12 research outputs found

    Fast object detection in pastoral landscapes using a multiple expert colour feature extreme learning machine

    Get PDF
    Fast and accurate object detection is a desire of many vision-guided robotics based systems. Agriculture is an area where detection accuracy is often sacrificed for speed, especially in the pursuit of real time results. Pastoral landscapes are especially challenging with varying levels of complexity, as competing objects are rarely textually smooth or visibly different from surroundings. This study presents a machine learning algorithm designed for object detection called the Multiple Expert Colour Extreme Learning Machine (MEC-ELM). The MEC-ELM is a multiple expert implementation of a Colour Feature Extreme Learning Machine (CF-ELM). The CF-ELM is itself a modification of the Extreme Learning Machine (ELM) with a partially connected hidden layer and a fully connected output layer, taking 3 inputs. The inputs can be utilised by multiple colour systems, including, RGB, Y'UV and HSV. Colour inputs were chosen, as colour is not sensitive to adjustments in scale, size and location and provides information not available in the standard grey-scale ELM. In the MEC-ELM algorithm, feature extraction and classification techniques were implemented simultaneously making a fully functional object detection algorithm. The algorithm was tested on weed detection and cattle detection from a video feed, delivering 0.89 (cattle) to 0.98 (weeds) accuracy in tuning and a precision of 0.61 to 0.95 in testing, with classification times between 0.5s to 1s per frame. The algorithm has been designed with complex and unpredictable terrain in mind, making it an ideal application for agricultural or pastoral landscapes

    State-Of-The-Art Convolutional Neural Networks for Smart Farms: A Review

    Get PDF
    International audienceFarming has seen a number of technological transformations in the last decade, becoming more industrialized and technology-driven. This means use of Internet of Things(IoT), Cloud Computing(CC), Big Data (BD) and automation to gain better control over the process of farming. As the use of these technologies in farms has grown exponentially with massive data production, there is need to develop and use state-of-the-art tools in order to gain more insight from the data within reasonable time. In this paper, we present an initial understanding of Convolutional Neural Network (CNN), the recent architectures of state-of-the-art CNN and their underlying complexities. Then we propose a classification taxonomy tailored for agricultural application of CNN. Finally , we present a comprehensive review of research dedicated to applications of state-of-the-art CNNs in agricultural production systems. Our contribution is in twofold. First, for end users of agricultural deep learning tools, our benchmarking finding can serve as a guide to selecting appropriate architecture to use. Second, for agricultural software developers of deep learning tools, our in-depth analysis explains the state-of-the-art CNN complexities and points out possible future directions to further optimize the running performance

    A Deep Learning Model Compression and Ensemble Approach for Weed Detection

    Get PDF
    Site-specific weed management is an important practice in precision agriculture. Current advances in artificial intelligence have resulted in the use of large deep convolutional neural networks for weed detection. In this paper, a transfer learning, model compression, and ensemble learning approach is introduced that is suitable for resource-limited hardware such as mobile and embedded devices. The resulting ensemble model achieves 91.2% classification accuracy which is comparable to the performance of state-of-the-art deep learning models (such as the vanilla VGG16, DenseNet, and ResNet) while being about 62.22% smaller in size than DenseNet (the smallest-sized full-sized model). The approach used in this study is beneficial for further development of deep convolutional neural networks on smaller resource-limited hardware typically used in agriculture, as well as other industries such as healthcare and telecommunication

    Sensor technology for precision weeding in cereals. Evaluation of a novel convolutional neural network to estimate weed cover, crop cover and soil cover in near-ground red-green-blue images

    Get PDF
    Precision weeding or site-specific weed management (SSWM) take into account the spatial distribution of weeds within fields to avoid unnecessary herbicide use or intensive soil disturbance (and hence energy consumption). The objective of this study was to evaluate a novel machine vision algorithm, called the ‘AI algorithm’ (referring to Artificial Intelligence), intended for post-emergence SSWM in cereals. Our conclusion is that the AI algorithm should be suitable for patch spraying with selective herbicides in small-grain cereals at early growth stages (about two leaves to early tillering). If the intended use is precision weed harrowing, in which also post-harrow images can be used to control the weed harrow intensity, the AI algorithm should be improved by including such images in the training data. Another future goal is to make the algorithm able to distinguish weed species of special interest, for example cleavers (Galium aparine L.).Sensor technology for precision weeding in cereals. Evaluation of a novel convolutional neural network to estimate weed cover, crop cover and soil cover in near-ground red-green-blue imagespublishedVersio

    The use of agricultural robots in weed management and control

    Get PDF
    Weed management and control are essential for the production of high-yielding and high-quality crops, and advances in weed control technology have had a huge impact on agricultural productivity. Any effective weed control technology needs to be both robust and adaptable. Robust weed control technology will successfully control weeds in spite of variability in the field conditions. Adaptable weed control technology has the capacity to change its strategy in the context of evolving weed populations, genetics, and climatic conditions. This chapter focuses on key work in the development of robotic weeders, including weed perception systems and weed control mechanisms. Following an extensive introduction, the chapter addresses the challenges of robotic weed control focusing on both perception systems, which can detect and classify weed plants from crop plants, and also weed control mechanisms, covering both chemical and mechanical weed control. A case study of an automated weeding system is provided

    Using Convolutional Neural Network to Detect and Count Individuals on Eucalyptus Plantation

    Get PDF
    Deep Learning constitutes a modern approach for image processing with considerable potential and promising results. As Deep Learning has been successfully applied to various application domains, it has also recently employedin Precision Agriculture. Taking this into account, this work proposes the use of machine learning techniques, more specifically Convolutional Neural Networks (CNN), to detect and count individuals in eucalyptus plantation images, acquired from Unmanned Aerial Vehicles (UAV). The obtained results were provided by a Faster R-CNN Resnet101, with validation procedure performed against manual human annotation. Experimental results demonstrated a overall precision of 95.77% and the affordability of the approach for forestry inventories

    Deep learning in agriculture: A survey

    Get PDF
    Deep learning constitutes a recent, modern technique for image processing and data analysis, with promising results and large potential. As deep learning has been successfully applied in various domains, it has recently entered also the domain of agriculture. In this paper, we perform a survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges. We examine the particular agricultural problems under study, the specific models and frameworks employed, the sources, nature and pre-processing of data used, and the overall performance achieved according to the metrics used at each work under study. Moreover, we study comparisons of deep learning with other existing popular techniques, in respect to differences in classification or regression performance. Our findings indicate that deep learning provides high accuracy, outperforming existing commonly used image processing techniques.info:eu-repo/semantics/acceptedVersio

    Deep learning in agriculture: A survey

    Get PDF
    Deep learning constitutes a recent, modern technique for image processing and data analysis, with promising results and large potential. As deep learning has been successfully applied in various domains, it has recently entered also the domain of agriculture. In this paper, we perform a survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges. We examine the particular agricultural problems under study, the specific models and frameworks employed, the sources, nature and pre-processing of data used, and the overall performance achieved according to the metrics used at each work under study. Moreover, we study comparisons of deep learning with other existing popular techniques, in respect to differences in classification or regression performance. Our findings indicate that deep learning provides high accuracy, outperforming existing commonly used image processing techniques
    corecore