727 research outputs found

    Coal mine ventilation air methane combustion in a catalytic reverse flow reactor: Influence of emission humidity

    Get PDF
    The role of the humidity content on the performance of catalytic reverse flow reactors (RFRs) for the abatement of methane emissions from coal mines is studied in this manuscript. It has been demonstrated that this technique is very useful for the abatement, and even upgrading, of these emissions. However, the effect of humidity on the reactor performance has not been addressed yet, in spite of being well known that water is an inhibitor in catalytic combustion. Experimental studies in a lab-scale isothermal fixed bed reactor demonstrated that water decreases the activity of a palladium on alumina catalyst for the combustion of methane, but this inhibition is entirely reversible, results fitting well to a Langmuir–Hinshelwood kinetic model. Then, the influence of water was studied in a bench-scale RFR operating at near adiabatic conditions at different switching times (100–600 s) and methane feed concentrations (2700–7200 ppm). Finally, a mathematical model for the reverse flow reactor, including the kinetic model with water inhibition, has been validated using the experimental results. This model is of key importance for designing this type of reactors for the treatment of mine ventilation emissions

    The combustion mitigation of methane as a non-CO2 greenhouse gas

    Get PDF
    These research results have received funding from the EU H2020 Programme (No. 689772) and from MCTI/RNP-Brazil under the HPC4E Project, grant agreement no 689772

    Integrated 1D Simulation of Aftertreatment System and Chemistry-Based Multizone RCCI Combustion for Optimal Performance with Methane Oxidation Catalyst

    Get PDF
    This paper presents a comprehensive investigation into the design of a methane oxidation catalyst aftertreatment system specifically tailored for the Wärtsilä W31DF natural gas engine which has been converted to a reactivity-controlled compression ignition NG/Diesel engine. A GT-Power model was coupled with a predictive physical base chemical kinetic multizone model (MZM) as a combustion object. In this MZM simulation, a set of 54 species and 269 reactions as chemical kinetic mechanism were used for modelling combustion and emissions. Aftertreatment simulations were conducted using a 1D air-path model in the same GT-Power model, integrated with a chemical kinetic model featuring 15 catalytic reactions, based on activation energy and species concentrations from combustion outputs. The latter offered detailed exhaust composition and exhaust thermodynamic data under specific operating conditions, effectively capturing the intricate interactions between the investigated aftertreatment system, combustion, and exhaust composition. Special emphasis was placed on the formation of intermediate hydrocarbons such as C2H4 and C2H6, despite their concentrations being lower than that of CH4. The analysis of catalytic conversion focused on key species, including H2O, CO2, CO, CH4, C2H4, and C2H6, examining their interactions. After consideration of thermal management and pressure drop, a practical choice of a 400 mm long catalyst with a density of 10 cells per cm2 was selected. Investigations of this catalyst’s specification revealed complete CO conversion and a minimum of 89% hydrocarbon conversion efficiency. Integrating the exhaust aftertreatment system into the air path resulted in a reduction in engine-indicated efficiency by up to 2.65% but did not affect in-cylinder combustion.© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    Mathematical Methods for Design of Zone Structured Catalysts and Optimization of Inlet Trajectories in Selective Catalytic Reduction (SCR) and Three Way Catalyst (TWC)

    Get PDF
    Abgaskatalysatoren zählen zu den wichtigsten Maßnahmen, um Schadstoffemissionen von Verbrennungsmotoren zu vermindern. Mit der stetigen Verschärfung der Emissionsstandards nahm über die Jahre der Forschungsbedarf zu Abgasnachbehandlungssystemen signifikant zu. Der Fokus dieser Arbeit liegt auf der Lösung von Optimierungsproblemen im Bereich der Autoabgaskatalyse, um die Effizienz zu steigern. Dabei werden drei Problemklassen behandelt: 1) Die Light-Off-Verzögerung beim Kaltstart in Oxidationskatalysatoren, 2) Die effiziente Ammoniakdosierung bei der selektiven katalytischen Reduktion (SCR), um Ammoniakdurchbrüche zu vermeiden, 3) Die Spannungsstabilisierung der Lambda-Sonde im Drei-Wege-Katalysator (TWC) während einer Schubabschaltung. Das erste Problem wird durch eine modellbasierte mathematische Optimierung beschrieben, bei der das Beladungsprofil von gezont-strukturierten Katalysatoren auf Basis von Platingruppen-Metallen (PGM) optimiert wird. Dazu wird ein Optimierungsproblem aufgestellt, bei dem ein katalytisch aktiver Kanal in Zonen aufgeteilt wird, die mit unterschiedlichen Mengen von PGM beladen werden. Eine solche Beladung kann auch experimentell getestet werden. Die Effekte der Beladung auf Diffusionslimitierungen im Washcoat werden ebenso berücksichtigt. Ziel ist es, die axiale Verteilung der Beladung zu optimieren, wobei die Gesamtmenge an PGM konstant gehalten wird, um den Gesamtumsatz unter transienten Bedingungen zu maximieren. Dabei wird ein transientes 1D+1D-Modell mit dem impliziten Differentialgleichungslöser DASPKADJOINT numerisch gelöst und in ein nichtlineares Optimierungsproblem übersetzt, das mit einem beliebigen ableitungsbasierten nichtlinearen Optimierungslöser (NLP) behandelt werden kann. Dieses Modell wird auf zwei Beispielfälle angewandt: die CO-Oxidation auf einem Pt/Al2O3 Dieseloxidationskatalysator (DOC), um die Kaltstart-Emissionen zu minimieren, sowie die CH4-Oxidation auf Pd/Al2O3 unter Minimierung der Deaktivierungseffekte. In beiden Fällen wird beobachtet, dass bei der optimalen Lösung ein Beladungsmaximum am Kanaleingang zu einer Umsatzsteigerung führt. Die präsentierte Methode ist darüber hinaus allgemeingültig und kann auf andere Systeme mit unterschiedlicher Chemie angewandt werden, so dass auch signifikant andere Lösungen generiert werden können. Die Fähigkeit, NOx effizient durch Ammoniak zu reduzieren, ist Grundlage der SCR-Technologie für die Dieselabgasnachbehandlung. Ammoniak wird diskontinuierlich durch Zersetzung von Harnstoff-Wasser-Lösung dem SCR-Katalysator zugeführt. Bei der Anwendung im Fahrbetrieb ist es wegen hochgradig transienter Wechsel der Emissionen nicht sinnvoll, konstante Menge Ammoniak zu dosieren. Eine effiziente optimale Dosierungsstrategie ist wichtig, um einerseits hohen Umsatz zu gewährleisten und andererseits NH3-Schlupf zu vermeiden. Die Entwicklung einer optimalen Dosierungsstrategie erfordert die Anwendung einfacher, aber hinreichend akkurater mathematischer Modelle und robuster Optimierungsalgorithmen, um eine Lösung für eine große Anzahl zu optimierender Parameter zu erhalten. Mehrere Modellreduktionstechniken aus der Literatur wurden verwendet, um ein Grey-Box-Modell zu konstruieren. Die Methode der orthogonalen Kollokation über finiten Elementen (OCFE) wird genutzt, um die differential-algebraischen Gleichungen aus dem Optimierungsproblem in ein nichtlineares Programm zu überführen. Das Modell wird auf eine Simulation des WHTC-Testzyklus angewandt, um die NH3-Dosierung für jede Sekunde des Zyklus zu optimieren. Die optimale Lösung verbessert die Effizienz des Reduktion unter Einhaltung eines Schlupf-Maximums von 10 ppm zu jedem Zeitpunkt. Die präsentierte Methode lässt sich auch auf ähnliche Probleme zur Optimierung transienter Eingangsbedingungen anwenden. Im dritten Beispiel wird dieselbe Optimierungsmethode erweitert, um eine optimale Lambda-Trajektorie zu berechnen, die das Lambdasensorsignal am Katalysatorausgang stabilisiert, um Durchbrüche fetter Abgasgemische zu vermeiden. Zunächst wurde ein Beobachtermodell mit vereinfachter Kinetik entwickelt und gegen Versuchsstand-Experimente kalibriert. Direkte Kollokation auf Basis der OCFE wird genutzt, um das Optimierungsproblem in ein nichtlineares Programm zu überführen. Die optimale Lösung zeigt eine schnelle Stabilisierung der Ausgangssensor-Spannung ohne Überschwingungen. Diese Strategie verringert die Relaxationszeit der Sensorspannung signifikant, was wichtig für den Einsatz als Feedback-Controller in einem Dreiwegekatalysator wäre

    3D printed catalytic converters with enhanced activity for low-temperature methane oxidation in dual-fuel engines

    Get PDF
    Catalytic converters with non-linear channel structures were prepared using 3D printing and tested in the oxidation of methane in a simulated dual-fuel engine exhaust stream. The design used a simple repeating angular offset between adjacent layers, which was sufficient to introduce complexity with minimal software programming. All 3D printed substrates were mechanically stable and, following washcoating with a composite catalyst, demonstrated higher catalytic activity in methane oxidation than a commercial honeycomb substrate. The methane conversion at e.g. 510 °C was 12.6% on the commercial sample, 72.6% for 90 °, 80.1% for both 30 ° and 45 °, and 89.6 % for the 60 ° oriented structures. This enhancement is attributed to the increased turbulence/mass transfer and surface area than are possible using conventional straight-channelled substrates. Computational fluid dynamics (CFD) analysis confirmed that the higher methane conversion over 3D printed substrates is due (at least partially) to its higher turbulence kinetic energy. Backpressures over the 3D printed structures were also experimentally measured and compared with the conventional honeycomb monolith

    A Multiphysics Co-Simulation Framework of a Gas Engine and Three-Way Catalyst toward a Complete Vehicle Design Model

    Get PDF
    In view of the increasingly stringent emission regulations, the automotive sector needs considerable support from the development of robust and reliable engine and aftertreatment models. Accurate reproduction of engine-out and tailpipe pollutants plays a crucial role in complying with these legislations. Given the difficulty in characterizing some critical phenomena, frequently caused by strong dynamics and related to experimental uncertainties, communication between several calibrated and reliable models is mandatory. This is certainly valid for powertrains that will be powered with alternative gas fuels such as natural gas, bio-methane and hydrogen in the future. This paper describes a methodology to co-simulate a 1D CNG HD 6-cyl engine model and a 1D quasi-steady three-way catalyst model in a global framework for high-fidelity virtual prototyping of the vehicle system. Through the implementation of a dedicated control logic in MATLAB/Simulink, the modeling architecture allows for the reproduction of the engine performance parameters together with the evaluation of the TWC pollutants’ conversion efficiency. An extensive database of experimental tests was used to assess the model response. The latter was validated in multiple steady-state operating conditions of the engine workplan. Using a semi-predictive combustion model, the validation was carried out over a wide range of different air-to-fuel ratios and during fast rich/lean transitions to evaluate the formation and conversion phenomena of the main chemical species, both engine-out and tailpipe. Subsequently, the complete model was validated in dynamic conditions throughout a WHTC, accurately reproducing the cut-off phases and their sudden accelerations. The numerical–experimental agreement on pollutant reproduction is generally good and globally below 3%. Larger deviations occur in extremely rich conditions and in CH4 emission evaluation due to the lack of information related to the combustion process and chemical mechanisms involving the Pd surface

    Study of microchannel reactor using cfd analysis

    Get PDF
    Microchannel reactors involve reaction chamber whose dimensions are typically in the range of micrometers (µm) with volumetric capacity in the range of micro liters (µL). The high surface to volume ratio, efficient heat and mass transfer characteristics and vastly improved fluid mixing allow precision control of reaction with improved conversions,selectivities and yields of desired products. Reverse-flow action is used to utilize the thermal energy inside a reactor.Energy from the reaction and exit gasses are captured and utilized within the reactor by the reversing flow action.The captured thermal energy can be used to preheat the feed or can be extracted from the reactor. The present work is aimed to study the behavior of combustion reaction of methane and propane inside a icrochannel reactor. The advantages of reverse flow reactor have been found out by studying the phenomenon inside a reverse flow reactor. Both steady state and transient imulations has been carried out. Steady state solution was used as the basis for transient solution. The transient solution shows the presence of cyclic steady state temperature profile inside the reactor. The result reveals that the temperature of the gas increases with axial length, reaches maximum and then decreases.With increase in inlet temperature,maximum temperature of the fluid increases.Besides,the temperature peak decreases with increase in mass diffusivity of the mixture and wall heat transfer coefficient. It is also observed that the reaction starts near the wall and then proceed towards the center

    Fuel Injection

    Get PDF
    Fuel Injection is a key process characterizing the combustion development within Internal Combustion Engines (ICEs) and in many other industrial applications. State of the art in the research and development of modern fuel injection systems are presented in this book. It consists of 12 chapters focused on both numerical and experimental techniques, allowing its proper design and optimization

    Energy Efficient Thermal Management for Natural Gas Engine Aftertreatment via Active Flow Control

    Full text link

    Thermodynamic based prediction Model for NOx and CO Emissions from a Gasoline Direct Injection Engine

    Get PDF
    Im Rahmen dieser Arbeit wird ein 2-Zonen-Modell entwickelt und mit einem auf dem erweiterten Zeldovich-Mechanismus basierten reaktionskinetischen Modell kombiniert, um die NOx-Emissionen direkteinspritzender Otto-Motoren zu berechnen. Ein zusätzliches reaktionskinetisches Modell erlaubt aufbauend auf dem 2-Zonen-Modell die Vorhersage der CO-Emissionen. Um über den gesamtem, von unter- bis überstöchiometrischer Verbrennung reichenden Betriebsbereich des Motors eine bessere CO-Vorhersage zu ermöglichen, wurde eine zusätzliche Zone im Brennraum eingeführt. Das Gemisch in dieser Zone oxidiert und wird daher mit einem reduzierten Kinetik-Ansatz modelliert.In this dissertation a two-zone thermodynamic model is implemented and combined with extended Zeldovich mechanism to calculate NOx from a gasoline direct injection engine. Furthermore, a chemical kinetic model has been combined with the two-zone model to predict the carbon monoxide emission. For a better CO prediction over the operating range of lambda from lean to rich mixture, a new zone has been introduced into the combustion chamber. This enables the integration of the thermal boundary layer into the emissions model. The mixture in this zone is oxidized at a lower temperature than the majority of the gas in the combustion chamber and therefore modelled with a reduced chemical mechanism
    corecore