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ABSTRACT

The goal of the MASCOT project was to develop new video coding schemes and tools that provide both an

increased coding efficiency as well as extended scalability features compared to technology that was available

at the beginning of the project. Towards that goal the following tools would be used:

• metadata-based coding tools;

• new spatiotemporal decompositions;

• new prediction schemes.

Although the initial goal was to develop one single codec architecture that was able to combine all new coding

tools that were foreseen when the project was formulated, it became clear that this would limit the selection
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of the new tools. Therefore the consortium decided to develop two codec frameworks within the project, a

standard hybrid DCT-based codec and a 3D wavelet-based codec, which together are able to accommodate all

tools developed during the course of the project.

1998 ACM Computing Classification System: E.4, I.4, I.2.10.

Keywords and Phrases: Video coding and compression, scalability, metadata, wavelet, motion estimation and

compensation, MPEG, H.26x.
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1 Executive Summary 
 
The continuing growth of multimedia applications leads to a great expansion of video transmission over 
heterogeneous channels such as internet, mobile nets and in-home digital networks. This raises new 
challenging problems related to varying transport conditions (e.g., bandwidth, error rate) and receiver 
capabilities (CPU, display). However the improvement in compression efficiency between MPEG-2 and 
MPEG-4 is not significant and new techniques are required to overcome this limitation and to enable a 
quick and easy access to large multimedia data repositories. The main goal of MASCOT is to bring a 
breakthrough in multimedia data coding and access through the exploitation of two innovative techniques, 
the design of new decompositions and the exploitation of metadata to improve coding efficiency.  
 
The notion of scalability is the expected functionality to introduce a high degree of flexibility in 
coding/decoding systems, and therefore there is an increasing need for intrinsically scalable video coding 
schemes providing fully progressive bitstreams. A major objective of the MASCOT project is to fill this 
need by exploiting novel wavelet decomposition methods and more efficient prediction techniques. A 
second major objective is to to explore how video sequence encoders might exploit available metadata 
information  to improve the compression efficiency.  
 
Hence the goal of the MASCOT project was to develop new video coding schemes and tools that provide 
both an increased coding efficiency as well as extended scalability features compared to technology that 
was available at the beginning of the project. Towards that goal the following tools would be used: 
• metadata-based coding tools; 
• new spatiotemporal decompositions; 
• new prediction schemes. 
Although the initial goal was to develop one single codec architecture that was able to combine all new 
coding tools that were foreseen when the project was formulated, it became clear that this would limit the 
selection of the new tools. Therefore the consortium decided to develop two codec frameworks within the 
project, a standard hybrid DCT-based codec and a 3D wavelet codec, which together are able to 
accommodate all tools developed during the course of the project.  
 
Available codecs have been used as starting point for both. For the hybrid DCT-based codec, the codec 
developed by the Joint Video Team (JVT), henceforth referred to as H.264/AVC codec, has been used as 
the baseline codec. The second baseline codec architecture used in MASCOT is a 3D wavelet codec. 
Initially this was a codec provided by Philips Research France (PRF), who also coordinated the 
integration of tools from other partners. Unfortunately, PRF withdrew from the project on September 1, 
2002. The consortium then switched to another wavelet codec platform, which was publicly available and 
used within the MPEG community. We will henceforth refer to this codec as the Woods codec, after its 
originator John W. Woods. In parallel to the Woods codec, the consortium also investigated in the first 
project year the possibility of utilizing an architecture exploiting in-band or wavelet-domain motion 
estimation and compensation. Due to the fragmentation of the wavelet research activities induced by this 
additional architecture and the international consensus that existed at that time in relation to the spatial 
domain approach used by the Woods codec, the consortium decided additionally to focus all research 
effort on the latter.  
 
These two selected architectures (H.264/AVC and Woods) have the clear advantage that MASCOT 
results can be easily compared with results from the original codecs and that improvements can be 
contributed directly. The main objective of the project was then to improve the performance of these two 
baseline codecs by replacing certain tools or adding additional ones. For the hybrid DCT-based codec 
these concern among others: 
 
• metadata-based tools such as 

– texture synthesis 
– face encoding 
– video transitions 
– selection of reference frames 
– rate control 
– video segment shuffling 

• scalability tools 
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• long-term global motion compensation (LTGMC) 
 
For the 3D wavelet codec, the following tools have been explored: 
• new temporal decompositions, including 

– 5/3 motion-compensated temporal lifting 
– sliding window implementations of the latter 

• new spatial decompositions, including 
– morphological wavelets 
– adaptive wavelets 
– no-overshoot wavelets 

• wavelet-based motion estimation 
• new motion vector encoding techniques 
• in-band wavelet video coding technologies. 
 
Both MASCOT codecs have been tested extensively with a test setup similar to MPEG core experiments. 
Significant improvements compared to both baseline codecs have been achieved. Since the two integrated 
MASCOT codecs directly extend and improve the state-of-the-art in video coding, they can be regarded 
to be among the most advanced video codecs available in the world, which is the major outcome of the 
MASCOT project. 
 
Finally the results obtained within the MASCOT project have been demonstrated to a broad public at the 
Picture Coding Symposium held on April 23-25 in Saint Malo, France, which is one of the major world 
wide conferences on image and video coding. An exhibition was organized showing the improvements 
achieved in MASCOT. 
 
 
 
 
 

 
 
 
Regarding the second conclusion it must be observed that further exploration of both hybrid DCT-based 
and 3D wavelet-based architectures is necessary to ensure competitive rate-distortion behavior compared 
to non-scalable MPEG-4 video coding technology and to allow for the selection of a suitable architecture. 
 
The first conclusion is justified by the results summarized in Section 4.3, and the second conclusion is 
supported by the results in Section 4.4, as well as by the latest developments in the MPEG community. 
 

 
Two main conclusions of MASCOT project: 
 

 
1. M etadata can be useful for  video coding 

 
2. Scalability is an impor tant issue for  the future 
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We conclude this summary with a table listing all the tools investigated in MASCOT, their usefulness, 
and a measure of risk for their further development. 
 
 
Tools developed in M ASCOT Codec Rating Risk Reference 
Texture (metadata) Hybrid Very successful Low Section 3.3.2 
Faces (metadata) Hybrid Successful Average Section 3.3.3 
Video transitions (metadata) Hybrid Very successful Low Section 3.3.5 
Dissolve transitions (metadata and 
prediction) 

Not integrated Promising High Section 3.3.6 

Reference frames (metadata) Hybrid Successful Average Section 3.3.7 
Rate control (metadata) Hybrid Successful Low Section 3.3.8 
Mosaics and key-regions for coding 
(metadata) 

Hybrid Not integrated High  

Video segment shuffling (metadata) Hybrid Successful Average Section 3.3.9 
Temporal 5/3 lifting Wavelet Very successful Average Section 3.4.2 
Sliding window implementation of 
temporal lifting 

Wavelet Very successful Low Section 3.4.2 

Morphological wavelets for spatial 
decompositions 

Wavelet Promising Low Section 3.4.3 

Adaptive wavelets for spatial 
decompositions 

Wavelet Promising Low Section 3.4.3 

No-overshoot wavelets for spatial 
decompositions 

Wavelet Not successful 
(for video 
compression) 

 Section 3.4.3 

GoF size selection  Wavelet Successful Average - 
Scalability for hybrid codec Hybrid Very successful Average Section 3.4.4 
Wavelet-based motion estimation Wavelet Very successful Average Section 3.5.2 
Motion estimation and compensation in 
wavelet domain 

Not integrated Very successful High Section 3.5.3 

Motion vector coding wavelet Very successful Low Section 3.5.4 
Long term global motion compensation hybrid Very successful Low Section 3.5.5 
Long term motion prediction using 
graph matching 

Not integrated Not successful  Section 3.5.6 
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2 Project Objectives 

2.1 Motivation 
The continuing growth of multimedia applications leads to a great expansion of video transmission over 
heterogeneous channels such as internet, mobile nets and in-home digital networks. This raises new 
challenging problems related to varying transport conditions (e.g., bandwidth, error rate) and receiver 
capabilities (CPU, display). Internet is expected to become the major future carrier for all sorts of audio-
visual information and data. Consequently, requirements for bandwidth availability and quick and easy 
access to large multimedia databases will be more and more stringent. To a large extent, this concerns 
video data. However the improvement in compression efficiency between MPEG-2 and MPEG-4 is not 
significant and new techniques are required to overcome this limitation and to enable a quick and easy 
access to large multimedia data repositories. In this context, the main goal of MASCOT is to bring a 
breakthrough in multimedia data coding and access through the exploitation of two innovative techniques, 
the design of new decompositions and the exploitation of metadata to improve coding efficiency. 

2.2 New decompositions enabling scalable compression 
The notion of scalability is the expected functionality to introduce a high degree of flexibility in 
coding/decoding systems. For all currently available interactive multimedia applications however, which 
are very demanding in terms of video quality and coding efficiency, the cost as well as the limited 
performances of scalability obtained in the current standards remain unacceptable. That is why there is a 
need for intrinsically scalable video coding schemes providing fully progressive bitstreams. A major 
objective of the MASCOT project was to fill this need by exploiting novel wavelet decomposition 
methods and more efficient prediction techniques.  

2.3 Using metadata to improve coding    
It can be expected that in the future, a very large amount of audio-visual documents will be indexed and 
that metadata information will be rather easy to create. As a result, in many circumstances, audio-visual 
material will be available together with the metadata describing its content. Therefore, future image and 
video sequence encoders will be able to use the metadata information in order to improve their efficiency 
or to optimise their strategy. One of the main objectives of MASCOT is to demonstrate the validity of this 
approach and to develop an efficient compression scheme exploiting metadata information. Metadata here 
refers to the indexing information that may be available to support search, query and browse 
functionalities, e.g.  in MPEG-7 or SMPTE metadata standards.   
 
In some situations, existing metadata can help in order to select encoding parameters that are suited to 
encode particular video sequence. For instance, the rate control tool selects the best IPB GoP structure 
taking into account the MPEG-7 motion activity metadata that describe the amount of motion that is 
present in the video sequence. In some other situations, in order to fully exploit the metadata information, 
the strategy of the encoder will have to severely change the bitstream syntax and semantics of the 
bitstream. In the later case, the encoder will not be able to decode the sequence unless the metadata 
information is also available. The video shot transition coding can also be included in this scenario. In this 
case, the inter frame prediction of the standard hybrid codec is modified so metadata information of shot 
transition is exploited in order to improve the prediction step. 

2.4 MASCOT objectives 
Therefore, the main objectives of the MASCOT project are: 

 
• To provide a breakthrough in the domain of video compression and to improve the quality of the 

reconstructed video at low bit-rates by using metadata during the encoding and decoding steps, 
exploiting recently developed concepts in nonlinear, i.e., morphological and adaptive wavelet 
decompositions, and by the development and optimisation of advanced and dedicated prediction 
schemes. 

• To develop intrinsically scalable compression schemes, which fulfill the requirements of multimedia  
applications, by: 
- covering a wide range of bit-rates; 
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- yielding high compression ratios to guarantee transmission of large quantities of video data over 
one channel; 

- providing a high level of bitstream embeddedness to enable the adaptation of the compressed 
video data to a variety of networks (with different bandwidths, error rates, etc.) and receivers 
(characterised by different capabilities in terms of display size, CPU, and memory). 

• To provide Europe with a leadership in new video compression techniques by building up a strong 
patent portfolio in this strategic domain, and contributing to the awareness of the project 
achievements by publications in renowned journals and communications to key conferences and 
exhibitions. 

• To contribute to standardisation committees like ITU-T  and MPEG in order to bring in MASCOT’s 
developments in scalability, and to follow the activities of MPEG-7 (and MPEG-21) and JPEG-2000. 
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3 Methodologies 

3.1 Introduction 
In this section we describe all tools that have been developed within the context of the MASCOT project, 
both for the hybrid DCT-based codec and for the 3D wavelet codec1. In Section 4 we summarise the 
results that have been obtained for these tools. 

3.2 Two MASCOT codecs 
The goal of the MASCOT project was to develop new video coding schemes and tools that provide an 
increased coding efficiency and extended scalability features compared to available technology. This 
should be achieved by new metadata-based coding tools, new spatiotemporal decompositions and new 
prediction schemes. In the beginning of the project it was intended to build a single codec architecture 
that should combine all the new coding tools. During the first months and meetings it turned out that the 
integration of the substantially different new coding approaches in a single new framework could not be 
achieved since some of the approaches were inherently incompatible. 
 
Most of the ideas in metadata-based coding were strongly related to classical hybrid video coding 
schemes such as H.264/AVC. For instance the Selection of Reference Frames and Long-term GMC tools 
can only be used in connection with the multi-frame prediction of H.264/AVC. Also the Rate Control, 
Texture, and Transitions tools directly target a classical hybrid video coding framework and the 
Scalability tool directly extends the H.264/AVC architecture and provides new functionality. On the other 
hand the ideas on 3D wavelet coding and prediction could of course only be investigated within the 
framework of a 3D wavelet codec. These two research directions (improvement and extension of classical 
hybrid coding and 3D wavelet coding) are the most important trends in video coding, which is reflected 
e.g. in the related activity in MPEG. 
 
As a consequence the consortium decided to follow both directions and to use two codec frameworks 
within the project, a standard hybrid DCT-based and a 3D wavelet codec, which can accommodate all 
new tools. Available codecs have been used as starting point for both. The main task of the project was 
then to improve the performance of these baseline codecs that could be measured directly in comparison 
to the state-of-the-art2. 
 
MASCOT has developed a metadata-based architecture which uses a standard hybrid codec along with 
new tools developed within the project. The H.264/AVC codec developed within the Joined Video Team 
(JVT) has been used as baseline. The H.264/AVC codec is a joined effort of ISO/MPEG and the ITU-
T/VCEG to develop a new video coding standard (MPEG-4 part 10 and ITU-T H.264), which represents 
the state-of-the-art in video coding. The new H.264/AVC codec is very similar to existing standard video 
codecs such as MPEG-2 or H.263. The impressive performance gain of the H.264/AVC codec of up to 
50% bitrate reduction compared to MPEG-4 Advanced Simple Profile mainly comes from an intelligent 
optimization and combination of existing concepts.  

3.3 Metadata-based tools 

3.3.1 General 
One of the basic objectives of MASCOT has been to use metadata information to improve coding 
efficiency. During the initial phase of the project, descriptors and description schemes (DS's) included in 
the MPEG-7 and SMPTE standards were analyzed and their potential use for encoding was investigated. 

                                                           
1 In this report we shall often use the terminology “3D wavelet codec” . But in the literature one also finds the terminology “2D+t 
wavelet codec”  or “3D subband codec” . 
2 However, it should be noted that the partner (VUB) carrying out the in-band wavelet video research continued its research effort 
on this type of architectures, utilizing external funding, and succeeded in combining this expertise with its expertise gained with the 
research activities on the Woods architecture. This resulted in an MPEG proposal, co-authored by Philips USA, that proposes an 
MCTF-based in-band wavelet video codec that additionally allows plugging in an hybrid DCT-based codec to encode the low-pass 
subbands (being the base layer). This proposal comes also forward to the requirements imposed by the MPEG-4’s Scalable Video 
Coding Ad Hoc Group stating that the base layer of a scalable MPEG-4 codec should be backward compatible with the hybrid DCT-
based schemes.  
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The results of this study have been presented in Deliverable 2.1. The main conclusions of the study are 
that the following metadata can be used to improve coding efficiency: 
 
 
Feature 
type 

Descr iptor  name Application to coding 

Color 

Dominant color 
Scalable color 
Color layout 
Color structure 
GoF/GoP Color 

• These descriptors provide rough information about the color 
distribution of the pixels. Although, the description gives an 
approximation of the pixel probability density function, it is 
not precise enough to allow any improvement of the entropy 
coding. 

• However, they can be used to search and retrieve images or 
shots. The classical motion compensation problem in video 
coding can be formulated as a search and retrieval problem. 
With this approach, any low-level descriptor useful to search 
and retrieve visual content can be used.  

Texture 
Homogeneous  texture 
Texture browsing 
Edge histogram 

• Texture descriptors can also be used for the motion 
compensation problem formulated as a search and retrieval 
problem. Some textured areas can be omitted during the 
encoding process and synthesized at the receiver end. In this 
case, the texture descriptor is mainly used to classify and select 
the textures that can be synthesized. In this context, the Edge 
Histogram descriptor has been used. 

• These descriptors are also appropriate to tune the quantization 
parameters. The main idea of the approach is to save some bits 
for specific textured areas.  

Motion 

Camera motion 
Motion trajectory 
Parametric motion 
Motion activity 

• These descriptors are quite low level and are therefore easy to 
use for compression. Motion trajectory or parametric motion 
can be used to construct mosaics. Parametric motion is also 
used to allow motion compensation of the synthesized texture.  

• Finally, motion information is a very important feature to 
design an efficient bit assignment strategy.  

• The Motion Activity is also used to define the filtering 
structure and the GOF size of the 3D wavelet encoder. 

Face Face recognition 

• This descriptor defines a subspace appropriate for face 
identification and recognition. Although, it specifies a 
transform that could be used for face encoding, it has been 
proven that the direct use of MPEG-7 descriptors is not useful 
for encoding. The main reason for this conclusion is that the 
descriptor does not allow to represent a face with  sufficient 
quality.    

 
Beside the low-level descriptors, the content description area of MPEG-7 also allows the creation of 
Tables of contents and Indexes. They can be considered as high-level description of the structure of the 
content. This information can be used to improve the compression efficiency. For instance, similarity 
between shots or frames can be extracted from the structural description of the content to reorganize the 
sequence to be coded. Finally, MPEG-7 includes a specific tool to describe the sequence structure at the 
level of shot transition: Analytic Transition DS. This information has been used to improve the 
compression of frames belonging to a transition. 
 
Fig. 1 shows a high-level block diagram of the MASCOT hybrid encoder. As an illustration, this example 
also shows how the texture tool has been integrated into the H.264/AVC framework. 
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Figure 1: Block diagram of MASCOT hybrid encoder using texture metadata. 

The new metadata-based coding tools (the new prediction tools also) developed within MASCOT have 
been integrated into the H.264/AVC codec. Some of the metadata-based coding tools only influence the 
encoder while others also influence the decoder and therefore need to be transmitted. Derived data like 
region assignment masks may also need to be transmitted. This results in a trade-off between the 
additional bitrate for the overhead and the improved coding efficiency. The H.264/AVC bitstream syntax 
provides hooks to attach metadata to the video bitstream. Some of the new coding tools leave the 
H.264/AVC bitstream syntax unchanged; others will require modifications to the syntax. In any way the 
result has been an improved H.264/AVC codec, which is the best available hybrid video codec. 
 
In the following a summary of the main metadata-based video coding techniques developed in the 
MASCOT project are presented. 

3.3.2 Texture  
In this new approach to video coding, the video scene is being classified into subjectively relevant and 
irrelevant texture regions. Relevant textures are those where details matter and which should be 
reproduced accurately. Irrelevant textures can be seen as image content with less important subjective 
details and for which an approximate reproduction can be chosen. This idea is applied to video coding 
using a texture analyzer and a texture synthesizer. The analyzer identifies subjectively irrelevant texture 
regions, generates masks for the decoder as well as side information for the synthesizer. The synthesizer 
replaces the original irrelevant textures by inserting synthetic textures in the identified regions. The 
approach has been integrated into the MASCOT hybrid codec. Bit-rate savings between 10% and 23% 
and between 5% and 18.1% compared to the H.264/AVC video codec are shown for a semi-automatic 
and for the current implementation of an automatic method respectively given similar subjective quality. 

3.3.3 Face coding of video sequences 
The goal of this tool is to improve the coding efficiency of human faces with respect to other existing 
coding schemes. The functionality that has been developed is of interest in video conference applications, 
mobile telephony with video transmission, internet applications where face transmission at low speed is 
of importance, etc. It is important to emphasize that the coding scheme that has been developed is only 
suitable for face coding. It is also clear that, prior to the encoding process, the face needs to be detected. 
The scheme assumes that the face is previously detected before the actual encoding process. The face 
detection process is out of the proposed codec architecture. 
 
The face encoding scheme is based on the well-known eigenspace concepts used in face recognition 
systems, which have been modified to cope with the video compression application. The main differences 
from other proposed schemes are a new way to adapt the eigenspace to take into account the different 
poses, expressions and lighting conditions of the faces, and the combined use of the H.264/AVC codec to 
encode the face updates. As an added value to the encoded images, the MPEG-7 descriptors of the image 
faces have been found and added to the bit stream to allow search and browsing functionalities. 
Acceptable results have been found for bit-rates around 2.5 kbits/s.  
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During the MASCOT project it was shown that the MPEG-7 descriptors are not suited to improve coding. 
This is due to the fact that the MPEG-7 descriptors are focused on detection and recognition. Therefore 
the reconstructed image quality that can be achieved by combining the descriptor eigenspace and a set of 
parameters is very poor. During the project, a new technique using a combined adaptive PCA and a 
hybrid H.264/AVC coding approach was developed and proved to be very successful. 

3.3.4 Mosaics and key-regions for coding 
Mosaics images, also called sprites, are representations of the background information of a video scene 
aligned into the same spatial reference. The global motion of the sequence is extracted in order to 
segment background and foreground objects from the sequence. Recent video coding standards like 
MPEG-4 can exploit mosaic images to improve the coding efficiency. A mosaic of the background 
information of a scene is used as reference when coding background blocks of the current image. This 
mosaic or sprite is made also available for the decoder. The bit-rate increase due to the creation of the 
mosaic image is compensated by the prediction improvement in the coding process. Metadata descriptors 
also use sprites to display the background information of a shot. This is useful for quick browsing of 
video sequences. Metadata descriptors do not restrict the use of mosaics for background regions but 
foreground regions can also be represented. Figure 2 shows an example of a metadata description for a 
video shot. The background information is easily presented using a mosaic image. Foreground regions 
may not be rigid so using a unique mosaic image is not effective. In the case of foreground regions a more 
complex model is needed to represent different poses or changes of foreground regions along the scene. 
In the example of the figure, foreground regions are represented using three image models. A texture 
image with the foreground texture information, an appearance image with a weighted mask of the pixels 
that appear on the region and a contour image with the shape information of the foreground object. 
 

 

Mosaic background Image 

Video Sequence 

Foreground Region 1 

Foreground Region 2 

 

Figure 2: Metadata descriptor for shot browsing 

It was intended to use this descriptor also to improve the video coding of foreground objects. If, for 
instance, a specific object has a considerable presence in a video sequence, the metadata model can be 
used to improve its prediction along the overall sequence. The coding scheme of this approach is 
therefore very similar to the sprite coding of MPEG-4 but with the possibility of using various sprite 
images or foreground models to predict future appearances of these objects through the scene. Coding of 
video using mosaics was discontinued in the framework of the MASCOT project.  

3.3.5 Video shot transitions coding 
Transitions between video shots are very common in standard video. Metadata describing video transition 
effects can be used to improve the inter-frame prediction when coding that specific transition. For 
instance, in the case of dissolves, prediction of previous or past frames can be modified taking into 
account the information of the shot transition metadata. The codec can then make use of this extra 
information to improve the coding efficiency (in terms of rate-distortion efficiency). It can also be 
modified so that the data already present in the metadata stream is not duplicated in the coded stream. 
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The proposed method to code transitions using metadata has the following two steps.  
 

• In the first step, the standard IPB structure of current hybrid codecs is modified such that only B 
frames exists within the transition. To do so, the first P-frame in the transition is moved to the 
end frame of the transition marked by the metadata. Using only B-frames in the transition has the 
advantage that current frames can be predicted using two references both at the beginning and at 
the end of the transition. 

• In the second step, the standard interpolative mode of B-frame is changed such that it can use 
different weights for previous and past references (instead of fixed 0.5 weights for each 
reference).  

 
Results have shown that using metadata for the coding of video transitions increase the coding efficiency. 
In the case of short transitions (up to 6 or 7 frames) the bit-rate gains can be up to 80%. In the case of 
long gradual transitions the bit-rate saving are smaller due to the need of including references within the 
transitions. In the later case, bit-rate savings of 15% are expected when coding video transitions using 
metadata. 
 
During the duration of the MASCOT projects, several improvements of this technique were developed, 
implemented and tested. The strategy was migrated from the Momusys MPEG-4 framework to the 
H.264/AVC hybrid codec framework. For the case of long gradual transitions, is was noted that using 
only one reference at the beginning and at the end of the transition was not enough for the prediction step 
and therefore a new technique was developed in order to include several references (B-frames) inside the 
transition. This new strategy improved the results when using transition metadata for long transitions. 

3.3.6 Dissolve transition encoding 
A dedicated strategy was developed to encode efficiently video sequences around dissolve transitions. 
The motivation of the strategy was that the motion prediction model underlying all video coding 
approaches, either hybrid of 3D MCTF-based, is a single motion displacement model. Each patch or 
block of a frame is moving along a single motion in time. 
This model is not correct any more during dissolve transitions, where the video sequence is a transparent 
superposition of 2 sequences each with its own motion:  

– one fading-out sequence 
– one fading-in sequence. 

A sequence analysis framework was devised to extend a wavelet-based single motion estimation scheme 
in order to  

– perform a double motion estimation to obtain two motion maps v1 and v2; 
– use the multiple motion information to separate the components of the video sequence by 

velocity: the sequence is I=I1+I2 where I1 is moving along v1 and I2 along v2. 
Once the two superimposed sequences separated, each sequence with its own motion is encoded 
separately. Gain is expected from this encoding strategy in dissolve transitions because the underlying 
model more accurately reflects the video sequence evolution in time, as a single motion model does. 
 
First complexity estimates showed that the approach was computationally very expensive, and was 
unfeasible in practice if performed on a whole video sequence. Metadata on video transitions are thus 
used to point frames in time segments on which a dissolve transition occurs, which a small proportion of 
the whole video sequence. For other frames, classical single motion-based compensation is done. 
 
The approach has been described in deliverable D2.2. A first implementation to estimate everywhere two 
motion vector maps led to very unstable results. Inaccurate estimates of the flow maps jeopardizing a 
stable separation of the sequence I into sequences I1 and I2, it turned out that substantial changes of the 
estimation method were required to increase its accuracy. Therefore, further development of this tool was 
abandoned. However, we believe that under some usage scenarios, such a tool can be useful even if 
applied to transitions only, because it will prevent the decoded image quality to drop sharply at such 
dissolves when decoding at constant bitrate. When decoding a bitstream of variable bitrate, the tool is 
definitely less useful. 

3.3.7 Long term selection of reference frames 
Normal video sequences have a high degree of temporal redundancy. Standard hybrid coders exploit this 
fact by using past frames as references for coding the current frame. Once a good candidate has been 
selected as reference, only the difference between the reference and the current frame is encoded and 
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written in the bitstream. A simple translational motion model is also used to cope with the internal motion 
of the video sequence. Therefore, the final codec must send the difference between the current block and 
the reference block plus the motion vector information for each block to be coded in the current image. 

 
It is natural to think that the closer frame in time will be the most similar to the frame being coded and for 
that reason current hybrid coders use the closest P- or I-frame in time as a reference for coding the current 
frame. For each block being coded in the current frame, a motion estimation algorithm finds the best 
reference block only in the closest reference frame. Therefore, in current hybrid coders, all blocks of the 
current frame being coded share the same reference image (which is always the closest P- or I-frame in 
time). 
 
Metadata can be introduced in long-term temporal prediction to improve the overall coding efficiency. It 
can be used to perform a pre-selection of possible N candidates for reference frames. As metadata has 
been designed for search and retrieval capabilities, the search space of possible references can be 
increased without severe penalty in the computational cost. Metadata similarity can be used to pre-select 
N frames (to act as reference frames) among a high number of possible candidates frames.  Moreover, as 
the same number of references frames N is used, there is no increase in the bit-rate associated to the 
transmission of the reference frame information. This ordering and pre-selection of previous frames to 
create the long term buffer can be easily created on the decoder side providing the metadata is also 
accessible to the decoder. In that case, no extra information is needed.  

 
Metadata can also help the searching of possible reference frames. Shot descriptors can be used so that 
reference frames are only searched in shots that have similar content. Moreover, metadata about 
collections of documents can point the encoder to similar content of other sequences. For example, a user 
may record the news everyday at 7pm. Metadata in the decoder site can inform the encoder that several 
past bitstreams are already stored and available to the encoder. The codec can make use of those as 
possible reference for coding the current sequence. 
 
There are several candidates that may improve long-term temporal prediction. The selected metadata 
should be simple and easy to compute. It also needs to include a similarity criterion so that frames with 
similar contents can be recognized and included in the buffer of possible reference frames. The MPEG-7 
Color Layout descriptor is a valid candidate for this task. This descriptor specifies a spatial distribution of 
colors for high-speed retrieval and browsing. It targets not only image-to-image matching and video-clip 
to video-clip matching, but also layout-based retrieval for color, such as sketch-to-image matching. This 
descriptor can be applied either for the whole image or any (arbitrary shaped) part of the image. In our 
case, the use of this descriptor is to make a pre-selection of similar frames to fill the reference frame 
buffer in long-term temporal prediction. 
 
The long term selection of reference frames technique can be entirely included in the framework of the 
MASCOT project. The coding schema was developed and integrated during the duration of the project. 
At the initial stage several metadata candidates were studied in order to select one metadata that was 
simple, easy to compute and that provided similarity measures to pre-select past references. Using the 
MPEG-7 color layout descriptor as metadata has shown results up to 12% bit-rate reductions with respect 
to the standard H.264/AVC (version 2.1) codec. At the final stage of the project, the technique was 
integrated into a common MASCOT codec. Finally, several enhancements to the technique were also 
implemented. For instance, the color layout metadata was re-computed from previous coded frames 
instead of using the external metadata. This resulted in better coding efficiency when coding at low 
bitrates, as in that case the encoded frames were of significantly worse quality than the original 
references. 

3.3.8 Rate control using metadata 

The selection of encoding parameters in standard video codecs is a non trivial problem. Therefore, current 
video codecs use fixed encoding parameters such as GoP structures or quality factors when coding video 
sequences. The adaptation of these parameters for different video sequences is a difficult problem as 
changing for instance the quality factor Q of one frame may change the distortion of future frames that 
use this frame as reference. At the same time, changing the frame type (between I,P or B) affects also to 
future frames that are going to be encoded. Metadata has been proven useful to improve this step and 
helps in the decision of choosing among different frame types or between different quantizer levels. 
Motion descriptors, such as the MPEG-7 MotionActivityDS descriptor, indicate the presence of high or 
low internal motion in the video sequence. This has been used to select different IBP structures according 
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to the amount of motion present in the bitstream. The selection strategy is based on the assumption that 
sequences with very high internal motion are better encoded using a low number of B-frames. When 
internal motion is rather low, the reference frames (previous and past) used to predict the current B-frame 
are very similar and the B-frame can be predicted with almost no error. In the presence of high internal 
motion, the references can change considerably and the quality of the predicted B-frame drops. Motion 
descriptors can inform the coder whether to use more B-frames when less motion is present in the 
sequence. 
 
Results show that motion information can be used to take apart (more B-frames between P-frames) or join 
(more P references in the GoP structure) frame references. Bitrate savings up to 5% are expected when 
using the rate control tool on standard sequences. This technique can also be included as a new outcome 
of the MASCOT project.  

3.3.9 Video segment shuffling 
Standard hybrid codecs exploit the temporal redundancy of video sequences by performing a motion 
estimation between the current image being coded and a reference (or various previous references such as 
H26L or JVT codecs). B-frame types also use references that are situated in the future. The use of B-
frames has been proved to generally increase the coding efficiency. Therefore, the coding frame order and 
the display order need to be changed in order to be able to use previous and past references. In that case, 
the ordering is only change a by a small amount of frames (the distance between P-frames). This distance 
is usually small for two reasons. The internal motion of the sequence makes inefficient to have references 
too far in time and, for real time applications, the delay introduced in the system cannot be very high.  
 
In the case of non-real-time applications (such as stored video, etc.) it is then reasonable to think that the 
display order of video frames does not imply that it is the best possible order for coding. Therefore, the 
main question to this metadata tool is: will the re-ordering of video frames prior the encoding process 
help to improve the coding efficiency? Obviously, finding the best possible re-ordering is a difficult task. 
Again, existing metadata can help the decision of the coding order. Metadata, such as the MPEG-7 
SegmentDS metadata descriptor, makes a relationship between different segments of an image.  A 
hierarchical structure can be constructed that makes relationships between regions of an initial partition of 
the image. This hierarchical tree representation describes the image content in a similar way the Table of 
Contents and the index describe the contents of a book. 
 
This metadata can also be applied to Video Segments. In this case, the entire video sequence is analyzed 
and a hierarchical structure is created from an initial partition of the video sequence. This initial partition 
can be composed from single frames, groups of N frames or extracted video shots. Initially, all the initial 
partition is considered and a merging criterion is defined to group frames that (even not closer in time) 
match a certain similarity criterion. One by one, all partitions are merged with the most similar one (in 
terms of the criterion chosen). The final hierarchical tree structure keeps information of all merges that 
have been done until the entire video sequence is merged. 
 
Final results have shown relevant bitrate savings in sequences that present scattered, short and similar 
shots. This is common in TV programs like interviews or shows that switch over several camera 
perspectives. In these cases, bitrates savings up to 8% are expected compared to standard H.264/AVC for 
the same visual quality. The scenario where metadata information must be send together with the content 
has also been studied. In this case, the extra bitrate needed to send the shuffled information is negligible 
compared to the bitrate savings (less that 1% of the bitrate savings). This technique can also be included 
as a direct outcome of the MASCOT project. 

3.4 Spatio-temporal decompositions 

3.4.1 General 
The aim of the workpackage dealing with spatio-temporal decompositions was to develop truly 
innovative schemes and algorithms in the field of spatio-temporal decompositions. The results that have 
been obtained as a results of the MASCOT project, have been embedded into new architectures for 
combined scalability modes (both in the predictive and in the MCTF3 framework), and have also led to 
new paradigms for building spatial and temporal decompositions. 

                                                           
3 Motion-compensated temporal filtering 
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The 3D wavelet codec developed by MASCOT consortium is described in Figure 3 and its different 
modules are described in the next sections. 
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Figure 3: Motion-compensated 3D wavelet video codec developed in MASCOT. 

3.4.2 Temporal decompositions 
We have highlighted the benefits of a lifting formulation of the motion-compensated subband temporal 
decomposition (briefly called “ temporal decomposition” ) entering a 3D wavelet video coding scheme; for 
a reminder on the lifting implementation, see Figure 4 below. This idea implies that the prediction and 
update operators involved in such a scheme are intrinsically non-linear and we have shown how to 
improve the performances of existing Haar filters and also how to extend in this framework the usual 
Haar filters to longer ones. The advantage of this new temporal filtering paradigm is the increased 
flexibility in subband motion-compensated temporal filtering, through bidirectional motion compensated 
prediction-update operators (B-like frames), adaptive filtering, new subband structures, etc. This 
extension raises however another problem: a double number of motion vector fields. Taking advantage of 
the multiscale structure, we have proposed solutions to this problem, by exploiting the redundancies 
between hierarchical motion vector fields. A "sliding window" approach was proposed for implementing 
the temporal decomposition, leading to reduced memory requirements and avoiding GoF border artifacts, 
which otherwise decrease significantly the coding efficiency. 

3.4.3 Spatial decompositions 
The frames resulting after the temporal wavelet decomposition described in the previous subsection are 
decomposed by a 2D spatial wavelet. The default decomposition is the separable wavelet resulting from 
the tensor product of two one-dimensional biorthogonal linear 9/7 wavelets. One of the objectives of the 
MASCOT project was to replace such linear wavelets by nonlinear ones. We have considered three 
different classes of nonlinear wavelets, morphological wavelets, adaptive (update) wavelets, and “no-
overshoot”  wavelets. All three classes have been described in great detail in Deliverable D3.1. We will 
present a brief summary below. 
 
Both the morphological and the adaptive wavelets are based on the lifting scheme, with one important 
difference: the morphological wavelets use the classical lifting scheme depicted in Figure 4, whereas the 
adaptive wavelet comprises an adaptive update lifting step as shown in Figure 5, followed by a fixed (i.e., 
non-adaptive) lifting step.  
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Figure 4: The classical lifting scheme comprising a prediction 
 and an update step. 

 
The lifting scheme introduced by Sweldens in 1997, provides a useful and flexible tool for the 
construction of new wavelet transforms from existing ones. The lifting scheme can be applied from 
various perspectives. It can be used to increase the number of vanishing moments or to improve or add 
other properties of a given wavelet, it can be used to design wavelets on complex geometrical surfaces, or 
to build wavelet decompositions using nonlinear filters, such as rank-order or morphological filters. In the 
MASCOT project we have concentrated on three different families of morphological wavelets which have 
all been described in detail in Deliverable D3.1. The first family can be interpreted as the morphological 
variant of the linear Haar wavelet and uses a direct construction without the lifting scheme. The second 
family is based on median-type operations, in the sense that both the prediction and the update step in 
Figure 4 use a median-type filter. The third family also uses the lifting scheme shown in Figure 4, but in 
this case the prediction and update filters are using a completely different kind of filters. They are based 
on a very novel approach in mathematical morphology introduced by Heijmans and Keshet in [1]. The 
basic idea is to provide the real axis with a new partial ordering. This results in a class of morphological 
filters which are self-dual. The basic filter is called the cisl4 erosion and this filter is used in MASCOT as 
a starting point for a new type of wavelet decomposition. For more details we refer to Deliverable D3.1 or 
the work by Heijmans and Keshet [1]. 
 

 

Figure 5: An adaptive update lifting step comprising the decision map D  
and an adaptive update filter U. 

The adaptive wavelets that have been used in MASCOT have been introduced by Piella and Heijmans in 
[3] and explored in much greater detail by Heijmans, Pesquet-Popescu and Piella in [2], mostly within the 
context of the MASCOT project. The basic idea is captured in Figure 5, which shows a decision map D 
which yields as output a binary decision d=0 or d=1. Depending on this output, one uses update U0 or U1. 
This adaptive update step is then followed by a fixed prediction. The important theoretical results that 
were achieved by Heijmans, Pesquet-Popescu and Piella [2] show that it is possible to design adaptive 
update scheme which do not require bookkeeping for reconstruction, which, obviously, is of major 
importance in the context of image and video compression. Some of the theoretical results have been used 
within the MASCOT project, and some of them are reported in Section 4.4.3. 
 
“No-overshoot”  wavelets have been designed in order to provide an alternative way of removing ringing 
artifacts in decompressed images. The design starts from an original interpolating wavelet transform 
scheme with a single prediction lifting step, where reconstruction overshoots are canceled with 

                                                           
4 Here “cisl”  stands for “complete inf-semilattice” . 
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continuous clamping operators (the continuity is crucial to guarantee that quantization causes a limited 
degradation to the reconstructed signal). This interpolatory nonlinear wavelet transform can be derived 
from various linear wavelet transforms like the Deslauriers-Dubuc schemes of all orders. However, an 
interpolating wavelet transform is badly conditioned for signal compression, and the scheme was 
modified with an additional update step. Several strategies for the choice of an adaptive update step were 
experienced. Also, the scheme was extended for 2-dimensional images.  
 
The resulting transforms were tested for intra-frame coding. Whereas the resulting transform performs 
substantially better than conventional wavelet transforms for synthetic images (flat areas with sharp 
contours), it performs worse for natural images with texture and noise. The “no-overshoot”  wavelet was 
also tested for encoding of prediction error images (high pass frames of the motion-compensated temporal 
transform), which possess more geometrical structure than intra-frames. The results were also 
disappointing: the distortion was always worse at identical rate than linear wavelets; see D3.1. For this 
reason, further integration into the wavelet codec was abandoned. It can be noted however, that the 
underlying “ interpolating no-overshoot”  wavelet is efficient in reducing artifacts in high-order 
interpolations, and can be considered as an interesting byproduct of the MASCOT project.  

3.4.4 Scalability in hybrid codecs 

Gener ic scheme 
Proposed is a scalable coder that consists of two or three motion-compensated coders (Figure 6) that 
encode a video sequence and produce two or three bitstreams corresponding to two or three different 
levels of spatial and/or temporal resolution. The generic structure is characterized by mixed spatio-
temporal scalability and independent motion estimation and compensation performed in the individual 
prediction loops. These two features together with other improvements described further are substantial 
for high efficiency obtained. 
 
The structure of the proposed scalable coders has been proposed and tested for MPEG-2, H.263 and the 
new H.264/AVC platforms. Nevertheless this approach is also applicable to other hybrid video coders, 
like MPEG-4. 
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Figure 6: A generic structure of a multi-loop scalable hybrid coder. 

 
A low-resolution macroblock corresponds to a picture area that comprises 4 macroblocks in the middle-
resolution bitstream. Therefore the respective motion vectors are different for the particular resolution 
layers. It means that each coder has its own prediction loop with own motion estimation. 
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Two-layer  coder  
The most interesting is the two-layer case (Figure 7). 
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Figure 7: Two-layer scalable coder. 

 
Such a coder produces two bitstreams corresponding to two different levels of both spatial and temporal 
resolution (Figure 7). Each of the coders has its own prediction loop with own motion estimation. 
Therefore the coder produces a bitstream that consists of four major parts: 
• encoded transform coefficients for the low-resolution base layer, 
• encoded transform coefficients for the high-resolution enhancement layer, 
• motion vectors for the low-resolution base layer (mv_l), 
• motion vectors for the high-resolution enhancement layer (mv_h). 
The characteristic feature of this structure is independent motion estimation in both sub-coders resulting 
in optimum motion vectors estimated for both resolution levels. These motion vectors allow exact 
motion-compensated prediction in both layers. In the enhancement-layer high-resolution sub-coder 
additional reference frames can be used for both backward and forward prediction, i.e. interpolated frame 
from the current low-resolution base-layer frame and linear combinations (averages) of the current 
interpolated frame and temporal reference. For the latter, independent motion estimation can be 
performed aiming at estimation of the optimum motion vectors that yield the minimum prediction error 
for the reference being an average of spatial and temporal references. 

 
Spatial and temporal decomposition 
Good performance of spatio-temporal down- and upsampling is critical for good performance of the 
whole codec. Spatial decimation includes spatial low-pass filtering that prevents spatial aliasing in the 
base-layer low-resolution sequence. The choice of the filter trades off between high aliasing attenuation 
and short temporal response. The results of experimental comparisons prove the importance of the careful 
choice of the decimation-interpolation scheme. The system considered employs edge-adaptive bi-cubic 
interpolation. The technique is applicable to both luminance and chrominance. 

 
Prediction modes in the high-resolution enhancement-layer  sub-coder  
Sophisticated intra- and interframe predictions are related to major performance improvements in the 
H.264/AVC coders. The enhancement-layer sub-coder employs additional prediction modes that exploit 
the current interpolated base-layer frame as the reference. Other modes exploit averages of temporal 
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prediction and spatial interpolation as references. These modes are carefully embedded into the mode 
hierarchy of the H.264/AVC coder thus obtaining the binary codes that correspond to the mode 
probabilities. The respective mode hierarchy is shown in Table 1. 
 
The choice of the lowest-cost prediction mode plays the key role. The encoding scheme would reduce to 
simulcast when no interpolated reference macroblocks are used in the enhancement layer. In the other 
extreme situation, in the enhancement layer, no temporal prediction is used, and only interpolated base-
layer frames are used for prediction of the enhancement macroblocks (like in MPEG-4 FGS). The latter 
situation is very unlikely because of the high efficiency of the H.264/AVC temporal prediction. 
Nevertheless the extreme situations are related to unsatisfactory coding performance. The spatial 
interpolation must be very efficient in order to avoid them. Good fidelity of the decimation-interpolation 
scheme results in reasonable probability that the reference sample block interpolated from the base layer 
leads to smaller prediction error as compared to the temporal prediction within the enhancement layer.  
 

 
Frame type Prediction modes 

Intra (I) 
1. Spatial interpolation from base layer (16×16 block size). 
2. All standard intra prediction modes. 

Inter (P) 

1. Prediction (forward) from the nearest reference frame. 
2. Spatial interpolation from base layer (16×16 - 4×4 block size). 
3. Average of two above (1, 2). 
4. Temporal prediction modes from other reference frames in the order 

defined in H.264/AVC specification. 
5. All standard intra modes. 

Inter (B) 

1. Prediction (forward, backward and bidirectional) from the nearest 
reference frame. 

2. Spatial interpolation from base layer (16×16 - 4×4 block size). 
3. Average of two above (1, 2). 
4. Temporal prediction modes from other reference frames in the order 

defined in H.264/AVC specification. 
5. All standard intra modes. 

Table 1: Prediction mode hierarchy. 

 
 
Fine granular ity scalability and sequence structures 
Fine granularity may be obtained by use of splitting the data produced on any resolution level. In that 
way, the bitstream fed into a decoder may be well matched with the throughput available. It means that 
the decoding process exploits only a part of one bitstream thus suffering from drift. Always, only one of 
the bitstreams is split, usually the high-resolution one. Therefore only one of the bitstreams received is 
affected by drift that is related to the reconstruction errors which are accumulating during the process of 
decoding of the consecutive frames. In this bitstream, inserted are I-frames encoded with respect to 
interpolated lower-resolution frames. In fact, such frames are encoded similarly as P-frames but with 
simultaneous interpolated reference frames. The bitstream syntax is that of P-frames. Insertion of such 
frames does not affect performance so much but bounds propagation of drift errors to groups of pictures 
(GOPs) (see Figure 8). Moreover, higher percentage of B-frames also decreases the influence of drift. Of 
course, all layers may exhibit the GOP structure for some reasons as usually in MPEG-2 (Figure 9). The 
GOP length should be chosen in such a way that drift is acceptable in the worst case of lowest bitrate in 
the enhancement layer.  
 
In order to improve coding efficiency the prediction scheme from Figure 9 has been proposed. Here, 
skipped are only B-frames (called BE-frames). Those B-frames that exist in both layers (BR-frames) are 
also used as reference frames. 
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Figure 8: Exemplary structure of a video sequence: No B-frames and no GOP structure in the base layer. 
There exist GOP structures in the enhancement layer where the I-frames are encoded with respect to the 

interpolated I- or P-frames from the base layer. 
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Figure 9:  Exemplary structure of a video sequence: Number of B-frames is 75% of the total number of 
frames. Both the base layer and the enhancement layer divided into GOPs. The BR-frames used as 

reference frames for the BE-frames in the enhancement layer.  

 
M etadata tools in scalable codecs 
Some metadata coding tools developed within MASCOT project are compliant with the scalable coding 
scheme described above. 
 
Unimportant textures may be synthesized in both base and the enhancement layer. Scalable textures fit 
particularly well to the scalable codecs. In the simplest case, the synthetic texture parameters are sent in 
the base layer. The enhancement layer sub-coder exploits these data as well. 
 
In the H.264/AVC scalable coder, efficient choice of the reference frame can be made as described in the 
Section 3.3.7 The choice is made independently for two layers. The experimental results from Section 
3.3.7 are valid for individual layers. 
 
The rate control tool has been also considered in the MASCOT scalable codec. The analysis shown that 
the tool is applicable for scalable coders. 

3.5 Prediction 

3.5.1 General 
Prediction is a crucial ingredient in video encoding which allows one to take advantage of the temporal 
redundancy inside an image sequence. The most classical prediction technique is motion-based 
prediction: in MPEG-2, a blockwise displacement map can be computed at the encoder side that contains 
the vectors governing displacements between two consecutive video frames. This map can then be 
transmitted and the decoder can use one frame and the displacement map to estimate the next frame. In 
such a scenario, prediction pays if the distortion of the predicted frame is low with respect to the coding 
cost of the displacement map. The purpose of the Prediction workpackage was thus to develop, enhance 
and test new prediction schemes to achieve greater coding efficiency for both MASCOT codecs. 
Prediction includes the estimation of deformation maps, the definition of a prediction operator, as well as 
the encoding of the deformation map. 
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3.5.2 Wavelet-based motion estimation 
For hybrid coding schemes using DCT-based spatial redundancy reduction (like MPEG-2 MPEG-4, and 
H-26x), one always uses blockwise constant displacement maps estimated with block matching. The 
artifacts occurring at block boundaries are hindering the spatial decorrelation of error frames, because the 
block boundaries are also block boundaries of the block-wise DCT. For non-DCT-based video codecs 
however, a block-based motion compensation is not considered optimal. 
 
In the MASCOT project, we first adapted an existing in-house motion estimation technique for video 
coding purposes. This motion estimation technique also provided an illumination change map to be used 
as an additional prediction parameter. The adaptation of the motion estimation scheme consisted in 
adding a flow-smoothing step to control tightly the entropy of the vector map. This modification proved 
to be useful, as was reported in Deliverable 4.1. However, it did not make the motion estimation and 
compensation competitive with existing techniques. In fact, several experiments showed that the wavelet-
based motion prediction scheme did not provide satisfactory predicted images. The scheme was then 
rewritten to provide better motion fields. The major feature of the new wavelet-based flow estimation 
scheme is that the prediction is now explicitly maximized (instead of minimizing subband differences). 
 
The new scheme can be summarised as follows: a multiscale pyramid of each frame is computed, as 
exemplified below. The pyramid of frames is computed with one filtering and a sequence of filterings and 
subsampling using an à-trous wavelet transform. 

 

 

 

  
Scale 3     Scale 2 Scale 1 original 

Figure 10: Redundant frame pyramid for motion estimation 

Then a piecewise bilinear flow field matching a frame to the next one is found by iterative minimization. 
First the coarse scale images are matched, the resulting flow maps are refined to provide an initialization 
for the next iterative flow estimation. The multiscale structure of this flow estimation technique can be 
considered as a preconditioning step, leading to increased estimation speed. Figure 11 below shows a full 
refinement step: flow map refinement from scale 2 to scale 1 and iterations at scale 1. The first row 
displays a frame at the measurement scale taken from the pyramid. The second row displays the current 
flow map (note: for illustrative purposes, the flow does not correspond to the true motion for the Paris 
sequence, but to a motion where a rectangle is moving to the top right, and the rest of the frame does not 
move). 
 

 
 

  

 

 

  
Scale 2 

measurement 
Flow refinement 

from 2 to 1 
Scale 1 measurement 

Figure 11: Example of a 2 scale measurement 
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This second generation motion estimation scheme works well, as is reported in Section 4.5.2 of the 
present report. It was thus integrated into the MASCOT wavelet codec. An additional prediction 
parameter was investigated, to see whether it could enhance coding efficiency: illumination. In addition to 
displacement, a predicted frame I(t+1) was prediction from a frame I(t) using a displacement vector v and 
an illumination factor L with the following formula: 
 

I(t+1,x)=L·I(t,x-v) 
 
As was also reported in Deliverable D4.1, illumination change maps did not reduce the bitrate for a given 
distortion, so their use was abandoned. 

3.5.3 Motion estimation and compensation in wavelet space5 
In the framework of the MASCOT project, wavelet-domain motion estimation and compensation 
techniques have been developed. The theoretical framework for the transform characteristics used in the 
proposed methods is presented in [4] [5], while results have been demonstrated in [6] [7] [8]. This work is 
original in a sense that efficient generations techniques have been proposed for the overcomplete 
subbands and that it builds further on earlier sparsely proposed architectures for in-band wavelet video 
coding. 
 
Figure 12 shows an example of a 2-D critically sampled discrete wavelet transform (DWT) of an image. 
It can be seen that in the wavelet domain, a multiresolution description of the image content is naturally 
achieved without any redundancy. In addition, due to the fact that the transform basis-functions are of 
limited region of support, the image structure is preserved, leading to the natural assumption that in-band 
ME/MC is feasible.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12: An example of a critically-sampled 2-D decomposition in two levels. The subband content is 
properly equalized for visualization purposes. 

 
In addition to these findings, a potentially-effective in-band ME/MC technique would possess also the 
natural side-effect of resolution scalability, since if the motion estimation and compensation procedures 
are applied separately in a level-by-level fashion, the decoder of every resolution could effectively 
reconstruct the half-resolution or quarter-resolution frame by simply stopping at a specified 
decomposition level. 
 
In order to achieve shift invariance to any integer spatial-domain shift, the overcomplete wavelet 
representation has to be utilized, where all the possible subsampling grids are retained during the 
transform production. Such a representation is shown in Figure 13 for the 1-D case of an input signal X. 

                                                           
5  To enable scalable flow encoding in a 3D wavelet codec, techniques originating from VUB were intended to be adapted and used 
in the MASCOT codec. This work was discontinued because it was found that its use would have been incompatible with other 
components of the 3D wavelet codec developed by other partners of the project. Utilizing the in-band motion compensation would 
have led to three different and incompatible MASCOT codecs, and for rationalization, VUB accepted to discontinue its work on the 
topic in the MASCOT project, and to shift its attention to motion vector encoding in the 3D wavelet codec. This is explained in 
Deliverable 4.2. Work already done on the topic by VUB was reported on in detail in Deliverable 1.1, Appendix A. 
 

LL2,(0,0) HL2,(0,0) 

LH2,(0,0) HH2,(0,0) 

LH1,(0,0) 

HL1,(0,0) 

HH2,(0,0) 



  
24 

As seen there, for the first decomposition level, a “classical”  decomposition occurs which retains the 
type-0 polyphase components and produces the subbands 1 1

0 0,A D  (low and high-frequency subband 
respectively). Additionally, a “complementary”  decomposition occurs which retains the type-1 polyphase 
components (complementary grid) and produces the subbands 1 1

1 1,A D . This process iterates for the 
following levels as seen in Figure 13, where the input in every case is the low-frequency subbands of the 
previous level. In this way, for each level l an overcomplete representation is produced which has a 
redundancy of 2l (and 22l in 2-D) in comparison to the critically-sampled decomposition of level l, which 
simply consists of the subbands 0

lA  and 0, 1,..,iD i l= . 
 
By using this representation, it has been shown that shift-invariance in the wavelet domain can be 
attained, meaning that any pixel motion in the spatial domain can be compensated to zero error in the 
wavelet domain.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13: The overcomplete DWT representation of signal X in 3 decomposition levels. The subband 
indices (subscripts) are denoted in binary form. 

 
In coding systems that utilize the DWT, the process of generating the overcomplete transform for the 
given input requires one additional step before the overcomplete construction itself. This step consists of 
the inversion of the critically-sampled DWT pyramid to signal X before the application of the process 
described in Figure 13. Hence this transform is called complete-to-overcomplete DWT (CODWT). It 
must be noted that this situation is different from the case described before for two reasons: 
• The DWT coefficients are usually quantized and this leads to a reconstruction of a signal X , where 

in general X X≠  due to quantization error. 
• When resolution scalability is targeted, for the CODWT that starts from a decomposition in l levels, 

only a limited set of the subbands 0
iD  is utilized, where i is a subset of l. This again leads to the 

conclusion that the reconstructed X  will be different from X. 
 
These two differences can be seen as the restrictions imposed when the presented method for shift-
invariance in the wavelet-space is applied in video coding systems. Thus, the quantization in this case is 
performed by the utilized compression system and the CODWT construction under resolution scalability 
is applied to satisfy the case of a decoder that reconstructs the signal only up to a certain resolution, and 
hence does not have access to all the subbands.  
 
The instantiation of the motion estimation and compensation process in closed-loop video coding 
architecture 
For every resolution level, block-based motion estimation can be performed in a subband-by-subband 
manner or in a level-by-level manner. In the first case, motion vectors are produced for each subband, 
while in the second case one motion-vector field per resolution level is produced. The first approach is 
illustrated in Figure 14 for one decomposition level, where four different motion vectors are found for the 
four corresponding blocks located at a position (x,y) in every subband of the current frame. Notice that in 
this case every motion vector contains information about the in-subband position and phase as well. The 
predicted frame is simply constructed by compensating all subbands SUB1,(0,0), SUB={ LL,LH,HL,HH}  of 
the current frame with the use of the blocks in the overcomplete DWT of the reference frame that are 
pointed by the motion vectors. Hence, although the search utilizes all the phase components of subbands 
SUB of the reference, the predicted and the error frames are still critically-sampled. 

X  

2 2
&00 &00|A D  2 2

&01 &01|A D  2 2
&10 &10|A D  2 2

&11 &11|A D  

3 3
&000 &000|A D  3 3

&001 &001|A D  3 3
&010 &010|A D  3 3

&011 &011|A D  3 3
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“Mother”  subband 
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1 1
&1 &1|A D  1 1
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If the above procedure is extended to a multilevel wavelet decomposition, the result is that an accurate 
ME is performed, which provides for every resolution level the in-band equivalent of a pixel-accurate 
spatial-domain ME. Following the rationale of spatial-domain techniques, more complex motion 
estimation schemes can be envisaged, which include quarter-pixel accurate ME by interpolation in the 
overcomplete DWT and multiple reference ME. 
 

 

Figure 14: One-level decomposition with the block at position (x,y) at every subband SUB1,r,c and the 
four corresponding motion vectors MVSUB(x,y), with SUB={ LL,LH,HL,HH} .  

 
Theoretical analysis of the complete-to-overcomplete discrete wavelet transform 
The most challenging process from the combined algorithmic & implementation point of view in an in-
band wavelet video codec is the design of the CODWT. It is evident that the functionality of this module 
is essential for the performance of the full coding scheme and on the other hand the overcomplete 
construction is a complex and costly procedure for implementation which requires careful handling. As a 
result, the theoretical properties of the CODWT construction were investigated. This led to a new 
algorithmic approach for the calculation of the overcomplete DWT of an arbitrary decomposition level k, 
starting from the subbands of the critically-sampled pyramid. This new framework for this calculation is 
presented in what is called the prediction-filters approach [4] [5]. 
 
From the theoretical point of view, the new framework is very interesting in the sense that it presents 
clearly the separate contributions of the subbands of the critically-sampled pyramid in the construction of 
any subband ,k k

x xA D  of the overcomplete representation of level k. This is very useful under a resolution-
scalable construction, since if a reconstruction up to a decomposition level v is desired, the high-
frequency subbands 0, [1,2, ],lD l v l∈ ∈ Z  can simply be omitted from the proposed calculation scheme [4] 
[5], since they are not available. 
 
From the implementation point of view, this new theoretical construction can lead in an efficient 
implementation for the CODWT module for encoders and decoders from two perspectives. The first is 
that important calculation benefits can be derived when the level-by-level construction is concerned, i.e. 
under the resolution-scalable mode. The complexity study of the proposed method for the typical case of 
biorthogonal point-symmetric filter-pairs reveals that in comparison to the conventional approach, the 
level-by-level derivation of the overcomplete wavelet transform is performed with a reduction of up to 
56% in the total multiplication budget. Furthermore, for an N M× reference frame, the delay occurring 
with the conventional approach in the calculation of the subbands that correspond to the decomposition 
level k is proportional to 2

N M× , while for the proposed method the delay is proportional to 22 k
N M× , under 

the same assumptions of system parallelism. These results indicate that, by using the proposed theoretical 
framework, one achieves scalable system-complexity in comparison to the conventional approach. 
 
The second perspective is that in the decoder side where the motion vector information is a-priori known, 
the proposed method can provide an optimal tradeoff between memory and computation in the sense that 
for the compensation process, the actual implementation can balance between the two extremes. The first 
is the complete construction for the specified subbands of the overcomplete DWT (maximum memory 
requirements) and the second is a block-wise construction, where only the necessary information for the 
block-based in-band compensation is calculated by the CODWT in the decoder. This alternative will 
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require the minimum memory but the calculation budget increases since the specific areas for 
compensation are recalculated many times if there are many vectors pointing to the same area in the 
overcomplete DWT. 

3.5.4 Motion vector coding 
The developed motion vector coding technique can be applied to vectors of arbitrary accuracy, such as the 
ones produced by optical flow field estimation. The motion vectors are first fitted to the desired 
interpolation grid and then scaled to integer values. Thereafter, motion vector prediction is performed 
followed by prediction error coding. In the MASCOT project we have implemented a prediction scheme 
similar to the one used in the H.263 video coding standard and the prediction error is coded similarly to 
the way DCT coefficients are coded in the JPEG standard for still-image compression. The latter 
approach, the combination of spatial prediction schemes and JPEG-alike prediction error coding for the 
motion vectors, is original. In addition, also more complex alternative approaches for both the prediction 
schemes (cross-subband and temporal) and the prediction error encoding schemes (wavelet-based coding 
schemes, look-up tables, etc.) have been investigated. 
 
The general setup of the proposed motion vector encoder is shown in Figure 15. The motion vectors are 
first quantized to integer values. Thereafter, motion vector prediction is performed, followed by 
prediction error coding. 
 
 

Quantization Motion Vector Prediction Prediction Error CoderInput flow field Output Bit stream

 

Figure 15: Design of the motion-vector encoding. 

 
The motion vectors are predicted similarly to the motion vector prediction in H.263. Each vector is 
predicted by taking the median of a number of neighboring vectors. The neighboring vectors that are 
considered in the default case are shown in Figure 16. 
 
 

Predicted motion vector.

Neighboring motion vectors 
used in the prediction.

Predicted motion vector.

Neighboring motion vectors 
used in the prediction.

 

Figure 16: The context-based prediction of a motion vector based on the neighboring vectors. 

In the final step, the prediction error vectors obtained after motion vector prediction are entropy coded 
using adaptive arithmetic coding. The horizontal and vertical components of the prediction errors are 
always coded separately. In our implementation, only prediction error components belonging to the 
interval { -511,511}  can be represented. However, the implementation can be easily altered to handle 
larger values should the need arise. The prediction error components are coded similarly to the way DCT 
coefficients are coded in the JPEG standard for still image compression. For each component value, a 
symbol representing the interval it belongs to is coded first (Table 2). Thereafter, the offset of the 
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prediction error component within the interval is coded. A distinction is made between positive and 
negative components. For positive components, the value that is coded is equal to the prediction error 
component. For negative components, the algorithm encodes the sum of the prediction error component 
and the absolute value of the lower bound of the interval it belongs to. It is obvious that no offset is coded 
for interval 0. One model of the arithmetic coder is used to code the interval-index. For each interval, a 
different model is used to encode the offset values. The offset value is coded differently for intervals 0 to 
4 than for intervals 5 to 9. In the first case the different offset values are directly coded as different 
symbols of the model. In the second case, the model only allows two symbols 0 and 1, and the offset 
value is coded in its binary representation. 
 

 
 

Table 2: The intervals used in the arithmetic encoding of the prediction error of the motion vectors. 

3.5.5 Long term global motion compensation 
Global motion compensation aims at reducing the bitrate of a video sequence without reducing its visual 
quality by describing the motion of the scene background with a small number of motion parameters. This 
feature is included in MPEG-4, but not in H264/AVC because of its limited efficiency. Long term global 
motion compensation consists in building online a superresolution mosaic by combining different 
background images to a single reference image using a subpixel flow map of the background. 
 

 

Figure 17: Superresolution mosaic construction by accumulation 

 
The background mosaic is incrementally built by accumulation of pixels of the background images from 
different frames. The following figure shows the evolution in time of the superresolution mosaic of the 
background for the Stefan sequence. 
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Figure 18: Accumulated superresolution mosaic at frames 1, 5, 15, 49. 

 
As shown in the results section, the sequence encoded with long term GMC often has less aliasing than 
the original video sequence, and substantial gains in bitrate. The long term global motion compensation is 
described in substantial detail in Deliverable 4.3. 

3.5.6 Long term motion prediction using graph-matching 
In this implementation of long term prediction, long term means that a reference frame and a predicted 
frame are far apart in time, in contrast to the above paragraphs where a long term prediction meant 
accumulation over several frames of pixels to build a superresolution mosaic of the background. 
 
A graph matching method was developed and described in Deliverable 4.1 to provide a framework for 
long-term prediction. The purpose of this long-term graph-matching technique was to reduce the bitrate 
increase occurring at shot transition. The first image of a new shot being not related to the previous video 
frame, it has to be essentially encoded as an I-frame. The purpose of the present long term motion 
prediction was to encode this first frame of a new shot in a predictive way, using a past “ long term”  
reference frame possibly several hundred frame before. The test framework included a graph matching 
technique to select among a number of reference candidates a best reference frame, and also to perform a 
long range motion estimation between the frame to be encoded and the long term reference frame. 
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4 Project Results and Achievements 

4.1 Introduction 
The goal of the MASCOT project was to develop new video coding schemes and tools that provide both 
an increased coding efficiency as well as extended scalability features compared to technology that was 
available at the beginning of the project. Towards that goal the following tools would be used: 
• metadata-based coding tools; 
• new spatiotemporal decompositions; 
• new prediction schemes. 
The initial goal was to develop one single codec architecture that was able to combine all new coding 
tools that were foreseen when the project was formulated. During the first six months it became clear, 
however, that this would limit us in the selection of the new tools. Therefore the consortium decided to 
use two6 codec frameworks within the project, a standard hybrid DCT-based codec and a 3D wavelet 
codec, which together were able to accommodate all tools developed during the course of the project; see 
also Section 3.2 
 
Available codecs have been used as starting point for both. For the hybrid DCT-based codec, we have 
used the H.264/AVC codec developed by the Joint Video Team (JVT) as their framework for the hybrid 
DCT-based codec7. The second baseline codec architecture used in MASCOT is a 3D wavelet codec. 
Initially this was a codec provided by PRF, who provided the software and would also coordinate the 
integration of tools from other partners. Unfortunately, PRF withdrew from the project on September 1, 
2002. The consortium decided to switch to another wavelet codec platform, which was publicly available 
and used within the MPEG community. We will henceforth refer to this codec as the Woods codec, after 
its originator John W. Woods (Rensselaer Polytechnic Institute). These two choices have the clear 
advantage that MASCOT results can be directly compared with results from the respective original 
codecs and that improvements can be directly contributed. The main objective of the project was then to 
improve the performance of these two baseline codecs by replacing certain tools or adding additional 
ones.  
 
In the previous chapter we described the new tools that have been developed within the MASCOT. In this 
chapter we discuss their impact on coding efficiency and functionality. This chapter has been subdivided 
into four sections according to the four technical workpackages of the MASCOT project. In Section 4.6 
we report on the MPEG liaisons within MASCOT and in Section 4.7 we discuss the contribution of this  
project to the EU policies. 

 

4.2 Results of WP1: Architecture specification, codec integration, test 
and demonstration 

The main objective of this central workpackage was to coordinate the software integration of the 
MASCOT codecs. As explained in Section 3.2, two different frameworks have been selected as baseline 
for the tools to be developed in MASCOT. 
 
The first major task in WP1 was then to specify the architecture of the MASCOT codecs, i.e. to describe 
how all the developed tools will be integrated into the overall framework. The architecture of the 
MASCOT codecs is described in detail in D1.1. After having specified the architecture, the work in WP1 
concentrated on the software integration itself which is described in detail in D1.2. 
 
Then the task was extensive testing of the integrated MASCOT codecs in direct comparison to the state-
of-the-art in video coding, which was defined by the two baseline codec frameworks. These tests have 
been performed similar as MPEG core experiments. A detailed collection of all coding results in 
MASCOT can be found in D1.3. Significant improvements compared to the baseline codecs have been 
achieved. Some of these results can be found in the following sections. The descriptions of the developed 

                                                           
6 VUB also provided a full wavelet video codec, which applies in-band motion compensation. Although the architecture was very 
promising, it was not clear how the technology could be combined with the architecture provided by PRF. VUB decided to shift 
attention within MASCOT towards the PRF codec and to continue the development of their own codec in another project.  
7 The JVT is a joint effort of ISO/MPEG and ITU-T/VCEG to develop a new video coding standard (MPEG-4 part 10 and ITU-T 
H.264), which has to represent the state-of-the-art in video coding.  
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tools are contained within the deliverables of the other technical workpackages. Since the two integrated 
MASCOT codecs directly extend and improve the state of the art in video coding, they can be regarded to 
be among the most advanced video codecs available in the world, which is the major outcome of the 
MASCOT project. 
 
Concerning the hybrid codec not all of the integrated tools are compatible with each other and some 
combinations are not useful with regard to coding efficiency. Some of the tools are very specific e.g. to 
certain types of metadata of content. Also the application of one tool with the respective modification to 
the standard H.264/AVC framework can decrease the efficiency of other tools or even make it impossible 
to use some other tools. It is also not always the case that the gain of a useful combination will be 
additive. These cross-dependencies have been investigated in more detail. Table 3 gives an overview of 
compatibility of tools (first x/o) and the usefulness of combinations (second x/o). 
 
Faces is a very special tool for face coding that performs some special preprocessing. It is more a 
standalone application and not compatible with the other tools. Scalability adds an enhancement layer to 
any base layer, which can contain any combination of tools. It is therefore compatible to all other tools 
(but Faces) and the combinations are useful. 
 
The Video Segment Shuffling tool can be combined in principle with all other tools except the Transitions 
tool. The Transitions tool needs to keep the visual frame order of the transition so it can not be combined 
with tools that may change the visual order (such as the Video Segment Shuffling). For the remaining 
tools, there should be some cross-influence between them. For instance, the Selection of Reference 
Frames also tries to exploit the temporal redundancy of the bitstream and therefore combining both tools 
will not obtain pure additive results. The same can be said for combining Video Segment Shuffling and 
LT-GMC. The latter tool requires a motion estimation performed on the video sequence. Video Segment 
Shuffling modifies the visual order and therefore the motion estimation step. The combination is useful 
but the overall gain is not additive. 
 
The Texture tool is compatible in principle to all remaining tools. The combination with transitions is 
useful if the tools are used exclusive, i.e. only Transitions during the transition and only Texture for the 
other parts of the sequence. In this way the gains are additive. Applying the Texture tool during a 
transition is not possible due to the inherent nature of texture analysis and synthesis. Combining texture 
with Reference Frames or Rate Control is not recommended, since these tools either reorder the frames in 
the multi-frame buffer or modify the GoP structure, but the Texture tools relies on predefined settings of 
both. The Texture and LT-GMC tools are very similar in spirit. They recognize regions in the images that 
are encoded without transmission of prediction errors. They are compatible and the combination is useful, 
however, the gain is not additive. 
 
Transitions can be combined with all remaining tools in the way it is used only during the transition, 
while the other tools are used for the remaining frames. The effects are the same as described above for 
the combination with Texture. 
 
The combination of Reference Frames and Rate Control is useful. Both perform independent 
optimizations of the encoding. However, there is some cross-influence, so the gains are not completely 
additive. The combination of Reference Frames and LT-GMC is not useful, since the efficiency of LT-
GMC relies on a regular temporal order of the frames in the long-term buffer. 
 
The combination of Rate Control and LT-GMC is useful, however, the gain is not completely additive, 
due to the cross-influence. 
 
For the combination of 3 or more tools, the pair wise evaluations above and in Table 3 have to be 
considered jontly. 
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 Texture Scalability Faces Transitions Reference 
Frames 

Rate 
Control 

LT-GMC Video  
Segment  
Shuffling 

Texture  x-x o-o x-x x-o x-o x-x x-x 
Scalability   o-o x-x x-x x-x x-x x-x 
Faces    o-o o-o o-o o-o o-o 
Transitions     x-x x-x x-x o-o 
Reference Frames      x-x x-o x-x 
Rate Control       x-x x-x 
LT-GMC        x-x 
Video Segment  
Shuffling 

        

Table 3: Compatibility of tools. 
First entry: possible in principle – Second entry: useful combination 

x = yes, o=no 

 
Finally the results obtained within the MASCOT project have been demonstrated to a broad public at the 
Picture Coding Symposium held on April 23-25 in St. Malo, France, which is one of the major world 
wide conferences on image and video coding. An exhibition was organized showing the improvements 
achieved in MASCOT. 

4.3 Results of WP2: Metadata-based encoding tools 
In the following, the main video coding  results obtained using metadata are presented. 

4.3.1 Texture 
The integrated video codec was tested using well-known test sequences, such as Flowergarden, Canoe 
and Concrete. The following set-up was used for the H.264/AVC codec: QP=16, 3 B-frames, 1 reference 
frame, CABAC (entropy coding method), rate distortion optimization, no interlace, 30Hz frame 
frequency. 
 

The results obtained for Flowergarden sequence were of satisfactory subjective quality.  

Figure 19 depicts the result obtained for frame #5. The difference signal is nearly zero in the sky region, 
while it is quite significant in the flower region. However, there is hardly any difference visible when 
comparing the synthesized and the original sequences. This shows that PSNR is not a suitable measure for 
this new coding approach, since it is not a classical waveform coding scheme that tries to reconstruct the 
signal as good as possible. Such a perceptual video codec can only be evaluated subjectively. Thus no 
PSNR comparisons were done in the experiments. 
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Figure 19: Coding result for Flowergarden. From left to right and top to bottom: original frame, frame 
with synthesized texture regions, difference signal (gain factor 3), conservative motion compensated 

segmentation mask 

 
Table 4 shows the bitrate savings obtained for each of the test sequences. The visual quality at these 
bitrate savings was comparable to the quality of the decoded sequences using the standard codec. The 
largest savings were obtained for the Concrete sequence, while the smallest savings were obtained for the 
Canoe sequence. The bitrate savings obtained by using the approach lie between 10% and 23% using 
manually generated masks and 5% to 18.1% using automatically generated masks. 
 
 
 

 Flower- 
garden 

Concrete Canoe 

H.264 JM2.1   
[kb/s] 

1446.24 2950.32 1958.75 

Bitrate savings 
with manually 
generated 
masks[%] 

20% 23% 10% 

Bitrate savings 
with 
automatically 
generated 
masks[%] 

5.65% 18.1% 5% 

 

Table 4– Bit-rate savings per test sequence 

Conclusions  
A new approach to video coding using texture analysis and synthesis was presented. Video scenes are 
classified into relevant and irrelevant texture regions. Irrelevant texture regions are detected by a texture 
analyser and regenerated by a texture synthesizer. Texture analysis and synthesis were integrated into the 
reference software of the H.264/AVC video codec. First the system was tested using manually generated 
masks to evaluate the maximum potential of the approach in terms of bitrate savings. In this case bitrate 
savings between 10% and 23% were obtained depending on the sequence, whereas using automatically 
generated masks led to still substantial bitrate savings between 5% and 18.1%. 
 
The interplay between texture analysis and synthesis will be further optimised by integration into a full 
analysis/synthesis feedback loop. Further a more precise analysis is required to avoid synthesizing texture 
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regions with low texturization. The bitrate savings may be very low or negative in such cases as the ratio 
of the number of bits spent for the side information to the number of bits spent for the conventional 
coding of such textures may be very close to one or greater than one. 

4.3.2 Face coding of video sequences 
Results are presented and compared to H.264/AVC (JM 2.1 implementation). Two test sequences have 
been used with an image size of 56x46 pixels (for MPEG-7 compatibility) and 25 frames/sec. Figure 20 
shows that for the Miss America sequence, the proposed face coder, obtains an efficiency comparable to 
AVC 2B (IBBPBBPBBP…) and better results than AVC 4B (IBBBBPBBBBP…) or AVC 0B 
(IPPPPPPP…) for a PSNR in the 29.5-31.5 dB range.  
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Figure 20:  PSNR of coded Miss America sequence vs. BR 

 
Table 5 shows the coding results for the Miss America sequence at a PSNR of 31 dB. 
 

Esquema Avg. BR [Kbps] Avg. PSNR [db] % A-PCA o B Frames 
FACE CODER 2.323 30.90 79.83% 

AVC 0B 3.108 31.04 0 % 

AVC 2B 2.579 31.22 66.7% 
AVC 4B 2.652 31.13 80% 

Table 5: Coding results for Miss America at a PNSR ≈ 31 dB. 

 
Figure 21 presents visual results for the Miss America sequence. 
 

 

Frame # 68 
Original   Face Cod.   AVC 0B    AVC 2B    AVC 4B    

     
        PSNR            30.73      30.96        30.87         31.10  dB 

                    #BITS                 34         80   8   48 
                                                        Fr. type             APCA         P   B    B 

 

Frame # 141 
Original   Face Cod.   AVC 0B    AVC 2B    AVC 4B    

     
     PSNR            31.67         31.28         30.97        31.28 dB 

                    #BITS                49               96  24           200        
                                                        Fr. type         APCA         P   B   P 

Figure 21: Visual results of the face coder for Miss America sequence of Table 5. 
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Conclusions 
It can be generally stated that the MPEG-7 face descriptors are not useful for image and video coding. 
The provided results confirm this statement. However, they can be embedded in the bit-stream of a new 
video codec intended for face images to support searching and browsing functionalities. 
 
Regarding the new codec presented the following conclusions can be drawn: 
 

• When the face is located and extracted correctly, better results than H.264/AVC are obtained in 
the range of 1 – 2.5 kbits/sec. On the contrary, if the face is incorrectly located, the results are 
similar to AVC 0B (IPPPP…).  

 
• A-PCA frames, those coded using only A-PCA coefficients, offer great bit-rate savings without 

the limitations of B-frames. Moreover, A-PCA frames do not require motion compensation and 
have an execution time ten times faster on average. However, a more complete analysis 
considering all possible optimizations should be done to draw a more definite conclusion about 
computational complexity. 

4.3.3 Mosaics and key-regions for coding 
The coding of video using mosaics was discontinued in the framework of the MASCOT project. The 
expected improvement of coding efficiency of this tool has been difficult to estimate due to the workload 
implied in the development of a metadata-based coding using mosaics. There is also a need for an 
automatic mosaic metadata extractor that could be used in the improved codec. Therefore, due to the lack 
of reliable improvements that this activity could offer, this activity was discontinued. 

4.3.4 Video shot transitions coding 
The results of this tool have shown promising gains when using metadata transition to improve coding. 
For the results, two QCIF sequences have been used. Both sequences contain a dissolve transition 
between the common Foreman and Akiyo. The dissolves have been manually created so the transition 
weights are known and can be included in a VideoEditingDS metadata descriptor about the transition. The 
difference between the two sequences is that the first transition lasts 4 frames, while the second transition 
lasts 40 frames. The total duration of the first test sequence is 13 frames and contains a transition between 
frames 5 and 8. In order to obtain a fair comparison between default H.264/AVC and H.264/AVC with 
motion search and compensation with MPEG7 dissolve weights, we started analyzing different GOP 
structures and selected the optimum for each case. All bitrate results were done using all search modes 
available and for the following picture qualities: QI=15, QP=16, QB=17. 
 
For short transitions, Figure 22 gives the PSNR/bit-rate plots within the transition using standard 
H.264/AVC or the metadata enabled codec. 
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Figure 22: RD curves within the transition using standard H.264/AVC and the metadata enabled codec 
for a test sequence with short transitions 
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For long transitions Figure 23 gives the PSNR/bit-rate plots within the transition using standard 
H.264/AVC or the metadata enabled codec. 
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Figure 23:  RD curves within transition with or without weights for long transitions. 

 
Conclusions 
Results have shown that using metadata for the coding of video transitions increase the coding efficiency. 
In the case of short transitions (up to 6 or 7 frames) the bit-rate gains can be up to 80%. In the case of 
long gradual transitions the bit-rate saving are smaller due to the need of including references within the 
transitions. In the later case, bit-rate savings of 15% are expected when coding video transitions using 
metadata. 

4.3.5 Long term selection of reference frames 
In order to illustrate the results of using metadata in the selection of reference frames, several sequences 
have been coded and compared using the standard H.264/AVC (version 2.1) and the MASCOT coded. 
Figure 24 shows the bitrate needed to encode a news sequence extracted from the MPEG-7 database. A 
normal news sequence usually involves the same presenter intercalated by different shots. It is expected 
that in that case the metadata help the encoder to select frames from the previous shot where the presenter 
appears and therefore improve the prediction when coding the current presenter shot.  
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Figure 24:  Metadata use in long-term temporal prediction for the MPEG-7 news sequence. The bitrate 
needed to encode 150 frames is shown. In this analysis, 5 reference frames are pre-selected using 100 

previous candidates. 

 
The previous figure shows the results when coding a news sequence from the MPEG-7 database. A pre-
selection of 5 reference frames over 100 previous frames is performed using the color layout similarity 
measure.  The blue line shows the bitrate needed when coding the test sequence with H.264/AVC using 
only one reference per frame. The red line shows the improvement using long-term prediction using 5 
previous frames as reference frames (already included in the standard H.264/AVC). Finally the green line 
shows the bitrate needed color layout metadata to pre-select these 5 reference frames. It can be observed 
that usually at the beginning of shots, the metadata pre-selection is able to select frames from past similar 
shots and therefore the overall prediction error is reduced. In this example, simple long term temporal 
prediction using 5 references frames reduces prediction error by 7.5%. The next figure shows a formal 
results by indicating the rate-distortion curve of this technique. The same sequence is coded at various 
bitrates using the standard H.264/AVC codec (in red) and the MASCOT codec (in green). In the example, 
pre-selection of reference frames using color layout metadata can achieve up to 12.2% reduction in bitrate 
for the same visual quality. 
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Figure 25: Rate-Distortion comparison of JVT2.1 vs JVT using metadata for the MPEG-7 news sequence. 
In this example, 4 reference frames are pre-selected using the 100 previous candidates. 

Results show that the standard long term temporal prediction can be improved using metadata to pre-
select the reference frame buffer. As existing metadata has been created for search and retrieval scenarios, 
some metadata descriptors are extremely efficient when searching for similar frames. This property can 
be exploited in order to use the best possible reference candidates instead of using only the previous in 
time. It can be expected that this coding strategy can obtain up to 10% bit-rate reductions compared to the 
standard H.264/AVC codec at the same visual quality. 

4.3.6 Rate control using metadata 
Metadata information is extracted from the content in order to provide indexing, search and retrieval 
capabilities. It provides information of the content that can also be used to select encoding parameters that 
are difficult to select otherwise. Included in this technique, motion descriptors can be used to select the 
IPB structure of standard codecs. Table 6 shows some results using motion descriptors for rate control. 
The motion activity descriptor includes a simple descriptor related to the amount of motion present 
between two frames (an integer value between 1 to 5). This descriptor is computed for all five shots of the 
test sequence (second column shows the mean value for all frames in every shot).  Note that values closer 
to 1 correspond to shots with a small amount of motion while values closer to 5 correspond a large 
amount of motion present in the shot. The third column shows the mean bitrate (in Kbps) needed to code 
the shot using the common “2 B-frames between P-frames” ' GoP structure in the H.264/AVC codec. The 
final two columns show the number of B-frames and the bitrate when coding the same shots using the 
best possible IPB structure (best in the sense of minimum bit-rate for the same quality). 
 

Shot 
Number 

Motion 
Activity 

Bitrate 
(2 B-frames) 
Kbps - AVC 

Number  
B-frames 

(best selection) 

Bitrate 
(best selection) 

Kbps 
1 2.8 61.4 2 61.4 

2 4.2 97.4 2 97.4 

3 1.1 37.9 3 35.5 

4 4.3 11.2 1 10.9 

5 4.2 79.8 1 77.9 

Table 6: Results for rate control using motion descriptors 
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It can be seen that, even a simple descriptor such as the motion activity, can be used to have a preliminary 
idea of the amount of motion of the scene and therefore to control the encoder parameters accordingly. 
Shot 3 shows for instance how small values in the motion descriptors correspond to low motion. In this 
case, more B-frames can be introduced in the GoP structure thus reducing the bitrate needed. However, 
results also show that this simple metadata descriptor can signal the presence of high motion even if the 
codec is able to motion compensate it (see for instance shot number 4).  To compensate this difficulties 
other metadata descriptors such as the frame displaced difference can be included in the measures in order 
to obtain more robust estimations of the amount of motion. 
 
The next figures show the rate-distortion curves and relative bitrate saving obtained when coding a news 
QCIF sequence using the rate control tool. Results show up to 5.6% bitrate savings on this particular 
sequence. When comparing these results with other GoP structures of the baseline H.264/AVC codec 
instead of B=2 (such as B=0 or B=1) similar results are obtained as the bitrate is compensated over the 
entire sequence. 
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Figure 26: Rate-distortion curves comparing the Rate Control algorithm and the baseline H.264/AVC 
codec for the sequence News11. 
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Figure 27: Relative bitrate savings of MASCOT hybrid codec with Rate Control compared to baseline 
H.264/AVC codec at the same visual quality for the test sequence News11. 
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Conclusions 
Metadata descriptors can carry information that may be useful to select different encoding parameters. 
Current encoders select frame quality factors or IBP structures based on empiric assumptions about video 
sequences. Metadata descriptors such as motion activity descriptors or texture descriptors are valid 
candidates for selecting between a predefined set of IPB structures or quality factors. Bitrate savings up to 
5% are expected when using the rate control tool on standard sequences.  

4.3.7 Video segment shuffling 
Video segment shuffling uses the MPEG-7 Segment DS metadata in order to fully exploit the temporal 
redundancy of video sequences. The sequence to be coded is re-organized so similar frames are grouped 
in the shuffled sequence. Next figures show the results when coding a sequence using the video segment 
shuffling tool. Three different test are compared against the H.264/AVC codec (in blue) using video 
segments of 1 frame, 8 frames and using entire shots. The best results are obtained when shuffling the 
sequence using complete shots with bitrate savings up to 8.5%.  

15 20 25 30 35 40 45 50 55
31

32

33

34

35

36

37

38

P
sn
r 
Y
 [
dB
]

BR [Kbps]

No Shuffling tool
Shuffling S=1
Shuffling S=8
Shuffling S=N

 

Figure 28: Rate-Distortion curves using the video segment shuffling tool and B=1 (IBPBPBP) GoP 
structure for the sequence Geri. 
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Figure 29: Relative bitrate savings using the video segment shuffling tool and B=1 (IBPBPBP)  GoP 
structure for the sequence Geri. 

 
 
Conclusions 
Segment shuffling achieves relevant bitrate savings in sequences that present scattered, short and similar 
shots. This is common in TV programs like interviews or shows that switch over several camera 
perspectives. In these cases, bitrate savings up to 8.5% are expected. In other sequences, the efficiency 
gain is relatively small or nothing; but segment shuffling could be a convenient way of storing a 
sequence, i.e. to ease the access through a BPT index. 
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4.4 Results of WP3: New spatio-temporal decompositions 

4.4.1 General 
Two different codec architectures have been used as baseline codecs in MASCOT, a hybrid DCT-based 
codec and a 3D wavelet codec. A detailed description of the architecture of these codecs is given in 
deliverable D1.1,  and the integration of these codecs is described in deliverable D1.2. The partners have 
developed new coding tools in the framework of these baseline codecs. The tools developed in WP3 are 
aimed towards an improvent of the performance of the two codecs and to provide extended (scalability) 
functionalities by exploiting new spatio-temporal decompositions. In Subsections 4.4.2 and 4.4.3 we 
discuss two tools that have been used for the 3D wavelet codec and in Subsection 4.4.4 a tool for the 
hybrid DCT-based codec. 

4.4.2 Temporal decompositions 
Through extensive simulations on classical test sequences in [9] and [15],[16] we have shown the 
improvement over the reference 3D wavelet video codec (i.e., Woods codec using the Haar temporal 
filter, hereafter called baseline wavelet codec) brought by longer temporal filters. In the experimental 
evaluation, the average PSNR was used as an objective evaluation metric. Note that these distortion 
values are given at different bitrates. Moreover, in our scalable codec, the granularity of the bitrate 
measure is at the bit level.  
 
First, we have shown that an intelligent strategy for taking into account the redundancy between motion 
vector fields at different temporal levels may lead to important reductions in the number of bits allocated 
to motion, and accordingly to improved coding efficiency. Moreover, interesting tradeoffs are possible 
between algorithmic complexity and coding performances, useful for applications where only a reduced 
computational load is allowed. 
 
Secondly, we have shown that a "sliding window" implementation of our lifting temporal filtering 
formalism leads to a better energy concentration and accordingly, to higher coding performances with 
long temporal filters than with Haar filters. The results of our tests for coding efficiency have shown that: 
• Haar temporal filtering without ME performs well at very low bitrates (<150 kbits/s).  
• Haar temporal filter with ME performs well at low bitrates (>150 kbits and <350 kbits/s) 
5/3 temporal filter with ME seems to perform the best at medium and higher bitrates (>350 kbits/s). In 
this range of bitrates, it can outperform motion-compensated Haar analysis by more than 2dBs. 
 
In order to illustrate the effectiveness of the proposed approach, we provide in Figure 30 a sample of the 
coding performance, where a simple Haar motion-compensated temporal multiresolution analysis is 
compared with the proposed 5/3 one. Significant improvement, of up to 2.5dB at high bitrates, is achieved 
with the new method. 
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Figure 30: Coding performance comparison between Haar TF, Haar MCTF and 5/3 MCTF. 

Moreover, temporal scalability is a key issue for such schemes, which lead to  higher energy compaction 
in the approximation subband, while the temporal details contain less information. Consequently, the 
quality of the reconstruction obtained by decoding a number of temporal levels smaller than the number 
of the decomposition levels is better than with classical Haar transform. We have assessed the temporal 
scalability functionality by decoding from the full bitstream only a part corresponding to a reduced 
number of temporal levels. We have observed that in the case of Haar-MC temporal filters, the 
reconstruction at full frame rate based on 3 temporal levels is always of lower quality than that obtained 
by decoding all temporal levels. In contrast, with 5/3 filters we have obtained a better reconstruction (at 
the same bitrate) by using less temporal levels, at medium bitrate (�600kbs). This is remarkable, since it 
allows complexity scalability for terminals with reduced resources. A second conclusion is that the 
overall quality of scalability is greatly improved when using 5/3 filters compared to Haar, and this at all 
bitrates. This is illustrated in Figure 31 for 3 levels decoded over 4 encoded. 
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Figure 31: Temporal scalability: average PSNR of reconstructed sequence for the Haar (blue curve) and 
the 5/3 (pink curve) temporal decomposition. 

 
 
In particular, it is found that the PSNR-oscillation between odd and even frames is smaller with the 5/3 
temporal filters. We have observed situations where the reduced frame rate sequence has higher quality 
than the full frame rate sequence at the same bitrate (low bitrates). Such a situation can be qualified as 
"negative cost of scalability" and has shown the importance of a flexible and automatic framework for 
parameter selection in network adaptation tasks. 
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4.4.3 Spatial decompositions 
In Deliverable D3.1 it has been shown that the statistical properties of the temporally filtered frames (H, 
HL, HLL, etc) may differ substantially8. Therefore, it was decided to apply different wavelets to different 
frame types. In MASCOT experiments have been carried out for different spatial wavelet sequences, both 
linear and nonlinear. Such spatial wavelet sequences are described by n+1 parameters, 2n being the size 
of a group-of-frames (GoF). These parameters describe the type of spatial wavelet which is applied to the 
subsequent frame types, i.e., H, HL, HLL, etc. Note that the last frame type is always an approximation 
frame LL…L.  
 
The following spatial wavelet types have been considered: 
 

Type var iable Descr iption 
1 classical 9/7-biorthogonal wavelet  
2 linear Haar wavelet 
3 CISL erosion wavelet  
4 adaptive  wavelet (initialized with a threshold of 10) 
5 morphological Haar wavelet  

 
For example, the parameter sequence 12233 means that frames of type LLLL will be encoded with the 
9/7-wavelet , frames of type HLLL and HLL with the linear Haar wavelet , and frames of type HL and H 
with the CISL erosion wavelet. It was found in Deliverable D3.1 that morphological wavelets perform 
relatively good for 5/3-MC temporal filtered frames. This is illustrated in Figure 32 where we depict rate 
distortion curves for wavelet sequences 11111, 12222, and 12233, all applied to Foreman CIF at 30 fps. 

 

Figure 32: Rate distortion curves for different spatial wavelet sequences applied to Foreman CIF 30 fps 
(5/3-MC temporal filter). 

In  Deliverable D3.1 it has also been reported that the results, e.g. for the wavelet sequence 12233, for 
Haar-MC temporal filters are worse. This can possibly be explained by the fact that this spatial wavelet 
sequence performs better when the temporal decomposition results in strongly decorrelated frames. In this 
case, the prediction error frames have a stronger “edge-like”  appearance than in the case without MC, and 

                                                           
8 We call H, HL, etc the frame type. 
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the design of non-linear filters like in the CISL erosion filter, is specific to such cases. However, the 
spatial filter “12233”  seems to give results which are slightly worse than “11111”  or “12222” . This may 
be due, to our opinion, to the “ lack of compatibility”  between the uniform quantization and the highly 
non-linear nature of the CISL erosion wavelets. Yet a second cause may be the fact that errors resulting 
from morphological filters are present in the reconstructed frames as "bright" and "dark" pixels, resulting 
in a large MSE, and hence low PSNR, even if such errors occur only at very few points.  
 
The results for the adaptive decompositions are less encouraging at this point. In Figure 33 we show also 
the rate-distortion curves for the adaptive wavelet sequence 14444 applied to Mobile CIF 30 fps, where 
the spatial frames have been obtained after 5/3-MC  temporal filtering. This result suggests that the spatial 
wavelet sequence corresponding with adaptive update lifting gives the worst results. Although we do not 
have a valid explanation at this point, the following issues may play a role: 
• The optimal threshold for the decision criterion governing the adaptive update filter must be 

determined for each sequence, at each bitrate, and for each temporal filter. This is an issue that has 
hardly been addressed in our work up till now; see  [15]  for some more details. 

• The quantization and coding scheme that has been used in the wavelet codec, is not well suited for 
such highly non-linear filters. More research is necessary in order to develop such coding algorithms.  

• As observed before, PSNR is not a "good" measure for judging visual artifacts, especially for non-
linear filters such as the ones discussed here. 

 

 

Figure 33: Rate distortion curves for different spatial wavelet sequences applied to Mobile CIF 30 fps 
(5/3-MC  temporal filter). 

4.4.4 Scalability in hybrid codecs 
We refer to Subsection 3.4.4 for a description of our scalability architecture. 
 
The performance of the two-loop structure has been tested for various scenarios. Three basic series of 
experiments have been performed: 

– H.263-based experiments, 
– MPEG-2-based experiments, 
– H.264/AVC-based experiments. 
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For the first two experiments, the overall coding performance is summarized in Table 7. The figures are 
average PSNR values as well as average bitrates for selected test sequences. The values for two-layer 
bitstreams have been compared to single-layer bitstreams obtained using standard MPEG-2 or H.263 
coders with the same options switched on. The values at the output of low-resolution coder are also 
included in Table 1. The results for the implementation of the H.264/AVC-based scalable codec are 
shown in Figure 34. The H.264/AVC-based scalable test model has been implemented on the top of 
standard JVT software version 2.1. Both coder and decoder have been implemented.  
 
In order to test the coding performance of the scalable H.264/AVC codec, a series of experiments have 
been performed with (352 × 288)-pixel sequences. Horizontal, vertical and temporal subsampling factors 
have been set to 2 and the video sequence structure was that from Figure 34(a).  
In the experiments, the following modes have been switched on: 

- CABAC coder, 
- ¼-pel motion estimation in both layers, 
- all prediction modes. 

The experiments have been performed for three sets of the quantization parameter values. These values 
were defined independently for I-frames (QPI), P-frames (QPP) and B-frames (QPB). In the tests, equal 
values of QPI , QPP and QPB  were applied in the base and the enhancement layer, respectively.  
 
In order compare the scalable codec with the nonscalable reference H.264/AVC codec as well as with the 
simulcast pair of nonscalable H.264/AVC codecs, the experiments have been performed with constant 
values of QPI , QPP and QPB that imply almost constant quality measured in terms of the PSNR factor for 
the luminance component in a given sequence. Of course, the quality measured for different sequences is 
different, but for a given video sequence and a given set of QPI , QPP and QPB  , the results for scalable, 
nonscalable and simulcast coding differ mostly less than 0.3 dB and often even less than 0.1 dB. For such 
conditions, bitrates have been estimated for the scalable coder (whole scalable coder), nonscalable coder 
and simulcast coding. For such test conditions, the approximate bitrate overhead due to scalability was 
between -1% and 30% of the bitrate for the nonscalable (single-layer) codec. For almost all cases, 
scalable coder performed better than simulcast coding. Usually scalable coding performance was 
substantially higher than that of simulcast. Within a scalable coder, the base layer bitrate was about 15% 
to 22% of the total bitrate produced by a scalable coder for both layers. For some test sequences and some 
bitrates chosen, the astonishing feature of the results is that the performance of the two-loop coder i.e. 
scalable coder, is better than that of the reference single-layer coder. Such results have been obtained 
independently for both series of experiments based on two different coders and two different sequence 
structures. Similar phenomena are reported also in the references. Fine granularity has been obtained by 
transmitting only a desired portion of the DCT data from the bitstream of the highest resolution. This can 
be efficiently done on the basis of bit-planes. Here, in order to have a simple implementation, the 
partitioning has been simply done by limiting the maximum number of the DCT coefficients transmitted 
per block (Figure 35). Bit-plane encoding could improve the efficiency slightly.  

 
 

H.263 - based coder for CIF (352 ×××× 288) sequences Football Basket Cheer Fun Bus 

Bitstream [Kbps] 485,83 448,45 443,64 459,76 443,14 Single-layer 
coder 

(H.263) Average luminance PSNR [dB]  31,38 25,29 25,05 25,69 26,59 

Low resolution layer bitstream [Kbps] 109,17 100,88 104,87 100,62 109,94 
Low resolution layer average PSNR [dB] for luminance 29,17 23,87 23,00 23,71 25,72 
High resolution layer bitstream [Kbps] 350,83 329,97 365,89 327,80 322,65 

 
Proposed 
scalable 
coder Average PSNR [dB] for luminance recovered from both 

layers 
31,36 25,32 25,05 25,67 26,62 

Bitstream [Kbps] 854,33 801,18 667,35 823,62 764,94 Single-layer 
coder 

(H.263) Average luminance PSNR [dB]  33,80 27,39 26,68 28,02 28,45 

Low resolution layer bitstream [Kbps] 184,03 193,59 169,07 196,00 191,75 
Low resolution layer average PSNR [dB] for luminance 31,23 26,00 24,61 26,13 27,44 
High resolution layer bitstream [Kbps] 568,56 587,72 511,44 574,75 546,97 

 
Proposed 
scalable 
coder Average PSNR [dB] for luminance recovered from both 

layers 
33,88 27,37 26,68 28,04 28,49 

Bitstream [Kbps] 1229,74 1193,32 993,22 1234,31 1137,16 Single-layer 
coder 

(H.263) Average luminance PSNR [dB]  35,74 29,07 28,65 29,98 30,18 
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Low resolution layer bitstream [Kbps] 261,37 289,09 247,51 291,58 282,86 
Low resolution layer average PSNR [dB] for luminance 32,98 27,89 26,29 28,11 29,33 
High resolution layer bitstream [Kbps] 816,18 878,64 759,43 862,85 820,99 

 
Proposed 
scalable 
coder Average PSNR [dB] for luminance recovered from both 

layers 
35,80 29,07 28,64 29,96 30,17 

MPEG-2 - based coder for 4CIF (704 ×××× 576) sequences Cheer 
Flower 
Garden 

FunFair Stefan Bus 

Bitstream [Mbps] 2.99 3.08 3.17 2.96 2.93 Single-layer 
coder 

(MPEG-2) Average luminance PSNR [dB]  28.94 28.19 29.18 31.99 31.45 

Low resolution layer bitstream [Mbps] 0.95 1.04 0.77 0.98 0.99 
Low resolution layer average PSNR [dB] for luminance 28.15 28.78 27.67 32.88 31.86 
Total bitstream [Mbps] 2.91 3.24 3.23 2.99 3.27 

 
Proposed 
scalable 
coder Average PSNR [dB] for luminance recovered from both 

layers 
29.03 28.15 29.21 32.06 31.44 

Bitstream [Mbps] 3.91 3.95 3.91 3.89 3.93 Single-layer 
coder 

(MPEG-2) Average luminance PSNR [dB]  30.66 29.54 30.84 33.84 33.54 

Low resolution layer bitstream [Mbps] 1.26 1.30 1.50 1.27 1.27 
Low resolution layer average PSNR [dB] for luminance 30.43 30.24 32.77 35.73 34.42 
Total bitstream [Mbps] 3.67 4.29 3.80 3.71 4.55 

 
Proposed 
scalable 
coder Average PSNR [dB] for luminance recovered from both 

layers 
30.66 29.52 30.79 33.74 33.59 

Bitstream [Mbps] 5.09 4.85 4.76 4.74 4.87 Single-layer 
coder 

(MPEG-2) Average luminance PSNR [dB]  32.33 30.91 32.17 35.20 34.60 

Low resolution layer bitstream [Mbps] 2.18 2.12 1.66 1.93 2.32 
Low resolution layer average PSNR [dB] for luminance 35.86 36.04 33.75 40.51 38.96 
Total bitstream [Mbps] 5.09 5.45 5.09 5.02 5.7 

 
Proposed 
scalable 
coder Average PSNR [dB] for luminance recovered from both 

layers 
33.11 30.98 32.15 35.14 34.56 

Table 7: The two-loop coder performance measured for whole resolution levels. Results obtained for 
progressive sequences. The H.263 coder without PB-frames, respective scalable coder without GOPs in 

both layers. The MPEG-2 coder and respective scalable coder with GOP length of 12 frames.  
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Figure 34: H.264/AVC video codec: approximate bitrate comparison for scalable, nonscalable (single-
layer) and simulcast coding. 
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The comparison for intermediate bitrates proves that also fine-granularity scalability is related to 
acceptable performance (Figure 35 and Figure 36). 
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Figure 35: The fine-granularity-scalability in a two-loop MPEG-2-based coder (lower curve) compared 
to a single layer MPEG-2 coder (upper curve). Test sequence Funfair, total bitrate 5 Mbps, base layer 

bitrate about 1.66 Mbps, GOP=12.  
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Figure 36: Rate-distortion curves for FGS in the extended H.264/AVC codec: test sequences Fun and 
Basket. 

 
Conclusions 
Described is a generic multi-loop coder structure for motion-compensated fine-granularity scalability. 
The major features are: 
• mixed spatio-temporal scalability, 
• independent motion estimation for each motion-compensation loop, i.e. for each spatio-temporal 

resolution layer, 
• BR/BE-frame structure, 
• improved prediction of BR-frames. 
For all layers of a scalable representation, an important feature of the coders is that the bitstream syntax is 
either fully standard (for H.264/AVC) or only slightly modified (macroblock headers in H.263- and 
MPEG-2-based scalable coders). The modifications of the bitstream semantics are minor.  
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4.5 Results of WP4: Prediction 

4.5.1 General 
In Section 3.5 we have described various new prediction tools that were developed in the context of the 
MASCOT project. Below, we give a short report on the evaluation of these prediction tools. 

4.5.2 Wavelet-based motion estimation 
To evaluate the efficiency of the wavelet-based motion estimation technique, the flow field has been 
estimated between successive pairs of frames in video sequences. The flow has then been used for each 
pair to predict one frame of the pair from the other one. The results have been compared with those 
obtained with a full-search block matching providing flow maps of the same encoding complexity. Two 
parameters determine the complexity of a flow map:  
• The density of parameters, which is block size for block matching, being either a vector parameter 

for each 4x4 block, or a vector parameter for each 8x8 block. 
• The accuracy of the parameters, than can be determined for each in pixel precision: results are 

reported for 2 precisions: half-pixel precision and 1/4-pixel precision. 
In the next figures, results are given for Mobile and Paris. In each figure, the prediction PSNR is given 
for the wavelet method in 4x4 density (line A), and in 8x8 density (line B), and for the full-search block 
matching in 4x4 density (line C), and in 8x8 density (line D). First, the Mobile sequence: 
 

  
Half pixel Fourth pixel 

 

Figure 37: Prediction PSNR comparison for the Mobile sequence (A,B: wavelet motion, C,D: block 
matching, A,C: 4x4 density, B,D: 8x8 density). 
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Figure 38: Prediction PSNR comparison for the Paris sequence (A,B: wavelet motion, C,D: block 
matching, A,C: 4x4 density, B,D: 8x8 density). 
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For the Mobile sequence, the wavelet motion estimation and prediction is superior to the classical block-
matching. For the Paris sequence, the comparison is less clear-cut. 
 
The following graph reports rate-distortion comparison of the wavelet motion estimation (MME for 
multiscale motion estimation) and the full-size block matching (FSBM) for identical flow costs. The 
results have been obtained by integrating the wavelet motion estimation and compensation into the 
MASCOT 3D wavelet codec based on the Woods wavelet codec. The difference becomes more important 
at low bitrates, where the wavelet motion estimation based codec has a gain of up to 4 dB in average 
distortion as compared to full-size block-matching. 
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Figure 39: Bitrate comparison for a 3D wavelet codec between wavelet-based motion estimation (MME) 

and full-search block-matching (FSBM). 

4.5.3 Motion-vector coding 
In Deliverable D3.1 it has been shown that the proposed motion vector coding achieves superior 
performance in comparison to the default motion vector coding that exists in the MASCOT 3D wavelet 
coder. This was demonstrated both for the coding of motion vectors generated by optical-flow field 
motion estimation and for motion vectors generated by fixed-size block-based motion estimation. Below 
we present two typical examples of the achieved results. Figure 40 demonstrates the efficiency of the 
proposed motion-vector coding for the case of block-based motion estimation. The average PSNR 
achieved with the coder using the context-based motion-vector coding (CBMVC) is constantly superior to 
the average PSNR achieved using the default motion vector coding scheme. This is especially important 
for low bitrates. Alternatively, Figure 41 shows the performance of the CBMVC scheme for the coding of 
vectors generated by optical-flow motion estimation (OFME). Again, in comparison to the coder using 
the default motion vector coding scheme, the proposed method achieves superior performance. 
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Figure 40: Results for the coding of motion vectors generated by fixed-size block-based motion 
estimation. 
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Figure 41: Results for the coding of motion-vectors generated by optical-flow field motion estimation. 

 

4.5.4 Long-term Global Motion Compensation 
The results for LT-GMC are first visually very impressive. The following graph compares one frame of 
the original video sequence, and one frame of the sequence decoded using LT-GMC. 
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Original sequence Superresolution mosaic 

Figure 42: Various close-ups from the Mobile and Stefan sequences. In all cases, the mosaic is visually 
more pleasant, because of the significant aliasing reduction obtained with LT-GMC. 

 
As shown in Deliverable 4.3, LT-GMC provides substantial savings over H.264/AVC at equivalent visual 
distortion. The PSNR is a little lower (38.1 dB vs 39.4 dB) for the LT-GMC version, but PSNR 
comparisons are a dubious comparison measure since LT-GMC reduces image aliasing. 
 

     

Figure 43 : Decoded H264 frame (left) and with H264 with LT-GMC (right) HDTV format, Spincalendar 
sequence. 

The following graph shows the bitrate savings for this sequence provided by the LT-GMC extension as a 
function of the original sequence bitrate. 
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Figure 44: Bitrate gains with LT-GMC at similar visual quality versus H.264/AVC baseline 

 

    

Figure 45: Decoded H.264/AVC frame (left) and with H264/AVC with LT-GMC (right) HDTV format, 
City sequence 
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Figure 46: Bitrate gains with LT-GMC at similar visual quality versus the H.264/AVC baseline codec. 

 
To conclude, LT-GMC outperforms standard GMC, and can be included in the H.264/AVC framework 
very efficiently. This is done by using the rate control of the H.264 codec to decide whether or not a 
macroblock is predicted with LT-GMC, and on these macroblocks, no prediction error is encoded. 
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4.5.5 Long term motion prediction using graph matching 
The resulting tests are reported in Deliverable 4.1, and suggest that graph matching does not provide a 
sufficiently accurate motion estimation to produce acceptable gains over a plain I-frame encoding. In 
addition, the motion estimate obtained with the graph matching method was refined with an additional 
wavelet motion estimation method, but even in this latter case, simple I-frame encoding is more efficient. 
For this reason, integration of this tool in the MASCOT codec was abandoned.  

4.6 MPEG liaisons 
One of the goals of MASCOT was to contribute the results to standardization activities on video coding 
such as ISO/MPEG and ITU/VCEG. Due to the time schedule it was impossible to contribute to the new 
standard H.264/AVC, which was recently finalized. However the results obtained in MASCOT already 
show improvements and it can be expected that various of the MASCOT partners will contribute the 
developed technology to potential future extensions. 
 
The impact of the MASCOT project on the MPEG activities is clearly reflected by the strongly increased 
interest of the MPEG committees in wavelet-based video codecs, which, recently lead to the creation of 
the MPEG Ad-Hoc Groups on Interframe Wavelets,  and Scalable Video Coding. Active participation of 
the members of the MASCOT consortium in these and other MPEG activities has resulted in several 
contributions that have been proposed at various MPEG meetings. Recently, these activities have resulted 
in a “Call for Evidence”  on scalable video coding technology that was recently released by MPEG. The 
technology developed in MASCOT will be proposed in answer to that Call at the MPEG meeting in July 
2003 in Norway. This includes 3D wavelet technology as well as scalability based on H.264/AVC.  
 
VUB has delivered input in relation to alternative scalable wavelet video coding architectures, benefiting 
from in-band motion compensation and utilizing the hybrid and UMCTF frameworks.  Some of this work 
was carried out in collaboration with Philips USA.  Additionally, new motion vector coding schemes 
were proposed that could handle efficiently the motion field data produced by such architectures.  

4.7 Contribution to EU policies 
Technologies that enable fast and flexible access to multimedia data and that provide better 
interoperability of different user platforms within heterogeneous networks contribute to the EU objective 
of building a user-friendly information society. The tools that have been developed within the context of 
MASCOT help to realize such a society as they will eventually lead to enhanced video compression 
standards. The MASCOT project has brought together leading players in Europe in the areas of image and 
video processing and coding, thus creating a consortium with complementary expertise that can only be 
found at the European level. 
 
For long-term European competitiveness and employment is important to invest in emerging and 
challenging technologies. This is also one of the goals of the EU FET programme. Video compression is 
an area where research investments made today can be the key to a sustained scientific and technological 
lead of Europe in the future. The MASCOT project has been concerned with the development of new 
tools for video coding which may eventually improve the strategic position of the European enterprises in 
the area of multimedia technologies. Furthermore, MASCOT has contributed to standardization 
committees, such as ITU-T SG 16, MPEG and JPEG. As a result, dissemination and use of the project 
results have become directly available to the industrial community, enabling fast spread and take-up of 
the results. 
 
The EU Green Paper9 on the convergence of the telecommunications, media and information technology 
sectors that appeared in 1997 stresses the enormous potential impact of such technologies on the economy 
and the live of citizens. An important issue today is to improve the quality of video streams over 
heterogeneous networks, which is one of the most important means of communications between people, 
as well as between organisations (including industries and governments) and people. The MASCOT 
project has developed various tools that can help to solve this issue, and as such the project has 
contributed to increased and enhanced communications between European citizens.  
 

                                                           
9 See http://europa.eu.int/ISPO/convergencegp/97623.html 
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5 Deliverables and Publications 

5.1 Description of Deliverables 

5.1.1 Introduction 
In this section we briefly describe the MASCOT deliverables that correspond with the four technical 
workpackages of MASCOT. 

5.1.2 Deliverable 1.1 - Specification of architecture of the MASCOT codec 
This deliverable specifies the architecture of the MASCOT codecs. It explains the decisions taken 
concerning the MASCOT codec architectures, defines the roadmap for integration and describes the 
relation to new standardization activities in MPEG. 
 
Two different codec architectures are used as baseline, a hybrid DCT-based codec and a 3D wavelet 
codec. The partners developed various new coding tools in the framework of these baseline codecs. The 
goal is to improve the performance of the reference codecs and to provide extended functionalities. This 
deliverable gives an overview of the baseline codecs and describes how each tool is going to be 
integrated.  
 
The deliverable basically consists of two parts. The first part comprises the architecture of the DCT-based 
codec. First, the basic architecture of the baseline codec, which was then under development in the Joint 
Video Team (JVT) of ISO/MPEG and ITU/VCEG is described, highlighting improvements and new 
elements compared to existing hybrid video coding standards. Then the extension of this baseline codec 
for spatio-temporal scalability with fine granularity is described. Finally, the integration of each coding 
tool is described in detail. This includes a brief description of the functionality, a detailed description of 
the integration into the JVT software with block diagrams and a description of the impact on the JVT 
bitstream syntax and other data transmission. 
 
The second part specifies the architecture of the 3D wavelet codec. It also starts with a description of the 
baseline framework, which is the 3D wavelet codec developed by PFR. Such a codec is fully scalable by 
definition. Then the integration of tools into the 3D wavelet codec is described. 
 
A second wavelet codec has been developed within the project by VUB. The consortium decided to 
concentrate on one wavelet codec framework for further development and integration of new tools and 
the PRF codec (when PRF left the project this was replaced by the Woods codec) was chosen for this 
purpose. Nevertheless, a description of the wavelet codec provided by VUB can be found in Annex A of 
this deliverable, in order to document the successful work. 

5.1.3 Deliverable 1.2 - Test model for MASCOT’s coding scheme 
This deliverable reports the software integration of the MASCOT codecs. Two different codec 
architectures have been used as baseline, a hybrid DCT-based codec and a 3D wavelet codec. A detailed 
description of the architecture of these codecs is given in D1.1 which complements this deliverable D1.2. 
The MASCOT partners have developed new coding tools in the framework of these two baseline codecs. 
The goal was to improve the performance of the reference codecs and to provide extended functionalities. 
This deliverable describes how the different tools are integrated and gives a summary of the progress of 
work in workpackage 1. 

5.1.4 Deliverable 1.3 - Report on coding performance 
This report contains the results of coding performance evaluation of the two MASCOT codecs, the hybrid 
DCT-based codec and the 3D wavelet codec. The MASCOT partners have developed various new coding 
tools in the framework of these two baseline codecs to improve the performance of the reference codecs 
and to provide extended functionalities. 
 
First, the report describes general issues of performance testing. The experiments and evaluations are 
carried out in a similar way as MPEG core experiments and fall apart in two main sections. One contains 
the performance tests of the DCT-based codec with integrated MASCOT tools. Significant gains are 
reported for the different tools. Since the reference baseline H.264/AVC codec represents the state of the 
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art in video coding, the integrated MASCOT hybrid DCT-based codec can be regarded as the most 
advanced DCT-based video codec available in the world. Moreover the MASCOT hybrid DCT-based 
codec provides fine granularity scalability. The other section contains the performance tests of the 3D 
wavelet codec. Also in this case significant improvements compared to the state of the art reference are 
reported. Therefore also this codec can be regarded as one of the most, if not the most, advanced wavelet 
video codec currently available.  

5.1.5 Deliverable 1.4 - Final demonstration 
The results obtained within the MASCOT project have been demonstrated to a broad public at the Picture 
Coding Symposium held on April 23-25 in St. Malo, France, which is one of the major world wide 
conferences on image and video coding. An exhibition was organized showing the improvements 
achieved in MASCOT. 

5.1.6 Deliverable 2.1 - Analysis and selection of descriptors and description schemes 
supporting encoding tools and preliminary metadata-based encoding tools and 
strategies. 

It is expected that in the future a large amount of audio-visual documents will be indexed and that 
metadata information will be rather easy to create. As a result, in many circumstances, audio-visual 
material will be available together with the metadata describing its content. Therefore, future image and 
video sequence encoders will be able to use the metadata information in order to improve their efficiency 
or to optimize their strategy. One of the main objectives of MASCOT was to demonstrate the validity of 
this approach and to develop an efficient compression scheme exploiting metadata information, i.e., 
indexing information that may be available to support search, query and browse functionalities (e.g. 
MPEG-7 or SMPTE metadata standards).  
 
During the initial phase of the MASCOT project, descriptors and description schemes included in the 
MPEG-7 and SMPTE standards have been analyzed and their potential use for encoding has been 
assessed. This deliverable reports the consortium’s views on the metadata types that may be useful to 
improve the encoding process. Note, however, that the final report on this issue has been given in 
Deliverables D2.2 and D2.3.  
 
This report lists a set of Descriptors and Description Schemes that could be used to improve the encoding 
efficiency. For each Descriptor or Description Scheme, the syntax and semantics is precisely defined. 
Following the example of the MPEG-7 standard, the syntax is defined by the XML Schema language. 
Also the strategy that could be used to improve the coding efficiency is also described. In some cases, 
preliminary coding results have been reported. 

5.1.7 Deliverable 2.2 - Metadata-based encoding tools 
This deliverable defines the two encoding strategies that the project has adopted: a hybrid motion 
compensated  DCT-based scheme and a 3D wavelet scheme. The goal of this report is to highlight the two 
coding frameworks in which metadata are used.  It presents the strategy that is used to improve the coding 
efficiency using metadata. Furthermore, a number of experimental results are presented. The syntax and 
semantics of each Descriptor or Description Scheme has been defined precisely in Deliverable 2.1. 

5.1.8 Deliverable 2.3 - Metadata-based encoding strategy 
This deliverable discusses the metadata encoding strategy for the metadata-based encoding tools 
developed in the framework of the MASCOT project. The coding strategies developed in the context of 
MASCOT, have been presented in deliverables D2.1 and D2.2. Final results of these tools have been 
reported in deliverable D1.3. Metadata-based coding tools employ standard metadata in order to improve 
the coding efficiency of standards video codecs (such as H.264/AVC). The metadata descriptors have 
been selected within the two major metadata standards, MPEG-7 and SMPTE. Results in D1.3 have 
shown promising bitrate gains when coding using metadata-based encoding tools.  
 
Different scenarios can be foreseen when encoding video scenes using metadata-based encoding tools. 
These scenarios can be classified depending if the metadata descriptors are needed and available in the 
encoder, the decoder, or both. The first part of this deliverable overviews these scenarios and describes 
some real applications that illustrate the different scenarios.  
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The most challenging scenario involves sending the metadata together with the content. Here, metadata is 
also needed by the decoder but it is not externally available. Therefore, if the encoder wants to use 
metadata it must be sent to the decoder together with the content. This deliverable reviews all metadata-
based coding tools presented in D2.2 and presents several techniques for encoding the metadata that have 
been used for each tool. An estimate of the bitrate needed for each metadata descriptor will be computed 
so efficient rate encoding strategies between data and metadata will be developed in the future. 

5.1.9 Deliverable 3.1 – New spatio-temporal decompositions 
The aim of this report is to present new spatio-temporal decompositions developed in the framework of 
the MASCOT 3D wavelet codec. This includes all multiscale decompositions (temporal, spatial, motion 
vectors) as well as methods for coding. The first chapter presents the global 3D wavelet video codec 
scheme, initially proposed by PRF, that has served as a starting point for the project. Before PRF's 
withdrawal from the project as of September 1, 2002, several metadata descriptors have been used in 
conjunction with this codec to prove the advanced coding features provided in MASCOT. The second 
chapter describes the new motion-compensated temporal wavelet decompositions that have been used in 
MASCOT. This decomposition is based on the lifting formulation. A main contribution of MASCOT in 
this context is the generalization of the Haar-type decomposition by a 5/3 decomposition. The problem of 
motion vector redundancy in these schemes is explained, and solutions are proposed. Furthermore, a new 
efficient coding algorithm for motion vectors is introduced. A large part of this deliverable is concerned 
with the discussion of spatial decompositions for the residual frames. It discusses morphological wavelets 
and introduces a general framework for the design of adaptive wavelets. The most interesting feature of 
these adaptive schemes is that they do not require any side information to be sent to the decoder. The 
deliverable also presents an overview of state-of-the-art entropy coding methods for 3D wavelet codecs, 
with emphasis on an algorithm developed during this project (3D quadtree-limited coding).  

5.1.10 Deliverable 3.2 - Impact of new decompositions on video compression 
This deliverable can be regarded as a sequel to the second part of Deliverable D1.3 which contains 
various  preliminary coding results for the MASCOT 3D wavelet codec. The aim of Deliverable D3.2 is 
to present some additional results for this codec, in particular to 

• provide evidence for the scalability functionality  
• show the efficiency of the scalability tool in the proposed scheme 
• to provide new results on multiscale motion estimation and motion vector coding. 

 
It contains results that show the impact of the multiscale motion estimation method on the global coding 
efficiency and it compares a newly developed motion vector coding strategy with the state-of-the-art 
method (used in the default Woods codec). Finally it discusses various scalability results in great detail.  

5.1.11 Deliverable 4.1 - Alternate prediction parameters in the space domain for better 
encoding, motion compensation and segmentation, long term prediction 

This deliverable reports on some of the work done in MASCOT in order to enhance the prediction tools 
used in both the hybrid DCT-based codec and the 3D wavelet codec. Two kinds of tools have been 
studied and enhanced for our purpose: (i) dense motion and illumination change field for short-term 
prediction, and (ii) long term prediction tools based on graph matching. 
 

5.1.12 Deliverable 4.2 - Evaluation of new concepts for motion compensated prediction 
in the wavelet domain – long term memory prediction and NSI filters 

The work on in-band motion compensation that was scheduled in the original proposal has been 
discontinued in order to rationalize the integration of the wavelet video codec. The work has been 
reported in the Technology Survey that has been added as an appendix to Deliverable D3.2. 

5.1.13 Deliverable 4.3 - Evaluation, optimisation and development of global motion 
compensation and sprite coding algorithms, exploiting motion-based metadata 

This report discusses the development and evaluation of a new video coding tool called “ long-term global 
motion compensation”  (LT-GMC). Since it is a new prediction method the work belongs to WP4, 
although there are strong relations to WP2.  
 
It presents a new algorithm for generation of super-resolution video mosaics, which is inspired by video 
format conversion and spatio-temporal filtering algorithms. Based on this a new prediction tool called 
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LT-GMC that significantly outperforms standard GMC algorithms is presented. Super-resolution mosaics 
are used for prediction instead of only the last decoded frame. 
 
The new idea for coding is to use the rate control of the H.264/AVC codec as a recognition tool for global 
motion macroblocks. If the rate control assigns LT-GMC mode to a macroblock it is very likely that it is 
only affected by global motion and can be reconstructed visually well using LT-GMC from previously 
transmitted frames even without transmission of the prediction error. Therefore we do not transmit any 
texture updates for those macroblocks. In this case the H.264/AVC rate control is used as a recognition or 
analysis tool for global motion and performs a kind of automatic segmentation of the video content. This 
is fully in the spirit of MASCOT. Metadata about global motion are used for analysis and recognition of 
visual content and this information is used for optimized encoding of the video. 
 
The tool is fully automatic and fully integrated into the recursive processing loop of the MASCOT hybrid 
codec. For selected high-resolution sequences dominated by global motion significant bitrate savings at 
the same visual quality (note that we don’ t do waveform coding that can be measured in PSNR) of 20% 
and more are reported. 
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5.2 Table of Deliverables 
 

Nr Title of Deliverable M ost Recent 
Version 

Delivery  
month 

D1.1 Specification of architecture of the MASCOT codec 5.0 Apr 02 

D1.2 Test model for MASCOT’s coding scheme  3.0 Jan 03 

D1.3 Report on coding performance 5.0 Apr 03 

D1.4 Final demonstration  - 23-24 April 

D2.1 Analysis and selection of descriptors and description schemes 
supporting encoding tools and preliminary metadata-based encoding 
tools and strategies. 

3.0 Mar 02 

D2.2 Metadata-based encoding tools 3.0 Dec 02 

D2.3 Metadata-based encoding strategy  1.0 Apr 03 

D3.1 Morphological wavelet decompositions and overcomplete and shift-
invariant representations for image and video coding (report) 

2.0 Jan 03 

D3.2 Impact of new decompositions on video compresion (final report) 1.0 Apr 03 

D4.1 Alternate prediction parameters in the space domain for better encoding, 
motion compensation and segmentation, long term prediction (report) 

1.0 Nov 02 

D4.2 Evaluation of new concepts for motion compensated prediction in the 
wavelet domain – long term memory prediction and NSI filters (report) 

1.1 Not necessary 

(Jan 03) 

D4.3 Evaluation, optimisation and development of global motion 
compensation and sprite coding algorithms, exploiting motion-based 
metadata (report) 

2.0 Mar 03 

D5.1 Project plan - Jul 01 

D5.2 Final report (this report) 1.0 Apr 03 

D6.1 Quality control measures (section of Project plan) - Jul 01 

D7.1 MASCOT web-site (including Project Presentation) - Jul 01 

D7.2 Dissemination and Use plan 

 
- Sep 01 

D7.3 Technology and Implementation plan eTIP May 03 
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Accepted for the 3rd International Symposium on Image and Signal Processing and Analysis, ISPA 
2003, September 18-20, 2003, Rome, Italy 

3. Y. Andreopoulos, M. van der Schaar, A. Munteanu, J. Barbarien, P. Schelkens, and J. Cornelis, 
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6 Conclusions 
 

6.1 Conclusions of the project 
The MASCOT project was aimed towards the development of new tools in video compression in order to 

• achieve high compression ratios 
• develop intrinsically scalable compression schemes. 

We believe that we have succeeded in achieving both goals, and perhaps even more than that. We have 
developed two new MASCOT codecs, the MASCOT DCT-based codec and the MASCOT 3D wavelet 
codec, which together can accommodate all the tools developed within the context of the project. This 
concerns metadata-based tools, new spatio-temporal decompositions, and new prediction tools. The latter 
also includes new coding techniques for motion vectors. 
 
Since the reference baseline H.264/AVC codec represents the state of the art in video coding, the 
integrated MASCOT DCT-based codec can be regarded as the most advanced DCT-based video codec 
available in the world. Moreover the MASCOT DCT-based codec provides fine granularity scalability. 
Also the MASCOT 3D wavelet codec has been provided with significant improvements compared to the 
state of the art reference 3D wavelet codec of Woods. Therefore also this codec can be regarded as one of 
the most, if not the most, advanced wavelet video codec currently available. These outstanding 
achievements could only be realized through the collaborative research in this EU funded project. 
 

 
 
Regarding the second conclusion it must be observed that further exploration of both hybrid DCT-based 
and 3D wavelet-based architectures is necessary to ensure competitive rate-distortion behavior compared 
to non-scalable MPEG-4 video coding technology and to allow for the selection of a suitable architecture. 
 
The first conclusion is justified by the results summarized in Section 4.3, and the second conclusion is 
supported by the results in Section 4.4, as well as by the latest developments in the MPEG community. 

6.2 Future Outlook 
As explained before MASCOT members have been very active from the beginning in the new MPEG 
initiative on scalable video coding. They contributed several technical inputs and participated in the 
development of requirements, testing methodology, etc. This work resulted in a “Call for Evidence”  on 
scalable video coding technology that was recently released by MPEG. The technology developed in 
MASCOT will be proposed in answer to that Call at the MPEG meeting in July 2003 in Norway. This 
includes 3D wavelet technology as well as scalability based on H.264/AVC. 
 
MASCOT was a project in the FET Open Domain action line which is directed towards emerging 
technologies. In general, projects within this program involve a relatively high risk of (partial) failure, but 
also hold the promise of innovative technologies. Some of the techniques that have been tested in 
MASCOT were very new (like the morphological wavelets), and some of them were for the first time 
developed within the context of this project, like the adaptive wavelets. Both techniques hold a promise 
for the near future but are still too immature and too little understood to be competitive with tools that 
have been around for many years.  
 
This project has also proved the validity of the metadata-based coding approach. Several techniques were 
developed in the framework of this project that showed how metadata descriptors can be used to improve 
the coding efficiency of current video codecs. It should be noted that in the context of the MASCOT 

Two main conclusions of MASCOT project: 
 

1. M etadata can be useful for  video coding 
 

2. Scalability is an impor tant issue for  the future 
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project, the word metadata refers to data that has been extracted from the content in order to provide 
indexing capabilities an to allow new functionalities to the content such as search, retrieval, browsing, etc. 
The results obtained in this project have shown that this extra metadata information can also be employed 
to optimize the coding strategies of current standard hybrid codecs. To investigate this, metadata 
standards such as MPEG-7 and SMPTE were explored and several metadata descriptors were selected as 
good candidates to improve the coding efficiency. Different techniques were developed in order to exploit 
this new information. For instance, the texture tool and long term selection of reference frames showed 
significant bitrate savings (up to 20% and 10%) compared to the standard H.264/AVC video codec.  
 
The MASCOT project has created a general framework where new metadata-based coding tools can be 
developed and analysed. Several of the techniques developed in the project are also opened for further 
research and development (see table in Section 1). New areas of open research have been discovered 
through the development of the project such as investigating new techniques to efficiently encode 
metadata descriptors or finding efficient strategies for rate control between data and metadata. 
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