16 research outputs found

    Vectorization system for unstructured codes with a Data-parallel Compiler IR

    Get PDF
    With Dennard Scaling coming to an end, Single Instruction Multiple Data (SIMD) offers itself as a way to improve the compute throughput of CPUs. One fundamental technique in SIMD code generators is the vectorization of data-parallel code regions. This has applications in outer-loop vectorization, whole-function vectorization and vectorization of explicitly data-parallel languages. This thesis makes contributions to the reliable vectorization of data-parallel code regions with unstructured, reducible control flow. Reducibility is the case in practice where all control-flow loops have exactly one entry point. We present P-LLVM, a novel, full-featured, intermediate representation for vectorizers that provides a semantics for the code region at every stage of the vectorization pipeline. Partial control-flow linearization is a novel partial if-conversion scheme, an essential technique to vectorize divergent control flow. Different to prior techniques, partial linearization has linear running time, does not insert additional branches or blocks and gives proved guarantees on the control flow retained. Divergence of control induces value divergence at join points in the control-flow graph (CFG). We present a novel control-divergence analysis for directed acyclic graphs with optimal running time and prove that it is correct and precise under common static assumptions. We extend this technique to obtain a quadratic-time, control-divergence analysis for arbitrary reducible CFGs. For this analysis, we show on a range of realistic examples how earlier approaches are either less precise or incorrect. We present a feature-complete divergence analysis for P-LLVM programs. The analysis is the first to analyze stack-allocated objects in an unstructured control setting. Finally, we generalize single-dimensional vectorization of outer loops to multi-dimensional tensorization of loop nests. SIMD targets benefit from tensorization through more opportunities for re-use of loaded values and more efficient memory access behavior. The techniques were implemented in the Region Vectorizer (RV) for vectorization and TensorRV for loop-nest tensorization. Our evaluation validates that the general-purpose RV vectorization system matches the performance of more specialized approaches. RV performs on par with the ISPC compiler, which only supports its structured domain-specific language, on a range of tree traversal codes with complex control flow. RV is able to outperform the loop vectorizers of state-of-the-art compilers, as we show for the SPEC2017 nab_s benchmark and the XSBench proxy application.Mit dem Ausreizen des Dennard Scalings erreichen die gewohnten Zuwächse in der skalaren Rechenleistung zusehends ihr Ende. Moderne Prozessoren setzen verstärkt auf parallele Berechnung, um den Rechendurchsatz zu erhöhen. Hierbei spielen SIMD Instruktionen (Single Instruction Multiple Data), die eine Operation gleichzeitig auf mehrere Eingaben anwenden, eine zentrale Rolle. Eine fundamentale Technik, um SIMD Programmcode zu erzeugen, ist der Einsatz datenparalleler Vektorisierung. Diese unterliegt populären Verfahren, wie der Vektorisierung äußerer Schleifen, der Vektorisierung gesamter Funktionen bis hin zu explizit datenparallelen Programmiersprachen. Der Beitrag der vorliegenden Arbeit besteht darin, ein zuverlässiges Vektorisierungssystem für datenparallelen Code mit reduziblem Steuerfluss zu entwickeln. Diese Anforderung ist für alle Steuerflussgraphen erfüllt, deren Schleifen nur einen Eingang haben, was in der Praxis der Fall ist. Wir präsentieren P-LLVM, eine ausdrucksstarke Zwischendarstellung für Vektorisierer, welche dem Programm in jedem Stadium der Transformation von datenparallelem Code zu SIMD Code eine definierte Semantik verleiht. Partielle Steuerfluss-Linearisierung ist ein neuer Algorithmus zur If-Conversion, welcher Sprünge erhalten kann. Anders als existierende Verfahren hat Partielle Linearisierung eine lineare Laufzeit und fügt keine neuen Sprünge oder Blöcke ein. Wir zeigen Kriterien, unter denen der Algorithmus Steuerfluss erhält, und beweisen diese. Steuerflussdivergenz induziert Divergenz an Punkten zusammenfließenden Steuerflusses. Wir stellen eine neue Steuerflussdivergenzanalyse für azyklische Graphen mit optimaler Laufzeit vor und beweisen deren Korrektheit und Präzision. Wir verallgemeinern die Technik zu einem Algorithmus mit quadratischer Laufzeit für beliebiege, reduzible Steuerflussgraphen. Eine Studie auf realistischen Beispielgraphen zeigt, dass vergleichbare Techniken entweder weniger präsize sind oder falsche Ergebnisse liefern. Ebenfalls präsentieren wir eine Divergenzanalyse für P-LLVM Programme. Diese Analyse ist die erste Divergenzanalyse, welche Divergenz in stapelallokierten Objekten unter unstrukturiertem Steuerfluss analysiert. Schließlich generalisieren wir die eindimensionale Vektorisierung von äußeren Schleifen zur multidimensionalen Tensorisierung von Schleifennestern. Tensorisierung eröffnet für SIMD Prozessoren mehr Möglichkeiten, bereits geladene Werte wiederzuverwenden und das Speicherzugriffsverhalten des Programms zu optimieren, als dies mit Vektorisierung der Fall ist. Die vorgestellten Techniken wurden in den Region Vectorizer (RV) für Vektorisierung und TensorRV für die Tensorisierung von Schleifennestern implementiert. Wir zeigen auf einer Reihe von steuerflusslastigen Programmen für die Traversierung von Baumdatenstrukturen, dass RV das gleiche Niveau erreicht wie der ISPC Compiler, welcher nur seine strukturierte Eingabesprache verarbeiten kann. RV kann schnellere SIMD-Programme erzeugen als die Schleifenvektorisierer in aktuellen Industriecompilern. Dies demonstrieren wir mit dem nab_s benchmark aus der SPEC2017 Benchmarksuite und der XSBench Proxy-Anwendung

    An extensive study on iterative solver resilience : characterization, detection and prediction

    Get PDF
    Soft errors caused by transient bit flips have the potential to significantly impactan applicalion's behavior. This has motivated the design of an array of techniques to detect, isolate, and correct soft errors using microarchitectural, architectural, compilation­based, or application-level techniques to minimize their impact on the executing application. The first step toward the design of good error detection/correction techniques involves an understanding of an application's vulnerability to soft errors. This work focuses on silent data e orruption's effects on iterative solvers and efforts to mitigate those effects. In this thesis, we first present the first comprehensive characterizalion of !he impact of soft errors on !he convergen ce characteris tics of six iterative methods using application-level fault injection. We analyze the impact of soft errors In terms of the type of error (single-vs multi-bit), the distribution and location of bits affected, the data structure and statement impacted, and varialion with time. We create a public access database with more than 1.5 million fault injection results. We then analyze the performance of soft error detection mechanisms and present the comparalive results. Molivated by our observations, we evaluate a machine-learning based detector that takes as features that are the runtime features observed by the individual detectors to arrive al their conclusions. Our evalualion demonstrates improved results over individual detectors. We then propase amachine learning based method to predict a program's error behavior to make fault injection studies more efficient. We demonstrate this method on asse ssing the performance of soft error detectors. We show that our method maintains 84% accuracy on average with up to 53% less cost. We also show, once a model is trained further fault injection tests would cost 10% of the expected full fault injection runs.“Soft errors” causados por cambios de estado transitorios en bits, tienen el potencial de impactar significativamente el comportamiento de una aplicación. Esto, ha motivado el diseño de una variedad de técnicas para detectar, aislar y corregir soft errors aplicadas a micro-arquitecturas, arquitecturas, tiempo de compilación y a nivel de aplicación para minimizar su impacto en la ejecución de una aplicación. El primer paso para diseñar una buna técnica de detección/corrección de errores, implica el conocimiento de las vulnerabilidades de la aplicación ante posibles soft errors. Este trabajo se centra en los efectos de la corrupción silenciosa de datos en soluciones iterativas, así como en los esfuerzos para mitigar esos efectos. En esta tesis, primeramente, presentamos la primera caracterización extensiva del impacto de soft errors sobre las características convergentes de seis métodos iterativos usando inyección de fallos a nivel de aplicación. Analizamos el impacto de los soft errors en términos del tipo de error (único vs múltiples-bits), de la distribución y posición de los bits afectados, las estructuras de datos, instrucciones afectadas y de las variaciones en el tiempo. Creamos una base de datos pública con más de 1.5 millones de resultados de inyección de fallos. Después, analizamos el desempeño de mecanismos de detección de soft errors actuales y presentamos los resultados de su comparación. Motivados por las observaciones de los resultados presentados, evaluamos un detector de soft errors basado en técnicas de machine learning que toma como entrada las características observadas en el tiempo de ejecución individual de los detectores anteriores al llegar a su conclusión. La evaluación de los resultados obtenidos muestra una mejora por sobre los detectores individualmente. Basados en estos resultados propusimos un método basado en machine learning para predecir el comportamiento de los errores en un programa con el fin de hacer el estudio de inyección de errores mas eficiente. Presentamos este método para evaluar el rendimiento de los detectores de soft errors. Demostramos que nuestro método mantiene una precisión del 84% en promedio con hasta un 53% de mejora en el tiempo de ejecución. También mostramos que una vez que un modelo ha sido entrenado, las pruebas de inyección de errores siguientes costarían 10% del tiempo esperado de ejecución.Postprint (published version

    Resiliency in numerical algorithm design for extreme scale simulations

    Get PDF
    This work is based on the seminar titled ‘Resiliency in Numerical Algorithm Design for Extreme Scale Simulations’ held March 1–6, 2020, at Schloss Dagstuhl, that was attended by all the authors. Advanced supercomputing is characterized by very high computation speeds at the cost of involving an enormous amount of resources and costs. A typical large-scale computation running for 48 h on a system consuming 20 MW, as predicted for exascale systems, would consume a million kWh, corresponding to about 100k Euro in energy cost for executing 1023 floating-point operations. It is clearly unacceptable to lose the whole computation if any of the several million parallel processes fails during the execution. Moreover, if a single operation suffers from a bit-flip error, should the whole computation be declared invalid? What about the notion of reproducibility itself: should this core paradigm of science be revised and refined for results that are obtained by large-scale simulation? Naive versions of conventional resilience techniques will not scale to the exascale regime: with a main memory footprint of tens of Petabytes, synchronously writing checkpoint data all the way to background storage at frequent intervals will create intolerable overheads in runtime and energy consumption. Forecasts show that the mean time between failures could be lower than the time to recover from such a checkpoint, so that large calculations at scale might not make any progress if robust alternatives are not investigated. More advanced resilience techniques must be devised. The key may lie in exploiting both advanced system features as well as specific application knowledge. Research will face two essential questions: (1) what are the reliability requirements for a particular computation and (2) how do we best design the algorithms and software to meet these requirements? While the analysis of use cases can help understand the particular reliability requirements, the construction of remedies is currently wide open. One avenue would be to refine and improve on system- or application-level checkpointing and rollback strategies in the case an error is detected. Developers might use fault notification interfaces and flexible runtime systems to respond to node failures in an application-dependent fashion. Novel numerical algorithms or more stochastic computational approaches may be required to meet accuracy requirements in the face of undetectable soft errors. These ideas constituted an essential topic of the seminar. The goal of this Dagstuhl Seminar was to bring together a diverse group of scientists with expertise in exascale computing to discuss novel ways to make applications resilient against detected and undetected faults. In particular, participants explored the role that algorithms and applications play in the holistic approach needed to tackle this challenge. This article gathers a broad range of perspectives on the role of algorithms, applications and systems in achieving resilience for extreme scale simulations. The ultimate goal is to spark novel ideas and encourage the development of concrete solutions for achieving such resilience holistically.Peer Reviewed"Article signat per 36 autors/es: Emmanuel Agullo, Mirco Altenbernd, Hartwig Anzt, Leonardo Bautista-Gomez, Tommaso Benacchio, Luca Bonaventura, Hans-Joachim Bungartz, Sanjay Chatterjee, Florina M. Ciorba, Nathan DeBardeleben, Daniel Drzisga, Sebastian Eibl, Christian Engelmann, Wilfried N. Gansterer, Luc Giraud, Dominik G ̈oddeke, Marco Heisig, Fabienne Jezequel, Nils Kohl, Xiaoye Sherry Li, Romain Lion, Miriam Mehl, Paul Mycek, Michael Obersteiner, Enrique S. Quintana-Ortiz, Francesco Rizzi, Ulrich Rude, Martin Schulz, Fred Fung, Robert Speck, Linda Stals, Keita Teranishi, Samuel Thibault, Dominik Thonnes, Andreas Wagner and Barbara Wohlmuth"Postprint (author's final draft

    Trends in Data Locality Abstractions for HPC Systems

    Get PDF
    The cost of data movement has always been an important concern in high performance computing (HPC) systems. It has now become the dominant factor in terms of both energy consumption and performance. Support for expression of data locality has been explored in the past, but those efforts have had only modest success in being adopted in HPC applications for various reasons. them However, with the increasing complexity of the memory hierarchy and higher parallelism in emerging HPC systems, locality management has acquired a new urgency. Developers can no longer limit themselves to low-level solutions and ignore the potential for productivity and performance portability obtained by using locality abstractions. Fortunately, the trend emerging in recent literature on the topic alleviates many of the concerns that got in the way of their adoption by application developers. Data locality abstractions are available in the forms of libraries, data structures, languages and runtime systems; a common theme is increasing productivity without sacrificing performance. This paper examines these trends and identifies commonalities that can combine various locality concepts to develop a comprehensive approach to expressing and managing data locality on future large-scale high-performance computing systems

    Communication-avoiding optimizations for large-scale unstructured-mesh applications with OP2

    Get PDF
    This thesis presents data movement-reducing and communication-avoiding optimizations and their practicable implementation for large-scale unstructured-mesh numerical simulation applications. Utilizing the high-level abstractions of the OP2 domain-specific library, we reason about techniques for reduced communications across a consecutive sequence of loops – a loop-chain. The optimizations are explored for shared-memory systems where multiple processors share a common memory space and distributed-memory systems that comprise separate memory spaces across multiple nodes. We elucidate the challenges when executing unstructured-mesh applications on large-scale high-performance systems that are specifically related to data sharing and movement, synchronization, and communication among processes. A key feature of the work is to mitigate these problems for real-world, large-scale applications and computing kernels, bringing together proven and effective techniques within a DSL framework. On shared-memory systems, We explore cache-blocking tiling, a key technique for exploiting data locality, in unstructured-mesh applications by integrating the SLOPE library, a cache-blocking tiling library, with OP2. For distributed-memory systems, we analyze the trade-off between increased redundant computation in place of data movement and design a new communication-avoiding back-end for OP2 that applies these techniques automatically to any OP2 application targeting CPUs and GPUs. The communication-avoiding optimizations are applied to two non-trivial applications, including the OP2 version of Rolls Royce’s production CFD application, Hydra, on problem sizes representative of real-world workloads. Results demonstrate how, for select configurations, the new communication-avoiding back-end provides between 30 – 65% runtime reductions for the loop-chains in these applications on both an HPE Cray EX system and an NVIDIA V100 GPU cluster. We model and examine the determinants and characteristics of a given unstructured-mesh loop-chain that lead to performance benefits with communication-avoidance techniques, providing insights into the general feasibility and profitability of using the optimizations for this class of applications

    Optimal program variant generation for hybrid manycore systems

    Get PDF
    Field Programmable Gate Arrays promise to deliver superior energy efficiency in heterogeneous high performance computing, as compared to multicore CPUs and GPUs. The rate of adoption is however hampered by the relative difficulty of programming FPGAs. High-level synthesis tools such as Xilinx Vivado, Altera OpenCL or Intel's HLS address a large part of the programmability issue by synthesizing a Hardware Description Languages representation from a high-level specification of the application, given in programming languages such as OpenCL C, typically used to program CPUs and GPUs. Although HLS solutions make programming easier, they fail to also lighten the burden of optimization. Application developers must rely on expert knowledge to manually optimize their applications for each target device, meaning that traditional HLS solutions do not offer a solution to the issue of performance portability. This state of fact prompted the development of compiler frameworks such as TyTra that operate at an even higher level of abstraction that is amenable to the use of Design Space Exploration (DSE). With DSE the initial program specification can be seen as the starting location in a search-space of correct-by-construction program transformations. In TyTra the search-space is generated from the transitive-closure of term-level transformations derived from type-level transformations. Compiler frameworks such as TyTra theoretically solve the issue of performance portability by providing a way to automatically generate alternative correct program variants. They however suffer from the very practical issue that the generated space is often too large to fully explore. As a consequence, the globally optimal solution may be overlooked. In this work we provide a novel solution to issue performance portability by deriving an efficient yet effective DSE strategy for the TyTra compiler framework. We make use of categorical data types to derive categorical semantics for the formal languages that describe the terms, types, cost-performance estimates and their transformations. From these we define a category of interpretations for TyTra applications, from which we derive a DSE strategy that finds the globally optimal transformation sequence in polynomial time. This is achieved by reducing the size of the generated search space. We formally state and prove a theorem for this claim and then show that the polynomial run-time for our DSE strategy has practically negligible coefficients leading to sub-second exploration times for realistic applications

    Compilation techniques for automatic extraction of parallelism and locality in heterogeneous architectures

    Get PDF
    [Abstract] High performance computing has become a key enabler for innovation in science and industry. This fact has unleashed a continuous demand of more computing power that the silicon industry has satisfied with parallel and heterogeneous architectures, and complex memory hierarchies. As a consequence, software developers have been challenged to write new codes and rewrite the old ones to be efficient in these new systems. Unfortunately, success cases are scarce and require huge investments in human workforce. Current compilers generate peak-peformance binary code in monocore architectures. Following this victory, this thesis explores new ideas in compiler design to overcome this challenge with the automatic extraction of parallelism and locality. First, we present a new compiler intermediate representation based on diKernels named KIR, which is insensitive to syntactic variations in the source code and exposes multiple levels of parallelism. On top of the KIR, we build a source-to-source approach that generates parallel code annotated with compiler directives: OpenMP for multicores and OpenHMPP for GPUs. Finally, we model program behavior from the point of view of the memory accesses through the reconstruction of affine loops for sequential and parallel codes. The experimental evaluations throughout the thesis corroborate the effectiveness and efficiency of the proposed solutions.[Resumen]La computación de altas prestaciones se ha convertido en un habilitador clave para la innovación en la ciencia y la industria. Este hecho ha propiciado una demanda continua de más poder computacional que la industria del silicio ha satisfecho con arquitecturas paralelas y heterogéneas, y jerarquías de memoria complejas. Como consecuencia, los desarrolladores de software han sido desafiados a escribir códigos nuevos y reescribir los antiguos para que sean eficientes en estos nuevos sistemas. Desafortunadamente, los casos de éxito son escasos y requieren inversiones enormes en fuerza de trabajo. Los compiladores actuales generan código binario con rendimiento máximo en las arquitecturas mononúcleo. Siguiendo esta victoria, esta tesis explora nuevas ideas en el diseño de compiladores para superar este reto con la extracción automática de paralelismo y localidad. En primer lugar, presentamos una nueva representación intermedia de compilador basada en diKernels denominada KIR, la cual es insensible a variaciones sintácticas en el código de fuente y expone múltiples niveles de paralelismo. Sobre la KIR, construimos una aproximación fuente-a-fuente que genera código paralelo anotado con directivas: OpenMP para multinúcleos y OpenHMPP para GPUs. Finalmente, modelamos el comportamiento del programa desde el punto de vista de los accesos de memoria a través de la reconstrucción de bucles afines para códigos secuenciales y paralelos. Las evaluaciones experimentales a lo largo de la tesis corroboran la efectividad y eficacia de las soluciones propuestas.[Resumo]A computación de altas prestacións converteuse nun habilitador clave para a innovación na ciencia e na industria. Este feito propiciou unha demanda continua de máis poder computacional que a industria do silicio satisfixo con arquitecturas paralelas e heteroxéneas, e xerarquías de memoria complexas. Como consecuencia, os desenvolvedores de software foron desafiados a escribir códigos novos e reescribir os antigos para que sexan eficientes nestes novos sistemas. Desafortunadamente, os casos de éxito son escasos e requiren investimentos enormes en forza de traballo. Os compiladores actuais xeran código binario con rendemento máximo nas arquitecturas mononúcleo. Seguindo esta vitoria, esta tese explora novas ideas no deseño de compiladores para superar este reto coa extracción automática de paralelismo e localidade. En primeiro lugar, presentamos unha nova representación intermedia de compilador baseada en diKernels denominada KIR, a cal é insensible a variacións sintácticas no código fonte e expón múltiples niveis de paralelismo. Sobre a KIR, construímos unha aproximación fonte-a-fonte que xera código paralelo anotado con directivas: OpenMP para multinúcleos e OpenHMPP para GPUs. Finalmente, modelamos o comportamento do programa desde o punto de vista dos accesos de memoria a través da reconstrución de bucles afíns para códigos secuenciais e paralelos. As avaliacións experimentais ao longo da tese corroboran a efectividade e eficacia das solucións propostas

    Computer Science 2019 APR Self-Study & Documents

    Get PDF
    UNM Computer Science APR self-study report and review team report for Spring 2019, fulfilling requirements of the Higher Learning Commission
    corecore