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Abstract

Fast and accurate object detection is a desire of many vision-guided robotics based systems.
Agriculture is an area where detection accuracy is often sacrificed for speed, especially in the pursuit
of real time results. Pastoral landscapes are especially challenging with varying levels of complexity,
as competing objects are rarely textually smooth or visibly different from surroundings. This study
presents a machine learning algorithm designed for object detection called the Multiple Expert Colour
Extreme Learning Machine (MEC-ELM). The MEC-ELM is a multiple expert implementation of a
Colour Feature Extreme Learning Machine (CF-ELM). The CF-ELM is itself a modification of the
Extreme Learning Machine (ELM) with a partially connected hidden layer and a fully connected output
layer, taking 3 inputs. The inputs can be utilised by multiple colour systems, including, RGB, Y'UV and
HSV. Colour inputs were chosen, as colour is not sensitive to adjustments in scale, size and location
and provides information not available in the standard grey-scale ELM. In the MEC-ELM algorithm,
feature extraction and classification techniques were implemented simultaneously making a fully
functional object detection algorithm. The algorithm was tested on weed detection and cattle detection
from a video feed, delivering 0.89 (cattle) to 0.98 (weeds) accuracy in tuning and a precision of 0.61
to 0.95 in testing, with classification times between 0.5s to 1s per frame. The algorithm has been
designed with complex and unpredictable terrain in mind, making it an ideal application for agricultural
or pastoral landscapes.

Background

Autonomous agricultural robotic based weed spraying or livestock monitoring requires the
development of object detection software which can operate accurately and in real-time. Cascading or
multiple expert approaches to robotic vision problems have shown good results in real time scenarios,
in particular for facial and other prominent features in both flora and fauna applications (Berge et al.
2012; Wawerla et al. 2009; Uddin & Akhi, 2016). These applications however are often grey-scale
discarding additional colour information and are limited to the detection of prominent features.
Distinguishing weeds from pasture and stock from fauna can be challenging scenarios if such
prominent features are unavailable. In agricultural environments slight variations in object colour,
shape, orientation or texture may not be detected by a classification algorithm designed to distinguish
prominent features. An Artificial Neural Networks (ANN) provides a solution for the detection of
objects in such visually complex environments. ANNs look at an entire image at pixel-level; they are
however, often limited to grey-scale values and require the use of feature extraction and scaling
techniques. In contrast feature based algorithms can offer rapid processing and in the case of HAAR
features (Mohamed et al. 2015) the innovative use of the summed area table (SAT). The SAT
contains a sum of all values preceding each location in the image and allows fast transitions between
image scales and the ability to find square based features within the image. The research in this
paper has been motivated by the desire to merge the ANN and feature extraction architectures and
hence, produce an algorithm that allows fast scaling and feature extraction in a complex environment.
The proposed algorithm is called the multiple expert colour feature extreme learning machine (MEC-
ELM). To allow colour object detection, the MEC-ELM will use four colour feature extreme learning
machines (CF-ELM) (Sadgrove et al. 2017) each utilising SAT for input. The output of each CF-ELM
(expert) is used to build a consensus object detector. The number of CF-ELM's can be varied in the
MEC-ELM according to computational resources, four were selected in this scenario to match the
number of cores in a standard personal computer.
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Methods

The multiple expert colour feature extreme learning machine (MEC-ELM)

The MEC-ELM is a multiple expert implementation of the CF-ELM (Sadgrove et al. 2017). The CF-
ELM is colour feature implementation of the extreme learning machine (ELM) (Guang-Bin Huang et al.
2006; Huang et al. 2015). The ELM (itself an ANN variant) processes on input per data sample and
hence grey-scale imagery, in contrast, the CF-ELM has a partially connected hidden layer, with one
set of neurons per colour band, making a three section hidden layer. Therefore the CF-ELM utilises a
three band colour input, but since the CF-ELM has a fully connected output layer it also provides
output weights similar to the ELM.

The Y'UV colour space

The Y'UV colour space was chosen for use with the CF-ELM, Y'UV was selected based on previous
research (Podpora et al. 2014; Sadgrove et al. 2017) and produces superior results to other colour
spaces including grey-scale. The selected colour space was defined by the international
telecommunications union as ITU-R B.601 (International Telecommunications Union, 2015) and is
more commonly known as YCbCr, where Y represents the luma value (light intensity/grey-scale) and
CbCr are the blue-difference and red-difference chrominance values. Conversion from the RGB
colour space can be calculated as a function of RGB (Al-Tairi et al. 2014).

The summed area table (SAT)

The SAT or integral image was made popular by the Viola and Jones object detection framework
(Paul Viola & Michael Jones, 2004). The SAT allows real-time object detection using a HAAR feature
base set and can be trained for a classification function using the AdaBoost algorithm (Wang, 2012).
The HAAR features are groups of dark and light rectangular areas, each one of these areas can be
matched to a feature within an image by adjusting a set of thresholds. The SAT can do this quickly, as
it allows the sum of an area of an image to be returned in as little as four coordinates from the table.
Each coordinate within the image becomes a sum of all pixel values preceding it, that is, above and to
the left of the coordinate. The process for calculating each coordinate (x,y) of the image can be
expressed (Facciolo et al. 2014),

(X, y)=(x, y)+ (x=1,y)+(x,y—1)—(x-1,y—1) €N

where I(X,y) is a single coordinate within the integral image and -1 refers to the previous coordinate in
the dimensions x and y. Using this formula, the sum of all previous pixels above and to the left can be
calculated. Starting at the top left hand corner of the image and processing through to the bottom right
corner, the entire integral image can be processed from just one pass over the image. The sum of any
rectangular area within an image can then be calculated with the values from just four coordinates.
This can be expressed,

S(x,y,x=w,y—h)=(x, y)+ (x=w, y=h)—(x—w,y)—(x, y—h) )

where S refers to the sum of the rectangle within the image, x and y refer to the value stored at the
bottom right coordinates of the rectangle and w and h refer to the width and height of the desired
rectangle.

The algorithm

The algorithm is a multiple phase process designed for remote computer based classification based
on the CF-ELM (Sadgrove et al. 2017), with an (i) initialisation phase: where the neural network is
initialised into memory and the initial random weights stored, (ii) weight biasing phase: based on the
CIW-ELM (Tapson et al. 2015), (iii) training phase: where the output weights of the ELM were
determined with assistance from the C lapack library (Netlib.org, 2013) and each CF-ELM is trained
on different images, (iv) tuning phase: which was used in combination with the training phase and
finds a high accuracy CF-ELM and stores the weights off-line for future use and (v) testing phase: is
depicted in figure 1. Similar to HAAR features, each image was divided equally into 25 to 100 sections
(depending on the quality of testing results).
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The training and tuning phases required each image to be converted into an integral image and from
the resulting table, summed and averaged pixel values were sent as individual input values to each
CF-ELM. The testing phase has multiple steps as displayed in figure 1. Starting from left to right, the
video is first converted to frames, then individual frames are converted into 3 integral images (3l1), one
for each colour, then the 3l are fed to each CF-ELM in the MEC-ELM which reaches a consensus
result via tallying. At multiple scales the image sections are tested and positive results recorded. If the
tally reaches a set threshold, a square is draw in the location surrounding all sections tested in the
area.

H MEC-ELM
CF-ELLM "
Video —] Frames - 1 CF-EILLM § _
‘ sin EE CL.ELM Tally d
S 1 CF-ELLM

Figure 1. Classification algorithm from left to right, with conversion from video to frames to 3l and to the
MEC-ELM and finally, tallying

Implementation

The MEC-ELM was programmed in the C programming language, C was chosen as variants of C are
used on many embedded devices (Leskela et al. 2009) and it is generally faster and more efficient
than other more commonly used programming languages. The C program was benchmarked on a
Linux based system with a solid state drive, 16 gigabytes of RAM and a 4th Gen i7 mobile processor.
The mobile processor simulated its potential use in a remote setting. All times in the results section
were recorded using the clock_gettime function with the CLOCK_MONOTONIC option, available from
the time.h library in C. All images were stored in the JPEG format, as JPEG is a common output for
many remote camera interfaces and is also a useful format for both file storage and file transfer given
size and transfer speed restrictions. All images were decompressed using the libjpeg library available
in the C programming language; it is noteworthy that if speed and storage restrictions are not an
issue, then the algorithm may benefit from a raw image format, as this avoids the decompression
algorithms.

Datasets

Two datasets were used, one for weed detection and another for stock monitoring; the former being
acquired over trials conducted on the Unive5rsity of New England SMART Farm. The weed detection
dataset assesses the detection of weeds from a drone. The training/tuning dataset consisted of 688
images of Cirsium Vulgare (Bull Thistle). The thistle was photographed using a 10 mega-pixel hand
held digital camera at a fixed distance of 2 metres to simulate low-level aerial detection. Object
detection testing was conducted using 120 seconds of video (MP4 format, 4k with 4069 x 2178 colour
pixel resolution) from a DJI Phantom drone flown low over a thistle infested paddock. The stock
detection data set examines the use of a stationary camera for the monitoring of stock at a water
point. Stationary video (Scoutguard SG860C surveillance camera, AVI format, 640 by 480 colour pixel
resolution, 16 frames per second, 120 seconds) of Poll Hereford cattle at a creek crossing was used
for algorithm testing based on 500 training/tuning frames.

Results

Detection results are on display in table 1, where column two indicates the number of sections used
per input to the CF-ELMs and at how many image scales. Column three is the average accuracy per
CF-ELM in the MEC-ELM, which was found while tuning with 50 images of the object and 50 images
of surrounding landscape. Column four is the average time in seconds taken for each frame of the
video feed. Column five is the true positive (TP), false positive (FP) and false negative (FN) results
from all frames in the video feed. Columns six and seven are the detector precision and recall values
(Olson & Delen 2008).
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Table 1. MEC-ELM detections statistics for each dataset

Dataset Sections / Accuracy in Time / Frame Video Results | Precision Recall
object Tuning.
Bull Thistle Sections:25 0.98 1.001(s) TP: 1206 0.95 0.89
Scales: 2 FP: 68
FN: 153
Cattle Sections:100 | 0.89 0.445(s) TP: 367 0.61 0.79
Scales: 2 FP: 236
FN: 100

The results in table 1 indicate better results for thistle detection in all metrics, except times per frame.
This was expected as the cattle video is of lower resolution than the thistle video. The left panel of
figure 2 displays the results of the thistle detection video feed. The right panel of figure 2
demonstrates the detection of cattle, including a false detection of a reflection. Discarding reflections,
the precision for cattle detection was approximately 0.78.

Figure 2. Thistle detection (left panel) and cattle detection (right énel) with squafe boxes indicating
MEC-ELM detections. Note the false detection of the reflection in the right panel

Discussion

Multiple expert or cascading approaches to object detection in agriculture are generally limited to
prominent features or rudimentary approaches (using just colour or dimensional attributes) (McCarthy
et al. 2013; Vijayalaxmi et al. 2013; Wu et al. 2011), this research has presented an approach that
utilises a neural network for the added complexity of the datasets and in particular the CF-ELM. The
CF-ELMs allowed the classifier to use colour as an extra dimension, adopting the Y'UV colour space
for better overall performance. The input of the MEC-ELM was configured to allow values from the
output of the SAT for each colour space. This allowed the MEC-ELM to both extract features and
classify objects in real time, with both datasets returning results between 0.5s and 1s per frame.

The SAT allowed the MEC-ELM to process image frames at multiple scales, with 2 scales used for
each dataset, capturing both small and larger objects. This sectioning of the images into blocks of
average colour may be considered a naive scaling technique (Culler et al. 1998), as it reduced the
image into a lower resolution or a smaller set of pixels values. This implies, that the MEC-ELM, due in
part to its cascading approach, has displayed an ability to classify objects at low resolutions and with
further testing this may allow the video feed to operate at further reduced resolution, allowing even
more rapid frame processing.
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Identifying the cattle and weeds in real time could have multiple applications in agriculture, including
cattle tracking and counting in the case of stationary cameras. Weed detection could be used for
targeted weed spraying robotics, reducing the amount of chemical used, saving money while reducing
the potential impact on the local environment. A drone system could identify areas for an unmanned
ground vehicle (UGV) to spray, or alternatively a camera system could be mounted on an
independently operating UGV.

The results reveal some potential weaknesses in the algorithm, with the cattle detection resulting in
false positives from reflections in creek and a few from the colour of the soil being similar to the Poll
Hereford. The thistle detection also suffered from some false positives, mostly in the edge regions of
the frame, due to some blurring in these areas. To overcome these issues there will need to be further
research into real time frame pre-processing prior to the MEC-ELM. This could include the removal of
reflections, de-blurring or interest point detection. The MEC-ELM has demonstrated through
guantifiable properties its potential use in both weed and cattle detection, in particular for use with
mobile computer technology in agriculture.

Conclusion

The MEC-ELM has been tested as a real time feature extraction and classification algorithm in an
agricultural setting. With testing on video of a drone flying over a paddock infested with bull thistle and
a stationary camera trap observing cattle near a creek bed. The results show that the SAT can be
used alongside a CF-ELM and deliver real time results. Weed detection achieved 0.98 accuracy in
turning, 0.95 precision and 0.89 recall in testing at around 1.001s per frame and cattle detection
achieved 0.89 accuracy in tuning, 0.61 precision and 0.78 recall in testing at 0.45s per frame.
Algorithm benchmarking was performed on a mobile processor indicating that the MEC-ELM can be
utilised in-field for the real-time detection of objects. Further research will include testing the algorithm
in an embedded device and comparing results to other embedded detection methods in agriculture.
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