposed TSSP codec using the Highly Scalable (HS) mode
and the original images are encoded to (near-)lossless quality. The bitstream is
then truncated, using the TSSP parser for a range of rate points and decoded using
the TSSP decoder. Two non-reversible wavelets are used: the 9/7 floating-point
wavelet and the 5/3 integer wavelet with Energy Correction (EC). For the lossless
wavelets, the 9/7-F integer wavelet and the 5/3 integer wavelet are employed, the
latter with and without codec-based EC.

When comparing different wavelet transforms, for all images, the lossy 9/7
floating-point wavelet yields the best performance, followed by the lossy 5/3 in-
teger wavelet with EC applied to the LL and HH bands. For the lossless wavelets,
the 5/3 integer wavelet with EC performed in the codec provides the best results,
which are close to the lossy 5/3 integer wavelet, followed by the 9/7-F integer
wavelet. From these curves, it is also clearly visible that the 5/3 wavelet without
any form of EC is impractical for lossy image coding, as it yields a quality degra-
dation of up to 5 dB.

The performance difference between EC in the wavelet and in the codec is prob-
ably explained by two aspects. The first aspect is caused by higher bit rate when
using codec-based EC, due to the additionally included header information. How-
ever, this does not account fully for the loss in performance. The second aspect is
likely resulting from the different incomplete wavelet coefficient rounding at the
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decoder, followed by the inverse wavelet transform, with and without internal EC.
However, the slight gain in performance for the 5/3 integer wavelet with internal
EC comes at the expense of losing perfect reconstruction.

Figures 3.20(a)–(f) show the same curves, but with BPR on the horizontal axis
instead of bit rate2. From these figures it can be observed that for all wavelet trans-
forms, the PSNR drops at a rate of approximately 3 dB per BPR level. Furthermore,
for the different images, the achieved quality in terms of PSNR is similar for com-
parable levels of BPR. These two features confirm that the BPR value is a good
means for control of quality-based coding.

Finally, Figures 3.21(a)–(f) show the rate-distortion curves for a sub-set of 6 im-
ages with different resolutions, with and without the HS mode activated. Without
the HS mode activated, the TSSP bitstream is identical to the SPECK bitstream, so
that their curves are interchangeable. For TSSP with HS, a small quality degrada-
tion at the same rate can be observed, or a small rate increase at the same quality,
which is explained by the additional header information and the Byte-alignment
for all data blocks. For larger images and higher rates, the relative performance dif-
ference becomes smaller, as the number of extra alignment bits becomes insignifi-
cant compared to the number of bits contained in the larger data blocks. The same
applies to the required header bits for each data block.

3.6 Conclusions

In this chapter, the computational bottlenecks of some of the mostly used wavelet
coefficient coding algorithms were studied. Although several enhancements have
been proposed in literature, none of them fully remove the most prevalent bottle-
necks: (1) tracking of significant coefficients throughout bit planes, (2) lack of data
localization / possibilities for parallelism, (3) the need for repetitive reading of the
same coefficients for several bit planes and (4) data dependency during the coding
process.

We have therefore proposed significant algorithmic modifications to the SPECK
codec. The first modification consists of splitting SPECK into two stages, resulting
in the name Two-Stage SPECK (TSSP). In the data-independent Stage 1, a Signifi-
cance Level (SL) buffer is created storing the SL of all nodes in the quadtree, which
is used in the data-dependent Stage 2 for decision making. Furthermore, in Stage 2
all bit planes are processed in parallel. These algorithmic modifications have the
following benefits. A key advantage of the data-independence in Stage 1 is that

2The height of the curve in these figures does not indicate which wavelet performs better, as in the
previous figure, but merely a different BPR-PSNR relation.
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the SL buffer between the two stages acts as an efficient communication medium
between the two types of processing, because it features regular access patterns
and a fixed computational load. The SL buffer also offers an efficient way to skip
insignificant portions of the image and the quadtree in Stage 2, without the need to
observe individual coefficient values, thereby improving computational efficiency.
Parallel bit-plane processing in Stage 2 utilizes data localization, while eliminating
the need for repetitive access of the same coefficient for several bit planes. Further-
more, TSSP is well suited for large-scale parallelism in computation, as it can be
split into parts at any quadtree depth, both at Stage 1 and Stage 2.

Two extensions to TSSP have been proposed, through which the TSSP bitstream
deviates from the SPECK bitstream: the Highly-Scalable (HS) extension and the
5/3 Energy-Correction (53EC) extension. The HS extension separates the continu-
ous bitstream of SPECK into deliberate data blocks with an index in the header. It
also adds an adjustable alignment of the data blocks. This has the following advan-
tages. The data blocks allow parsing of the bitstream without payload decoding,
thereby creating a bitstream of any desired quality, resolution and bitstream order,
by selectively discarding parts of the bitstream. The adjustable alignment of the
data blocks allows TSSP to adapt to the specific ways of accessing data by different
architectures3. The data blocks also enable full parallel processing in the decoder,
at any level in the quadtree. Furthermore, by removing the headers and alignment
bits, an original SPECK bitstream can always be re-created for backwards com-
patibility. The 53EC extension builds upon the HS extension and adds additional
data blocks for separate frequency bands, with adjusted bit-plane processing to
simulate energy correction. The 53EC extension has the advantage that it retains
the perfect reconstruction feature of the 5/3 integer wavelet, while significantly
improving lossy coding performance, by up to 5 dB as seen in Figure 3.19, with a
negligible performance drop of only 0.1% at lossless coding. TSSP also shows good
lossless and lossy compression performance. Even at high compression ratios, the
visual quality is considered very good and the lack of blocking artifacts makes the
wavelet transform very suitable for the coding of natural images. Furthermore,
the BPR parameter provides a robust quality control (3 dB per level), which creates
images of similar visual quality and PSNR for the same value of BPR.

The benefits of the TSSP proposed are multifold and not limited to our orig-
inal scope of embedded surveillance. For clarity, we have divided these benefits
in two categories. The two-stage approach facilitates an efficient implementation,
which in turn offers benefits such as increased processing speed, power reduc-

3Modern architectures include highly optimized data paths for longer word lengths, such as 32 and
64 bits.
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tion, heat reduction and battery-life improvements, which is important for embed-
ded cameras and mobile viewing applications. Furthermore, the implementation
concept behind TSSP (two-stage processing, integrated energy correction for the
5/3 wavelet within the codec and parallel bit-plane processing) allows for elegant
multi-core implementations in general. Second, at the coding side and in a more
general view, TSSP provides excellent lossless and lossy performance in synergy
with numerous scalability options. As an example, it is possible to utilize quality-
driven coding, which can also be applied to other codecs. This flexibility can be
employed in many application areas, such as medical imaging, internet distribu-
tion and systems based on devices with widely varying specifications.

For the next chapter in this thesis, Chapter 4, we will first expand our discus-
sion on scalability and complexity into the time domain to support video process-
ing. It investigates how utilize wavelet filters can be utilized in the temporal do-
main and how to include motion estimation and compensation in the new setting
with temporal processing.
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(a) Bob Marley 1920× 1080 pixels (b) Dude 1920× 1080 pixels

(c) Pipe 1920× 1080 pixels (d) Videoclip 1920× 1080 pixels

(e) Eye 1920× 1080 pixels (f) City still 704× 576 pixels

(g) Lena 512× 512 pixels (h) Crew still 704× 576 pixels

Figure 3.13: Raw images used for experimentation.
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(a) Bob Marley (73.96 kB, 41×, 38.56 dB) (b) Dude (31.34 kB, 98×, 40.01 dB)

(c) Pipe (63.32 kB, 48×, 38.89 dB) (d) Videoclip (31.03 kB, 99×, 40.02 dB)

(e) Eye (24.41 kB, 84×, 42.13 dB) (f) City still (39.74 kB, 15×, 33.96 dB)

(g) Lena (13.44 kB, 29×, 36.39 dB) (h) Crew still (14.75 kB, 40×, 37.24 dB)

Figure 3.14: Images encoded and then decoded at a BPR of 4 with in between brackets:
compressed size in kB, compression factor and Y channel PSNR.
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(a) Dude uncompressed (3060 kB) (b) Dude uncompressed detail

(c) Decompressed with BPR 3 (74.35 kB, 41×) (d) Decompressed with BPR 3 detail

(e) Decompressed with BPR 4 (31.34 kB, 98×) (f) Decompressed with BPR 4 detail

(g) Decompressed with BPR 5 (15.01 kB, 202×) (h) Decompressed with BPR 5 detail

Figure 3.15: Image Dude (1920× 1088 pixels) decompressed with different BPRs.
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(a) Pipe uncompressed (3060 kB) (b) Pipe uncompressed detail

(c) Decompressed with BPR 3 (120.9 kB, 25×) (d) Decompressed with BPR 3 detail

(e) Decompressed with BPR 4 (63.32 kB, 48×) (f) Decompressed with BPR 4 detail

(g) Decompressed with BPR 5 (31.36 kB, 97×) (h) Decompressed with BPR 5 detail

Figure 3.16: Image Pipe (1920× 1088 pixels) decompressed with different BPRs.
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(a) Dude decompressed with BPR 3, full resolution (1920× 1088, 74.35 kB, 41×)

(b) BPR 3, 1/4 resolution
(960× 544, 30.28 kB, 100×)

(c) BPR 4, 1/4 resolution detail
(240× 135 pixels)

(d) BPR 3, 1/16 resolution
(480× 272, 13.15 kB, 231×)

(e) BPR 5, 1/16 resolution detail
(120× 67 pixels)

Figure 3.17: Image Dude (1920× 1088 pixels) decompressed at various resolutions.
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(a) Pipe decompressed with BPR 3, full resolution (1920× 1088, 120.9 kB, 25×)

(b) BPR 3, 1/4 resolution
(960× 544, 62.38 kB, 49×)

(c) BPR 4, 1/4 resolution detail
(240× 135 pixels)

(d) BPR 3, 1/16 resolution
(480× 272, 24.89 kB, 123×)

(e) BPR 5, 1/16 resolution detail
(120× 67 pixels)

Figure 3.18: Image Pipe (1920× 1088 pixels) decompressed at various resolutions.
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Figure 3.19: Rate-distortion curves for the (a) Bob Marley, (b) Dude, (c) Pipe, (d) Videoclip,
(e) City and (f) Lena test images.
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Figure 3.20: BPR-distortion curves for the (a) Bob Marley, (b) Dude, (c) Pipe, (d) Videoclip,
(e) City and (f) Lena test images.
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(c) Pipe 1920× 1088 pixels
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(d) Videoclip 1920× 1088 pixels
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(e) City 704× 576 pixels
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Figure 3.21: Comparison between TSSP with Highly Scalable (HS) mode on and off for the
(a) Bob Marley, (b) Dude, (c) Pipe, (d) Videoclip, (e) City and (f) Lena test images, using the
9/7 floating point wavelet.
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4
Complexity in the temporal domain of

scalable video coding

Make everything as simple as possible, but not simpler.

ALBERT EINSTEIN

Abstract

This chapter explores the trade-off between complexity and performance in scalable wavelet coders
in the temporal domain. We present a framework to investigate various temporal configurations
and after evaluation, adopt a special configuration for video surveillance applications, which fea-
tures low memory access and low end-to-end delay, while still achieving sufficiently high quality.
We also propose two extensions to the framework: Temporal Energy Correction (TEC) and Low-
Complexity Encoder Feedback (LCEF). TEC improves energy correction in the temporal lifting tree.
A significant reduction in computational complexity is achieved (about 43%), while simultaneously
reducing the memory bandwidth even further. LCEF adds the use of a quality-reduced frame at the
start of each Group Of Pictures (GOP), which is generated without entropy decoding, but as part of
the entropy encoding process. For LCEF, added computational complexity is minimal and decoder
modifications are not required. Using this technique, the average quality of the frames within a
GOP is improved and quality fluctuations are significantly reduced, which is also expressed by a
reduction of the PSNR variance by 30%. LCEF also improves the average quality and combined
with the reduced quality fluctuations, leads to a significantly higher perceived quality. With respect
to coding quality in general, the coding performance of our proposed SVC at full resolution is close
to H.264 SVC (within 1 dB for surveillance type video) and at lower resolutions sufficiently good
for the video surveillance application, but with a much lower complexity.

87



4. COMPLEXITY IN THE TEMPORAL DOMAIN OF SCALABLE VIDEO CODING

4.1 Introduction

In Chapter 3, scalable image coding based on the wavelet transformation has been
investigated. Here, the Two-Stage SPECK (TSSP) coding algorithm has been pro-
posed, which improves the memory usage and processing speed of the SPECK
codec, by splitting the processing in two stages, one data-dependent and one data-
independent. Furthermore, two extensions to TSSP have been proposed, named
HS and 53EC, which provide better scalability and lossy coding performance. How-
ever, up to this point, the described properties of TSSP coding have been validated
for image coding, but not for video sequences.

This chapter concentrates on extending the scalable coding framework to the
temporal domain for video surveillance applications. The complexity implica-
tions of variations in the structure of the temporal wavelet filtering are investi-
gated in detail, in order to determine the best structure suited for embedded video
surveillance. The analysis will apply several state-of-the-art motion estimation
techniques, in contrast with Chapter 5, where a special motion estimator for scal-
able video coding will be explored.

When considering joint spatio-temporal processing in more detail, the required
wavelet filtering is performed explicitly in both the spatial and the temporal do-
main, also commonly known as 3D subband coding. Coding performance can be
further increased by using motion compensation within the temporal wavelet fil-
ter. This concept is called Motion Compensated Temporal Filtering (MCTF), which
was first proposed by Ohm [63] and later refined by Choi and Woods [64]. Im-
provements were then made by Secker and Taubman [65] and Pesquet-Popescu
and Bottreau [66], which include the utilization of lifting [28] in the temporal
wavelet decomposition, similar to the lifting used in the spatial domain as dis-
cussed in Section 2.3. Later, a more flexible framework was proposed by Van der
Schaar and Turaga [67], known as Unconstrained Motion Compensated Temporal
Filtering (UMCTF), which allows for more flexible temporal configurations.

Other research is dedicated to implementation aspects of 3D subband coders.
Turaga et al. [68, 69] investigated different spatio-temporal decomposition struc-
tures for a wide range of Rate-Distortion-Complexity (R-D-C) operating points.
Pau and Pesquet-Popescu [70] investigated delay-performance trade-offs in MCTF.
Later, Pau, Viéron and Pesquet-Popescu [71] analyzed the encoder and decoder de-
lays and the overall end-to-end delay in the UMCTF framework.

The previous aspects of temporal processing (e.g. lifting, temporal structure,
delay) are essential elements in the problem statement of this chapter. The re-
search questions for this chapter emerging from this discussion are how to: (1)
analyze the dynamic behavior of 3D subband coders in the multi-dimensional pa-
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rameter space and (2) find the balance between computational cost, bandwidth,
rate-distortion performance and visual quality. For the development of this chap-
ter, the first question is leading and then gradually evolves to the second question.
Based on this exploration, our analysis will lead to the temporal configuration with
the best balance for embedded video surveillance, which has strong implications
on computational complexity and end-to-end delay.

This chapter is organized as is depicted in Figure 4.1. To further investigate the
complexity in the temporal domain, several possible temporal coding structures
for wavelet video coding are investigated in Section 4.2. Section 4.3 then explores
the variations in temporal configurations that can be be made, followed by a dy-
namic analysis and complexity estimation of these temporal configurations. Sec-
tion 4.4 then addresses two extensions to the temporal filtering: (1) for improving
the energy balance in the temporal domain and (2) including low-complexity en-
coder feedback to achieve temporal stability of the perceived quality. Section 4.5
presents the results and shows the trade-offs that can be made between quality
and complexity, after which conclusions are given in Section 4.6.

Section 4.4: Extensions to the Temporal Coding Structure

Section 4.2: Video Coding Architectures

Non-Scalable
Predictive Coding

Scalable
Predictive Coding

Low-Complexity Encoder 
Feedback (LCEF)

Choice of 
Architecture

3D Subband
Coding

Section 4.3: Temporal Configurations in Hierarchical Architectures

Framework Dynamic Analysis
Computational 

Complexity

Temporal Energy 
Correction (TEC)

Section 4.5

Results

Section 4.6

Conclusion

Pyramid-based 
MCTF Coding

Figure 4.1: Structural diagram of Chapter 4.
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4.2 Temporal coding architectures for scalable video coding

and their merits

In this section, several possible coding structures for wavelet video coding are in-
vestigated to determine their suitability for scalable coding. The two most promi-
nent video compression architectures currently being used for (wavelet) video cod-
ing are coarsely categorized in predictive coding and 3D subband coding. This
section will discuss the various predictive and subband coding architectures and
motivate a choice for further analysis.

Predictive coding systems

Predictive coders are a proven technology in DCT-based video coders (such as
the well-known MPEG-1 and MPEG-2 [72, 73] standards) and are easily adapted
for wavelet video coding. Figure 4.2 depicts the schematic diagram of a predic-
tive video coder. The first frame is encoded in intraframe coding mode (abbre-
viated further as intra mode), without temporal processing such as motion com-
pensation. These intra-coded frames or I-frames, are used periodically to initiate
the temporal coding process for a group of consecutive frames. The periodic oc-
currence of I-frames provides protection against temporal error propagation and
it enables random access within the compressed video sequence. In the case of
wavelet video coding, the image is first transformed using the wavelet decom-
position and the wavelet coefficients are quantized. The quantized coefficients
are entropy coded and communicated over the channel as a coded I-frame. For
the succeeding frames, motion is estimated between the current frame and the de-
coded version of the previously encoded frame. The decoded frame is then motion
compensated to form a prediction of the current frame, after which the difference
between this predicted frame and the current video frame is encoded. The quan-
tized coefficients and the motion vectors are encoded and communicated over the
channel as a coded predicted frame or coded P-frame.

Modern compression systems not only use uni-directional prediction, but also
exploit bidirectional1 prediction. In such a concept, both forward and backward
predicted frames surrounding the actual frame to be coded are used to improve
coding efficiency. These B-frames are predicted from I and P-frames and not ref-
erenced by other frames. In the latest standards, even B-frames are considered for
referencing, such as special profiles of the H.264 standard.

1We have adopted the term ‘bidirectional’ without hyphen in accordance with the coding literature.
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Figure 4.2: Diagram of a non-scalable predictive video encoder (e.g. MPEG-2).

Scalable predictive coding systems

The predictive coder described in the previous section and Figure 4.2 is not scal-
able. To obtain scalability in predictive coders, a layered approach is commonly
employed, in which one or multiple enhancement layers are added to a base layer.
A schematic representation of scalable predictive coding is shown in Figure 4.3,
where the encoder and decoder blocks represent the predictive coder as described
previously. To obtain different resolution levels and frame rates, spatial/tempo-
ral up- and down-sampling blocks are introduced. Each layer performs down-
sampling of the input frames to the resolution and/or frame rate designated at
that particular layer, after which the output of the previous layer is extracted. Tra-
ditional non-scalable coding and decoding is performed within each layer and
the output signal is up-sampled to the resolution and/or frame rate of the next
layer. This is done for a predetermined number of enhancement layers, until full
quality is reached. The base layer does not have any inputs from previous layers,
while the last enhancement layer neither has down-sampling nor up-sampling. A
well-known example of the above structure is the Laplacian pyramid coding sys-
tem [16].
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Figure 4.3: Schematic representation of a scalable predictive video encoder.

3D subband coding systems

3D subband video coders have been broadly explored in the past decade, due to
their good compression properties with a native support for various forms of scal-
ability. Several forms of 3D subband coders have been proposed by a.o. Ohm [74,
63], Taubman and Secker [75, 65, 76, 77], BeongJoKim et al. [78, 79], researchers
supervised by Woods [64, 80, 81, 82, 83, 84, 85] and researchers supervised by
Pesquet-Popescu and van der Schaar [66, 86, 67, 87, 88, 89, 90, 91, 92]. All these
schemes can be generalized to one of the categories abbreviated as t+2D, 2D+t and
2D+t+2D. The t+2D and 2D+t system configurations are visualized in Figure 4.4,
while the 2D+t+2D is a combination of both. The spatial wavelet decomposition,
referred to by the term ‘2D’, removes spatial redundancy while enabling resolution
scalability. The parameter ‘t’ represents the temporal wavelet transform combined
with motion estimation, which removes temporal redundancy and enables tem-
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poral scalability. Finally, for all system configurations, the wavelet coefficients and
motion vectors are entropy coded.
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Figure 4.4: The (a) t+2D and (b) 2D+t temporal wavelet coding architectures.

The temporal wavelet transform typically consists of a particular filter type,
such as the well-known Haar transform or Daubechies D2 wavelet [21], or the
more advanced 5/3 filter [22, 23, 24, 25] schemes, based on motion-compensated
lifting. Some schemes even apply different filters at different levels of decomposi-
tion and adapt the filter type to the content. For 2D+t and 2D+t+2D schemes, the
motion compensation is performed in the wavelet domain and a shift-invariant
wavelet transform should be used, such as the complete-to-overcomplete discrete
wavelet transform, as proposed by Andreopoulos et al. [93, 94, 95, 96].

The temporal wavelet schemes can be also combined with multiple layers, sim-
ilar to the scalable predictive coder, as discussed in Section 4.2 and visualized in
Figure 4.3. For example, a pyramid-based system down-samples the input sig-
nal to various resolutions (e.g. 4CIF, CIF and QCIF) and for each of those reso-
lutions, then performs a t+2D decomposition. In this concept, information from
low-resolution layers is used as a prediction for high-resolution layers. This layer-
to-layer prediction can consist of intra-prediction, motion-vector prediction and
residual prediction. Unfortunately, the scalability opportunities inherent to the
wavelet transform cannot be exploited, as the layer-to-layer prediction introduces
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dependencies between layers. This layer-to-layer dependency forces lower levels
to be decoded at full quality, as they are used for prediction of the layers above.
This reduces scalability options even further and might even introduce encoder-
decoder drift. For these reasons, the combination of layering with wavelet schemes
is not considered for our application. The remaining configurations are compared
in more detail in the next section.

Selection of suitable coding architecture for surveillance

The previous section has introduced predictive coding, scalable predictive coding
based on Laplacian pyramids and three 3D subband coding architectures: t+2D,
2D+t and 2D+t+2D. These coding architectures are compared with complexity and
performance trade-offs, which are categorized in Table 4.1, where the symbols in-
dicate the performance for each of the aspects. The table is discussed qualitatively,
with a focus on four topics: coding performance, complexity, scalability and fea-
tures relevant to the domain of video surveillance.

Table 4.1: Performance of various temporal coding architectures for system aspects indi-
cated in the left column. Legend: −− = very poor, − = poor, # = fair, + = good, ++ = very
good.

Predictive 3D subbandXXXXXXXXXAspect
Coding

Regular Scalable t+2D 2D+t 2D+t+2D

Low inherent complexity + # ++ − −−
Low motion complexity ++ + ++ −− −−
Coding performance ++ ++ + + +

Scalability −− # ++ ++ ++

Reduced resolutions −− ++ # ++ ++

Low end-to-end delay ++ + + + +

Trick play and

random access
−− − ++ ++ ++

Score (+ minus −) 1 5 10 5 4

Complexity
Both predictive coding systems have a closed loop, which requires a decoder within
the encoder, thereby increasing the complexity. The scalable predictive coder is
constructed with several layers, in which residual information is propagated through
the hierarchical tree. Both predictive coders can utilize straightforward motion es-

94



4.2. Temporal coding architectures for scalable video coding and their merits

timation based on minimum luminance differences, but the scalable version needs
to estimate motion at various scales. The 3D subband coders all have an open
coding loop, while no decoding step is required during encoding. However, for
the 2D+t and 2D+t+2D schemes, the motion compensation is performed in the
wavelet domain and a shift-invariant wavelet transform should be used, such as
the CODWT (Complete-to-Overcomplete Discrete Wavelet Transform), leading to
an increased complexity.

Coding performance
Because of the feedback loop in the predictive coders, quantization errors resulting
from the encoding-decoding process are fed back internally. Over time, this allows
these coders to correct the errors they have made in the past. Due to this corrective
nature, closed-loop coders have a very high coding performance. However, the
feedback loop also inevitably impacts scalability, which is discussed next.

Scalability
As the predictive coding system is a closed-loop system, decoding within the en-
coder should match decoding within the decoder. If scalability is applied to the
decoder, the encoder and decoder are not synchronized, so that drift will occur
between the encoder and the decoder, leading to severe accumulating artifacts.
Bidirectionally predicted frames can be discarded for basic temporal scalability,
since they are outside the feedback loop, so that these frames do not lead to accu-
mulating drift artifacts.

Pyramidal-based systems show excellent performance at all resolutions. Be-
cause scalability is added through inter-dependent pyramidal levels, only a fixed
number of scalability options can be supported for pyramidal systems. This lim-
itation results from the consideration that each additional operation point in the
three-dimensional space of quality, spatial resolution and temporal resolution, re-
quires an additional enhancement layer (see Figure 4.3), which significantly in-
creases the coding system complexity. Since the operation space is three-dimen-
sional, the amount of enhancement layers grows rapidly. Scalability is therefore
limited to these operational points and their specific order, otherwise encoder-
decoder drift will occur.

The 3D subband systems have an open coding loop, so that they do not suffer
from encoder-decoder drift. This provides fine-grained scalability, while simulta-
neously allowing scalability in multiple dimensions, unlike the pyramidal-based
systems. Within this class, t+2D systems can show artifacts for reduced spatial
resolutions because of non-ideal spatial filters. The non-ideal filters lead to spa-
tial aliasing in the low- and high-frequency subbands. In normal operation, this
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aliasing practically becomes zero when wavelet filters are designed to be orthog-
onal (for example Daubechies 9/7). However, when dismissing high-pass bands
for bit-rate or spatial-resolution reduction, the aliasing remains present in the low-
pass bands and will cause visible degradations in the image.

Relevant features for video surveillance
End-to-end delay is defined as the time between the capturing moment of the image
by the camera until the visualization time at the observer. This delay is in part
defined by the coder delay, which can vary, based on the number of ‘future’ im-
ages, which are used to reconstruct a certain frame. Predictive coders generally
employ none to two ‘future’ frames and therefore have a very low end-to-end de-
lay. Because of the feedback loop, prediction errors are fed back and thus reduce
over time. The open-loop 3D subband coders do not have this benefit and com-
monly utilize more frames in a hierarchical structure to reconstruct a single frame.
Therefore, the amount of ‘future’ frames should be carefully considered to limit
the amount of future dependencies. These hierarchical dependencies also apply to
the scalable predictive coding architecture.

Finally, for surveillance applications, trick play, such as reverse and high-speed
playback and random access are of major concern when reviewing recorded videos.
Here, the predictive coders perform rather poorly, due to the temporal depen-
dency resulting from the feedback loop, creating long chains of frame dependen-
cies. Frames in open-loop coders are always depending on a subset of frames,
regardless of the playback direction. These dependencies can be biased towards
‘past’ frames to decrease the end-to-end delay during forward playback, while the
argument regarding end-to-end delay is not relevant for reverse playback. The
frame dependencies on past frames can be interpreted as a complexity measure
for reverse playback.

Selection of the preferred architecture for further system evaluation
Since the focus of this work is on an embedded coding system for surveillance,
complexity, scalability and domain-relevant features are of major concern. The nu-
merical score at the bottom of Table 4.1 is accumulated from the number of + and
− indications. From this score, we directly conclude that the t+2D architecture is
favorable for our application domain. The architecture has low inherent complex-
ity and standard motion estimation and compensation techniques can be applied
(see text on complexity). It provides very good scalability in quality, spatial reso-
lution and temporal frame rate (see text on scalability). End-to-end delay can be
controlled and trick play and random access are supported (see text on relevant
features for video surveillance).
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The adopted t+2D architecture does introduce spatial aliasing when decoding
at lower resolutions, but this degradation is considered to be acceptable for two
reasons. First, in most cases, the aliasing actually provides a visually sharper ex-
perience, whereas quality-reducing artifacts only become visible for high-contrast
repetitive spatial structures. Second, in our surveillance application, lower res-
olutions are typically used for overview monitors. In case of important events,
decoding and viewing are switched to full resolution, where no spatial aliasing
occurs due to the effective use of filters featuring orthogonality.

Therefore, in the remainder of this chapter, the basis for further investigation is
the t+2D architecture. The next section will investigate the complexity and perfor-
mance of various temporal configurations of this architecture.

4.3 Temporal configurations in t+2D coding architectures

This section first provides an overview of the t+2D coding architecture, after which
it presents a framework for constructing the structure of various temporal decom-
positions. For a selection of the best temporal decomposition structure, the section
evaluates the dynamic behavior and estimates the computational complexity.

Overview of the t+2D coding architecture

As mentioned in the previous section and visualized in Figure 4.4(a), the t+2D cod-
ing architecture consists of a temporal wavelet decomposition with motion com-
pensation, followed by a spatial wavelet decomposition. The temporal wavelet
decomposition has the purpose to distinguish static elements in the scene, such as
the background, from dynamic elements in the scene, such as a moving car. If this
temporal decomposition is performed without motion compensation, the moving
car would result in a temporal high-pass representation of the car disappearing
in one frame and appearing in the other. The resulting temporal high-pass frame
can contain the spatial details of the car in two ways. Depending on the speed of
motion, these details would be represented by the difference with the same car at
the previous spatial location, or by the difference with the background, which by
itself could also contain a large amount of spatial details.

Since many moving objects only have minimal changes of their appearance
from frame-to-frame, motion estimation and compensation is commonly utilized,
to estimate the motion of moving elements in a block-based fashion. With motion
estimation and compensation, only changes to the appearance of moving objects
and the revealed details of occluded areas are represented in the temporal high-
pass representation. Within the t+2D coding architecture, this motion estimation
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and compensation is performed during the temporal filtering process, also known
as as Motion Compensated Temporal Filtering (MCTF).

MCTF can be performed with any type of wavelet filter, but simpler types of fil-
ters such as the Haar or 5/3 filter are most common. Figure 4.5 shows the motion-
compensated temporal filtering process for the low-pass Haar filter. This figure vi-
sualizes how motion estimation and compensation are performed, after which the
2-tap high-pass filter is applied to Frame 0 and the motion-compensated Frame 1.
For the low-pass filter, processing is identical, but a different filter is employed.

Frame 0

2-tap Haar filter

Vectors

Motion estimation

Motion compensation

High-pass output

Frame 1

Figure 4.5: Temporal filtering in the t+2D coding architecture using the Haar wavelet.

Similar processing is performed for more complex filters, such as the 5/3 in-
teger wavelet. In a straightforward FIR-filter implementation, the 5/3 temporal
wavelet filter has 5 filter taps for the low-pass filter and 3 filter taps for the high-
pass filter. The 5/3 temporal filter is commonly implemented using the lifting
framework. In this case, the ‘predict’ step results in the high-pass output, utilizing
a 3-tap filter (identical to the non-lifting 3-tap filter). The successive ‘update’ step
results in the low-pass output, utilizing a different 3-tap filter. This 5/3 temporal
filtering structure with lifting is visualized in Figure 4.6(a). Similar to the Haar
filter, motion estimation and compensation is utilized prior to applying the 3-tap
filter. This notation of the temporal structure becomes inconvenient when repre-
senting larger structures and multiple temporal decompositions. Therefore, in the
following, larger structures are denoted and visualized in a shorthand representa-
tion, as depicted in Figure 4.6(b). In this shorthand notation, the complete motion
estimation and compensation structure is represented by the diagonal arrow.

The basic 5/3 filter structure can be expanded to multiple temporal decompo-
sitions, by successively filtering the temporal low-pass output. For multiple de-
compositions, this structure becomes rather complicated. For example, for the 5/3
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Motion estimation

Motion compensation
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Figure 4.6: Temporal filtering in the t+2D coding architecture using the 5/3 wavelet filter.
(a) Full structure and (b) shorthand notation with motion estimation/compensation struc-
ture represented by the diagonal arrows, with filtering implicitly part of the processing.

wavelet with only 2 temporal decompositions, the low-pass frames depend on 17
input frames. This aspect clearly violates our requirements of low complexity and
low end-to-end delay. Therefore, in the next section, a framework for construct-
ing decomposition structures with varying temporal depth is explored, which also
allows various structures within the same temporal depth.

Framework for varying temporal decomposition structures

Within the t+2D architecture class, a complexity-performance trade-off can be made
by varying the temporal decomposition structure. Temporal decomposition is per-
formed using Motion Compensated Temporal Filtering (MCTF), where motion
compensation is integrated within the lifting steps of the temporal wavelet filter.
Different temporal configurations can be explored, depending on which ‘predict’
and ‘update’ steps are included. Among the various proposals of MCTF, the Un-
constrained Motion Compensated Temporal Filtering (UMCTF) by Van der Schaar
and Turaga [67] is adopted for the following reasons. First, the structure utilizes
three simple building blocks that can be flexibly used to design a wide variety
of temporal configurations. Furthermore, by selectively limiting predict and up-
date steps from future frames, frame dependencies are reduced, so that encoder,
decoder and end-to-end delay can be controlled.

In addition to the three building blocks proposed in UMCTF, we propose a
fourth basic building block. The four building blocks now available for construct-
ing various temporal configurations are visualized in Figure 4.7.
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Figure 4.7: Four methods of implementation of predict and update steps: (a) double pre-
dict, double update (P2U2); (b) double predict, single update (P2U1); (c) double predict, no
update (P2U0) and (d) single predict, no update (P1U0).

Let us use the following notation, as defined by Pau et al. [71]. Parameter xt
denotes the input video frame at time t, parameter lt stands for the temporal low-
pass subband frame and ht represents the temporal high-pass subband frame. As
motion-compensated lifting is used, predictions of odd frames x2t+1 are made from
even frames x2t and x2t+2. Two motion vector fields are estimated: (1) forward pre-
dicted from x2t to x2t+1, denoted by v+

2t+1 and (2) backward predicted from x2t+2
to x2t+1, denoted by v−2t+1. Let n be the 2D spatial position in a frame in vectorized
form and x the corresponding pixel at position n, then the motion-compensation
operator C is defined by C(x, vt)(n) = x(n− vt(n)). The update step requires in-
version of the motion-compensation operator, which is represented by C−1. Due
to the non-invertibility of C, the operator C−1 is not defined everywhere and spe-
cial care needs to be taken for unconnected pixels as discussed in [90] and [97]. It
is also possible to circumvent the problem with the C−1 operator, by omitting the
update steps from the lifting altogether. The merits of this will become clear in the
upcoming discussion.

Furthermore, let us denote the predict and update steps by the terms P and U,
respectively. With this notation, a predict step P that is used i times for constituting
a high-pass stage is indicated by Pi, while Uj constitutes a low-pass stage with j
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update steps. The four different temporal filtering methods P2U2, P2U1, P2U0 and
P1U0 are shown in Figure 4.7. These temporal filtering methods (in the same order)
are presented in a formal expression by Equations (4.1) through (4.4), giving

ht = x2t+1 −
1
2
(
C(x2t, v+

2t+1) + C(x2t+2, v−2t+1)
)
,

lt = x2t +
1
4
(
C−1(ht−1, v−2t−1) + C

−1(ht, v+
2t+1)

)
, (4.1)

ht = x2t+1 −
1
2
(
C(x2t, v+

2t+1) + C(x2t+2, v−2t+1)
)
,

lt = x2t +
1
2
C−1(ht−1, v−2t−1), (4.2)

ht = x2t+1 −
1
2
(
C(x2t, v+

2t+1) + C(x2t+2, v−2t+1)
)
,

lt = x2t, (4.3)

ht = x2t+1 − C(x2t, v+
2t+1),

lt = x2t. (4.4)

It is now possible to construct an N-level temporal transform with the four
configurations of Figure 4.7. Using the three configurations originally proposed
by Pau et al. [71], P2U2, P2U1 and P1U0, the transform can be parameterized by
(P, Q), with P denoting the number of P2U2 transforms at the finest level(s) and
Q denoting the number of P2U1 transforms at the following level(s). If any, the
remaining level(s) use the P1U0 transform. When employing the fourth configu-
ration P2U0, additional alternative temporal transform configurations can be con-
structed, which are discussed in the next section.

Alternative temporal transform configurations

Besides the above configuration, additionally two alternative transform configu-
rations are proposed, which omit all update steps and both only consist of the
P1U0 and P2U0 building blocks. The first alternative configuration consists of bidi-
rectional Prediction Only and is called PO. The second alternative configuration
employs bidirectional prediction for the two lower levels, while single forward
prediction is utilized at the remaining higher levels. This configuration has a sig-
nificantly lower end-to-end delay and is therefore called BDLD, which stands for
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BiDirectional Low Delay. This second alternative is depicted in Figure 4.8 for four
temporal levels, where input frames are depicted by bands 0-15 and output frames
by bands: LLLL, H0, LH0, H1, LLH0, H2, LH1, H3, LLLH, H4, LH2, H5, LLH1,
H6, LH3 and H7.

The structure of the BDLD configuration as seen in Figure 4.8 is based on sev-
eral design decisions. At lower decomposition levels, frame differences due to
motion are smaller than for higher levels. This simplifies motion estimation and
improves its accuracy for a broad range of possible algorithms. As a result, at these
lower levels, it is possible to achieve good temporal decorrelation using bidirec-
tional prediction. Furthermore, because the time difference between frames is still
relatively small, the introduced frame dependencies only marginally contribute to
the end-to-end delay. For the higher levels, motion estimation becomes more dif-
ficult due to the increased temporal distance. Propagation of frame dependencies
is significant, where forward frame-dependencies can lead to significant time de-
lays. Therefore, at these higher levels, only uni-directional prediction from past
frames is utilized. This limits frame dependencies and prevents further growth of
the end-to-end delay (without forward dependencies, it is not needed to wait for a
frame to become available). In Figure 4.8, it can be observed that the H0 band can
only be calculated after input Frame 4 becomes available. This results in an encod-
ing delay of two frames, due to the dependency of the LH0 band on the input two
frames ahead. This critical dependency is visualized with bold arrows.

Finally, no update steps are applied in both the PO and the BDLD configura-
tion. The reasons for omitting the update steps are multifold. First, the update
steps alter the low-pass frames, by updating the input frames using high-pass
frames. In theory, this could function as a form of temporal noise reduction, which
would slightly improve the coding performance. In practice, imperfect motion
estimation introduces artifacts in the low-pass frames, which reduce the visual
quality and increase the bit rate. Furthermore, in a situation where the high-pass
frames are discarded (such as low frame-rate playback and storage-space reduc-
tion), these artifacts remain in the output. Another argument is that the update
steps introduce additional dependencies between frames, increasing the encoder
delay and end-to-end delay. Finally, without update steps, an additional benefit
is no longer requiring the complex process of inverting the motion-compensation
operator.
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Figure 4.8: The four-level BiDirectional Low Delay (BDLD) temporal configuration. Bold
arrows indicate the critical dependency paths for encoder delay.

Analysis of the dynamic behavior of the proposed temporal

configurations

To evaluate the system complexity of the proposed framework to control the tem-
poral configurations of the 3D subband coder, various system implementation as-
pects of the coder are analyzed for different temporal configurations. Several per-
formance metrics (e.g. motion-estimation computations, dynamic memory usage,
etc.) are calculated by simulating the dynamic behavior of the subband computa-
tion process of the encoder and the decoder for a Group Of Pictures (GOP) of 16
frames. This dynamic behavior is visualized for the BDLD temporal configuration
of the encoder in Figure 4.9 and of the decoder in Figure 4.10. The dynamic be-
havior is shown for all 46 subbands, whereby each band consists of three columns:
write, memory and read. The rows depict the entering time at which bands are
written to memory (red block in left column), the time interval residing in the
memory (blue block in center column), or the reading time from memory (green
block in right column). The dynamic behavior of the BDLD configuration takes 19
time slots for completion, which means the last three time slots overlap with the
first three from the next GOP of 16 frames.

From t = 1 to t = 16, it can be seen that the input frames (Bands 0-15) are
written to the frame memory for further calculations. One of these calculations
is the construction of Band H0 from Bands 0, 1 and 2. In the top sub-figure of
Figure 4.9, reading of the input data can be observed at t = 3, where Bands 0, 1
and 2 are read for motion estimation and compensation. The resulting Band H0 is
constructed and written to memory, as seen in the middle sub-figure of Figure 4.9.
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Figure 4.9: Dynamic behavior of the encoder for the BDLD temporal configuration. Red
blocks indicate a write action to memory, green blocks a read action from memory and
blue blocks indicate the storage duration of a band in memory. Numbers inside the block
indicate the number of read/write occurrences. Blocks with low saturation and without
numbers indicate that a duplicate band exists, so that the current band does not need to be
stored in memory. Arrows to green blocks indicate read actions for transmitting the band.
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Figure 4.10: Dynamic behavior of the decoder for the BDLD temporal configuration. Red
blocks indicate a write action to memory, green blocks a read action from memory and
blue blocks indicate the storage duration of a band in memory. Numbers inside the block
indicate the number of read/write occurrences. Blocks with low saturation and without
numbers indicate that a duplicate band exists, so that the current band does not need to be
stored in memory.
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At t = 3, also the first output is generated by sending Band LLLL, as indicated by
the arrow to the green block at the bottom of Figure 4.9.

Since the BDLD temporal configuration does not use update steps, low-pass
bands are identical to their center input. For example, Band L0 is identical to
Band 0, LL0 to L0, LLL0 to LL0, etc. When bands are identical, only one instan-
tiation needs to be stored, in this example, Band 0. The identical bands (L0, LL0,
LLL0 and LLLL) are not stored in memory and shown as opaque copies of Band 0
in Figure 4.9.

Bands LH0-LH3 at the bottom of Figure 4.9 are the start of the critical delay
path of the encoder, as indicated by the bold arrows in Figure 4.8. The bottleneck
of the path can be directly noticed from Figure 4.9, because after the calculation
and storage of Bands LH0-LH3, they are immediately read by the entropy coder
and transmitted. This is shown by the small cluster of boxes for Bands LH0-LH3.

These memory and bandwidth behavior diagrams have been explored for 7 dif-
ferent coding configurations. It is readily understood that these diagrams provide
important system parameters such as the maximum memory usage, the number
of memory accesses, etc. The following section discusses the results of comparing
these different coding configurations and the related implementation aspects.

Analysis of computational complexity

The results of the analysis of the dynamic behavior of the proposed temporal con-
figurations are summarized in Table 4.2. For the remaining configurations, a dy-
namic analysis has been performed similar to the one discussed in the previous
section and visualized in Figures 4.9 and 4.10 for the BDLD temporal configura-
tion. Due to their size, the diagrams of these configurations are omitted in this
chapter, but their resulting numerical performance metrics are given in Table 4.2
and Table 4.3. The calculation of the number of frames required for arbitrary frame
access is worked out in Appendix D.

In this table, the most important performance metrics on computation and
memory usage are listed by denoting the number of processed frames per GOP
for a computing task (top of column) and a specific temporal configuration (see
row at the left). For example, the (4,0) temporal configuration performs motion
estimation on 30 frames and motion compensation on 60 frames. This process pro-
duces 30 motion vector fields and requires a maximum of 41 frames concurrently
stored in memory. Per GOP, 46 intermediate frames are stored to memory and
these frames are accessed 106 times in total. Finally, to reconstruct a single random
output frame, on the average, 13 entropy-coded frames need to be decoded.
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Table 4.2: Quantified performance metrics for different temporal configurations. Numerical
results indicate the involved number of frames per GOP required for the computing task
given at the top of the considered column. The most right column refers to the average
number of retrieved encoded frames for an arbitrary output frame.

Temporal Motion Motion Vector Mem. Write Read Average

Configuration Est. Comp. Fields Usage Access Access Access

(4,0) 30 60 30 41 46 106 13

(1,2) 29 51 29 17 45 96 8.5

(0,2) 27 39 27 11 43 86 6

(0,1) 23 31 23 8 39 69 4.5

(0,0) 15 15 15 4 31 46 3

PO 30 30 30 32 46 76 5

BDLD 27 27 27 8 43 70 3.8

The numbers regarding motion and memory usage are easily understood, but
a closer inspection on the average access is desirable. Arbitrary frame access is the
most critical feature in resource usage when searching in a recording database. For
example, an average access of 13 frames means that on the average, it is required
to fetch 13 encoded frames and perform the complete temporal decomposition, to
reconstruct a single output image. This requirement favors the choice for the (0,0)
and BDLD configurations.

Another important aspect in video surveillance is the end-to-end delay of the
video encoder-decoder chain, especially for the active control of PTZ cameras. Ta-
ble 4.3 provides the encoder, decoder and cascaded delays in number of frames
for different temporal configurations. The (4,0) configuration has the largest de-
lay of 45 frames which, at 30 fps, equals to an end-to-end delay of 1.5 seconds.
The (0,2), (0,1), (0,0) and BDLD configurations stay under 3 frames or equivalently
150 milliseconds, which are suitable for surveillance applications.

When comparing the temporal configurations, both tables show that the (4,0)
configuration is clearly more expensive than the other proposals. This is because
of the large memory requirements and the high number of frames required to de-
code a single random frame (See Table 4.2), combined with the large end-to-end
delay (See Table 4.3). Therefore, we do not consider it a candidate for our ap-
plication, aiming at low complexity, scalability and domain-specific features. For
the other configurations, i.e. the (0,2), (0,1), (0,0) and BDLD configurations, more
feasible system parameters are obtained, such as a significantly lower delay and
memory requirements. Hence, a further comparison in quality is required which
is performed later in Section 4.5.
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Table 4.3: Processing delays counted in frames for different temporal configurations.

Temporal Encoder Decoder Cascaded

Configuration Delay Delay Delay

(4,0) 30 23 45

(1,2) 6 7 9

(0,2) 2 3 3

(0,1) 1 1 1

(0,0) 0 0 0

PO 8 15 15

BDLD 2 3 3

During the investigation of the complexity and the upcoming performance
analysis of the remaining alternatives in Section 4.5, a few shortcomings in the
t+2D coding framework were found, which are addressed in the following section
including extensions for improvement.

4.4 Extensions to the temporal coding structure

Shortcomings in the t+2D coding framework

The analysis of the t+2D coding framework has revealed two shortcomings. The
first involves energy correction of the temporal wavelet transform. As observed
for images in Chapter 3, the output of the wavelet transform needs proper en-
ergy balancing between low- and high-pass components for good rate-distortion
performance. The same holds true for wavelet filtering in the temporal domain
(explained later). Another important aspect is that the energy correction in the
temporal hierarchical tree can lead to rounding error propagation within the tree
when fixed-point calculations are used. The implementation of the energy correc-
tion requires precise scaling operations with floating-point precision.

The second shortcoming of t+2D coding structures is a strong fluctuation of
the quality of frames within a GOP. Within a GOP, specific frames are referenced
multiple times in the temporal hierarchical tree, such as the first frame of the GOP.
Because of this multiple referencing, these frames are therefore encoded at a higher
quality. This seems reasonable because many frames are directly and indirectly
derived from these reference frames. However, in an open-loop scalable coding
framework, the decoder will also decode these reference frames at a lower quality,
so that a high-quality reference cannot be reconstructed.
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Therefore, the following sections concentrate on improving the above two short-
comings and discuss two extensions to the temporal coding structure, which devi-
ates from the standard t+2D structure. The first extension, Temporal Energy Cor-
rection (TEC), isolates the temporal energy correction in the leafs of the temporal
decomposition tree and reduces computational complexity. The second extension,
Low-Complexity Encoder Feedback (LCEF), introduces a low-complexity quality
reduction for the first frame of the GOP, which results in an improved average
quality and reduced quality fluctuations. When LCEF is applied in the encoder,
the coded stream is compatible to the normal case so that decoder modifications
are not required.

Temporal Energy Correction (TEC)

To improve the energy balance of the temporal transform, each iteration in the
temporal lifting process can perform an energy correction as part of the lifting
process, as discussed in Chapter 2. Due to the successive use of lifting in the tem-
poral configuration, energy correction is performed at multiple points in the tree
(in the nodes), as indicated in Figure 4.11(a) for the BDLD configuration. The en-
ergy correcting factors α for the low-pass and β for the high-pass energy correction
are usually floating-point numbers, while many highly optimized implementa-
tions use fixed-point arithmetic. If implemented in a straightforward way, several
conversions between fixed- and floating-point are necessary, thereby introducing
cumulative conversion errors.

It is therefore proposed to concentrate all Temporal Energy Correction (TEC)
to the point just prior to the start of entropy coding (in the leafs). As a result,
uncorrected (and thus original) input frames are used for the predict steps at the
leafs of the temporal configuration and only the final output is energy corrected.
This concentration of energy scaling at the last stage is only applicable to temporal
configurations without update steps, such as the BDLD configuration, because the
intermediate frames are not altered through update steps.

The derived correction factors are visualized in Figure 4.11(b). A unity factor
represents the absence of any computation and is included in the figure solely
for explanatory purposes. It can be easily observed from the figure, that the total
scaling/energy correction of the filtered frames does not change. For example in
Figure 4.11(a), when following the path from Frame 0 in a downwards direction,
the factor α is four times applied, which is equivalent to the single scaling of factor
α4 in Figure 4.11(b) for the same path.

Furthermore, as a result from applying TEC, the memory consumption of the
complete coder is reduced significantly, which occurs for two reasons. First, inter-
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mediate low-pass results are not calculated and therefore do not need to be stored.
Second, the input frames for lifting are all original frames in their original fixed-
point precision (e.g. 8 bits), enabling minimal memory size and bandwidth. All
modifications made to the encoder, can also be applied to the decoder and the
discussed complexity benefits apply to the decoder as well.
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Figure 4.11: Temporal Energy Correction (TEC) applied to the BDLD temporal configura-
tion in the (a) nodes and (b) leafs of the hierarchical tree.

Low-Complexity Encoder Feedback (LCEF)

Visual quality of scalable video codecs can fluctuate over time, due to the periodic
GOP structure. The intraframe-coded picture is coded at a higher quality, since
all frames are derived from this picture within a GOP. To achieve a more constant
quality over time, a novel extension is proposed, called Low-Complexity Encoder
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Feedback (LCEF). Besides offering a more constant visual quality, it also improves
the average quality. This is obtained without adaptations of the decoding algo-
rithm, hence only the encoder is modified.

The novel encoder modification consists of the addition of a feedback loop for
the first frame of the GOP only. In this feedback loop, the first frame of the GOP
is reduced in quality, in a manner that is equivalent to the quality-reduction oper-
ation in the decoder. This Quality-Reduced Frame (QRF) is a more accurate repre-
sentation of the reference used in the decoder when performing lossy decoding.

This quality reduction in the encoder limits the highest quality that can be de-
coded and LCEF is therefore only applicable to lossy coding systems. However,
due to storage and bandwidth constraints in surveillance systems, lossy coding is
the only practical solution.

Low-Complexity 
Encoder Feedback

(once per GOP)

Frame 0
of GOP

Energy Correction

Spatial
DWT

Inverse Spatial 
DWT

Entropy Coding

Spatial DWT

Entropy Coding
Motion-Vector 

Coding

Temporal CodingMotion Estimation

Frames 1,2,4 & 8 
of GOP

Inverse Energy 
Correction

Energy Correction

Quality-Reduced
Frame

Figure 4.12: Part of the SVC which is modified by the Low-Complexity Encoder Feedback
(LCEF) to generate a Quality-Reduced Frame (QRF) within the encoding process. The com-
plexity added by LCEF is indicated by the grey box.

Figure 4.12 shows how LCEF is embedded within the temporal encoding frame-
work. The feedback loop is only applied to the first frame in each GOP to mini-
mize complexity. The first frame of the GOP is always directly encoded, without
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any temporal filtering, due to the omission of update steps in the BDLD tempo-
ral configuration. In this special case, the quality reduction of the first frame can
be applied without performing a complete entropy encoding and decoding step.
Instead, the wavelet coefficients are quantized in the same way as the scalable
entropy encoder, i.e. by bit-plane truncation, followed by the inverse Discrete
Wavelet Transform (DWT) to obtain the QRF. The QRF will be used as a refer-
ence for the temporal coding and, if desired, for the motion estimation. Effectively,
the only complexity added is a single inverse DWT and the inverse energy correc-
tion indicated in Figure 4.12 by the grey box. This is because the forward DWT
and wavelet coefficient quantization are performed as part of the regular encoding
framework.

An evaluation test has been conducted to distinguish whether motion estima-
tion should be performed from the QRF instead of the original frame. It has been
found that the performance is slightly decreased when using the QRF for motion
estimation, probably due to the asymmetry of the motion estimation with a QRF
frame at one side and an original frame at the other side. Therefore, in LCEF, mo-
tion estimation is performed using the original frames.

4.5 Experimental results

This section evaluates the performance of the proposed temporal framework us-
ing several standard video sequences. These test sequences were selected for the
following reasons. All sequences are available in raw YUV format in the public
domain. The chosen sequences also approximate typical video surveillance appli-
cations, such as tracking an object of interest. Furthermore, a variety of common
camera resolutions have been chosen to represent variations and developments in
video surveillance, from standard-definition 4CIF (704× 576 pixels, 1:12) to high-
definition videos at 720p (1280 × 720 pixels, 1:1) and 1080p (1920 × 1080 pixels,
1:1). An overview of the utilized sequences is given in Table 4.4 and in Appendix E,
where detailed descriptions for each of the sequences can be found. Initially, re-
sults are presented for all sequences, but in later discussions this is reduced to only
the most common subset of sequences (City and Crew). These two sequences are
well known and experiments have shown that they adequately illustrate the items
under experimentation.

The experimental results are grouped by topic. First experiments highlight the
correlation between quality and temporal configurations, followed by the merits
of including update steps in the temporal tree. The third experiment investigates

2The progressive format is abbreviated to video shorthand notation 1:1.
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Table 4.4: Details of the raw videos used for experimentation. All videos are progressive.

Video Color space / Resolution Aspect Frame rate Length

sequence sub-sampling [pixels] Ratio [fps] [frames]

City YCbCr / 4:2:0 704×576 4:3 60 600

Crew YCbCr / 4:2:0 704×576 4:3 60 600

Parkrun YCbCr / 4:2:0 1280×720 16:9 50 504

Mobcal YCbCr / 4:2:0 1280×720 16:9 50 504

Stockholm YCbCr / 4:2:0 1280×720 16:9 59.94 604

Station 2 YCbCr / 4:2:0 1920×1080 16:9 25 313

Crowd run YCbCr / 4:2:0 1920×1080 16:9 50 500

motion estimation and vector coding, after which the quality is examined when
decoding the bitstream at a reduced resolution. In a fifth test, the performance
of TEC (Temporal Energy Correction) and LCEF (Low-Complexity Encoder Feed-
back) are evaluated. This section concludes with a system comparison of the full
modified system against a state-of-the-art H.264 SVC codec.

Quality comparison of different temporal configurations

Figure 4.13 shows the rate-distortion curves of the various temporal configura-
tions with low end-to-end delay properties (tdelay 5 3 frames) for several test se-
quences. For now, the results in this figure omit the cost of motion-vector coding
to highlight the resulting quality differences between the different temporal con-
figurations. From these curves, it can be concluded that a more complex temporal
configuration also entails a better coding performance, which can be observed by
the higher PSNR at the same bit rate.

When incorporating the cost of the motion vectors, the rate-distortion curves of
Figure 4.14 are obtained. The immediate consequence is that all curves shift some-
what to the right (higher bit rate), giving a slightly reduced PSNR for the same bit
rate. However, temporal configurations with a low count of motion vectors, such
as (0,0), are penalized less by the extra bit rate of the motion vectors. Especially
at low bit rates (below 2 Mbit/s for 4CIF, 60Hz), the cost of lossless motion-vector
coding becomes a bottleneck. Since the (0,0) configuration exploits only 15 motion
vectors per GOP, versus 27-30 vectors for the other configurations, it provides the
highest performance for low bit rates. When low bit rates are required, it could
be appropriate to adopt a lossy motion-vector coding scheme, so that an optimal
division (in the rate-distortion sense) of available bandwidth between coefficient
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(a) City 704× 576 pixels, 60 fps
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(b) Crew 704× 576 pixels, 60 fps
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(c) Park run 1280× 720 pixels, 50 fps
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(d) Stockholm 1280× 720 pixels, 60 fps

0 20 40 60 80 100

26

28

30

32

34

36

Rate (Mbit/sec)

P
S

N
R

 (
dB

)

 

 

(1) UMCTF (0,2) temporal configuration
(2) proposed BDLD temporal configuration
(3) UMCTF (0,1) temporal configuration
(4) UMCTF (0,0) temporal configuration

(1)

(2)

(3)

(4)

(e) Crowd Run 1920× 1088 pixels, 50 fps

0 2 4 6 8 10 12
34

35

36

37

38

39

40

41

42

Rate (Mbit/sec)

P
S

N
R

 (
dB

)

 

 

(1) UMCTF (0,2) temporal configuration
(2) proposed BDLD temporal configuration
(3) UMCTF (0,1) temporal configuration
(4) UMCTF (0,0) temporal configuration

(1)

(2)

(4) (3)

(f) Station 2 1920× 1088 pixels, 25 fps

Figure 4.13: Comparison between the (0,0), (0,1), (0,2) and BDLD temporal configurations
for the (a) City, (b) Crew, (c) Park Run, (d) Stockholm, (e) Crowd Run and (f) Station 2
sequences, without motion-vector coding.
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Figure 4.14: Comparison between the (0,0), (0,1), (0,2) and BDLD temporal configurations
for the (a) City, (b) Crew, (c) Park Run, (d) Stockholm, (e) Crowd Run and (f) Station 2
sequences, with motion-vector coding.
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coding and motion-vector coding can be made. For example, one could propose
to encode the motion vectors using a scalable coder, similar to the wavelet coef-
ficients. Unfortunately, this is not possible because severe encoder-decoder drift
will occur. In the encoder, the original motion vectors are utilized inside the tem-
poral lifting steps to create a motion-compensated frame, which is used to create
a temporal high-pass frame. If quantized motion vectors are used in the decoder,
a severe mismatch for the temporal filtering will occur, especially around object
boundaries. Moreover, the previous ideas not only require the choice of a best op-
erating bit rate, but could also lead to significant distortions. Both of which are
undesirable in scalable video coding.

A better conceptual solution for rate-distortion optimization including motion-
vector processing, would be to utilize multiple layers of motion information and
frame-difference information, but as discussed earlier in Section 4.2, for complexity
reasons these multi-layer solutions are not used in our SVC.

Merits of including update steps

From the rate-distortion plots of Figure 4.13, it can be observed that update steps
in UMCTF improve the PSNR performance. Even though the PSNR increases by
using update steps, they can still cause severe visual artifacts. An example of such
artifacts is shown in Figure 4.15(d) (see the block noise on the grey wall in the
middle of the picture). From the rate-distortion curve in Figure 4.15(a), it can be
noticed that the curve for the (4,0) temporal configuration (UMCTF) has a higher
PSNR than the PO configuration. These two configurations have identical predict
steps, but (4,0) utilizes all update steps, while PO has no update steps. When look-
ing at the RD curve at 3 Mbit/s, the PSNR of the (4,0) system is 0.22 dB higher
than that of the PO configuration. A visual examination is provided by a part of
Frame 3 of the Crew sequence in Figure 4.15(b). The same frame encoded with
both the (4,0) and the PO configuration, is presented in Figure 4.15(d) and Fig-
ure 4.15(c), respectively. In contrast with the previous PSNR discussion, the visual
quality of the PO configuration outperforms the (4,0) configuration. The (4,0) con-
figuration shows severe artifacts caused by the update steps, which originate from
the photography flashes in another frame of the sequence, which propagate to the
indicated frame through the update steps. In a surveillance application, the LLLL
band (significantly affected by update steps) is used for long-term storage, while
other temporal subbands can be dismissed over time. Therefore, we conclude that
distortions in the important temporal low-pass frames are not acceptable, so that
we block the use of update steps in our video coder to prevent such distortions.

116



4.5. Experimental results

2 3 4 5 6 7 8
33

34

35

36

37

38

39

Rate (Mbit/sec)

P
S

N
R

 (
dB

)

 

 

(1) UMCTF (0,4) temporal configuration
(2) PO temporal configuration

(1)

(2)

(a) (b)

(c) (d)

Figure 4.15: Comparison of PO and UMCTF (4,0) temporal configurations: (a) rate-
distortion curves, top-left corner of Frame 3 Crew sequence (b) original, (c) encoded using
PO @ 3 Mbit/s and (d) encoded using UMCTF (4,0) @ 3 Mbit/s. Amplitudes have been
magnified by a factor of two to make the artifacts more visible and independent of printing.

Motion estimators and vector coding

To investigate the complexity and performance of different types of motion esti-
mation and vector coding, three different Motion Estimators (ME) and two types
of coding are implemented: (1) fixed block size (16× 16) full-search ME with RVLC
motion-vector coding [98], (2) fixed block size (16× 16) ARPS-3 fast-search ME [99]
with RVLC motion-vector coding and (3) variable size (4× 4− 64× 64) HVSBM
hierarchical ME with Golomb-Rice motion-vector coding [64].

The employed full- and fast-search algorithms are broadly accepted, whereas
the hierarchical motion estimation is more state-of-the-art and fits well with the
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scalable wavelet coder because the motion blocks are split using quadtrees. Fig-
ure 4.16 shows the rate-distortion curves for City and Crew sequences encoded
with the FS (Full-Search), ARPS-3 (Unequal-arm Adaptive Rood Pattern Search)
and HVSBM (Hierarchical Variable Size Block Matching) motion estimators.
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Figure 4.16: Rate-distortion curves for the BDLD temporal configuration for the (a) City and
(b) Crew sequences using full-search, ARPS-3 and HVSBM motion estimation techniques.

For the City sequence of Figure 4.16(a), ARPS-3 leads to a significantly lower
coding performance when compared to the FS estimator. Further investigation
has shown that ARPS-3 does not operate well on frames with large temporal dis-
tances (in the range 4-8 frame periods), as it is likely to converge to a local min-
imum. These local minima are abundant in the City sequence due to the high
amount of repetitive patterns in the buildings. The HVSBM algorithm shows a
higher performance than the FS estimator, due to the utilized variable block sizes,
especially around occluding objects. However, the type of motion involved in
the City sequence is uncommon in surveillance videos, as most cameras are sta-
tionary. More representative for surveillance applications is the Crew sequence of
Figure 4.16(b). In this sequence, ARPS-3 gives slightly better performance than the
FS estimator. The motion field found by the ARPS-3 is slightly smoother, which
leads to less blocking artifacts and a more efficient motion-vector coding. Surpris-
ingly, the HVSBM motion estimator performs poorly on the Crew sequence, due
to excessive splitting of blocks when photographic flashes occur. This unnecessary
splitting originates from luminance spikes triggering the block-splitting process.
As a result, motion-vector coding cost becomes clearly higher, leading to multiple
blocking artifacts.
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Quality at reduced resolutions

Due to the choice of the t+2D architecture, spatial aliasing will be evident in se-
quences decoded at lower resolutions. Although this aliasing reduces the PSNR
significantly, the perceived quality only slightly degrades with some additional
blurring effect. However, in special circumstances, these artifacts can become vi-
sually apparent, for example, in the highly detailed City sequence. Due to the high
amount of fine structures, aliasing becomes clearly visible at one of the buildings
in the background. Figure 4.18 shows Frame 64 of the City sequence. The origi-
nal sequence is down-scaled to CIF resolution using the low-pass filter from the
wavelet transform and depicted in Figure 4.18(a), with the building enlarged in
Figure 4.18(b). The compressed sequence decoded at CIF resolution is depicted
in Figure 4.18(c), with the building enlarged in Figure 4.18(d). In the compressed
image, the complete coding system blurs certain parts of the aliasing pattern oc-
curring in the original sequence. As a result, the PSNR drops significantly, as can
be seen in the rate-distortion curve in Figure 4.17(a), see Curve (3). For QCIF res-
olution, most of the detailed structure in this building disappears during down-
sampling, which leads to less intrusive artifacts. This phenomenon is also notice-
able from the slightly higher rate-distortion curve at this resolution, see Curve (2).
Sequences that do not contain such highly detailed structures perform with more
typical rate-distortion curves, of which an example is shown in Figure 4.17(b) for
the CrossingA sequence.
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Figure 4.17: Rate-distortion curves of (a) City and (b) CrossingA decoded at full (704× 576
pixels) and reduced (352× 288 and 176× 144 pixels) resolutions.
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(a) (b)

(c) (d)

Figure 4.18: Spatial aliasing in the 4CIF City sequence decoded at CIF: (a) original frame,
(b) detail of original frame, (c) compressed frame and (d) detail of compressed frame.

Experiments with the TEC and LCEF extensions

Temporal Energy Correction (TEC) and Low-Complexity Encoder Feedback (LCEF)
are both extensions to the t+2D coding framework to alleviate some of its short-
comings. TEC isolates the temporal energy correction in the leafs of the temporal
decomposition tree and reduces computational complexity, while LCEF introduces
a low-complexity quality reduction for the first frame of the GOP, resulting in an
improved average quality and reduced quality fluctuations. This section evaluates
the improvements of these extensions.
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Temporal Energy Correction (TEC)
The impact of applying TEC in the nodes or leafs of the tree is visualized in Fig-
ure 4.19 by means of Rate-Distortion (RD) curves. For simple rate control based
on bit-plane truncation, either of the earlier described methods of TEC (see Sec-
tion 4.4) shows significant improvements over a system without temporal energy
correction. Furthermore, by placing the TEC in the leafs of the temporal lifting
tree, a small quality improvement by up to 0.15 dB is observed, while significantly
reducing the required amount of computations for TEC by about 43%, as only 16
full-frame energy-correction multiplications are required, instead of the 28 mul-
tiplications without TEC. For higher bit rates, the quality improvement between
TEC in the nodes and leafs will be even larger because at these rates, the deliber-
ate coding errors due to coefficient quantization reduce, so that the accumulated
floating-point conversion errors become the dominant source of errors. By apply-
ing TEC in the leafs, this dominant source of errors is now significantly reduced.
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Figure 4.19: Temporal energy correction for (a) City and (b) Crew sequences.

Low-Complexity Encoder Feedback (LCEF)
Figure 4.20 portrays the effect of the LCEF on the average performance of the cod-
ing system by means of RD curves for the (a) City and (b) Crew sequences. The
solid lines represent the coding performance without LCEF and the dotted/dashed
lines represent the coding system with LCEF for different levels of Bit-Plane Re-
duction (BPR) applied to the Quality-Reduced Frame (QRF). For higher levels of
BPR, the quality of the first frame becomes lower and eventually will introduce
a growing quality drop. For lower levels of BPR, the performance converges to a
coding system without LCEF. In the experiments, the optimal setting of BPR for the

121



4. COMPLEXITY IN THE TEMPORAL DOMAIN OF SCALABLE VIDEO CODING

QRF is 3 (BPRQRF=3), which corresponds to a QRF in the quality and rate region
of interest.

For improving clarity of the Figure 4.20, the results for LCEF with a BPRQRF >

4 are omitted. For these high values of BPRQRF, the visual quality of the first
frame becomes so poor, that it will actually degrade the quality fluctuations within
the GOP. However, these fluctuations cannot be observed from the traditional RD
curves, where the associated small drop in average quality does not correspond
with the perceived drop in visual quality.
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Figure 4.20: Effects of Low-Complexity Encoder Feedback at different Bit-Plane Reduction
(BPR) levels within the QRF for the (a) City and (b) Crew sequences.

Traditional RD curves, as shown in the previous section, are not suitable for
visualizing the quality fluctuations within a GOP. Due to the fixed GOP size of
the SVC, repetitive quality fluctuations at a regular GOP interval (approx 0.5 s)
can become particularly annoying, even when the average quality is acceptable
due to the temporal low-frequency of the fluctuations. To visualize the quality
fluctuations at the GOP interval, the average quality for all frames at a particular
frame location within the GOP (the GOP index) is plotted in Figure 4.21. Hence,
the index in the plot refers to all frames with that index, averaged over all GOPs.
The rate indicated is the total rate for the complete stream, which is the same for all
GOP indexes. By plotting the quality for various stream rates and GOP indexes, a
3D surface is obtained which displays the dynamic rate-distortion behavior within
the GOP. By averaging the PSNR over all GOP indexes, the traditional RD curves of
Figure 4.20 are obtained. Due to some limitation in our rate control, corresponding
rate points are slightly different between Figure 4.21(a) and Figure 4.21(b).

Figure 4.21(a) and Figure 4.21(b) show the quality fluctuations within the GOP
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(b) Coding sytems with Low-Complexity Encoder Feedback (LCEF)

Figure 4.21: Within GOP quality fluctuations for (a) original coding system and (b) coding
system with LCEF. The X-axis depicts the average rate in Mbit/sec, the Y-axis the frame
index in the GOP and the Z-axis the PSNR in dB.
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for the encoder without and with LCEF, respectively. An LCEF with BPRQRF = 3
was chosen for this plot, with some points are highlighted, so that the reader can
easily compare the figures. More detailed data from the figure can also be found
in Table 4.5, where the quality between both encoders is compared at a bit rate of
about 5.4 Mbps.

Table 4.5: Comparison of PSNR at each GOP index with and without LCEF.

GOP index Without LCEF With LCEF ∆ Relative

1 39.60 dB 38.16 dB -1.44 dB -3.63 %

2 34.04 dB 34.13 dB 0.09 dB 0.26 %

3 34.31 dB 34.57 dB 0.26 dB 0.77 %

4 33.32 dB 33.56 dB 0.24 dB 0.71 %

5 35.00 dB 35.50 dB 0.51 dB 1.45 %

6 33.34 dB 33.63 dB 0.28 dB 0.85 %

7 33.85 dB 34.22 dB 0.37 dB 1.09 %

8 33.17 dB 33.49 dB 0.32 dB 0.96 %

9 35.48 dB 36.25 dB 0.77 dB 2.17 %

10 32.77 dB 33.06 dB 0.29 dB 0.88 %

11 32.91 dB 33.22 dB 0.31 dB 0.93 %

12 32.19 dB 32.44 dB 0.25 dB 0.76 %

13 33.23 dB 33.59 dB 0.37 dB 1.11 %

14 32.90 dB 33.08 dB 0.18 dB 0.54 %

15 34.02 dB 34.22 dB 0.20 dB 0.59 %

16 34.04 dB 34.11 dB 0.07 dB 0.18 %

Mean 34.01 dB 34.20 dB 0.19 dB 0.56 %

Variance 2.93 2.00 -0.93 -31.8 %

Rate 5.442 Mbps 5.408 Mbps -34 Kbps -0.62 %

From both Figure 4.21 and Table 4.5, it can be clearly observed that when LCEF
is utilized, the quality of the first frame of the GOP is reduced, while the remaining
frames gain in quality. As a result, the quality is more consistent, which is derived
from a flatter surface in Figure 4.21(b) and a reduced variance of the PSNR within
the GOP in Table 4.5, going from 2.93 to 2.00. The LCEF extension reduces the
largest peak in the GOP to a level closer to the remaining frames, thereby signif-
icantly reducing quality fluctuations and increasing the average quality level for
virtually all frames.
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Quality verification versus state-of-the-art

Scalability can be added to the well-known H.264 coding system through the SVC
extension. This extension is rarely supported in commercially deployed systems,
but does provide similar functionality to the proposed scalable video coding sys-
tem. The H.264 SVC coder is significantly more complex and rich with features,
which hampers implementation on embedded systems. This section evaluates the
performance of the low-complexity coding system, so that its performance can be
compared to the H.264 standard.

For this experiment, the proposed coding system is compared to the H.264 SVC
CE2.1 coder (which was current at the time of experimentation) for the Crew test
sequence. This sequence is chosen, since its motion characteristics are quite similar
to those occurring in surveillance type videos: a camera at a fixed location follow-
ing objects moving in the scene. Within the proposed SVC, the well-known CDF
9/7 filter bank is used for the spatial wavelet transform, in combination with a 5-
level dyadic wavelet decomposition. The GOP size is 16 frames, with an adaptive
4-level temporal wavelet transform. Motion is estimated up to 1/4 pixel accuracy,
using the ARPS-3 block-based motion estimator with a fixed block size of 16×16
pixels. Rate control is performed by simply reducing the number of decoded bit
planes and for a more accurate control of the bit rate, the last bit plane is partially
truncated. The temporal low-pass frame is encoded with one additional bit plane,
compared to the other temporal high-pass frames. Entropy coding of the wavelet
coefficients is performed with the TSSP coder of Chapter 3 and the motion vectors
are encoded using a Reversible Variable Length Coding (RVLC) technique. Al-
though used in H.264, arithmetic coding is not employed in the proposed SVC for
complexity reasons.

From the curves in Figure 4.22(a), it shows that the proposed SVC obtains a
slightly lower PSNR than H.264 SVC (0-1 dB) at the same bit rate. Regarding visual
quality, the proposed SVC in Figure 4.22(d) provides more visual details at the cost
of being slightly more noisy than H.264 SVC shown in Figure 4.22(c). However,
this coding behaviour is even preferable for surveillance applications.

4.6 Conclusions

This chapter describes the investigated trade-off between complexity and perfor-
mance in scalable wavelet coders aiming at video surveillance applications. The
first part of the chapter evaluates the merits of several coding architectures, both
predictive (conventional and scalable) and 3D subband coders (t+2D, 2D+t and
2D+t+2D). Various performance metrics have been addressed, such as: inherent
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Figure 4.22: Comparison of H.264 SVC and our proposed SVC for the Crew sequence @
3Mbit/s: (a) PSNR per frame, (b) original Frame 32, (c) H.264 SVC Frame 32 and (d) pro-
posed SVC Frame 32.

and motion complexity, coding performance, scalability in quality, resolution and
frame rate and surveillance domain-specific features such as end-to-end delay,
trick play and random access. Based on this evaluation, we have selected the t+2D
framework for its inherent low complexity, good scalability options for resolution,
quality and temporal dimensions and support for domain-specific features. The
only downside is the possibility of aliasing artifacts at reduced resolutions and
detailed patterns. However, from a domain perspective, this shortcoming is ac-
ceptable and less important than the other performance points.

Subsequently, the adopted t+2D framework is explored with respect to various
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temporal configurations, involving both complexity parameters and performance
metrics. The proposed BDLD temporal configuration has been compared to sev-
eral other UMCTF configurations. We have found that the BDLD configuration
features moderate computation complexity and low end-to-end delay, while still
achieving sufficiently high quality. Balancing such factors, we have adopted the
BDLD for detailed evaluation. During this investigation of different temporal cod-
ing structures, it has been shown also that the update steps play a significant role
in the perceived quality due to specific coding artifacts. In the architecture, the
quality of the LLLL band can be improved for long-term storage in surveillance by
consciously removing the update steps.

The analysis of the t+2D coding framework has revealed two shortcomings.
The first involves inefficiencies in the multi-level floating-point energy correction
of the temporal wavelet transform. The second relates to strong fluctuations of the
quality of frames within a GOP. Two extensions have been proposed to alleviate
these shortcomings, in which the system deviates from the standard t+2D coding
structure: Temporal Energy Correction (TEC) and Low-Complexity Encoder Feed-
back (LCEF).

TEC isolates the temporal energy correction in the leafs of the temporal decompo-
sition tree and significantly reduces computational complexity by about 43%,
while simultaneously memory bandwidth is reduced even further, for both
the encoder and the decoder. Furthermore, the accumulating quantization
errors from successive fixed/floating-point conversions are removed, which
additionally leads to a small quality increase of up to 0.15 dB.

LCEF introduces a low-complexity quality reduction for the first frame of the
GOP, for which decoder modifications are not required. Using this technique,
the average quality of the frames within a GOP is improved and quality fluc-
tuations are significantly reduced. This is expressed by a reduction of the
variance of the PSNR by 30%. Furthermore, the average quality is improved
by 0.56 dB. Since both phenomena jointly occur, this results in a significantly
higher perceived quality.

With respect to coding quality in general, the coding performance of the pro-
posed SVC at full resolution is close to H.264 SVC (within 1 dB for surveillance
type video) and at lower resolutions sufficient for video surveillance applications,
albeit with a much lower complexity. The most dominant complexity reductions
are found in the non-hierarchical motion model, the straightforward t+2D archi-
tecture and the computationally efficient TSSP entropy coding scheme without ex-
pensive arithmetic coding. Perceptually, the codec retains important visual de-
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tails. Scalability can be accurately controlled with fine-grained scalability in qual-
ity, while simultaneously supporting multiple options for resolution and frame-
rate scalability. Aliasing artifacts may occur for lower resolutions, but these are
acceptable for video surveillance applications.

This chapter has only briefly considered the performance of various motion
estimation techniques. However, none of these motion estimation techniques have
been developed for the purpose of scalable video coding. Therefore, Chapter 5
develops a novel motion estimator, which is dedicated to scalable video coding
and efficient hardware implementations.

At this point, a complete scalable video coding system has been developed with
various scalability options, low complexity and suitability for embedded systems
implementation. This was obtained through the use of integer wavelet transforms
(Section 2.3), the proposed TSSP entropy coder (Section 3.2) and the BDLD tem-
poral configuration (Section 4.3). The disadvantage of the proposed proprietary
architecture is that it is specific and not adhering to existing video compression
standards. The development of an embedded coding system for a specific applica-
tion area is relatively expensive, whereas adherence to existing standards can give
a cost benefit on the longer term if this standard is widely adopted.

With respect to comparing the developed system with the H.264 SVC compres-
sion standard, an interesting observation can be made about the temporal scalabil-
ity in both systems. In this chapter, the created temporal hierarchical tree (BDLD)
is the actual result from various research explorations which initially use complete
temporal wavelet filters. The equivalent development in the standardization of
H.264 SVC has resulted in a hierarchical use of B-frames which exploits the cas-
caded dependencies of such frames. From a bird’s eye view, both approaches are
conceptually nearly identical, although the development paths have been very dif-
ferent. The fact that both approaches are conceptually similar, gives further moti-
vation that the correct temporal coding structure is adopted.
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Time has been transformed, and we have changed; it has

advanced and set us in motion; it has unveiled its face,

inspiring us with bewilderment and exhilaration.

KAHLIL GIBRAN

Abstract

This chapter concentrates on motion estimation specifically for Scalable Video Coding (SVC). In
SVC, motion is estimated with frames at varying temporal distances and new methods of motion-
vector propagation are necessary. Furthermore, hardware accelerators in modern computing archi-
tectures shift the complexity bottleneck from SAD computations to the required memory bandwidth.
Therefore, a novel motion estimation algorithm is presented in this chapter, that is explicitly de-
signed for SVC, which exploits hardware acceleration features of modern computing architectures.
Fast processing is not only achieved by employing a few candidate motion vectors, but also by tuning
the algorithm such that it starts with two candidate vectors and then checks the candidate positions
with a surrounding dense pattern arranged in a Parallelogram-Shaped Scanning (PSS) form. As
an advantage, this results in a fixed computational load, while the two separate vector candidates
allow parallel fetching of data and SAD calculations. The proposal is compared with other motion
estimation algorithms, including the state-of-the-art EPZS motion estimation. We have found that
the proposed motion estimation outperforms all other fast motion estimation algorithms in the SVC
framework and even approaches the performance of a full-search motion estimation.
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5. MOTION ESTIMATION FOR SCALABLE VIDEO CODING

5.1 Introduction

Various preceding chapters have contributed to the complete proposed scalable
video coding system, as portrayed by Figure 5.1. Chapter 3 has contributed by de-
veloping an efficient TSSP entropy codec. Chapter 4 has provided a scalable coding
framework based on temporal wavelet decomposition and proposed the BiDirec-
tional configuration with Low Delay, abbreviated as BDLD. Up to this point, for the
t+2D architecture, a detailed evaluation and optimization of the involved Motion
Estimation (ME) algorithm has not yet been addressed. It is plausible that when
considering all desired system aspects of surveillance, an algorithmic study of mo-
tion estimation is expected to lead to a motion estimation algorithm fitting to the
scalable video coding system and suited for embedded system implementation.

For the proposed SVC as studied in the previous chapters, ME algorithms
have been applied which are also commonly used in other video coding systems.
Since most video coding systems are non-scalable, the applied ME algorithms were
never specifically designed for this application. Therefore, this chapter concen-
trates on motion estimation for scalable video coding and also considers the latest
developments in computing architectures as a guideline for algorithmic design.

Chapter 4 Chapter 5Chapter 3

Chapter 2: Introduction to Scalable Video Coding

Discrete Wavelet 
Transform (DWT)

Scalable
Spatial Coding

Hardware-Efficient 
Spatial Coding

Motion Estimation
for SVC

Scalable
Temporal Coding

Complexity of 
Temporal Coding

SVC & Hardware-
Optimized ME

Figure 5.1: Positioning of this chapter in the research scope of this thesis.

ME algorithms are used in state-of-the-art video coding systems, such as the
well-known H.264/AVC [15] and novel scalable video coding systems like MC-
EZBC [82]. Various types of ME algorithms have been proposed over the past 30
years. Full-search or exhaustive-search ME algorithms check all possible motion
vectors within a certain search window and return the vector with the lowest Sum
of Absolute Differences (SAD). Computational complexity of these ME algorithms
is quadratic with the search window size, so that multiple fast ME algorithms have
been proposed. Many fast ME algorithms employ a multi-stage approach, such
as TSS (Three-Step-Search) [100], ARPS-3 (Advanced Rood Pattern Search) [99],
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PMVFAST [101] and EPZS (Enhanced Predictive Zonal Search) [102]. The com-
mon principle is that a set of potential vectors is scanned according to a predeter-
mined pattern (e.g. large diamond), from which the best vector is selected as the
input for the next stage, being based on a somewhat modified pattern (e.g. small
diamond). The algorithm continues for a few iterations, until the optimal vector
is found. Some ME algorithms utilize early-stop mechanisms to further save on
calculations [101] [102] [103]. The main purpose of these fast algorithms is to re-
duce the number of SAD calculations, which occupy a large part of the complexity
in sequential software implementations. However, parallel computing architec-
tures calculate the SAD of a block significantly faster than sequential processors,
so that the main bottleneck shifts from computations to memory bandwidth. Due
to the sequential nature of many fast ME algorithms, they do not map efficiently
onto parallel computing architectures. Furthermore, most ME algorithms were
designed for predictive video coding systems, employing straightforward frame-
by-frame motion estimation. However, SVCs feature also bidirectional processing,
where the motion is estimated at various temporal distances (e.g. 1, 2, 4 and 8
frames apart) in forward and backward direction.

In conclusion, typical motion estimation algorithms used for video coding were
neither designed for scalable video coding, nor designed for parallel computing
implementations. Therefore, this chapter aims at designing an efficient ME algo-
rithm that satisfied both requirements in one design. To this end, we propose a
novel ME algorithm, named HPPS (Highly Parallel Predictive Search), with three
distinct features: motion estimation for SVC, suitability for parallel computing ar-
chitectures and featuring a fixed computational load.

This chapter is organized as follows. Section 5.2 briefly relates motion estima-
tion to the framework of temporal decomposition as used in the proposed SVC.
It also discusses three commonly used ME algorithms, which have influenced the
design of the new HPPS ME algorithm. Section 5.3 presents this novel HPPS ME
algorithm in detail. Section 5.4 deals with the experimental results and compares
the proposed ME algorithm with other algorithms from literature. Finally, Sec-
tion 5.5 concludes this chapter.

5.2 Motion estimation in the temporal tree

BDLD temporal configuration

For our surveillance application, the BDLD (BiDirectional Low Delay) configura-
tion was adopted in Chapter 4. This configuration uses bidirectional prediction at
the two lowest levels (P2U0) and single prediction at the two highest levels (P1U0),
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in order to reduce the coding delay. Figure 5.2 shows the BDLD temporal config-
uration for the proposed SVC with a four-level temporal configuration. Bidirec-
tional Motion Estimation (ME) can be observed at the top layers, while ME over
large temporal distances can be observed at the bottom layers. Motion estimation
that is performed between frames with large temporal distances requires a signif-
icantly expanded search region, thereby adding complexity in a quadratic order
with larger search distances.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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L0

H1
L1
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H3
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LL0 LH0 LL1 LH1 LL2 LH2 LL3 LH3

LLL0 LLH0 LLL1 LLH1

LLLL LLLH

Figure 5.2: BDLD temporal configuration for the proposed SVC with a four-level temporal
transform. Bold arrows represent the lifting steps that include ME and compensation.

Figure 5.2 also shows the complex motion estimation process in SVCs. ME is
performed within the lifting steps, which is indicated in the figure by the bold ar-
rows. Each of these bold arrows represent a shorthand notation for the complex
process of motion estimation, motion compensation and temporal filtering using
the lifting framework. The figure explaining the internals of these bold arrows
is repeated from the previous chapter in Figure 5.3, depicting the internals of the
bidirectional prediction step from the top of Figure 5.2. For a more detailed de-
scription of the BDLD temporal configuration, see Chapter 4.

Commonly used ME algorithms

This section discusses three commonly used ME algorithms which have become
popular in video coding and frame-rate conversion. They form the basis for the
later proposed HPPS ME algorithm. The first algorithm, called ARPS-3 (Advanced
Rood Pattern Search) [99], is a simple and fast multi-stage ME. The second algo-
rithm, EPZS (Enhanced Predictive Zonal Search) [102] is based on PMVFAST (Pre-
dictive Motion Vector Field Adaptive Search Technique) [101], which enhances
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Frame 1

Predict filter bank (3-tap)

Vectors

Motion estimation

Motion compensation

High-pass output

Frame 2

Vectors
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(a)

1

H

20
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Figure 5.3: Temporal filtering in the t+2D coding architecture using 5/3 wavelet filters. (a)
Full structure and (b) shorthand notation with motion estimation/compensation structure
represented by the diagonal arrows, with filtering implicitly part of the processing.

the multi-stage design with early stop criteria and utilizes previously obtained
motion-vector fields. The third, 3DRS (3-Dimensional Recursive Search) [104], is
a very fast ME which is applied for frame-rate conversion, as it provides smooth
motion-vector fields and enables a simple implementation in hardware.

Block similarity measure

All motion estimation algorithms from this chapter use the Sum of Absolute Differ-
ences (SAD) as the measure of similarity between two blocks. The SAD is defined
as follows:

SADn,m(x, y, dx, dy) = ∑
(i,j)∈B

| In(x + i, y + j)− Im(x + i + dx, y + j + dy) |, (5.1)

with (i, j) being the pixel positions within block B, which is typically a 16× 16 pixel
block. The signal component value at pixel location (i, j) in image In is denoted by
In(i, j). The reference location of block B is denoted by pixel position (x, y) and the
tested motion vector is represented by the displacement (dx, dy). In shorthand no-
tation, the image indexes are omitted and the SAD is written by SAD(x, y, dx, dy).
Besides the SAD, other similarity measures exist, but are hardly used in practice
because of the effectiveness, computational simplicity and wide-spread acceptance
of the SAD measure.
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ARPS-3

The ARPS-3 ME reduces the number of possible motion-vectors candidates com-
pared to the full-search algorithm. ARPS-3 centers its search around a predicted
motion vector, after which several motion-vector values are tested, based on the
motion vectors in neighbouring blocks. The search is initiated using a rood pat-
tern, after which a smaller pattern is iteratively used.

Figure 5.4 shows a grid of possible integer motion-vector positions. Figure 5.4(a)
shows the location of the tested vector positions around the predicted motion-
vector center point for the initial search. The points are derived from motion vec-
tors of the neighbouring blocks, using the assumption that the expected variations
among motion vectors is similar to the variations of the motion vectors of neigh-
bouring blocks. The arms of the rood, points MV1 to MV4, are directly based on
the maximum and minimum values of the surrounding motion vectors (therefore
they vary in length in the figure). The origin point MV5, representing the (0,0)
vector, is also included for robustness of the algorithm.
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Figure 5.4: Search patterns in ARPS-3: (a) Rood pattern, adapted from [99] and (b) Unity
Rood Pattern (URP), adapted from [105] and [106].

After the initial search with the rood pattern, a smaller pattern is used itera-
tively to converge to a final position. This smaller pattern is also known as the
Unity Rood Pattern (URP) [105], or the small diamond pattern [106] and is shown
in Figure 5.4(b).
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PMVFAST and EPZS

EPZS [102] is an improvement version of the PMVFAST [101] algorithm, based
on enhancements of the motion-vector prediction process and the early stopping
criteria. Due to the enhanced reliability of the predictor, only a single checking
pattern is used, either a small 3× 3 diamond or a 3× 3 square, depending on the
user requirements.

Similar to ARPS-3, PMVFAST and EPZS use previously obtained motion vec-
tors from both previously calculated fields and spatial neighbours. PMVFAST first
evaluates the median predictor, which is also used as a reference for motion-vector
encoding. After testing the median, a set of vectors is evaluated involving the (0,0)
vector, the vectors from three adjacent blocks in the current frame (left, top and
top-right) and the co-located block in the previous frame, amounting to a total
of six predictors. The median predictor represents subset A, while the others are
grouped in subset B.

PMVFAST also uses early stop criteria based on thresholds. The early stop after
testing the median position is based on a fixed threshold, whereas for the other
predictors, it is adaptively based on the minimum SAD of the adjacent blocks or
the co-located block.

EPZS expands on PMVFAST by including another set of predictors using pre-
vious frames. The first is called the accelerator motion vector, that utilizes the
motion vectors of the co-located blocks at time t− 1 and t− 2, which is included
in Equation (5.2), as follows:

−−→
MVAccelPredictor =

−−→
MVt−1 + (

−−→
MVt−1 −

−−→
MVt−2), (5.2)

where
−−→
MVAccelPredictor denotes the predicted accelerator motion vector and

−−→
MVt−1

and
−−→
MVt−2 the motion vectors of the co-located blocks at time t− 1 and t− 2.

For objects with motion displacements in the order of the size of the motion-
vector blocks, the co-located block is not representing the motion in the current
frame at the object boundary. Therefore, the motion vectors of the four adjacent
blocks (left, right, top and bottom) to the co-located block in the previous frame
are included as candidate motion vectors as well, bringing the additional temporal
predictors in EPZS to five, which are grouped in subset C.

Early stop criteria are expanded in EPZS as follows: a fixed threshold (preset at
a value of 256) is used for subset A and an adaptive threshold is used after testing
all predictors in subsets B1 and C. The value of the adaptive threshold in EPZS is

1The explanation of the EPZS algorithm and the labeling of subsets is according to the litera-
ture [102], but should not be confused with the previous discussion on block B in the SAD computation.
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based on the minimum SAD of the tested predictors so far, combined according to
Equation (5.3), which states that:

TAdaptive = a ·min(SAD1, SAD2, ..., SADN) + b, (5.3)

with a = 1.2 and b = 128. By combining the SAD of the spatial and temporal
predictors, a pre-mature early stop of the algorithm can be prevented successfully.
If no early stop conditions occur, the motion estimation computation continues,
using a refinement pattern similar to ARPS-3, albeit that this computation is ex-
tended for a limited and predefined amount of iterations.

3DRS

3DRS was proposed primarily as an efficient ME algorithm for frame-rate con-
version in high-end television sets. Since frame-rate conversion in TVs has to be
performed in real-time, the 3DRS motion estimation was designed for low-cost
hardware implementation with respect to the amount of computations. The 3DRS
algorithm attempts to estimate a smooth true-motion field, suitable for frame-rate
conversion without serious outliers, while still supporting sudden changes in mo-
tion, resulting from boundaries between differently moving objects.

Despite its usage for a specific area, we have adopted this algorithm for further
study because the system has proven to be a valuable concept from which new
extensions can be made (e.g. a 3D TV extension can be found in [107]).

Similar to the previously described ME algorithms, 3DRS uses predictors based
on the spatial neighbourhood and the previously obtained motion vectors, while
also additionally testing the (0,0) vector. A possible candidate structure for 3DRS
is shown in Figure 5.5.

3DRS also includes a random update vector that facilitates the sampling of a
different motion field in the neighbourhood. For that random update vector, a
limited set of vectors is defined, of which one is randomly chosen and added to a
selection of the pre-defined candidates. A possible set of random update vectors
is shown below, giving
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Motivation for a novel ME algorithm

The discussed ME algorithms are all based on the traditional assumption that re-
ducing the number of SAD operations is the best way to reduce the computational
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Figure 5.5: Possible motion-vector candidates of 3DRS: (a) spatial candidates at positions
S1–S4, (b) temporal candidates at positions T1–T5. The considered block for which the can-
didate vectors apply is indicated by position C. Block position C is dotted in sub-figure (b) to
indicate that the candidate vectors at positions T1–T5 are computed already earlier, where
block T1 is co-located with block C.

complexity, as this is the most computationally expensive part of the ME algo-
rithm. While this is valid for traditional ‘sequential’ processing cores, develop-
ments in parallel processing and dedicated hardware accelerators for multimedia
computing processors are changing the landscape. New processor architectures
have emerged, featuring dedicated execution units to accelerate the block-based
SAD calculation from thousands of cycles to a single cycle. Furthermore, these
architectures usually also include dedicated memory execution units to shift all
pixels in the motion estimation block, which can be utilized to move to the next
candidate region efficiently. With these new execution units, the computational
bottleneck has shifted from the SAD calculation and search process to the available
memory bandwidth. This results in different requirements for designing motion
estimation algorithms.

As a consequence of the previous discussion, the ME algorithm should be ef-
ficiently mapped and executed on a multimedia computing system, but should
also support scalable video coding systems which have a hierarchical temporal
structure, requiring typically ME between frames with a large temporal distance.
Furthermore, for real-time systems such as a live video encoder, it is preferable that
the ME algorithm has a fixed computational complexity, so that hard deadlines can
be guaranteed.

In conclusion, the following three aspects should be addressed in the design of
the algorithm: (1) the ME should fit to SVC and support bidirectional and tempo-
ral predictive coding hierarchies, (2) consideration of the available memory band-
width instead of SAD calculations and (3) the ME algorithm should match with
the adopted computing architectures for execution. These aspects have been used
as a starting point for designing a novel ME algorithm.
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5.3 Highly Parallel Predictive Search (HPPS)

The following sections discuss the novel HPPS ME algorithm in more detail. Sec-
tion 5.3 first gives an overview of the novel HPPS algorithm and the following
sections describe HPPS in more detail. Section 5.3 presents the candidate genera-
tion, Section 5.3 the temporal candidate input in an SVC and Section 5.3 presents
a special parallelogram-shaped scanning pattern. Finally, Section 5.3 presents cost
biasing.

Overview of HPPS approach

In the previous section, the motivations for a novel ME algorithm were explained:
suitability for SVCs, the shift in the computational bottleneck from SAD calcula-
tions to memory bandwidth and design-phase consideration for mapping on pre-
defined target architectures. For the design of HPPS, three successful concepts of
the previously discussed ME algorithms are adopted.

The first aspect involves the use of square blocks for ME algorithms. The
square block as used in many ME algorithms for video coding, is attractive since it
matches the block-based processing of the Discrete-Cosine-Transform (DCT) with
a block-based ME process. However, in wavelet-based systems, the transform is
typically applied on full-image basis. This makes motion estimation without using
blocks a natural choice, in order to avoid blocking artifacts commonly associated
with block-based coding systems. Novel ME proposals exist where deformable
mesh triangles are used, which also allows for changes in object size. Although the
motion compensation quality of such algorithms is very high, the deformability of
the mesh triangles adds additional search dimensions to the ME process, which
increases its complexity exponentially. Furthermore, block-based ME algorithms
have been broadly accepted which has resulted in readily available special hard-
ware accelerators for modern hardware computing platforms. For these reasons,
the block-based processing for the novel ME algorithm is still adopted.

The second aspect is related to the choice of a block similarity metric. For mea-
suring block similarity, the Sum of Absolute Difference (SAD) calculation is com-
monly used in ME because of its computational simplicity. In experiments, we
have explored a novel block-difference calculation, based on the wavelet trans-
form. This novel difference calculation uses a multi-scale approach similar to the
spatial wavelet transform, but unfortunately, this does not result in improvements
in the coding quality. Moreover, the wide application of the SAD calculation has
also led to the availability of special hardware accelerators in modern computing
platforms. For these reasons, the SAD calculation is again used for block-difference
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calculations in the novel ME algorithm.
The third aspect addresses the use of predictive motion vectors. It has been dis-

cussed and observed that a good predictor is very important for the performance
of ME algorithms. This predictor can be estimated from both spatial and temporal
neighbouring blocks, while the median operator is effective for selecting a reliable
predictor from those neighboring blocks. Therefore, the concept of spatial and
temporal predictors is adopted for the novel ME algorithm. However, the search
strategy is modified, in order to optimize it for architectures with dedicated SAD
calculation and hardware blocks specialized in data shifting.

A schematic overview of the proposed HPPS ME is given in Figure 5.6. The
three independent processing paths can be clearly observed: one path for check-
ing the (0, 0) motion vector (also called zero motion vector) at the top of the figure,
one depending on a spatial predictor at the middle of the figure and one path de-
pending on a temporal predictor at the bottom. The final motion vector equals
the motion vector with the lowest SAD of the three paths. Within both predictive
paths, a single predictor is computed based on a selection of candidates from the
input motion-vector field, which is discussed in Section 5.3. The spatial predictor
path utilizes previously calculated motion vectors from the current frame, indi-
cated in the figure by the feedback loop. For the temporal predictor, the employed
input motion-vector field originates from previous ME actions in the hierarchical
tree. For SVC, this motion-vector propagation is not trivial and Section 5.3 de-
scribes two methods for propagating candidates in the temporal hierarchical tree
of the proposed SVC, which is indicated in Figure 5.2. For each of the motion-
vector predictors computed, a dense search is performed around the considered
predictor using the Parallelogram-Shaped Scanning (PSS) pattern, which is dis-
cussed in Section 5.3. The results of this dense search can be modified by applying
cost biasing, which is further explained in Section 5.3. For the zero motion-vector
path, the dense search and biasing of vector cost are optional, as indicated in Fig-
ure 5.6 by the diagonal hatching of the optional blocks.

Calculation of spatial and temporal predictors

HPPS uses two motion-vector predictors to initiate a dense search: one vector de-
rived from the spatial neighborhood of motion vectors and one vector derived
from the temporal neighborhood. The temporal neighborhood can be chosen in
relatively free form, allowing the fetching of image data of various blocks for the
temporal candidate independent of the calculation of spatial neighborhood predic-
tions. Alternatively, the image data for the spatial candidate can be fetched during
the temporal neighborhood calculation, thereby enabling continuous parallel data
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Figure 5.6: Schematic overview of the Highly Parallel Predictive Search (HPPS) ME.

fetching and SAD calculations, see Figure 5.6.
Around both the spatial and the temporal predictors, HPPS performs a modi-

fied full search. This differs from TSS and ARPS-3, in the sense that it does not em-
ploy an iterative process for the candidate-vector evaluation. It also differs from
3DRS [104], since it refines the motion vector by exploring a search area around
each predictor.

Figure 5.7 depicts the blocks for the motion-vector prediction, showing (a) the
spatial and (b) the temporal neighborhood of motion vectors, with C indicating
the current motion vector predictor to be determined. Spatial positions of the
spatial candidates are represented by S1–S3 and the temporal candidates by T1–
T4. Spatial candidates are derived from the current frame, while temporal candi-
dates originate from a temporal candidate frame. The spatial motion-vector pre-
diction (

−−→
MVSpatPred) and temporal motion-vector prediction (

−−→
MVTempPred) are de-

rived from these positions according to Equations (5.5) and (5.6). Both predictors
employ the median operator for vector selection, which was shown by Tourapis et
al. [101] [102] to be a good predictor for the current motion vector. Hence, both
predictors are specified by

−−→
MVSpatPred(CS) = median(

−−→
MV(S1),

−−→
MV(S2),

−−→
MV(S3)), (5.5)

−−→
MVTempPred(CT) = median(

−−→
MV(T1),

−−→
MV(T2),

−−→
MV(T3),

−−→
MV(T4)), (5.6)
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Figure 5.7: Motion-vector candidates for spatial and temporal prediction in HPPS: (a) spa-
tial candidates at positions S1–S3, (b) temporal candidates at positions T1–T5 with the con-
sidered block for which the candidate vectors apply is indicated by position CS and CT,
respectively. Block position CT is shown lifted to indicate that the candidate vectors at po-
sitions T1–T4 are computed already earlier.

with
−−→
MV(P) the candidate motion vector at location P. The median operator in

these equations operates individually on the x and y components of each motion
vector. If not all motion vectors are available (e.g. around image edges), missing
candidates are omitted from the median calculation. Temporal relationships in
the BDLD configuration of the SVC framework are addressed in more detail in
Section 5.3.

Origin of temporal vector candidates in SVC

This section provides the input for the temporal prediction processing of the pre-
vious section. Since a region around each motion-vector predictor is scanned, the
propagation of temporal vector candidates can be implemented in a simple way.
This propagation of vector candidates is visualized in Figure 5.8 for a four-level
SVC with a BDLD temporal configuration. For the first level with bidirectional
ME, the motion-vector field is simply reversed, while for higher levels, the motion-
vector field is scaled by a factor two from levels below. These simple techniques
are sufficient for providing temporal candidates at each level of the decomposi-
tion, as these candidates are resulting in a temporal predictor (See Section 5.3.2),
around which a dense search is performed.

The temporal vector candidate propagation of Figure 5.8 can be split in two cat-
egories: intra-level propagation and inter-level propagation. The temporal intra-
level and inter-level motion vectors

−−→
MV are defined through Equations (5.7) and
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Figure 5.8: Temporal candidate propagation in a four-level SVC with every vertical stripe
(columns) representing a frame, where the top numbers indicating the frame index in the
GOP. Normal arrows indicate motion estimation calculations with candidate vectors repre-
sented by the dashed arrows. The number next to the dashed arrow indicates the multipli-
cation factor of the motion-vector field.

(5.8), respectively, giving

−−→
MVTempCand(P, 0) = − −−→MVPrev(P, 0), (5.7)
−−→
MVTempCand(P, l) = 2 ∗ −−→MVPrev(P, l − 1) for l > 0, (5.8)

with
−−→
MVTempCand(P, l) representing the candidate motion vector at block posi-

tion P and hierarchical level l, based on the previously obtained motion vector
−−→
MVPrev(P, l) at the same block position. The top level is defined as l = 0. For
l = 0, the previous motion vector is defined as the motion vector previously ob-
tained in time at the same hierarchical level. For l > 0, it is defined as the motion
vector previously obtained at the same frame time in the same direction, but at
hierarchical level l − 1.

Discussion on simple motion-vector propagation
For moving objects, the uncovered background results in sub-optimal motion vec-
tors, which do not correctly represent the motion. For bidirectional ME, a block
with uncovered background can be properly predicted from either the forward or
backward estimate, but not both. The vector that is not suitable is sub-optimal
because it does not describe the actual motion, but merely the block most simi-
lar to the uncovered background in the direct spatial neighborhood. Propagating
this vector within the same hierarchical level from forward to backward does not
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provide a good vector candidate. When propagating this vector between levels
(inter-level), only the forward estimation is propagated in the scheme of Figure 5.8,
which is only a valid candidate for half of the cases. For this reason, the propaga-
tion scheme is modified and an enhanced motion-vector propagation scheme is
proposed, which is discussed in the sequel.

Enhanced propagation of temporal vector candidates
In the previously discussed motion-vector propagation scheme, sub-optimal can-
didates can propagate to the next ME calculation. This propagation of sub-optimal
motion-vector candidates occurs mostly at the contours of moving objects, which
occasionally leads to additional coding noise. To improve on the simple propa-
gation scheme of temporal candidates, an enhanced motion-vector propagation
scheme is proposed that is adaptive to the operation-mode decisions of the coding
system.

This enhanced propagation scheme creates a single motion-vector field which
describes the motion more accurately for a bidirectional pair. During temporal
encoding, mode decisions are made for each block, describing whether the low-
est prediction residual can be obtained when using backward, bidirectional or
forward prediction for motion estimation. When using enhanced propagation in
HPPS, the mode decision information is re-utilized for selecting the best temporal
motion-vector candidate, as shown in the following,

−−→
MVBidirTempCand =


−−→
MVPrevFwd for forward mode,

(
−−→
MVPrevFwd −

−−→
MVPrevBwd)/2 for bidirectional mode,

− −−→MVPrevBwd for backward mode,
(5.9)

with
−−→
MVBidirTempCand denoting the resulting bidirectional candidate,

−−→
MVPrevFwd

the previously obtained forward motion vector and
−−→
MVPrevBwd the previously ob-

tained backward motion vector. All
−−→
MV notations in the above and the equation

are given in short-hand notation without the block position to facilitate easy for-
matting and reading. From Equation (5.9), it can be observed that the bidirectional
candidate vector is always mapped to the forward direction, ensuring the desired
symmetry.

This mode-adaptive candidate vector is then propagated in the SVC as shown
in Figure 5.9, where the dashed arrows represent the propagation and the numbers
above these arrows a multiplication factor. The dotted circles indicate groups of
(bi)directional motion vectors. Each group only generates one candidate set and
uses one set as the input. Internally, the received candidates are directly used for
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Figure 5.9: Enhanced temporal candidate propagation in a four-level SVC with every ver-
tical stripe (columns) representing a frame, where the top numbers indicating the frame
index in the GOP. Normal arrows indicate ME calculations and circles group (bi)directional
vectors. Temporal candidates are represented by the dashed arrows labeled with the multi-
plication factor of the motion-vector field.

the forward motion estimation and inverted to be used in the backward motion
estimation.

The temporal candidate prediction in Figure 5.9 can be split in two categories:
intra-level (within the same hierarchical level) propagation and inter-level propa-
gation. The temporal intra-level and inter-level motion-vector propagation

−−→
MV for

enhanced candidates are defined through Equations (5.10) and (5.11), respectively,
giving

−−→
MVBidirTempCand(P, 0) =

−−→
MVBidirPrev(P, 0), (5.10)

−−→
MVBidirTempCand(P, l) = 2 ∗ −−→MVBiDirPrev(P, l − 1) for l > 0, (5.11)

with
−−→
MVBidirTempCand(P, l) representing the bidirectional motion-vector candidate

at block position P and hierarchical level l, based on the previously obtained bidi-
rectional motion vector

−−→
MVBidirPrev(P, l). From these equations, it can be derived

that the adaptive MV propagation is similar to the non-adaptive propagation, ex-
cept for the motion vector inversion. This inversion is not performed anymore
because the bidirectional candidates are always mapped to the forward direction.
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Parallelogram-Shaped Scanning (PSS) pattern

As discussed in the previous two sections, the spatial and propagated temporal
candidates are used to create a spatial and temporal predictor. In HPPS, a dense
search is performed around these two predictors, in a Parallelogram-Shaped Scan-
ning (PSS) pattern.

It is proposed to use two specific processing blocks that can be applied to full-
image search regions, to facilitate full exploitation of the parallel processing power
of modern computing architectures. The first specific block performs SAD calcula-
tions on image blocks and the second specific unit performs a cyclic shift of image
blocks. With these two basic processing kernels, it is possible to efficiently per-
form region searching in HPPS. Some existing computing architectures already
have these processing blocks implemented as dedicated hardware, while for other
processors with parallel data paths and computing cores (SIMD), these two blocks
can be implemented very efficiently.

To illustrate the usage of these two specific processing blocks, a full search
is performed as follows. The method is based on the principle to keep the both
the predicted block and a section of the reference image at a fixed position in fast
memory, and then moving the reference image below the predicted block over the
search positions. By storing the reference image for a width of the block size and
the search region, data can be retrieved for the next whole line at once, very effec-
tively utilizing the wide memory load paths. During this load, single cycle SAD
calculations can be performed within the line. The full-search block estimation ex-
ample uses the following parameters. The block size is indicated by BS and the
search range by SR, with e.g. SR = 7, indicating a 7× 7 search area in which mo-
tion vectors are tested with a range from -3 to +3 for both horizontal and vertical
positions. Two local buffers are employed, one of size BS× BS for a block from the
predicted image and one of size (BS + (SR− 1))× (BS + 1) for a block from the
reference image. This reflects the actual block size plus all new vector positions
of the horizontal range, plus one additional line to facilitate parallel data loading.
To initialize the search, a block of size BS× BS is loaded from the predicted image
and of size (BS + (SR− 1))× BS from the reference image. In the background, the
next line of size (BS + (SR− 1))× 1 is fetched from the reference image. An SAD
calculation is performed on a block of size BS× BS between the predicted and the
reference blocks, after which the reference image block is shifted to the left by one
pixel. This shift is circular to indicate that data falling out of the window at the left
is inserted at the right. The SAD calculation and circular shifting of the reference
block are performed SR times, completing a single row of full SAD calculations for
motion vectors with varying horizontal positions. For the last motion-vector posi-
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tion in the row, instead of the circular shift to the left, the reference block is shifted
one line upwards (non-circular). This up-shift inserts the previously fetched line
(which was fetched in the background) in the search region. After this shift, the
additional line at the bottom of the reference data block can be used to fetch a new
line from the reference image in the background. For the next row of motion-vector
candidates, instead of an SAD calculation and a left circular shift of the reference
data, an SAD calculation is performed, followed by a right shift of the reference
data. This process repeats itself for the remaining lines from the reference image.
This is visualized in Figure 5.10(a) where the SAD calculations and data shifts of
the reference data block are indicated for a 7× 7 full-search window.

(a) (b)

Figure 5.10: Scanning patterns of HPPS for a 7× 7 search window: (a) regular full search
and (b) PSS pattern. The arrows indicate the effective movement of the SAD window, im-
plemented by a circular shift of the image block in the opposite direction. Each block repre-
sents one motion-vector position and grey blocks refer to applying the SAD calculation for
a particular motion vector.

To enhance the efficiency of motion estimation, the Parallelogram-Shaped Scan-
ning (PSS) pattern is proposed, which is visualized in Figure 5.10(b). This scanning
pattern utilizes the same left, right and down shifts of the reference block and the
same background line fetching. However, less SAD calculations are performed,
by omitting search points that are less likely to occur, which is accomplished by
a modification of the shifting schedule. Table 5.1 compares the difference in SAD
calculations between the full search and the PSS pattern for various search ranges.
From this table, it can be seen that for larger search ranges, the number of SAD
calculations for the PSS pattern converges to 50% of that of the full-search pattern.
The experiments show that the PSS pattern has a negligible decrease of perfor-
mance compared to the full-search pattern (typically in the order of 0.01 dB).

A possible further optimization is that the shape of the PSS pattern and its en-

146



5.3. Highly Parallel Predictive Search (HPPS)

Table 5.1: Comparison of SAD calculations between Full-Search (FS) and the PSS pattern
for various search areas and approximately the same performance. The search range n× n
represents motion vectors between d−n/2 + 0.5e and b+n/2c in both directions.

Search area 2×2 3×3 4×4 5×5 6×6 7×7 8×8 9×9

SAD FS 4 9 16 25 36 49 64 81

SAD PSS 4 7 12 17 24 31 36 45

Savings 0% 22% 25% 32% 33% 37% 44% 44%

Search area 10×10 11×11 12×12 13×13 14×14 15×15 16×16

SAD FS 100 121 144 169 196 225 256

SAD PSS 54 59 72 89 106 113 139

Savings 46% 51% 50% 47% 46% 50% 46%

closed number of vector positions can be adjusted in such a way that it features full
utilization of the available computational power by adapting the width for the top
and bottom rows of the shape. In this way, the calculation time matches the mem-
ory fetch time. For the center rows, more calculations are performed than would
be optimal for the memory bandwidth, but they are required for accurate motion
estimation. Through this flexible selection of motion-vector candidate positions,
the memory bandwidth is fully exploited without sacrificing motion estimation
performance.

During experiments, it was found that a dense search for the (0, 0) path only
marginally improves the coding performance and can therefore be omitted to re-
duce the computational complexity and bandwidth usage. This can be explained
by considering that the (0, 0) path provides a way for the ME to reset itself in case
of appearing static background. In such a case, performing a dense search for these
static regions would provide little or no benefit over only checking the (0, 0) vector.

SAD cost biasing

The fast HPPS ME algorithm is not only attractive for SVC coding, but is also
applicable to surveillance object analysis and tracking. Therefore, an additional
function called cost biasing is employed, to control the preference of using partic-
ular vector candidates. With this cost biasing, the motion-vector field consistency
can be influenced, which may be partially beneficial for e.g. surveillance object
analysis and tracking.
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The HPPS ME algorithm provides a function to bias the SAD cost of the candi-
date motion vectors, thereby effectively making certain motion-vector candidates
less likely to be selected. Cost biasing is performed according to Equation (5.12),
which specifies

CostBias(dx, dy) = α · (abs(dx) + abs(dy)) + β, (5.12)

with CostBias(dx, dy) being the SAD cost bias for the tested motion vector repre-
sented by the displacement (dx, dy), with α and β the parameters for HPPS cost
biasing. The biased SAD can now be derived from Equation (5.1) with the short-
hand notation of the SAD and is specified by

SADBiased(x, y, dx, dy) = SAD(x, y, dx, dy) + CostBias(dx, dy), (5.13)

with SAD(x, y, dx, dy) being the SAD of a block at pixel location (x, y) with the
tested motion vector represented by the displacement (dx, dy).

Cost biasing can be applied to create a more smooth motion-vector field through
emphasizing the importance of the exact spatial and temporal candidates by in-
creasing the α parameter. The β can be used to bias the motion estimation to the
(0, 0) vector to avoid noisy vectors selection, which can occur for static objects due
to image noise. This parameter can also be applied for biasing towards spatial or
temporal vector selection consistency.

From the experiments, it was found that for our purpose of video compression,
the smoothing of motion-vector selection via cost biasing reduces the coding per-
formance and is thus not desirable, so that the α parameter can be set to α = 0. For
the coding of surveillance scenes, there is a preference for the (0, 0) motion vector,
since it can be more efficiently encoded and background parts are typically static.
This preference can be realized by setting β > 0 for the spatial and temporal candi-
date paths. The aspect of utilizing motion vectors for content analysis is described
in more detail by Vijverberg et al. in [108].

For the SVC coding case, it has already been mentioned the cost biasing is op-
tional. It was discussed in the previous section that a dense search around the
(0, 0) vector provides little or no benefits. Without a search region, the α param-
eter becomes useless. Furthermore, with the preference of the (0, 0) vector, the β

parameter is set to β = 0.

5.4 Experimental Results

In this section, the proposed HPPS ME algorithm is evaluated. The same test se-
quences as used in Chapter 4 are employed, of which an overview is given in
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Appendix E. Similar to Chapter 4, intermediate results regarding sub-parts are
presented for a subset of the sequences, in this case the well-known City sequence.
At the end of this section, the final results for all sequences are presented.

To evaluate the effectiveness of the HPPS ME algorithm, two experiments are
conducted. The first involves measuring the quality of the motion-compensated
frames compared to the original frames. This enables for a pure comparison of the
quality of the ME algorithm without influence of any spatial and temporal coding
techniques. The temporal structure of the 4-level BDLD configuration (Figure 5.2)
is utilized. This leads to a GOP size of 16 and motion to be estimated for frames
1, 2, 4 and 8 frames apart. This analysis also allows for measuring changes at
various levels in the temporal hierarchical tree. The second experiment estimates
the impact of the ME algorithm on the full coding process, which is presented
under the condition of utilizing the full proposed SVC codec and the two best
performing ME algorithms. The full-search ME algorithm is used as a reference
throughout this section. The ME parameters utilized for evaluation are listed in
Table 5.2.

Table 5.2: ME parameters used during evaluation with SR = Search Range. Non-listed
parameters are set to their default values as given in Section 5.2.

Context Parameter Setting

All Blocksize 16× 16 pixels

Measurements Sub-pixel estimation None

Full codec Sub-pixel estimation Quarter

HPPS Cost biasing Equal SAD: prefer (0, 0) vector

HPPS Search Range (SR) ±4 pixels for all levels

EPZS Maximum iterations 16

ARPS-3 & 3DRS Allowed vectors Limited to FS search ranges

Full-search SR at 1, 2, 4 and 8 frames apart ±8, ±16, ±32, ±32 pixels

This section is structured as follows. Section 5.4 verifies the performance of
HPPS against other well-known and state-of-the-art ME algorithms, while focus-
ing on the hierarchical temporal structure commonly used in SVC. Section 5.4 in-
vestigates the enhanced candidates for both the state-of-the-art EPZS and the pro-
posed HPPS. Finally, Section 5.4 evaluates the impact of EPZS and HPPS on the
rate-distortion performance of the complete SVC implementation, with and with-
out enhanced candidates.
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Verification against other ME algorithms

The performance of the proposed HPPS ME algorithm has been compared with
other well-known algorithms: Full Search, ARPS-3, 3DRS and EPZS. The perfor-
mance is measured by calculating the PSNR of the motion-compensated image
compared to the original image. Since the interest is on estimating the performance
of ME in SVCs, this PSNR measurement is performed for each of the four levels
in the BDLD configuration. Figures 5.11 and 5.12 show the results of these mea-
surements for the well-known City sequence. Furthermore, the number of SAD
calculations have been measured and these numbers are depicted in Table 5.3.

Table 5.3: Average and maximum SAD counts per block for various ME algorithms at differ-
ent levels in the temporal hierarchical tree, averaged over 160 frames of the City sequence.

3DRS SADs ARPS-3 SADs EPZS SADs HPPS SADs FS SADs

Level mean max mean max mean max mean max mean max

1 4 9 8 28 9 35 86 91 275 289

2 5 9 10 47 10 25 86 91 1036 1089

3 5 9 11 52 11 37 86 91 3916 4225

4 4 9 14 54 12 40 86 91 3916 4225

In Figure 5.11(a) and the first row of Table 5.3, a comparison for the lowest
level in the SVC is shown with a temporal distance of 1 frame and featuring bidi-
rectional motion estimation. It can be observed that FS and HPPS show nearly
identical performance. EPZS and ARPS-3 perform a bit worse for parts of the se-
quence and 3DRS has a lower performance, but was not designed for video coding
applications and has a considerably lower complexity in terms of SAD.

For EPZS and ARPS-3, the amount of SAD vector calculations is clearly lower
than HPPS and FS, which explains the somewhat lower performance. The average
amount of SAD calculations is in the order of 10 vector estimations, so that in
normal conditions they perform quite well. However, as soon as special signal or
motion transients occur, the algorithms will require much more computations and
will grow to the order of 50 vector candidates. The HPPS algorithm is memory-
bandwidth driven and computes a larger but fixed amount of vectors, and should
be compared to full search at this level of operation. In this case, HPPS is a factor
of 3.2×more efficient in terms of SAD calculations than full search, while offering
nearly the same performance. Furthermore, HPPS always retrieves two times 24×
24 pixels for estimating one predicted block, versus 32× 32 pixels for FS at this
level. The bandwidth for ARPS-3 and EPZS can hardly be estimated, due to the
iterative process of converging to the best vector.
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Figure 5.11(b) shows the next level of bidirectional motion estimation, with
frame distances of two. The performance of the various ME algorithms is simi-
lar to the previously discussed level. However, the average level of performance
is somewhat decreased due to the higher temporal distance, and curves start to
deviate from each other slightly.

The performance results for the next two levels, with frame distances of 4 and
8, are visualized in Figure 5.12(a) and Figure 5.12(b), respectively. At these frame
distances, the ARPS-3 also starts to lose accuracy, while HPPS performs a bit above
EPZS. At this level of temporal processing, EPZS is still surprisingly efficient with
respect to SAD calculations, but requires slightly more iterations to evolve to the
best vector. For EPZS, the amount and path of iterations is undefined and this also
holds for the cache access to the video data. In case of the HPPS algorithm, the
results are obtained with a fixed and limited data-access pattern, which can be very
effectively cached (e.g. pre-fetching using DMA). Again HPPS is best compared
with full search, where HPPS is 46× more efficient with respect to the amount of
SAD calculations and requires 5.6× less bandwidth at these levels.

Simple and enhanced temporal candidates

This subsection examines the effectiveness of the proposed ME algorithm with
simple and enhanced candidates. The evaluation involves PSNR measurements
at the 4 levels of the BDLD configuration with both the HPPS and EPZS ME al-
gorithms. Figures 5.13 and 5.14 show the results of these measurements for the
well-known City sequence, where the PSNR is calculated by comparing the origi-
nal image with the motion-compensated image.

From Figure 5.13(a), it can be seen that the improvement for the lower levels
in HPPS is only marginal. However, at higher levels, Figures 5.13(b), 5.14(a) and
5.14(b) show that the improvement is significant. This can also be observed from
Table 5.4, where the mean PSNR for the various configurations is listed. There is no
improvement at Level 1 (∆frames=1), but at Level 3 (∆frames=4) the improvement
is most pronounced at 1.14 dB. It can be noted that the improvement at Level 4
(∆frames=8) is lower, however, no bidirectional estimation exists at Level 3, so this
improvement is fully due to the improved motion vectors at Level 3.

For EPZS, only a very limited improvement can be observed at higher levels
from both Figures 5.13 and 5.14 and Table 5.4 (bottom), most likely due to the fact
that EPZS always evaluates four temporal predictors, thereby already producing a
more stable result than a system with only one temporal predictor, such as HPPS.
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Figure 5.11: PSNR measurements per frame for the City sequence using the Full-Search,
HPPS, EPZS, ARPS-3 and 3DRS ME algorithms for temporal distances of: (a) 1 and (b) 2
frames apart. Curves are sorted from 1 to 5 by performance in mean PSNR.
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Figure 5.12: PSNR measurements per frame for the City sequence using the Full-Search,
HPPS, EPZS, ARPS-3 and 3DRS ME algorithms for temporal distances of: (a) 4 and (b) 8
frames apart. Curves are sorted from 1 to 5 by performance in mean PSNR.
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Figure 5.13: PSNR measurements per frame for the City sequence using the Full-Search,
HPPS simple and enhanced and EPZS simple and enhanced ME algorithms for temporal
distances of: (a) 1 and (b) 2 frames apart. Curves are sorted from 1 to 5 by performance in
mean PSNR.
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Figure 5.14: PSNR measurements per frame for the City sequence using the Full-Search,
HPPS simple and enhanced and EPZS simple and enhanced ME algorithms for temporal
distances of: (a) 4 and (b) 8 frames apart. Curves are sorted from 1 to 5 by performance in
mean PSNR.
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Table 5.4: Mean PSNR of the motion-compensated frame at various temporal levels for
HPPS (top) and EPZS (bottom), with simple and enhanced candidates.

Level (∆frames) 1 (1) 2 (2) 3 (4) 4 (8)

HPPS simple 31.39 dB 29.77 dB 28.52 dB 27.97 dB

HPPS enhanced 31.40 dB 30.43 dB 29.67 dB 28.62 dB

Improvement 0.01 dB 0.66 dB 1.14 dB 0.66 dB

Level (∆frames) 1 (1) 2 (2) 3 (4) 4 (8)

EPZS simple 31.11 dB 30.25 dB 29.60 dB 28.75 dB

EPZS enhanced 31.07 dB 30.28 dB 29.62 dB 28.77 dB

Improvement -0.04 dB 0.03 dB 0.02 dB 0.02 dB

Impact on Rate Distortion (RD) in the complete SVC

In this section, the performances of the two best performing ME algorithms (HPPS
and EPZS) are measured, paired with both simple and enhanced candidates. To
this end, these two ME algorithms are implemented in our complete SVC frame-
work. The codec is set up as follows. The spatial wavelet transform utilizes the
5/3 integer wavelet transform, based on lifting (Section 2.3) with a 5-level dyadic
structure (Section 2.3) and 2D energy correction (Section 2.3). The temporal de-
composition employs the proposed 4-level BDLD configuration (Section 4.3) with
a GOP size of 16 frames. Entropy coding is performed using the proposed TSSP
codec (Section 3.3) with both extensions: 5/3 energy-correction mode (Section 3.4)
and highly scalable mode (Section 3.4). Sequences are encoded once at the highest
quality to a single encoded bitstream using the TSSP encoder. Lower-quality bit-
streams are then extracted from this bitstream using the TSSP parser, after which
they are decoded using the TSSP decoder. The coding system is equipped with
the proposed extensions to the typical t+2D structure: temporal energy correc-
tion (Section 4.4) and low-complexity encoder feedback (Section 4.4), where the
quality-reduced frame is based on a BPR of 3.

Figure 5.15 shows the rate-distortion curve for the City sequence using FS,
HPPS and EPZS ME algorithms, with simple and enhanced candidates. In Fig-
ure 5.15(a), the complete rate-distortion curve is presented, of which a region
around 3 Mbit/s is enlarged in Figure 5.15(b). It can be clearly observed from these
figures that, when implemented in the full coding system, both HPPS and EPZS
provide very robust ME and approach the FS algorithm within 0.1 dB.

Regarding the simple and enhanced candidate propagation, the enlarged view
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Figure 5.15: Rate-Distortion (RD) curve for the City sequence at 30 fps using the Full-Search,
HPPS with simple and enhanced candidates and EPZS with simple and enhanced candi-
dates, with (a) overview and (b) zoom at 3 Mbit/s. Curves are sorted from 1 to 5 by perfor-
mance in RD.

of Figure 5.15(b) shows that the enhanced candidates only provide a small gain
for EPZS and a larger gain for HPPS, similar to the results found in the previous
section. With the enhanced predictors, HPPS now even slightly outperforms EPZS
in this particular case.

Figures 5.18 and 5.19 provide the rate-distortion results for all sequences of Ap-
pendix E using the reference FS, the state-of-the-art EPZS and the proposed HPPS
ME algorithms with enhanced candidates. From these figures, it can be concluded
that the EPZS and HPPS ME algorithms have a nearly identical performance as
the reference FS ME algorithm for all sequences. The difference between the al-
gorithms is within 0.05 dB for SD sequences and 0.03 dB for HD sequences. These
differences are negligible and both algorithms are very good candidates for fast
motion estimation. However, it should be noted that EPZS has a serial processing
nature and requires a variable processing time, while the HPPS is optimized for
parallel implementations and has a fixed processing time.

The above results for HPPS are obtained using a Search Range (SR) of±7 pixels
for all levels. To reduce computational complexity, the SR can be reduced, which
will result in a lower RD performance. The RD curves for the City sequence with
varying SR are presented in Figure 5.16. From this figure it can be observed that the
performance with SR=±7 pixels (Curve 1) is nearly identical to the performance
with SR=±4 pixels (Curve 2). For lower SRs, the performance reduces gradually.

For all experiments above, the PSS pattern has been used within the HPPS ME
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Figure 5.16: Rate-Distortion (RD) curve for the City sequence at 60 fps using HPPS with
enhanced candidates for various search ranges, with (a) overview and (b) zoom at 7 Mbit/s.
Curves are sorted from 1 to 6 by performance in RD.

algorithm. To give an indication of the effectiveness of the PSS scanning pattern,
Figure 5.17 shows the RD curves for the City sequence, in which the PSS pattern
is compared with the square pattern for varying search ranges. From this figure, it
can be observed that the performance of HPPS employing the PSS pattern is within
0.01 dB of HPPS using the square pattern.
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Figure 5.17: Rate-Distortion (RD) curve for the City sequence at 60 fps using HPPS with
enhanced candidates, for square and PSS search patterns and various search ranges, with
(a) overview and (b) zoom at 6 Mbit/s. Curves are sorted from 1 to 6 by performance in RD.
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5.5 Conclusions

This chapter has presented Motion Estimation (ME) from the perspective of using
such processing in a Scalable Video Coding (SVC) system and implementing this
on modern multimedia computing architectures. The combination of both views
require a reconsideration of the design criteria for ME algorithms. SVC provides
the ME algorithm with frames at varying temporal distances, where new meth-
ods of motion-vector propagation are necessary. Hardware accelerators in modern
computing architectures shift the complexity bottleneck from SAD computations
to the required memory bandwidth. Both aspects have motivated the choice for a
new design of the ME algorithm specifically for the SVC framework and its map-
ping on a modern multimedia processor.

The first part of this chapter evaluates several well-known ME algorithms:
ARPS-3, PMVFAST, EPZS and 3DRS. These ME algorithms are all based on the
regular assumptions that the SAD calculation is the computational bottleneck and
motion is estimated in the majority for sequential frames and/or with limited tem-
poral distances. For our application, the novel proposed ME algorithm is based
on the following design aspects: (1) ME suited for SVC and its support for bidi-
rectional and temporal coding hierarchies and larger temporal distances (e.g. 8
frames), (2) ME algorithm matches with block-shifting accelerators and block-SAD
calculations as found in modern media computing architectures and (3) emphasis
on regular data-access patterns and lower priority on the amount of SAD calcula-
tions.

The novel Highly Parallel Predictive Search (HPPS) ME algorithm differs from
previous proposals in that it utilizes three independent processing paths: one for
the (0, 0) vector, one using a spatial predictor and one for a temporal predictor.
The two predictive candidate vectors are surrounded with additional refinement
candidates arranged in a dense PSS pattern, which reduces SAD test points up to
50% without significantly reducing the accuracy of the found motion vectors. This
robust combination of a predictive candidate with a dense search allows a straight-
forward motion-vector candidate generation for an SVC system. Moreover, the
size of the PSS pattern around both candidates can be reasonably small, but large
motion vectors can still be found due to the hierarchical, multi-level candidate
propagation. Furthermore, both the SAD calculation and the scanning of the PSS
pattern can be parallelized and mapped to multi-core architectures in a highly effi-
cient manner. The computational load of HPPS is fixed, regardless of scene activity
and temporal distance, which guarantees a fixed computational load, considered
essential for real-time systems.

HPPS performs well for various levels in an SVC and shows a similar perfor-
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mance as the state-of-the-art EPZS ME algorithm. Enhanced candidates within the
SVC hierarchical tree improve HPPS performance by up to 1.14 dB with respect to
the quality of the motion-compensated frame. With enhanced candidates, both the
HPPS and EPZS ME algorithm approach the full-search reference within 0.05 dB
for SD sequences and 0.03 dB for HD sequences.

The performance of EPZS is considered state-of-the-art and HPPS has a similar
performance with respect to the measured rate-distortion curve. The main benefit
of HPPS lies in its characteristic features with respect to real-time implementation.
First, HPPS has a fixed computational load, regardless of scene activity and the
temporal distance between frames. Second, HPPS is very predictable in its data
usage, as only three predictors are explored (with one used for the (0,0) vector),
with a pre-determined search region around each predictor. For comparison, EPZS
uses already 4 predictors for temporal processing. HPPS tests more motion-vector
locations, but the pattern has a high data-locality so that cache data-access is min-
imized. For comparison ARPS-3 and EPZS have a lower cost in computation, but
require a variable amount of data-access operations as the algorithms are iterative.

At this point, all relevant stages of the proposed scalable video coding sys-
tem have been discussed, including its various scalability features, low complexity
and suitability for embedded implementation. In Chapter 6, the implementation
aspects of the considered SVC will be validated by implementing the proposed
coding system on a Digital Signal Processor (DSP) within a surveillance camera.
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Figure 5.18: Final results for the proposed coding system, using the BDLD temporal config-
uration and the top ME algorithms for: (a) City, (b) City detail, (c) Crew, (d) Crew detail, (e)
Park Run, (f) Park Run detail. Curves are sorted from 1 to 3 by performance in RD.
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Figure 5.19: Final results for the proposed coding system, using the BDLD temporal con-
figuration and the top ME algorithms for: (a) Stockholm, (b) Stockholm detail, (c) Station 2,
(d) Station 2 detail, (e) Crowd Run, (f) Crowd Run detail. Curves are sorted from 1 to 3 by
performance in RD.
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Real-time algorithmic validation

on an embedded architecture

There are no such things as applied sciences,

only applications of science.

LOUIS PASTEUR

(1822 - 1895)

Abstract

This chapter concentrates on the mapping of the developed coding system onto a common DSP
platform suited for embedding in a surveillance camera. The presented mapping involves three im-
portant processing stages of the developed SVC framework: optimized implementations of (1) the
two-dimensional wavelet transform, (2) the TSSP wavelet coefficient encoder and (3) the temporal
filtering framework. The efficient implementations have been achieved through elegant use of SIMD
instructions and Direct Memory Access (DMA). For the wavelet filtering, the proposed background
DMA structure is so effective, that the ALUs are practically always supplied with data input, so that
the execution of a 4-level transform at 4CIF (CCIR-601) broadcast resolution only takes 6.08 ms. For
TSSP, the complete implementation results in a throughput rate of 75 TSSP encoding cycles per sec-
ond, thereby satisfying the performance requirements for a real-time image/video encoding system.
Finally, the full temporal filtering is integrated, but without motion estimation and compensation,
due to architecture limitations. Fortunately, by including the temporal filtering structure, the over-
all efficiency of the algorithm increases due to the decorrelation of the images. As a result, the fully
scalable video encoding system can be executed at 20 fps.
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6.1 Introduction

Up to this point, the algorithmic description and corresponding motivation of the
proposed Scalable Video Codec (SVC) have been discussed. All of the developed
algorithms in the SVC have been deliberately designed with embedded-system
implementation feasibility in mind, while retaining advanced scalability features.
This chapter validates the efficient implementation of the SVC system for a pro-
grammable DSP-based architecture.

As discussed in Chapter 1, the requirements for the implementation of the SVC
framework are that the system should be of reasonable cost and size and avoid
excessive power consumption or forced cooling. As a consequence, the adopted
computing platform for a feasibility study of the execution of the SVC framework
is a resource-constrained embedded system. This study involves the key process-
ing stages of the SVC framework: (1) the spatial wavelet transform, (2) the TSSP
wavelet coefficient encoding algorithm and (3) the temporal filter structure.

For the mapping, we have chosen a common Digital Signal Processor (DSP)
based on a Very-Long Instruction Word (VLIW) architecture with 8 parallel pro-
cessing cores. Furthermore, advanced optimization techniques and specific hard-
ware accelerators are utilized, such as Single-Instruction Multiple Data (SIMD)
parallel instructions and Direct Memory Access (DMA). The SIMD instructions fa-
cilitate data and computational parallelism and DMA is employed to transfer data
to and from our self-managed Level-2 cache, parallel to computations.

This chapter provides 3 contributions. The first contribution proposes a novel
way of advanced cache management with DMA- and SIMD-optimized filter ker-
nels for multi-level 2D wavelet transforms. Second, similar techniques are used
to implement the TSSP encoding algorithm. Third, it is shown that the temporal
coding structure is executed and implements the proposed SVC with scalable com-
plexity and performance. The framework is executed at 4CIF broadcast resolution.

The organization and relations of this chapter are given in Figure 6.1. Sec-
tion 6.2 explains the hardware and software architecture and the available opti-
mization features found in the DSP. The implementation of the multi-level inte-
ger wavelet transform is presented in Section 6.3, while Section 6.4 describes the
implementation of the TSSP wavelet coefficient encoding algorithm. Section 6.5
discusses the implementation of the temporal filtering, while the experimental re-
sults for each of the parts and the joint operation are given in Section 6.6. Finally,
Section 6.7 concludes this chapter.
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Figure 6.1: Organization of Chapter 6 and the relations to other chapters.

6.2 Video surveillance architecture used for validation

Motivation for chosen hardware platform

The system requirements from the previous section on cost, size and power con-
sumption clearly influence the choice of the computing architecture. The following
four principle categories of consideration are: (1) Application Specific Integrated
Circuits (ASICs), (2) Field Programmable Gate Arrays (FPGAs), (3) generic CPUs
(e.g. desktop processors) and (4) Digital Signal Processors (DSPs). The ASIC offers
low power usage during execution, but requires high start up costs and lacks the
desired flexibility for professional applications. The FPGA provides this flexibility,
but it is a difficult device for programming complex algorithms such as video cod-
ing. If this mapping becomes inefficient because of the complexity, a larger device
is required which increases cost rapidly. A generic CPU is the best choice for pro-
gramming and flexibility, but consumes a significant amount of power leading to
special cooling requirements. Finally, the DSP provides a balance between flexibil-
ity, ease of programming, cost and power consumption. Modern DSPs offer high
computing power due to Very Long Instruction Word (VLIW) architectures with
wide data paths and many options for parallel processing and efficient memory
transfers. For this reason, the DSP is adopted as the preferred computing plat-
form.

Embedding the DSP in a camera architecture

The adopted DSP computing system is embedded in a custom-designed video
surveillance camera to verify the implementation of the SVC. The hardware ar-
chitecture of the video surveillance camera is shown in Figure 6.2. Light coming
through the lens is converted to electrical signals in the CCD sensor and digitized
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for each pixel by an A/D converter. The raw video stream is then processed and
compressed by the DSP and communication (control in, video out) is established
through the network interface. Various input/output interfaces are defined for
audio, digital I/O and auto iris control, if a lens with iris is used. The DSP is con-
nected to fast Random Access Memory (RAM) and flash memory that stores the
program and settings. A clock circuit provides timing for the DSP and other hard-
ware components, while a watchdog timer is present to reset the DSP in case of a
software malfunction or power instabilities that cause the DSP to halt. For surveil-
lance systems, this watchdog timer is essential because systems need to be always
in operation. Finally, a power supply is contained for direct supply connection, or
Power Over Ethernet (POE).

Surveillance camera

CCD sensor with
A/D converter

Digital Signal 
Processor (DSP)

Network
interface

LAN/WAN

Watchdog timer

Input/output
interfaces

Auto iris control

Lens
with
iris

Clock

Speaker

Microphone

Door contact

Door opener

Light

Fast Random 
Access Memory

Power supply Adapter / POE

Flash Memory

Figure 6.2: Hardware architecture of a custom commercial video surveillance camera with
embedded DSP. Solid arrows indicate high-bandwidth data, dotted arrows indicate control
and information data.

Besides the above-discussed video surveillance camera, also a custom video en-
coder was developed, which facilitates upgrading of current analog video surveil-
lance systems to modern IP-based SVC systems. The hardware architectures of the
camera and video encoder are similar, but for the video encoder, the CCD sensor
is replaced by a video capturing chip and the auto iris control is removed.

DSP architecture and optimization features

The DSP architecture provides two essential features for achieving a real-time im-
plementation: SIMD instructions (Single Instruction Multiple Data) and DMA (Di-
rect Memory Access). SIMD allows processing of multiple data points in parallel,
while executing a single instruction, thereby fully exploiting the wide data paths.
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The DMA manager can transfer large amounts of data in the background, while
the processor remains available for calculations.

The DSP architecture is show in Figure 6.3(a), with the VLIW computing core
explained in more detail in Figure 6.3(b). For experiments, we have adopted the
DM642 DSP which has been broadly accepted for many video applications. The
DM642 is an 8-core VLIW processor, operating at a clock frequency of 600 MHz
with an instruction width of 256 bits. Memory consists of an 133-MHz DDR (Dou-
ble Data Rate) RAM connected by a 64-bit bus with three cache memories in the
core: a Level-1 data cache, a Level-1 program cache and a combined Level-2 cache.
The memory bandwidth of the various memories are listed in Table 6.1. Further-
more, the core has 4 load and 4 store paths of each 32 bits with special methods for
64-bit access.

DSP Core
Level-1

Program
Cache

Level-1
Data

Cache

Level-2 Cache

DMA Controller

External Memory (DDR)

133 MHz   64 bits (2x per cycle)

600 MHz   128 bits 600 MHz   128 bits

(a)

Register set A (32 bits)

ALU
M

ALU
L

ALU
S

ALU
D

Load/store paths

ALU
M

ALU
L

ALU
S

ALU
D

Register set B (32 bits)

Load/store paths

(b)

Figure 6.3: DM642 DSP (a) architecture and (b) its VLIW core with 8 parallel computing
units (ALUs).

Table 6.1: Bandwidth of memory busses in the DM642 processor. Both edges of the 133 MHz
clock of the external DDR memory are used for data transfer, effectively doubling the band-
width.

Memory Clock Bus Bandwidth Description

Level-1 program 600 MHz 256 bits 19.2 GB/s 2-way set associative

Level-1 data 600 MHz 64 bits ×2 9.6 GB/s 2-way set associative

Level-2 cache 600 MHz 64 bits ×2 9.6 GB/s

External (DDR) 133 MHz 64 bits 2.128 GB/s 1-way: load or store
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Software architecture

Besides the custom-designed camera architecture, a dedicated software architec-
ture is employed for the experimental video surveillance camera. This software
architecture is shown in Figure 6.4. In this figure, it can be observed that the CCD
sensor captures the scene information using a RGGB Bayer pattern, after which the
input image is prepared for further image processing by de-Bayering the RGGB
color information and converting it to the YCbCr color domain, while applying
white balance and gamma correction. The input image is also used for exposure
control, which manipulates the shutter time, CCD gain and iris aperture. After the
image is converted to the YCbCr color space, it is compressed by the SVC. First
temporal filtering is performed, then the spatial filtering and finally the entropy
encoding. The compressed data is then passed to the network stack for external
communication. Camera control is available through a web-based interface, so
that the user can remotely adjust parameters such as resolution, image quality and
other settings. Input/output drivers provide access to external equipment such as
a microphone or door contacts. All the above-mentioned processing is scheduled
and controlled by a basic Real-Time Operating System (RTOS).

Figure 6.4 clearly shows the important role of video coding in the video surveil-
lance camera software architecture, but the architecture simultaneously executes a
broad selection of other processing and control functions. The remainder of this
chapter will focus solely on the video coding stages within the software architec-
ture, which are enclosed by the grey block in the figure.

Regarding the video encoder, pre-processing is significantly less complex, be-
cause the following typical pre-processing steps are absent in the software architec-
ture: de-Bayering, gamma correction, white balance and exposure control. Despite
the absence of those functions, the video coding stages are unchanged.

Development platform and profiling environment

The custom-designed camera and video encoder architecture are shown in Fig-
ure 6.5. In this figure, the following items can be seen. For the 2nd generation
video camera (top row), the whole camera acts as a passive heat sink, with the
main processor thermally connected to the housing through a heat conducting
patch (pink patch in the picture). The 1st generation video camera (middle row)
has the processing board with the DM642 DSP on top, with the CCD sensor elec-
tronics on the board below. It can be observed that the processing board of the 1st
generation camera is identical to the processing board of the 1st generation video
encoder (bottom row). This video encoder employs a different board that digitizes
the analog video signal, connected to the left of the processing board.
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Focus of this chapter: scalable video coding blocks onlyImage de-Bayer, 
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Figure 6.4: Software architecture of the video surveillance camera. Solid arrows indicate
video data, dotted arrows refer to control and information data. The grey block embodies
the content of this chapter.

Figure 6.5: Custom-designed hardware architectures and development platforms used for
development and profiling. Top row: 2nd generation video camera with advanced multi-
media hardware accelerators. Middle row: 1st generation video camera with DM642 pro-
cessor. Bottom row: 1st generation video encoder with DM642 processor.
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Besides the hardware components, a computer with software is utilized to ob-
tain real-time information of the processor status through a JTAG interface (not
shown in the figure). By carefully reading the status of hardware counters, profil-
ing of software modules can be performed, so that implementation or algorithmic
bottlenecks can be found.

6.3 Discrete Wavelet Transform (DWT) implementation

Introduction

As the architecture of the video surveillance camera and its DM642 Digital Signal
Processor (DSP) have been presented, the first important topic for implementation
is the mapping of the spatial wavelet transform on the DSP.

The computational complexity of wavelet filters can be reduced by applying
the lifting framework and replacing the floating-point wavelet filters by custom-
designed integer-to-integer wavelet transforms (integer wavelets in short), as dis-
cussed in Section 2.3. Adams and Kossentini [109, 110] have compared the per-
formance of such integer wavelet transforms. With respect to computational com-
plexity, they concluded that the 5/3 or (2,2) transform proposed by Cohen et al. [25],
Le Gall and Tabatabai [24] and Calderbank et al. [22, 23] has the lowest complexity
and performs well in lossless compression for images with a larger amount of high-
frequency content. As the 5/3 transform is designed for lossless compression, the
low- and high-pass filter components are not balanced properly for lossy image
compression. By modifying the transform and adding integer scaling factors, such
as proposed by Zhang Li-Bao and Wang Ke [31], it is possible to maintain a lossless
transformation and improve rate-distortion performance for lossy compression.

We have adopted the 5/3 integer-to-integer lifting framework for our DSP
(Digital Signal Processor) implementation, as it can be mapped efficiently to the
DSP’s VLIW (Very Long Instruction Word) parallel core, while providing good
lossless and lossy compression (with the integer scaling factors). Looking at im-
plementation aspects of these wavelet transforms, Chatterjee and Brooks [111] and
Meerwald et al. [112] have changed the behavior of the transform to improve the
use of automatic cache memories in various architectures, but they did not em-
ploy architecture-specific optimizations. By utilizing DMA and SIMD, Choi et
al. [113] claim real-time performance on an embedded system, however, without
discussing multi-level transforms. Therefore, this section proposes a novel way of
advanced cache management for multi-level spatial wavelet transforms, based on
DMA and SIMD-optimized filter kernels.
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Lifting framework and the 5/3 integer wavelet

To facilitate the reading of this chapter, this section summarizes the explanation
of the lifting framework and its application to the 5/3 integer wavelet from Sec-
tion 2.3. In Chapter 2, it is explained that when using the lifting framework [28],
the wavelet can be implemented with less multipliers and adders than the straight-
forward FIR implementation. Figure 2.3 shows the principle of the lifting frame-
work. Input samples are split into odd and even samples, after which the even
samples are filtered and used to adjust the odd samples in the predict step. Like-
wise, the odd samples are then filtered and used to adjust the even samples in the
update step. Finally, a multiplication is performed to balance the signal energy
between low-pass and high-pass output.

Figure 6.6 shows a single combination of an update and a predict step, which is
sufficient to implement the 5/3 wavelet filter. For this filter, the predict and update
steps are defined by Equations (6.1) and (6.2), respectively, which are specified by

x[n] = x[n]− b(x[n− 1] + x[n + 1])/2c for n mod 2 = 1, (6.1)

x[n] = x[n] + b(x[n− 1] + x[n + 1])/4c for n mod 2 = 0. (6.2)

Lazy Wavelet Predict Update

K

1/K

Input

Odd samples

Even samples

High pass

Low pass

+

+

+

-

Figure 6.6: Principle of lifting framework for wavelet filtering. The lazy wavelet means the
splitting of odd and even samples in the transform.

General implementation aspects

As can be derived from Equations (6.1) and (6.2), the multiplication factors in the
predict and update steps are powers of two, which results in filter coefficients for
the 5/3 lifting implementation, restricted to 1/8, 1/4, 1/2 and 2. In computing
architectures these multiplications can be easily implemented using bit shifting.
Rounding of the results is established using the floor operator, which automati-
cally occurs when using the shift function, while also the round operator can be
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implemented efficiently, by including an addition with half the division value, fol-
lowed by the shift operator.

To calculate the output, data from surrounding pixels is necessary. For the 5/3
wavelet filter, the data needed from surrounding pixels involves only a few pixels
about the central pixel. Therefore, pre-fetching of data using DMA is possible, but
the double use of values across memory transfers should be taken into account.
Furthermore, data is also read in a very regular manner and calculations can be
rewritten to use basic operations (add, shift, etc) with great locality. By carefully
designing the filtering steps, it is possible to effectively use SIMD instructions to
perform multiple calculations in a single clock cycle.

The following sections examine the optimal use of SIMD and DMA to imple-
ment the 2D filtering process. The discussion is separated into subsections, start-
ing with horizontal filtering and then vertical filtering. Once the discussion about
filtering is completed, the cache management for these filtering actions is investi-
gated. Finally, the dyadic multi-level structure is examined. All optimization steps
utilize int16 wavelet coefficients and a standard SD image size of 704× 576 pixels.

Horizontal filtering using SIMD

For the horizontal filtering, it is assumed that a line of input pixels is present and a
line of output pixels is required. The 5/3 wavelet is implemented using lifting with
separate predict and update passes, where a symmetric boundary extension is ex-
plicitly implemented. After filtering, the low- and high-pass output samples are
still interleaved and need to be split into two separate low- and high-pass bands.

Predict step
The first part of the horizontal wavelet filtering is the predict step. This predict
step calculates the high-pass output and stores the results back in the input buffer,
following Equation (6.1). To facilitate a very efficient calculation, regular pixel-
intensive computations (bulk processing) are split from the symmetric extensions
through partitioning the calculation into prolog, kernel and epilog stages. Bulk pro-
cessing is performed in the kernel, of which a graphical representation is given in
Figure 6.7.

In this figure, the italic names indicate registers: the a, b and out registers have
a width of 64 bits and contain 4 pixels. Similarly, the tmp registers have a width of
32 bits and contain 2 pixels. In the diagram, the 64-bit registers are represented by
4 blocks, one for each 16-bit signed value. The 32-bit registers are represented by 2
blocks in a similar fashion. The data labels in these blocks refer to the data content
and the calculated values, thereby illustrating the calculation of the predict step in
Equation (6.1). The computation of the prolog, kernel and epilog stages is also given
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Figure 6.7: Computation flow of the kernel of the horizontal predict step, where the blocks
represent register contents.

in pseudo-code in Algorithm 6.1, where register naming in the pseudo-code and
Figure 6.7 are consistent. For the implementation, the architecture’s 64-bit load and
store paths are utilized, combined with parallel processing on the 32-bit ALUs.

The kernel of the computations is visualized in Figure 6.7. The kernel performs
the core of the processing, where it automatically reads upcoming data using the
special 64-bit transfers until the boundary extension has to be performed. The filter
overlap with the previous 64-bit data segment is taken care of by storing the old
input values in a register, so that duplicate external memory access is not required.
Following the figure from top to bottom, a short explanation of each of the steps
is given in Table 6.2. The indicated line numbers correspond to the line number of
the pseudo code of Algorithm 6.1 and are also given at the right side of Figure 6.7.
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Table 6.2: Explanation of horizontal predict step kernel algorithm

Line Description

3 Read the next 4 pixels into register b

4–5 Extract even samples a[0], a[2], b[0], store in tmp0, tmp1

6 Add even samples in tmp0 and tmp1, store in tmp2

7 Shift right 16-bit parts of tmp2, resulting in bx÷ 2c
8 Extract odd samples a[1] and a[3], store in tmp4

9 Subtract 16-bit parts of tmp3 and tmp4, completing the predict step, store in tmp5

10 Combine even samples a[0] and a[2] and the results from the lifting step, store
in out

11 Write out back to location where a was read from.

12 Assign a = b. The data read in line 3 will be processed in the next iteration

The prolog and epilog are used to perform preparation and clean-up for the fast
kernel implementation, while simultaneously being used to perform the symmetric
extension. For the prolog, the first 4 pixels are read, which takes care of initializing
the data buffers (Line 1 in Algorithm 6.1). The read uses a special 64-bit data trans-
fer to communicate all four values at once, so that the full width of the memory
bus is exploited without waste. For the predict step, symmetric image extension
can be omitted at this point.

In the epilog (Lines 14–21), the symmetric image extension is explicitly imple-
mented to avoid boundary effects from the transform. Instead of reading the next
4 pixels and extracting b[0], the image is folded around a[3]. This results in the use
of a mirrored inside pixel a[2], instead of outside data b[0]. The remainder of the
calculations is identical to those in the kernel.

As can be observed from this description, the algorithm is specifically designed
to avoid waste of memory bandwidth, so that every wavelet coefficient is only
read once, even though some wavelet coefficients are used multiple times in the
calculations. An example of the optimized code is given in Appendix F.

Update step

The second part of the horizontal wavelet filtering is the update step. This update
step calculates the low-pass output and places the results back in the input buffer,
following Equation (6.2). For ease of understanding, both wavelet filtering equa-
tions are reproduced here to illustrate their similarity, with the predict and update
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Algorithm 6.1 Horizontal predict step algoritm
y Prolog

1: a = read 64-bit from in[0]

� Kernel
2: for x = 0 to width− 4, step 4 do
3: b = read 64-bit from in[x + 4]
4: tmp0 = retrieve even samples: a[0] and a[2]
5: tmp1 = retrieve even samples: a[2] and b[0]
6: tmp2 = add 16-bit parts of tmp0 and tmp1
7: tmp3 = shift right both 16 bit parts of tmp2
8: tmp4 = retrieve odd samples: a[1] and a[3]
9: tmp5 = subtract 16-bit parts of tmp3 from tmp4

10: out = put tmp0 in even and tmp5 in odd positions
11: write 64-bit out to in[x]
12: a = b
13: end for

x Epilog
14: tmp0 = retrieve even samples: a[0] and a[2]
15: tmp1 = retrieve even samples: a[2] and a[2]
16: tmp2 = add 16-bit parts of tmp0 and tmp1
17: tmp3 = shift right both 16 bit parts of tmp2
18: tmp4 = retrieve odd samples: a[1] and a[3]
19: tmp5 = subtract tmp3 from tmp4
20: out = put tmp0 in even and tmp5 in odd positions
21: write 64-bit out to in[width− 4]

steps shown in Equations (6.3) and (6.4), respectively, which are specified by

x[n] = x[n]− b(x[n− 1] + x[n + 1])/2c for n mod 2 = 1, (6.3)

x[n] = x[n] + b(x[n− 1] + x[n + 1])/4c for n mod 2 = 0. (6.4)

From these equations, it can be observed that the update step is very similar to
the predict step. Therefore, a detailed breakdown, such as given for Figure 6.7 and
Algorithm 6.1, is omitted here.

The implementation of the update step is listed in pseudo-code in Algorithm 6.2,
where the following differences with the update step are noticed. The symmetric
extension is now implemented in the prolog (Lines 1–9), instead of the epilog. The
kernel (Lines 10–21) performs the update step with a minor adjustment in the cal-
culation (subtract replaced by add and different number of bit-shifts). The epilog
stage is not required.
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Algorithm 6.2 Horizontal update step algorithm
y Prolog

1: a = read 64-bit from in[0]
2: tmp0 = retrieve odd samples: a[1] and a[1]
3: tmp1 = retrieve odd samples: a[1] and a[3]
4: tmp2 = add 16-bit parts of tmp0 and tmp1
5: tmp3 = shift right 2 both 16 bit parts of tmp2
6: tmp4 = retrieve even samples: a[0] and a[2]
7: tmp5 = add tmp3 to tmp4
8: out = put tmp0 in even and tmp5 in odd positions
9: write 64-bit out to in[0]

� Kernel
10: for x = 4 to width, step 4 do
11: b = read 64-bit from in[x]
12: tmp0 = retrieve odd samples: a[3] and b[1]
13: tmp1 = retrieve odd samples: b[1] and b[3]
14: tmp2 = add 16-bit parts of tmp0 and tmp1
15: tmp3 = shift right 2 both 16 bit parts of tmp2
16: tmp4 = retrieve even samples: b[0] and b[2]
17: tmp5 = add tmp3 to tmp4
18: out = put tmp0 in even and tmp5 in odd positions
19: write 64-bit out to in[x]
20: a = b
21: end for

Splitting step
The third and last part of the horizontal wavelet filtering is the splitting step. The
predict and update stages discussed in the previous parts, result in an output data
that interleaves the low- and high-pass data. The splitting step is required to split
this interleaved data into two separate low- and high-pass bands. This step is fully
performed employing 8-tuples of samples, leading to the exclusive use of SIMD
instructions, as illustrated by the pseudo-code in Algorithm 6.3.

Vertical filtering using SIMD

To complete the 2D wavelet transform, vertical filtering is applied after the hor-
izontal filtering. Because the coefficients are stored per line, vertical filtering is
efficiently implemented when processing complete lines and vertical processing
can already start when enough horizontally-filtered lines have been created. This
quick start also facilitates efficient use of cache memories, because the horizontally
filtered data can move straight to the vertical filtering processing, without inter-
mediate storage in external memory.
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Algorithm 6.3 Horizontal splitting step algorithm
� Kernel

1: for x = 0 to width, step 8 do
2: in0 = read 64-bit from in[x]
3: in1 = read 64-bit from in[x + 4]
4: out0 = retrieve even samples from in0 and in1
5: out1 = retrieve odd samples from in0 and in1
6: write 64-bit out0 to out[x/2]
7: write 64-bit out1 to out[x/2+width/2]
8: end for

Vertical filtering is performed on three already horizontally filtered lines. Al-
gorithm 6.4 shows the use of SIMD instructions in the vertical predict step. All
registers have a width of 64 bits and pointers to lines A, B and C are given as in-
put. Lines A and C are read prior to line B, as they are used first in the calculations,
thereby nullifying the 4-cycle wait state of the memory transfer. Similar to horizon-
tal filtering, the update step is nearly identical to the predict step, except for a shift
right of two bit positions in Line 6 and an addition instead of the subtraction in
Line 7.

The symmetric extension, management of odd and even lines and low-/high-
pass splitting are processed outside the vertical filtering loop through smart back-
ground DMA transfers. The background DMA transfers and their role in vertical
symmetric extension is discussed in Section 6.3.

Algorithm 6.4 Vertical Predict Step
� Kernel

1: for x = 0 to width, step 4 do
2: a = read 64-bit from &LineA[x]
3: c = read 64-bit from &LineC[x]
4: b = read 64-bit from &LineB[x]
5: tmp0 = add 16-bit parts of a and c
6: tmp1 = shift right 16 bit parts of tmp0
7: out = subtract 16-bit parts of tmp0 from b
8: write 64-bit out to &LineB[x]
9: end for

Cache management for 2D wavelet filtering

Up to this point, the fast implementation of the computational parts of the horizon-
tal and vertical wavelet filtering have been discussed. These calculations utilize
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coefficient data from the external memory as input and write the calculated out-
put back to external memory. The DM642 contains an automatic caching strategy
to mirror frequently-used memory segments in the Level-2 (L2) cache. However,
this automatic caching can be sub-optimal if sudden changes in data organization
occur.

Since the pixel-access patterns for the wavelet transform are very structured,
we have chosen to explicitly manage a part of the available cache memory our-
selves using DMA techniques, with the aim to fully exploit parallel data computa-
tions and memory transfers. In total, 7 image lines for various buffers are reserved
in the L2 cache, using 7× 704× 2 = 9, 856 Bytes. These buffers are used for hori-
zontal filtering, vertical filtering and input/output buffering.

In order to avoid continuously moving coefficient data and intermediate data
around, a system using 9 data pointers is employed. Two pointers are defined for
the current and target images in the external memory, pC and pT, respectively. The
pointers pLineX and pLineY are used for the ping-pong buffering system of the
horizontal filter and shown in Figure 6.8. The pointers are used for loading input
lines from external memory and as a scratch buffer for the horizontal filtering.
Five pointers to memory locations in the L2 cache are used to represent the lines
that were horizontally filtered, pLineA–pLineE. The pointers are rotated (indicated
by the dotted lines) and used for supplying new lines from horizontal filtering,
performing vertical filtering and moving the results to external memory.

pLineA

pLineB

pLineC

pLineD

pLineE

pLineX

pLineY

2 horizontal lines
for horizontal filtering
in Level-2 cache

5 horizontal lines
for vertical filtering
in Level-2 cache

Figure 6.8: Video line buffers for horizontal and vertical filtering in the L2 cache. The dotted
arrows indicate the rotation order.

For 2D wavelet filtering, two DMA channels are used simultaneously. The
high-priority channels are one-dimensional and exploited for moving image lines
in and out of the cache: DMAIn and DMAOut.
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The cache management algorithm is depicted in pseudo-code in Algorithm 6.5
and split in prolog, kernel and epilog stages, similar to the wavelet filtering algo-
rithms. In the prolog, pointers are initialized (Lines 1–2) and the first image line is
copied to pLineX using DMAIn. In Lines 4–9, consecutive image lines are copied
using DMAIn and simultaneously filtered horizontally, using the algorithms de-
scribed in Section 6.3. After this loop has finished, the L2 cache memory contains
the data in the order as shown in the second column of Table 6.3, which is the
minimum required input data for the vertical filtering process.

Table 6.3: Contents of Level-2 cache at various moments in time. The following shorthand
notation is used: H.Filt = Horizontally filtered and split, V.Filt = Vertically filtered line, LPx
= Low-Pass result number x, HPx = High-Pass result number x, Temp.H.Filt x = Temporary
data from horizontal filtering of line x (interleaved data).

Cache Time = prolog Time = just prior to V.Filt in kernel loop with

line prior to V.Filt y=2 y=3 y=4

0 Empty Line 4 H.Filt Line 4 H.Filt Line 4 H.Filt

1 Line 0 H.Filt V.Filt LP0 Line 5 H.Filt Line 5 H.Filt

2 Line 1 H.Filt V.Filt HP1 V.Filt HP1 Line 6 H.Filt

3 Line 2 H.Filt Line 2 H.Filt Line 2 H.Filt V.Filt LP3

4 Line 3 H.Filt Line 3 H.Filt V.Filt HP3 V.Filt HP3

5 Input line 4 Temp.H.Filt 4 Input line 6 Temp.H.Filt 6

6 Temp.H.Filt 3 Input line 5 Temp.H.Filt 5 Input line 7

In Line 10, the vertical predict filter is executed, which stores its output to the
line indicated by pLineC (vertical filtering was discussed in Section 6.3). The re-
sulting high-pass output is then transferred to the output image pT using DMAOut
to image line h/2 in Line 11. Line 12 executes the vertical update filter with sym-
metrical boundary extension, by providing pLineC as the first input instead of
pLineA. The resulting low-pass output is then transferred to the output image pT
using DMAOut to image Line 0 in Line 14. It can be clearly seen that the vertical
splitting is performed implicitly through the DMAOut.

After the initialization and symmetric extension in the prolog, the rest of the
image is processed in the kernel. The kernel rotates the pointers, waits for the DMAI
to finish and executes the horizontal filtering in Lines 16–18. If new data is still
present (Line 19), DMAIn is started to load this line into the L2 cache in Line 20.
Then, alternating each image line, either a predict step (Lines 23–25), or an update
step (Lines 27–29) is performed. From the targets in Lines 25 and 29, it can be
clearly seen that the vertical splitting is performed implicitly through the DMAOut.
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Algorithm 6.5 Cache management for 2D wavelet filtering
y Prolog

1: Initialize pLineA–pLineE to L2 cache line 0–4
2: Initialize pLineX–pLineY to L2 cache line 5–6
3: Start DMAIn to copy pC line 0 to pLineX
4: for y = 1 to 4 do
5: Wait for DMAIn to finish
6: Swap pLineX and pLineY
7: Start DMAIn to copy pC line y to pLineX
8: Horizontally filter pLineY and place in cache line y
9: end for

10: Vertically filter predict (pLineB,pLineC,pLineD)
11: Start DMAOut to copy pLineC to pT line h/2
12: Vertically filter update (pLineC,pLineB,pLineC)
13: Wait for DMAOut to finish
14: Start DMAOut to copy pLineB to pT line 0

� Kernel
15: for y = 2 to h− 2 do
16: Rotate pointers pLineA–pLineE
17: Wait for DMAIn to finish
18: Horizontally filter pLineX and place result in pLineE
19: if y < h− 3 then
20: Start DMAIn to copy pC line y + 3 to pLineX
21: end if
22: if y mod 2 == 0 then
23: Vertically filter predict (pLineC,pLineD,pLineE)
24: Wait for DMAOut to finish
25: Start DMAOut: pLineD to pT line y/2 + h/2
26: else
27: Vertically filter update (pLineA,pLineB,pLineC)
28: Wait for DMAOut to finish
29: Start DMAOut: pLineB to pT line y/2
30: end if
31: end for

x Epilog
32: Vertically filter predict (pLineD,pLineE,pLineD)
33: Wait for DMAOut to finish
34: Start DMAOut to copy pLineE to pT line h− 1
35: Vertically filter update (pLineC,pLineD,pLineE)
36: Wait for DMAOut to finish
37: Start DMAOut to copy pLineD to pT line h/2− 1
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The contents of the cache memory during the kernel processing are given in
Table 6.3 in the last three columns. The indicated data is present after the input
line is horizontally filtered, just prior to filtering a vertical line. It can be observed
that during vertical high-pass processing (y(mod 2) ≡ 0), just enough cache mem-
ory is utilized to store the horizontally-filtered lines required for vertical high-pass
processing. For vertical low-pass processing (y(mod 2) ≡ 1), just sufficient ver-
tical high-pass lines and the remaining horizontally-filtered line are in the cache
memory, which are required to calculate the vertical low-pass result. This process
alternates between vertical low- and high-pass processing, until the last line in
the image is read and horizontally filtered, after which the epilog processing stage
starts.

At this point, horizontal filtering has fully completed. In the epilog, the last
lines are vertically filtered and symmetrical boundary extension is performed. The
boundary extension is effectively implemented by providing pLineD as the third
input in Line 32 and pLineE as the third input in Line 35. The final two vertical
filtering splits are performed in Lines 34 and 37 using DMAOut.

Multi-level 2D DWT reconstruction using DMA

The 2D wavelet filtering described in Sections 6.3, 6.3 and 6.3 only performs a sin-
gle iteration of the dyadic multi-level 2D wavelet decomposition. In this section,
the optimized 2D wavelet filtering of the previous sections is expanded to a full
dyadic multi-level decomposition.

In addition to the two high-priority DMA channels utilized for horizontal and
vertical wavelet filtering, three additional low-priority DMA channels are used for
the dyadic multi-level 2D wavelet decomposition. All five DMA channels are used
simultaneously and automatically scheduled according to their priority. The three
low-priority DMA channels for reconstructing the 2D multi-level image are 2D in
nature and denoted by: DMAA, DMAB and DMAC. These 2D channels are able
to move rectangular image blocks from one location to the other, while supporting
different line pitch1 between the source and the target.

At the end of each level, the image pointers pC and pT are swapped, the
level width and height is divided by two and the 2D wavelet transform process is
restarted. For a 4-level transform, this process is illustrated in Figure 6.9, with the
wavelet filter operating on the data associated with the grey parts of the buffers.
In the figure it can be seen that because of the alternating 2D wavelet filtering, nei-
ther of the two buffers will contain the complete dyadic decomposition. Therefore,

1A line pitch is the line width for communication, but rounded up to the N-tuple of the communi-
cation word length, e.g. 64 bits.
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Figure 6.9: Multi-level reconstruction using DMA. Wavelet filtering is indicated by the solid
arrows and DMA transfers by the dotted arrows with the channel name in subscript.

DMA channels DMAB and DMAC are employed to move the top-right quadrant
and bottom-half of the wavelet image from Buffer 1 to Buffer 2, once every two
hierarchical levels. This is indicated in the figure by the dotted arrows. In case that
an even number of levels is desired, then also the last output has to be copied from
Buffer 1 to 2 using DMAA after the last wavelet transform. Channels DMAA−C ex-
ecute at a lower priority than the line in- and output channel DMAIn and DMAOut,
thereby not disturbing these transfers.

This process of background DMA transfers is so effective, that the ALUs are
always supplied with input data. At the fourth level, there is a small wait interval
for the DMAB and DMAC channels to complete their tasks, due to the small size
of the image to be transformed at that moment. For an even number of levels, an
additional DMAA transfer is started to copy the last output to Buffer 2. However,
the wait cycles for these transfers are insignificant, due to the small sizes of the
copy operation. Furthermore, the wait cycles can be nullified completely by start-
ing other calculations on the DSP and allowing the DMA to complete the copying
as background processing.

6.4 Two-Stage SPECK (TSSP) implementation

Now that the 5/3 integer wavelet transform is fully optimized for the video surveil-
lance architecture, similar techniques are employed to implement the more com-
plex and more dynamic TSSP wavelet coefficient encoder in this section.
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Optimization possibilities and caveats

The TSSP algorithm from Chapter 3 is specifically designed for implementation on
embedded systems. Part of this design is the decision to split the algorithm in two
stages as explained in Chapter 3. It is clear these two stages offer different opti-
mization and implementation possibilities. Since the processing in Stage 1 is data-
independent, processing can be fully streamlined, so that advanced background
retrieval of data can be exploited. In Stage 2, optimization possibilities arise from
the fact that all bit planes are processed in parallel and that coefficients for cod-
ing are in close spatial proximity. A common bottleneck in video coding systems
arises from bit-by-bit bitstream creation during entropy coding, which needs to be
addressed in Stage 2 as well. Finally, the temporary Significance Level (SL) buffer
is critical for both stages and should therefore be kept in fast memory.

As discussed in Section 3.3, the quadtree has a fixed depth (NQTdepth) and size
(NQTelem) for a given image size. The resulting required buffer size for the whole
SL buffer is displayed in Table 6.4, for various common image resolutions. Storage
requirements using both uint4 and uint8 elements, are given, because for wavelet
coefficients of int16 precision, the significance level of the quadtree nodes can be
stored in an uint4 element.

Table 6.4: Size of TSSP quadtree and Significance Level (SL) buffer.

1920×1088 1280×720 704×576 704×480hhhhhhhhhhhhhhSize
Resolution

[pixels] [pixels] [pixels] [pixels]

Quadtree: NQTdepth 9 8 8 7

Quadtree: NQTelem 349,525 87,381 87,381 21,845

SL buffer (uint4 elements) 171 kB 42.7 kB 42.7 kB 10.7 kB

SL buffer (uint8 elements) 341 kB 85.3 kB 85.3 kB 21.3 kB

The optimizations in this section are carried out for a standard 4CIF image res-
olution of 704×576 pixels and wavelet coefficients of int16 precision. Formatting
has been chosen such that sub-Byte access is prevented.For a single frame, these
parameters result in the data transfers towards and in between the two stages, as
depicted in Figure 6.10. The SL buffer is created in Stage 1 and read in Stage 2 for
the significant blocks only. The small size of this buffer (85.3 kB, Table 6.4) indicates
that it can be included in fast Level-2 cache memory. Furthermore, by processing
all bit planes in parallel, the input image is read once within Stage 1 and only
partly addressed in Stage 2, thereby significantly reducing memory bandwidth.

The applied optimizations for Stage 1 and Stage 2 are discussed in Sections 6.4
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Significance Level (SL) buffer

TSSP Stage 1

- Data independent
- Determine block 
significance level

87,371 elements of 4-bit precision

TSSP Stage 2

- Data dependent
- Process significant 
blocks only

Wavelet Coefficients

704×576 
elements of

16-bit precision

Output Stream

SPECK 
compatible

792 kB / image

85.3 kB / image Up to 85.3 kB / image

Up to 792 kB / image

Figure 6.10: Schematic diagram of Two-Stage SPECK (TSSP) with data transfers and buffer
sizes for a image of 704× 576 pixels.

and 6.4, respectively. For clarity, both discussions address two topics of interest:
memory optimizations and data and code optimizations. Section 6.4 presents the
aspect of memory management and bandwidth limitations for both stages.

Optimization of Stage 1

Stage 1 of TSSP is used to calculate the Significance Level (SL) of all nodes in the
quadtree, which are then stored in the SL buffer. Since the SL of a node can be
directly derived from the SL of its four leafs, the SL buffer is generated backwards,
scanning the image from bottom-right to top-left in a reversed Morton-order pat-
tern. The algorithmic description of Stage 1 can be found in Section 3.3.

Memory optimizations
Two-dimensional DMA transfers are employed to move square blocks of 88×72
coefficients from the external memory to the Level-2 cache, 1/64th of the size of a
704× 576 image. The width of these blocks is chosen to be a multiple of 8 Bytes,
so that the 64-bit physical connections between external and cache memory can be
fully exploited. A ping-pong buffer scheme is used, so that memory transfers of
the next block already occur while performing calculations on the current block.
The output of Stage 1, the SL buffer, is also placed in the Level-2 cache, for fast
write access in Stage 1 and fast read access in Stage 2.
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Data and code optimizations
Blocks of size 11×9 coefficients are processed as one entity, as the quadtree parti-
tioning becomes irregular after this point. Figure 6.11 visualizes the 21 quadtree
nodes and the segmentation of the 11×9 coefficient block.

16 nodes (leafs) 4 nodes 1 node+ +

3 5 11

3

5

9

6

4

332

2
2

2

Figure 6.11: The 21 quadtree nodes of the 11x9 coefficient block.

Within this 11×9 coefficient block, the SL parameter is calculated in parallel for
multiple coefficients and levels of the quadtree, simultaneously. First, two lines of
coefficients are read in chunks of 12× 2 coefficients using 64-bit transfers, repre-
senting four of the leafs. This 2-line memory transfer is depicted in Figure 6.12(b),
with the coefficient naming convention as defined in Figure 6.12(a).

⁞

c1b1a1

a2 b2 c2

a7 b7 c7

⁞

f1e1d1

d2 e2 f2

d7 e7 f7

⁞

i1h1g1

g2 h2 i2

g7 h7 i7

⁞

l1k1j1

j2 k2 l2

j7 k7 l7

a8 b8 c8 d8 e8 f8 g8 h8 i8 j8 k8 l8

a9 b9 c9 d9 e9 f9 g9 h9 i9 j9 k9 l9

3332

2
3

(a)

c1b1a1

a2 b2 c2

f1e1d1

d2 e2 f2

i1h1g1

g2 h2 i2

l1k1j1

j2 k2 l2

A B C D E F

64-bit read64-bit read64-bit read

G H I J K L

64-bit read64-bit read64-bit read

(b)

Figure 6.12: Reading operations for the two line transfer, (a) naming convention of the 11x9
data blocks and (b) optimized 64-bit reading of coefficients in kernel using 12×2 region.

Calculations on the 11×9 coefficients block are performed using SIMD instruc-
tions and visualized partly in Figure 6.13. First, the absolute value of each coeffi-
cient is determined, after which the two lines are combined using the OR operator,
which does not affect the position of the first significant bit. Then the left-most bit

185



6. REAL-TIME ALGORITHMIC VALIDATION ON AN EMBEDDED ARCHITECTURE

(lmb) is calculated and the uint8 results are re-ordered and packed in uint32 reg-
isters G,H and I. The 12th coefficient is discarded and replaced by the number 32,
which is the outcome of the lmb operator on a coefficient of value 0. The combined
lmb of all 22 coefficients are obtained separately for each of the four leafs in J, by
performing a Byte-wise minimum operation on G,H and I. The SL of the four leafs
is calculated by SL = 32− lmb, followed by a unity subtraction for values > 0 and
stored temporary. The conditional subtraction is implemented without any ‘if’
statements, using Byte-wise ‘subtract’ and ‘minimum’ operations.

32-bit 8-bit

G

H

I

=

=

=

lmb( |i1|˅|i2| ) lmb( |g1|˅|g2| ) lmb( |c1|˅|c2| ) lmb( |a1|˅|a2| )

8-bit 8-bit 8-bit

lmb( |j1|˅|j2| ) lmb( |h1|˅|h2| ) lmb( |d1|˅|d2| ) lmb( |b1|˅|b2| )

lmb( |k1|˅|k2| ) lmb( |f1|˅|f2| ) lmb( |e1|˅|e2| ) 32

min( lmb( |i1|˅|i2| ), lmb( |j1|˅|j2| ), lmb( |k1|˅|k2| ) )=
min( lmb( |g1|˅|g2| ), lmb( |h1|˅|h2| ), lmb( |f1|˅|f2| ) )

min( lmb( |c1|˅|c2| ), lmb( |d1|˅|d2| ), lmb( |e1|˅|e2| ) )

min( lmb( |a1|˅|a2| ), lmb( |b1|˅|b2| ), 32 )

J = min4( G, H, I )

Figure 6.13: 2-Line calculation kernel for 4 quadtree nodes in parallel, using SIMD instruc-
tions such as lmb (left-most bit), abs, or and min.

The next group of 2 lines is processed identically, giving another 4 SL parame-
ters. Using the now 8 calculated leaf values, the 2 SL parameters of the 2 quadtree
groups encompassing these leafs can be calculated. All 10 calculated values are
stored in the appropriate order in the SL buffer, using 2 Byte-writes and 2 word-
writes, to store all 10 results for the 8 leafs in parallel. The third set of 2 lines is
processed and the intermediate SL parameters are stored. The last 4 leafs contain
3 lines instead of 2, but are processed in the same optimized way. When these last
8 leaf SL parameters are obtained, the 2 parent SL parameters are calculated and
all parents are combined to obtain the final SL parameter.
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Optimization of Stage 2

Stage 2 of TSSP is used to perform the actual encoding process, using the SL buffer
created in Stage 1 for decision making. Based on the required quality and the
values in the SL buffer, a choice is made to either encode a certain block, or skip the
whole underlying tree completely. For more details, the algorithmic description of
Stage 2 can be found in Section 3.3.

Memory optimizations
In Stage 2, coefficients are encoded for all bit planes in parallel. The bitstream for
each bit plane is stored in external memory, but to avoid the inefficient writing of
single bits to external memory, 32-bit write buffers are employed in the Level-2
cache for all 30 sorting and refinement buffers. These 32-bit buffers are explicitly
implemented as temporary buffers to facilitate the parallel processing of all bit
planes and the sorting and refinement passes in parallel. Very efficient single bit
access is accomplished by initializing the buffers to 0, and by using special instruc-
tions so that only ones are actually written. All bitstream parts are word-aligned
to facilitate fast copying.

Data and code optimizations
Most data and code optimizations concentrate on the coding of individual coeffi-
cients. Memory reads are combined for the 2×2, 2×3, 3×2 and 3×3 leafs. Two
coefficients are processed in parallel to fully exploit the 32-bit ALUs. Special bit-
based writing is possible for 2 and 3 bits in one operation.

Memory management and TSSP bandwidth modeling

A. Memory management
Because of its high complexity in memory lists and transfers of TSSP, we present
here an overview of the most important buffers and communication bandwidth.
Figure 6.14 shows the location of the buffers in external memory and Level-2 cache.
Arrows indicate read and write directions, while buffer sizes are listed in Table 6.5.
From the 256-kB Level-2 cache available in the DM642 processor, 128 kB is self-
managed, of which 110.3 kB is used by TSSP.

From this figure, it can be observed that a significant amount of data transfers
occur during encoding. For Stage 1, the entire input image in external memory is
accessed, while the SL buffer is written to Level-2 cache. During Stage 2: (1) the
SL buffer is read, (2) all quadtree leafs with at least 1 significant coefficient are read
and (3) the output bitstream is written.
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Self-Managed
Level-2 Cache

SL buffer

15x sorting buffer uint32

15x refinement buffer uint32

External Memory

Input coefficients

15x sorting buffer

15x refinement buffer

Stage 1

Stage 2

Output bitstreamPack

Function

DMA transfers

15x sorting counter uint32

15x refinement cnt. uint32

Stage 1 ping-pong

Figure 6.14: Buffer locations and access directions for the self-managed Level-2 cache and
external memory in TSSP.

B. TSSP bandwidth modeling

The memory management of the TSSP implementation is so manyfold and com-
plex that a bandwidth estimation model has been developed for management pur-
poses. At the end of this chapter, the developed model explained here will be used
for the comparison with actual measurements of the implementation. We define
the ideal case for memory transfers when the bandwidth can be fully exploited.
For the following development of the model, a transformed 4CIF image is used as
a reference case with 405,504 int16 coefficients, where 10% of the data consists of
significant leafs and a typical compression ratio of 10 is obtained. The SL buffer
contains 87,381 uint8 elements.

In the used DSP architecture (see Section 6.2, Table 6.1), the external memory
has an external memory bandwidth of 2.128 GB/s and the Level-2 cache operates
at 9.6 GB/s for reading and writing simultaneously. The estimated times for the
main memory transfers of Figure 6.14 are summarized in Table 6.6. The estima-
tions in this table are derived as follows. The image is moved from external mem-
ory to Level-2 cache using DMA. These DMA transfers can be parallelized with
calculations, which is indicated in the table by the grey shading. These memory
transfers involve the division of the amount of coefficients by the external memory
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Table 6.5: Buffer sizes for a 4CIF image (704×576 pixels).

External memory Elements Precision Amount Size [kB]

Image coefficients 405,504 int16 1 792

Sorting buffer 76,032 uint8 15 1,114

Refinement buffer 38,016 uint8 15 557

Output bitstream 405,504 uint8 1 396

Total 2,859 kB

Level-2 cache Elements Precision Amount Size [B]

Stage 1 ping-pong 6,336 int16 2 25,344

Significance level 87,381 uint8 1 87,381

Sorting write 1 uint32 15 60

Sorting count 1 uint32 15 60

Refinement write 1 uint32 15 60

Refinement count 1 uint32 15 60

Total 112,965 Bytes

bandwidth, both mentioned previously. This leads to

(405, 504 · 2)/2.218× 109 = 366 µs for Stage 1, (6.5)

(0.1 · 405, 504 · 2)/2.218× 109 = 36.6 µs for Stage 2. (6.6)

Table 6.6: Modeled optimal memory transfer times for TSSP. The grey column indicates
these transfers are performed using DMA and can be parallelized with calculations.

Input DMA Input SL buffer Bitstream

Ext→L2 L2→CPU CPU↔L2 CPU→Ext Total

Stage 1 366 µs 169 µs 18.2 µs N/A 553.2 µs

Stage 2 36.6 µs 16.9 µs 18.2 µs 36.6 µs 108.3 µs

Total 402.6 µs 185.9 µs 36.4 µs 36.6 µs 661.5 µs

The other transfers are performed by the CPU, which cannot be parallelized
with calculations. The Level-2 cache transfers of the image is estimated to be

(405, 504 · 2)/( 1
2 · 9.6× 109) = 169 µs for Stage 1, (6.7)

(0.1 · 405, 504 · 2)/( 1
2 · 9.6× 109) = 16.9 µs for Stage 2, (6.8)
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where the factor of a half in the computation results from the fact that only one
of the two channels is used for this two-way associative cache. The Level-2 cache
transfers of the SL buffer are estimated a different memory transfer cost, giving

87, 381/( 1
2 · 9.6× 109) = 18.2 µs, (6.9)

for both Stage 1 and Stage 2. Here, writing the output bitstream to the external
memory in Stage 2 is estimated as

(0.1 ∗ 405, 504 ∗ 2)/(2.218× 109) = 36.6 µs. (6.10)

In total, 661.5 µs is estimated for transferring the data, of which 402.6 µs can be
parallelized with computations through DMA, while 258.9 µs is performed using
CPU cycles. These calculated outcomes of the memory processing model are used
in Section 6.6 to evaluate the realism of the applied memory transfer model.

6.5 Temporal filtering implementation

Known limitations of the temporal implementation

For the validation of the temporal filtering, the temporal filtering structure as pro-
posed in Chapter 4 is implemented, albeit without the use of motion estimation
and compensation. The development of the HPPS algorithm was performed on
an experimental camera platform that did not contain the full software tools for
exploiting specific hardware accelerator functions. A new setup with an improved
processor architecture was not yet available at the time of completing this research.

Instead, a flexible implementation of the temporal filtering structure has been
realized in the utilized test platform, which offers full temporal scalability. Due
to the absence of motion estimation and compensation in the temporal tree, the
coding efficiency is decreased when compared to the full coding system imple-
mentation, but in the case of static video surveillance, this penalty is very small
and directly related to the amount of motion in the scene.

Description of the temporal implementation

The temporal filtering is constructed upon a dedicated dynamic memory manager
that stores: (1) input frames, (2) output frames ready for entropy coding and (3)
intermediate temporal bands. The memory manager is depicted in Figure 6.15,
utilizing a similar pointer structure to avoid video frame memory movements.
Furthermore, to facilitate efficient DMA use, all communication is aligned to 8-
Byte boundaries.
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Figure 6.15: Memory manager for DSP implementation of temporal filtering.

The memory manager is controlled by a set of instructions similar to a small
computer program. This set of instructions indicates when certain bands need to
be processed and when they can be discarded. The set of instructions can be auto-
matically generated from the dynamic analysis of the temporal configuration and
the dependencies between bands. The dynamic behavior of the proposed BiDirec-
tional Low Delay (BDLD) configuration, is repeated from Chapter 4 and shown
in Figure 6.16. Full temporal filtering is performed (without ME) and a complete
video stream is created.

Figure 6.16: Dynamic behavior of the BDLD configuration. A larger version of this figure
can be found in Figure 4.9, combined with an explanation in Section 4.3.

All temporal filtering is performed using SIMD instructions, similar to the im-
plementations of the wavelet and TSSP coding algorithm, hence a detailed dis-
cussion is omitted. Filtering is performed sequentially for the whole image and
the SIMD principle is applied to process multiple pixels in parallel. Due to the
straightforward memory access pattern, automatic caching is employed.
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6.6 Experimental results and discussion

This section discusses the performance of the optimized implementations, through
measurements taken from the real-time embedded system.

Discrete Wavelet Transform (DWT)

The 4-level 5/3 wavelet transform is implemented on a custom-designed video
surveillance camera, using the techniques described in this chapter (See Section 6.3).
Table 6.7 shows the obtained cycle count for executing each particular level, as
well as the total amount of cycles for performing the complete multi-level 2D 5/3
wavelet transform. The table illustrates that a single 4-level transform at 4CIF
broadcast resolution requires 3.65 Mcycles, including memory stalls. At a clock
rate of 600 MHz, more than 160 full-image wavelet transformations per second
can be performed (grayscale images).

The cycle counts per pixel are also indicated in Table 6.7. It can be clearly seen
that for higher resolutions (towards Level 0), the transform becomes more efficient,
requiring less cycles per pixel. This is due to the fact that less memory stalls occur
and boundary extensions occupy a smaller part of the image. For even higher
resolutions, it is likely that this number will converge, as these two effects become
insignificant.

Table 6.7: Obtained cycle counts for the 4-level 5/3 wavelet transform of a 4CIF image,
executed at 600 MHz. Cycle counts are averaged over 1,000 frames. Percentages indicate
the fraction of computations contained at that level.

Level Mcycles Percentage Level size Cycles/pixel

0 2.554 70.0% 704×576 6.30

1 0.695 19.1% 352×288 6.86

2 0.248 6.8% 176×144 9.80

3 0.149 4.1% 88×72 23.6

Total 3.647 100.0% 704×576 9.00

When applying the wavelet transform as part of the complete SVC, Table 6.8
gives the cycle counts for the transform for all color channels. The indicated per-
centages represent the cycle contributions as part of the single-frame encoding pro-
cess.
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Table 6.8: Computational complexity of the 5/3 wavelet per frame, for a 4CIF surveillance
sequence. Cycle counts are averaged over 1,000 frames and the ‘part’ column indicates the
percentage contribution as part of the whole SVC for one frame.

Y channel Cb channel Cr channel

Function Mcycles Part Mcycles Part Mcycles Part

Wavelet 3.648 12.41% 1.076 3.66% 1.083 3.68%

Two-Stage SPECK (TSSP)

The TSSP coding algorithm has been implemented on the earlier adopted DM642
DSP, as presented in Section 6.4, while the special handling of the most negative
value representable by the two’s complement representation is discussed in Ap-
pendix C. During the experiments and the associated measurements, we have
observed that the DMA transfers are so effective, that image coefficients are al-
ways available in Level-2 cache for the algorithm access. This implies that mea-
sured calculation times are larger than memory transfer times. Table 6.9 shows the
measured cycle counts for the frame-based wavelet coefficient encoding, including
all memory transfers. The ‘part’ column indicates the contribution as part of the
whole SVC for one frame, which consumes 29.398 Mcycles per frame.

Table 6.9: Measured computational complexity of TSSP per frame, for a 4CIF surveillance
sequence. Measured cycle counts are averaged over 1,000 frames and the part column indi-
cates the contribution as part of the whole SVC for one frame.

Y channel Cb channel Cr channel

Function Mcycles Part Mcycles Part Mcycles Part

TSSP Stage 1 1.531 5.21% 0.402 1.37% 0.402 1.37%

TSSP Stage 2 3.921 13.34% 0.740 2.52% 0.828 2.82%

TSSP Parser 0.037 0.13% 0.011 0.04% 0.012 0.04%

Total 5.489 18.68% 1.153 3.93% 1.242 4.23%

The measured Mcycle counts in Table 6.9 reveal several performance aspects.
First, it can be observed that Stage 2 of TSSP requires approximately 2.5× the num-
ber of cycles for processing the luminance channel (Y) and 2× the cycles for pro-
cessing the color channels (Cb and Cr). Even though Stage 2 processes only a small
part of the coefficients, it is more complex because of the additional computations
required for generating the bitstream for all bit planes. On the other hand, Stage 1
processing is simpler due to the group-wise processing of coefficients in the leafs
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of the coding tree. Furthermore, it can also be seen that the TSSP parser is very fast
and consumes less than 1% of the cycles with respect to TSSP processing stages.
The TSSP parser consumes about 0.2% as part of the complete codec.

Evaluation of the TSSP memory transfer model
The above test setup for measurements only provides cycle count measurements
based on internal hardware counters, expressed in Mcycles. As such, the cy-
cle counts provide no information regarding the usage of these cycles. The cy-
cle counts represent a mixture of the following four categories: (1) computations
alone, (2) computations in parallel with DMA memory transfers (3) wait cycles for
completing the DMA transfers and (4) memory transfers using the CPU. Because
a large part of the algorithmic design and mapping effort has been spent on op-
timizing the parallelization of computations and background memory transfers,
in the following an estimation is made how this parallelism in the memory trans-
fers works out as part of the measured performance. This estimate is based on the
theoretical bounds of the memory-transfer model derived in Section 6.4, for which
the theoretical cycle counts are given in Table 6.10. The measured cycle counts of
Table 6.9 are combined with the theoretical cycle counts of Table 6.10, which leads
to the estimated distribution of processor cycles in TSSP given in Table 6.11.

Table 6.10: Processor cycles estimated for memory transfers for TSSP on a DSP running
at 600 MHz based on the memory-transfer model derived in Section 6.4. Numbers do not
always add up due to rounding.

DMA memory transfers in parallel CPU based memory Total

Function to computations [Mcycles] transfers [Mcycles] [Mcycles]

Stage 1 0.220 0.112 0.332

Stage 2 0.022 0.043 0.065

Total 0.242 0.156 0.397

Table 6.11: Estimation of the distribution of the processor cycles in TSSP, based on system
measurements and the memory-transfer model.

Computations Computations & CPU memory CPU wait cycles

Function alone DMA transfers transfers for DMA

TSSP Stage 1 78.4% 14.4% 7.2% 0.0%

TSSP Stage 2 98.3% 0.6% 1.1% 0.0%

TSSP Parser 0.0% 0.0% 100% 0.0%
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The conclusions from this table are that no significant cycle counts are spent
on waiting for DMA memory transfers. The TSSP parser performs no calculations
and reorganizes the bitstream in memory using the CPU only. Furthermore, from
the numbers it can be concluded that the optimizations in Stage 1 facilitate high
parallelism for computations and memory transfers, while that Stage 2 consists
mostly of computations. It should be noted that these percentages are based on
the fastest possible memory transfers, which in real-life scenarios will not always
occur. As a result, it is likely that a larger percentage of cycles is spent on CPU
memory transfers and/or computations concurrent to DMA memory transfers.

Temporal filtering

When this TSSP coding implementation is integrated in the complete SVC system,
the system performs overall better. On the average, the measured processing per
frame takes 29.398 Mcycles, yielding a throughput rate of 20 fps. This improve-
ment is due to the decorrelation of the input frames in the temporal filtering. The
resulting difference frames contain significantly less information and as a result,
TSSP can skip large portions of insignificant coefficients. The obtained complexity
reduction in the entropy coding is therefore larger than the complexity increase of
the temporal filtering.

Table 6.12: Measured computational power for the complete SVC specified by function, for
a 4CIF surveillance sequence. Cycle counts are averaged over 1,000 frames.

Function Mcycles Percentage

Input conversion 1.729 5.88%

Temporal noise reduction 1.757 5.98%

BDLD temporal filtering 10.971 37.32%

5/3 wavelet 5.807 19.75%

TSSP encoder 7.884 26.82%

Other 1.250 4.25%

Total 29.398 100.00%

From Table 6.12, it can be observed that the computational complexity of the
three coding stages (5/3 wavelet, TSSP encoder and BDLD temporal filtering),
have the same order of complexity. The wavelet transform has straightforward
processing and is mapped in a highly optimized way. When comparing the much
more complex TSSP entropy coder with the wavelet transformation, it utilizes only
a factor of 1.4 more cycles. This is partly explained by that fact that the difference
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frames are already decorrelated and therefore can be encoded very efficiently, but
it also shows the success of the architecture-aware design of TSSP, that enables a
very efficient mapping and efficient use of SIMD and DMA.

Even though no motion estimation and compensation is included, the BDLD
temporal filtering is computationally expensive, mostly due to the large amount
of data that is processed. The absence of motion estimation does not lead to sig-
nificant artifacts, but does increase the bit rate in case of motion more than with
motion estimation and compensation. This is explained by the fact that differ-
ence frames are encoded with a certain BPR and are therefore always created at a
certain quality, with and without motion compensation. Without motion compen-
sation the frame difference is larger, which translates to a higher bit rate. This has
also been verified visually.

Due to limitations of the hardware architecture, the original raw input images
can neither be stored nor transmitted, due to the large data volumes involved. It is
therefore not possible to provide numerical quality indications for this implemen-
tation, but the results from Chapters 3, 4 and 5 are applicable. In Figure 3.20, it was
shown the BPR provides a quality control for the TSSP entropy coder, regardless of
the considered sequence. This also applies when TSSP is implemented as part of
the complete SVC. Based on the City and Crew sequences, it is expected to achieve
between 35 and 37 dB PSNR at BPR = 3.

6.7 Conclusions

This chapter considers the mapping of the proposed SVC coding algorithm on a
custom-designed surveillance camera and video encoder and its embedded com-
puting platform. Starting from the cost, size and power consumption require-
ments, a programmable DSP is adopted as the preferred computing platform. The
developed video coding system of the previous chapters, except HPPS, is fully
mapped and implemented onto the computing platform. The mapping reported
in this chapter involves the key processing stages of the SVC framework: (1) the
spatial wavelet transform, (2) the TSSP wavelet coefficient encoding algorithm and
(3) the temporal filter structure.

• Spatial wavelet transform mapping. SIMD and DMA mapping techniques are
exploited, combined with an elegant memory usage, to support a multi-level
transformation. The results are that the proposed process of background
DMA transfers becomes so effective, that the ALUs are almost never starved
for data input. Besides this, the mapping can execute a 4-level transform
at 4CIF broadcast resolution in 3.65 Mcycles, including memory stalls. At a

196



6.7. Conclusions

clock rate of 600 MHz, this translates to a processing time of 6.08 ms, thereby
satisfying the performance requirements for a real-time image/video en-
coding system. Our realization is a clear improvement, when compared to
the implementation by Choi et al. [113], who reported a processing time of
13.25 ms for a 25% smaller image (VGA).

• Two-Stage SPECK (TSSP). This involves the mapping of the proposed TSSP
wavelet coefficient encoder. The mapping of the two stages are individu-
ally optimized. The first, data-independent stage calculates the Significance
Level (SL) of all nodes in the quadtree and stores this information in the
SL buffer. The SL buffer is then used in the second stage to make coding
decisions, where large insignificant parts of the quadtree are skipped. Fur-
thermore, wavelet coefficients are encoded in parallel for all bit planes. As
above, SIMD and DMA techniques and a self-managed Level-2 cache are uti-
lized to enhance the efficiency. Of the two stages, Stage 1 is optimized most
efficiently, due to its fixed access patterns and data-independent processing.
The complete implementation of a TSSP-encoded video frame, results in a
cycle count of 7.884 Mcyles for a 4CIF 4:2:0 image, which leads to a through-
put rate of 75 TSSP encoding cycles per second at 600 MHz.

• BDLD temporal filtering structure. This part is implemented without motion
estimation and compensation, due to architecture limitations. By including
the full BDLD temporal filtering structure, the overall efficiency of the ex-
ecution of the complete SVC framework is increased, due to the coding of
differential images instead of normal images.

For the execution of the whole SVC framework, it has been measured that the
processing per frame consumes 29.398 Mcycles on the average, yielding a through-
put rate of 20 frames per second. This throughput rate of the overall framework
indicates and validates our claim for real-time performance of the proposed t+2D
SVC framework. However, this conclusion comes with a remark that the motion
estimation has been omitted. Since the developed HPPS ME algorithm was de-
signed for efficient computation and memory bandwidth, we are confident that
adding this algorithm will lead to a result that has the same order of magnitude
in throughput rate. This confidence is based on the consideration that when the
HPPS algorithm is added, the overall execution would still be based on the coding
of difference images.

Reflecting on the algorithmic design and an embedded system mapping, we
have found that the consideration of computing architectures during algorithmic
design is very fruitful and should be considered as an aspect for an engineer de-

197



6. REAL-TIME ALGORITHMIC VALIDATION ON AN EMBEDDED ARCHITECTURE

signing real-time imaging systems. It has been shown how critical changes to the
algorithm, such as splitting the entropy coding in a data-independent and data-
dependent stage, can bring significant benefits to the mapping, while retaining
coding performance.
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Conclusions

One of the greatest discoveries a man makes,

one of his great surprises,

is to find he can do what he was afraid he couldn’t do.

HENRY FORD

Abstract

This thesis has presented the algorithmic design of a complete SVC coding algorithm, with a focus
on video surveillance and embedded systems. We have made proposals for optimized algorithms
with respect to mapping complexity in the fields of wavelet coefficient entropy coding, temporal
configurations and motion estimation. In the previous chapter, we have mapped this SVC to an
embedded system to validate the mapping complexity. In the concluding chapter of this thesis,
the contributions of the individual chapters are summarized, and provide answers to the research
questions posed in Chapter 1. Finally, we will reflect on the key and open issues and provide a future
perspective for scalable video coding and video surveillance.
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7.1 Conclusions of the individual chapters

Chapter 2: Developments in wavelet image and video coding.
This chapter has introduced the reader to Scalable Video Coding through explain-
ing the need for video compression along with a short history of current image and
video coding. It then focusses on wavelet-based scalable coding, first by introduc-
ing common wavelet transforms and more specifically integer wavelet transforms
based on the lifting implementation. The multi-level 2D dyadic wavelet decom-
position was presented, along with 1D, 2D and multi-level energy correction algo-
rithms. Finally, the chapter provides the reader with a very detailed description
of two state-of-the art wavelet coefficient encoding algorithms: SPIHT (Set Par-
titioning in Hierarchical Trees) and SPECK (Set Partition Embedded bloCK). The
detailed description illustrates their inner working, with detailed encoding and
decoding examples.

Chapter 3: Hardware-efficient scalable wavelet coefficient coding.
This chapter explores the algorithms for encoding wavelet coefficients specifically
for image coding. First the complexities of the SPIHT and SPECK coding algo-
rithms are investigated, after which we have proposed a hardware-efficient scal-
able image coder based on SPECK, called TSSP (Two-Stage SPECK), that is back-
wards compatible to SPECK. We have proposed several enhancements that signif-
icantly improve the algorithm’s efficiency. First, processing is split into one data-
independent stage and one data-dependent stage. A highly efficient buffer elimi-
nates the need for dynamic lists, and processing in the second stage is performed
for all bit planes in parallel. An enhancement of the algorithm is the Highly Scal-
able (HS) extension, which allows parsing of the bitstream without payload decod-
ing, thereby creating a bitstream of any desired quality, resolution and bitstream
order. The second enhancement, 5/3 Energy Correction (53EC), retains the perfect
reconstruction property of the 5/3 integer wavelet, while significantly improving
lossy coding performance by up to 5 dB, with a negligible performance drop of
only 0.1% at lossless coding.

Chapter 4: Complexity in the temporal domain of scalable video coding.
This chapter presents the trade-off between the complexity and performance of
several suitable coding architectures: predictive coding, multi-layer scalable pre-
dictive coding and 3D subband techniques: t+2D, 2D+t and 2D+t+2D. Based on
trading-off complexity, coding performance, scalability and domain-relevant fea-
tures, we have adopted the t+2D configuration. For this configuration, a frame-
work is presented to evaluate various temporal configurations, of which we have
adopted a structure called BiDirectional Low Delay (BDLD). This configuration
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features low memory access and low end-to-end delay, while still achieving suffi-
ciently high coding performance. To improve computational complexity and video
quality, two extensions to the t+2D framework have been proposed. The first im-
proves energy correction in the temporal lifting tree and significantly reduces com-
putational complexity and required memory bandwidth. The second improves the
average quality of the frames within a GOP and reduces quality fluctuations sig-
nificantly, which is also expressed by a reduction of the variance of the PSNR by
30% and a significantly improved perceptual quality. In all, the coding quality
approaches that of H.264 SVC within 1 dB.

Chapter 5: Motion estimation for scalable video coding.
This chapter has presented Motion Estimation (ME) from the perspective of Scal-
able Video Coding (SVC) and accelerators from mediaprocessor architectures. SVC
requires that the ME algorithm has to operate with frames at varying temporal dis-
tances, so that new methods of motion-vector propagation are necessary. Based on
this aspect, a novel ME algorithm has been proposed, named Highly Parallel Pre-
dictive Search (HPPS). HPPS differs from previous proposals in that it utilizes three
independent processing paths: one for the (0, 0) vector, one using a spatial predic-
tor, and one using a temporal predictor. The two predictive candidate vectors are
surrounded with additional refinement candidates arranged in a dense PSS pat-
tern, which reduces SAD test points up to 50% without significantly degrading
the accuracy of the found motion vectors. The performance of EPZS is considered
state-of-the-art and HPPS has a similar performance with respect to the measured
rate-distortion curve. The main benefit of HPPS lies in its characteristic features
with respect to real-time implementation. First, HPPS has a fixed computational
load, regardless of scene activity and the temporal distance between frames. Sec-
ond, HPPS is very predictable in its data usage. EPZS and HPPS both approach
the full-search reference within 0.05 dB for SD sequences and 0.03 dB for HD se-
quences.

Chapter 6: Real-time algorithmic validation on an embedded architecture.
This chapter presents optimized implementations of 2D wavelet filtering, the TSSP
wavelet coefficient encoder and the temporal filtering framework to validate exe-
cution on an embedded DSP platform within the framework of a custom-designed
video surveillance camera. We have achieved efficient implementations by using
SIMD (Single Instruction Multiple Data) instructions for data and computational
parallelism, and Direct Memory Access (DMA) to transfer data to and from our
self-managed Level-2 cache, parallel to computations. The performance of the
implemented framework based on executing a 4-level wavelet transform at 4CIF
(CCIR-601) broadcast resolution, results in an execution time of 6.08 ms, while for

201



7. CONCLUSIONS

TSSP, real-time performance is obtained. The full implementation includes tem-
poral filtering, which also yields coding of differential images. This fully scalable
video encoding system obtains a throughput rate of 20 fps, however, without the
integration of the proposed HPPS ME algorithm.

7.2 Discussion on research questions and contributions

This section returns to the research questions posed at the beginning of this thesis
in Section 1.4, supported by the findings of this thesis.

RQ1: Efficient Variable Length Coding (VLC) of scalable transformed image
and video data.

RQ1a: Is it possible to design an alternative high-performance scalable video coefficient
coding algorithm without losing coding fidelity?

RQ1b: Can we extend beyond the scalable properties of current scalable codecs, and pro-
vide highly flexible coding, with only a limited increase of codec complexity?

RQ1c: Is it better to implement scalable variable length coding in a quality-progressive
way, or to process multiple qualities in parallel?

All of the above research questions are answered using Chapter 3 as a refer-
ence. In Section 3.2 we have proposed the Two-Stage SPECK (TSSP) wavelet coef-
ficient codec, in which several modifications have been made to the SPECK codec.
These modifications significantly improve its computational performance by split-
ting the coding into two stages. The first, data-independent processing stage cal-
culates significance information for the whole spatial tree and this stage can be
highly optimized for implementation. As a consequence, this allows the second,
data-dependent stage to make coding decisions without observing individual coef-
ficients, and large regions can be skipped altogether if they are insignificant. These
optimizations answer the first part of research question RQ1a. Furthermore, TSSP
creates a bitstream identical to the state-of-the-art SPECK codec, which is well-
known for its coding fidelity, which answers the second part of research question
RQ1a.

Additionally, two extensions have been proposed to the novel TSSP codec (Sec-
tion 3.4), which give answer to research question RQ1b. The first extension is a
Highly-Scalable (HS) mode, where data is organized in data blocks for every com-
bination of each resolution in the dyadic composition and each bit plane. Header
information is included to allow for fast access to these data blocks, and stuffing
bits provide data alignment of data blocks with the data processing structures in
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hardware and software. The second extension expands this HS mode for 5/3 inte-
ger wavelets, which allows it to be used for both lossless and lossy coding without
compromise. This is accomplished by implementing separate data blocks for the
LL, joined LH–HL, and HH wavelet frequency bands and adjusting the amount
of quantization for each of these bands, thereby effectively implementing energy
correction that ensures smooth lossy coding. Both extensions add a low overhead
cost (header data and stuffing bits).

With respect to RQ1c, we have found that it is better to process multiple qual-
ity levels in parallel, even if the desired output bitstream needs to be created in
a quality-progressive way. By avoiding the necessity for constant rate checking,
and creating a single access for each coefficient only, the TSSP codec creates a full-
quality bitstream in nearly the same time as it would take to process a single qual-
ity level (bit plane). Due to the HS scalability mode, the scalability of the codec is
fully exploited by creating a quality-progressive bitstream, which is implemented
through selective reordering of data blocks.

RQ2: Framework for and complexity estimation of scalable temporal video
coding.

RQ2a: Can we identify a suitable framework for scalable temporal coding?
RQ2b: What is the trade-off between temporal coding complexity, end-to-end coding delay

and corresponding visual quality?
RQ2c: Based on the outcomes of the previous trade-offs, is the chosen temporal coding

structure suited for video surveillance?

Regarding research question RQ2a, in Chapter 4 we investigated several coding
architectures, both predictive (conventional and scalable) and 3D subband coders
(t+2D, 2D+t and 2D+t+2D). For each coding architecture, the following perfor-
mance metrics were addressed: inherent and motion complexity, coding perfor-
mance, scalability in quality, resolution and frame rate, and surveillance domain-
specific features such as end-to-end delay, trick play and random access. Based on
this evaluation, we have selected the t+2D framework for its inherent low com-
plexity, good scalability options for resolution and quality. The inherent benefit
of the t+2D architecture is that motion estimation and compensation can be per-
formed in the time domain so that the efficiency of the total coding system should
be comparable to the well-known H.264 coding standard. Besides this, it is known
that wavelet coding is slightly more efficient than DCT coding. These arguments
confirm that the proposed framework is suitable for scalable temporal coding.
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To investigate the trade-off between temporal coding complexity, end-to-end
coding delay and corresponding visual quality (research question RQ2b), a frame-
work was proposed with four basic building blocks to create arbitrary temporal
configurations for the t+2D coding framework. These building blocks were uti-
lized to create several deliberately constructed temporal configurations. By calcu-
lating the Rate-Distortion (RD) performance, we observed that the proposed con-
figurations resulted in smooth curves similar to other state-of-the-art video coding
algorithms, even though the internal structure of the proposed coding algorithm is
significantly different. It was found that the suitable operation interval where this
smooth behavior occurs, is within 1 dB of other well-known existing coding stan-
dards. As expected, more complex temporal configurations lead to improvements
in rate-distortion performance, but also in an increase in end-to-end coding delay.

Regarding research question RQ2c, a suitable temporal configuration was found
by elegantly managing frame dependencies, so that the best quality is achieved
with an acceptable end-to-end delay (3 frames). This BiDirectional Low Delay
(BDLD) configuration has a moderate complexity (27 ME actions per GOP of 16
frames), and a workable frame memory size of 8 frames. This leads to a video out-
put of high quality, both visually and numerically (a 4CIF video at 30 fps yields
a PSNR of 37 dB at 3 MBit/s). We furthermore proposed two extensions (TEC
and LCEF) to the t+2D framework which achieve an even higher quality and/or
a lower complexity. With respect to the obtained quality and complexity, we con-
clude that the proposed system is suitable for surveillance applications and offers
integrated scalability in its coding framework. The disadvantage of the proposal
is that it is not a standard at the moment, so that the integrated development cost
is higher.

RQ3: Motion estimation in scalable video coding and its implementation
efficiency.

RQ3a: Can we develop a motion estimation algorithm that is suitable for a temporal
scalable wavelet coding system and that elegantly propagates motion information
within such a system?

RQ3b: Is it possible to design a motion estimation algorithm that is not only efficient,
but also based on the hardware media processing kernels of modern computing
platforms?

In Chapter 5 a Motion Estimation (ME) algorithm has been developed, called
HPPS, that is based on two motion-vector predictors, around which further candi-
date vector positions are tested in a dense search pattern. The HPPS ME algorithm
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facilitates temporal scalable video coding through providing: (1) robustness for
uncertainties in the temporal predictor through the dense search, (2) a fixed com-
putational complexity, regardless of the time difference between frames and (3)
a performance similar to that of state-of-the-art algorithms which have a sequen-
tial nature. The proposed ME algorithm approaches the performance of the full-
search reference ME. Good results for propagation have been obtained for both the
proposed HPPS ME algorithm and the state-of-the-art EPZS ME algorithm. This
propagation is created by grouping a set of co-located motion vectors into one rep-
resentative vector for a bidirectional pair of motion estimations, utilizing coding
mode decisions made by the temporal coding algorithm. This representative vec-
tor can then be easily propagated within the same temporal hierarchical level and
between these levels.

The answer on the second research question (RQ3b) involves several aspects.
The reuse of block matching allows HPPS to fully utilize block-based hardware
accelerators, and the dense search is fully implemented with block SAD and block
rotation accelerators. This dense search combined with only 2 predictors, reduces
bandwidth requirements and results in fast testing of candidate motion vectors,
and allows for pre-fetching of data blocks using Direct Memory Access (DMA).

RQ4: Verification of scalable VLC and scalable temporal coding on embedded
architectures.

RQ4a: What embedded execution architecture would be suitable for implementing a scal-
able video coding algorithm?

RQ4b: How can a combination of the high-performance scalable video coefficient coding
and the scalable temporal coding be mapped on a resource-constrained embedded
architecture, and can real-time performance be obtained?

A custom-designed video surveillance camera and its embedded computing
platform was presented in Section 6.2, which answers research question RQ4a.
This camera and platform are chosen based on cost, size and power consump-
tion requirements. For efficient execution of the processing, a programmable DSP
has been adopted as the preferred computing platform. This DSP provides hard-
ware accelerators such as SIMD and DMA that facilitate efficient mapping of algo-
rithms. Nowadays, state-of-the-art DSPs offer sufficient parallelism over multiple
cores and contain accelerators for multi-media coding and processing. The clock
frequency of such a DSP is also high enough for obtaining real-time performance.

The utilization of the SIMD and DMA hardware accelerators for the wavelet
transform (Section 6.3), TSSP (Section 6.4) and the temporal coding (Section 6.5),
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provide the basis for mapping the complete coding system. For the wavelet trans-
formation, the process of background DMA transfers is so effective, that the ALUs
in the DSP are almost never starved for data input. The TSSP coding can also be ef-
ficiently executed when using background DMA transfers and heavily exploiting
SIMD instructions. The following statements hold for real-time performance. A 4-
level wavelet transform at 4CIF broadcast resolution requires a processing time of
6.08 ms, which is only a fraction of the required 30-40 ms frame time. The complete
TSSP encoded process requires 7.884 Mcyles for a 4CIF 4:2:0 image, which leads to
a throughput rate of 75 TSSP encoding cycles per second. By adding the temporal
coding structure, overall coding efficiency is actually improved. The combination
of all three native blocks of the coding system yields a throughput rate of 20 fps.
Although the motion estimation is missing in this mapping, it is known the ME al-
gorithm complexity is low and fits to the DSP architecture. Therefore we conclude
that the coding system can indeed achieve real-time performance when some more
development time would be invested.

7.3 Key issues and open topics

Motion estimation complexity contributes significantly to the overall complexity of
any video coding algorithm. Due to unforeseen problems with the tooling of a next
generation hardware architecture, we were unable to validate the HPPS motion es-
timator. This next generation hardware architecture involved two cores, one spe-
cial programmable ALU implemented in hardware logic and a co-processor fea-
turing advanced multi-media instructions. Unfortunately this specific architecture
did not offer sufficient programming tools to map the HPPS algorithm smoothly.
As a result, the main purpose of the redesign of the ME algorithm, shifting the
focus of optimization from the SAD calculation to memory bandwidth, could not
be validated. Therefore, in future research, an alternative architecture should be
chosen that includes the proposed hardware accelerators, so that a proper analysis
can be made.

With current trends in multi-core processing, new opportunities and challenges
arise. While the utilized DSP does exploit advanced data and computing paral-
lelism, its architecture is still elementary different from the present multi-core ar-
chitectures gaining popularity. The DSP contains multiple cores within its ALU
with shared caches, while modern multi-core architectures feature more indepen-
dent processing cores. These independent processing cores can be fully exploited
when the processing is performed within local areas of the data fields (data lo-
cality). Let us provide an example how this parallelism can be provided with the
current system. For TSSP, processing in Stage 1 and 2 can be easily split to facilitate
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parallel implementations. For example, the image can be split in four quadrants,
where all quadrants are processed in parallel. In Stage 1 of TSSP, the SL buffer can
be calculated in parallel using this strategy by assigning separate computing in-
stantiations to the four individual independent image regions, resulting from the
quadtree partitioning. When all four regions are completed, the first value of each
of the four regional buffers is used to calculate the SL of the combined block, and
this value and the four regional buffers are cascaded to form the merged SL buffer.
Parallel processing can be implemented at any desired level of the quadtree, and
therefore processing can be split in 4, 16, 64, etc. blocks. Parallelization in Stage 2
works in a similar manner, using the division of computation at any desired level
of the quadtree.

7.4 Future outlook on scalable video coding

Standards vs. custom design
When designing a custom video coding system, a comparison with the current
video coding standards is inevitable. The research community for H.264 and be-
yond is so large, with backing from companies worldwide, that it is nearly impos-
sible to successfully take a different path. In a commercial setting, this constraint is
even more compelling, because many cost-effective hardware solutions for H.264
are available on the market, due to economies of scale involved. However, the
H.264 standard is developed primarily for systems that support a limited num-
ber of streams. Most current video decoders can only decode a maximum of two
streams, and software solutions on general-purpose CPUs even have difficulty de-
coding a single high-resolution stream. For applications where the requirements
significantly differ from the mainstream applications, it is possible to compete with
H.264.

Key applications and requirement differentiation
Surveillance applications could become a key application for scalable video cod-
ing because the amount of implemented codecs is growing in a rapid pace due to
an ever growing installed base of surveillance cameras. Although scalable video
coding may be an attractive choice for surveillance applications, such coding sys-
tems are not widely adopted elsewhere. Even though the SVC extension exists for
H.264, it is hardly used in practice.

Furthermore, for surveillance applications, there is a large differentiation in
requirements when compared to video standards driven by consumer require-
ments. In the video surveillance domain, it is critical to do real-time encoding
on a low-cost system, while simultaneously supporting the decoding of hundreds
of streams at a single location. The lack of market momentum for H.264 SVC, and
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the clear requirement differentiation of surveillance applications, provides a niche
segment in which a custom-designed system is feasible, so that it can be tailored
to the specific requirements of the application area, as discussed in this thesis.

Future vision: object-based coding and content analysis
Beyond the applications described in this thesis, the concept of scalable coding
paves the way for novel applications of this technology, such as object-based cod-
ing. Experiments have been conducted to investigate object-based coding, in which
the wavelet transform was adapted to perform symmetric filtering at object bound-
aries. With such modifications, objects can be filtered and encoded individually.
Shape information can also be encoded using wavelets, and when applying a novel
transform, shape information can be encoded using the TSSP encoder. This novel
transform utilizes binary inputs, and the low-pass filter is defined as the binary
‘OR’ operator. This is essential for proper reconstruction and encoding of DC in-
formation.

Furthermore, there is a significant growth in automatic processing of surveil-
lance video through content analysis. Rule-based systems are already in operation,
where for example the presence of an object in a certain perimeter triggers an ac-
tion, such as an alarm. Behavioral analysis is also becoming increasingly popular,
such as the tracking and trend analysis of the movement of persons or objects.
One category is out-of-the-ordinary movement detection, such as left-luggage de-
tection, ghost drivers on a freeway, running people in a crowd, or an elderly person
falling in a treatment home. Multi-camera content analysis expands the behavioral
analysis from a single room, to the complete premises under surveillance, allowing
for advanced analysis.

When scalable video coding, object-based coding and content analysis are com-
bined, a variety of interesting applications are enabled. Once a separation is made
between foreground and background objects in a video surveillance scene, the
more important foreground objects can be encoded at a higher quality, while the
background objects are encoded using a best-effort strategy. When combining this
with a network supporting Quality of Service (QoS), it is possible to assign the data
from the foreground packets with a higher priority. In case of network conges-
tions, the data for the background objects will be rejected, and foreground objects
are still transmitted. When the QoS scheme provides many layers of granularity,
each particular bit plane, resolution and temporal block of the highly scalable TSSP
bitstream can be given different priorities, and a very graceful degradation scheme
can be implemented.

This would for example provide robustness for systems that perform face and
license plate recognition. A two-stage content analysis approach can be proposed,

208



7.4. Future outlook on scalable video coding

with object-based scalable video coding as a support layer. In the camera, an initial
detection of objects of interest is performed, but without classification (e.g. the
location of a license plate, or a face). Such objects of interest are then coded at
a higher quality (foreground), while the remainder is coded at a lower quality
(background) to provide context. At another location, specialized license plate
and face recognition algorithms can then be employed, in real-time or as post-
processing. By utilizing the highest quality images for the regions of interest, the
accuracy of these algorithms is directly improved.

With the advancements in image and video editing software, content can be
manipulated, while being visually indistinguishable from actually recorded scenes.
This phenomenon is clearly visible in our society through numerous viral videos
that have appeared on the Internet, which are indistinguishable from real videos.
In video surveillance, it is important that recorded videos have not been tampered
with, as they can be used as evidence in a court of law. Closed-circuit systems can
facilitate this by creating encoders that allow verification of the video through, for
example, an authentication scheme using private and public keys, similar to email.
Even though surveillance systems commonly do not provide this authentication,
it is the opinion of the author that this ability of authentication will become crucial
in the near future.
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A. TSSP AND WAVELET MODIFICATIONS FOR REDUCED COMPLEXITY

In this appendix, we investigate the complexity reductions we can obtain by
adjusting the location of quality control in TSSP. We propose two different modi-
fications to obtain a lower complexity by performing bit-plane dropping in either
the wavelet transformation (Section A.1), or in Stage 1 of the TSSP (Section A.2),
instead of the regular bit-plane dropping in Stage 2 of TSSP described in Chapter 3.

For both modifications, the TSSP bitstream remains intact, and therefore the
TSSP decoder and inverse wavelet transform do not have to be modified and the
rate-distortion performance is not affected. The number of bit planes dropped is
controlled by the Bit-Plane Reduction parameter BPR.

A.1 Quality control in the integer wavelet

To reduce complexity in Stage 2, we propose to include the bit-plane dropping
fully within the wavelet transformation. The 5/3 integer wavelet filter is modified
to include the quality control by dropping the lower bit planes during the de-
interleaving of the wavelet coefficients. For all but the last 2D wavelet transform
in the multi-level dyadic decomposition from Figure 2.2, the coefficients of the HL,
LH and HH bands are modified to include the quality control, as the LL band will
be processed further. For the last iteration of the 2D wavelet transform, bit-plane
dropping for the coefficients in all four bands is performed.

Unfortunately, it is not possible to simply bit-shift the wavelet coefficients to
the right by BPR, as this will create an error for negative values, such as the value
−1. To match the behavior of the TSSP codec, the sign is included to correct for the
behavior of the bit-shift operator. The correct dropping of bit planes is achieved
through Equation (A.1), which is specified as

coe f =

⌊
coe f + (2BPR − 1) ∗ (1− sign(coe f ))

2BPR

⌋
, (A.1)

with coe f and BPR as defined earlier, and sign(x) denotes the sign as a unit-step
function for positive values. The floor operator results from the use of the shift-
right operator in fixed-point arithmetic to implement the division by 2BPR.

To examine the working of Equation (A.1), let us elaborate with the numbers
7,8,9 and their negative counterparts -7, -8 and -9. In two’s complement binary
notation these numbers are represented as:

For the positive numbers, it is easy to see that when dropping 3 bit planes
(BPR = 3), the resulting value of Equation (A.1) is 0, 1 and 1 for 7,8 and 9, re-
spectively, easily accomplished by the shift right operator in binary arithmetic.
Negative numbers should show similar behavior, and result in 0, -1 and -1. If we
use the shift right operator to implement the bit-plane dropping, it would yield
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Number Two’s complement binary notation With BPR = 3

7 00000111 0

8 00001000 1

9 00001001 1

-7 11111001 0

-8 11111000 -1

-9 11110111 -1

wrong results, leading to -1, -1 and -2 for -7, -8, and -9, respectively, since applying
the shift right operator to negative values will always result in a negative number
(due to the two’s complement representation).

To accomplish proper bit-plane dropping in fixed-point arithmetic and two’s
complement values, we have implemented Equation (A.1) as

coe f = (coe f + ((1� BPR)− 1) ∗ (coe f < 0))� BPR, (A.2)

with� and� denoting shift left and right operators and < 0 acts as a sign deter-
mination.

Using this formula, the output is as desired. This is also true for Equation (A.1),
but the floor operator on negative numbers may cause some confusion. For the
numbers -7, -8 and -9 we obtain:⌊

−7 + (8− 1) ∗ (1− 0)
8

⌋
=

⌊
−7 + 7

8

⌋
= b0c = 0, (A.3)⌊

−8 + 7
8

⌋
= b−0.125c = −1, (A.4)⌊

−9 + 7
8

⌋
= b−0.25c = −1. (A.5)

For BPR = 0, the output matches the original wavelet, which was discussed
in Section 2.3. With BPR > 0, the wavelet transform effectively performs the new
quality control by dropping BPR bit planes. As a result, the output of this mod-
ified wavelet transform has significantly lower wavelet coefficients, which if im-
plemented properly, also reduces storage requirements and memory bandwidth.
Furthermore, Equation (A.1) can be combined with energy correction for LL and
HH bands in the 5/3 wavelet [7] [31].

Stage 1 of the TSSP is left unmodified, and Stage 2 of the TSSP is simplified
by omitting the BPR significance check for both blocks and individual coefficients.
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To create a standard TSSP bitstream, the header information is corrected with the
BPR parameter.

A.2 Quality control in TSSP Stage 1

At Stage 1 of the TSSP, the SL buffer is created from the wavelet coefficients as
discussed in Section 3.3. The dropping of bit planes is achieved by adjusting the
calculation that determines the SL of the wavelet coefficients. In the original TSSP,
the SL is calculated by Equation (A.6), and defined by

SL = lmb(abs(coe f )), (A.6)

with coe f denoting the wavelet coefficient and abs(x) stands for the absolute value
of x. The lmb(x) operator returns the position of the left-most bit, counted from
the lsb to the msb, starting with one, and is zero for x = 0. To enable bit-plane
dropping at Stage 1, Equation (A.6) is modified to include the BPR parameter to
create Equation (A.7), which is defined by

SLBPR = lmb(
⌊

abs(coe f )
2BPR

⌋
). (A.7)

The floor operator results from using the shift-right operator in fixed-point
arithmetic, which implements the division by 2BPR. Equation (A.7) will result in a
behavior similar to the bit-plane dropping in TSSP. For example, a coefficient value
of 7 will have SL = 3 according to Equation (A.6). With BPR = 3, this coefficient
would be considered insignificant, as 7 < 2BPR. The floor operator reduces 7

8 to 0
in Equation (A.7), resulting in the correct SLBPR = 0.

Stage 2 of the TSSP can now be simplified, as it can omit the significance check
against the BPR parameter. Significance of blocks is then tested against zero, and
during encoding of individual coefficients, this check is replaced with a right-shift
of the wavelet coefficient by BPR.

A.3 Experimental results

In this section, we will show the complexity reductions obtained by moving qual-
ity control to other parts of the TSSP coding process. We implemented the two
proposed complexity reducing modifications into the original TSSP and wavelet
transform, alongside two regular methods of quality control, to measure the im-
pact on processing time. Four different scenarios of Bit-Plane (BP) dropping are
investigated: (1) lossless coding with BP dropping in the parser, (2) BP dropping
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in Stage 2 of the TSSP, (3) BP dropping in Stage 1 of the TSSP, and (4) BP dropping
in the wavelet transform.

The algorithms are implemented in C and the measurements were performed
on images first utilized in Chapter 3. These images are listed in Table 3.1, and visu-
alized in Figure3.13 at the beginning of Section 3.5. From zero to five bit planes are
dropped for each of the images. The possibility of reduced word-lengths, which
is possible with bit-plane dropping in the wavelet, is not investigated in the PC
implementation.

Wavelet Complexity

For the wavelet, we have compared execution time with and without the quality
control within the wavelet for various images in Table A.1. As expected, we ob-
serve that the execution time is not affected by the number of bit planes dropped.
Furthermore, bit-plane dropping in the wavelet requires approximately 6.6% more
processing time for the high-definition images, and 7.6% for standard-definition
images, compared to the regular wavelet without bit-plane dropping.

Table A.1: Complexity increase of the wavelet with quality control compared to the regular
wavelet for BPR 0, . . . , 5.

BPR 1920×1080 704×576 640×480 512×512

0 6.60% 7.66% 7.53% 7.52%

1 6.56% 7.64% 7.55% 7.61%

2 6.54% 7.66% 7.55% 7.61%

3 6.37% 7.65% 7.55% 7.66%

4 6.58% 7.65% 7.54% 7.64%

5 6.59% 7.66% 7.54% 7.68%

Entropy Coding Complexity Reduction

To estimate the computation complexity reduction of the proposed modifications,
we measured the execution time for the four different scenarios of bit-plane drop-
ping, each with 0 to 5 bit planes dropped. The measurements are visualized in
Figure A.1, normalized to lossless encoding (BPR = 0) with bit-plane dropping
in the parser, for the 1920× 1080 pixel image Dude, which shows an average re-
duction of processing speed (complexity) among the five high-resolution images.
Other images show similar reduction curves.
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Figure A.1: TSSP normalized processing time for BPR 0, . . . , 5.

As expected, for BPR = 0, we observe that even though no bit planes are
dropped, quality control within the TSSP at Stage 1 or 2 adds some complexity
to the algorithm. Furthermore, for higher values of BPR, an overall decline in
computation time is observed. This is due to the fact that Stage 2 of the TSSP is
data-dependent, and performs less computations when bit planes are dropped, as
larger parts of the quadtree are insignificant. This decline is not applicable when
quality control is performed in the parser, after the TSSP, as all original coefficients
are processed first without quality control.

Most importantly, we observe a complexity reduction when bit-plane dropping
is performed in Stage 1 of the TSSP or the wavelet, compared to bit-plane dropping
in Stage 2. It should be noted that while bit-plane dropping in the wavelet reduces
complexity in the TSSP, the wavelet needs to be modified and requires 6.6% more
processing time.

Table A.2 lists the processing time reduction of the TSSP when quality control is
performed in Stage 1, compared to the original method of quality control in Stage
2, for all images. We observe a processing time reduction of the TSSP of up to 48%,
and in the typical scenario of 1920× 1080 images and a BPR of 3, we achieve an
processing time reduction of 28%.
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Table A.2: Processing time reduction of TSSP with quality control in Stage 1 compared to
TSSP with quality control in Stage 2.

BPR

Image 0 1 2 3 4 5

Videoclip -3% 3% 18% 34% 41% 44%

Bob Marley -3% 3% 16% 26% 33% 39%

Dude -3% 5% 16% 27% 34% 37%

Pipe -3% 5% 14% 22% 28% 32%

Eye -3% 7% 23% 31% 35% 37%

City still -3% 2% 8% 16% 27% 39%

Crew still -2% 3% 13% 25% 36% 42%

Space 0% 2% 7% 14% 23% 37%

Lena -3% 2% 12% 27% 39% 48%

Figure A.2 presents the normalized processing time for the combination of the
wavelet and the TSSP codec. Again the complexity reduction of performing qual-
ity control in Stage 1 and the wavelet is observed. For TSSP, when the complexity
of the wavelet is also taken into account, bit-plane dropping in Stage 1 becomes
more favourable than bit-plane dropping in the wavelet, as no modifications need
to be made to the wavelet which increase its complexity.

Conclusion

We have proposed two complexity-reducing modifications to the quality control in
bit-plane based coders, which retain the original bitstream and thus rate-distortion
performance. The first generic modification, moves quality control to the wavelet
transform, slightly increasing its complexity. For TSSP, we have also investigated
moving quality control from Stage 2 to Stage 1, leaving the wavelet unaltered. Both
methods show a significant and similar reduction in processing time. We found
that for TSSP, bit-plane dropping in Stage 1 is preferred in terms of complexity and
processing time, as it does not require any modifications to the wavelet transform.
We observe an processing time reduction of the TSSP up to 48%, compared to the
standard TSSP. In the scenario of 1920 × 1080 pixel images with a typical level
of quality control (3 bit planes dropped), we achieve an average processing time
reduction of 28%. Furthermore, we have found that moving quality control out
of the entropy coding into the wavelet transformation is generically applicable to
other bit-plane based codecs, while offering nearly the same processing speed.
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Figure A.2: Normalized processing time for the DWT and TSSP combined, for BPR 0, . . . , 5.
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B. THE TSSP BITSTREAM

In this appendix, the Highly Scalable (HS) bitstream definition of TSSP (Chap-
ter 3) is given, including the 5/3 Energy Correction (53EC) extension.

B.1 Major stream components

The TSSP bitstream consists of two parts, a header and the entropy data. These
two parts will be discussed in more details in the following sections, where the
bitstream is always represented by greyed blocks. Tables will also be included to
describe the variables in the bitstream and to specify their size.

TSSP bitstream: Header Entropy data

B.2 Header information

The header always contains three parts and begins with image and stream infor-
mation. After that two tables are included, the first with the minimum and max-
imum bit planes for each of the resolution layers. The second table indicates the
number of sorting and refinement bits per resolution/bit-plane block. The two ta-
bles are slightly different for the TSSP and the TSSP53, which will be clarified in
the respective sections.

Image and stream info Min-Max bit-plane table Sort-Ref bits table

Image and stream information

The image and stream information contains information required to decode the
stream and decode the image.

width height decomp resLvl sigBits alignment

Item Size Description

width uint16 Width of the image
height uint16 Height of the image
decomp uint4 Number of wavelet decompositions
resLvl uint4 Number of resolution levels
sigBits uint4 Signalling bits
alignment uint4 Stream alignment in 2alignment bits,

e.g. alignment = 3 gives a byte aligned stream
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B.2. Header information

The four signalling bits are defined as:

reserved4 diagonal53 qtRounding dataOrder

Item Size Description

reserved4 bit Reserved for future use, set to 0
diagonal53 bit Method of Bit-Plane Reduction (BPR): 0 = Flat BPR

1 = Diagonal BPR for 53 NoEC and TSSP53
qtRounding bit QuadTree Rounding: 0 = floor, 1 = ceiling
dataOrder bit Data order of stream:

0 = quality progressive, 1 = resolution progressive

The diagonal53 bit indicated whether the BPR is applied over blocks with the
same bit plane (flat), or for different bit planes at different resolutions (diagonal).
The flat BPR is used for the regular TSSP and the diagonal BPR for the TSSP53. This
bit therefore also indicates the difference between a TSSP and a TSSP53 bitstream.

Minimum and maximum bit-plane table

For each resolution level, the minimum and maximum bit planes are put in the
minimum and maximum bit-plane table. It starts at resolution level 0 (the smallest
low-pass band), and then the following resolution levels (high-pass bands). To
indicate no data is available in a particular resolution layer, the maximum is set to
0, and the minimum to 15. For the regular TSSP, one minimum-maximum pair is
stored for each resolution, which is shown in the following table.

res[0] res[1] ... res[n]
High Nibble Max bitpl Max bitpl ... Max bitpl
Low Nibble Min bitpl Min bitpl ... Min bitpl

For the TSSP53, a low and high value is available for each resolution, for both
the joined LH–HL band and the HH band. For the first resolution level (0), only the
low value is used to represent the LL band, and the high value is set to a maximum
of 0, and a minimum of 15, to indicate no data is available. The minimum and
maximum bit-plane table for TSSP53 is shown in the following table.
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B. THE TSSP BITSTREAM

res[0] res[1] ... res[n]
low high low high ... low high

High Nibble Max bitpl 0 Max Max ... Max Max
Low Nibble Min bitpl 15 Min Min ... Min Min

Sorting and refinement bits table

For each resolution layer we known the number of bit planes from the minimum
and maximum bit-plane table. We define data blocks for each bit plane, in each
resolution layer, and specify the number of sorting and refinement bits in a special
table. This table is used not only to determine the size of the different block, but
also their location in the bitstream.

TSSP

For the regular TSSP, the number of blocks is defined by:

blocks =
res

∑
n=0

BitPlResmax[n]− BitPlResmin[n] + 1 (B.1)

Information for each block is then put in the stream sequentially.

nSort nRef

Item Size Description

nSort uint32 Number of bits in sorting pass
nRef uint32 Number of bits in refinement pass

TSSP53

For the TSSP53, the number of blocks is defined by:

blocks =
res

∑
n=0

high

∑
b=low

BitPlResmax[n][b]− BitPlResmin[n][b] + 1 (B.2)

Information for each block is then put in the stream sequentially.

nSortlow nReflow nSorthigh nRefhigh
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B.3. Entropy data

Item Size Description

nSortlow uint32 Number of bits in low sorting pass
nReflow uint32 Number of bits in low refinement pass
nSorthigh uint32 Number of bits in high sorting pass
nRefhigh uint32 Number of bits in high refinement pass

B.3 Entropy data

The start position of the entropy data is located after the header, at the first align-
ment boundary. The alignment is specified in the header as discussed in Sec-
tion B.2. Data in the stream is organized in separate blocks, one for each ( bit plane,
resolution, sort/ref ) possibility with the start of each block properly aligned. The
order of the stream is also specified in the header, as either quality progressive or
resolution progressive.

Quality progressive

For a quality progressive bitstream, the block order is as follows, with R for reso-
lution and BP for bit plane:

R[0], BP[max] R[1], BP[max] ... R[max], BP[max]

R[0], BP[max-1] R[1], BP[max-1] ... R[max-1], BP[max-1]

R[0], BP[max-2] R[1], BP[max-2] ... R[max-2], BP[max-2]

Resolution progressive

For a resolution progressive bitstream, the block order is as follows, with R for
resolution and BP for bit plane:

R[0], BP[max] R[0], BP[max-1] ... R[0], BP[min]

R[1], BP[max] R[1], BP[max-1] ... R[1], BP[min]

R[2], BP[max] R[2], BP[max-1] ... R[2], BP[min]
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C. ROUNDING IMPLICATIONS IN THE FIXED-POINT IMPLEMENTATION

In this appendix, we investigate fixed-point rounding implications that can oc-
cur with bit-plane based wavelet codecs such as EZW, SPIHT, SPECK and TSSP. We
initiate this discussion with TSSP as an example, but the same issues occur in the
other codecs and fixed point implementations of for example SPIHT and SPECK
suffer from exactly the same behavior as TSSP due to the fact that they determine
the significance of pixels in an identical manner.

C.1 Wavelet filters and two’s complement numbers

The possible erroneous behavior can occur for coefficient values of the maximum
negative number that can be represented in a two’s complement number repre-
sentation. For systems that encode wavelet coefficients, maximum negative values
will not occur when the processing chain is designed properly. The growth of DC
wavelet coefficients should be limited (by limiting the number of decompositions
and by design of the wavelet DC scaling factors), such that this particular coef-
ficient value will not occur. For a system using an energy-corrected 5/3 wavelet
with a factor 2 for DC coefficients, the maximum number of active bit planes after
the wavelet transform is defined by:

BPmax = BPinput + 1 + Ndecompositions, (C.1)

with BPmax the maximum number of bit planes, BPinput the number of bit planes of
the input and Ndecomposition the number of wavelet decompositions. The increment
of unity in the equation is due to the additional bit required for encoding the sign of
the wavelet result. In the case of 8-bit input values and 6 wavelet decompositions,
the maximum number of bit planes is 15, so that the possible erroneous behavior
will never occur. We should be aware of this behavior, and therefore the following
sections discuss it in more detail, and suggest alternative solutions to optimize
behavior of TSSP for this particular case.

In Section C.2, we will first discuss how the significance of numbers is deter-
mined within TSSP, what are consequences of maximum negative numbers at the
decoder, and how this problem is solved for TSSP. Alternatively, the TSSP could
also be modified to handle two’s complement numbers differently, which is dis-
cussed in Section C.3.

C.2 Current handling of two’s complement numbers

The current implementation uses abs(value) to find the first important bit of a co-
efficient, because this makes sure the positive and negative values are treated sym-
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C.3. Alternative handling of two’s complement numbers

metrically. 4 bit example:

4 = 0100, |4| = 4 = 0100, first bit that is one is at bit position 2.

−4 = 1100, | − 4| = 4 = 0100, first bit that is one is at bit position 2.

For TSSP, -4 is just as significant as 4, which is represented for the whole num-
berspace in Figure C.1.
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Figure C.1: Significance of positive and negative numbers in TSSP.

However, to support the special case of -8 = 1000, we see we need an additional
bit plane to support the -1 * 8. Instead of 3 bit-plane buffers ( the sign is encoded
within the sorting pass buffer ) we need 4 bit-plane buffers. Furthermore, in the
decoder, BPR causes problems, as the -8 is coded as -1 * 8. 8 has all refinement bits
0, and does not grow like other numbers. Subtracting the last rounding correction,
makes it overflow, and positive. A solution to this is using an adder/subtracter
with saturation, or checking for this special case. A schematic diagram of how the
values 7, -7 and -8 are created in the decoder, with and without correction with
S=Sorting, R=Refinement and C=Correction is shown in Figure C.2.

C.3 Alternative handling of two’s complement numbers

For the other possible handling, not the abs(value) is used, but the original two’s
complement value. This will avoid the extra buffer for -32768 and the special check
at the decoder. 4 bit example:

4 = 0100, = positive value, first bit that is one is at bit position 2.

−4 = 1100, = negative value, first bit that is zero is at bit position 1.
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Figure C.2: Errors due to two’s complement processing of a maximally negative number
for a BPR of (a) 0 and (b) 1.
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However, with this method, -4 and 4 are now not equal in significance. The
number space is as visualized in Figure C.3.

7

6

5

4

3

2

1

0

-8

-7

-6

-5

-4

-3

-2

-1

Equal significance for TSSP

Figure C.3: Alternative significance of positive and negative numbers in TSSP.

The coefficients 4 and -5 are now equal in significance, not 4 and -4. For a BPR
of 2 this means a value of 2 is kept (decoded as 3 though, due to correction) and a
value of -2 is removed and decoded as 0. How this a-symmetry affect lossy coding
performance is not known, but it should be fairly insignificant. Lossless coding
and near lossless coding (BPR¡1) is not possible, since all -1 values have the same
significance as the value 0, and are therefore treated as insignificant by the encoder.

The maxlevel should also be implemented differently. In the current imple-
mentation, the abs(value) is used, and bits are checked determining the location of
the first bit that is one. This should be replaced by a routine that separates nega-
tive and positive values, and determines the location of the first one for positive
values, and the location of the first zero for negative values.

Another option is to invert negative values bitwise before determining the first
bit that is one. This can be done without if-statements like this: value⊕ (value �
16), where ⊕ represents the binary XOR operator. 4 bit example:

4 = 0100,� 4 = 0000, 0100⊕ 0000 = 0100, first bit of one is at bit position 2.

−4 = 1100,� 4 = 1111, 1100⊕ 1111 = 0011, first bit of one is at bit position 1.

C.4 Handling of maximum negative values in TSSP

For int16 wavelet coefficients, we usually require only 15 sorting and 15 refine-
ment buffers, as the sign is stored in the sorting buffer of the top bit plane. To
support the special case of the maximum negative number an integer can contain,
we opted to utilize an additional bit-plane buffer to support maximum negative
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values, as to retain symmetry in the importance of wavelet coefficients. Further-
more, by using this method of calculating the significance of wavelet coefficients,
TSSP stays backward compatible with SPECK, and also the rate-distortion perfor-
mance remains unaltered.

It should be noted that the special case discussed in this appendix, is not only
applicable to TSSP, but also to other well-known bit-plane based coders, such as
EZW, SPIHT and SPECK. Furthermore, when using natural images and standard
wavelet transforms, it is impossible that this extreme negative value occurs when
the number of wavelet decompositions is limited as discussed previously.
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D. TABLES FOR CALCULATION OF ARBITRARY ACCESS

This appendix contains tables that depict the number of required frames for
decoding an arbitrary frame. For each of the frames in the GOP, the number of
frames required for decoding is given, and the average is calculated. Results are
given for a predictive codec with: (1) IP structure, (2) IBP structure and (3) IBBP
structure, and (4) a 3D-subband codec, in Tables D.1, D.2, D.3 and D.4, respectively.

Table D.1: Number of frames required to decode a specific arbitrary frame in a predictive
IP coder with a GOP of 16.

GOP index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I-frames 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
P-frames 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
B-frames 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Req. frames 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Average 8.5 frames

Table D.2: Number of frames required to decode a specific arbitrary frame in a predictive
IBP coder with a GOP of 16.

GOP index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I-frames 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
P-frames 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 7
B-frames 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Req. frames 1 3 2 4 3 5 4 6 5 7 6 8 7 9 8 10
Average 5.5 frames

Table D.3: Number of frames required to decode a specific arbitrary frame in a predictive
IBBP coder with a GOP of 15.

GOP index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

I-frames 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
P-frames 0 1 1 1 2 2 2 3 3 3 4 4 4 4 4
B-frames 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1

Req. frames 1 3 3 2 4 4 3 5 5 4 6 6 5 7 7
Average 4.33 frames
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Table D.4: Number of frames required to decode a specific arbitrary frame in a 4-level 3D
subband coder with a GOP of 16, for various temporal configurations.

GOP index (4,0) (1,2) (0,2) (0,1) (0,0) BDLD

0 9 5 3 2 1 1
1 14 9 6 4 2 6
2 13 8 5 3 2 5
3 14 9 6 5 3 6
4 12 7 4 3 2 4
5 14 9 7 5 3 6
6 13 8 6 4 3 5
7 14 9 7 6 4 6
8 11 6 4 3 2 3
9 14 10 7 5 3 6

10 13 9 6 4 3 5
11 14 10 7 6 4 6
12 12 8 5 4 3 4
13 14 10 8 6 4 6
14 13 9 7 5 4 5
15 14 10 8 7 5 6

Average 13 8.5 6 4.5 3 5
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E. UTILIZED RAW TEST VIDEOS

In this appendix, we present the raw test videos utilized in this thesis. The test
videos were chosen for the following four reasons:

• First, the test videos are available in raw YUV format, and therefore are not con-
taminated with any coding artifacts.

• Second, by utilizing common test videos available in the public domain, the test
results can be easily compared to other literature.

• Third, sequences have been chosen that can represent typical video surveillance
applications, for example a camera rotating around a scene of interest, or track-
ing an object. None of the scenes have scene-cuts or other editing applied to
them, as this does not occur for surveillance type videos.

• Fourth, a variety of common camera resolutions have been chosen to repre-
sent variations and developments in video surveillance, from standard defini-
tion 4CIF (704× 576 pixels) to high definition videos at 720p (1280× 720 pixels)
and 1080p (1920× 1080 pixels).

Table E.1 lists the chosen videos, and provides detailed information for each
regarding color space, resolution, aspect ratio, frame rate and length. The follow-
ing sections will give a short description of each of the videos, and present a visual
overview by showing thumbnails at varying moments in time.

Table E.1: Details of the raw video used for experimentation.

Color space / Resolution Aspect Frame rate Length

Video Color sub-sampling [pixels] Ratio [fps] [frames]

City YCbCr / 4:2:0 704×576 4:3 60 600

Crew YCbCr / 4:2:0 704×576 4:3 60 600

Parkrun YCbCr / 4:2:0 1280×720 16:9 50 504

Stockholm YCbCr / 4:2:0 1280×720 16:9 59.94 604

Station 2 YCbCr / 4:2:0 1920×1080 16:9 25 313

Crowd run YCbCr / 4:2:0 1920×1080 16:9 50 500
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Utilized raw test videos

City (704×576 pixels, 60 fps)
View from helicopter circling around Empire State Building, New York. Highly
detailed video with complex camera movement.

Frame 0 Frame 250 Frame 500

Crew (704×576 pixels, 60 fps)
Camera following space-shuttle crew walking towards camera, with bright pho-
tography flashes. Camera starts static, then pans to right.

Frame 0 Frame 250 Frame 500

Parkrun (1280×720 pixels, 50 fps)
Camera following man running in the park, with highly detailed and random
background. Camera pans from left to right.

Frame 150 Frame 350
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E. UTILIZED RAW TEST VIDEOS

Stockholm (1280×720 pixels, 59.94 fps)
High viewpoint on Stockholm, with highly detailed structured objects. Camera
pans over image.

Frame 200 Frame 400

Station 2 (1920×1080 pixels, 25 fps)
Zoom out of train tracks, with moving train. Scene contains many lines vanishing
in the horizon and hard edges.

Frame 100 Frame 200

Crowd run (1920×1080 pixels, 50 fps)
Overview scene of crowd running towards camera. Camera has overview position
and performs a slow pan.

Frame 100 Frame 300
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F. EXAMPLE OF OPTIMIZED CODE FOR THE DM642 DSP

In this appendix, a code example is provided for the optimization of the 5/3 in-
teger wavelet presented in Section 6.3. The provided code in Listing F.1 performs
the predict step of the 5/3 wavelet, fully utilizing SIMD instructions and 64-bit
read and writes, with the prolog, kernel and epilog stages clearly defined.

// Prolog
a l o = l o ( amemd8 ( pLineIn ) ) ;
a h i = h i ( amemd8 ( pLineIn ) ) ;

// Kernel
f o r ( x = 4 ; x < width ; x += 4)
{

// P r e d i c t
b l o = l o ( amemd8 ( &pLineIn [ x ] ) ) ;
b h i = h i ( amemd8 ( &pLineIn [ x ] ) ) ;

x0 = pack2 ( a hi , a l o ) ;
x1 = pack2 ( b lo , a h i ) ;
x2 = shr2 ( add2 ( x0 , x1 ) , 1 ) ;
x3 = sub2 ( packh2 ( a hi , a l o ) , x2 ) ;

y h i = packh2 ( x3 , x0 ) ;
y l o = pack2 ( x3 , x0 ) ;

amemd8 ( &pLineIn [ x − 4] ) = i t o d ( y hi , y l o ) ;

a l o = b l o ;
a h i = b hi ;

}

// Epilog
x0 = pack2 ( b hi , b l o ) ;
x1 = pack2 ( b hi , b h i ) ;
x2 = shr2 ( add2 ( x0 , x1 ) , 1 ) ;
x3 = sub2 ( packh2 ( b hi , b l o ) , x2 ) ;

y h i = packh2 ( x3 , x0 ) ;
y l o = pack2 ( x3 , x0 ) ;

amemd8 ( &pLineIn [ width − 4] ) = i t o d ( y hi , y l o ) ;

Listing F.1: Predict step of the 5/3 integer wavelet
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