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Abstract

With Dennard Scaling coming to an end, Single Instruction Multiple Data (SIMD) offers itself as a way

to improve the compute throughput of CPUs. One fundamental technique in SIMD code generators

is the vectorization of data-parallel code regions. This has applications in outer-loop vectorization,

whole-function vectorization and vectorization of explicitly data-parallel languages.

This thesis makes contributions to the reliable vectorization of data-parallel code regions with unstruc-

tured, reducible control Ćow. Reducibility is the case in practice where all control-Ćow loops have exactly

one entry point.

We present P-LLVM, a novel, full-featured, intermediate representation for vectorizers that provides a

semantics for the code region at every stage of the vectorization pipeline. Partial control-Ćow linearization

is a novel partial if-conversion scheme, an essential technique to vectorize divergent control Ćow. Different

to prior techniques, partial linearization has linear running time, does not insert additional branches or

blocks and gives proved guarantees on the control Ćow retained.

Divergence of control induces value divergence at join points in the control-Ćow graph (CFG). We present

a novel control-divergence analysis for directed acyclic graphs with optimal running time and prove

that it is correct and precise under common static assumptions. We extend this technique to obtain a

quadratic-time, control-divergence analysis for arbitrary reducible CFGs. For this analysis, we show on

a range of realistic examples how earlier approaches are either less precise or incorrect.

We present a feature-complete divergence analysis for P-LLVM programs. The analysis is the Ąrst to

analyze stack-allocated objects in an unstructured control setting.

Finally, we generalize single-dimensional vectorization of outer loops to multi-dimensional tensorization

of loop nests. SIMD targets beneĄt from tensorization through more opportunities for re-use of loaded

values and more efficient memory access behavior.

The techniques were implemented in the Region Vectorizer (RV) for vectorization and TensorRV for

loop-nest tensorization. Our evaluation validates that the general-purpose RV vectorization system

matches the performance of more specialized approaches. RV performs on par with the ISPC compiler,

which only supports its structured domain-speciĄc language, on a range of tree traversal codes with

complex control Ćow. RV is able to outperform the loop vectorizers of state-of-the-art compilers, as we

show for the SPEC2017 nab_s benchmark and the XSBench proxy application.
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Zusammenfassung

Mit dem Ausreizen des Dennard Scalings erreichen die gewohnten Zuwächse in der skalaren Rechen-

leistung zusehends ihr Ende. Moderne Prozessoren setzen verstärkt auf parallele Berechnung, um den

Rechendurchsatz zu erhöhen. Hierbei spielen SIMD Instruktionen (Single Instruction Multiple Data),

die eine Operation gleichzeitig auf mehrere Eingaben anwenden, eine zentrale Rolle. Eine fundamentale

Technik, um SIMD Programmcode zu erzeugen, ist der Einsatz datenparalleler Vektorisierung. Diese

unterliegt populären Verfahren, wie der Vektorisierung äußerer Schleifen, der Vektorisierung gesamter

Funktionen bis hin zu explizit datenparallelen Programmiersprachen.

Der Beitrag der vorliegenden Arbeit besteht darin, ein zuverlässiges Vektorisierungssystem für datenpar-

allelen Code mit reduziblem SteuerĆuss zu entwickeln. Diese Anforderung ist für alle SteuerĆussgraphen

erfüllt, deren Schleifen nur einen Eingang haben, was in der Praxis der Fall ist.

Wir präsentieren P-LLVM, eine ausdrucksstarke Zwischendarstellung für Vektorisierer, welche dem Pro-

gramm in jedem Stadium der Transformation von datenparallelem Code zu SIMD Code eine deĄnierte

Semantik verleiht.

Partielle SteuerĆuss-Linearisierung ist ein neuer Algorithmus zur If-Conversion, welcher Sprünge erhalten

kann. Anders als existierende Verfahren hat Partielle Linearisierung eine lineare Laufzeit und fügt keine

neuen Sprünge oder Blöcke ein. Wir zeigen Kriterien, unter denen der Algorithmus SteuerĆuss erhält,

und beweisen diese.

SteuerĆussdivergenz induziert Divergenz an Punkten zusammenĆießenden SteuerĆusses. Wir stellen eine

neue SteuerĆussdivergenzanalyse für azyklische Graphen mit optimaler Laufzeit vor und beweisen deren

Korrektheit und Präzision. Wir verallgemeinern die Technik zu einem Algorithmus mit quadratischer

Laufzeit für beliebiege, reduzible SteuerĆussgraphen. Eine Studie auf realistischen Beispielgraphen zeigt,

dass vergleichbare Techniken entweder weniger präsize sind oder falsche Ergebnisse liefern. Ebenfalls

präsentieren wir eine Divergenzanalyse für P-LLVM Programme. Diese Analyse ist die erste Divergenz-

analyse, welche Divergenz in stapelallokierten Objekten unter unstrukturiertem SteuerĆuss analysiert.

Schließlich generalisieren wir die eindimensionale Vektorisierung von äußeren Schleifen zur multidi-

mensionalen Tensorisierung von Schleifennestern. Tensorisierung eröffnet für SIMD Prozessoren mehr

Möglichkeiten, bereits geladene Werte wiederzuverwenden und das Speicherzugriffsverhalten des Pro-

gramms zu optimieren, als dies mit Vektorisierung der Fall ist.

Die vorgestellten Techniken wurden in den Region Vectorizer (RV) für Vektorisierung und TensorRV für

die Tensorisierung von Schleifennestern implementiert. Wir zeigen auf einer Reihe von steuerĆusslastigen

Programmen für die Traversierung von Baumdatenstrukturen, dass RV das gleiche Niveau erreicht

wie der ISPC Compiler, welcher nur seine strukturierte Eingabesprache verarbeiten kann. RV kann

schnellere SIMD-Programme erzeugen als die Schleifenvektorisierer in aktuellen Industriecompilern. Dies

demonstrieren wir mit dem nab_s benchmark aus der SPEC2017 Benchmarksuite und der XSBench

Proxy-Anwendung.
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Chapter 1.

Introduction

With Dennard Scaling coming to an end, the Single Instruction Multiple Data (SIMD) paradigm offers
a way to extract more compute throughput at the limits of contemporary transistor technology. SIMD
instructions apply one operation to each scalar element of vector, implementing a restricted form
of parallel compute. SIMD ISAs are a steady presence being available from mobile platforms (e.g.
ARM NEON [Reddy, 2008], ARM MVE [ARM]), through general-purpose CPUs (e.g. AltiVec [Fuller,
1998],AVX512 [Intel]) to dedicated high-performance hardware (e.g. SVE [Stephens et al., 2017],
NEC SX-Aurora TSUBASA [Komatsu et al., 2018], AMD GPUs AMD [2019] or the RISC-V (V
extension) [Alon Amid et al., 2019]).

SIMD exists foremost because it is efficiently implementable in hardware not for ease of programma-
bility. Expert SIMD programmers leverage compiler-builtin functions to tap into the compute potential
of SIMD. This is a tedious programming task that results in highly target-speciĄc codes. Against the
backdrop of stagnating scalar performance, increasingly non-expert programmers rely on SIMD code
generators and language support to meet application performance goals. One fundamental paradigm in
these tools is data-parallel vectorization, which surfaces in compilers for workitem-centric programming
languages (CUDA, OpenCL), outer-loop vectorization or whole-function vectorization.

Data-parallel vectorizers broadly fall into three categories: First, domain-speciĄc SIMD code
generators vectorize within the strict limits of their domain, e.g. tree traversal codes [Jo et al., 2013;
Ren et al., 2015] or FFTs [Frigo and Johnson, 2005]. Second, compilers for high-level languages for
vectorization, such as ISPC [Pharr and Mark, 2012] or Sierra [Leißa et al., 2014], vectorize codes only
in their structured language. Finally, the vectorizer passes of general-purpose compilers build on the
compilersŠ unstructured intermediate representations (IR). Compiler IRs are principally for sequential
code and have only a rudimentary data-parallel interpretation.

This thesis presents the Region Vectorizer (RV), its underlying program representation and novel
analyses and transformations. RV advances the state of the art in the vectorization of data-parallel
programs with arbitrary, reducible control Ćow.

This thesis is structured as follows: Chapter 2 clariĄes the terminology and notation used throughout
this thesis, along with an introduction to the intermediate representation of the LLVM compiler
framework. Chapter 3 gives an introduction to the RV vectorization system. Chapter 4 to Chapter 10
describe the main components of the RV vectorization system. Chapter 11 presents TensorRV, which
extends RV to the tensorization of multi-dimensional loop nests. Chapter 12 discusses related work
in vectorization frameworks from the angle of full system capabilities, Chapter 13 presents evaluation
results. We draw conclusions and give an outlook on future work in Chapter 14.
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1.1. Contributions

This thesis makes the following contributions:

• P-LLVM - a data-parallel extension of LLVM IR with a formally deĄned, lock-step semantics
(Chapter 4 and Chapter 5). The P-LLVM representation includes key features required in
vectorization, such as per-block predication and horizontal operations. The behavior of a well-
formed P-LLVM program is predictable and deĄned even for horizontal operators in divergent
control-Ćow and non-trivial predication. Prior data-parallel IRs are either less expressive, e.g. do
not consider predication, not as rigorously deĄned, e.g. NVIDIA PTX, or do not allow unstructured
programs, e.g. ISPC, Sierra. Each ephemeral P-LLVM program in the vectorizer pipeline has a
deĄned semantics, turning the vectorization process into a progression of combinable passes.

• Partial Linearization - a new and simple algorithm for partial if-conversion with linear running
time and proved properties (Chapter 8). Partial linearization does not insert branches or blocks
and gives strong guarantees on retained branches and control dependences. Prior techniques do
not give these guarantees for unstructured control Ćow.

• P-LLVM and partial linearization simplify existing transformations for divergent control Ćow. We
show this for the transformation of divergent loops into uniform loops and the insertion of all-false
mask tests (Chapter 9).

• A novel divergence analysis for P-LLVM programs (Chapter 6). This divergence analysis improves
over prior work by considering all divergence effects in P-LLVM programs, whether they arise from
non-uniform branching or predication. This is the Ąrst divergence analysis that can prove the
uniformity of stack-objects in predicated, unstructured control Ćow. We also present an expressive
analysis lattice for divergence analysis, which captures stride and alignment at the same time
(Chapter 10).

• The control-divergence analysis, a new algorithm to compute control-induced divergence effects
in reducible, unstructured control-Ćow graphs (Chapter 7). We prove correctness, precision and
optimal running time for directed acyclic graphs and extend the algorithm to reducible control-Ćow
graphs. This is the Ąrst control-divergence analysis that models divergent loops with mixed
divergent and uniform exits. We show how prior techniques are less precise or deliver invalid
results on a range of realistic examples.

• Tensorization - the generalization of vectorization to multiple dimensions (Chapter 11). Tensoriza-
tion exposes opportunities for reuse of loaded values. Experiments show speed ups by up to 45%

on stencil codes and up to 511% on matrix transpose when loop nest tensorization is combined
with a data layout transformation.

• All of the aforementioned techniques are implemented in the Region Vectorizer (RV) vectorization
system and evaluated on benchmarks on four different platforms (Chapter 13). The benchmarks
comprise a set of tree traversal codes and two benchmark applications, the nab_s benchmark of
SPEC2017 and the XSBench proxy application of OpenMC, a neutronics simulation code. In
outer-loop vectorization, RV outperforms the best of the Intel C Compiler, GCC and the AMD
AOCC compiler on nab_s by 9.2% and on XSBench by 27.8%. On the tree traversal codes,
RV vectorizes C++ implementations that match expert implementations in the ISPC language,
without requiring any of the annotations that are necessary for ISPC.
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1.2. Publications

This thesis is based on the following publications:

1. S. Moll and S. Hack. Partial Control-Flow Linearization. In Proceedings of the 39th ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2018, [Moll
and Hack, 2018].

2. S. Moll, S. Sharma, M. Kurtenacker, and S. Hack. Multi-dimensional Vectorization in LLVM.

In Proceedings of the 5th Workshop on Programming Models for SIMD/Vector Processing,
WPMVPŠ19, [Moll et al., 2019].

3. M. Haidl, S. Moll, L. Klein, H. Sun, S. Hack, and S. Gorlatch. PACXXv2 + RV: An LLVM-based

Portable High-Performance Programming Model. In Proceedings of the Fourth Workshop on the
LLVM Compiler Infrastructure in HPC, LLVM-HPC@SC 2017, [Haidl et al., 2017].

Other Publications

The following results were published in the course of research but do not form part of this thesis:

1. S. Moll, J. Doerfert, and S. Hack. Input Space Splitting for OpenCL. In Proceedings of the 25th
International Conference on Compiler Construction, CC 2016, [Moll et al., 2016].

2. A. Pérard-Gayot, R. Membarth, P. Slusallek, S. Moll, R. Leißa, and S. Hack. A Data Layout

Transformation for Vectorizing Compilers. In Proceedings of the 4th Workshop on Programming
Models for SIMD/Vector Processing, WPMVP@PPoPP 2018, [Pérard-Gayot et al., 2018].

We enhanced the algorithms presented in Chapter 7 after the research period for this thesis. The
improved algorithms are published in the following article and do not form part of this thesis:

1. J. Rosemann, S. Moll, and S. Hack. An abstract interpretation for SPMD divergence on reducible

control Ćow graphs. In Proc. ACM Program. Lang. 5, POPL 2021, [Rosemann et al., 2021].

Theses by Students

The following studentsŠ theses were advised in the course of the research for this dissertation:

• Thorsten Klößner. "A Transformer-Generic Vectorization Analysis", Bachelor Thesis.

• Dominik Montada. "naTIVE: Target-Independent Vector-Code Generator for Existing Vectorizers",
Master Thesis.

• Shrey Sharma. "Multidimensional Auto-Vectorization of Stencil Codes", Master Thesis.

The following thesis fell in the research period but is not related:

• Matthias Kurtenacker. "On Synchronization in the Polyhedral Model", Master Thesis.
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Chapter 2.

Background

This chapter introduces the LLVM intermediate representation, the notion of the control-Ćow graph and
loops. We also present auxiliary functions and provide some clariĄcation on the notation that we will
use in the subsequent chapters.

2.1. LLVM

LLVM [Lattner and Adve, 2004] is a compiler framework and intermediate representation (IR). Fig-
ure 2.1 shows a language reference for the LLVM IR language as we use it in this thesis. The syntax
deviates slightly from standard LLVM IR to enhance legibility: We use elemptr to mean the address
computation instruction (getelementptr in standard LLVM IR) and add an explicit not instruction.
Also we take the liberty of omitting types where they can be inferred or do not matter in the context.

LLVM IR uses Static Single Assignment Form (SSA) [Alpern et al., 1988]. That is every value-yielding
instruction assigns its result to a variable that is unique in the function that contains the instruction.

The set V refers to all values that a LLVM variable can attain. The set should be interpreted in the
type context. That is, if a variable x has type fp64 and y ∈ V refers to a valuation of x then V is the
set of all fp64 values (double Ćoating-point type). We use the symbol ⊤ ∈ V to refer to the special
undeĄned value of LLVM. The undeĄned value is a wildcard value that is equivalent to every value.
It is used to indicate that the result of an operation is not deĄned. An operation on ⊤ again yields
⊤. Compiler transformations may replace undeĄned values with any other value, enabling aggressive
program transformations.
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Sign-agnostic integer arithmetic

add/sub x y Addition/subtraction

mul x y Multiply

Signed/Unsigned arithmetic

sdiv/udiv x y Division

srem/urem x y Remainder

Boolean arithmetic

or/and/xor x y Bitwise or/and/xor

not x Bitwise not

Floating point arithmetic

fadd/fsub x y Fp addition/subtraction

fmul/fdiv x y Fp multiplication/division

Comparison

fcmp Pfp x y Floating-point compare

Pfp ∈ ¶ oeq,one,olt,ole,ogt,oge,ueq,une,ult,ule,ugt,uge ♢

icmp Pint x y Integer compare

Pint ∈ ¶ slt,sle,sgt,sge,ult,ule,ugt,uge ♢

Memory

alloca typ Stack allocation

elemptr P I0 . . . In−1 Address computation

load P Load value from address P

store P V Store value of V to address P

Other

select C A B A if C else B

F (A0, . . . , An−1) Call of function F

(a) Instructions

SSA

ϕ [v0, B0] .. [vn, Bn] Value vi from block Bi

Terminators

switch v [ci, Bi], .. Go to Bi if v = ci

default(Bd) Otw, got to Bd.

br c A B Go to A if c else B

ret v Return with value v

(b) Other Primitives

Scalar Types

void Type without value

in n bit integer type

fpn n bit IEEE 754 binary Ćoat

Compound Types

typ* Pointer type

¶ typ0, .., typn−1 ♢ Struct type

typ[n] Array type with n elements

<n x typ> Vector type with n elements

(c) Types

Figure 2.1.: LLVM IR reference (dialect).
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2.2. Control-Flow Graph

A Control-Flow Graph (CFG) G = (V, E, entry) consists of basic blocks v ∈ V, control-Ćow edges
(b, i, s) ∈ E and a designated entry ∈ V. If (b, i, s) ∈ E then s is the i-th successor of the terminator in b.
We require that every block v ∈ V is reachable from entry. Each basic block b ∈ V consists of a list of ϕ

nodes, followed by a list of instructions and ends in a terminator.

Control-Flow Edges and Paths. We use the notation b → s ∈ E to mean ∃i.(b, i, s) ∈ E. Likewise,
we denote by π ∈ a →+ b a non-empty path π from a to b through a chain of edges (transitive closure of
the control-Ćow edges). The notation π ∈ a →∗ b means that either π is the empty path and a = b or
π ∈ a →+ b (reĆexive and transitive closure of the control-Ćow edges).

We call a path complete if its last block has no outgoing edges. The set a↓ contains all complete
paths that start in a ∈ V. We will say two paths π1 ∈ a →∗ x and π2 ∈ a →∗ y are almost node-disjoint,
if they do not share any node except a. Two paths π1 ∈ a →∗ z and π2 ∈ a →∗ z are called inner-node

disjoint, if π1 ̸= π2 and they have no common nodes except a and z.

A CFG that contains no path a →+ a, for any a ∈ V, is a Directed Acyclic Graph (DAG).

2.3. CFG Properties

Dominance and Post-Dominance. In a graph G, the block a ∈ V is said to dominate [Prosser,
1959] b ∈ V (a is a dominator of b), written a ⪰D b, iff every path π ∈ entry →∗ b contains a.
Symmetrically [Cytron et al., 1991], the block a ∈ V is said to post dominate b ∈ V (a is a post dominator
of b), written a ⪰PD b, iff every complete path π ∈ b↓ contains a.

Control Dependence. A block k ∈ V is control dependent on an edge a → b ∈ E, iff k ⪰PD b and
k ̸⪰PD a. We use the notation cdep(k) ⊆ E to denote the set of all edges a → b ∈ E that k ∈ V is
control dependent on [Ferrante et al., 1987; Cytron et al., 1991]. The set of blocks that k ∈ V is control
dependent on is deĄned as cdepB(k) = ¶ a ∈ V ♣ ∃b.a → b ∈ cdep(k) ♢ The inverse, the set of blocks that
are control dependent on b, is given by cdep_on(b) = ¶ k ∈ V ♣ b ∈ cdepB(k) ♢
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2.4. Reducibility and Loops

C

D

E

F

G

H

1:1

1
:1

Loop

Preheader
(unique)

Header
(unique)

Exiting

Exit

Latch
(unique)

Backedge

Figure 2.2.: Anatomy of a natural loop.

Throughout this thesis, we shall assume that CFGs are
reducible [Hecht and Ullman, 1972; Aho et al., 1986]. A
reducible CFG is deĄned as follows [Hecht and Ullman,
1974]: A depth-Ąrst search (DFS) on CFGs yields a set
of retreating edges, i.e. edges x → y ∈ E such that y

is an ancestor of x in the depth-Ąrst search tree. In a
reducible CFG, all DFSs yield the same set of retreating
edges and for every retreating edge x → y ∈ E it holds
that y dominates x. A retreating edge in a reducible CFG
is called a back edge. We denote by Backedges ⊆ V the
set of all back edges.

Every back edge deĄnes a so-called natural loop. Fig-
ure 2.2 shows an example of a natural loop and the naming
convention for its parts. For every x → y ∈ Backedges,
we call x ∈ V a latch block and y ∈ V a loop header. The
natural loop of a back edge x → y ∈ Backedges is the set
if blocks that contains both x and y and all z ∈ V such
that z reaches the latch block x without going through the
loop header y. Natural loops induce a loop tree through
subset inclusion, a loop whose blocks are subset of the
blocks of another loop is a child loop of the other loop.

We deĄne Loops as the set of a all loops in the CFG.

We use the following formal notation. In the following, let L ∈ Loops be a natural loop. We call
b ∈ V a loop exit of the loop L if b ̸∈ L and there is a control-Ćow edge a → b ∈ E such that a ∈ L.
Analogously, we call a ∈ V an exiting block of the loop L if a ∈ L and there is a control-Ćow edge
a → b ∈ E such that b ̸∈ L. lp B is the inner-most loop that contains the basic block B. lplatch L denotes
the unique latch block of the loop L, lpexits L denotes the set of exit blocks of the loop L. lphead L is
the unique loop header of the loop L, We require that every loop header has exactly one predecessor
that is not part of the loop. This block is called the preheader of the loop.

We make the following structural assumptions on loops for sake of simplicity: We require that all
back edges are disjoint, i.e. there are no two back edges x → y ∈ Backedges and x′ → y′ ∈ Backedges

such that y = y′. We require that ∀a ∈ V.a↓ ̸= ∅, that is all loops have exits. We assume that there is a
one-to-one correspondence between loop exiting and exit blocks. These properties can be established
in any reducible CFGs by the following means: If there are multiple back edges for the same loop
header, insert a new block that branches to this loop header and make all former latch blocks branch to
that block instead of the loop header. This new block is then a unique latch block. Uniqueness of the
pre-header can be achieved similarly by funneling all edges that enter the loop header from outside the
loop through a new dedicated basic block. The one-to-one constraint for loop exit and exiting blocks
only requires splitting the loop exiting edges.

We require Loop-Closed SSA form [Pop, 2006] to simplify the algorithms, e.g. the divergence analysis.
A program is in LCSSA form if all loop live outs are funneled through ϕ nodes in the loop exits. Variables
that are deĄned in loops and used outside of their deĄning loop are thus easily identiĄed by inspecting
the LCSSA ϕ nodes in the loop exits. Compiler support for LCSSA form is common and available, for
example, in GCC and LLVM. LLVM includes passes that establish LCSSA form in LLVM IR programs.
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2.5. Block Index

The function BlockIndex ∈ V → N is the index of a block in a toposort (ignoring back edges). We call
such an index compact with regards to some set B ⊆ V, if BlockIndex(B) is equal to an interval [a, b]
for some a, b ∈ N. That is there are no block indices in the interval whose blocks are not in B and
the block index of all elements of B is within that interval. A block index is a topological block index
that is compact with regards to all blocks of the CFG, all loops and all dominated block set of the
CFG [Wimmer and Mössenböck, 2005]. Every loop header has the minimum index of the blocks in the
loop. Since we impose loop latches to be unique, every loop latch has the maximum index of the loop
blocks.

2.6. Mathematical Notation and Conventions

The function gcd ∈ Z × Z → N computes the greatest common divisor of two numbers. For the case
a ̸= 0 and b ̸= 0, we deĄne gcd(a, b) as the maximal k ∈ N such that there exist a′, b′ ∈ Z with ka′ = a

and kb′ = b. We extend the deĄnition of gcd to 0 by letting gcd(0, a) = gcd(a, 0) = ♣a♣.

We denote by q♣n that q ∈ Z divides n ∈ Z.

We use the notation [x1, .., xn] to construct a vector value where xi is the i-th element value. We
interchangeably use functions over element indices to deĄne vector values, that is

λx ∈ ¶ 0, 1, 2, 3 ♢ .x2 is equivalent to [0, 1, 4, 9]

The mapn function applies a function f element-wise to all vector arguments that follow f in the
argument list. Non-vector arguments are implicitly broadcast to a vector of size n. An example:

mapn f xn y zn = [f(x0, y, z0), .., f(xn−1, y, zn−1)]

2.7. Single Instruction Multiple Data

Single Instruction Multiple Data (SIMD) [Flynn, 1972] instructions apply one operation on multiple
data in parallel. In a typical SIMD ISA, we expect to Ąnd a matching SIMD instruction for every scalar
instruction that operates on scalar integer or Ćoating point data. Figure 2.3 shows a scalar add and its
SIMD version, add_v4.

Scalar instructions, for example the add instruction in Figure 2.3a, operate on scalar input registers
and produce a scalar result. The example shows a 32 bit add operation on 32 bit scalar CPU registers.
The matching SIMD instruction, add_v4, is shown in Figure 2.3. Instead of operating on scalar registers,
add_v4 operates on SIMD registers, which are 128 bit wide in this case. In case of the add_v4 the
128 bit of the operand and destination register are interpreted as 4 × 32 bit. We refer to these logical
elements of a SIMD register as SIMD lanes. How many SIMD lanes are available for an instruction
depends on the element size of the SIMD operation. For example, if a SIMD register has 128 bit, then a
SIMD add of 64bit elements only produces two results in one invocation. This logic subdivision transfers
to SIMD instructions. When we say that an instruction operates on a certain lane i, we mean that
the SIMD instruction reads the i-th element of every SIMD operand and writes the result to the i-th
element position of the destination register.
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add

a b

c

c = add a b

32 bit

(a) Scalar instruction.

add_v4

va vb

vc

vc = add_v4 va vb

32 bit

128 bit

(b) SIMD version of the same instruction.

Figure 2.3.: SIMD instruction archetype.

fdiv_v4

va vbvm

vc

vc = fdiv_v4 va vb vm

1 0 1 16. 3. 4. 3. 2. 0. 2. 3.

3. ⊤ 2. 1.

Figure 2.4.: Predicated Ćoating-point division for SIMD width 4.

For sake of clarity, we use to the following naming scheme for SIMD instructions. We suffix a scalar
operation with _vW to indicate that we are using the SIMD version of it with W many lanes. For
example, a scalar addition is given by add. The SIMD variant for width 4 is given by add_v4.

Other SIMD Instructions. Some typical SIMD instructions deviate from the archetypical pattern
in Figure 2.3. The broadcast_vW(v) instruction, takes a scalar value v and replicates it into the
lanes of a SIMD register. For sake of legibility, we omit explicit broadcasts in code listings. When a
scalar operand is used in a SIMD operation, the broadcast of that operand is implied. Almost all SIMD
architectures support vector memory loads and stores. A SIMD load load_vW(ptr), loads a full SIMD
register from the address given by ptr. The SIMD store store_vW(ptr, v) symmetrically stores the
full SIMD register v to the address in ptr.

Among the regular SIMD instructions, we highlight the select operation. The operation select_vW (c,
a, b) is an element-wise select of values from two vectors a and b, depending on a bit vector c. The
result lanes are equal to a where the bit in c is true. Otherwise, the result lane holds the value of the
lane in b.

Predicated SIMD Instructions. Many recent SIMD ISAs support predicated SIMD instructions.
Predicated SIMD instructions have an additional predicate operand, which is a bit SIMD vector. The
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operation is only performed on those lanes where the mask bit is 1. Consider the SIMD builtin function
for predicated Ćoating-point division in Figure 2.4. The mask bit on the second lane is 0 and so there is
no division by zero.

SIMD ISAs give varying guarantees for values on masked-off lanes For example, the AVX512 vdivpd

instruction (Ćoating-point division) comes in two forms that either preserve the value of the destination
register or yield 0 on masked-off lanes. Other ISAs do not support SIMD predication at all (i.e. ARM
NEON) or only for some instructions (there is no SIMD integer division in AVX512).

The compiler needs to deĄne a semantics for the masked-off lanes in the predicated SIMD instructions
of the IR. In order to not tailor these towards a speciĄc SIMD ISA, we deĄne that the result on masked-off
lanes is the undeĄned value (⊤). Compiler backends for non-predicating SIMD ISAs can simply ignore
the predicate for side-effect-free operations. Lanes holding ⊤ can be swapped for deĄned values using a
SIMD select_vW . For example, the AVX512 backend may emit a zeromasking vdivpd instruction,
matching a fdiv_v4 plus select_v4 for 0 on masked-off lanes.
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Chapter 3.

Motivation and System Overview

This chapter gives an overview of the P-LLVM program representation and the RV vectorization system
that is built on it. During each section, we shed light on a challenge in vectorization and extend the
vectorizer to account for it.

Section 3.1 starts with a basic vectorizer for outer loops that are known to be parallel. Section 3.2
introduces the concept of uniformity. In Section 3.3, we extend the vectorizer pipeline to support
Whole-Function Vectorization through the concept of regions and SIMD lane threads. Section 3.4
demonstrates how partial linearization is integrated into the system, giving rise to predication in the IR.
Section 3.5 introduces the concept of horizontal operations, lock-step execution and runtime schedules.
Section 3.6 discusses the transformation of divergent loops, exposing the semantic difference between
SIMD code and lock-step execution.

We conclude in Section 3.7 with the Ąnal pipeline of the Region Vectorizer, handing over to individual
chapters for the technical presentation.
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3.1. Parallel-Loop Vectorization

Some loops can be vectorized simply by rewriting them with SIMD intrinsics. The loop in Figure 3.1a is
an example of this. It is parallel, meaning that no iteration writes to an address that another iteration
writes to or reads from. And, importantly, its trip count happens to be the SIMD width (assuming we
are vectorizing for a 256 bit SIMD ISA). Such a loop is vectorized by replacing every scalar instruction
with a SIMD instruction. We call this very mechanical process Widening. After all instructions have
been vectorized, we remove the loop around them, resulting in the code shown in Figure 3.1b. One
execution of the SIMD instructions does the work of the former scalar loop.

1 double * A, * B, * C;
2 // ...
3 for (int i = 0; i < 4; ++i) {
4 b = B[i];
5 c = C[i];
6 a = b + c;
7 A[i] = a;
8 }

(a) Parallel loop (A, B and C assumed not to alias).
The loop trip count is the SIMD width.

1 double * A, * B, * C;
2 // ...
3 int i = 0;
4 b = load_v4 (&B[i]);
5 c = load_v4 (&C[i])
6 a = add_v4 (b + c);
7 store_v4 (&A[i], a);

(b) Widened loop with SIMD instructions.

Figure 3.1.: Widening a constant trip count loop.

Loop Vectorizers automate this process as a transformation in the compiler. In the context of this
thesis, we use the LLVM [Lattner and Adve, 2004] compiler framework. The intermediate representation
of LLVM (LLVM IR) is based on Control-Flow Graphs. Nevertheless, we stick to code listings for the
purpose of legibility where it is appropriate. The transformations and observations on those listings can
be made equivalently on the actual IR.

1 for (int i = 0; i < n; ++i) { // parallel
2 double a = 0.0;
3 for (int j = 0; j < m; ++j) {
4 double v = A[j*m + i];
5 a += v;
6 }
7 B[i] = a;
8 }

(a) Scalar loop.

1 for (int i = 0; i < n; i += 4) {
2 // for (int l = 0; l < 4; ++l) {
3 double4 a = [0.0 , 0.0, 0.0, 0.0];
4 for (int j = 0; j < m; ++j) {
5 double4 v = load_v4 (&A[j*m + i]);
6 a = add_v4 (a, v);
7 }
8 store_v4 (&B[i], a);
9 // }

10 }
11 // [..] remainder loop

(b) SIMD loop after widening.

1 int minedI ;
2 // strip -mined loop
3 for ( minedI = 0; ( minedI + 3) < n; minedI += 4)
4 {
5 for (int l = 0; l < 4; ++l) {
6 int i = minedI + l;
7 double a = 0.0;
8 for (int j = 0; j < m; ++j) {
9 double v = A[j*m + i];

10 a += v;
11 }
12 B[i] = a;
13 }
14 }
15

16 // remainder loop
17 for (int i = minedI ; i < n; ++i) {
18 double a = 0.0;
19 for (int j = 0; j < m; ++j) {
20 double v = A[j*m + i];
21 a += v;
22 }
23 B[i] = a;
24 }

(c) Scalar loop after strip mining.

Figure 3.2.: Strip mining example.

There are two observations that make widening applicable to a wider class of loops. First, the loop
vectorizer can employ strip mining to extract SIMD width trip count loops from loops with variable trip
counts. Second, widening is possible in the presence of nested loops if one criterion is met: Variables that
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are deĄned on the level of the loop to vectorize, that is not in loops inside of it, must not transitively
Ćow into the exit conditions of the inner loops.

Figure 3.2a shows an example for an inner loop whose exit condition is independent of the loop to
vectorize in this way. We are looking to vectorize the i loop. The j loop exits when j >= m. Neither
m nor the start, end or step value of j depend on any variable deĄned in the i loop, namely i or a.
Therefore, we can vectorize the i-loop and leave the loop iteration variable j and its loop exit condition
as they are.

Unlike in our Ąrst widening example, the trip count of the i-loop of Figure 3.2a is not equal to the
SIMD width. We employ strip mining to split the loop into two nested loops such that the inner one has
exactly the SIMD width as its iteration count. We call the two resulting loops the outer, strip-mined
loop, and the inner, strip loop. Strip mining results in a third loop that handles the remainder iterations
whenever the trip count of the original loop is not a perfect multiple of the SIMD width. For our example,
the strip-mined code is shown in Figure 3.2c. The step size of the strip-mined loop in line Line 3 is the
SIMD width. The strip loop in Line 5 iterates over all the in-between elements. The strip loop will
be vectorized. The remainder loop in Line 17 takes care of all remaining scalar iterations and remains
un-vectorized.

Finally, the widening procedure is applied to the strip loop. Every scalar instructions is replaced
with the SIMD instruction. The strip loop is afterwards removed from the code, yielding the result
shown in Figure 3.2b. At this point, the parallel-loop vectorizer has successfully vectorized the outer
loop.

Loop Vectorizer Pipeline. We summarize the phases of a basic parallel-loop vectorizer pipeline
in Figure 3.3.

Scalar

Loop

Inner

Loop

Analysis

Strip

Mining
Widening

SIMD

Loop

✓

✗

- dependent inner loop

- any branches

Figure 3.3.: Flow of a basic (parallel) loop vectorizer.

The scalar loop is parallel. The inner loop analysis checks that all loop exit conditions of the inner
loops are independent of the parallel loop. If this is not the case or if there are any other branches inside
the parallel loop, the system bails and the parallel loop remains un-vectorized. If the exit conditions
of the nested loop are independent of the parallel loop and there are no other branches, the system
proceeds. The loop is strip mined and the instructions in the strip loop are widened into SIMD code.
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3.2. Uniformity and Divergence Analysis

The vectorizer pipeline outlined in Section 3.1 can only handle a very restricted class of control Ćow:
nested loops whose exit conditions are independent of the loop to vectorize. It denies to vectorize loops
that do not fall into this category. In the course of this section, we extend the vectorizer to handle a
certain class of branches.

1 for (int i = 0; i < 4; ++i) { // parallel
2 double a = 0.0;
3 for (int k = 0; k < n; ++k) {
4 bool p = B[k] > 0;
5 if (p) {
6 d = C[k,i];
7 a += d;
8 }
9 }

10 A[i] = a;
11 }

(a) Scalar loop with uniform branch.

1 // for (int i = 0; i < 4; ++i) {
2 double4 a = 0.0;
3 for (int k = 0; k < n; ++k) {
4 bool p = B[k] > 0;
5 if (p) {
6 double d = load_v4 (&C[k,i]);
7 a = add_v4 (a, d);
8 }
9 }

10 store_v4 (A[i], a);
11 // }

(b) Vectorized loop.

Figure 3.4.: Widening works if branch conditions are uniform.

Consider the vectorization of the loop in Figure 3.4a. Due to the branch in Line 5 our basic vectorizer
will refuse to vectorize the loop. There is no SIMD branch instruction. However, we can enhance the
widening process to generate scalar branch instructions in some cases. This improved widening stage
leaves branches and instructions scalar if all strip loop iterations and thus SIMD lanes compute the
same result. When we proceed with widening despite the branch, widening yields the valid SIMD code
shown in Figure 3.4b.

The value of p only depends on k and is independent of the iteration variable i. Thus, the widening
stage can keep p = B[k] > 0 and the branch on p scalar.

Uniformity. It is possible to vectorize code with branches if the branches are uniform. In a uniform
branch, the branching decision is the same for all iterations of the strip loop as shown in Figure 3.5a.
Therefore, the vectorizer can leave uniform branches scalar. A non-uniform branch is called divergent and
a non-uniform instruction varying. In a divergent branch, the branch condition may evaluate differently
for different iterations of the strip loop. This is shown in Figure 3.5b. It is not possible to widen a
divergent branch because SIMD ISAs do not support branching to multiple blocks at once. Therefore,
the system needs to verify that all branches are uniform before attempting to actually vectorize the loop.

Divergence Analysis. We add a Divergence Analysis stage to the vectorizer to detect divergent
branches. The divergence analysis is an analysis that performs widening in the abstract without generating
code. It classiĄes each instruction and branch as uniform (u) or otherwise as varying/divergent (v).

The iteration variable of the loop to vectorize loop is varying. All other values are initially assumed
to be uniform. The divergence analysis passes over the scalar code classifying every instruction as either
uniform or varying. The divergence analysis will use the same decision logic as the improved widening
stage. If all operands of an instructions are uniform, then the instruction itself is uniform. If a loop
contains a divergent branch, it cannot be vectorized. Therefore, Divergence analysis can stop as soon as
it encounters the Ąrst divergent branch.

Example. Figure 3.6a shows the output of the divergence analysis on an example. In this example,
the i-loop is vectorized and i is the initially known varying value. In Figure 3.6b, we show the CFG
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1 // for (l = 0; l < 4; ++l) {
2 [..]
3 A: bool p = [..]
4 if (p) goto B;
5 else goto C;
6 }

br

B C

1 1 1 1 br

B C

0 0 0 0

(a) If p is uniform, the if-statement will branch either to B or C coherently for all iterations of the strip loop. The branch
can remain scalar and widening can proceed.

1 // for (l = 0; l < 4; ++l) {
2 [..]
3 A: bool4 p = [..]
4 if (p) goto B;
5 else goto C;
6 }

br

B C

1 0 1 0 br

B C

0 1 1 1

(b) If p is varying, the branch could go to B and C for different strip loop iterations at the same time. The two outcomes
for p to the right are just examples, any combination of B and C is possible, including the outcomes of the uniform

case in Figure 3.5a. There is no SIMD branch instruction. Vectorization fails.

Figure 3.5.: Approaching a uniform (3.5a) and a divergent (3.5b) branch in the widening phase.

1 B: for (i = 0; i < n; ++i) {
2 v = A[i]; : v

3 C: for (k = 0; k < m; ++k) {
4 D: p = B[k]; : u

5 if (p) { : u

6 x = v; : v

7 } else {
8 E: x = C[k]; : u

9 } // x : v

10 F: D[k] = x;
11 }
12 }

(a) Program with abstract divergence analysis tags.
Uniform (u) and varying (v).

..
br p E F : u

D

ckPtr = elemptr C k : u

x0 = load ckPtr : u

br E : u

E

x = φ[v,D] [x0 ,E] : v

..

F

(b) Excerpt CFG from Figure 3.6a showing how
a φ node is classiĄed as varying.

Figure 3.6.: Basic divergence analysis run.

of the program in Figure 3.6a tagged with the analysis result of the divergence analysis. There is a
φ node in block F. In a control uniform CFG, a φ node that has only uniform incoming values is also
uniform. The divergence analysis computes the divergence of x by joining the divergence of the incoming
values. Since v is varying, x is varying as well. The only branch condition p is uniform and so the CFG
is control uniform. In the widened code, p will remain scalar and the φ node x receives a vector value
from E and the broadcasted value of v from D.
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Vectorizer Pipeline. We add a new Divergence Analysis stage to check all branch conditions for
uniformity. The divergence analysis aborts as soon as control divergence, that is any divergent branch, is
detected. If the code is control uniform, that is all branches are uniform, we know that widening can
proceed keeping all branches scalar.

Scalar

Loop

Divergence

Analysis

Strip

Mining
Widening

SIMD

Loop✓

✗

- non-invariant loop

- divergent branches

control uniform

Figure 3.7.: Parallel loop vectorizer for uniform control.
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3.3. Region Vectorization

1 float

2 myPow( float x, int y) {
3 int absY = \
4 select (y < 0, -y, y);
5

6 float accu = 1.f;
7 for (; absY > 1: --absY) {
8 accu = accu * x;
9 }

10

11 float result = accu;
12 if (y < 0) {
13 result = 1.0f / accu;
14 }
15 return result ;
16 }

(a) Scalar source function.

1 float4

2 myPow_vu_v4 ( float4 x, int y) {
3 int absY = \
4 select (y < 0, -y, y);
5

6 float4 accu = 1.f;
7 for (; absY > 1: --absY) {
8 accu = fmul_v4 (accu , x);
9 }

10

11 float4 result = accu;
12 if (y < 0) {
13 result = fdiv_v4 (1.0f, accu );
14 }
15 return result ;
16 }

(b) Generated SIMD version.

float4 r;
r[0] = myPow(x0 , y)
r[1] = myPow(x1 , y)
r[2] = myPow(x2 , y)
r[3] = myPow(x3 , y)

(c) The scalar myPow has to be
called for each parameter set.

float4 r;
r = myPow_vu_v4 ([x0 , x1 , x2 , x3], y)

(d) The SIMD version computes the
results of four parameter sets at

once.

Figure 3.8.: Whole-function vectorizers generate myPow_vu_v4 from myPow given only the SIMD declaration.

In the following, we generalize the vectorizer pipeline to vectorize code regions. Code regions make
the vectorizer applicable to loop vectorization as well as whole-function vectorization.

Whole-Function Vectorization [Karrenberg and Hack, 2011] is the task of automatically generating
a SIMD function from a scalar function. We show an example in Figure 3.8. One invocation of
myPow_vu_v4 returns the same result as four invocations of myPow. Whole-function vectorization starts
from a scalar function and a declaration for the desired SIMD function. Each parameter of the scalar
function either has the same type in the SIMD function or is widened to a vector. In the example of
myPow, the SIMD declaration reads myPow_vu_v4(float4, float). The Ąrst argument x is float in
the scalar function and becomes a float4 in the SIMD version. The second argument y is float in the
scalar function and stays that way in the SIMD function. This means that the t-th lane of the return
value of myPow_vu_x(x, y) equals myPow(x[t],y). The notation x[t] subscripts the t-th element of
the vector x.

We extend the vectorization pipeline to whole-function vectorization through the concept of Region

Vectorization. In this context, a Region is a single-entry, single-exit subgraph (SESE region) of the
Control-Flow Graph. Region Vectorization is a generalization of loop and whole-function vectorization.

Basic Region Vectorizer Pipeline

Figure 3.9 shows a basic region vectorization pipeline. Since a region CFG is not necessarily a loop, we
can no longer assume that there are iteration variables. We introduce a surrogate concept: SIMD lane
threads. Each lane thread is represented by a unique identiĄer t ∈ T , such that each thread uniquely
maps to a SIMD lane. Thus, the threads are ordered and form a thread array. With the abstraction of
regions and the thread array, whole-function vectorization and loop vectorization both are recast as
region vectorization problems.

17



Region

CFG

SIMD

IR

Divergence

Analysis
Widening

Region Vectorizer

Figure 3.9.: The shared Region Vectorization pipeline.

Outer-Loop Vectorization

The loop vectorizer compiler pass is shown in Figure 3.10. In the loop vectorization setting, each
iteration of the (conceptual) strip loop maps to one thread. Internally, the loop vectorizer pass deĄnes
the Region CFG as the body of the strip loop. The pass takes care of building the scalar remainder loop
and embedding the SIMD loop body back into the program.

Loop Vectorizer Pass

Scalar

Loop

Strip

Mining

Region

Vectorizer

Region

CFG

SIMD

Loop

Figure 3.10.: Driver pipeline for Loop Vectorization.

Whole-Function Vectorization

The Whole-function vectorizer Pass is shown in Figure 3.11. For whole-function vectorization, each
thread is associated with one parameter set for the scalar function. The parameter set of thread t

comprises of x[t] for any vector parameter x and y for any scalar parameter y of the SIMD declaration.
If a scalar parameter has a SIMD type in the SIMD declaration, then this parameter variable is varying.
Otherwise, the parameter variable is uniform. The Region CFG is exactly the CFG of the scalar function.
The widening phase emits all blocks and SIMD instructions into the SIMD declaration, remapping
parameters of the scalar function to those of the SIMD function.

Whole-Function Vectorizer Pass

Scalar

Function

Region

CFG

Region

Vectorizer

SIMD

Function

Figure 3.11.: Driver pipeline for Whole-Function Vectorization.
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3.4. If Conversion and Control-Induced Divergence

The widening stage requires the Control-Flow Graph to be control uniform. This means that the
vectorizer pipeline developed up to this point cannot vectorize the parallel loop in Figure 3.12a. This is
because the branch condition p is varying and thus the branch becomes divergent. We present partial
linearization, an improved algorithm for if-conversion [Allen et al., 1983], to solve this problem.

1 H: for (int i = 0; i < 4; ++i) {
2 B: double v = 2.0;
3 bool p = i % 2;
4 if (p) {
5 C: v = B[i];
6 }
7

8 D: C[i] = v;
9 }

10 X:

(a) Loop with divergent branch.

1 // for (int i = 0; i < 4; ++i) {
2

3 bool2 p = mod_v4 ([0 ,1 ,2 ,3] , 2);
4 // if (p) {
5 vC = masked_load_v4 (&B[0], p)
6 // }
7 v= select_v4 (p,vC ,2.0)
8 store_v4 (&C[0], v);
9 // }

(b) SIMD code after if-conversion and
widening.

Figure 3.12.: Vectorizing with if-conversion.

A

i = φ[0,A] [inc ,D]
cnt = icmp ult 4
br cnt B X

H

p = trunc i1 i
br p C D

B

bi = elemptr B i
vC = load bi
br D

C

v = φ[2.0 ,B] [vC ,C]
ci = elemptr C i
store ci v
inc = add i 1
br B

D

X

(a) CFG of Figure 3.12a.

A

i = φ[0,A] [inc ,D]
cnt = icmp ult 4
br cnt B X

H

p= trunc i1 i
br C

B

bi = elemptr B i
vC = load bi
br D p

C

v = select p vC 2.0
ci = elemptr C i
store ci v
inc = add i 1
br B

D

X

(b) CFG of Figure 3.13a after if-conversion. The
gray box indicates that all instructions in
block C are predicated by the variable p.

Figure 3.13.: Before and after if-conversion.

If Conversion. If-conversion removes branches from the CFG by unconditionally executing all its
successors in sequence. If-conversion adds predicates to the code to make sure that the instructions in the
if-converted blocks execute under the same condition as in the original code. If a block has a predicate it
means that the instructions in the block only execute for those lanes where the block predicate is true.
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Consider Figure 3.13a, which shows the CFG of Figure 3.12a. In the original CFG, the block
B branches divergently to C and D. Figure 3.13b shows the if-converted version. To annotate block
predicates in Ągures, we show the predicate variable in a gray box inside the block they are predicating.
After if-conversion block B unconditionally branches to C. In the if-converted code, we add p as a
predicate variable to the block C.

In the process of if-conversion φ nodes are replaced by explicit select instructions that pick a value
based on a boolean predicate. For example, the v = φ node in Figure 3.13a is folded into a select node
in Line 7 of Figure 3.13b.

Partial Linearization. If-conversion makes the code less efficient as branches are removed that skip
over instructions that do not contribute to the computation. The instructions are predicated but still the
CPU has to process them. Therefore, it is desirable to if-convert only the divergent branches and leave
the uniform branches unmodiĄed. Chapter 9 presents partial control-flow linearization, a novel partial
if-conversion algorithm. Partial linearization is the Ąrst algorithm to give guarantees on retained uniform
control Ćow in unstructured, reducible CFGs. We show an example run in Figure 3.14. Figure 3.14a
sketches a code fragment with mixed uniform and divergent branches. We assume that p is uniform
and that q is varying. Figure 3.14b shows the CFG of the code and Figure 3.14c the code after partial
linearization. The uniform branch in p is retained and only the divergent branch in q is if-converted.

1 A: if (p) { : u

2 B: x = ..
3 if (q) { : v

4 C: x = ..
5 }
6 D: if (x == 3) : v

7 {
8 E: ...
9 }

10 }
11 F:

(a) Region with mixed uniform (p)
and divergent (q) branches.

A

B

C

x = φ[3,B] [2,C] : v

s = cmp eq x 3 : v

br s E F : v

D

E

F

p

¬p

q

¬q

(b) Divergence of s due to divergent
control from B.

A

B

qC

x = select q 2 3
s = cmp eq x 3
br E

D

s E

F

p

¬p

(c) After partial linearization.

Figure 3.14.: Control-induced divergence and partial linearization.

Control-Induced Value Divergence. Re-consider the CFG in Figure 3.14b. The x = φ node is
varying in spite of the fact that all incoming values are clearly uniform as they are constants. The
reason for this is that the uniformity of x implicitly depends on the uniformity of q. This is an example
for control-induced divergence: divergence in a branch causes divergence in a φ node. This relation
becomes explicit in the partially linearized CFG in Figure 3.14c. There, the φ node has been converted
to a select node that has q as a direct operand.

In Section 3.3, the vectorizer simply bailed upon divergent control Ćow. We now allow divergent
branches, which brings control-induced divergence with it. The current divergence analysis will mis-
classify φ nodes as uniform as it is unaware of control-induced divergence.

20



Control-Divergence Analysis. We accompany the divergence analysis with a dedicated control-
divergence analysis. Given a branch, the control-divergence analysis returns those blocks whose φ nodes
implicitly depend on the branch condition1. That is, if-conversion would turn the φ nodes into select

instructions that are data-dependent on the (former) branch condition. For the example in Figure 3.14b,
the control-divergence analysis would compute that if B has a divergent branch, then all φ nodes in D

are varying.

There exist various attempts in the literature to compute this dependence either directly or to
augment the program such that this dependence could be inferred. As we show in Chapter 7, these
approaches are often imprecise or even unsound. We present a novel control-divergence analysis that is
optimal on DAGs and more precise than any other technique we could Ąnd on reducible CFGs.

p = ...
br p C B

A

q = ...
br q c D

B
C

D

(a) Example CFG.

notp := not p
br B 1

A

q = ...
eBC := and notp q
[..]
br C notp

B

mC := or notp eBC
...
br D mC

C

D

(b) Total instructions (indicated by ":="
assignments).

1 A:
2 p = ...
3 // notp = not_v2 (p ,1)
4 notp = not_v2 (p)
5

6 B:
7 q = ...
8 // eBC = and_v2 (notp , q, notp)
9 eBC = and_v2 (notp , q)

10

11 C: [..]
12 // mC = or_v2(eBC , q, notp , mC)
13 mC = or_v2(eBC , q)
14

15 [..]

(c) Widening emits unpredicated SIMD
code for total instructions. (Invalid)

code without total in comments.

Figure 3.15.: Use of total instructions to compute block predicates.

Predicated Widening and Total Instructions. With the introduction of predicates into the
program, we need to consider them in the generated SIMD code. We modify the widening phase as
follows: If an instruction is free of side effects and uniform, widening keeps it scalar, ignoring the
predicate. Otherwise, we widen the instruction by translating it to a predicated SIMD instruction
(Section 2.7).

The result of predicated widening of the if-converted CFG in Figure 3.13b is shown in Figure 3.12b.
For example, the load v = B[i] in Figure 3.12a is guarded by a divergent branch (the if statement). A
load has potential side effects (accessing invalid memory may abort the program with an exception),
hence, the load is widened to a predicated SIMD load (masked_load_v4).

Total Instructions. Note that instructions that compute the predicate cannot themselves be predi-
cated. Else, the predicate-deĄning instruction would yield ⊤ (undefined value) on all lanes that execute
it only passively. To this end, we introduce the concept of total instructions. Widening always emits
unpredicated SIMD code for total instructions - a total instruction computes totally on all lanes, ignoring
any block predicate.

Consider Figure 3.15a, a simple CFG with two divergent branches. Next to it, in Figure 3.15b, we
show the if-converted CFG. Additional instructions have been inserted to compute the predicates of
blocks B and C. The instructions deĄning mC, eBC and notp are all total. Therefore, widening emits the
intended predication instructions into the SIMD code, shown in Figure 3.15c.

1This is also known as sync dependence [Coutinho et al., 2011].
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Vectorizer Pipeline

Region

CFG

Divergence

Analysis

Control

Divergence

Analysis

Partial

Linearization
Widening

SIMD

IR

✓✗
divergent loop exit

- control uniform

- predicated

Figure 3.16.: Parallel loop vectorizer with partial linearization.

Figure 3.16 shows the extended vectorizer pipeline. The divergence analysis calls into the control-
divergence analysis to detect value divergence upon encountering a divergent branch. Partial linearization
runs after the divergence analysis, if-converting all divergent branches, and establishes uniformity of
control Ćow. By virtue of total instructions, the predication logic is simply part of the program. Loops
with divergent loop exit conditions still fail to vectorize.
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3.5. Lock-step and Horizontal Operations

The vectorizer pipeline up to this point makes use of vector loads and stores, regular SIMD instructions
and (implicitly) broadcasts. In this section, we introduce the notion of horizontal operations, their
applications and how they can be represented in the vectorizer.

1 float xsqrtf_u35 (float d) {
2 float q = 1.0f;
3

4 d = d < 0 ? SLEEF_NANf : d;
5

6

7 bool scaleUp = \
8 d < 5.2939559203393770e -23f;
9 if ( scaleUp ) {

10 d *= 1.8889465931478580 e+22f;
11 q = 7.2759576141834260e -12f;
12 }
13

14

15

16

17

18 bool scaleDown = \
19 d >1.8446744073709552 e+19f;
20 if ( scaleDown ) {
21 d *= 5.4210108624275220e -20f;
22 q = 4294967296.0 f;
23 }
24

25 // Fast inverse square root
26 int y = floatToRawIntBits (d + 1e -45) >> 1;
27 float x = intBitsToFloat (0 x5f375a86 - y);
28

29 x = x * (1.5f - 0.5f * d * x * x);
30 x = x * (1.5f - 0.5f * d * x * x);
31 x = x * (1.5f - 0.5f * d * x * x);
32 x = x * (1.5f - 0.5f * d * x * x);
33

34 return (d == INFINITYf )?
35 INFINITYf
36 : (x * d * q);
37 }

(a) Scalar source code.

1 float2 xsqrtf_u35_v2 ( float2 d) {
2 float2 q = 1.0f;
3

4 float2 dneg = fcmp_olt_v2 (d, 0.0)
5 d = select_v2 (dneg , SLEEF_NANf , d);
6

7 bool2 scaleUp = \
8 fcmp_olt_v2 (d, 5.2939559203393770e -23f);
9 // if ( scaleUp ) {

10 float2 dUp = \
11 fmul_v2 (d, 1.8889465931478580 e+22f);
12 float2 qUp = 7.2759576141834260e -12f;
13

14 d = select_v2 (scaleUp , dUp , d);
15 q = select_v2 (scaleUp , qUp , 1.0);
16 // }
17

18 bool2 scaleDown = \
19 fcmp_ogt_v2 (d, 1.8446744073709552 e+19f);
20 // if ( scaleDown ) {
21 float2 dDown = \
22 fmul_v2 (d, 5.4210108624275220e -20f);
23 float2 qDown = 4294967296.0 f;
24

25 d = select (scaleDown , dDown , d);
26 q = select (scaleDown , qDown , q);
27 // }
28

29 // [..] // aligns with Line 26 of Figure 3.17a.
30 }

(b) Generated SIMD code.

Figure 3.17.: Approximate sqrtf function (from the SLEEF 3.2 vector math library, adapted for presentation).

Motivating Example. Figure 3.17a shows the scalar implementation of an approximate square-root
function taken from the SLEEF vector math library [Shibata et al., 2019]. In terms of the function
structure there are three sections. In the Ąrst two sections, we Ąnd rescaling code if the input is below
(Line 7 to Line 12) or above (Line 18 to Line 23) a certain threshold. The last section starting in Line 26
till the end, performs the actual computation.

The whole-function vectorized version is shown in Figure 3.17b. In the scalar code, the rescaling
code is only executed if the input is outside a certain range. Since rescaling is input dependent, the
two cases are if-converted and will execute in any case. While the SIMD code is correct, it is rather
inefficient if xsqrt_u35_v2 is only called for inputs within the bounds for rescaling. If both conditions
scaleUp and scaleDown evaluate to false for all inputs, xsqrt_i35_v2 will perform a lot of operations
that are unnecessary.

This is a situation where horizontal operations can be used to recover some of the control Ćow. In
particular, we can make use of the horizontal any operation to skip the rescaling code if all inputs are
within the range of no-rescaling. The operation any(x) evaluates to true, iff x is true for at least one
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thread. We call operations such as any horizontal because their result depends on the execution state
across all threads. This is in contrast to vertical operations, such as fadd, whose per-thread result only
depends on the individual state of each thread.

In the example of Figure 3.18, we manually insert any to test whether the branch conditions are
false for all threads. The if statement in Line 13 guards the rescaling code in the way described above.

1 float2

2 xsqrtf_u35_v2 ( float2 d) {
3 A: float2 q = 1.0f;
4

5 dneg = fcmp_lt_v2 (d, 0.0)
6 d = select_v2 (dneg , SLEEF_NANf , d);
7

8 bool2 scaleUp = \
9 fcmp_olt_v2 (d, 5.2939559203393770e -23f);

10 bool2 scaleDown = \
11 fcmp_ogt_v2 (d, 1.8446744073709552 e+19f);
12

13 if ( any_v2 ( or_v2(scaleUp , scaleDown ))) {
14 B: // if ( scaleUp ) {
15 C: float2 dUp = \
16 fmul_v2 (d, 1.8889465931478580 e+22f, scaleUp );
17 float2 qUp = 7.2759576141834260e -12f;
18 // }
19

20 D: // if ( scaleDown ) {
21 E: float2 dDown = \
22 fmul_v2 (d, 5.4210108624275220e -20f, scaleDown );
23 float2 qDown = 4294967296.0 f;
24 // }
25

26 dsU = select (scaleUp , dUp , d);
27 d = select (scaleDown , dDown , dsU );
28 qsU = select (scaleUp , qUp , 1.0);
29 q = select (scaleDown , qDown , qsU );
30 }
31

32 F: [..] // remainder as in Figure 3.17b
33 }

(a) SIMD code with any guard.

A

B

D

scaleUp
C

scaleDown
E

F

(b) CFG after partial linearization.

Figure 3.18.: Function xsqrtf_u35 of Figure 3.17a vectorized with horizontal any test to skip over rescaling
code.

The motivating example shows one important use case of horizontal SIMD instructions. They are
useful to recover control Ćow in the presence of divergent branches. These branches can make the SIMD
code more efficient and improve its runtime performance.

In earlier work such tests have been inserted after the widening stage [Shin, 2007]. However, there
are good reasons to support horizontal operations throughout the vectorizer pipeline, starting with the
initial region IR. The motivation for this is three-fold. First, there are data-parallel languages that
support horizontal operations natively. For example, the ISPC language [Pharr and Mark, 2012] features
the coherent if statement, which skips the a guarded code block if the predicate is all-false. By enabling
any in the region IR, we enable an ISPC-like programming model with our vectorizer. Second, as shown
in the example in Figure 3.19a, the any operation can be exposed to users as a builtin function. This
enables users to insert coherent branches, as the one skipping the rescaling code, even in languages that
are not originally data-parallel like ISPC. The SLEEF library, for example, is written in C. The xsqrt

function with any guards can be compiled to LLVM IR and then auto-vectorized to match any SIMD
ISA that has an LLVM backend. Third, even if any guards are inserted by the compiler, doing so before
widening is a tractable solution, as we will show in Section 9.2. Early insertion of guards enables the
reuse of subsequent transformations, such as partial linearization.
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Lock-Step Execution. Up until now, we have looked at the region to vectorize as executing in
parallel by multiple threads. However, the result of horizontal operators, such as any, depends on which
threads execute it at the same time. Therefore, we deĄne a more speciĄc model of parallelism that
makes precise this notion of threads executing an instruction together. This execution model is called
lock-step execution.

In lock-step execution, all threads always execute the same instruction and at the same time. Due to
branch divergence or predication, this may force threads into executing instructions they are not waiting
to execute. Those threads only execute the instruction passively, i.e. the instruction executes without
altering the execution state of the passive threads. Threads that are waiting for this instruction execute
it actively and get the computed result and all side effects of the instruction.

1 bool any(bool v);
2

3 float xsqrtf_u35 ( float d) {
4 A: float q = 1.0f;
5

6 d = d < 0 ? SLEEF_NANf : d;
7

8 bool scaleUp = \
9 d < 5.2939559203393770e -23f;

10 bool scaleDown = \
11 d > 1.8446744073709552 e+19f;
12

13 if (any( scaleUp | scaleDown )) {
14 B: if ( scaleUp ) {
15 C: d *= 1.8889465931478580 e+22f;
16 q = 7.2759576141834260e -12f;
17 }
18

19 D: if ( scaleDown ) {
20 E: d *= 5.4210108624275220e -20f;
21 q = 4294967296.0 f;
22 }
23 }
24

25 F: [..] // same as in Figure 3.17
26 }

(a)

A

B

C

D

E

F

(b)

t0 t1

A A

B B

D D

E

F F

(c)

Figure 3.19.: Use of any in scalar code. 3.19b: CFG of Figure 3.19a. 3.19c: Execution with lock-step schedule.

Consider Figure 3.19, which shows an example for lock-step execution and how it assigns meaning
to horizontal operators in scalar code. The code in Figure 3.19a is the scalar version of Figure 3.18a.
It uses the any intrinsic in Line 13. Figure 3.19c shows an execution protocol for two threads execut-
ing Figure 3.19a in lock step. Each line of the protocol documents the execution of a basic block. If the
block label shows in the column of a thread, it executes all instructions of that block actively. If there is
an empty space, the thread still executes the same block as the other threads but does so passively.

In the beginning, both threads start at the entry block A and execute it actively. Assume that
function parameter d has values such that scaleUp evaluates to 0 for both threads and that scaleDown

evaluates to 0 for thread t0 and to 1 for thread t1. The code executes in lock step and thus both threads
execute the any intrinsic in Line 13 together. Since scaleDown is 1 for thread t1, the any intrinsic
evaluates to 1 for both threads and both threads branch to block B. The threads proceed through B

and skip C since the branch condition scaleUp is 0 for both threads. At the end of block D, thread t1

branches to block E because scaleDown is 1 for that thread. The thread t0 branches from D to F.

The next block to execute is E. We observe passive execution by thread t0 as this thread is waiting
to execute F. Thread t1 actively executes block E and branches to block F next. Finally, both threads
actively execute F.
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We can read off from a lock-step execution protocol as the one in Figure 3.19c, the series of blocks
as they are executing. We call this series, the schedule of the execution. In the example execution,
the schedule is A, B, D, E and Ąnally F. With lock-step execution and this schedule the any condition
in Figure 3.19a behaves the same way as in the SIMD code in Figure 3.18a.
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3.6. Divergent Loops and Semantic Interpretations

We have so far extended the vectorizer pipeline to handle divergent branches with partial linearization and
predication. We introduced the concept of lock-step execution to the vectorizer pipeline to give horizontal
operations a semantics before widening. The remaining obstacle to handling arbitrary divergent control
Ćow is the problem of divergent loops. We initially referred to divergent loops as loops whose exit
conditions depend on variables deĄned in the loop to vectorize. The trip count of a divergent loop
depends on the thread. This is a problem for SIMD because threads executing in lock step may leave a
divergent loop in different loop iterations.

1 int

2 logstar ( double n) {
3 A: x = n
4 i = 0
5 B: do {
6 i += 1
7 x = log(x)
8

9 } while (x > 1.0)
10 C: return select (n > 1.0, i, 0)
11 }

(a) Logstar function.

Block x(t0) x(t1) i(t0) i(t1)

A 88.38 1.5 0 0

B 4.48 0.41 1 1

B 1.15 2

B 0.41 3

C 0.41 0.41 3 1

(b) Example lock-step execution of Figure 3.20a.

Figure 3.20.

We show an instance of this in Figure 3.20a. The logstar function is given a double input and
returns how often the log function can be applied to it before crossing below 1.0. We assume that
log(x) silently returns nan when x ≤ 0. The loop exit condition of the loop in Line 9 depends on the
thread, since every thread sees its own independent value for n.

1 int2

2 logstar_v2 ( double2 n) {
3 A: x = n
4 int i = 0;
5 B: do {
6 i += 1
7 x = log(x)
8 x_gt_one = fcmp_ogt_v2 (x, 1.0)
9 } while ( any_v2 ( x_gt_one ))

10 C: return select_v2 (n > 1.0, i, 0)
11 }

(a) Naive SIMD translation (incorrect).

Block x(t0) x(t1) i(t0) i(t1)

A 88.38 1.5 0 0

B 4.48 0.41 1 1

B 1.15 nan 2 2

B 0.41 nan 3 3

C 0.41 nan 3 3

(b) Example execution of naive SIMD version in Figure 3.21a.
The computed result for thread t1 is invalid.

Figure 3.21.: The naive SIMD translation of divergent loops is invalid.

If we execute the logstar function in lock step for two threads, we observe the execution as shown
in the trace of Figure 3.20b. After the Ąrst iteration of the while loop, that is after the second line
of the trace, the second thread leaves the loop. The Ąrst thread is still above 1.0 with x and keeps
executing the loop two more times. Finally, both threads are at C when the Ąrst thread exits. The two
threads compute the same correct result as if they had run the logstar function independently.

Loop Divergence. Intuitively, we would expect the SIMD code for the logstar function to look like
the one shown in Figure 3.21a. Every scalar instruction is widened and we keep iterating the loop until
all threads have left. However, this SIMD code is incorrect as we show with the trace in Figure 3.21b
where we apply the logstar_v2 to the same inputs as used in Figure 3.20b. After the Ąrst thread drops
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out (again second line), execution continues with B for both threads. The Ąrst thread computes the
correct result. Yet, the second thread increments the variable i too often leading to an incorrect result.
The result for the second thread is incorrect.

Transforming Divergent Loops. We need to transform divergent loops into uniform loops to be able
to widen them to correct SIMD code. Section 9.1 presents a novel algorithm for transforming divergent
loops that improves over the start of the art through its simplicity. While transforming divergent loops
is not novel in itself, our algorithm is simpler than existing techniques because it can rely on partial
control-Ćow linearization and the clearly deĄned lock step semantics of the P-LLVM IR, presented in
this thesis. The divergent loop transform transforms divergent loops by addressing the two issues that
arise with them: maintaining correct predicates for the loop blocks and keeping track of live-out values
for threads that leave the loop before others.

We note that in Figure 3.21a all SIMD lanes are active in all loop iterations, regardless of how each
thread evaluates the original loop exit condition x > 1.0. The solution to this is predication. We will
switch to the CFG representation of logstar shown in Figure 3.22a. In Figure 3.22b, we added the
predicate live for all instructions in the loop body. The predicate live disables threads that leave the
loop early.

The second issue is that values of live-out variables have to be stored for each thread as it leaves the
loop. These live-out values have to be retained even if the loop keeps iterating for other threads that
still execute it. The required change is shown in Figure 3.22c. The variable exit_loop is true exactly
when a thread is about to leave the loop. When that is the case i_upd will be assigned the current value
of i_cnt. This value is then retained between the φ node i_out and i_upd. Figure 3.22d shows the
trace for the transformed divergent loop. After each thread has left the loop, the value of i_upd holds
the value of i at the time of exit, that is 3 for thread t0 after the third execution of B ad 1 for t1 after
the Ąrst execution of B. Finally, when all threads have Ąnished the loop, execution continues with X. All
instructions outside the loop that used i_cnt before are modiĄed to use i_upd instead, which holds the
correct value of i_cnt as the thread left the loop.

3.6.1. Semantic Interpretations

Intuitively, we expect the code in Figure 3.22b to result in the same correct outcome as observed
in Figure 3.20b. Since the exiting threads are masked-off with the predicate live the values of i and x

should be preserved.

However, when we widened this code it will be similar to the code shown in Figure 3.21a, except for
loop predication. Thus, when executing it for the same inputs, we obtain the same incorrect results as
in the trace in Figure 3.21b. The values for x and i are set to ⊤ in the Ąrst iteration after a thread has
left (line three for t1). How can this happen despite the fact that B has a correct loop predicate? There
is a mismatch between the intuitive semantics of lock-step and the semantics provided by SIMD. In the
widened SIMD code, variables of threads that leave the loop early are overwritten. Yet, in the intuitive
lock-step semantics, threads that exit the loop retain the values deĄned in their last loop iteration.
Passive execution, caused by other threads that are still in the loop, will not overwrite them. This
mismatch becomes an issue in divergent loops because only loops execute instructions repeatedly and
with threads leaving the loop earl passive execution can follow active execution for the same instruction.
Our solution to model this semantic gap is to deĄne different semantic interpretations of the code, the
FREEZING and OBLIVIOUS interpretations.

(FR)EEZING interpretation. We expect programs to behave as in Figure 3.20b. In the expected
semantics, variables are unaffected by passive execution, i.e. no variable will change for those threads that
are not waiting to execute the schedule instruction. We will call this the FREEZING (FR) interpretation
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A

i = φ[0,A] [i_cnt ,B]
x = φ[n,A] [x_cnt ,B]
i_cnt = add i 1
x_cnt = log(x)
x_gt_one = fcmp ogt x_cnt 1.0
br x_gt_one B X

B

X

(a) Code of scalar logstar function.

A

live = φ[0,A] [live_cnt,B]
i = φ[0,A] [i_cnt ,B]
x = φ[n,A] [x,cnt ,B]
i_cnt = add i 1
x_cnt = log(x)
x_gt_one = fcmp ogt x_cnt 1.0
live_cnt := and live x_gt_one
stay := any(live_cnt)
br stay B X live

B

X

(b) Predicated code of logstar function after

predicate insertion in red.

A

live = φ[0,A] [live_cnt ,B]
i_out = φ[⊤,A] [i_upd,B]
i = φ[0,A] [i_cnt ,B]
x = φ[n,A] [x,cnt ,B]
i_cnt = add i 1
x_cnt = log(x)
x_gt_one = fcmp ogt x_cnt 1.0
exit_loop := and live (not x_gt_one)
i_upd := select exit_loop i_cnt i_out
live_cnt := and live x_gt_one
stay := any( live_cnt )
br stay B X live

B

X

(c) i_upd and i_out record the live out value of i.

Instructions outside the loop use i_upd instead of i.

This widens to correct SIMD code.

live x i_upd

Block t0 t1 t0 t1 t0 t1

A 1 1 88.38 1.5 ⊤ ⊤

B 1 1 4.48 0.41 ⊤ 1

B 1 0 1.15 ⊤ ⊤ 1

B 1 0 0.41 ⊤ 3 1

C 1 1 0.41 ⊤ 3 1

(d) Trace of Figure 3.22c. The transformed loop retains the

live out value of i in i_upd.

Figure 3.22.: Transforming a divergent loop. Added instructions colored red.

of lock step. When a thread drops out of a divergent loop and there is predication, we expect that i and

x retain their old values. The variables are frozen and will not change when their assigning instruction

is masked-off.

The FREEZING semantics is useful because it models the expected lock-step execution of divergent

loops.

(OBL)IVIOUS interpretation. However, the generated SIMD code breaks with the expected,

lock-step semantics and behaves as shown in Figure 3.21b. This is because predicated SIMD instructions

are deĄned to return ⊤ on passive lanes. In a way, the old values of the variables are "forgotten" by

masked-off execution. We lift this behavior to code before widening by introducing the concept of

29



OBLIVIOUS (OBL) semantics. Under the OBLIVIOUS (OBL) interpretation, instructions that execute
masked-off set their variable to ⊤.

The OBLIVIOUS semantics is useful because it models the behavior of widened SIMD code, before
any SIMD code is generated.

With the two semantic interpretations, FREEZING and OBLIVIOUS, we can consider the issue of
transforming divergent loops from a new angle. The Divergent Loop Transform converts a code that is
correct under FREEZING semantics into a code that is correct under OBLIVIOUS semantics. If code is
correct under OBLIVIOUS semantics, we know that widening will generate correct SIMD code. We
present the Divergent Loop Transform in Section 9.1.
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3.7. RV Vectorization System

We extend the vectorizer to deal with the effects of divergent loops as shown in Figure 3.23. This brings
about two changes to the vectorizer pipeline: First, we introduce two semantic interpretations, the
FREEZING interpretation and the OBLIVIOUS interpretation. The FREEZING interpretation holds at
the beginning of the vectorizer pipeline as it models the intuitive semantics of divergent loops: Threads
that exit a divergent loop keep the variables as they were in their last iteration. The OBLIVIOUS
interpretation models the semantics of the SIMD code at the end of the pipeline: If a thread leaves a
divergent loop before other threads its variables are re-assigned even under passive execution. Second,
we insert the divergent loop transform, which transforms divergent loops into uniform loops. If all
loops are uniform then the code is correct under both semantic interpretations, Therefore, the pipeline
proceeds with partial linearization and Ąnally the widening phase emits SIMD code.

Figure 3.23 shows the full vectorizer pipeline of the Region Vectorizer (RV), which implements the
approach developed in this thesis.

Divergence

Analysis

(Chapter 6)

Widening

Control

Divergence

Analysis

(Chapter 7)

Divergent

Loop

Transform

(Section 9.1)

Partial

Linearization

(Chapter 8)

P-LLVM

CFG

(Chapter 4)

SIMD

IR

- divergent loops

- divergent branches

- uniform loops - control uniform

- predicated

FR(eezing)

semantics

OBL(ivious)

semantics

BOSCC

Transform

(Section 9.2)

Figure 3.23.: RV Vectorizer Pipeline.

The chapters referenced in Figure 3.23 provide a complete technical description of the components,
including related work.

The P-LLVM intermediate representation augments LLVM IR with lock-step semantics, predicates
and horizontal operations.

The BOSCC Transform inserts branches that skip over code with an all-false predicate. Sec-
tion 9.2 demonstrates how this classic optimization has a simple implementation, exploiting the guarantees
of P-LLVM and Partial Linearization.

The Divergence Analysis outlined in this chapter only distinguishes between uniform and varying
variables. These two states are the elements of a basic divergence-analysis lattice, the abstract lattice
used by the divergence analysis. In Chapter 10, we extend this basic lattice to the Stride-Alignment
lattice (sa-lattice). The reĄned sa-lattice enables the divergence analysis to detect uniform branches in
more cases and aides the widening stage to generate faster SIMD code.

The description of the RV system is complete after Chapter 10.
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TensorRV. The notions of thread array and SIMD vectors are inherently one-dimensional. Chap-
ter 11 extends the RV system to TensorRV, which generalizes one-dimensional vectorization to multi-
dimensional tensorization.
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Chapter 4.

P-LLVM: Data-parallel, Predicated IR

P-LLVM is a novel, lock-step extension of LLVM IR. P-LLVM is the central program representation of
the RV vectorization system. The P-LLVM language is a light-weight extension of LLVM IR: it adds
predicates to basic blocks and two new keywords to control the behavior of passive threads1. This
chapter introduces P-LLVM and its formal semantics.

1 double

2 safelog ( double v) {
3 A: double r = v;
4 bool p = v > 0.0;
5 if (any(p)) {
6 B: if (p) {
7 C: r = log(v);
8 D: }
9 E: }

10 return r;
11 }

(a) Data-parallel program with horizontal any

intrinsic.

1 double

2 safelog_v4 ( double4 v) {
3 double4 r = v;
4 bool4 p = v > 0.0;
5 q = any_v4 (p)
6 if (q) {
7 t = log_v4 (v,p);
8 r = select (p,t,r)
9 }

10 return r;
11 }

(b) SIMD code widened from Figure 4.1d.

p = fcmp ogt v 0.0
q = any(p)
br q B E

A

br p C D B

r0 = log(v)
br DC

r1 = φ [r0 ,C] [v,B]
br E D

r2 = φ [v,A] [r1 D]
ret r E

(c) P-LLVM representation of Figure 4.1a. any has a
precise semantics (Section 4.9.2).

p = fcmp ogt v 0.0
q = any(p)
br q B E

A

br C B

r0 = log(v)
br D pC

r1 = select p r0 v
br E D

r2 = φ [v,A] [r1 D]
ret r E

(d) Partially linearized. The mask of C (gray box) is
part of the IR (Section 4.4).

Figure 4.1.: The RV vectorization system uses P-LLVM as its central program representation from the fron-
tend (4.1a) to SIMD code generation by widening (4.1b).

1Threads execute a block passively if the blockŠs predicate is 0 or the block is not the one that the thread is waiting to
execute.
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P-LLVM accomplishes three goals:

1. Data-parallel programs given in regular LLVM IR are already P-LLVM programs. Any compiler
frontend for LLVM that requires data-parallel vectorization can immediately leverage the P-LLVM
language and the RV vectorization system that is built on it. Data-parallel LLVM IR programs
originate from diverse sources, such as data-parallel languages (OpenCL, SPIR-V) or parallel
loops. Figure 4.1c shows the P-LLVM representation of the function Figure 4.1a that is whole-
function vectorized (Section 3.3). The any intrinsic2 is a horizontal operator a common feature of
data-parallel languages and directly representable in P-LLVM.

2. With P-LLVM as its basis, vectorization becomes a pipelined process of successive program
transformation. The program Ąnds in P-LLVM a well-deĄned semantics at every stage of the
vectorization pipeline. This is a signiĄcant improvement over existing vectorization systems and
data-parallel compiler IRs. Prior data-parallel compiler IRs are not as expressive as P-LLVM,
proprietary or not as rigorously deĄned. Earlier vectorization systems either treat the IR as
a code artifact whose semantics depends on the exact stage in the vectorization pipeline (e.g.
WFV) or the systems explicitly switch program representations (e.g. PDG to CFG). P-LLVM
stands out for its combination of expressiveness, suitability as a vectorizer IR and semantical rigor.
Figure 4.1d shows the program after partial linearization (Chapter 8) has removed the divergent
branch in CFG in Figure 4.1c. The block predicate of C is part of the P-LLVM prorgram.

3. P-LLVM programs that are free of divergent branches, that is they are control uniform, transparently
translate into predicated SIMD code: Every P-LLVM instruction is widened into one SIMD
instruction. All P-LLVM programs that have control-divergent branches or loops can be brought
into control uniform form before widening takes place. In prior systems, such as ISPC and WFV,
widening is much more complex and non-local: e.g. in the worst case of a divergent loop live-out,
the extra SIMD code for just one instruction may be several blend instructions spread out to the
loop header, latch and exit blocks. Figure 4.1b shows the SIMD code generated by widening the
instructions in Figure 4.1d.

This chapter is conceptually divided into three parts. In part one (Section 4.1 to Section 4.4),
we deĄne the syntax and execution state of a P-LLVM program, the runtime schedule that drives its
execution and the concept of thread activation. The second part (Section 4.5 to Section 4.10) presents
the inference rules that deĄne the formal small-step semantics of P-LLVM programs. The last section
of this part establishes well-formedness criteria for P-LLVM programs. The Ąnal part (Section 4.11),
places P-LLVM in the context of related work.

2
any(p) returns true for all threads if p is true for at least one thread.
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4.1. The P-LLVM Language

Program prg ::= b

Blocks b ::= ℓ valmsk phi c tmn

Constants cnst ::= intN N -bit integer literal ♣ fpN N -bit Ćoating point literal

Types typ ::= intN ♣ fpN ♣ . . .

Values val ::= id ♣ cnst

Call callop ::= fnc
(

val
)

Offset gepop ::= elemptr valptr val

Terops terop ::= select ♣ . . .

Binops bop ::= add ♣ .. ♣ fcmp Pfp ♣ .. ♣ store ♣ . . .

Unops unop ::= not ♣ load typ ♣ . . .

Instructions inst ::= terop val0 val1 val2 ♣ bop val0 val1 ♣ unop val0 ♣

alloca typ ♣ gepop ♣ callop

Commands c ::= id = inst ♣ id = inst total ♣ id = mask()

Phis phi ::= id = ϕ typ [val j , ℓj ]

id = ϕ typ [val j , ℓj ] shadow(vals)

Terminators tmn ::= br ℓ ♣ br valcnd ℓ0 ℓ1 ♣ ret typ valres

Incoming Block ℓin ::= ℓ ♣ ⊥

Next Block ℓnext ::= ℓ ♣ ⊤ ♣ □(r ∈ V)

Successor Index i ::= N ♣ □(r ∈ V) ♣ ⊤

Figure 4.2.: P-LLVM Language Reference. Data-parallel language features highlighted in blue. Productions in

italics are extended syntax used in the formalization.

The P-LLVM language is an extension of the LLVM intermediate representation, discussed in Sec-
tion 2.1. Figure 4.2 shows the syntax of the P-LLVM IR. The formalization and grammar of P-LLVM is
inspired by VE-LLVM [Zhao et al., 2012]. We provide a formal grammar to use it in the forthcoming
formalization of the semantics of P-LLVM. The actual implementation uses standard LLVM IR enriched
with light-weight annotations and additional builtin functions. DeĄnition 1 deĄnes the components that
make up a P-LLVM program.

DeĄnition 1. (P-LLVM Program) A P-LLVM program consists of:

• A list of basic blocks (prg). The Ąrst block of the list is the entry block of the program. Each basic
block consists of a unique label (ℓ), a predicate value (valmsk), a list of ϕ nodes (phi), a list of
commands (c) and ends in a terminator (tmn).

• A function map θ : fnc →
(

(VW )∗ × BitW × M → VW × M
)

. The function θ maps function
symbols (fnc) to mathematical functions. It maps to functions that take a list of vector arguments,
an activation vector and a memory state. The functions return a vector of result values and the
resulting memory state.

The ϕ nodes, instructions and the terminator of a block execute under the inĆuence of the block
predicate (valmsk). In the following Ągures featuring P-LLVM programs, we depict the block predicate
in a gray box in the lower right corner of the block. For example in Figure 4.6a, notp drawn into the
block C denotes that the valmsk of block C is the given by the variable notp. Where omitted, the block
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predicate is given by the constant true, the block is effectively unpredicated. Data-parallel LLVM IR
programs translate into P-LLVM programs by assigning to each block the constant true predicate.

For the sake of simplicity, the functions names (fnc) used in function calls (callop) are deĄned as
mathematical functions provided by the function map θ. For example, θ contains common mathe-
matical functions: θ(sin) is the vectorized sine function. We discuss the function map in more detail
in Section 4.9.2.

A P-LLVM program induces a Control-Flow Graph in the following way. The block labels of P-LLVM
program (ℓ) make up the nodes of the CFG (set V). The successor labels of a terminator (tmn) deĄne
the control-Ćow edges (E) out of the block containing the terminator. The entry block of the CFG
(entry) is the entry block of the P-LLVM program (Ąrst block of prg).

Data-parallel ModiĄers. P-LLVM extends the syntax of regular LLVM IR with two modiĄers and
one additional instruction, highlighted in blue in Figure 4.2. The motivation for this is to give instructions
and ϕ nodes a semantics under passive execution. Passive execution arises when the predicate of a block
evaluates to false or in the presence of divergent control Ćow. The ϕ nodes have an optional operand
(shadow). A ϕ node with a shadow operand resolves to the shadow input under passive execution. An
instruction with a total modiĄer is not subject to passive execution. Finally, the special instruction
mask returns the activation of the basic block.

We provide a formal small-step semantics [Plotkin, 2004] for the aspects of P-LLVM that differ from
regular LLVM IR.
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4.2. Execution State

P-LLVM programs are executed in data-parallel fashion by W threads. Each thread is uniquely named
by its thread identiĄer t ∈ T as of DeĄnition 2.

DeĄnition 2. (Thread Array) A P-LLVM program is executed by an array of W ∈ N many threads
where each thread has a unique identiĄer in T = ¶ 0, 1, .., W − 1 ♢.

The purpose of the P-LLVM intermediate representation is vectorization. In the process, the data-
parallel threads are mapped to the lanes of SIMD operations and variables. That is the lane at position
t in the generated SIMD code will realize the corresponding operation of thread t in the P-LLVM
program.

All state of P-LLVM execution is captured in the P-LLVM execution state tuple as of DeĄnition 3.

DeĄnition 3. (P-LLVM Execution State) The execution state of a P-LLVM program for W many
threads is given by a tuple σ =

(

M, ∆
W , ℓin

W , ℓnext
W

)

. Let t ∈ T be the unique identiĄer of a thread,
then

• M ∈M is the memory state, which is shared among all threads. This part of the state is read and
written by load, store and call instructions. M is the set of all possible memory states.

• ∆
W (t) is the private mapping from variables to values for thread t.

• The incoming block ℓin
W (t) indicates the block that the thread executed last. It is either a block

label or the special symbol ⊥ to indicate that no predecessor was executed.

• The next block ℓnext
W (t) is the block that the thread executes next. It is either a block label (the

branch target), the special token □(r) to indicate that the thread has terminated with return value
r ∈ V, or the special token ⊤ to signal that the thread will accept any successor of its incoming
block as branch target.

• We call the pair of incoming block ℓin
W (t) and next block ℓnext

W (t) the control state of thread t.

Since W many threads execute a P-LLVM program in parallel, the parts of the execution state that
are private to each thread exist in W many copies. For example, each thread has a private mapping
from variables to values and so the variable mapping in the execution state is given by ∆

W .

The basic block labels ℓin
W and ℓnext

W model the threadsŠ control state. Conceptually, the control
state characterizes a thread as standing on an edge of the CFG: The next block ℓnext

W (t) is either the
branch target block or the special token □ to signal that a return statement was reached. The incoming
block ℓin

W (t) is the block that a thread has last executed or the special token ⊥ to indicate that there
was no predecessor this thread is reaching from.

Just as in sequential execution of a regular LLVM IR program, the execution of a P-LLVM program
begins at the entry block. Initially, ℓnext = next and since no predecessor was executed ℓin = ⊥. This is
formalized by DeĄnition 4.

DeĄnition 4. (Initial State) A P-LLVM execution state σinit =
(

M, ∆
W , ℓin

W , ℓnext
W

)

is called an

initial state of a P-LLVM program, if for all t ∈ T .ℓnext
W (t) = entry and ℓin

W (t) = ⊥.

When Ąnally a thread executes a return statement, the thread sets ℓnext = □(r) where the symbol
□ means that the thread has entered a terminated state and r ∈ V is the return value. For sake of
brevity, we frequently omit the returned value where it is inconsequential, stating just ℓnext = □.
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Throughout this chapter, we take the liberty to assume the perspective of a single thread while
deĄning and explaining concepts of P-LLVM. We do so by omitting the W superscript of formal functions
and variables. For example, ℓnext

W is simply the W tuple as deĄned in the execution state. Referring
to ℓnext however, we imply that the statement applies to any thread t ∈ T . This is in contrast to the
explicit quantiĄcation for all threads, e.g. as used in the wording of DeĄnition 4.

4.3. Runtime Schedule and Control Mask

Despite their private control state, threads do not execute the program independently. The execution is
coordinated by a scheduler that is not part of the threadsŠ execution state. The scheduler produces a
block label and all threads have to execute that block. This continues until all threads have executed
a return statement and entered into a terminated state, i.e. ℓnext = □. For the purposes of P-LLVM
semantics, the only thing that matters about the scheduler is its decisions, the scheduled blocks, and not
how it makes those decisions. Therefore, the formalization represents the scheduler through the runtime
schedule, the list of block labels in the order they are scheduled. This runtime schedule is formalized
in DeĄnition 5.

DeĄnition 5. (Runtime Schedule) A runtime schedule is a list of basic blocks ℓsc ∈ V∗. We call ℓsc

an initial schedule, if ℓsc(0) = entry. Likewise, we call ℓsc a terminating schedule for a given P-LLVM
state, if executing the schedule leads all threads to a terminated control state. That is when the runtime
schedule is completely executed it holds in the resulting execution state that ∀t ∈ T .ℓnext(t) = □. Finally,
a schedule is called complete if it is initial and terminating.

We stress that runtime schedules are entirely independent of the execution state: for any execution
state of any P-LLVM program any sequence of basic blocks of that program is a valid runtime schedule. We
emphasize this aspect of P-LLVM because it breaks with a standard staple in data-parallel languages: it
is common for language semantics to derive scheduling decisions from the execution state, e.g. by deĄning
a stack-based scheduling mechanism that takes the threadsŠ branching decisions into account [Farrell
and Kieronska, 1996; Leißa, 2017; Habermaier and Knapp, 2012; Karrenberg, 2015; Coutinho et al.,
2011; Sampaio et al., 2013; Alur et al., 2017]. We discuss restrictions on the schedule space in Chapter 5.
However, those restrictions are made by conditioning the schedule space a-posteriori, i.e. not as part of
language semantics and different schedule regimes are thinkable.

In P-LLVM threads always execute in lock step: all threads concurrently execute the same instruction
at the same time. When a block is scheduled, the threads jointly execute the instructions in that block
in lock step. This means that the control state of a thread determines how (but not if) it executes the
instructions of a scheduled block. Threads execute each scheduled block in one of two states, active or
passive, which we refer to as the activation of the thread. Intuitively, under active execution a thread
performs the operations in the scheduled block while under passive execution it does not. If a threadŠs
control state disagrees with the scheduled block then it will only execute it passively. Otherwise, if the
threadŠs control state agrees with the scheduled block and the predicate of the block evaluates to true,
then the thread will execute the block actively.

The control state aspect of the activation is given by a threadŠs control mask (cmsk), which is
formalized by DeĄnition 6.

DeĄnition 6. (Control Mask)

cmsk ℓin ℓnext ℓsc =











1 if ℓnext = ⊤ (ℓin , i, ℓsc) ∈ E i ∈N

1 if ℓnext = ℓsc

0 otherwise
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The second and third case of DeĄnition 6 cover the intuitive outcomes of the control mask. In the
second case, the scheduled block is the next block of the thread. In the third case, it is not and the
thread executes passively. Threads that have executed a return statement will remain in this case and
never attain an active control mask again. In the remaining Ąrst case, it holds that ℓnext(t) = ⊤; The
thread t will actively execute any of its successors as soon as it is scheduled. The control mask of the
entire thread array is given by cmskW = map cmsk, e.g. the bit vector resulting from applying cmsk to
each individual thread.

Schedule Semantics. The schedule transition, deĄned by [LSS-W-STEP], formalizes the effect of
consuming the head of the runtime schedule and executing it for all basic blocks.

ℓsc ⊢


M, ∆
W , ℓin

W , ℓnext
W



−→IM′
∆

′W iW

advancepcW iW ℓin
W ℓnext

W ℓsc → ℓin
′W ℓnext

′W

ℓscℓ′
sc



M, ∆
W , ℓin

W , ℓnext
W



ℓsc−−→→ I ℓ′
sc



M′, ∆
′W , ℓin

′W , ℓnext
′W

 [LSS-W-STEP]

Figure 4.3.: State transition for executing the next block on the schedule.

We say that a block is scheduled meaning that the block is the head of the schedule and a transition
of [LSS-W-STEP] takes place. The rule, shown in Figure 4.3, has two premises. The one on top is
the basic block transition ([BLS-W-STEP] deĄned in Section 4.7), which models the execution of the
content, i.e. the ϕ nodes, instructions and the terminator, of the scheduled basic block ℓsc. Executing
the block results in an updated variable environment (∆

′W ) and memory state (M′). Also, it yields a
successor index vector (iW ), which contains the branching decisions of the threads. The actual control
state update is performed in the second premise: advancepc takes the just computed successor index,
the control state and the scheduled block into account. The exact deĄnition of advancepc is shown
in Figure 4.4.

advancepc i ℓin ℓnext ℓ → ℓ ℓnext

cmsk ℓin ℓnext ℓsc i ∈N
(

ℓsc, i, ℓnext
′
)

∈ E

advancepc i ℓin ℓnext ℓsc → ℓsc ℓnext
′

[PC-ACTIVE]

cmsk ℓin ℓnext ℓsc i = ⊤

advancepc i ℓin ℓnext ℓsc → ℓsc ⊤
[PC-ND-BRANCH]

¬cmsk ℓin ℓnext ℓsc

advancepc i ℓin ℓnext ℓsc → ℓin ℓnext

[PC-PASSIVE]

cmsk ℓin ℓnext ℓsc i = □(r)

advancepc i ℓin ℓnext ℓsc → ℓsc □(r)
[PC-TERM]

∀t ∈ T .



advancepc iW (t) ℓin
W (t) ℓnext

W (t) ℓsc → ℓin
′W (t) ℓnext

′W (t)


advancepcW iW ℓin
W ℓnext

W ℓsc → ℓin
′W ℓnext

′W
[PC-WSTEP]

Figure 4.4.: Control state update after a scheduled block has been executed.
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The rules for advancepc break down into two sets depending on whether the control mask of the
thread is active (rules [PC-ACTIVE] and [PC-ND-BRANCH] and [PC-TERM]) or not ([PC-PASSIVE]).
In the latter case, the control state is unchanged. In case of an active control mask, the terminator
either yields a successor index (i ∈ N), a termination signal with return value (ret(r ∈ V)) or ⊤. In
the integer index case control simply advances to that successor in the CFG ([PC-ACTIVE]). If the
successor index is ⊤ the thread advances to any successor of it its last executed block as soon as such a
block is scheduled.

A terminated thread stays terminated through [PC-PASSIVE] for the special case ℓnext = □.

Example: Control Mechanics. We shown an example for the execution of a P-LLVM program
with a runtime schedule in Figure 4.5. Figure 4.5a shows the CFG of the program we are executing.
We turn our attention to Figure 4.5b, which shows the runtime schedule, the control state and control
mask before each scheduled block executes, and the resulting branching decision (successor index). Both
threads start at the entry block A. As shown in the branching decision column (iW ), the Ąrst thread
branches to B at successor index 0 and the second thread to C at successor index 1. The next scheduled
block is B. This is the next block of the Ąrst thread, and so after executing B, the Ąrst thread updates its
control state to execute E next. The last executed block B is the incoming block. Looking at the second
thread when B is scheduled, we observe that because B is not the next block of this thread (but C), the
Ąrst thread executes only passively resulting in ⊤ as its branching decision. This does not affect the
Ąrst threadŠs control state however, since the control mask for B was 0. When C is scheduled, we see a
similar outcome as for B with the roles of the Ąrst and second thread swapped: the Ąrst thread executes
passively, the second actively. In effect, the second thread branches to D, the Ąrst stalls. The same
happens for D. Finally, both threads actively execute E. This is the next block of the Ąrst thread after B

was scheduled and the second thread branches to E after D. Both threads reach the return statement at
the end of E and set their next block to □, signalling a terminated state.

A

B C

D

E

¬p p

q¬q

(a) Example CFG. Branch conditions

drawn onto edges.

ℓsc ℓin
W ℓnext

W cmskW iW

A ⊥ ⊥ A A 1 1 0 1

B A A B C 1 0 0 ⊤

C B A E C 0 1 ⊤ 1

D B C E D 0 1 ⊤ 0

E B D E E 1 1 □ □

(b) Execution with runtime schedule.

Figure 4.5.: 4.5a: CFG of a P-LLVM program. 4.5b: Execution protocol for two threads with the runtime
schedule of the Ąrs column. Second, third columns: Control state before executing the block.
Fourth column: Control mask. Last column: Branching decision (successor index) after the block
was executed.

4.4. Predication and Activation

Besides the control mask, active execution is also controlled by the evaluation result of the block
predicate, deĄned by DeĄnition 7.

DeĄnition 7. (Predicate Mask) The predicate mask (pmsk) of a thread is the value of the block predicate
of the scheduled block ℓsc for that thread.
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If the control mask and the predicate mask evaluate to true, then the thread executes the scheduled
block actively. This is the essence of the activation mask amskW deĄned in DeĄnition 8.

DeĄnition 8. (Activation Mask) The activation mask (amsk) of a thread t ∈ T in a P-LLVM
execution state is the conjunction of the control mask and the predicate mask, i.e. amskW (t) =
pmskW (t) ∧ cmskW (t).

Example: Thread Activation

iPtr = elemptr A tid

i = load iPtr

p = icmp uge i 0

notp = not p

br p B C

A

bPtr = elemptr B i

store bPtr x

br C

B

negi = sub -1 i

cPtr = elemptr C negi

store cPtr x

br D
notp

C

ret xD

(a) Block C has the predicate notp.

ℓsc cmskW pmskW amskW

A 1 1 1 1 1 1

B 0 1 1 1 0 1

C 1 1 1 0 1 0

D 1 1 1 1 1 1

(b) Schedule and mask function trace for a

possible execution with two threads.

Figure 4.6.: A P-LLVM program with divergent control and a predicated basic block.

We show an example program in Figure 4.6 to give an understanding of how the control mask,
predicate mask and activation factor into the execution. Figure 4.6a shows a small P-LLVM program
that is executed by two threads. For the sake of the example, we will assume that the condition p

evaluates to [0, 1] for the threads, i.e. ∆
W (x)(t0) = 0 and ∆

W (x)(t1) = 1. Figure 4.6b shows the
runtime schedule (column ℓsc) and the values of the control, predicate and activaton masks. Each row
shows the control, predicate and activation mask according to the execution state after all preceding
blocks of the runtime schedule have executed but before the scheduled block ℓsc of the current row
executes. In the Ąrst row, we therefore see the predicate masks for the initial state. All blocks execute
the entry block (A) and so the control mask is true for all threads. The block A is unpredicated, meaning
its predicate value is true for all threads. The activation is deĄned as the conjunction of the control
mask and the predicate mask and hence also all true.

The program contains a divergent branch in A with the Ąrst thread proceeding to block C while
the second thread branches to B. Therefore, we see cmskW = [0, 1] in the second row of the trace. The
program also features a predicated basic block: the activation of block C depends on its predicate notp.

The block C sees its predicate notp evaluated differently for the threads. Therefore, when the block
C is next on the schedule list (third row), we observe that pmskW = [1, 0].

Example: Incremental If Conversion

Leveraging block predicates, a P-LLVM program can be if-converted incrementally while all intermediate
stages have a deĄned semantics. Figure 4.7a shows the CFG of a P-LLVM program without predicates.
If threads take different paths through the program, the control mask cmsk assures that blocks only
actively execute if the block is on a threadŠs itinerary according to its control state.
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A

B C

D

E

¬p p

q¬q

(a)

A

B C

D q

E

¬p p

(b)

A

B ¬p C p

D p

E

q¬q

(c)

A

B ¬p C p

D p ∧ q

E

(d)

Figure 4.7.: Regardless of divergence in p or q, if the instructions in the blocks are the same, except for the
conversion of φ nodes, all of these P-LLVM programs compute the same result.

In Figure 4.7b, the branch in C is if-converted and the former branch condition q predicates block D.
The activation of block D is now the conjunction of the control mask and the value of q. More branches
are if-converted in Figure 4.7c and Figure 4.7d further shifting control conditions into block predicates.
In effect, when executed from the same initial state, the computed activations in all four CFGs are the
same.

4.5. Semantic Interpretations

P-LLVM knows two semantic interpretations, FR(EEZING) and OBL(IVIOUS), that we touched on brieĆy
in Section 3.6.1. If P-LLVM is interpreted under the FR semantics, instructions do not modify their
result variable under passive execution. This interpretation models intuitive parallel execution where
passive execution means that the values assigned to variables are completely unaffected by the passive
execution. If an instruction executes with the OBL interpretation, the result variable of an instruction is
assigned ⊤, the undeĄned value. This is unless P-LLVM language features such as the total modiĄer
on instructions or shadow inputs on ϕ nodes are used. The OBL interpretation models what SIMD
instructions really do: if a SIMD lane executes passively, it will still assign some value to that lane in
the result register.

In the following deĄnitions, the parameter I selects the semantic interpretation. There are two
possible valuations: either I = FR for the freezing interpretation or I = OBL for the oblivious one.

4.6. Interacting with the Variable Mapping

The inference rules of the formalization use two formal functions to evaluate the value of syntactical
P-LLVM values and to update the value bound to an identiĄer (id) in the variable mapping (∆).

Evaluating Values. The formal function evalW ∆
W val returns the value of the syntactical value

val . The result is always a vector of proper values from VW . If val is an identiĄer, the returned values
are looked up in the variable mappings ∆

W . Otherwise, val must be a constant and eval returns the
value of this constant for all threads.

Updating the Variable Mapping. The formal function updenv assigns the elements of a vector of
values to the same identiĄer in the W -vector of environments. We give the precise deĄnition in Figure 4.8.
Irrespective of the FR or OBL interpretation, an active instruction always updates its identiĄer. In
FR semantics, the state of an identiĄer is retained if its instruction is not actively executing. In OBL
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semantics, an identiĄer is set to ⊤ in the same situation, meaning the former value of the identiĄer
is replaced with an undef value. This is why the OBL interpretation of Figure 3.20a is not a faithful
interpretation of the scalar code. When threads are forced to execute the loop body of the while loop
despite already having left, they overwrite i and x to ⊤.

updenvI
W

∆
W id VW amskW → ∆

W

getNewValueI



amskW , ∆
W , id, vW



(t) =











⊤ if I = OBL ∧ ¬amskW (t)

∆
W (t)( id) if I = FR ∧ ¬amskW (t)

vW (t) if amskW (t)

∀t ∈ T .



∆
′W (t) = ∆

W (t)
{

id ← getNewValueI



amskW , ∆
W , id, vW



(t)
}

updenvI

W
∆

W id vW amskW → ∆
′W

[UPD-ENV]

Figure 4.8.: Update function for the identiĄer environment (∆
W ).

Vector Projection. For sake of legibility, we deĄne the helper function vec as deĄned in DeĄnition 9.
It projects the value of variable across all threads into a vector. We omit the explicit ∆

W argument
in vec when it is clear from the context, i.e. when referring to the vector projection of a variable at a
speciĄc program point.

DeĄnition 9. (Value projection) The vector projection vec(∆W )(id) projects the values of a variable
across the threads to a vector value. vec(∆W )(id) = λt ∈ T .∆W (t)(id).
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4.7. Basic Block Semantics

The effect of executing a basic block for a thread array of W threads is captured by the basic block
transition:

ℓsc ⊢



M, ∆
W

, ℓin
W

, ℓnext
W



ϕ c tmn−→IM
′

∆
′W iW

A basic block ℓsc executes with an incoming execution state
(

M, ∆
W

, ℓin
W

, ℓnext
W

)

. The subscript
parameter I of the transition selects the semantic interpretation: FREEZING (FR) or OBLIVIOUS
(OBL), discussed in Section 3.6. The execution produces a potentially altered memory state M

′, an
environment with identiĄer assignments ∆

W ′ and a vector of successor indices iW . The basic block
transition is formalized by [BLS-W-STEP].

ℓsc valmsk ϕ c tmn ∈ prg

∆pre
W = parallel-copy of ϕ using evalphiI

W cmskW ℓin
W

∆
W

amskW =


cmskW ℓin
W ℓnext

W ℓsc ∧ evalW ∆pre
W valmsk



computecmdI

W amskW
∆pre

W
M c →

∗
∆

′W
M

′

iW = evaltermW amskW
∆

′W tmn

ℓsc ⊢



M, ∆
W

, ℓin
W

, ℓnext
W



−→IM
′

∆
′W iW

[BLS-W-STEP]

The execution of a basic block by [BLS-W-STEP] proceeds in four stages.

Resolution of φ Nodes. First, the ϕ nodes are resolved. We use blue for these parts. Resolution
of ϕ nodes follows standard parallel copy semantics [Appel, 1998]: That is, every ϕ node selects a new
value from the incoming program state. Then, the identiĄers of all ϕ nodes are assigned their new value.
The function evalphi determines the result of individual ϕ nodes, which depends on the incoming block,
the environment and the control mask. It is discussed in detail in Section 4.8.

Evaluating the Activation Mask. Second, The activation amskW is computed as the conjunction
of the control mask and the value of the block predicate. The instructions and the terminator depend
on the activation of the basic block.

Executing the Instruction List. Third, the instructions are executed in sequence using the formal
function computecmd and under the inĆuence of the activation amskW . This stage is colored red. The
semantics of instructions are further discussed in Section 4.9.

Evaluating the Terminator. Block execution Ąnishes with the evaluation of the terminator using the
function evalterm, which is deĄned in Figure 4.9. This yields the successor index iW , which conceptually
selects the control-Ćow edge to take from the currently executing block.

The successor index i for each thread is either an element of N, the special value ⊤ or □(r). If
i ∈ N, then the thread proceeds from ℓnext in its current control state to the successor block ℓdest by the
control-Ćow edge (ℓnext , i, ℓdest) ∈ E. If i = □(r), the thread Ąnishes program execution and yields the
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evalterm amsk ∆ tmn = i

evalterm amsk ∆ br ℓ =

{

0 if amsk

⊤ if ¬amsk

evalterm amsk ∆ ret valres =

{

□(r) if amsk given r = eval ∆ valres

⊤ if ¬amsk

evalterm amsk ∆ br valcnd ℓ0 ℓ1 =











0 if amsk ∧ eval ∆ val

1 if amsk ∧ ¬eval ∆ val

⊤ if ¬amsk

evaltermW amskW
∆

W tmn = mapW evalterm amskW
∆

W tmn

Figure 4.9.: Terminator semantics (evalterm).

return value r. Finally, if i = ⊤, then any reachable successor in the control-Ćow edge is an acceptable
branch target.
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4.8. Semantics of φ Nodes

P-LLVM augments ϕ nodes with an optional shadow operand. The purpose of this is to control the value
of ϕ nodes under passive execution. The divergent loop transform presented in Section 9.1 leverages ϕ
shadow operands to transform divergent loops into uniform loops. There, shadow ϕ nodes are used to
selectively retain values on masked-off lanes.

The design of shadow semantics is motivated by the code transformations that happen in the
vectorizer pipeline. To this end, Figure 4.10 jumps ahead, showing an example how ϕ nodes are
lowered during if-conversion. The CFG on the left Figure 4.10a is completely if-converted on the right
in Figure 4.10b.

A

B C

m = φ[B ,1] [C ,0] \
shadow (0)

s = φ[B,y] [C,x] \
shadow (z)

d = φ[B,g] [C,h]
// ...

D

E

(a) CFG with φ nodes.

1 // control mask predicates
2 eBD = // ..
3 eCD = // ..
4

5 // select lowering of m
6 m = select (eBD , 1, 0)
7

8 // select lowering of s
9 s0= select (eBD , y, z)

10 s = select (eCD , x, s0)
11

12 // select lowering of d
13 d0= select (eBD , g, ⊤)
14 d = select (eCD , h, d0)

(b) After complete if-conversion.

Figure 4.10.: When if-converted, φ nodes lower to cascades of select instructions. The shadow input becomes
the default value of the cascade.

When if-converted the control masks are computed explicitly. Each ϕ node is lowered into cascade
of select instructions. Each select in the cascade selects an incoming value for the incoming control
Ćow edge. If there is no shadow input, as is the case for d, the default value is undeĄned.

By adding a shadow input to a ϕ node that default value can be speciĄed explicitly. We exploit
this, for example, to convert control-Ćow into data without explicit path predicates. The variable m

holds the explicit value of the control mask of block D in both the original CFG in Figure 4.10a and the
if-converted version in Figure 4.10b. By virtue of the shadow input, we encode that the mask m is 0

if the control mask for D is false. We could make the CFG in Figure 4.10a part of a larger CFG that
branches to A with divergent branches. Still, the invariant in Figure 4.10a that m is 0 if the control mask
for D is false, even in that larger CFG, holds.

Formalization. The function evalphi returns the value of a ϕ node. It is used in the basic block
transition to implement parallel-copy semantics for ϕ resolution (Section 4.7). In the absence of control
divergence, ϕ nodes (shadow and non-shadow) behave as in regular, sequential LLVM IR.

evalphiI cmsk ℓin ∆ id = ϕ[ val j , ℓj ] =











eval ∆ val j if cmsk ∧ ℓj = ℓin

eval ∆ id if ¬cmsk ∧ I = FR

⊤ if ¬cmsk ∧ I = OBL

46



The value assigned for non-shadow ϕ nodes under passive execution is ⊤. This is the same behavior
as for variables assigned by passive instructions by updenv (see Section 4.6). In contrast, the semantics
of shadow ϕ is invariant under the semantic interpretation.

evalphiFR/OBL cmsk ℓin ∆ id = ϕ[ val j , ℓj ] shadow(vals) =

{

eval ∆ val j if cmsk ∧ ℓj = ℓin

eval ∆ vals if ¬cmsk

A

B 0

x = φ[A ,0] [B ,1] \
shadow (2)

...

C

D

ℓsc cmskW (ℓsc) amskW ℓnext
′W ℓin

′W

A 1 1 1 1 D B A A

B 0 1 0 0 D C A B

C 0 1 0 1 D D .. ..

vec(x) = [2, 1]

Figure 4.11.: Two threads approach a shadow φ node in block C. Columns marked ′ refer to the resulting
execution state.

We explain the mechanics of ϕ node resolution with the example in Figure 4.11. The CFG on the
left is executed following the schedule on the right. The Ąrst column contains the scheduled block ℓsc,
the next two columns show the control mask and activation for the scheduled block. Finally, the last two
columns show parts of the execution state that result from executing the scheduled block, the resultant
next block ℓnext and the resulting incoming block ℓin . We forward to the point that C is scheduled. The
second thread progresses from A to B and from there to block C. The ϕ node resolution is unaffected
by the activation of its incoming block B. Hence, the second thread resolves the ϕ node to 1. The Ąrst
thread goes from A right to D. The control mask for C is off when C is scheduled. The shadow ϕ node x

resolves to its shadow input, yielding 2.
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4.9. Semantics of Instructions

Each transition of computecmd consumes the Ąrst instruction off the instruction list and applies the
effect of that instruction to the execution state. The transition rules are formally deĄned in Figure 4.12.
After the last instruction of the list is executed, [W-CMD-EMPTY] returns the Ąnal environment and
memory state, which is in turn matched in the inference rule [BLS-W-STEP]. The function updenv

assigns the elements of the vector value vW to the identiĄer id in the environments ∆
W of the threads.

computecmdI
W amskW

∆
W M c → ∆

W M

computecmdI
W amskW

∆
W M→ ∆

W M
[W-CMD-EMPTY]

computecmdI
W amskW

∆
W M c → computecmdI

W amskW
∆

W M c

c = id = inst evalcmdI
W amskW

∆
W M inst → resW M′

updenvI
W

∆
W id resW amskW → ∆

′W

computecmdI
W amskW

∆
W M c c → computecmdI

W amskW
∆

′W M c
[W-CMD-INST]

c = id = inst total

evalcmdI
W 1W

∆
W M inst → ∆

′W M′ updenvI
W

∆
W id resW 1W → ∆

′W

computecmdI
W amskW M c c → computecmdI

W amskW
∆

′W M′ c
[W-CMD-TOTAL]

c = id = mask() ∀t ∈ T


∆
′W (t) = ∆

W (t)
{

id ← aW (t)
}

computecmdI
W amskW M c c → computecmdI

W
∆

′W M c
[W-CMD-MASK]

Figure 4.12.: Rules for executing the instruction list of a basic block.

The total modiĄer has the effect of executing the command with all lanes enabled ([W-CMD-
TOTAL]). This is similar to executing commands in an ISPC unmasked scope [Pharr and Mark, 2012].
We use total instructions to compute block predicates.

The actual instruction effect is modelled by evalcmd. The command mask is handled specially
by [W-CMD-MASK] since it returns the activation amskW , so cannot use the total modiĄer, but assigns
the result for all threads, like a total instruction.

We do not give an exhaustive deĄnition of evalcmd. If an instruction is not explicitly speciĄed in
the following, each thread executes it independently according to regular LLVM semantics. Section 4.9.1
discusses the kind of guarantees given for explicit memory accesses. These guarantees transfer to
unspeciĄed instructions (memcpy), in so far applicable.

Syntactic Sugar. The P-LLVM language grammar as layed out in Figure 4.2 is designed for ease of
formalization. We use a simpliĄed syntax in actual code, as exempliĄed in Figure 4.13.

Note that the grammar of P-LLVM foresees all instructions to assign to a variable, i.e. to have the
form id = .... However, operations such as store or a call of function without return value do not
yield a value. A program that contains uses of such an identiĄer is considered ill-formed. For the sake
of legibility, we hence permit P-LLVM listings where the identiĄer is omitted in those cases, as shown
in Figure 4.13a. We omit the return value in ret valres in the same spirit when the CFG is that of a
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1 store p v
2

3 // .. is synctactic sugar for ...
4

5 z = store p v
6 // (z must not be read)

(a)

1 a := add b c
2

3 // .. is syntactic sugar for ...
4

5 a = add b c total

(b)

Figure 4.13.: SimpliĄed syntax used in P-LLVM code examples.

function without a return value. Figure 4.13b shows an example for the simpliĄed syntax for total. We
use the less verbose := notation for assignments to indicate that this is a total operation.
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4.9.1. Memory

evalcmdI
W amskW

∆
W M inst → VW M

inst = alloca typ s = sizeof ( typ)
pW , M′ = newptrW M s amskW

evalcmdI
W amskW

∆
W M inst → pW M′

[W-INST-ALLOCA]

inst = load typ valptr

pW = eval ∆
W valptr dW = readW M amskW pW

evalcmdI
W amskW

∆
W M inst → dW M

[W-INST-LOAD]

inst = store valptr valdata dW = evalW ∆
W valdata

pW = evalW ∆
W valptr M′ = writeW M amskW pW dW

evalcmdI
W amskW

∆
W M inst → ⊤W M′

[W-INST-STORE]

General function calls may modify the memory state in arbitrary ways. However, the load, store

and alloca commands interface with the memory only through newptrW , writeW , readW . We informally
require these functions to be well-behaved in the following sense.

Each invocation of newptrW M s amsk returns a vector of pointers pW where each element pointer
refers to a mutable object in M′. Each returned pointer is the base pointer to a memory buffer of size s.
Allocation happens only for threads where the activation (amsk) is set, otherwise executing passively
p = ⊤ and no memory is allocated for that thread. The allocated objects are private, that is each object
is only accessible from one element of the pointer vector and pointers derived from them. The elements
of a memory object are disjoint and non-aliasing.

Addressing elements of a memory object using elemptr yields pointers to element objects of the
base pointer that alias with the base object. The elemptr command corresponds to getelementptr of
LLVM IR.

readW M amskW pW performs a gather lookup of a vector of pointers (pW ) in the system state M for
each lane whose activation is enabled (amskW ). Each thread that reads from an uninitialized address
obtains a ⊤ result.3 writeW M amskW pW dW performs a scatter of a vector of values to a vector of
pointers and returns the resulting system state M′. Scattering the same value to the same address by
multiple threads results in that value being stored at that address in the resulting state M′. This happens
in case of a typical uniform store. The behavior of scattering different values to overlapping memory
ranges is not further speciĄed.

3Otherwise loading from undeĄned memory addresses results in undeĄned behavior.
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4.9.2. Function Calls

P-LLVM implements a Ćexible function call mechanism that encompasses horizontal operators, such as
the any intrinsic, as ordinary functions.

evalcmdI
W amskW

∆
W M inst → VW M

inst = fnc
(

val
)

val = val0 , .., valn−1 ,n ∈N ∀i ∈ ¶ 0, ..,n− 1 ♢ .



pi
W = evalW ∆

W val i



f = θ( fnc) retW , M′ = f


p0
W , .., pn−1

W , amskW , M



evalcmdI
W amskW

∆
W M inst → retW M′

[W-CMD-CALL]

Figure 4.14.: General function call semantics.

Figure 4.14 deĄnes the semantics of general function calls. The function deĄnitions are available as
mathematical function in the function map θ. A function call is performed by Ąrst evaluating the call
parameters, looking up the function deĄnition and then applying it to the execution state. The function
explicitly takes the activation mask as a parameter. If the function entails a side effect on the memory
state, this effect is thus properly masked. A function application results in a vector of return values
retW and a potentially altered memory state MŠ.

Note that the underlying mathematical functions (f) operate on the vectors of parameter values
across threads as a whole. By doing so, P-LLVM function can be horizontal operations whose result
depends on the parameters of all threads.

P-LLVM requires mathematical deĄnitions for the called functions and hence does not support
calls to other P-LLVM functions and in particular recursion. Mathematical functions are sufficient for
modelling the intraprocedural aspects of P-LLVM, which are the focus of this thesis. Calls to P-LLVM
functions could be supplemented by adding a stackframe for function calls as VeLLVM does [Zhao et al.,
2012].

Function calls with the total modiĄer amount to function call re-vectorization [Moreira et al., 2017].

Builtin Functions. We expect a reasonable runtime environment in θ, including common mathematical
functions and the set of builtin functions shown in Figure 4.15. We omit the activation amskW and
memory state M arguments for legibility understanding that memory is passed through and the activation
ignored. If the return value is not a W -tuple, it is implicitly broadcast (for example, any actually returns
BitW and each thread sees the same result value).
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fnc signature θ( fnc) informal description

popcount BitW →N λmW .



Σ
t∈T

.mW (t)



Number of bits set in mW .

any BitW → Bit λmW .



∃
t∈T

.mW (t)



Whether any element of mW is true.

ballot BitW → (BitW )W λmW .
[

mW , ..,mW
]

Broadcast the vector value mW .

thread_id ()→N
W λ(). [0, 1, ..,W − 1] The thread identiĄer.

Figure 4.15.: Builtin functions.
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4.10. Well-formedness

P-LLVM is an extension of LLVM IR and inherits its well-formedness properties, e.g. that deĄning
instructions must dominate their uses due to SSA form. P-LLVM poses additional well-formedness
requirements that account for its data-parallel execution model and the addition of block predicates.
The correctness of the divergence analysis, a fundamental analysis of the vectorizer, depends on the
well-formedness of the P-LLVM program.

A central aspect to the correctness of P-LLVM programs is the extension of def-before-use to the
predicated execution model. In standard SSA form, all variable deĄnitions have to dominate their uses
(or the incoming block in case of ϕ nodes). In P-LLVM, whether a variable is deĄned also depends on
predicate under which the variable was assigned. We call this the deĄnition mask of the variable, deĄned
in DeĄnition 10.

DeĄnition 10. (P-LLVM - DeĄnition Mask) The deĄnition mask of a constant is always 1. Otherwise,
the value must be a variable and the following rules apply:

1. If the variable is assigned by a non-total instruction, the deĄnition mask is the activation mask of
the block.

2. If the variable is assigned by a total instruction, then the deĄnition mask is 1.

3. If the variable is assigned by a non-shadow ϕ node, then the deĄnition mask is the conjunction
of the control mask under which the ϕ evaluates and the deĄnition mask of the selected incoming
value.

4. If the variable is assigned by a shadow ϕ node, then if the control mask is true the same rules as
for non-shadow ϕ nodes apply. Otherwise, the deĄnition mask of the ϕ node is the deĄnition mask
of the shadow operand.

DeĄnition 11. (P-LLVM Well-formedness)

A P-LLVM program is well-formed if it has the following properties on top of the well-formendess
requirements for regular LLVM IR.

1. (Dominating predicate)
If the predicate of a block is deĄned in another block, the block bearing the deĄnition has to dominate
the predicated block. If the predicate of a block is deĄned in the block itself, all preceding instructions
in this block have to be total.

2. (Defined functions)
All function symbols fnc that occur in a P-LLVM program have to be deĄned in the function symbol
map θ.

3. (Predicated def-before-use)
The requirement of SSA that a variable has to be deĄned before it is used (def-before-use) extends
to predicated deĄnitions and uses. In the execution of a instruction, the effect of the operation
(system state M or result value) may depend on the value of an operand that is given by an identiĄer
valop. Dependence of an operation on an operand is understood in the dynamic, semantical sense:
does this instance of the operation show different behavior when the operand variable is modiĄed?
Whenever such a dynamic dependence to an operand exists, the deĄnition mask of the user operation
has to imply the deĄnition mask under which the operand variable valop was assigned.

The well-formedness conditions for P-LLVM programs are layed out in DeĄnition 11. The semantic
nature of the predicated def-before-use may seem problematic since semantic properties cannot generally
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be veriĄed at compile time. However, we presume well-formedness to exploit its properties in the
vectorization system. The veriĄcation of well-formedness is a separate concern and out of the scope of
this thesis.

x = ...
notp = not p total
// ..

A

p

// ..
y = f(x)
// ..

B

notp

(a) The predicate of the using instruction (y) does not
imply the predicate of the deĄning instruction (x).

A

i = φ [0,A] [inc ,B]
x = ...
inc = add i 1
tid = lane_id ()
cnt = icmp slt inc tid
br cnt B C

B

z.lcssa = φ [x,C]
...

C

(b) The variable x is set to the ⊤ under OBLIVIOUS and
so the use by x.lcssa is ill-formed.

Figure 4.16.: Examples of ill-formed P-LLVM programs.

Figure 4.16 shows two cases of ill-formed P-LLVM programs, which demonstrate violations of the
statute of predicated def-before-use (3. in DeĄnition 11).

The Ąrst example in Figure 4.16a shows a violation in connection with block predicates. The variable
x is deĄned under the block predicate p in block A. It is then used in block B under the negated predicate
notp. Since x is not deĄned when it is used in block B, this is a violation under the assumption that the
function f semantically depends on x.

The second example in Figure 4.16a shows a violation in connection with a divergent loop. The
deĄning instruction of variable x is in the divergent loop that consists of the block B. The value of x is
then read by the ϕ node z.lcssa outside the loop.

Consider that the program executes with two threads and that the Ąrst thread leaves the loop Ąrst
and only in a later iteration the other thread. Under the FREEZING interpretation, the variable x is
unchanged under passive execution for the Ąrst thread. When Ąnally the block x is scheduled, both
threads see the value of x as it was last deĄned in active execution, in their last active loop iteration.

Under the OBLIVIOUS interpretation however, the variable x is set to ⊤ for the Ąrst thread and
under passive execution as B executes again after the Ąrst thread is already at C. We observe a violation
of predicated def-before-use since the activation of the Ąrst thread was false when x was last assigned
while the use in C again happens actively.

Generally, predicated def-before-use implies that programs with divergent loops are ill-formed under
the OBLIVIOUS interpretation: Variables assigned in the divergent loop may be overwritten by passive
execution when threads have left the loop. In that case, any (meaningful) use outside of the divergent
loop makes the program ill-formed because active using instructions outside the loop then read a variable
that was assigned in the divergent loop with a 0 deĄnition mask.
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4.11. Related Work

We place P-LLVM in the context of related work considering the following two angles. First, we compare
P-LLVM with data-parallel languages and compiler IRs on the grounds of their expressiveness. Second,
we look at literature outside of the domain of data-parallel programs. Section 5.4 discusses related work
in synchronization and thread re-convergence.

4.11.1. Data-parallel Languages and Intermediate Representations

We compare the P-LLVM IR to other data-parallel languages and intermediate-representation with
regards to their expressiveness. This includes horizontal operations and availability of predication.

Data-parallel Programming Languages. Data-parallel languages commonly do not offer ways to
explicitly specify predicated execution [Pharr and Mark, 2012; Munshi, 2009; Leißa, 2017; Leißa et al.,
2014; Reiche, 2018].

Horizontal operations (such as any and ballot) are usually modelled specially in data-parallel
languages. This is true for HLSL WaveActive* kind of operations [Microsoft, 2018]. P-LLVM decouples
the activation query (mask()) from the horizontal operation (any). As illustrated in Section 4.9.2,
P-LLVM horizontal operations themselves are simply considered SIMD functions.

The CUDA programming language features a rich set of horizontal operations and features builtin
functions that retrieve the current activation of a thread. Only the threads whose bit is set in the
synchronization mask partake in the execution of the horizontal operation. With regards to horizontal
operators the difference between P-LLVM and CUDA lies in thread synchronization, discussed further
in Section 5.4.

Exchange Formats for Data-parallel Kernels. This category comprises standardized exchange
formats for compute kernels.

SPIR-V [Kessenich et al., 2018] is the official intermediate representation for OpenCL and OpenGL
shader programs [Kessenich et al., 2019], including the Vulkan API [Group, 2019]. Conceived to represent
compute kernels, SPIR-V does not model predication either.

The NVIDIA CUDA [Nickolls et al., 2008] ecosystem provides two intermediate representations
for GPU kernels. NVVM IR [NVIDIA, 2019b] is a dialect of LLVM IR for the representation of GPU
compute kernels. NVIDIA PTX [NVIDIA, 2019a] is an instruction-set agnostic kernel IR for GPU
compute kernels. PTX features predication and synchronization instructions to cater for the capabilities
of various generations of NVIDIA microarchitectures. A total P-LLVM instruction corresponds to a
PTX instruction without guard predicate in that both are computed for all lanes. PTX represents
data-Ćow with virtual registers but without SSA form. However, both NVVM IR and PTX are primarily
exchange formats, designed to simplify the design of frontends and to expose a stable interface to target
NVIDIA GPUs.

LLVM IR. Several compilers for data-parallel compute languages are known to build on a data-parallel
interpretation of standard LLVM IR. This includes the Intel OpenCL driver for CPUs [Rotem, 2011] as
well as the more recent driver for Intel GPUs [Chandrasekhar et al., 2019]. Similarly, the GPU compiler
of AMD is based on LLVM-IR [amd, 2019].

However, the stock transformations of LLVM were principally designed for sequential code. A special
convergent attribute is used on function calls to indicate that the control dependences of the call
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must not be altered. However, deĄciencies with this approach have been pointed out and it has been
acknowledged [con, 2019] that a proper data-parallel semantics for a data-parallel reading of LLVM IR
is required.

Data-parallel Compiler IRs. Farrell and Kieronska [1996] present a formal lock-step semantics for
a structured language with divergent control statements. The approach models FR semantics, which
inaccurately reĆects the behavior of SIMD instructions in loops.

Karrenberg [2015] sketches a data-parallel, lock-step semantics for LLVM IR. The semantics retains
variables under passive assignment as the FREEZING mode in P-LLVM. Re-convergence is described to
occur at the IPD.

The instructions of a P-LLVM program are speciĄed in scalar terms, referring to the variable
environment of each individual thread. There is a non-coincidental relation to work on Vector-Length
Agnostic SIMD Instructions. This line of work encompasses Vapor SIMD [Nuzman et al., 2011] for
compilers and Liquid SIMD [Clark et al., 2007] for SIMD ISAs. However, both approaches require
explicit SIMD instructions and linearized control Ćow. There is no notion of control divergence as these
languages are intended for direct lowering to machine code or, as is the case for Liquid SIMD, describe a
SIMD ISA themselves.

Apart from data parallelism, several extensions for task-level parallelism have been proposed [Schardl
et al., 2017; Khaldi et al., 2015]. Modelling parallelism at the level of multiple blocks or instructions at
a time, task-parallel representations are too coarse-grained for use in a data-parallel vectorizer.

4.11.2. Predicated Execution and Passive Lanes

A considerable body of related work tackles the challenge of modelling predication in the compiler IR
and in machine ISAs.

Hardware Support for Predication. Several contemporary SIMD ISAs support lane-wise conditional
updates to the destination register. Values on masked-off lanes are passed through. Among their ranks
are the AVX512 extension for X86 [Intel], the SX-Aurora TSUBSA Vector CPU [SXA, 2018], the RISC-V
V extension [Alon Amid et al., 2019] and the AMD RDNA ISA [AMD, 2019]. SIMD instructions with
conditional lane updates directly implement FREEZING semantics on the machine register level. Chains
of conditionally-updating instructions to the same register form a dependence chain, a performance
obstacle for out-of-order architectures [Chuang et al., 2003].

The ARM Scalable Vector Extension ISA [Arm, 2019] and AVX512 ISA [Intel] additionally implement
destructive updates of the destination registers where masked-off lanes are set to zero. Other major
SIMD ISAs, such as X86 AVX2, ARM NEON, Power AltiVec do not support predication at all. Lowering
operations with FREEZING semantics for those ISAs therefore may require additional blend instructions
to retain the masked-off lanes. In contrast, OBLIVIOUS semantics does not require any special hardware
support as there are no requirements for masked-off lanes.

Predication in Compiler IRs. Several extensions to SSA Form have been developed to improve
code generation for predicated architectures.

ψ-SSA [Stoutchinin and de Ferrière, 2001] uses ψ-nodes with explicit predication to represent select
cascades. Importantly, they strictly require a global order over all input variables. Hence, code motion
may break ψ-form making repairs necessary to re-constitute the normal form.
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Gated-SSA augments ϕ nodes with explicit predicates [Tu and Padua, 1995a; Havlak, 1993; Ballance
et al., 1990; Carter et al., 1999]. These predicates redundantly express the control-conditions under
which an incoming block is taken at a ϕ node in regular SSA. The predicated Gated-SSA operators
η,µ and γ are compatible with P-LLVM assuming they have total semantics. We could not Ąnd any
extension to SSA form in related work nodes that captures the shadow operands of ϕ nodes provided in
P-LLVM.

The Whole-Function Vectorizer by Karrenberg [2015] maintains block predicates in an external data
structure, which is not considered part of the program.

LLVM IR. LLVM-based compilers for data-parallel codes take different approaches to work around
the lack of native predication in LLVM IR. Intel [Rotem, 2011; Chandrasekhar et al., 2019] if-converts
divergent branches early on and emulates predication with an operation-plus-select idiom. It is unclear
how the Intel compilers maintain predicates for side-effect bearing instructions. On the other hand,
the AMDGPU backend for LLVM [amd, 2019] maintains control Ćow until very late in the pipeline.
Predication is implicitly expressed through control-Ćow idioms [Wahlster, 2018].

4.11.3. Formalization of Compiler IRs

VeLLVM [Zhao et al., 2012] provides a formal semantics for a sequential fragment of LLVM IR.
Chakraborty and Vafeiadis [2017] presents a formal semantics for the speciĄc issue of concurrent memory
accesses only.

The use of the semantic modes, FREZZING and OBLIVIOUS, in P-LLVM is inspired by the modelling
of imperative and functional semantic interpretations of Linear IL by Schneider et al. [2015]. While
the works pursue different objectives, both systems use changing semantic interpretations of their
intermediate language through the compiler pipeline.

4.11.4. Conclusion

To the best of our knowledge, P-LLVM is the Ąrst full-featured vectorizer IR for unstructured codes.

Existing data-parallel languages and compiler IRs ignore predication, except for the proprietary
NVIDIA PTX stack. Public sources suggests that that the NVIDIA PTX compiler uses a data-parallel,
predicated IR internally.

There exist various augmentations of SSA form for predication, none of which considers data-parallel
execution and aspects of thread activation. The ψ-SSA and Gated SSA forms are otherwise orthogonal
to P-LLVM.
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Chapter 5.

Constraining the Runtime Schedule

P-LLVM programs execute with a runtime schedule, a sequence of block labels, which determines for
every step of the program which block will execute next. This chapter presents greedy schedules, a
restricted class of runtime schedules that mimic the control Ćow in the SIMD code that the system
will eventually generate. Leaving the schedule space unconstrained would lead to imprecision in the
divergence analysis, schedule-dependent program termination and inefficient SIMD code.

In the presentation of P-LLVM in Chapter 4, runtime schedules are without constraints: any sequence
of block labels may be chosen as a runtime schedule for any execution of the program. However, runtime
schedules that are theoretically possible in P-LLVM will never materialize in the SIMD code that RV
generates. If the schedule space is left unconstrained, the divergence analysis would detect less uniform
branches and instructions, causing ripple effects such as more branches being if-converted, spuriously
divergent loops being transformed and more SIMD instructions being emitted. For example, the result
of horizontal operators such as any is sensitive to the schedule but this sensitivity does not exist in the
space of schedules that will actually materialize.

We call this restricted set of schedules greedy schedules. The class of greedy schedules is characterized
by the three properties shown in DeĄnition 12.

DeĄnition 12. (Greedy schedule) A runtime schedule ℓsc is a greedy schedule for a given P-LLVM
program if it has the following properties:

• The schedule makes progress (Section 5.1).

• All ℓ ∈ V are barriers (Section 5.2).

• The schedule preserves termination (Section 5.3).

The remainder of this chapter motivates and formalizes the three properties we demand in greedy
schedules, those are Progress, Synchronization and Preservation of Termination. The RV vectorization
system assumes that all schedules are greedy schedules. SpeciĄcally, the divergence analysis (Chapter 6)
and control-divergence analysis (Chapter 7) assume greedy schedules in their consideration of control-
induced divergent effects.

5.1. Progress

Demanding progress achieves two things: First, it implies that when a block is scheduled at least one
thread will have an active control masks for that block. This means that the runtime schedule cannot
contain inĄnite sequences of blocks that do not advance the threadsŠ control states. Second, a passive
thread, i.e. ℓnext = ⊤, cannot make a branch that has a uniform branch condition divergent.
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We discuss examples for both phenomena and Ąnally describe and formalize the concept of progress

for runtime schedules.

Example: Stalling. We left the schedule space entirely unconstrained: any block could be scheduled,

even those that do not have any threads with an active control mask. This admits inĄnite schedules

for P-LLVM programs that could execute to termination in a Ąnite number of iterations. We show a

practical example for this in Figure 5.1. Even for the loop-free CFG in Figure 5.1a, when not demanding

an active control mask, there exists an inĄnite execution with an inĄnite schedule shown in Figure 5.1b.

At the same time, there exists a terminating execution with a Ąnite schedule as shown in Figure 5.1c.

A

B

C

D

(a) Example CFG.

ℓsc cmskW ℓnext
′W

A 1 1 B B

D B B

B 1 1 C C

B C C

B C C

. . . . . . . . .

(b) Scheduling blocks without active

control mask violates progress.

ℓsc cmskW ℓnext
′W

A 1 1 B B

B 1 1 C C

C 1 1 D D

D 1 1 □ □

(c) Schedule with progress.

Figure 5.1.: Without progress, the schedule can pick blocks that no thread has an active control mask for (5.1b)
- the execution stalls. Progress implies that at least one threads has an active control mask (5.1c).

Example: Spurious Control Divergence. Without further constraints, runtime schedules are prone

to causing spurious control divergence in uniform terminators. Even if a branch condition evaluates

to the same value for all active threads, threads executing the branch passively may still diverge, that

is proceed to different successors of the branch. This is an issue because control divergence leads to

inefficient SIMD code. An example for spurious divergence is shown in Figure 5.2.

A
p

u

B C

x = φ [1,B] [2,C]D

ℓin
′W ℓnext

′W Guides

ℓsc t0 t1 t0 t1 t0 t1

A A A C ⊤ ¶ A ♢ ¶ A ♢

B A B C D ¶ C ♢ ¶ C ♢

C C B D D

. . .

Figure 5.2.: Assume that vec(p) = [1, 0]. The schedule on the right leads the second thread astray from the
uniform terminator in A. The result is diverging control in a uniform branch condition and a
divergent control-Ćow join in D. Last column with highlighted set: where spurious divergence is
detected by DeĄnition 14.

The branch condition in A is uniform. The thread t0 actively branches to block B. Since its activation

is set to false by the block predicate, the thread t1 will have ℓnext = ⊤ after A has been scheduled: t1

will accept any of its successors as its next block. Hence, when C is scheduled next, t1 will proceed to

block C. In conclusion, the threads reach a diverged control state despite the fact that the branch in A is

uniform. When the schedule proceeds with C and Ąnally D, the threads will reach D from two different

incoming blocks. The ϕ node in D is hence not uniform since it resolves to different values for different

threads.
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Formalization. We resolve both issues, stalling (Figure 5.1) and spurious control divergence (Fig-
ure 5.2), by demanding every schedule to make Progress.

Stalling by itself can be resolved by requiring every scheduled block to have an active control mask
for at least one thread. This follows as a corollary from the deĄnition of progress, which we conclude in
with DeĄnition 14. The complexity in the deĄnition of progress comes from the requirement to suppress
spurious control divergence.

We Ąrst deĄne the auxiliary concept of the Guide Set in DeĄnition 13. We use Guide Sets to
recognize when spuriously divergent control could occur as seen in Figure 5.2.

DeĄnition 13. (Guide Set) Let σ =
(

M, ∆
W , ℓin

W , ℓnext
W

)

be the current execution state. Let S ⊆ V

be the set of all possible blocks to schedule from this state. Then, the Guide Set of a thread t ∈ T for the
state σ is deĄned as:

Guides(σ, t) =
{

ℓnext(t
′) ∈ S

∣

∣ ℓin(t) = ℓin(t
′), t′ ∈ T

}

The Guide Set of a thread is the set of schedule-able blocks that other threads executing the same
terminator branch to actively. Spurious control divergence occurs when there are two threads at a
uniform branch: One of them leaves the branch in a control state where it will accept any successor
(ℓnext = ⊤) and the other has a speciĄc successor block (ℓnext is a block label). In Figure 5.2 B is not in
the guide set of t1 when B is scheduled. We use the concept of the Guide Set to deĄne the notion of
Progress of a scheduled block in DeĄnition 14.

DeĄnition 14. (Progress) Let σ be the current execution state. Then, scheduling ℓsc ∈ V makes
Progress if one of the following holds:

1. There exists a t ∈ T such that ℓnext(t) = ℓsc.

2. For all threads t ∈ T such that there exists an edge ℓin(t)→ ℓsc, it holds that Guides(σ, t) = ¶ ♢.

A schedule makes progress for a P-LLVM program and (initial) execution state, if all block executions
with the schedule make progress.

All schedules we consider, with the exception of the counter example in Figure 5.2, make progress.
In Figure 5.2, Guides(σ, t1) = ¶ C ♢ after the Ąrst line of the trace. Scheduling B next thus does not
progress since for the Ąrst thread ℓnext(t0) ̸= B. Hence, neither condition of DeĄnition 14 is satisĄed.

5.2. Synchronization and Barriers

Even if only considering progressing schedules, the choice of schedule for a given program may have
profound impact on behavior of the program. The outcomes of function calls and shared memory
accesses may depend on the activation. The activation depends on the control mask, which in turn
depends on the scheduled block. Runtime schedules may also differ in how often they execute a given
block. These factors can cause runtime schedules to manifest in the P-LLVM execution state. The
semantics of a P-LLVM program is hence schedule dependent.

Consider the P-LLVM programs in Figure 5.3. Executing the program in Figure 5.3a with the
schedule ℓsc = ABCDEFG yields vec(x) = [0, 0]. However, using the schedule ℓsc = ABDCDEFG, we see
vec(x) = [1, 0]. This second schedule stalls the second thread waiting for C to be scheduled while the
Ąrst threads executes the any call in D alone. Since v is 0 for the Ąrst thread, any(v) is also 0 and the
Ąrst thread branches to F next. When D is scheduled again after C, only the second thread executes the
any call actively as the Ąrst thread is already past D. Since for the second thread v and thus any(v)
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1 v = // value [0, 1]
2 br v B C

A

B C

1 q = any(v)
2 br q E F

D

E F

1 x = φ [0,E] [1,F]G

(a) x is expected to have the same value for all threads.

A

1 i = φ [0,A] [inc ,L]
2 inc = add i 1
3 br v B L

H

B

1 p = icmp ugt i n
2 br p H X

L

1 i.lc = φ[i,L]
2 ret i

X

(b) i is expected to have the same value in all iterations
of H.

Figure 5.3.: 5.3a: Horizontal operations can manifest the schedule in the execution state. 5.3b: The schedule
determines whether values are uniform, e.g. the same for all threads.

evaluate to 1, the second thread branches to E. When lastly G is scheduled, both threads are active and
the Ąrst thread approaches from F and the second thread from E, the ϕ node is evaluates and results in
vec(x) = [1, 0].

Besides semantics, the choice of schedule has implications on the SIMD code one may generate for a
P-LLVM program. If a variable always holds the same value across threads, it is uniform, the SIMD
code may represent it as a scalar value. If the value may differ between threads, it is varying and the
SIMD code has to represent it as a proper SIMD variable.

In Figure 5.3b the value of i is uniform if the threads execute the loop iterations in lock step. That
is there are never two threads in different loop iterations. Yet, without any constraints on the schedule
space, two threads may be in different loop iterations at the same time, actively executing the assignment
to i, which as a result has to be considered varying. For example, assume that vec(v) = [1, 0] and
the schedule ℓsc = AHLHBLHLX When H is scheduled for the Ąrst time, the Ąrst thread branches to B.
The second thread actively executes L and H again with the Ąrst thread passive. When B is scheduled,
both threads actively execute L and H again. Consider this third scheduling of H. At this point both
threads are active. The Ąrst thread has only once actively executed H before and sees i with value
0. However, it is the third execution of H for the second thread and i was incremented twice since.
Therefore, the second thread sees i set to 2. In short, both threads are active and see a different value
for i. Hence, when such a schedule is legal, i is varying and has to be widened into a SIMD instruction.
If we disallow schedules that lead threads to be in different loop iterations at the same time i can be
considered uniform and can be kept scalar.

As discussed before, the unconstrained set of live schedules allows certain schedule-dependent
behaviors. Restricting the schedule space has the advantage that the behavior of the P-LLVM program
becomes deterministic in more cases as more schedule-dependent behaviors are ruled out. We restrict
the schedule space by enforcing schedule constraints. The schedule constraints take the form that
certain blocks are required to be barriers, they may be only be scheduled if there are no other blocks
reaching them without back edges that could be scheduled instead. We deĄne the notion of reachability
underlying these schedule constraints in DeĄnition 15. DeĄnition 16 further deĄnes the set of blocks
that have a forward reaching path to a given block.

DeĄnition 15. (Forward reaching path) A path π ∈ a→∗ z is called forward reaching, if ∀e ∈ π.e ̸∈
Backedges. Informally speaking, the path π does not take a back-edge.
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DeĄnition 16. (Forward reachability) We deĄne the set of forward reaching blocks of a block z ∈ V as
fwdreaching(z) =

{

a ∈ V
∣

∣ ∃π ∈ a→+ z.π is forward reaching
}

.

DeĄnition 17 characterizes the notion of synchronization, the kind of behavior we enforce to restrict
the schedule space. Intuitively, block execution is synchronizing if no passive thread reaches this block
without taking a backedge.

DeĄnition 17. (Synchronization) Let
(

M, ∆
W , ℓin

W , ℓnext
W

)

be the current execution state. Then,
scheduling ℓsync ∈ V is synchronizing, if ∀t ∈ T .ℓ ∈ fwdreaching(ℓsync) =⇒ ¬ (cmsk ℓin(t) ℓnext(t) ℓ).

Synchronization is a dynamic property of the execution. We give an example for synchronization
in Figure 5.4.

A

B C

D

E

(a) A CFG.

ℓsc amskW ℓnext
′W fwdreaching(ℓsc)

A 1 1 B C ¶ ♢ sync

B 1 D ¶ A ♢ sync

D 1 E ¶ A, B, C ♢

C 1 D ¶ A ♢ sync

D 1 E ¶ A, B, C ♢ sync

E 1 1 □ □ ¶ A, B, C, D ♢ sync

(b) Execution trace. The last column indicates whether the
scheduled block is synchronizing.

Figure 5.4.: D is not a barrier. When D is scheduled for the Ąrst time, the next block of the second thread
reaches D.

When the block D is scheduled for the Ąrst time, the Ąrst thread executes it actively. At the same
time, the second thread is still pending with its next block at C. As C ∈ fwdreaching(D) this Ąrst execution
of D is hence not synchronizing. All other schedule transitions in the example are synchronizing.

We demand for greedy schedule that all scheduled blocks are always synchronizing. We formalize
this by saying that all blocks are barriers as of DeĄnition 18.

DeĄnition 18. (Barrier) A block ℓbarrier ∈ V is a barrier in the execution of a P-LLVM program,

if whenever ℓsc = ℓbarrier in the transition ℓscℓ′
sc ℓin

W ℓnext
W

∆
W ℓsc−−→→ I ℓ′

sc ℓin
W ′

ℓnext
W ′

∆
W ′ then

ℓbarrier is synchronizing in the left-hand side state ℓin
W ℓnext

W
∆

W of the transition.

5.3. Termination Preservation

Predication can cause threads to get stuck in a loop that no active thread is executing. There can then
be an inĄnite schedule that keeps spinning that cycle and another schedule that would lead threads out
of the loop. If there exists a (Ąnite) runtime schedule that leads all threads to a terminated state, we
disallow all (inĄnite) runtime schedules.

Consider Figure 5.5. If-conversion may transform the CFG shown in Figure 5.5a to the CFG
in Figure 5.5b, if p is the divergent branch condition in A. Assume that p is 0 in the entry block for both
threads. There now exist two runtime schedules, both of them make progress and are synchronizing in
every scheduled block: The Ąrst schedule, ABCD, leads both threads to a terminated state. The second
schedule starts in A and then schedules B inĄnitely often as shown in Figure 5.5c. Both threads start in
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A

BC

D

p¬p

(a) Initial CFG.

A

B
p

C
¬p

D

(b) 5.5a after if-converting the
branch in A.

ℓsc cmskW amskW

A 1 1 1 1

B 1 1

B 1 1

B 1 1

. . . . . . . . . . . .

(c) Execution of 5.5b assuming vec(p) = [0, 0].

Figure 5.5.: Demanding progress is not sufficient to preserve program termination. 5.5b is a realistic CFG
created by if-converting 5.5a. The execution shown in 5.5c has an inĄnite schedule and the program
never terminates. Yet, the schedule consisting in the sequence: A, B, C and Ąnally D leads to
termination.

A and branch to B. The predicate in B is p and therefore the threads always execute B passively. This
means that the successor index for the branch in B is always iW = ⊤, i.e. both threads accept accept
any successor of B as next block. It is thus consistent with progress to schedule B inĄnitely often.

We require that all non-terminating schedules are illegal, if a legal terminating schedule exists. By
that token the schedule in Figure 5.5c is illegal.

5.4. Related Work

We discuss the aspect of data-parallel scheduling and synchronization in related work separately with
regards to hardware architectures and programming languages for SIMD programming.

Data-parallel Hardware. Historically, Levinthal and Porter [1984] present the CHAP SIMD ISA
with structured control Ćow elements (ifthen, while, ...). They introduced the notion of the divergence
stack. Each entry of the stack holds a region (single-entry, single-exit part of the program) and a thread
mask, designating all threads that need to execute that region. Upon executing a divergent control-Ćow
instruction the successor regions are put on the stack with the corresponding activation masks for
the threads. The hardware executes both cases and control-Ćow re-converges after the control-Ćow
instructions.

1 br v B CA

B1 x= φ [0,A] [1,B]C

1 y= φ [0,C] [1,B]D

Figure 5.6.: Since D is the IPD of A, when control diverges in A the block C may be scheduled twice when a
divergence stack is used.

Fung et al. [2007] generalized the divergence stack for unstructured control Ćow. The re-convergence
point is the immediate post dominator (IPD). For example, in Figure 5.6, if the branch in A diverges
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C and B are put on the divergence stack with complementary thread masks. Since control-Ćow only
reconverges at block D, the IPD of A, the block C may be scheduled twice, once for threads branching
directly from A to C and once again for threads originating from B. Note that this means that the IPD
model of reconvergence is incompatible with OBLIVIOUS semantics: when a block is executed for the
second time the threads that already passed it in the Ąrst execution see their variables set to ⊤. In
contrast, greedy schedules guarantee that C only executes once and for all threads that reach it.

The IPD model of reconvergence became a mainstream staple with its implementation in NVIDIA
GPUs. Starting with the NVIDIA Tesla microarchitecture in 2008, thread re-convergence in CUDA was
stack-based [Lindholm et al., 2008; Habermaier and Knapp, 2012]. From there, the assumption of IPD
reconvergence found its way into related work on the analysis data-parallel of kernels [Coutinho et al.,
2011; Sampaio et al., 2013; Alur et al., 2017].

The NVIDIA Volta microarchitecture breaks with the IPD model and introduces an independent
program counter for every thread [NVIDIA, 2017, Fig. 21]. Thread re-convergence is not guaranteed
to happen at any time unless explicit synchronization instructions enforce it [NVIDIA, 2017, Fig.
22]. The synchronization model of CUDA changed starting with CUDA 9.0. Before CUDA 9.0, the
horizontal operations implicitly accounted for the current activation mask as in HLSL. Since CUDA
9.0, every horizontal operation is an explicit synchronization point and horizontal operations take an
additional synchronization mask argument. This execution models persists with the NVIDIA Turing
microarchitecture [NVIDIA, 2018]. There is no public documentation on how and to what extent the
CUDA driver inserts re-convergence points. The optimizing code generator in the CUDA compiler,
the part that translates PTX to the native GPU ISA, is proprietary. The PTX manual only states
that "For divergent control Ćow, the optimizing code generator automatically determines points of
re-convergence" [NVIDIA, 2019a, Section 9.5].

Likewise, recent Intel HD and Iris Graphics GPUs break with the IPD reconvergence model [Chan-
drasekhar et al., 2019]. Threads may reconverge before the IPD but a full join of all threads will occur
at the IPD.

In contrast, the RDNA ISA for AMD GPUs is a SIMD ISAs with explicit predication [AMD, 2019].
The earlier AMD GCN ISA also featured a software-controlled re-convergence stack, which implements
IPD re-convergence [AMD, 2017].

The greedy schedule for P-LLVM programs enforces re-convergence at the statically earliest point,
which might lie before the IPD. The independent thread scheduling of NVIDIA Volta architectures is
not fully representable as P-LLVM schedule spaces. If the cmsk of a thread accepts the next scheduled
block, it will execute it in any case. It is not possible for a subset of the threads that accept a scheduled
block to decide against executing it. However, for lack of public documentation, it is not clear whether
that is a scheduling decision that NVIDIA microarchitectures would actually make.

P-LLVM offers a form of "Implicit Warp-Synchronous Programming" (in jargon of CUDA), which
means allowing data-parallel program whose correctness depends on the runtime schedule. In P-LLVM,
warp synchronization is made explicit by the set of constraints put on the schedule space.

Collange [2011b]; Diamos et al. [2011] propose data-parallel microarchitectures, which implement
greedy schedules in hardware. The block priorities are statically determined by the ordering of the
blocks in machine code. In comparison, P-LLVM does not assign Ąxed priorities and allows for more
greedy schedules for a given program than those architectures. In P-LLVM runtime schedules, static
block priorities may be expressed by constraining the schedule space. Constraints may, for example,
enforce schedules that prefer B over C when both blocks have pending threads).

ElTantawy et al. [2014] present multi-path scheduling, a thread scheduling mechanism for data-
parallel programs. There is a one-to-one correspondence between the schedules in multi-path scheduling
and P-LLVM runtime schedules.
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Data-parallel Languages. Data-parallel languages that target a broad set of targets (NVIDIA
GPUs, AMD GPUs, CPU SIMD ISAs), still follow the IPD re-convergence model. The includes the
HSA IL [Glossner et al., 2015] and SPIR-V [Kessenich et al., 2018] intermediate languages.

OpenCL [Munshi, 2009] is thread centric data-parallel programming language. The OpenCL
speciĄcation mentions divergent control Ćow but does not mention re-convergence points at all. There is
support for explicit synchronization across threads through the work_group_barrier statement (former
barrier). However, barriers in OpenCL have to be placed in uniform control Ćow.

The OpenCL Shader Languages (GLSL) is a structured, data-parallel compute language for use in
computer graphics [Kessenich et al., 2019]. The languages features no goto statement but allows switches
and break statements. The speciĄcation loosely deĄnes a notion of uniform control-Ćow, "Uniform
control Ćow (or converged control Ćow) occurs when all invocations in the invocation group execute
the same control-Ćow path". Crucially, the speciĄcation further states that "If control Ćow is uniform
upon entry into a selection or loop, and all invocations in the invocation group subsequently leave that
selection or loop, then control Ćow reconverges to be uniform.". We interpret this as meaning that
re-convergence will occur at the earliest possible point, implying greedy scheduling.

SPIR-V [Kessenich et al., 2018] allows explicit speciĄcation of synchronization points at post
dominators of divergent loops (OpLoopMerge) or branches (OpSelectionMerge). Threads are only
guaranteed to re-converge at the unique associated merge block of the aforementioned operations. When
translating GLSL shaders to SPIR-V, divergent branches have to use explicit synchronization. However,
SPIR-V synchronization primitives are static, whereas the GLSL speciĄcation explicitly mentions
reconvergence of "invocations" at runtime. The SPIR-V lowering of GLSL is thus not compatible with
the GLSL speciĄcation, regarding synchronization.

The SPIR-V speciĄcation uses the term inactive invocation to refer to a concept inverse to the
activation in P-LLVM. However, the SPIR-V speciĄcation does not deĄne that term further.

Several data-parallel languages with lock-step semantics have been proposed for vectorization [Pharr
and Mark, 2012; Leißa, 2017; Leißa et al., 2014; Reiche, 2018]. These languages do not allow unstructured
divergent control Ćow (goto statement). Re-convergence is deĄned to occur after a diverging control-Ćow
statement.

[Ngo, 1995] introduces the DOVEC statement to structured Fortran code, which models lock-step
execution of an outer loop. As for other structured languages, re-convergence occurs at the exit of a
structured control Ćow statement. OpenMP [Klemm et al., 2012] deĄnes a lock-step execution mode for
loops and functions with the compiler directives #pragma omp simd and #pragma omp declare simd.
However, the OpenMP standard neither deĄnes lock step nor re-convergence with regards to this SIMD
mode.

Conclusion. Only recent work in the domain of computer architecture breaks with the paradigm
that control re-converges at the immediate post dominator. Surveying related work, we found that this
change in GPU ISAs has not yet made it into the research literature on data-parallel IRs. P-LLVM
runtime schedules fall in-between IPD reconvergence and the ine-grained synchronization offered by
recent NVIDIA microarchitectures.
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Chapter 6.

Divergence Analysis of P-LLVM Programs

The Divergence Analysis (DA) computes which variables and stack objects in a program are uniform,
that is they always hold the same value across the active members of the thread array. Divergence
analysis plays a central role in the vectorizer: Divergence analysis can prove a P-LLVM program control
uniform and if this is not the case, which branches are divergent. This information guides the divergent
loop transform and partial control-Ćow linearization to bring the program into control uniform form.
Finally, the widening stage leaves uniform instructions and stack objects scalar, a crucial optimization
for efficient SIMD code.

The divergence analysis presented in this chapter is the Ąrst to consider all divergence effects in
P-LLVM programs. Different to prior work, we give a thorough treatment of stack-allocated objects,
consider aspects of thread activation and account for the data-parallel total and shadow modiĄers of
P-LLVM.
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6.1. Vector Shapes and the Basic Divergence Lattice

The Divergence Analysis is a data Ćow analysis.The analysis assigns to each program variable a so-called
vector shape, which is an element of the abstract divergence lattice. In its basic form, the divergence
lattice knows three different abstract states, shown in Figure 6.1: Uniform (u) and Varying (v) and
a bottom element (⊥). Other more sophisticated Divergence Lattices, such as the one introduced
in Chapter 10, are reĄnements of this basic lattice.

v varying

u uniform

⊥

γ(v) =
{

λt ∈ T .y(t)
∣

∣

∣
y ∈ VW

}

γ(u) = ¶ λt ∈ T .y ♣ y ∈ V ♢ γ(⊥) = ¶ ♢

Figure 6.1.: Vector shapes and partial order of the basic divergence lattice (left) and its concretization function
γ (right).

We refer to the elements of a divergence lattice as vector shapes. We denote by x : s that the
variable x has the vector shape s.

If an instruction has a uniform vector shape, all threads that actively execute it see the same value in
the result variable. Otherwise, they are called varying. The concretization function γ maps vector shapes
to sets of observable vectors. That is, if x has the vector shape x♯ then for each reachable execution
state if it holds that vec(x) ∈ γ(x♯)1.

1 // Init:
2 // y,z : v

3 // A,b,c : u

4

5 x = add y z : v

6 a = xor b c : u

7 w = mul x a : v

8 ptr = elemptr A w : v

9 z = load ptr : v

(a) Vector shapes in straight line code.

// Init:
// x,y : u // p : v

// vec(p) = [1, 0, 1]
br p B C

A

z = add x y : u

br C

B

// [..]C

(b) Variable z has the same value for all threads
where p is true.

Figure 6.2.: Representation of vector shapes in P-LLVM code.

The concretization function γ is appropriate in uniform control Ćow and in the absence of predication.
Consider the straight line code in Figure 6.2a. If a variable in the block, e.g. b, is uniform its value is
same value for all threads without exception.

6.2. Masked Concretization

As we deĄned it, the concretization function γ is not generally applicable in the context of divergent
control Ćow. We show an example with a divergent branch in Figure 6.2b. Assume that the branch
condition p evaluates to vec(p)= [1, 0, 1] for W = 3. When the program has Ąnished, z has the same
value for the Ąrst and third thread. The second thread never actively executes B and neither initializes
the variable z. The variable z is conceptually uniform because it does have the same value for all threads

1vec(x) is the vector of values assigned to x across all threads in a program state.
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that actively execute the add that deĄnes it. However, this is not reĆected by the concretization function
γ. Therefore, we introduce the concept of the masked concretization.

weaken(g ∈ T → V, m ∈ BitW ) = λt ∈ T .

{

⊤ if ¬m(t)

g(t) if m(t)

γ′(x♯) = λm ∈ BitW .

{

weaken(g, m)
∣

∣

∣
g ∈ γ(x♯)

}

Figure 6.3.: The masked concretization (γ′) is weakened to allow any value on inactive lanes. Different to the
regular concretization (γ), it is valid in the presence of divergent control Ćow and predication.

The masked concretization (γ′) deĄned in Figure 6.3 limits the expressive power of vector shapes to
those lanes assigned with an enabled deĄnition mask. It does so by mapping vector shapes to functions
that map concrete deĄnition masks, bit vectors, to sets of concrete vectors. This has the consequence
that vector shapes can only be interpreted in the context of a speciĄc deĄnition mask.

Coming back to the example in Figure 6.2b, we concretize the uniform shape of x through γ′(z♯).
The result is a function from activation vectors to sets of concrete vectors. Knowing that vec(p)= [1, 0, 1],
we obtain the set of concrete values of x through γ′(z♯)([1, 0, 1]). In each vector in the concrete set, the
Ąrst and third lane are tied to the same value whereas the second value is the undeĄned value.

As discussed in Section 4.10, any operation with a semantic dependence on z has to execute under a
deĄnition mask that implies the deĄnition mask under which z was deĄned. Therefore, if Figure 6.2b
is a well-formed P-LLVM program, then any semantically relevant use of the variable z in an operand
position will see the same value for z.
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6.3. Control Divergence

The result shape of an instruction depends on the vector shapes of its operands. If a branch condition is
varying, threads executing the branch may proceed to different successor blocks. The branch is then
called divergent and is said to cause control divergence.

Control divergence induces non-uniformity in variables and instructions. The vector shape of
instructions and variables thus depends on the divergence of terminators. We categorize this dependence
in three categories:

1 br v B CA

B C

1 x = φ[0,B] [1,C]D

(a) Divergent control join.

P

1 k = φ[1,P] [kn ,L]
2 kn = add k k
3 v = cmp uge kn t
4 br v Z L

L

1 x = φ[k,L]Z

(b) Temporal divergence.

1 br v B CE

1 m = mask ()
2 x := select m 0 1
3 br C

B

p

1 ...C

(c) Varying activation.

Figure 6.4.: Control divergence inĆuences vector shapes. In all cases assumed divergence in v makes x varying.

Sync Dependence. After threads diverge at a terminator they may reach a ϕ node from different
incoming blocks at the same time (Figure 6.4a). In this case, the ϕ node may produce a varying value,
even though its value operands are uniform. This dependence relation between blocks of divergent
control and blocks of joining control is referred to as Sync Dependence [Coutinho et al., 2011]. We write
z ∈ sdep(a), if control divergence in a may cause z to be reached by divergent threads.

Temporal Dependence. An instruction that is uniform inside its deĄning loop may appear varying
to users outside the loop (Figure 6.4b). Loop live-out variables may be re-deĄned in every loop iteration.
The observable vector shape in each iteration may be uniform. If threads leave the loop in different
iterations the observed live-out vector may be indeed varying. In Figure 6.4b, k is uniform inside the
loop and holds a different value in each iteration. The live-out vector of values of k reaching the LCSSA
ϕ in Z may be a blend of k from different iterations.

We denote by e ∈ tdep(a) that control divergence in a may cause temporal divergence in the loop
exit e. We require Loop-Closed SSA form [Pop, 2006] for simplicity so that temporal divergence can
only affect ϕ nodes in immediate loop exits.

Activation Dependence. The vector shape of an instruction may depend on its activation. Consider
the variable m in Figure 6.4c. Since mask() simply returns the activation bit, the shape of m depends
on v and on p. If v makes the branch in E divergent, the activation of B becomes varying. Further,
irrespective of whether v is uniform, if the block predicate p is varying, m is varying as well. A static
approximation of activation dependence is computed directly in the divergence analysis algorithm.

Chapter 7 presents the algorithm that we use to compute a static over-approximation of sdep and
tdep. For the purposes of this chapter, we assume that the dependence relations sdep and tdep are
available. In practice the precise relations are uncomputable and a reasonable over-approximation is
required.
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6.4. Divergence Analysis Algorithm

We show the Divergence Analysis algorithm in Listing 1 implemented as a simple worklist algorithm. It
operates on the abstract state as given by DeĄnition 19.

Listing 1: compute_da. Compute vector shapes for all variables in the program.

Input: InitShapes : Initial vector shapes provided by the user.
Output: Shapes : Computed vector shapes for all variables in the program.
// Initial state (Definition 19).

1 Shapes = ¶ x→ ⊥ ♣ x ∈ id ∪ tmn ♢ // All variables and terminators mapped to ⊥.

2 sdep∗ = ¶ ♢
3 tdep∗ = ¶ ♢
4 adep∗ = ¶ ♢
5 cdep∗ = ¶ ♢

// Apply predefined shapes.

6 foreach (I, InitShape) ∈ InitShapes do

7 update_shape(I, InitShape)
8 end

// Initialize work queue.

9 foreach I ∈ Region do

10 Queue ← I

11 end

12 while I ← Queue do

13 if I ∈ InitShapes then continue;
// Query abstract transformer (see Section 6.5).

14 VarAllocas, NewShape = compute_transformer(I)
// Stack-object divergence (see Section 6.6).

15 foreach VaryingAlloca ∈ VarAllocas do

16 update_shape(VaryingAlloca, v)
17 end

// Control-divergent terminator I.

18 if is_terminator(I) and NewShape ̸= u then

19 prop_control_div(Block(I)) // See Listing 3.

20 end

// Push all users of I.

21 update_shape(I, NewShape)
22 end

DeĄnition 19. (Divergence Analysis State) The state of the divergence analysis (the "x" in the Ąxpoint
iteration) is deĄned by:

• Shapes - a mapping from variables (id) and terminators to vector shapes;

• sdep∗ ⊆ V - blocks known to be sync dependent on a divergent terminator.

• tdep∗ ⊆ V - blocks known to be temporal dependent on a divergent terminator.

• adep∗ ⊆ V - blocks known to have a varying activation mask.

• cdep∗ ⊆ V - blocks known to have a varying control mask.

Walkthrough. The DA starts off with a predeĄned mapping from variables to vector shapes, InitShapes.
In Whole-Function Vectorization, these are the shapes of the parameters of the function. In Outer-Loop
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Vectorization, InitShapes provides shapes for the recurrences of the loop to vectorize, e.g. iteration
variables.

After initializing the worklist with all instructions and setting the predeĄned shapes, the procedure
enters the worklist loop. The procedure in Listing 2 serves two ends throughout the DA: First, it
enqueues all users of the just updated variable. Second, when invoked with a varying shape for a variable
that is used as block predicate, the procedure enqueues all instructions that are affected by it.

Listing 2: update_shape. Update mapped shape of I and enqueue dependent operations.

Input: I : Instruction or terminator, NewShape : Vector shape to assign to I.
Data: Shapes : Current vector shape mapping, Queue : The work queue.

1 if NewShape = Shapes(I) then return;
// Enqueue data dependent users of I.

2 foreach User ∈ Users(I) do

3 Queue ← User

4 end

// Activation dependence (varying block predicate).

5 if NewShape ̸= u then

6 foreach b ∈ blocks_with_predicate(I) do

7 adep∗ ← b

8 foreach I ′ ∈ Insts(b) do

9 Queue ← I ′

10 end

11 end

12 end

13 Shapes(I)← NewShape

The abstract transfer functions for instructions and terminators are called in Line 14 of Listing 1.
The transfer functions query the DA state by the names introduced in DeĄnition 19. In case I is
an instruction, the transformer computes a new vector shape for the result variable of I. In case of
a terminator, the transformer returns a non-uniform vector shape if the terminator was found to be
control-divergent.

The abstract transformers also return the set VarAllocas. This set contains the base pointers of
stack allocations through alloca, which become non-uniform through I. We discuss the uniformity
analysis of stack objects in detail in Section 6.6. For now, we assume that VarAllocas is an empty set,
which is the case e.g. for all arithmetic operations. Finally, when a terminator is found to be divergent
(Line 18), the procedure in Listing 3 exercises the induced divergence effects.

The procedure prop_control_div in Listing 3 is called whenever the terminator of a block was
detected to cause control-divergence (block DivBlock). The procedure obtains sync and temporal
dependences in Line 1 using the algorithm presented in Chapter 7. Line 26 updates the set of blocks
that control-depend on a divergent terminator.
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Listing 3: prop_control_div. Enqueue operations affected by control divergence in DivBlock.

Input: DivBlock : Block with divergent terminator.
Data: sdep∗ : Known sync divergent blocks, tdep∗ : Known temporal divergent blocks, adep∗ :

Known activation divergent blocks, cdep∗ : Known blocks with a divergent control mask.
// Compute sync and temporal dependence relation (described in Chapter 7).

1 tdeps, sdeps = global_joins(Successors(DivBlock), ¶ ♢ , (lp DivBlock))
// Sync dependence.

2 foreach sdepBlock ∈ sdeps do

3 if sdepBlock ∈ sdep∗ then continue;
4 sdep∗ ← sdepBlock

5 foreach ϕ ∈ sdepBlock do

6 Queue ← ϕ

7 end

// AllocaSSA (see Section 6.6).

8 foreach allocaJoin ∈ allocaJoins(sdepBlock) do

9 Queue ← allocaJoin

10 end

11 end

// Temporal dependence.

12 foreach sdepBlock ∈ sdeps do

13 if tdepBlock ∈ tdep∗ then continue;
14 tdep∗ ← tdepBlock

15 foreach ϕ ∈ tdepBlock do

16 Queue ← ϕ

17 end

// AllocaSSA (see Section 6.6).

18 foreach allocaJoin ∈ allocaJoins(tdepBlock) do

19 Queue ← allocaJoin

20 end

21 end

// Activation dependence (divergent control mask).

22 foreach cdepBlock ∈ cdep_on(DivBlock) do

23 if cdepBlock ∈ cdep∗ then continue;
24 adep∗ ← cdepBlock

25 cdep∗ ← cdepBlock

26 foreach I ∈ cdepBlock do

27 Queue ← I

28 end

29 end
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6.5. Abstract Transformers

The divergence analysis builds on a family of transfer functions to model the abstract effects of instructions
and terminators (Line 14 of 1) The transfer functions of all instructions have the following form.

VarAllocas, NewShape ← compute_transformer(. . . )

All abstract transformers may access the state as given by DeĄnition 19. The rules in Figure 6.5
provide access to the vector shapes of operands, which can either be variables (id) or constants (literals
in the program text). The vector shape NewShape is the resulting vector shape of the variable that
the operation assigns to (if any). For store operations, VarAllocas contains all stack allocations
(id = alloca...) that may diverge as a result (see Section 6.5.2).

JidK♯ = Shapes(id)
[DA-ID]

c is a constant

JcK♯ = u
[DA-CONST]

Figure 6.5.: Basic transformers for variables (id) and constants.

[DA-DARITH] and [DA-UARITH] apply to side-effect free operations, such as arithmetic. The
special activation query function (mask) is handled by [DA-UMASK] and [DA-DMASK]. These rules are
shown in Figure 6.6. We cover ϕ node transformers in Section 6.5.1 and memory accesses in Section 6.5.2.

The analysis is intra-procedural. We leave it to the user to supplement abstract transformers for
calls to speciĄc functions. If there is no user-supplied transformer, functions without side-effects may be
handled by [DA-DARITH] and [DA-UARITH].

Block(id) ∈ adep∗

Jid = mask()K♯ = ∅, v
[DA-DMASK]

Block(id) ̸∈ adep∗

Jid = mask()K♯ = ∅, u
[DA-UMASK]

∃i.


v = Jval iK
♯


Jid = op val iK
♯ = ∅, v

[DA-DARITH]
∀i.



u = Jval iK
♯


Jid = op val iK
♯ = ∅, u

[DA-UARITH]

Figure 6.6.: Generic transfer functions for the activation query and side-effect free instructions (arithmetic, ...).
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6.5.1. φ Nodes

Figure 6.7 shows the deĄning rules for the abstract transformer for ϕ nodes. The rule [DA-PHI-D] takes
care of control-induced temporal divergence in LCSSA ϕ nodes (due to tdep∗) and sync divergence for
regular ϕ nodes (due to sdep∗). In absence of sync or temporal divergence, the result shape of a ϕ node
simply depends on its operands, as deĄned by [DA-PHI-U].

Block(id) ∈ sdep∗ ∪ tdep∗

Jid = ϕ [val j , ℓj ]K
♯ = ∅, v

[DA-PHI-D]

Block(id) ̸∈ sdep∗ ∪ tdep∗ id♯ =
⊔

Jval jK
♯

Jid = ϕ [val j , ℓj ]K
♯ = ∅, id♯

[DA-PHI-U]

Figure 6.7.: Abstract transformers for non-shadow ϕ nodes.

Shadow ϕ nodes are special in that they have a deĄned value even when the control mask is false.
They have the abstract transformer shown in Figure 6.8. The rules for shadow ϕ nodes deviate from
non-shadow ϕ nodes in case of a varying activation due to control divergence. Under that circumstance,
the shadow ϕ node selects the value of the shadow operand. The example in Figure 6.9 shows how
control divergence leads to different outcomes in non-shadow ϕ nodes than in shadow ϕ nodes.

Block(id) ∈ cdep∗ ∪ sdep∗ ∪ tdep∗

Jid = ϕ [val j , ℓj ] shadow(vals)K
♯ = ∅, v

[DA-SPHI-D]

Block(id) ̸∈ cdep∗ ∪ sdep∗ ∪ tdep∗ id♯ =
⊔

Jval jK
♯

Jid = ϕ [val j , ℓj ] shadow(vals)K
♯ = ∅, id♯

[DA-SPHI-U]

Figure 6.8.: Abtract transformer for shadow ϕ nodes.

74



br p B E : vA

x := any(q)
br x C D : u

B

C

y = φ [0,C] [1,B] \
shadow (2) : v

..

D

E

(a) All passive threads in D see the shadow input 2.
Variable y is varying despite only uniform sync

dependences.

br p B E : vA

x := any(q)
br x C D : u

B

C

z = φ [0,C] [1,B] : u

..

D

E

(b) z is uniform and holds either 0 or 1 for all active
threads.

Figure 6.9.: In shadow ϕ nodes (y in Figure 6.9a), all active threads see the regular incoming value and all
passive threads see the shadow input. All active threads in D reach from either C or B. Since there
are no predicates, all threads that are passive in D took the branch from A to E.
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6.5.2. Memory Accesses

The transformer rules in Figure 6.10 deal with the divergence analysis of stack objects. Otherwise, since
the contents of memory are generally unknown, loads from different addresses are assumed to yield
varying values.

aliased_allocas(valptr ) returns the set of alloca instructions that may alias with valptr .

P = aliased_allocas(valptr ) JvaldataK♯ = v ∨ JvalptrK
♯ = v ∨ JpmskK♯ = v

J store valptr valdataK♯ = P ,⊥
[DA-STORE-D]

JvalptrK
♯ = v

J load valptrK
♯ = ∅, v

[DA-LOAD-D]

JvaldataK♯ = u JvalptrK
♯ = u JpmskK♯ = u

J store valptr valdataK♯ = ∅,⊥
[DA-STORE-U]

JvalptrK
♯ = u

J load valptrK
♯ = ∅, u

[DA-LOAD-U]

Figure 6.10.: Abstract transformers for loads and stores.

Consider the three snippets in Figure 6.11. In Figure 6.11a, the varying tid is stored to A, which is
a stack allocation. Hence, by [DA-STORE-D], the stack-allocated object A is varying as each thread sees
a different value stored to it.

However, stack-object divergence also occurs when storing uniform values. In Figure 6.11b, only the
constant 42 is written to the stack object B. Yet, since each thread stores the value to a different offset
B[tid] the state of the stack objects still diverges.

Finally, in Figure 6.11c a uniform value is written at a uniform offset into B. Hence, the object B

itself remains uniform and values loaded from the identical offset, here z, are uniform as well.

1 A = alloca i64 : v

2 store A tid
3 z = load A : v

(a) Storing a non-u value.

1 B = alloca i64 [64] : v

2 // ..
3 bp = elemptr B tid
4 store bp 42
5 // ..
6 bpp = elemptr B 3
7 z = load bpp : v

(b) Storing at different offsets.

1 // Init:
2 // i : u

3 C = alloca i64 [64] : u

4 cp = elemptr C i
5 j = mul 2 i
6 store cp 42 j
7 // ..
8 cpp = elemptr C 7 : u

9 z = load cpp : u

(c) Uniform values and offsets.

Figure 6.11.: Stack uniformity (Figure 6.11c, handled by [DA-STORE-U]) and divergence (Figure 6.11b and
Figure 6.11a, both handled by [DA-STORE-D]). In all snippets tid : v is given.
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6.6. Alloca SSA for Divergence Analysis of Stack Objects

When threads in a P-LLVM program allocate stack memory through alloca, each thread obtains a
private thread-local object. The DA analyzes stack objects specially with the goal of proving that all
threads perform the same operations on their thread-local copy. If a stack object is shown to be uniform
that way, the code generator emits only one scalar allocation that is shared across all threads. This is
similar to how scalar variables (e.g. float) do not need to be widened if all lanes hold the same value
(the variable is uniform). However, the performance impact for stack objects is far more pronounced
since they involve memory allocations and traffic. This can be reduced for each stack object that is
shown to be uniform.

We create a state abstraction for stack-allocated objects, reminiscent of SSA for May-Alias Informa-
tion [Cytron and Gershbein, 1993] or Memory SSA [Novillo et al., 2007]. This abstraction allows us to
handle control-induced divergence of stack objects with the same logic used for regular value joins (ϕ
nodes). The Alloca SSA abstraction is build up of three kinds of nodes:

#x = Def(valalloca) The uninitialized stack-allocated object.

#w = Write {#xi ..} The resulting state of the objects #xi after a write has occurred.

#a = Join {#xi ..} #a joins the deĄnitions from incoming blocks (SSA join point).

The Join operator is used in the same places as ϕ nodes to represent value joins.

May-Alias Queries. aliased_allocas can also be applied to AllocaSSA nodes. In this case aliased_allocas(#x)
returns the set of allocas that may alias with the stack objects represented by #x. Those are the allocas
occuring in Def nodes that reach #x in the Alloca SSA graph.

1 // v1 ,v2 ,v3 : v

2 // u1 ,u2 : u

3 A:
4 X = alloca f32 [1024] // #x0 = Def(A)
5 Y = alloca f32 [1024] // #x1 = Def(B)
6 if (v1) {
7 B:
8 xp = elemptr X 0
9 store xp v2 // #x2 = Write {#x0}

10 }
11 C:
12 // #x3 = Join {#x0 , #x2}
13 Z = φ[X,A] [Y,B]
14 q = elemptr Z 4
15 if (u1) {
16 D:
17 store q u2 // #x4 = Write {#x1 ,#x3}
18 }
19 E:
20 // #x5 = Join {#x3 , #x4}
21 yp = elemptr 5
22 s = load yp
23 ret s
24 }

Figure 6.12.: A simple AllocaSSA construction example.

Example. Consider the program shown in Figure 6.12. In the code comments, we show the virtual
Alloca SSA graph that is constructed for it. There are two alloca instructions in the program and each
of them is associated with a new Def node (Line 4). The store in Line 9 can only alias with the alloca
X. Hence, it is tagged with a Write node that only updates the state of #x0. The node #x1 still reĆects
the latest state of Y after the store and remains valid. The block C has incoming blocks A and C. Since
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the incoming AllocaSSA nodes for Y differ, a new Join is created (Line 12). The join provides a new
Alloca SSA deĄnition for the state of Y. The incoming deĄnition from A is #x0 and from C, #x2, which
hence make up the incoming set of the join. Finally, there is a store in Line 17. The pointer variable q

that is written to may alias with X or Y. Hence, the write set includes the current valid nodes for both
the alloca X (node #x3) and Y (node #x1).

6.6.1. Abstract Transformers

Block(#id) ∈ sdep∗ ∪ tdep∗ VarAllocas =
⋃

#n∈S

aliased_allocas(#n)

J#id = Join SK♯ = VarAllocas, v
[DA-JOIN-D]

Figure 6.13.: Abstract transformer for AllocaSSA Join nodes.

Use of Alloca SSA in the Analysis. Divergence of stack-allocated objects is induced by store

instructions in divergent control Ćow and divergent block predicates. Section 6.5.2 covers the cases for
divergent stores. We leverage the AllocaSSA Join nodes to handle the control aspect of divergence. If
in an abstract way, the Join nodes model different incoming states joining from predecessor blocks,
just like ϕ nodes do for values. Hence, if a Join node in a sync or temporal dependent block may alias
with an alloca instruction, the thread-local allocated objects may differ. It is hence not surprising that
Figure 6.13 closely models the transformers for ϕ nodes, deĄned in Figure 6.7.

Divergence Effects in the Example. Coming back to the example of Figure 6.12, we can observe
how divergence of X and Y would be detected. The branch condition v1 is varying and so the DA
detects sync divergence at block C. The join node #x3 sits in that block and is put on the queue.
By [DA-JOIN-D] (Figure 6.13), all alloca that may alias with that join become divergent. Walking
back in the Alloca SSA graph, we see that #x3 only aliases with X. Therefore, the vector shape of the
alloca X turns varying as a result. However, the alloca Y is not aliased with #x3 and remains at its
⊥vector shape. The branch condition u1 is uniform and so E does not become sync divergent. Finally,
the DA infers that Y can remain uniform whereas X is varying. The code generator may vectorize the
allocas as below, assuming that W = 8.

1 Xv = alloca f32 [8192] // For thread t the base pointer of X is &Xv[t *1024]
2 Yv = alloca f32 [1024] // For thread t the base pointer of Y is Yv
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6.7. Related Work

We discuss the expressiveness of different divergence lattices in Section 10.5. Related work on control-
induced divergence is covered in detail in Section 7.5. The comparison in this section looks into the
kinds of divergence effects different analyses can detect in principle.

Masked Concretization. The concept of the masked concretizations is foreign to earlier work in
the Divergence Analysis domain. This includes Variance Analysis by Stratton et al. [2010], which does
not consider divergent branches or predicates at all. Works that summon Abstract Interpretation for
the deĄnition of the analysis only provide unpredicated concretization functions [Sampaio et al., 2013;
Karrenberg, 2015; Alur et al., 2017]. Alternatively, there is an implicit understanding that the vector
shapes only apply for actively executing threads [Lee et al., 2013]. We make the notion of masked
concretization explicit in our divergence analysis using the deĄned semantics of P-LLVM in the presence
of control divergence and predication.

Binding-Time Analysis. Aiken and Gay [1998] Ąrst noted that binding-time analysis could be used
to solve the "single-valuedness" (that is uniformity) problem also for control-Ćow. Auslander et al.
[1996] presents a binding-time analysis where "Stores have no effect on the set of constants". That is
stack-allocated objects are not considered.

Non-interference Analysis. Abadi et al. [1999] points out the resemblance of non-interference
and binding-time analysis. Several works by Wasserrab et al. [2009]; Hammer and Snelting [2009];
Rodrigues et al. [2016] build on control dependences for non-interference analysis in CFGs. There is a
non-coincidental link between dependence in non-inference and activation dependence in the divergence
analysis: If the divergence analysis detects that a block is (transitively) control-dependent on a branch
condition then its activation becomes varying when the branch condition is varying ([Park and Schlansker,
1991]). P-LLVM function calls (see Section 4.9.2) even take the activation mask as an explicit parameter,
whereas non-interference analyses do not consider predication at all.

Whole-Function Vectorizer. The Vectorization Analysis by Karrenberg [2015] also analyze stack-
allocated objects. However, it ignores the aspect of control-divergence in stores. That is the analysis
will fail to detect a control-induced stack divergence, as long as all stores to the stack object store a
uniform value at a uniform offset.

Structured Approaches. Alur et al. [2017] present an analysis for uncoalesced memory accesses
in CUDA kernels. The analysis is deĄned for structured control Ćow. Side-effects of functions are
pessimistically over-approximated. However, their analysis is capable of detecting the situation where a
block is only ever be executed by a single thread. In that case all divergence effects are mute since there
need to be at least two threads in a block for divergence to occur. Since this is achieved by extending
the divergence lattice and transformers, this could conceivably be added to our divergence analysis.

The SIMD programming languages, Sierra [Leißa et al., 2014], ISPC [Pharr and Mark, 2012] and
Hipacc [Reiche, 2018], all implement divergence analyses for structured control Ćow only. Among these,
ISPC [Pharr and Mark, 2012] is the only to support the divergence analysis of stack-allocated objects.
Leißa [2017] present an inter-procedural extension to their divergence analysis algorithm that is call-site
polymorphic. Our divergence analysis can be extended similarly by recursively invoking itself on called
functions or running as subsolver in an inter-procedural Ąxpoint loop.
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Similar Analyses. The Scalar Evolution analysis [Pop et al., 2005] computes closed-form representa-
tions of instructions with regards to their surrounding loops. For example, the loop vectorizer of LLVM
uses it to identify uniform instructions. When an operation is not representable in the closed form it is
assumed to be varying. It does not detect uniformity for non-polynomial branch conditions or operations
with transitive uniformity (for example, branching on a value that was loaded from a uniform offset).

Conclusion. This chapter presents the Ąrst divergence analysis for P-LLVM programs. This divergence
analysis accounts for all control-divergence effects in P-LLVM programs under the greedy schedule. This
includes divergence in the activation mask, sync divergence due to re-converging control and temporal
divergence of loops with divergent exits. Earlier approaches for unstructured programs [Karrenberg,
2015] are incorrect in their treatment of the uniformity of stack objects. We resolve this with the use of
AllocaSSA (Section 6.6).
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Chapter 7.

Static Approximation of Control-Induced

Divergence

Divergence in control causes divergence in data, when two threads simultanesouly reach a ϕ node from
different predecessors or loop iterations. It is the purpose of the control-divergence analysis to determine
which ϕ nodes are affected this way by which branch conditions. The divergence analysis uses this
information to compute which variables are uniform, that is always assigned the same value by all active
threads, and which are not.

This chapter presents a novel control-divergence analysis for unstructured, reducible CFGs. We
prove for DAGs that the algorithm evaluates the underlying disjoint paths criterion precisely and with
optimal running time. For reducible CFGs, we show on a set of realistic examples that our algorithm
delivers correct and precise results where earlier approaches are less precise or even incorrect.

A

B C

x = φ[0,B] [1,C]
...

D

(a) D is sync dependent on A.

ℓsc ℓin
W ℓnext

W ′

A ⊥ ⊥ B C

B A A D C

C B A D D

D B C □ □

(b) Threads part ways at the divergent terminator in A.
After re-convergence in D, divergence is induced:

vec(x) = [⃗0, 1].

A

x = φ[0,A] [x.inc ,B]
...
x.inc = add x 1
...

B

x.lc = φ[B,x.inc]
...

X

(c) X is temporally dependent on B.

ℓsc ℓin
W ℓnext

W ′

A ⊥ ⊥ B B

B A A X B

B B B X X

X B B □ □

(d) Due to branch divergence in B, the Ąrst thread leaves
the loop after the Ąrst iteration, the second after the

second. This causes data divergence,

vec(x.lc) = [⃗1, 2].

Figure 7.1.: Left: Sync divergence, Right: Temporal divergence. Boxes highlight speciĄc pairs of concurrent
next blocks. These pairs are witnesses for the respective control-divergence phenomenon. Gray
edges indicate static sync/temporal dependence.

As introduced in Section 6.3, we distinguish two kinds of value divergence induced by divergent
control: sync divergence for acyclic control and temporal divergence for loops.
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Sync divergence occurs when two threads simultaneously execute the same basic block, coming in
from different predecessors. We show an example of sync divergence at runtime on the left of Figure 7.1.
Figure 7.1b shows a possible execution of the CFG in Figure 7.1a by two threads. Both threads start
out in A, from there the threads part ways. Finally, they reconverge in the block D. By selecting different
values for x, the value of x diverges. Therefore, if the terminator in A diverges this may induce divergence
in ϕ nodes in D. We say the block D is sync dependent on A.

Temporal divergence occurs when two threads simultaneously reach a loop exit in different loop
iterations. On the right of Figure 7.1, we again show a CFG and below an execution of it. The deĄnition
of x.inc changes in every loop iteration, it is however the same for all threads in the same iteration.
When the Ąrst thread exits the loop the value of x.inc for that thread is 1. The second thread takes
another iteration and leaves the loop with 2 for x.inc. Despite the fact that threads in the same iteration
see the same value for x.inc, its value appears diverged outside the loop. If control Ćow diverges in a
branch this may cause divergence in live-out values (LCSSA ϕ nodes). We say that the loop exit X is
temporally dependent on X.

LH

LG

E

H

G

L

B

C

D

X

Y

(a) CFG with loop structure.

E

H

G

L

B

C

D

X

Y

(b) Sync dependences of G.

E

H

G

L

B

C

D

X

Y

(c) Temporal dependences of H.

Figure 7.2.: Static sync and temporal dependences in the CFG.

The examples in Figure 7.1 show how sync and temporal dependence can be detected at runtime
by witnessing divergent executions. Sync and temporal dependence are dynamic properties in the
execution of P-LLVM programs. The Divergence analysis, however, is a static analysis. We thus require
compile-time criteria to relate blocks causing control divergence to the affected blocks that become
sync and temporal divergent. The technique described in this chapter over-approximates the sync
and temporal dependence based on the CFG. We show an example for such static sync and temporal
dependence relations in Figure 7.2. Consider Figure 7.2a. Assuming that G is a divergent terminator
in the CFG, the resulting sync dependent join points are shown in Figure 7.2b. Figure 7.2c shows the
static temporal dependent join points in, assuming control divergence in H.

Sync and temporal divergence is something we observe when a P-LLVM executes. The question is
how to approximate sync and temporal dependent blocks with a static analysis that only looks at the
CFG and not actual executions. We approach this task with the help of the concept of Concurrent Next
Blocks. Informally, any two blocks are concurrent next blocks, if at any point in the execution of the
program the blocks are next blocks of threads at the same time. The precise semantical deĄnition is
given by DeĄnition 20. This is a semantical property. However, we use it to reason why blocks in the
CFG can or cannot possibly be concurrent next in any execution.

DeĄnition 20 (Concurrent Next Blocks). Two blocks ℓa, ℓb ∈ V with ℓa ̸= ℓb are called Concurrent
Next Blocks, written ¶ ℓa , ℓb ♢ ∈ Cnb, if there exists a reachable P-LLVM execution state σcnb with the
following property.
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• At the same time, one threads wants to execute ℓa next and another thread ℓb. Formally, there
exist two threads t, t′ ∈ T such that cmsk ℓin(t) ℓnext(t) ℓa and cmsk ℓin(t′) ℓnext(t′) ℓb.

• Scheduling either of ℓa or ℓb complies with the schedule constraints (Chapter 5). That is scheduling
either block is synchronizing (DeĄnition 17) and makes progress (DeĄnition 14).

Note that the set Cnb contains only pairs of blocks and that those pairs are unordered, they are sets
of size two. In the execution of a P-LLVM program for more than two threads, more than two blocks
can be next blocks at the same time. In that case, Cnb simply contains the combinations of the next
blocks of any two of those threads. Control divergence is characterized by diverged control states, for
which two threads are sufficient witnesses regardless of the state of other threads.

We reconsider Figure 7.1 in the light of concurrent next blocks. In each of the execution traces,
in Figure 7.1b and Figure 7.1d, a pair of concurrent next blocks is annotated with boxes. The execution
traces are witnesses that for the program in Figure 7.1a ¶ C, D ♢ ∈ Cnb and that for the program Figure 7.1c
¶ B, X ♢ ∈ Cnb. Note that in Figure 7.1a the information that C and B are concurrent next blocks is
enough to anticipate sync divergence at block D. This is due to the greedy schedule, which guarantees that
the two diverged threads will re-converge at block D. Likewise in Figure 7.1c knowing that ¶ B, X ♢ ∈ Cnb

is sufficient to know that temporal divergence will occur at X.

The notion of concurrent next blocks thus decouples sources of divergence, divergent terminators,
from sync and temporal divergent blocks that results from the control divergence. This chapter is
build on this subdivision. Section 7.1 gives a high-level walkthrough of the top-level algorithm of the
control-divergence analysis. For the second part in Section 7.2, we discuss static patterns to identify sync
and temporal divergent blocks assuming that an over-approximation of Cnb is available. For the third
part in Section 7.3, we present a technique to statically over-approximate Cnb. Finally, in Section 7.4
we put these two parts together to develop a polynomial time algorithm for static sync and temporal
divergent blocks.
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7.1. High-level Walkthrough
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Call CFG Detected sdep

local_joins ¶ B, D ♢ (lp A) Figure 7.3a ¶ D ♢

local_joins ¶ E, F ♢ (lp (lp A)) Figure 7.3b ¶ X ♢

(d) Invocations of local_joins by global_joins for the divergent branch in A.

Figure 7.3.: High-level walkthrough of global_joins for a divergent branch in A.

We are looking for an algorithm that given a divergent branch in any reducible CFGs will Ąnd
all resulting sync and temporal divergent blocks. This is global_joins, which we discuss in detail
in Section 7.4.2. The algorithm internally calls the more restricted procedure local_joins. local_joins

is restricted in the sense that it will not Ąnd sync or temporal divergent blocks if it involves taking a
back edge. In order to Ąnd all sync and temporal dependent blocks, including those that local_joins

misses, global_joins employs a trick. Conceptually, global_joins calls local_joins once from the inner
to the outer-most loop that surrounds the divergent branch. Each time, it collapses the last loop it
visited into a divergent node and considers the loop exits as divergent blocks for the next round. Finally,
global_joins returns the union of all temporal and sync dependent blocks that the repeated invocations
of local_joins found.

We illustrate this procedure with the example shown in Figure 7.3. For this example, consider
the CFG in Figure 7.3a and further assume that the branch in A is divergent. The execution shown
in Figure 7.3c reveals a possible execution where X is sync divergent because of the divergent branch in
A.

global_joins takes the following steps, which Ąnally detect X as a sync dependence of A. The algorithm
operates on sets of concurrent next blocks. In this case, the block A has a divergent terminator and
so initially its successors B and D are possible concurrent next blocks. Figure 7.3d shows the two
invocations of local_joins that global_joins performs. First, global_joins calls local_joins with B and D

as concurrent next blocks. local_joins then Ąnds sync dependent blocks that do not require a loop back
edge to be taken. In this case, it will Ąnd D because if B and D are concurrent next, scheduling B, then C

and Ąnally D will make the two threads join in D. This Ąrst invocation of local_joins does not yield X as
it is necessary to schedule the loop header A to get there, which local_joins does not consider.

global_joins calls local_joins next with the loop exits of inner-most loop that contains A. These are
the blocks E and F. In fact, as witnessed in the example protocol in Figure 7.3c, E and F are possible
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concurrent next blocks. This is conceptually the same as collapsing the loop into a virtual loop node.
This is shown in Figure 7.3b with the new divergent node LA.

global_joins calls local_joins again with E and F as concurrent next, which Ąnally results in X being
detected as a sync divergent node.

Since this is the outer-most loop, global_joins concludes and returns two things: First, the union of
all detected sync dependent blocks, which is the set ¶ D, X ♢. Second, the set of all temporal divergent
loop exits that were detected, in this case ¶ E, F ♢.

This concludes the high-level walkthrough. The speciĄcs on how sync and temporal are detected
by local_joins and global_joins will become apparent in the following sections. We continue with the
graph patterns that are used to ultimatly identify sync and temporal divergent nodes Section 7.2.
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7.2. Static Patterns for Sync and Temporal Divergence

DeĄnition 20 deĄnes Concurrent Next Blocks as a semantic property of a P-LLVM program. We will
assume for this section that the set Cnb is available. With Cnb at hand, sync and temporal divergent
blocks are approximated through simple graph patterns. We show the patterns in Figure 7.4.

z

x

(a) Sync divergence at z if
¶ x, z ♢ ∈ Cnb.

z

x y

(b) Sync divergence at z if
¶ x, y ♢ ∈ Cnb.

h

z

l

(c) The loop exit z is temporal divergent if
¶ l, z ♢ ∈ Cnb. The node h is some loop

header and l the latch of this loop.

Figure 7.4.: Control divergence patterns that the analysis uses to identify sync and temporal divergent blocks.

The CFG patterns for sync and temporal divergence are formalized in axiom 1 and axiom 2. We
assume that these axioms hold true and leave their proof to future work.
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Axiom 1. (Static Sync Dependence Pattern) A basic block z ∈ V is sync dependent on DivBlock ∈ V,
written z ∈ sdep(DivBlock), if one of the following holds.

1. There exists x ∈ V such that ¶ x, z ♢ ∈ Cnb and x→ z. This is the pattern show in Figure 7.4a.

2. There exists x, y ∈ V such that ¶ x, y ♢ ∈ Cnb and x → z and y → z. This is the pattern shown
in Figure 7.4b.

Axiom 2. (Static Temporal Dependence Pattern) A basic block z ∈ V is temporal dependent on
DivBlock ∈ V, written z ∈ tdep(DivBlock), if there is some loop (lp h) with DivBlock ∈ (lp h) and
z ∈ lpexits(lp h) and l = lplatch(lp h) such that ¶ l, z ♢ ∈ Cnb.

For the sync dependence example in Figure 7.1a, it holds that ¶ D, C ♢ ∈ Cnb and thus we can apply
the sync dependence pattern of axiom 1 to obtain that D is sync dependent. Similarly, for the temporal
dependence example in Figure 7.1c, the pair ¶ X, B ♢ ∈ Cnb. Thus, axiom 2 yields that X is temporal
divergent.
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7.3. Partial Divergence and Local Concurrent Next Blocks
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(b) Local concurrent next at any pairing
of B, C or D.

Figure 7.5.: Given that x is varying, ℓnext may diverge among the threads after block A. If πi and πj are almost
node-disjoint and do not contain any back edge then their targets are local concurrent next blocks.

If there are almost node-disjoint paths from DivBlock to any other two blocks then those blocks
may be in Cnb. We will call block pairs of this kind local concurrent next blocks. Theorem 1 Ąlters pairs
of concurrent blocks that are infeasible for greedy schedules (DeĄnition 12).

Theorem 1. For greedy schedules, a loop header cannot be concurrent next at once with any other block
of its loop.

Proof. We provide a proof sketch: Given any such blocks H and B where H is the header of a loop
that contains B. By construction, there has to be a path without back edges from H to B and thus
H ∈ fwdreaching(B) (DeĄnition 16). Further assume that H is the next block of a speciĄc thread t. That
is ℓnext(t) = H. However, this thread must have actively executed a predecessor of H to proceed to
having H as its next block. This can only be the preheader of the loop (say P) or its latch block (L). It
cannot have been the latch block because either B is the latch block or B ∈ fwdreaching(L). If B is the
latch it cannot have pending threads after it has been scheduled. Further, if B ∈ fwdreaching(L), then
the latch cannot have been scheduled because of the constraints of the greedy schedule. Hence, t cannot
have reached H from the loop latch. By analogous reasoning, based on greedy schedule constraints, it
can also not have been the preheader. This contradicts the initial assumption that ¶ H, B ♢ ∈ Cnb.

However, the two patterns of Figure 7.5 fall short of catching all concurrent next blocks. Reconsider
the loop in Figure 7.3. There are no two almost node-disjoint paths from A to E and F. Yet, the schedule
in Figure 7.3c shows that E and F can be concurrent next blocks.

In the example of Figure 7.3, ¶ E, F ♢ is a pair of non-local concurrent next blocks for DivBlock = A.
The concurrent block pair ¶ B, D ♢ is local.

The possible schedule in Figure 7.3c reveals that E is a divergent loop exit [Karrenberg and Hack,
2012] of the loop lp A. That is in one loop iteration, some threads may take the exit while others continue
to the next loop iteration. The block F is a divergent loop exit of lp A for the same reason. In effect,
while all threads enter the loop at the header, each thread may leave it through a different loop exit.

We summarize the divergence behavior of a loop by considering it as a node on its own, ignoring all
internal control Ćow. The immediate successors of that loop node are its loop exits. For our example,
this results in the loop node shown in Figure 7.3b. By abstracting away loop exit divergence into a loop
node, we can treat the loop like a block with a divergent terminator. By doing so, the loop blocks E and
F are clearly concurrent next; the successor edges to them are trivially almost node-disjoint paths from
the virtual loop node.

This leads to the following simple scheme for detecting concurrent next blocks: Given a divergent
branch that is in a loop, check whether it makes any loop exit divergent. If so, consider the entire loop

88



as one virtual loop node with its loop exits as successors. Recurse on the loop node, treating the loop as
a divergent terminator. Along the way collect all local concurrent next blocks.

While this approach to detecting concurrent next blocks works, it is not as precise as it could be
on the CFG abstraction. Consider the loop in Figure 7.6, which has two uniform loop exits and two
divergent exits. Individual threads may drop out of the divergent loop exits Y or Z in any iteration, while
other threads remain in the loop. However, taking any of the uniform loop exits W or X will immediately
carry all threads out of the loop. In short, the loop exits W and X are never concurrent next. Yet,
by collapsing the loop into a divergent node this information is lost. For the loop node, W and X will
spuriously result as concurrent next blocks.

The two categories uniform and divergent are not precise enough to capture the control divergence
out of the exits of divergent loops. To rectify this shortcoming, we introduce the concept of the partially
divergent node (DeĄnition 21).

DeĄnition 21 (Partially Divergent Node). A partially divergent node b ∈ V is deĄned by a partition of
its successors. Its divergent successor set DivSuccSet and the uniform successor set UniSuccSet. Let
b→ q. If q ∈ DivSuccSet, we call the control-Ćow edge divergent. Otherwise q ∈ UniSuccSet and the
edge b → q is called uniform. The threads reaching a partially divergent node proceed to at most one
uniform successor but independently to any number of divergent successors.

Reconsidering the divergent loop in Figure 7.6 in light of DeĄnition 21, we observe the following: The
loop is modeled as a partially divergent node by treating the uniform loop exits as uniform control-Ćow
edges whereas the divergent loop-exits are turned into divergent control-Ćow edges.
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AW

BX

C

DY

EZ

F

u

u

v

v

LA

(b) LA as a partially
divergent node.
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¶ X, Z ♢ ∈ Cnb

¶ Y, Z ♢ ∈ Cnb

¶ W, X ♢ ̸∈ Cnb

(c) Concurrent next blocks
due to partial

divergence.

Figure 7.6.: Divergent loop as a partially divergent node.

The almost node-disjoint paths criterion needs to be reĄned to identify concurrent next blocks
caused by partial node divergence. We show the resulting concurrent next blocks for the loop node
of Figure 7.6b in Figure 7.6c. There are two almost node-disjoint paths from LA to the blocks W and X.
Yet, ¶ W, X ♢ ̸∈ Cnb because W and X are both uniform successors.
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7.4. Computing Temporal and Sync Dependences

Section 7.3 sketches a scheme to over-approximate the set of concurrent next blocks arising from control
divergence in DivBlock. This section develops that sketch into a procedure to compute all temporal and
sync divergent blocks.

Section 7.4.1 starts with two procedures to compute all local results: local_joins identiĄes all local
concurrent next blocks and local sync divergent blocks (Listing 4). local_exits identiĄes all local temporal
divergent blocks after local_joins has run (Listing 6).

Finally, global_joins (Listing 7) visits all divergent parent loops of DivBlock. In the process, it
collects all sync and temporal divergent blocks that are local to DivBlock and its divergent parent and
ancestor loops. It does so by treating loops with divergent loop exits (temporal divergent exits) as
partially divergent nodes.

7.4.1. Computing Local Temporal and Sync Dependences

This section presents a procedure to compute local concurrent next blocks for a given partially divergent
node.

The procedure local_joins is shown in Listing 4. It starts off from a given partially divergent node
with divergent successors DivSuccSet and uniform successors UniSuccSet. The partially divergent node
is considered in the context of its parent loop, ParentLoop.

Listing 4: local_joins. Identify local concurrent next blocks.

Input: DivSuccSet : Divergent successors, UniSuccSet : Uniform successors, ParentLoop :
Inner-most parent loop.

Output: SyncBlocks : Sync-divergent blocks, DivLoopExits : Temporal-divergent exits from
ParentLoop, DivLoop : Inner-most loop with a divergent exit.

Data: DomMap ∈ V→ (V∪ ¶⊥, u ♢) : Disjoint paths map.
1 SyncBlocks ← ∅

// Initialize DomMap

2 DomMap ← ¶ b→ ⊥ ♣ b ∈ V ♢
3 foreach s in DivSuccSet do

4 PushDef (s, s)
5 end

6 foreach s in UniSuccSet do

7 PushDef (s, u)
8 end

// Compute DomMap

9 foreach b in rpo(0, max(BlockIndex()) do

10 d← DomMap[b]
11 if d ̸= ⊥ then

12 foreach s in Successors(b) do

13 PushDef (s, d)

14 end

15 end

16 end

// Static temporal divergence

DivLoop, DivLoopExits ← local_exits(ParentLoop, ReachedExits)
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The main data structure populated by local_joins is the DomMap, a mapping from blocks to blocks
or the special symbol u. local_joins relies on the PushDef procedure (Listing 5) to manipulate the
DomMap. The DomMap symbol u marks nodes that are unreachable from forward reaching paths
from divergent successors. Theorem 2 shows that DomMap directly corresponds to the local concurrent
blocks. One application of PushDef (b, d), conceptually updates DomMap with the information that
there is some control-Ćow edge into the block b and that d is the DomMap value coming in from that
predecessor.

Listing 5: PushDef . Push control along a control-Ćow edge to update DomMap.

Input: b : Block to push deĄnition to, d : Incoming deĄnition.
Data: (all declared in Listing 4) DomMap : Unchanged deĄnition map, SyncBlocks : Set of

detected join points, ParentLoop : Parent loop from local_joins.
1 d′ ← DomMap[b]
2 if d′ ̸= ⊥ and d′ ̸= d then

3 SyncBlocks insert b

4 DomMap[b]← b

5 else

6 DomMap[b]← d

7 end

8 if b ̸∈ ParentLoop then

9 ReachedExits insert b

10 end

local_joins delivers two byproducts while building the DomMap. First, it directly identiĄes sync
divergent blocks using the static sync dependence patterns (Section 7.2). Second, it collects all loop exits
of ParentLoop that are reachable from the partially divergent node taking only forward edges. Finally,
ReachedExits is used by local_exits to match the static loop dependence pattern.

local_exits of Listing 6 evaluates the static loop dependence criterion in Line 5. At the same time,
it determines the inner-most ancestor loop of ParentLoop that was left via a divergent edge.

Listing 6: local_exits. Detect divergent loop exits.

Input: ParentLoop : the loop.
Output: DivLoop : inner-most loop containing a divergent exit. DivLoopExits : detected

divergent loop exits.
Data: (declared in Listing 4) DomMap : disjoint paths map.
// Find the inner-most loop whose parent contains a divergent exit.

1 DivLoop = ϵ // ϵ means the virtual top-level loop

2 if not empty(ReachedExits) then

3 HeaderDef ← DomMap[Header(ParentLoop)]
4 foreach e ∈ ReachedExits do

5 if DomMap[e] ̸= HeaderDef then

6 DivLoopExits insert e

7 while e ∈ DivLoop do

8 DivLoop ← . . . // child loop of DivLoop towards the divergent node.

9 end

10 end

11 end

12 end
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Theorem 2 (Disjoint Path Invariant). Let DomMap be the result of Listing 9 for a partially divergent
node in label A. Consider any two p, p′ ∈ V. If DomMap[p] = d and DomMap[p′] = d′ with d, d′ ̸= ⊥,
then the following two statements are equivalent

1. d ̸= d′

2. There exist almost node-disjoint paths t ∈ A→ q →∗ p, t′ ∈ A→ q′ →∗ p′ such that at least one of
A→ q or A→ q′ is a divergent edge out of A.

Proof. We provide a proof for the acyclic case and for a variant of local_joins in Appendix A.

According to Theorem 2, if DomMap[a] = DomMap[b], then a and b cannot be local concurrent
next blocks. The contraposition (d ̸= d′) gives us a sound criterion to over-approximate the set of local
concurrent blocks.
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Examples. We illuminate the inner workings of local_joins with two examples: The Ąrst, in Figure 7.7a,

revisits Figure 7.6a for the case of a divergent terminator in DivBlock. The second, in Figure 7.7b,

demonstrates the purpose of the u symbol on a partially divergent node.
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Figure 7.7.: local_joins walkthrough. The block labels double as block index numbers. Each red block tags is

the blocks DomMap entry.

We turn our attention to the example in Figure 7.7a. The example shows the Ćow of local_joins for

the divergent block 2. So, 3 and 5, its immediate successors are in DivSuccSet. The ParentLoop is the

inner-most loop containing 2. It comprises the block index range 0 to 5.

After the initialization phase, the DomMap only holds entries for 3 and 5, mapping each to themselves.

The initialization leaves ReachedExits empty as neither of them is a loop exit. The join block is detected

in the second rpo phase. When PushDef (5, 4) is called in Line 13, 5 already holds 5 as its DomMap entry.

Therefore, the dependence pattern of axiom 1 applies here and consequently, PushDef will add 5 to the

set of SyncBlocks. The second phase also reaches 8 and 9 in the traversal and the second phase ends

with ReachedExits = { 8, 9 }. Finally, local_exits evaluates the temporal dependence criterion axiom 2,

detecting that DivLoopExits = { 8, 9 }. The loop exit 7 is not forward-reachable from 2 and so is

conĄrmed as a uniform loop exit.
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The second example in Figure 7.7b covers the scenario of a partially divergent loop. The divergent
loop consists of the blocks in the range 1 to 4. The loop has one divergent loop exit, its divergent
successor 8 and two uniform exits, its uniform successors 5 and 6. The parent loop of the partially
divergent loop includes all blocks except for 8, its only loop exit.

The initialization phase assign to the uniform exits the uniform successor symbol u. The divergent
loop exit receives 8 and isis immediately added as a reached exit from the parent loop. The threads
entering the loop may only proceed to either of 5 or 6. These two blocks are also the only successors of
the loop reaching 7. Hence, ¶ 5, 6 ♢ ̸∈ Cnb and 7 is not sync divergent.

In the second phase, during the visit of 5, u will be pushed to DomMap[7], which was empty before.
When the rpo traversal reaches 6, it will also push u. Since that is the same symbol as already in the
map, 7 is not added as a sync divergent join.

Finally, local_exits conĄrms that 8 is in fact a divergent loop exit also of the parent loop.

Complexity of local_exits (Listing 6). Syntactically local_exits may appear to have quadratic
running time, given its two nested loops.

However, consider the maximum number of iterations that the body of the inner loop, in Line 8,
could execute. For each execution of Line 8 of local_exits, the variable DivLoop is set to a child of the
loop that it represents. Further, the loop guard of the inner loop will abort once DivLoop is a loop
without child loops since no loop exit e ∈ ReachedExits is part of an inner-most loop.

The set of loops injectively maps to loop headers, which are blocks as well. Hence, the number of
iterations of the inner-loop is bounded by the number of blocks for one invocation of local_exits. We
thus conclude that local_exits has O(♣V♣).

Complexity of local_joins (Listing 4). The procedure local_joins breaks down into three main
sections: The Ąrst is the initialization phase that visits every successor of the partially divergent node
once, hence has a complexity of O(♣V♣). The second phase is the rpo traversal. This takes O(♣E♣+ ♣V♣)
time due to the successor loop in PushDef . Finally, local_joins calls into local_exits. As corroborated
in Section 7.4.1 local_exits also has a complexity of O(♣V♣). In conclusion, local_joins takes O(♣V♣+ ♣E♣)
to complete.

The existence variant of the two-sources two-sinks node-disjoint paths problem (2-VD) is reducible
to DomMap queries. In the reduction, DivSuccSet contains all sources, pairs of sinks can be checked
with the DomMap exploiting Theorem 2. Tholey [2012] proves that O(♣V♣+ ♣E♣) is optimal for this
instance of the node-disjoint paths problem. Given that the reduction takes constant time, local_joins

is hence optimal with regards to the DomMap computation.
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7.4.2. Computing All Temporal and Sync Dependences

global_joins (Listing 7) puts local_joins and local_exits together to identify all temporal and sync
dependent blocks. The sync divergent blocks (sdeps) end up in PathJoins. The temporal divergent
joins (tdeps) are found in LoopJoins.

Listing 7: global_joins. Compute all loop and path splits resulting from a split in x.

Input: DivSuccSet : divergent successors, UniSuccSet : uniform successors, ParentLoop :
parent loop of the partially divergent node.

Output: LoopJoins : divergent loop exits, PathJoins : Reconverging paths join blocks.
Data: DomMap : disjoint paths map.

1 LoopJoins ← ∅, PathJoins ← ∅
2 DomMap ← ¶♢

// Listing 4

3 SyncBlocks, DivLoopExits, DivLoop ← local_joins(DivSuccSet, UniSuccSet, ParentLoop)
4 PathJoins ← PathJoins ∪ SyncBlocks

5 LoopJoins ← LoopJoins ∪DivLoopExits

6 if DivLoop then
7 ParentLoop′ ← lp(DivLoop) // The parent loop of DivLoop

8 DivSuccSet ′ ← Exits(DivLoop) ∩ LoopJoins

9 UniSuccSet ′ ← Exits(DivLoop) \DivSuccSet

10 LoopJoins′
, PathJoins′ ← global_joins(DivSuccSet ′

, UniSuccSet ′)
11 PathJoins ← PathJoins ∪PathJoins′

12 LoopJoins ← LoopJoins ∪ LoopJoins′

13 end

The algorithm of global_joins follows the intuitive scheme of Section 7.1.
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Figure 7.8.: global_joins example. Red labels are the DomMap entries for each round of local_joins. The

block labels double as block index numbers.

Example. Figure 7.8 shows a walkthrough of global_joins on a simple loop nest.

In the example, global_joins is invoked with DivBlock = 1. In the Ąrst round of local_joins, shown
in Figure 7.8a, the partially divergent node is the DivBlock itself. Its parent loop contains the blocks
from 1 to 3. DivBlock has only divergent successors, so any blocks reachable by almost node-disjoint
paths from 1 are recognized as SyncBlocks. Since there are two divergent exits from the parent loop,
global_joins goes on to consider the parent loop itself as a partially divergent node, shown in Figure 7.8b
The DivLoopExits from the last round make up the divergent successors of this loop node. The parentŠs
parent loop is given by the blocks 0 to 7. In the last round, Figure 7.8c, that outer-mode loop is partially
divergent node. The loop exits 9 and 10 remain as uniform successors. When local_joins visits 8 to
call PushDef (9, u), 9 gets added as a divergent sync to SyncBlocks. For the same reason as in shown
in Figure 7.7b, the node 10 is proven to not be a sync point. Finally, global_joins yields the respective
union of the detected sync and temporal divergent blocks.

PathJoins = { 3, 7, 9, 11 }

LoopJoins = { 5, 9 }

Complexity of global_joins. global_joins ascends in the loop tree starting from an inner-most
node. In each iteration global_joins uses a Ąnite number of set operations on sets of basic blocks. Each
of these operations can be performed in O(N ) time. Let D be the depth of the loop tree (longest chain
of nested loops). Combined with the O(M + N ) time for local_joins, we conclude that global_joins

takes O((M + N )D) time.
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7.5. Related Work

Binding-Time Analysis. Aiken and Gay [1998] Ąrst noted that that binding-time analysis [Jones
et al., 1989] of partial evaluation could be used to detect the uniformity of variables at join points with
regards to divergent control Ćow. Hornof and Noyé [2000] present a binding-time analysis for structured
programs, unstructured control (GOTO) is handled by restructuring the program before the analysis.
We discuss in Section 12.7 how re-structuring leads to inferior outcomes in vectorization.

Auslander et al. [1996] introduce a technique to detect divergent control-Ćow joins (non-constant
merges) in unstructured Control-Flow with reducible loops. Paths CNF formulas are constructed
containing only uniform branch conditions. At merges, the analysis checks whether the paths formulas at
predecessors are disjoint. This means testing in their model requires solving an instance of SAT, which
is NP-complete [Cook, 1971]. The approach proves uniformity of values within loops. The technique can
not directly prove that loops are uniform. They resort to unrolling in this case, which is not possible for
loops with an unknown, e.g. parametric, loop bound. In consequence, all uses of loop-deĄned values are
pessimistically assumed to be varying (non-constant).

Disjoint Paths Criterion. The disjoint path criterion [Havlak, 1993; Karrenberg and Hack, 2012]
can be understood as a composition of the criterion for local concurrent next blocks (DeĄnition 20) and
the sync dependence pattern of axiom 1. The same can be done for the temporal dependence pattern
(axiom 2) yielding the latch path criterion [Karrenberg and Hack, 2012]. Karrenberg [2015] deĄnes the
disjoint paths criterion for sync dependences but does not present an algorithm to evaluate it. The
partially divergent nodes presented in this chapter, summarize the complex divergence effects of loops.
That way the known path criteria for divergence are lifted to nested cyclic control Ćow, which has not
been considered in related work.

Gated SSA. The family of Gated SSA (GSSA) [Ballance et al., 1990; Havlak, 1993] techniques
converts ϕ nodes into dags of select nodes (γ nodes). The leaves are made up of the incoming deĄnitions
of the original ϕ node and the branch conditions that effect the ϕ nodes outcome. Gated SSA has been
proposed as a solution to the control-induced divergence problem for Divergence Analysis [Sampaio
et al., 2013]. If a branch condition in the γ expression is found to be divergent then so that branch
induces join-divergence in the ϕ node.

GSSA produces absolute predicates, these are imprecise on unstructured CFGs. Consider the CFG
of Figure 7.9c, the GSSA expression (notation by Ballance et al. [1990]) for x will be γ(a, γ(b,⊥, γ(c, 0, 1)), 1).
However, the value of b is irrelevant for selecting among the incoming values of the ϕ node. These
unnecessary joins could be removed by post-processing, however at the cost of added complexity. This
was Ąxed in Thinned Gated SSA [Havlak, 1993].

The GSSA techniques that we are aware of [Ballance et al., 1990; Tu and Padua, 1995b] use a single
loop exit predicate for all exits of a loop. For example, the GSSA loop exit predicate for the H to Q

loop is γ(h, 1, γ(b, γ(c, 1, ), 0)). Thus, it could be inferred that both loop exits D and C become temporal
divergent with any of the conditions h, b or c. In contrast, our algorithm produces individual results per
loop exit that are more precise. It determines that temporal divergent for D only depends on h and that
of E only on c and b.

In the same example Figure 7.9a, Thinned GSSA [Havlak, 1993] fails to construct valid loop predicates
- it generates the loop predicate γ(b, γ(c, true, false), false) for the H to Q loop, which does not contain
h.

Published GSSA algorithms only consider unconditional and binary branches whereas our algorithm
also supports partially divergent nodes and switches, such as in Figure 7.9d.
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br bB

br cC

D

br aA

x = ϕ[C ,0] [D ,1] E

F

(c) Divergence of x at E also
depends on the variable a.

"Filtered" control dependence
obscures this dependence.

switch (x)A

case 1:C default :
return

D
case 0:B

v = ϕ[0, B] [1, C]
A[tid] = v
return

J

(d) Divergence of v at J depends on x. This is lost in Ąltered
control dependences. Techniques in related work (GSSA)
often do not consider terminators of degree greater than

2 at all.

Figure 7.9.: Example CFGs where earlier analyses fail or are less precise.

Techniques for Structured Control Flow. This category comprises algorithms for structured
programming languages (AST based) and algorithms for CFGs that make strong structural assumptions.
The compiler for the data-parallel ISPC language [Pharr and Mark, 2012] performs its analysis on the
AST.

In the context of GPU kernels, it is often assumed that reconvergence only happens at the immediate
post dominator of a divergent branch [Coutinho et al., 2011]. Fully structured vectorization analysis [Re-
iche, 2018]. These fail on the unstructured CFG in Figure 7.9b. When p is varying, the divergence in x

at D goes undetected because reconvergence is only anticipated at F , the immediate post dominator of
A. Note that NVIDIA architectures starting from Volta allow re-convergence before the immediate post
dominator NVIDIA [2017, Fig. 21].

Transitive Control Dependence. For some techniques the set of all transitively control-dependent
blocks is considered for sync dependence [Lee et al., 2013; Liang et al., 2016]. In that setting, a block will
be considered sync divergent if any of its predecessors is transitively control dependent on a divergent
terminator. We will refer to this as absolute uniformity. This is identical to the notion of implicit
dependence used in program slicing techniques and also common in non-interference analyses [Wasserrab
et al., 2009; Hammer and Snelting, 2009; Rodrigues et al., 2016].
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Absolute control-dependence techniques are imprecise for divergence analysis. This shows in all the
examples ranging from Figure 7.9a to Figure 7.9d. For example, absolute uniformity will not detect
uniform x for uniform c in Figure 7.9c when a is varying.

Note that loop exits may not be control dependent on their temporal dependences (single-exit loop).

Filtered Control Dependence. Absolute control-dependences (set of transitively control-dependent
blocks) are sometimes reĄned by subtracting the control dependences of the join block. This is used
by AMD HSAIL (https://reviews.llvm.org/D50433#1193813) and also relied upon in published
work [Lloyd et al., 2019]. However, these approaches fail on Figure 7.9c as well as Figure 7.9d.

Fixing the IPD Criterion. The approach by Chandrasekhar et al. [2019] considers all join points
above the immediate post dominator of a divergent branch as sync dependent. This Ąxes the immediate
post-dominator technique by Coutinho et al. [2011] for the unstructured case. This Ąxing approach has
earlier been suggested by Collange [2011a]. However, this approach is less precise than ours. Consider
the unstructured CFG in Figure 7.9b. When p is uniform and q is varying, x will be Ćagged as varying
at D, despite the fact that q has no impact on the divergence of x, there is only one path.

Computing Disjoint Paths. Listing 4 solves the decision version of the k-sources two-sinks variant
of the node-disjoint paths problem for DAGs. Tholey [2012] presents an algorithm that solves, among
other things, the 2-sources variant of this problem and shows that O(♣V ♣+ ♣E♣) is optimal. Therefore,
the algorithm presented in Listing 4 is optimal as well.

Our technique improves on the existence variant of 2-VD in the following sense: The DomMap allows
checks in constant time whether there are node-disjoint paths from any pair of nodes from DivSuccSet

to a given pair of sinks.

Conclusion. We present the Ąrst complete, polynomial time algorithm to detect all control-induced
joins caused by a divergent terminator in unstructured CFGs with reducible loops. Related techniques
are either incomplete, i.e. do not detect all divergence effects, require structured control-Ćow, e.g. an
AST, or have a much higher complexity while achieving a similarly precise result. The concept of partial
control divergence is novel for the best of our knowledge. The algorithms presented in this chapter were
improved after the research period for this thesis and published [Rosemann et al., 2021].
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Chapter 8.

Partial Control-Flow Linearization

Divergence Analysis (Chapter 6) identiĄes uniform and divergent branches. To generate SIMD code
for a CFG, all branches must be uniform, that is branch the same way for all threads. The standard
technique for this is if-conversion, which removes all branches, including the uniform ones. This can
lead to inefficient code. Figure 8.1a shows a function that calls slow functions in C and D. If-conversion
removes the uniform branch in A, as shown in Figure 8.1c. The slow functions calls in C and D execute
even if p is false. This chapter presents partial linearization, which retains the uniform branch in A. The
partially linearized CFG in Figure 8.1d skips the slow function calls if p is false leading to faster SIMD
code.

void foo(bool p, int tid) {
A: int v = 0;

if (p) {
B: if (A[tid ]) {
C: v = slow(tid );

} else {
D: v = also_slow (tid );

}
}

E: B[tid] = v;
}

(a) Uniform branch in A and a
non-uniform branch in B.

A

u
B

v

C D

E

(b) CFG of 8.1a.

A

B

C D

E

(c) If-converted.

A

B

C D

E

(d) Partially linearized.

Figure 8.1.: 8.1a: The branch in B is non-uniform (varying) because it depends on the thread id. 8.1c: If-
conversion removes all branches. This makes the SIMD code slow as the function calls in C and D

execute even if p is false. 8.1d: Partial linearization retains the uniform branch in A. The slow
function calls are skipped if p is false.

Partial Control-Flow Linearization is a partial if-conversion algorithm for unstructured DAGs. It
if-converts all divergent branches while retaining uniform branches. Different to existing techniques,
partial linearization does not introduce any new blocks or branches and provides strong guarantees on
the control Ćow retained. The algorithm operates in linear time in the number of edges in the DAG.
The resulting DAG is control uniform and trivially vectorizable by replacing every instruction with a
SIMD instruction and leaving branches untouched. We show how partial linearization can be used on
reducible CFGs with uniform loops. All threads that enter a uniform loop leave it in the same iteration
and through the same loop exit. The divergent loop transform presented in Chapter 9 transforms
non-uniform loops into uniform loops. Partial linearization together with the divergent loop transform
can thus make all reducible CFGs control uniform.

8.1. High-level Walkthrough

We begin with the following observation: when a branch in a DAG is if-converted (even if other uniform
branches remain), the branch will have only one successor after the transformation and the former
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successors will post-dominate it. We see this in the initial example. In both transformed DAGs,
Figure 8.1c and Figure 8.1d, the blocks C and D post-dominate block B. The key insight behind partial
linearization now is that we can sweep through the DAG from top to bottom and draw up new successors
for each node such that the existing post-dominance constraints are always satisĄed.

Before going into the details of the algorithm, we walk through an example to shed light on how the
algorithm achieves this. This walk through is shown in Figure 8.2.

Initially, partial linearization is given a DAG with uniform and divergent branches, as the one
in Figure 8.2a. Partial linearization visits every block in order of the block index, a toposort of the nodes
that keeps nodes in the same dominance region and loop consecutively together. Partial linearization
draws new successors for each node to make sure that divergent branches will only have one successor
and all post-dominance constraints are satisĄed. The solid edges are the newly generated control-Ćow
edges.

The deferral relation, shown as dashed arrows in the Ągure, keeps track of post-dominance constraints.
If x → y is inserted in the deferral relation, it means that in the Ąnal DAG, the block y has to post-
dominate x. When partial linearization satisĄes a deferral edge, i.e. it establishes post-dominance in the
generated DAG, then the deferral edge is removed.

Consider the state after the Ąrst two blocks have been processed, shown in Figure 8.2b. Since the
block a has a uniform branch, its outgoing control-Ćow edges are unchanged from the original DAG. The
branch in b, however, is varying. This means two things: First, b will have only one successor, in this
case d. Second, if d is the new successor then e, the other former successor of b, has to post-dominate d.
To enforce this, the algorithm adds the deferral edge d→ e to the deferral relation.

To understand how deferral edges are satisĄed, we forward to the point where the next node d has
been processed, shown in Figure 8.2c. The node e is drawn as the new successor of d, the reason being
that e is the node with the minimum block index number among the successors and deferral targets of d.
Since e is now the only successor of d, this satisĄes the post-dominance constraint d→ e and the deferral
edge is removed. However, we add the deferral edge e→ h to maintain that h has to post-dominate e

and by extension d.

Partial linearization proceeds in similar manner through all remaining nodes. We show the inter-
mediate states after visiting f in Figure 8.2d and after the visit of h in Figure 8.2e. The algorithm
concludes after k, the last block in the block index, has been processed, shown in Figure 8.2f. The
deferral relation is now empty and the set of control-Ćow edges is Ąnal. No divergent branches remain,
the uniform branch in a was retained.
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(a) G with block index numbering.
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(c) after 2.
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(d) after 6.
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(e) after 7.
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(f) Ąnal Gℓ.

Figure 8.2.: Walkthrough of partial linearization. 8.2a: Source DAG G with divergent branches by Karrenberg
[2015]. 8.2b to 8.2f: Partially linearized DAG Gℓ after the speciĄed iteration (block index number).
Deferral edges are shown as dashed arrows.
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8.2. Algorithm

The partial linearization algorithm works on loop-free CFGs. Section 8.3 elaborates how the algorithm
can be used for CFGs with reducible loops.

Listing 8: Partial linearization algorithm. Lines 1,4,19 are abbreviations used in the proofs.

Input: DAG G = (V, E, entry)
Input: Block index of G (see Section 2.5)
Output: Partially linearized DAG Gℓ = (V, Eℓ, entry)

1 // P ← ∅
2 D ← ∅
3 foreach b in BlockIndex() do

4 // F ← ¶v ♣ ∃u.(u, v) ∈ D}
5 T ← ¶s ♣ (b, s) ∈ D♢
6 if b ends in a uniform branch then

7 foreach (b, i, s) ∈ E do

8 next ← min(T ∪ ¶s♢)
9 Eℓ ← Eℓ ∪ ¶(b, i, next)♢

10 D ← D ∪ ¶(next, t) ♣ t ∈ (T ∪ ¶s♢) \ ¶next♢♢

11 end

12 else

13 S ← ¶s ♣ ∃i.(b, i, s) ∈ E♢
14 next ← min(T ∪ S)
15 Eℓ ← Eℓ ∪ ¶(b, 0, next)♢
16 D ← D ∪ ¶(next, t) ♣ t ∈ (T ∪ S) \ ¶next♢♢

17 end

18 D ← D \ ¶(b, s) ♣ (b, s) ∈ D♢
19 // P ← P ∪ ¶b♢

20 end

The partial linearization algorithm is shown in Listing 8. The result of the algorithm is a DAG
Gℓ = (V, Eℓ, entry) that constitutes a partially if-converted version of the original DAG G = (V, E, entry).

The algorithm visits every block in V in block index order (Line 3) At block b, the algorithm creates
outgoing control Ćow edges from b and adds them to Eℓ, the set of edges in the resulting, if-converted
CFG. For divergent branches, a single successor edge is added to Eℓ in Line 15. If the branch is uniform,
one new outgoing edge is added for each successor index of the branch (Line 9).

If block b has a divergent branch, the branch needs to be if-converted and receives only a single
outgoing edge in Gℓ. However, if a path in Gℓ reaches the block b then all of the original successor
blocks of b have to be part of every possible completion of that path. In other words, if the algorithm
picks a successor next ∈ V for b in Gℓ it has to make sure that all other successors of b in the original
graph will post-dominate b in Gℓ so that all successors will eventually execute.

The deferral relation is given by D. The algorithm ensures that whenever a pair (v, w) ∈ V× V is
put into D, the node w will end up post-dominating v in Gℓ (Lemma 8 in Appendix B). When the
algorithm visits a block b with a divergent branch, it will put all the suspended original successors of b

into that relation. To make the deferral relation effective, the algorithm takes the elements of D for the
current node b into account when picking a new successor for b.
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Figure 8.3.: Handling of loops in partial linearization.

8.3. Partial Linearization of Loops

This section discusses how to extend Listing 8 to support uniform, reducible loop nests. Section 9.1
presents a technique to convert reducible divergent loops into uniform loops. Hence, partial linearization
does not have any other restriction than requiring reducible control Ćow.

We apply partial linearization to CFGs with uniform loops by deleting loop backedges temporarily.
Because we require reducible CFGs, loop headers and back edges can be unambiguously identiĄed. After
partial linearization has completed on the DAG, the backedges are re-inserted into Gℓ. We show an
example for this in Figure 8.3.

Running Listing 8 on the CFG that has all backedges deleted is safe because of the following
argument: We require the latch block to be unique (Section 2.4). The latch block has the maximum
index of any block in the loop. Hence, the latch block is the only place to re-insert the backedge even in
Gℓ. This is sound because all deferred edges of latch blocks lead outside the loop. The deferral relation
at the latch can only refer to blocks that were already deferred at the loop header. This is because
uniform loops have no varying loops exits that could defer blocks that are outside of the loop. Therefore,
if the latch is reached during execution of Gℓ it is safe to assume that no exit from the loop was taken in
this iteration. Thus, if the latch is not exiting itself, the latch can proceed with the next loop iteration.

8.4. Partial Linearization of φ Nodes

As a result of partial linearization, control Ćow is converted into data Ćow. When divergent branches
are folded down, selection paths in the CFG are removed. This process invalidates the original ϕ nodes
as the predecessors of their parent blocks change. Symmetrically to if-converted branches, ϕ nodes have
to be if-converted as well.

Consider the ϕ node in Figure 8.4a. It has three incoming edges before partial linearization.
Afterwards, there is only a single incoming edge. To preserve the selection behavior of the ϕ nodes in
the partially linearized CFG, the ϕ node is lowered into an explicit cascade of select instructions. The
select use predicates to select what was an incoming value in the original ϕ node. We call those edge
predicates and use the following notation: Whenver B executes and mAB is true, then in the CFG before
if-conversion control reaches B from A. Turning to the if-converted version in Figure 8.4b, we only require
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z = ϕ[x0 ,b0 ] [x1 ,b1 ] [x2 ,b2 ]
...

Z

(a)

z1 = select eb1Z x1 x2

z = select eb0Z x0 z1

...

Z

(b) If-converted Figure 8.4a.

z = ϕ[x0 ,b0 ] [x1 ,b1 ] [x2 ,b2 ] \
shadow (xs )
... p

Z

(c)

z2 = select eb2Z x2 xs

z1 = select eb1Z x1 z2

z = select eb0Z x0 z1

...

Z

(d) If-converted Figure 8.4c.

Figure 8.4.: If-conversion of φ nodes.

two of the three edge predicates coming into Z. Since this is a non-shadow ϕ node, we can default to the
third value if the other two incoming edges are not taken.

For shadow ϕ nodes, such as the one in Figure 8.4c, the shadow input has to be selected whenever
the control mask is false. The ϕ node is replaced by the cascade of select nodes shown in Figure 8.4d.
There is one select per incoming value, selecting that value if control reaches the block from this
predecessor.

8.5. Correctness

Listing 8 is only concerned with producing a partially linearized CFG and relies on proper predication of
the code inside the blocks by predication or masking. Note that predication is orthogonal to producing
the CFG itself and we will assume a correct predication of the code in the following. On this assumption,
the transformed program is correct if each path of the original CFG appears as a sub-path in the partially
linearized one. In the remainder of this section we will prove that this is indeed the case.

We will Ąrst show that every path in the scalar CFG is part of a path in the partially linearized
CFG. The proof is carried out by induction and uses the following invariant of the outer loop.

Lemma 1. For each node v that has a predecessor p in P , it holds for v that there is either an edge
(p, b) ∈ Eℓ or there is another node p′ for which there is a path from p to p′ in Eℓ ∪D and (p′, b) ∈ D.

Proof. There are two cases: Either v = b or not.

First, assume v = b. b certainly has a predecessor in P because the nodes are visited in topological
order, hence it fulĄlls the premise of the lemma.

Now, b either ends in a uniform branch or not. Consider the Ąrst case. The inner loop (line 7)
determines for each successor of b (in G!) one successor (next) in Gℓ. If next is picked to be s, then the
edge (b, s) is added to Gℓ (line 9). If next is no successor of b in G, the deferred edge from next to s is
added to D in line 10. Hence, there is a path (in Eℓ ∪D) from b to s.

If b does not end in a uniform branch, a similar reasoning applies. Hence, the lemma also holds for
all successors of b that is added to P at the end of the loop body.
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Now, consider v ̸= b. line 18 deletes deferred edges and we have to make sure that the invariant
still holds for a node v ̸= b. There could be a path π in Eℓ ∪D from some predecessor u of v in G that
contains an edge (b, t) that is removed in line 18. However, in lines 10 and 16, all deferred edges that
originate in b are Şre-originatedŤ to next. because the edge (b, next) is added to Eℓ, the to-be-removed
edge (b, t) can be replaced by the two-edge path b, next, t in π. Hence the property is preserved for all
other nodes unequal to b.

Theorem 3. For each path π of G = (P ∪F , E), there is a path π′ in Gℓ = (V , Eℓ ∪D), such that π is
a sub-path of π′.

Proof. By induction on P (the outer loop). The base case trivially holds because P ∪ F is empty at the
beginning of the program.

For the induction step, assume that the induction hypothesis holds for the subgraph of G induced by
the nodes in ¶b♢ ∪ P ∪ F . First of all, each predecessor of b (in G!) has already been processed because
the nodes are processed (in the outer loop) in topological order. Hence, Lemma 1 applies to b.

Consider a path π ∈ entry →∗ p in G where p is a predecessor of b. By the induction hypothesis,
there is also a path π′ in Gℓ that contains π as a subpath. Consider the extension π ◦ (p→ b) of π to b.
By Lemma 1, there is either an edge (p, b) ∈ Eℓ or a path p→∗ b in Eℓ ∪D.

The path embedding follows from the fact, that after the algorithm terminated, P ∪ F = V and
D = ∅.

It remains to show that if both CFGs, original and partially linearized, are run with the same input
values the original CFG will generate a trace that is embedded in the trace of the partially linearized
CFG. Partial linearization never introduces new branches. Further, if partial linearization changes
a branch target then the former branch target will post-dominate the new successor in the partially
linearized CFG. In conjunction with Theorem 3 this means that any execution trace of the original CFG
will also be part of the trace in the partially linearized CFG.

8.6. Preservation of Uniform Control Dependence

In an if-converted program, every instruction executes with a predicate unless the predicate is constant.
Predication can incur a signiĄcant performance overhead because predicates are computed and, even
more severe, memory accesses and function calls need to be guarded, for example by additional branching.
Therefore, it is desirable to avoid predicated execution where possible.

Partial linearization guarantees that predicates can be elided if the predicate of a block is uniform
even if the predicate is non-constant.

With this guarantee the code generator can safely emit efficient unpredicated instructions for basic
blocks with uniform predicates. We make this guarantee precise in Theorem 4 and provide a proof.

Theorem 4. If uni(b), i.e. the predicate of a block b ∈ V is uniform, then execution will reach block b

in Gℓ iff the predicate of b is true.

The proof makes use of Lemma 2, which states that if uni(k) then the control dependences of k are
preserved in Gℓ. We provide the proof for Theorem 4 here and refer the reader to Appendix B for a full
technical proof for Lemma 2.

Lemma 2. If uni(k) then cdep(k) = cdepℓ(k) where cdepℓ is the control dependence in Gℓ.
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Figure 8.5.: Preservation of uniform branches in dominance sub-DAGs.

Proof. We now prove Theorem 4. We will Ąrst show that if k is executed in G then it is also executed
in Gℓ. This follows from the correctness of partial linearization that if π is a path in G with k ∈ π then
π is embedded in a path π′ in Gℓ with k ∈ π′.

It remains to show that if execution reaches the block k in Gℓ then block k will also execute in G.
We prove the claim by induction over the block index. Theorem 4 is the induction hypothesis.

Base case: If cdep(k) = ∅ then k is always executed in G. Since every path in G is embedded in a
path in Gℓ, the block k is also always executed in Gℓ. Note that cdep(entry) = ∅ for entry, the Ąrst
block in the block index.

Induction step: Assume uni(k) for some k ∈ V . We need to show that if k is executed in Gℓ then k

is also executed in G.

Let π′ ∈ entry →∗ k be an arbitrary preĄx path to k in Gℓ. Then, there is an edge a→ b ∈ cdepℓ(k)
such that π′ ∈ entry →∗ a→ b→∗ k.

By Lemma 2, a→ b ∈ cdep(k) as well. Since uni(k), it follows that uni(cdep(k)) and thus uni(a)
and the branch in a is uniform.

By the induction hypothesis for a < k it follows that a will only be executed in Gℓ if it is executed
in G. Since the branch in a is uniform this implies that the edge a→ b will only be taken in Gℓ if a→ b

is taken in G.

However, a→ b ∈ cdep(k) implies that k ⪰PD b and thus any complete path in G that contains b

will eventually pass through k. Hence, if uni(k) and k is executed in Gℓ then it is executed in G as
well.

8.7. Preservation of Uniform Branches

Partial linearization preserves uniform branches in blocks with uniform predicates, as implied by The-
orem 4. However, the algorithm will even preserve some uniform branches in blocks with varying
predicates.

Figure 8.5 shows an example of this. Block b has a uniform branch but its predicate is varying
because b is control dependent on the edge a→ b, which is varying. Still, the uniform branch in b will
be preserved.

We present a branch preservation guarantee that extends to those branches as well. The guarantee
uses the concept of relative uniformity of predicates. A block b is uniform relative to its dominator d, if
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b has only uniform control dependences in the dominance region of d. We will refer to the dominance
subgraph of d as Gd, formally deĄned by DeĄnition 22.

DeĄnition 22. The dominance region Gd = (V d, Ed, d) is the subgraph of G = (V , E, entry) that
d ∈ V dominates:
Ed = ¶x→ y ∈ E ♣ d ⪰D x♢
V d = ¶x ∈ V ♣ d ⪰D x ∨

(

∃y.y → x ∈ Ed
)

♢

A block b has a uniform predicate relative to a dominator d, if b has a uniform predicate in the
subgraph deĄned by the dominance region of d. This is formalized by DeĄnition 23.

DeĄnition 23. Let d be a dominator of b. Consider the dominance region graph Gd rooted in d. The
entry mask of d in Gd is uniform. We call b uniform relative to d, iff b has a uniform mask in Gd.

In the example of Figure 8.5, we show the dominance region graph Gd of b in the center. The block
b dominates c and so the edge b→ c will be preserved. Generally, as stated by Theorem 5, if an edge
a→ b is uniform relative to a node d and d dominates the edge then the edge will be preserved.

Theorem 5. Given a dominance-compact block index, partial linearization will preserve an edge
b→ y ∈ E if there exists a block d ∈ V with the following properties in G:

1. d ⪰D b ∧ d ≻D y (d dominates the edge b→ y).

2. uni(b→ y) in the dominance region Gd of d.

One non-obvious implication of Theorem 5 is that we can insert tests for all-false masks in the
CFG (BOSCC) [Shin et al., 2009] even before if-conversion (Section 9.2). If the mask is all false, partial
linearization guarantees that the guarded block and all blocks that it dominates will be skipped.

Proof. We give an intuition why Theorem 5 is correct. The full proof can be found in Appendix B.
The insight behind the theorem is that partial linearization makes the same decisions on a dominance
region as it does on the whole graph.

To this end, the block index of G has to be dominance compact. To see this, consider the non-
dominance-compact block index in Figure 8.6. Block b dominates b→ d and b→ e. However, as the
unrelated block c is deferred at b and is next in the block index the uniform branch of b will be folded
anyway.

8.8. Related Work

Uniform branch preservation has also been studied in the context of GPUs kernels [Lee et al., 2014;
Kerr et al., 2012]. Preserved uniform branches make the GPU kernels more efficient. GPUs support
divergent branches in hardware, which is why these works do not address if-conversion at all. However,
eliminating divergent branches in the program is a strict requirement for SIMD CPUs. If-conversion
is the principal technique to eliminate divergent branches for SIMD vectorization [Allen et al., 1983;
Baxter and III, 1989].

The Intel SPMD Program Compiler (ISPC) [Pharr and Mark, 2012] operates on fully structured
ASTs. As such, unstructured branches either need to be uniform (gotos) or will be if-converted completely.
However, unstructured control Ćow appears in practice. For example, Bahmann et al. [2014] showed that
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Figure 8.6.: Top: Effect of a non dominance-compact block index. Bottom: Effect of non loop-compact
block index. Left: original CFGs G with (non compact) block index, Center: processed up to 1,
Right: Gℓ with defect.

in SPEC2006, 4390 of 14321 CFGs are unstructured. Partial linearization subsumes ISPCŠs if-conversion
because partial linearization preserves all the branches that ISPC preserves. This follows as a corollary
from Theorem 5. Hence, partial linearization is more powerful than ISPCŠs heuristics.
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Figure 8.7.: Uniform control dependences indicated with square nodes. 8.7a: Unstructured CFG with uniform
predicate at block C. 8.7b: Limiting if-conversion to SESE regions will cause C to execute even if
its predicate is all false.

Existing partial if-conversion algorithms do not guarantee that a block with a uniform control
mask will only be reached by execution if the control mask is true. Consider the unstructured CFG
in Figure 8.7. The block C has a uniform control mask, yet, after if-conversion it will always execute.
Bounding if-conversion to SESE regions, as commonly suggested [Timnat et al., 2014; Lee et al., 2014;
Lattuada and Ferrandi, 2017], does not solve this problem: the SESE region of block C spans the entire
CFG. In short, (bounded) if-conversion does not preserve uniform control dependence.

The early algorithm by Ferrante and Mace [1985] has O(n log n) complexity and inserts blocks and
branches.
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Wahlster [2018] presents a technique to handle divergent control-Ćow by transforming it into re-
converging control Ćow. Re-converging control-Ćow is a form of structured control-Ćow where the
immediate post-dominator of a branch has to be a direct successor of the branch. However, no guarantees
towards retained branches, synchronization or preserved uniform control dependence are given for that
technique.

Karrenberg [2015]; Karrenberg and Hack [2012] present an incomplete partial linearization algorithm
that recovers control with additional (so-called cluster-dependent) branches. These branches can cause
irreducible control even if the original CFG was acyclic. For example, KarrenbergŠs method already
creates an irreducible loop for the CFG in Figure 8.2. Regarding compile time, partial linearization has
linear complexity in the number of edges while the method of Karrenberg [2015] method is quadratic
and spans over Ąve algorithm listings. For absence of guarantees the BOSCC-gadget would not reliably
work with KarrenbergŠs method. In fact, the method by Karrenberg [2015] does not preserve uniform
control dependence as shown in Karrenberg [2015, Fig. 6.11].

A different class of algorithms insert new basic blocks, predicates and branches after complete
if-conversion [Anantpur and Govindarajan, 2014; Shin et al., 2005; August et al., 1999; Warter et al.,
1993]. None of the aforementioned techniques gives comparable branch preservation guarantees to partial
linearization.

Several techniques have been proposed to enable the loop vectorization of non data-parallel loops [Sam-
paio et al., 2017; Baghsorkhi et al., 2016]. The techniques presented here are applicable after these
techniques have established the legality of vectorization. Techniques such as block uniĄcation [Rotem and
Ben-Asher, 2014; Coutinho et al., 2011] that improve the utilization in divergent code are complementary
to partial linearization.
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Chapter 9.

Techniques for Divergent Control-Flow

We present two techniques in this chapter. The divergent loop transform, discussed in Section 9.1,
transforms divergent loop into uniform loops. The divergent loop transform is a crucial transformation
to make the vectorizer capable of vectorizing divergent control-Ćow. Second, Section 9.2 presents the
BOSCC gadget. The BOSCC gadget is an example for how a known optimization (BOSCC) can
be implemented easily exploiting the P-LLVM program representation and the properties of partial
linearization proved in Chapter 8.
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9.1. Divergent Loop Transform

A loop is divergent if threads that enter it may leave it through different loop exits or in a different loop
iterations. As discussed in Section 3.6, divergent loops are not directly vectorizable. Partial linearization,
presented in Chapter 8, removes control divergence in CFGs with uniform loops. This sections describes
the divergent loop transform, which transforms divergent loops info uniform loops.

9.1.1. Procedure

The Divergent Loop Transform operates in two phases. In the Ąrst phase, it makes the execution of the
loop body conditional on a predicate variable. In the second phase, the control Ćow towards loop exits
is redirected (rebounded) to stay in the loop and ϕ nodes are inserted to keep track of live out values
and which loop exits are taken. The Ąnal transformed loop is uniform.

We will work through the two phases along with the simple divergent loop shown in Figure 9.1.

PH

x = ϕ[n,PH] [xn ,H]
xn = log(x)
done = fcmp olt xn 1.0
br done X H

H

x. lcssa = ϕ[xn ,H]
// [..]

X

Figure 9.1.: Divergent loop with a single loop exit.

Phase 1: Basic Loop Structure

Figure 9.2a shows the basic loop structure created for the divergent loop in by the Ąrst phase. The
block NewH, D and L are newly created. The ϕ node live is a bitmask that will holds 1 for every thread
that executed the loop body and 0 otherwise. The shadow(0) operand of live guarantees correctness
in the presence of divergent control Ćow outside the loop. Threads that do not steer towards the loop
will receive a 0 activation bit in live. If no thread remains, stay is 0, then control is led to the newly
created loop exit D. Otherwise, control proceeds to H via Guard. The purpose of Guard is to make
execution of H conditional on the value of live.

Along with live, this phase emits a matching live.upd ϕ node in the new latch block L. We will
later connect new incoming edges to L and the live.upd ϕ node to change the value of live for the
next iteration.

Phase 2: Rebounding of Loop Exits

Figure 9.2b shows the result of the second phase. In this phase, every loop exiting edge is redirected,
rebounded, to the new latch block L. In order to allow the ϕ nodes to select based on the incoming edge,
the new block E is inserted to break the edge. Similar to live and live.upd, we create pairs of ϕ nodes
for every live out value. In the example xn lives out of the loop and is used in the exit X. The ϕ node
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x.out records the value that lives out. These values bounce back and forth between x.out and x.track.
Eventually, when all threads have taken the E to L edge, the live mask is all-false.

The loop header NewH dispatches to the new exit block D. The user x.lcssa of x in E is modiĄed to
receive the tracked live out values of x.track.

In case of multiple loop exits, additional tracking infrastructure is added to identify live out threads.
We show this in the more complex example in Section 9.1.1.

PH

live = ϕ[1,PH] [live.upd ,L] \
shadow (0)

x = ϕ[n,PH] [xn.ssa ,L]
stay := any(live)
br stay Guard D

NewH

D br live H L Guard

H

X

live.upd = ϕ[0, Guard] [1, H] \
shadow (0)

xn.ssa = ϕ[xn ,H] [⊤,Guard ] \
[⊤,E]

br NewH

L

(a) First phase: Basic loop scaffolding with
tracking mask for live thread (live).

PH

live = ϕ[1,PH] [live.upd ,L] \
shadow (0)

x. track = ϕ[ ⊤,PH] [x.out ,L]
x = ϕ[n,PH] [xn.ssa ,L]
stay := any(live)
br stay Guard D

NewH

D br live H L Guard

H

E

live.upd = ϕ[0, Guard] [1, H] \
shadow (0)

x.out = ϕ[x.track , Guard] \
[x.track ,H] \
[xn ,E]

xn.ssa = ϕ[xn ,H] [⊤,Guard ] \
[⊤,E]

br NewH

L

x. lcssa = ϕ[x.track ,NewH] X

(b) Second phase: Loop exit X is redirected to stay
in the loop.

Figure 9.2.: Two phases of the divergent loop transform.
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A Complex Example

br HPH

i = ϕ [0, PH] [inc , L]
x = ϕ [0, PH] [nx , L]
inc = add i 1
...

H

...
L1

...
L2

br HL

i.lc.1 = ϕ [i, H]
...

X1

i.lc.2 = ϕ [i, H]
x.lc = ϕ [x, H]
...

X2

(a) Cannonical divergent loop.

br NewHPH

i = ϕ [0, PH] [inc , L]
x = ϕ [0, PH] [nx , L]
live =

ϕ [1, PH] [live.upd , L] \
shadow (0)

x1. track =
ϕ [0, PH] [x1.taken , L] \

shadow (0)
i.out = ϕ [_, PH] [i.upd , L]
x.out = ϕ [_, PH] [x.upd , L]
spin := any(live)
br spin Guard Disp

NewH

br live H L

Guard

inc = add i 1
...

H

...
L1

...
L2

...

live.upd = ϕ [0, L1] [0, L2] \
[live , ..] \
shadow (live)

x1. taken = ϕ [1, L1] [x1.track , ...
i.upd = ϕ [inc , L1] [inc , L2] \

[track .i]
x.upd = ϕ [nx , L1] [nx , L2] \

[track .x]
br NewH

L

i.lc =
ϕ [i.out , NewH]

x.lc =
ϕ [x.out , NewH]

x1.disp.lc =
ϕ [x1.track , New]

br x1.disp.lc X1 X2

Disp

...

X1

...

X2

(b) Loop after divergent loop transformation.

We show a more complex application of the divergent
loop transform in Figure 9.3a. The loop has two exits,
the exiting edge from L1 to X1 and the exiting edge
from L2 to X2.

Figure 9.3b shows the uniform loop structure that
the divergent loop transform will generate for this loop.
The transformation succeeds in two steps, a control-
conversion step and a data-Ćow conversion step, detailed
below:

In the control-conversion step, the transformation
inserts masking infrastructure and re-structures the
loop to achieve uniform control-Ćow. The loop receives
a new loop header, NewH, that will control the execution
of the original loop body. The single live-tracker ϕ node
live of NewH holds the mask of active threads that are
designated to execute the loop body in this iteration.
The terminator of NewH takes all threads out of the
loop as soon as all active threads have reached a loop
exit - live. The new unique exit block Disp dispatches
control to the former loop exit blocks. The conditional
branch in GuardH establishes that the former loop body
H, executes with the explicit live mask live.

The original loop of Figure 9.3a is divergent because
of its non-uniform loop exits. The divergent loop trans-
form, redirects the loop exiting edges from their former
exit destinations to the latch block. This encodes the
execution state of each thread in its incoming block to
the latch, whether it took a speciĄc loop exit in this it-
eration of the loop (branch from exiting block; here, L1

or L2), whether the current thread has already left the
loop (branch from block Guard) or whether the thread
will stay in the loop for the next iteration (all other
incoming blocks). After this Ąrst stage, all divergent
loop exits have been removed; the newly inserted loop
exit edge from NewH to Disp is always uniform.

The data-Ćow stage is concerned with tracking live-
out values and installing masking instructions. Newly
added ϕ nodes in the header NewH, track the live threads
of the loop, live-out values and loop exit masks. Each
live-out ϕ node, <id>.out, holds the value of the live-
out variable <id> as an original loop exit was taken.
The exit tracker ϕ nodes, <exit_block>.track in the
example, hold the live mask of the loop exit blocks.
The transformation inserts a matching set of ϕ nodes
in the latch block L to update these header ϕ nodes as
necessary.
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9.2. Branch on Superword Condition Code (BOSCC)

Branch on Supercondition Code (BOSCC) [Shin, 2007] is a technique to add dynamic tests for uniformity
to skip over linearized code for which a static analysis failed to prove uniformity. BOSCC inserts
branches that skip a region if the predicate of the region entry evaluates to false for all SIMD threads. In
this section, we show how to obtain BOSCCŠed code generically using partial linearization. By exploiting
the guarantees we established in chapter 8, we show that handling BOSCC is contained as a special case
in partial linearization by adding a ŞBOSCC gadgetŤ (see below) to the CFG before linearization.

Potential for BOSCC occurs in real benchmarks and applications. Consider the innermost hot loop
from 644.nab_s benchmark from SPEC2017 shown in Figure 9.4. The dominating control feature of the
loop is a deep if-cascade with very biased branch probabilities, shown as comments in Figure 9.4. For
the three if-statements from Line 10 to Line 12 the probability to branch to the if-case is each at least
75% and even 100% for Line 12. So, there is a 91.3% chance that the loop will continue to the next
iteration already after Line 10.

1 for (k = 0; k < n; k++) {
2 .. j = pearlist [i][k]; ...
3 xij = xi - x[dim * j]; ...
4 r2 = xij * ...
5 if (r2 > rgbmaxpsmax2 ) continue ; // 0 %
6 ... sj = fs[j] * (rborn[j] - BOFFSET ) ...
7 if (dij > rgbmax + sj) continue ; // 0 %
8 ..
9 if (( dij > rgbmax - sj)) { ... } // 35.1 %

10 } else if (dij > 4.0 * sj) { ... } // 91.3 %
11 } else if (dij > ri + sj) { ... } // 75.0 %
12 } else if (dij > fabs(ri - sj)) { ... } // 100 %
13 } else if (ri < sj) { ... } // n/a %
14 }

Figure 9.4.: Structure of hot loop in SPEC2017 644.nab_s with branch probabilities (if-case taken).

br p B CA

C B

(a)

m = mask ()
s := and m p
anyb := any(s)
br anyb B C

S

C
br p B CA

B

(b)

S

C
A

B

(c)

Figure 9.5.: Basic BOSCC gadget construction. 9.5a: Divergent branch in A. 9.5b: BOSCC gadget to skip B.
9.5c: Deferral relation at node A.

The if-branches in Figure 9.4 are divergent since they depend on the iteration variable k and will
be fully if-converted. This leads to inefficient SIMD code as the statements below Line 10 will often
execute with an all-false predicate. BOSCC branches placed at the if-else cases skip the remainder of
the cascade as the predicate becomes all false. In fact, using BOSCC in Figure 9.4 leads to a speedup of
9.2% over the Intel C Compiler (icc) on AVX512.
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Figure 9.6.: 9.6a: Excerpt CFG from hot loop in nab (Listing 9.4, Line 11 till end). 9.6b: With three nested
BOSCC gadgets. 9.6c: After partial linearization.

The BOSCC Gadget

Consider the CFG in Figure 9.5a and suppose we want to insert a BOSCC-branch to skip block b if
its mask is all false. Block b has the unique predecessor a. We insert a BOSCC gadget, a small CFG
pattern that makes partial linearization skip over b and its dominance region if its mask is all false.
Figure 9.5b shows the installed BOSCC gadget.

The BOSCC gadget consists of a new block any(b) that contains the instructions of the original
block a minus its terminator. The block gets a new uniform branch that jumps to a, if any thread in the
mask of b is true, and branches to c otherwise. The BOSCC gadget makes sure that b will only execute
iff the predicate of b contains at least one live thread.

Figure 9.5c shows the CFG after partial linearization has passed through the BOSCC gadget. The
divergent branch of block a has been if-converted while the any(b) branch persists as it is uniform. The
linearized CFG will skip block b, and its dominance region, if the predicate of b is all false. This is
guaranteed by the branch preservation property (Theorem 5) of partial linearization.

In the hot loop of the nab benchmark, we insert all-false tests in three locations. On the left
of Figure 9.6, we show the part of the CFG with the last four if-else cases (Lines 10 to 12) in the loop
body. We insert three BOSCC gadgets to skip the if-statements contained in the else-cases, resulting
in the CFG of Figure 9.6b. Figure 9.6c shows the linearized CFG. The locally-inserted BOSCC gadgets
have a non-local effect on partial linearization: the order of the if-cases in the linearized CFG is reversed
compared to the code of Figure 9.4. This arrangement lets the linearized CFG skip the remainder of the
if-cascade as soon as one of the all-false tests succeeds.
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9.3. Related Work

BOSCC gadget. The BOSCC technique [Shin et al., 2009; Shin, 2007] inserts BOSCC branches after
if-conversion and requires a predicate hierarchy graph [Mahlke et al., 1992]. The technique presented
by Lee et al. [2014] depends on structural analysis and can only insert BOSCC-like tests for SESE
regions. In contrast, the BOSCC gadget encodes the semantics of BOSCC branches directly in the CFG.
Partial linearization then natively folds these down to their intended effect, even in unstructured control
scenarios and without additional data structures.

Sun et al. [2019] present a related versioning scheme using all true tests. The guarded regions do not
require predication since the activation is all true. Their implementation is based on the RV system and
follows the construction of an earlier version of the BOSCC gadget presented in [Moll and Hack, 2018].

The ISPC language [Pharr and Mark, 2012] features a coherent if statement (cif), which is the
equivalent of BOSCC in the structured AST setting. However, the ISPC implementation treats coherent
if statements specially, whereas the BOSCC gadget is build from standard P-LLVM components: any
conditions and branches.

Transforming Divergent Loops. Previous work has looked into handling loops with divergent
exits [Karrenberg and Hack, 2011; Timnat et al., 2014; Reiche, 2018; Pharr and Mark, 2012; Karrenberg,
2015]. This includes the set up of live masks for divergent loops. Uniform exits in divergent loops were
also studied previously [Karrenberg and Hack, 2012]. However, all of these approaches handle divergent
loops specially throughout the vectorizer pipeline. Our approach makes divergent loops uniform in a
standalone transformation. The following analyses and transformations, including the if-conversion
algorithm, become simpler since all loops they see are uniform.

Krzikalla et al. [2016] present a different manual transformation for divergent loops. In their scheme,
new work items take the place of iterations that leave a loop early. Lang et al. [2018] present a similar
technique in the context of query compilation for databases. There, empty lanes are Ąlled up with new
query tuples. We believe that their transformation could be automated on the P-LLVM representation
similar to the divergent loop transform.
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Chapter 10.

The Stride-Alignment Lattice

This chapter presents the Stride-Alignment Lattice (sa-lattice), an abstract analysis lattice for the
divergence analysis. The sa-lattice is a reĄnement of the basic divergence lattice (Section 6.1), which
only knows uniform and varying shapes. First, more values and branches can be proven to be uniform
as we will show in Section 10.3. Branch conditions that could not be proven uniform by the divergence
analysis trigger if-conversion or other mitigation schemes. Unnecessary if-conversion can have a negative
impact on the runtime performance of the generated SIMD code. Second, if a value has a strided vector
shape, it can be represented by a scalar value in the SIMD code. Third, the widening phase exploits
strided shapes for pointers to generate efficient SIMD loads and stores. If a pointer has a strided vector
shape that strides in the element size of the pointer, the widening phase can emit an efficient contiguous
memory access.

10.1. Abstract Lattice

1 void foo(int tid ,
2 float *A, float *B) {
3 // tid : (1 ,4)
4 int i = -2 * tid;
5 // i : (-2,8)
6 A[tid] = B[i];
7 }

(a) Strided accesses to buffers A and B.

4 5 6 7(1, 4)

−8 −10 −12 −14(−1, 4)

(b) Strided shape valuations.

ak ak + s ak + 2sak + 3s(s, a)

(c) Strided shape pattern (for any
k ∈ Z).

Figure 10.1.: Strided shapes.

1 void foo(int tid , int k) {
2 // tid : (1 ,4)
3 // k : (0 ,8)
4 if (tid >= k) {
5 // This branch is uniform .
6 }
7 }

(a) The branch is uniform since k is
uniform and a multiple of 8.

16 16 16 16(0, 8)

(b) Uniform valuation (any multiple of
8).

ak ak ak ak(0, a)

(c) Uniform shape pattern (for any
k ∈ Z). The uniform shape is a

strided shape with stride 0.

Figure 10.2.: Uniform shapes

The sa-lattice distinguishes two classes of shapes, strided and varying, and a bottom element ⊥
whose instances jointly make up the elements of the lattice. We informally describe the vector shapes as
follows.
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1 void foo(int tid , int *Idx) {
2 int j = 4 * Idx[tid ];
3 // j : 4
4 v = B[j];
5 }

(a) Varying shape. The lattice retains
that j is a multiple of 4.

16 −4 0 444

(b) Example for varying valuation.

ak0 ak1 ak2 ak3a

(c) Varying shape pattern (for any
ki ∈ Z). Lanes are unrelated, each

of them is a multiple of a.

Figure 10.3.: Varying shapes.

• The class of Varying shapes, written a where a ∈N is called the alignment. All of these shapes
make no assumption on the relation of threads to each other. However, the value of each thread is
a multiple of the alignment (a).

• The class of Strided shapes, written (s, a). The value for Ąrst thread is a multiple of a, all other
threads have the value offset by their thread identiĄer times the stride s.

Figure 10.1a shows a small example program with two strided memory accesses. The variables tid

and i both have strided shapes. Figure 10.1b shows two possible valuations for four threads for the
strided shapes of the example. Since the memory accesses are contiguous, the vectorizer can emit fast
strided memory access instructions, which are more efficient than gather or scatter instructions.

In the sa-lattice, uniform shapes are simply strided shapes with a stride of 0. Figure 10.2a shows
a branch condition that compares a uniform (stride 0) variable with the strided (stride 1) thread if
variable. Juding by the operand shapes, the abstract transformer for >= infers that the branch condition
is uniform. Figure 10.2b shows a possible valuation for the uniform shape in the example.

These occur, for example, in strided memory accesses. If a memory access known to be strided, the
vectorizer emits a SIMD instruction that is more efficient than a gather or scatter.

V sa = ¶ ⊥ ♢ ∪ ¶ (s, a) ♣ s ∈ Z, a ∈N ♢ ∪ ¶ a ♣ a ∈N, a > 0 ♢

γsa(a) =
{

λt ∈ T .akt

∣

∣

∣
k ∈ Z

W
}

γsa(⊥) = ¶ ♢

γsa((s, a)) = ¶ λt.ak + st ♣ k ∈ Z ♢

Figure 10.4.: Abstract elements (V sa) and concretization (γsa) for the three classes of vector shapes in the
sa-lattice ((s, a) and a and ⊥).

Figure 10.4 formally introduces the elements of the sa-lattice and their concretization functions.
Revisiting the introductory examples, we show the pattern of the concretization functions in the right-
most subĄgures: Figure 10.1c, Figure 10.2c and Figure 10.3c. In strided shapes, the Ąrst lane is always
a multiple of the alignment a, all other lanes derive their value from the Ąrst lane by adding their lane
position times the stride s. In varying shapes, each lane is an independent multiple of a, therefore there
is an independent ki for each lane position i.

The reĄned shapes of the sa-lattice enable the divergence analysis to prove strided memory access
patterns across obscured address arithmetic. Figure 10.5 shows an example for this. Figure 10.5a
contains a short code listing with two memory accesses.

We presume that the base pointer A is uniform and that i has the shape (1, 8). The shape (1, 8)
tells us that i is contiguous and for the Ąrst thread of the thread array, the value of i is a multiple of 8.
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1 r = A[2*i ];
2 s = A[2*i + 1 ];
3 // p0 == &A[2*i];
4 // p1 == &A[2*i+1];

(a) Source code.

1 x = mul 2 i : (2 ,16)
2 j = add x 1 : (2 ,1)
3 p0 = elemptr A x : (16 ,8)
4 p1 = elemptr A j : (16 ,8)

(b) Natural IR lowering.

1 x = shl i 1 : (2 ,16)
2 j = or x 1 : (2 ,1)
3 p0 = elemptr A x : (16 ,8)
4 p1 = elemptr A j : (16 ,8)

(c) Address arithmetic obscured by
LLVM transformations.

Figure 10.5.: The combination of stride and alignment allows the sa-lattice to prove strided-ness across obscured
offset computations. The type of A is f64* and the pointer is aligned to 8 byte.

This shape occurs, for example, if the variable i is the iteration variable of a loop that is vectorized for
W = 8.

Figure 10.5b shows the P-LLVM IR for the code snippet in Figure 10.5a. The multiplication by the
constant factor 2 only leads to a scaling of the stride and alignment of the shape of i. Adding 1 to the
shape (1, 8), results in an unaligned value. However, the information that the stride is 2 is preserved
through the add. Finally, the address computations deĄning the pointers p0 and p1 again only rescale
the strided offsets into the array A. The strided shapes enabled the divergence analysis to prove that
both pointers are strided.

The optimization passes of LLVM (InstSimplify, InstCombine), replace arithmetic instructions by
cheaper bit arithmetic. Figure 10.5c shows Figure 10.5b after these passes have replaced the mul with a
shl (left shift) and add with an or. Still, exploiting the stride and alignment information contained
in the sa-lattice shapes, the divergence analysis is able to prove that p0 and p1 are strided. The shl

is conceptually a multiplication by two and again handled by rescaling the strided shape of i. As the
alignment of x is 16 it is in particular a power of two and so the least-signiĄcant bit of x is always zero.
Hence, the or behaves like an addition.

We use the V sa lattice for all pointers and integer values in the program. All other values, such as
those of boolean and Ćoating-point type, still use the basic divergence lattice (Section 6.1), distinguishing
only uniform (u) and varying (v) shapes.

Machine Integer Interpretation. The sa-lattice is deĄned in terms of integers and natural numbers.
Actual IR uses IR integer types with a Ąnite number of bits. The concretization γsa is to be interpreted
in the native type of the IR value. Let us say that v : (a, b) and the type of v is iN with N being the
number of bits. Then γsa should be interpreted in the native bit width of the integer with the alignment
and stride recast to the native integer type, truncating them where necessary. This is possible since the
operations in the deĄnition of γsa in Figure 10.4 are sign-agnostic (multiplication and addition).

If the integer value y is a bit string, we denote by [y]S ∈ Z the signed integer interpretation and
by [y]U ∈N the unsigned integer interpretation.

120



10.2. Lattice Structure

The divergence analysis presented in Chapter 6 is a Ąxed-point solver for the abstract divergence analysis
lattice. Assuming that all abstract transformers are monotonic and all ascending chains in the divergence
lattice are Ąnite, the divergence analysis converges to a Ąxed point in a Ąnite number of iterations [Kam
and Ullman, 1977].

The partial order relation ⊑ of the sa-lattice is shown in Figure 10.6.

⊥ ⊑ x ∀x ∈ V sa

a ⊑ a′ ⇐⇒ a′♣a ∀a, a′ ∈ V sa

(s, a) ⊑ (s, a′) ⇐⇒ max(a′, 1)♣a ∀(s, a), (s, a′) ∈ V sa

(s, a) ⊑ a′ ⇐⇒ a′♣ gcd(s, a) ∀(s, a), a′ ∈ V sa

Figure 10.6.: Partial order of V sa lattice elements (We deĄne gcd(a, 0) = gcd(0, a) = 0).

The basic divergence lattice (Section 6.1) only knows three shapes: varying, uniform and ⊥. All
ascending chains in the basic divergence lattice are trivially Ąnite. It is not obvious that all ascending
chains in the sa-lattice are Ąnite because the lattice contains a countably inĄnite number of vector
shapes. The proof for Theorem 6 shows that indeed all ascending chains in the partial order ⊑ of the
sa-lattice are Ąnite.

Theorem 6 (Finite Asending Chains). The partial order ⊑ of the sa-lattice, deĄned in Figure 10.6, has
only Ąnite ascending chains.

Proof. An ascending chain that starts in a varying element stays in the realm of varying elements. This
is because a Varying class shape is never smaller equal than a Strided shape in the partial order ⊑.
Hence, if the claim is proved for both classes separately it holds for the entire partial order. Since then,
any chain that starts in the Strided class crosses over to the Varying class after a Ąnite number of steps.
Any tail chain within the Varying class is then again Ąnite. Hence, we only need to show the claim for
the cases a ⊑ a′ and (s, a) ⊑ (s, a′).

In the case of a ⊑ a′, the ordering holds whenever a′♣a. Given that a ̸= a′, this is only possible if
a = a′k for some k ∈ N, k ̸= 1. Therefore always a > a′. Since a ∈ N, on any such chain eventually
a = 1. Due to the fact that a ∈N this happens after a Ąnite number of steps for any a.
The (s, a) ⊑ (s, a′) case follows analogously.

10.2.1. Relation to the Basic Divergence Lattice

Most analysis and transformations in the vectorization system only need to know whether branch
conditions are uniform or not. For example, Partial linearization (Chapter 8) retains uniform branches
and the control-divergence analysis (Chapter 7) will only trigger for non-uniform branch conditions. This
fundamental distinction between uniform and non-uniform values is what makes up the basic divergence
analysis lattice (Section 6.1).

Some abstract transformers operate on both, the sa-lattice and the basic lattice, at once, e.g. when
data is converted. When this happens, shapes of the basic lattice are translated to sa-lattice shapes and
vice versa.

121



Going from the sa-lattice to the basic lattice, translation is done as follows: Every uniform strided
shape (0, a) for any alignment a translates to the u vector shape of the basic lattice. All other shapes,
except for ⊥, map to v, the varying shape of the basic lattice. These are all non-0 strided and varying
shapes of the sa-lattice. Going from the basic lattice to the sa-lattice, the basic uniform shape translates
to (0, 1), the uniform shape of all uniform integer vectors. The basic varying shape v translates to 1, the
varying shape of all integer vectors with independent values.

Consider the instruction z = bitcast f64 x, if x has the type i64 it has a vector shape of the
sa-lattice. The result of the instruction however has the f64 type and obtains a vector shape of the
basic divergence lattice.

We introduce abstract transformers for the sa-lattice for some instructions in Section 10.4. For
instructions and cases not included in the sa-lattice transformers, we use the transformers of the basic
divergence lattice instead. Where these make use of explicit u or v in their deĄnition, we adapt the
sa-lattice shapes using the equivalences above.
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10.3. Example: Comparison to the Basic Lattice

There are cases where the sa-lattice enables the divergence analysis to prove that more values are
uniform than possible with the basic divergence lattice. Consider the outer-loop vectorization case shown
in Figure 10.7a. Figure 10.7b shows the two results of two runs of the divergence analysis once obtained
with the basic lattice (directly after the colon) and once with the sa-lattice (annotated to the right of
the basic lattice shapes, separated by a comma).

1 double * A, B;
2 // ..
3 # pragma omp simd simd_len (4)
4 for (i = 0; i < n; ++i) {
5 for (j = 4; j < m; j *= 2) {
6 A[i / j] = B[j]
7 }
8 }

(a) Source code.

1 // i : v; (1, 4)
2 H: j = ϕ [E ,4] [B,jN] : u, (0, 4)
3 e = icmp slt j m : u, (0, 1)
4 br e B X
5

6 B: // j loop body
7 d = sdiv i j : v, (0, 1)
8 Aptr = elemptr A d : v, (0, 32)
9 Bptr = elemptr B j : u, (0, 32)

10 x = load Bptr : u, (0, 1)
11 store Aptr x
12 jN = shl j 1 : v, (0, 8)
13 br H
14

15 X: .. // latch of i loop

(b) Divergence analysis results with basic lattice shapes
(left) and sa-lattice shapes (right).

1 // ..
2 j.repl = broadcast <4xi32 > j
3 j.v = add <4 x i32 > j.repl <0,1,2,3>
4 d.v = sdiv <4 x i32 > i.v j.v
5

6 Bptr = elemptr i32* B j
7 x = load i32 Bptr
8

9 Aptr.v = elemptr <4 x i32 >* A d.v
10 x.v = broadcast <4xi32 > x
11 scatter Aptr.v x.v
12 // ..

(c) SIMD code from basic shapes. Basic shapes are
insufficient to prove uniformity of the sdiv and store
address to the A array. This results in a slow scatter

operation.

1 // ..
2 d = sdiv i32 i j
3

4 Aptr = elemptr i32* A d
5 Bptr = elemptr i32* B j
6 x = load i32 Aptr
7

8

9

10

11 store Aptr x
12 // ..

(d) SIMD code from sa-lattice shapes. Since all shapes
are uniform, the generated SIMD code only contains

scalar instructions.

Figure 10.7.: Example program annotated with basic lattice shapes and sa-lattice shapes. sa-lattice shapes
assuming W divides 4 and A and B are aligned to at least 32 byte.

In Line 7 of Figure 10.7b, the inferred basic lattice shape is varying whereas for the sa-lattice, d is
shown to be uniform. The widening phase exploits uniform vector shapes to generate more efficient SIMD
code. Using only the basic shapes, the widening phase produces the SIMD code shown in Figure 10.7c.
Since the shape of d is varying, the division operation deĄning d is widened to a vector division. This is
worse than it may seem since many SIMD ISAs do not have a SIMD integer division (AVX2). For those
targets, the compiler backend splits the SIMD division into four separate scalar division operations.
Further, since the pointer Aptr is also varying, a slow scatter operation is generated.

Compare this to the SIMD code that is generated if the divergence analysis is using sa-lattice shapes,
shown in Figure 10.7d. Since in fact all inferred sa-lattice shapes are uniform, the SIMD code generator
only emits scalar instructions.
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10.4. Abstract Transformers

The abstract transformer deĄnitions are partial, that is some of them are not deĄned if any of their
operands have a ⊥ shape. We lift the abstract transformers to return ⊥ in that case to obtain deĄnitions
for the total input domain. Other unspeciĄed cases defer to the generic transformer of the basic lattice,
i.e. [DA-UARITH] and [DA-DARITH] of Figure 6.6. The ϕ nodes and memory accesses are handled by
interpreting the deĄnitions of their transformers (provided in Section 6.5.1 and Section 6.5.2) in the
sa-lattice domain.

The analysis state is given as a mapping from variables to vector shapes, denoted A. This is a
shorthand for the mapping Shapes of the divergence analysis state given in DeĄnition 19. The look up
of the vector shape of variable x in the current analysis state is given by A(x).

10.4.1. Constants

If c is some integer or pointer constant in the program, then it has uniform shape with the literal integer
value as its alignment.

JcK♯ = (0, ♣c♣)

For the corner case c = 0, this results in the (0, 0) shape, which precisely concretizes to the zero
vector. We We deĄne the function constval(x) to evaluate to the value of x if x is a constant.

10.4.2. Integer Arithmetic

We deĄne the auxiliary function threadalign in Figure 10.8. The function returns the greatest common
alignment of all vector elements that can be inferred from the vector shape.

threadalign(x) =

{

a if x = a

gcd(s, a) if x = (s, a)

Figure 10.8.: DeĄnition of the per-lane alignment. The function threadalign is not deĄned on ⊥.
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Jadd x yK♯ A =



















(s + s′, gcd(a, a′)) A(x) = (s, a) ∧A(y) = (s′, a′)

gcd(s′, a′, a) A(x) = (s′, a′) ∧A(y) = a

gcd(a, a′) A(x) = a∧A(y) = a′

Jadd y xK♯ A otw

Jsub x yK♯ = Jadd x (-y)K♯

J(-y)K♯ A =

{

a A(y) = a

(−s, a) A(y) = (s, a)

Jmul x yK♯ A =



















ca constval(x) = c∧A(y) = a

(cs, ca) constval(x) = c∧A(y) = (s, a)

(0, aa′) A(x) = (0, a) ∧A(y) = (0, a′)

aa′ a = threadalign(A(x)) ∧ a′ = threadalign(A(y))

Figure 10.9.: Integer arithmetic transfer functions for V sa.

Jsdiv x yK♯ = divS(x, y) Judiv x yK♯ = divU (x, y)

divT (x, y) A =











(s/c, a/♣c♣) (s, a) = A(x) ∧ [y]T = c ∈ Z ∧ c♣s∧ c♣a

a/♣c♣ a = A(x) ∧ [y]T = c ∈ Z ∧ c♣a

generic(A(x), A(y))

Figure 10.10.: Signed/Unsigned transfer functions for V sa ([y]T is the signed or unsigned interpretation of
the constant y).
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10.4.3. Function Calls

The sa-lattice represents the lane id function precisely with the (s, 0) corner case.

A(thread_id()) = (1, 0)

γsa((s, 0)) = ¶ [0, s, .., s(W − 1)] ♢

10.4.4. Comparison Instruction

Comparison operators demand special attention since they are potentially branch conditions.

1 // W = 4
2 tid = thread_id () : (1, 0)
3 //vec(tid) = [0, 1, 2, 3]
4

5 // Given k, l : u

6

7 bool b = 4*l + tid >= 36*k; : u

Figure 10.11.: Uniformity of integer comparison (variable b) using the sa-lattice.

Figure 10.11 shows an example of boolean variable that can be proven to be uniform in the sa-lattice.
The variable tid has a precise representation in the lattice. The transformer for icmp is then able to
prove uniformness.

Jicmp sge x yK♯ A =



















u if A(x) = (s, a) ∧A(y) = (s, a)

u if
A(x) = (s, a) ∧A(y) = (s′, a′)

∧max(s, s′)(W − 1) < min(s, s′)(W − 1) + gcd(a, a′)

v otw

Jicmp eq x yK♯ A =

{

u if A(x) = (s, a) ∧A(y) = (s, a′)

v otw

Figure 10.12.: Abstract sa-lattice transformers for integer comparison.

Figure 10.12 shows the transformer for icmp sge (the signed greater-equal comparison) and equality.
The other integer comparisons follow an analogous construction and are not presented here. The
condition for uniformity of icmp sge (signed integer, equal-less-than comparison) with strided operands
is visualized in the diagram of Figure 10.13.

The slopes of the two lines are the respective strides of the shapes. This is the case in the signed
greater-than-equal comparison in Line 7 of Figure 10.11. Assuming that k and l have an alignment of 1

(they are unaligned), the vector shape of 4*l + tid is (1, 4) and for 36*k it is (0, 36). Therefore, the
transformer in Figure 10.12 shows the b is uniform.
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t0

t1

t2

t3

T

max(s, s′)

1

min(s, s′)

1

0 Concrete values (Z) gcd(a, a′)

Jicmp sge x yK♯ = u

A(x) = (s, a) and A(y) = (s′, a′).

Figure 10.13.: Visualization of the condition for uniformity for icmp sge as deĄned in Figure 10.12. The y
axis is refers to the thread index (as indicated by the ti on the left). Uniformity is detected
when the two sloped lines do not cross.
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10.4.5. Bit Arithmetic

The encoding of alignment in the vector shapes enables the sa-lattice transformers to detect stride and
alignment through certain bit arithmetic operations. We provide here the transformers of or and shl as
examples of the kind of reasoning that is possible with sa-lattice shapes. The or and shl transformers
compute the shown strided shapes for the pointers p0 and p1 in Figure 10.5c.

Or. The or behaves like an add operation for certain operand shapes. Consider the case of Jor x cK♯

such that c is an integer constant. We shall ignore the case that c = 0 since then A(x) is returned. The
following applies if there is a nc ∈N such that the bit c[nc − 1] is 1 and all bits with higher signiĄcance
are 0. If further A(x) = (s, a) and 2nc ♣ gcd(s, a) then the resulting shape is given by Jaddx cK♯.

Jshl x yK♯ A =











Jmul x 2cK♯ A if constval(y) = c

(0, a2a′

) if A(x) = (0, a) ∧A(y) = (0, a′)

a2a′

if a = threadalign(A(x)) ∧ a′ = threadalign(A(y))

Figure 10.14.: Left-shift transformer.

Shl. Figure 10.14 shows the transformer for left-shift. The transformer builds on the connection
between integer multiplication and the left-shift operation, i.e. x2y = shl x y. When y is a constant,
the abstract transformer for shl defers to the one for multiplication.

10.4.6. Address Computation

The sa-lattice shapes of pointer values are interpreted in the smallest addressable unit of the IR (a
byte). The abstract transformer of the elemptr instruction hence spells out the offset computation as a
expression consisting of mul and add terms. Those are handled by the abstract transformers for add

and mul, described in Section 10.4.2.
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10.5. Related Work

Many earlier works in data-parallel programming languages [Hanrahan and Lawson, 1990] and divergence
analyses [Stratton et al., 2010; Yue et al., 2013] conceptually implement the basic divergence lattice.
The basic divergence lattice is insufficient to detect contiguous memory accesses since all non-uniform
pointers are varying. To this end, an induction variable is sometimes used to detect stridedness in
memory accesses [Yue et al., 2013].

The Whole-Function Vectorizer by Karrenberg [2015] uses a restricted stride alignment lattice. The
lattice encompasses uniform elements, positive unit-strides, and positive strides combined with a binary
aligned Ćag. The consecutive interpretation for pointers is typed, that is a unit-stride in a pointer means
that consecutive array elements are addressed whatever the element size may be. The strided class
does not identify any particular stride value but represents an unknown stride. Alignment is an on-off
property: an integer is aligned, if its a multiple of the vector width, a pointer is aligned if it would
justify an aligned SIMD load. The WFV lattice does not represent negative strides.

[Sampaio et al., 2013] present the affine lattice, which supports stride but not the alignment part
of the sa-lattice. Their lattice does not detect the stride in Figure 10.5c. They also discuss general
polynomial constraints.

Alur et al. [2017] show which memory instructions are coalesced on in CUDA kernels. That is
that the set of addressed elements of a memory instruction is within the range of 12 byte. They
introduce an expressive boolean divergence lattice to identify branch conditions that imply that only a
single thread reaches a guarded block. To this end, the lattice distinguishes an all-false element (F),
all-true (T), all-true-but-one (T-), all-false-but-one (F-). It should be noted that they do not consider
control-divergence or predication for this property at all. Concerning integer values, they do not model
alignment at all but a Ąxed set of strides ¶ −1, 0, 1 ♢ and varying.

The divergence lattice by Collange [2011a] is very similar to ours. It features (s, a) shapes and
the a class. The stride may be ⊤ implying that the stride is not a constant similar to OpenMP [2015]
linear clauses. However, the alignment is limited to powers-of-two. Abstract transformers are only
sketched rudimentary in Collange [2011a, Table 1.]. The transformer for integer multiplication is actually
incorrect.

OpenMP [2015] features a divergence lattice similar to the one by Collange [2011a]. There, the
alignment is limited to pointers. The lattice is only used to specify function parameters in whole-function
vectorization (#pragma omp declare simd). For example, the stride may be a loop-invariant value
(e.g. a uniform function parameter or an increment x += p in loop vectorization). No transformers are
provided.

In conclusion, no published divergence analysis presents lattices and transformers to detect the
strides in Figure 10.5c.
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Chapter 11.

Loop-nest Tensorization

Some codes beneĄt from considering multiple loops at once in the vectorization process. We refer to
the vectorization in multiple nested loops as tensorization since a tensor is nothing more than the
multi-dimensional version of a vector. This chapter presents the TensorRV system, which generalizes the
RV vectorization systems to tensors.

We provide two motivating examples to demonstrate the beneĄts of tensorization, a 5-point Jacobi
stencil and matrix transpose. The tensorized versions in Figure 11.2 and Figure 11.3 were automatically
generated from scalar code with our tensorizer prototype.

1 for (j = 1; j < rows - 1; j += 1) {
2 for (i = 1; i < cols - 1; i += 256) {
3 a = load_v256 (A(j-1, i ));
4 b = load_v256 (A(j , i -1));
5 c = load_v256 (A(j , i ));
6 d = load_v256 (A(j , i +1));
7 e = load_v256 (A(j+1, i ));
8

9 store_v256 (B(j,i), .2 * (a+b+c+d+e));
10 }
11 }

(a) Vectorized in the i loop (width 256).

. . . .

256

(b) Cells indicate loaded elements. Hatched cells
indicate computed results (a store). In average,
3 unique cells have to be loaded to compute

one result.

Figure 11.1.: Vectorized 5-point Jacobi stencil.

The 5-point Jacobi example shows how tensorization naturally results in vector register tiling
and vector load coalescing. We show the vectorized version in Figure 11.1 and the tensorized version
in Figure 11.2. The loop-vectorized Jacobi kernel in Figure 11.1a performs Ąve vector loads to compute
one result. We show the memory access footprint of one invocation of the vectorized kernel in Figure 11.1b.

Contrast this with the tensorized version shown in Figure 11.2a where the stencil is tensorized in
both the i-loop by 256 and the j-loop by 2 at once. We see two effects of tensorizing this kernel: First,
since the native vector length of the target is 256, the tensor values of 2× 256 elements are tiled into
two vector registers. Second, our memory access chunking scheme implements tensor loads using fast
contiguous vector loads. The memory loads of the tensorized code overlap, which is why c0 and e0 are
equivalent to already loaded values. In effect, the tensorized kernel performs eight loads to compute two
results on average where the vectorized kernel requires ten loads to achieve the same.

However, there is more to tensorization than register tiling: By considering an entire loop nest, we
can emit fast contiguous memory accesses even if the memory instructions of a kernel are contiguous in
different iteration variables. We demonstrate this for matrix transposition, that is the transformation
B(i, j) = A(j, i).

In the tensorized matrix transpose, shown in Figure 11.3, four contiguous loads and four contiguous
stores are used along with shuffles to efficiently transpose 16 matrix elements in one go. This leads to a
speedup of 6.11× over the loop vectorized version on a AVX512 platform in multi-threaded execution
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1 for (j = 1; j < rows - 1; j += 2) {
2 for (i = 1; i < cols - 1; i += 256) {
3 a0 = load_v256 (A(j-1,i ));
4 a1 = load_v256 (A(j ,i ));
5 b0 = load_v256 (A(j ,i -1));
6 b1 = load_v256 (A(j+1,i -1));
7 c0 = a1; // reuse
8 c1 = load_v256 (A(j+1,i ));
9 d0 = load_v256 (A(j , i +1));

10 d1 = load_v256 (A(j+1, i +1));
11 e0 = c1; // reuse
12 e1 = load_v256 (A(j+2, i ));
13

14 b0 = .2 * (a0+b0+c0+d0+e0 );
15 b1 = .2 * (a1+b1+c1+d1+e1 );
16 store_v256 (B(j ,i), b0 );
17 store_v256 (B(j+1,i), b1 );
18 }
19 }

(a) Jacobi tensorized in both j (width 2) and i

(width 256) resulting in 20% less vector loads.

. . .

. . .

256

(b) In average 2 unique cells have to be loaded to
compute one result.

Figure 11.2.: Tensorized 5-point Jacobi stencil.

1 for (j = 0; j < rows; j += 4) {
2 for (i = 0; i < cols; i += 4) {
3 // fetch contiguous chunks of A
4 a0 = load_v4 (A(j , i);
5 ..
6 a3 = load_v4 (A(j+3, i);
7

8 // in - register transpose
9 b0 = shuffle (a0[0], a1[0], a2 [0], a3 [0])

10 ..
11 b3 = shuffle (a0[3], a1[3], a2 [3], a3 [3])
12

13 // store contiguous chunks to B
14 store_v4 (B(i, j), b0)
15 ..
16 store_v4 (B(i, j+3), b3)
17 }
18 }

(a) Matrix transpose tensorized in both loops by
4 × 4. Loads are contiguous in i. Stores are

contiguous in j.

a0

a1

a2

a3

b0 b1 b2 b3

shuffle

(b) Efficient shuffle operations transpose a 4 × 4

tile of the matrix in one invocation.

Figure 11.3.: Tensorized matrix transposition kernel.

(Section 13.4). When vectorized in only one loop, there is only one contiguous access and the other
would be a slow scatter or gather instruction.

11.1. Tensorization

Tensorization is the generalization of vectorization to multiple dimensions. The logical generalization of
the one-dimensional number of threads is the tensor brush, as given by DeĄnition 24.

DeĄnition 24. (Tensor Brush) A P-LLVM tensor program executes for a d-dimensional array of
threads, whose sizes are given by the tensor brush:

B = (m0 × · · · ×md−1)

131



The value mi ∈N is the size of the brush in the direction of the i-th dimension.

In one-dimensional vectorization, the threads of the thread array are enumerated by their thread
identiĄer t ∈ T = ¶ 0, .., W − 1 ♢. In tensorization, we use Coordinates to refer to the multi-dimensional
elements of a given brush. For example, (1, 2) is a valid coordinate for the brush B = 4× 4.

In loop-nest tensorization, each dimension of the brush corresponds to one loop level of the loop
nest. The outer-most loop is always at dimension 0 increasing with each nested loop.

11.2. System Overview

Figure 11.4 gives an overview of the loop-nest tensorization pipeline. The main inputs to the system are
the loop nest to tensorize, the tensor brush, which speciĄes the extent of the tensor in each loop and
the brush projection, which describes how the coordinates in the tensor brush are mapped to SIMD
registers.

The pipeline operates in four phases: First, the tensor shape analysis determines how each variable
behaves in relation to the loops that surround it (Section 11.3). We also run LLVMŠs Scalar Evolution
analysis to decompose address arithmetic into multi-dimensional array accesses with index vectors. We
optionally permute index vectors to transform the data layout (Section 11.7). Second, we group memory
accesses into strips of contiguous buffer elements (Section 11.4). Finally, the tensor shapes and memory
access groups are used to generate SIMD code with optimized memory accesses (Section 11.6). During
the SIMD code generation step, the brush projection determines how the coordinates in the tensor brush
are mapped to the one-dimensional lanes of SIMD registers.

11.3. Tensor Shapes

The tensor shape analysis determines whether and how the instructions in the loop nest depend on the
iteration variables of the loops that surround them. The analysis assigns to every instruction a tensor
shape that captures the nature of this dependence.

The tensor shape describes per surrounding loop how the value of the instruction changes from one
loop iteration to the next. This information is recorded separately for each dimension, similar to how
the set of partial derivatives constitutes the complete derivative of a function. For each dimension of the
loop nest separately, tensor shapes hold a vector shape deĄned as:

T1D = Z ∪ ¶⊤ ♢

The set of d-dimensional tensor shapes, T d, is then the composition of d one-dimensional vector
shapes:

T d = (T1D)
d

We will use the notation (s0, s1, s2) ∈ T 3 to denote the elements of a 3D tensor shape. Each si ∈ T1D

is the dimension shape of its dimension i.

If si ∈ T1D is an integer, then si is the constant loop increment for the annotated instruction for the
loop at dimension i. In particular if si = 0 then the annotated instruction is invariant, that is uniform,
in the loop. If si ∈ T1D is ⊤, then the instruction is varying in dimension i but the nature of the variation
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for (i = 0; i < n; ++i)
for (j = 0; j < m; ++j)

for (k = 0; k < o; ++k) {
...
v = i + 4*k;
x = A[j*m+i];
...

}

Scalar

Evolution

(SCEV)

[Pop et al., 2005].

A[j*m+i]
Datalayout

Transformation

Section 11.7

A(j,i)

Memory Access Grouper

Section 11.4

A[i%2 +... +(j/2)*2*m]
A(j,i)

Tensor

Analysis

Section 11.3

2× 2× 2

Tensor Brush
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for (i = 0; i < n; i += 2)
for (j = 0; j < m; j += 2)

for (k = 0; k < o; k += 2) {
v = i + 4*k
float8 x = gather_v8 (A, ..)
...

}

Figure 11.4.: System overview of loop-nest tensorization.

1 for (i = 0; i < m; ++i) // dim 0
2 for (j = 0; j < n; ++j) // dim 1
3 for (k = 0; k < w; ++k) // dim 2
4 ..S..

(a) A 3D loop nest with placeholder statement S.

..S.. Tensor shape TS

i (1, 0, 0)

j (0, 1, 0)

k (0, 0, 1)

12 * i - 6 * j (12,−6, 0)

2*A(i) + 10 * j (⊤, 10, 0)

B(i,j) + 5 * k (⊤,⊤, 5)

C(i) * B(k) (⊤, 0,⊤)

C(B(j)) (0,⊤, 0)

(b) Upper section: initial tensor shapes, Lower section: tensor
shapes inferred by the tensor shape analysis.

Figure 11.5.: 11.5a: A 3D loop nest with placeholder statement S. 11.5b: Examples for S and their resulting
tensor shapes.

is not reĆected in the tensor shape. For example, if i is used in an array load such as A[..] then the
loaded value is always varying in i because the contents of the array are in general unknown.
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Figure 11.5a shows a three-dimension loop nest and the tensor shapes of its induction variables are
listed in the upper half of Figure 11.5b. The induction variables are invariant in all other dimensions
than their own. For example, the induction variable j has a stride of 0, that is it is uniform, in all
dimensions but dimension 1.

The tensor shape analysis propagates these initial shapes to all instructions in the loop nests. We
show some examples for Ąll-ins for the placeholder S of Figure 11.5a in the lower half of Figure 11.5b.

If the instruction computes an affine combination of iteration variables, the tensor shape reĆects
these as strides. The tensor shape analysis assumes that there are no loop-carried dependencies between
the instructions of the loop nest. Therefore, the tensor shapes of memory accesses only depends on the
tensor shape of the address computation. The relation between values loaded from different addresses is,
however, varying.
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11.4. Memory Access Grouping

If memory accesses are naively widened, there is often an overlap in the accessed elements among
different instructions. Memory access grouping is mapping out this overlap with the end of generating
more efficient vector memory accesses in the code generation phase.

An access group is deĄned by the equivalence relation
M
∼ on memory instructions plus coordinate

pairs. If (L, c)
M
∼ (L′, c

′) then the value loaded by L at tensor coordinate c will be the same as the one

loaded by LŠ at coordinate c
′. For example, it holds that A(i-1,j), (2, 0)

M
∼A(i,j), (1, 0).

Memory access grouping is concerned with constructing these access groups for all memory accesses in
the loop nest. Since the tensor brush has Ąnite extent and there are only Ąnitely many memory instructions
in the kernel, we can explicitly construct each access group by enumeration. The implementation builds
on LLVMŠs Scalar Evolution analysis to compute the offsets between pointers [Pop et al., 2005].

Figure 11.6a shows the memory access grouping of a 5-points Jacobi stencil. Assume that the loop
nest will be vectorized for a 4 × 4 tensor brush (DeĄnition 24). Figure 11.6b shows the resulting access
group for the loads in Line 3 to Line 7. We use a color/symbol coding scheme in the Ągure to visualize
each load instruction. To the right, in Figure 11.6b, we show the accessed elements of A. Each cell in
Figure 11.6b is an array subscript to A. The symbols in the cells indicate which positions of the array
are accessed by which load instructions.

As an example consider the cell marked Š+Š, which refers to the array element A(j,i). The cell
contains the instruction symbols of Line 3, Line 4 and Line 5. We can read off the access group that
Coordinate (1, 0) of the load in Line 3 refers to the same pointer as Coordinate (0, 1) of the load
in Line 4.

For our prototype, we assume that there are no conĆicts between loads and stores, e.g. that the
elements fetched by a load would become invalid due to an overwriting store. This is a typical pattern
for stencil codes, which fetch elements from an input array and store the accumulated sum into an
output array.

1 for (j = 1; j < rows - 1; ++j)
2 for (i = 1; i < cols - 1; ++i) {

3 a = A(j-1, i );

4 b = A(j , i -1);

5 c = A(j , i );

6 d = A(j , i+1);

7 e = A(j+1, i );

8

9 B(j,i) =
10 .2 * (a+b+c+d+e);
11 }

(a) 5-point Jacobi kernel

+

i

j

(b) Load access group for A given a 4 × 4 brush.

Elements in i direction are contiguous, the distance

in j direction is m, indicated by a gap.

Figure 11.6.
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11.5. Projecting Coordinates to SIMD Lanes

SIMD ISAs do not actually have tensor registers but one-dimensional vector registers. The tensor brush
only speciĄes the size of the tensor in its dimensions. There is ambiguity in how the coordinates in a
tensor are mapped to the lanes of SIMD registers. We resolve this ambiguity with the brush projection.

A brush projection (PB) deĄnes a unique mapping from the multi-dimensional coordinate space of
the vector brush B to vector lanes. The brush projection is deĄned by the projection vector, a vector of
dimension numbers (i0, . . . id−1). The projection vector speciĄes a cardinality of the dimensions. The
brush coordinates are then enumerated according to this order similar to numbers in positional notation.
We deĄne the projection from coordinates (c0, .., cd−1) to vector lanes, given a brush B = (m0 × .. × md−1)
and a projection vector (i0, .., id−1) as follows:

P(i,i1,..,i
d′ )(c0, .., cd−1) =

{

ci + miP(i1,..,i
d′ )(c0, .., cd−1) if d′ > 1

ci otw

}

We show three brush projections of a 2 × 2 × 2 brush in Figure 11.7.

P(0,1,2)

0
1

2
3

4

6

7

P(1,0,2)

0
2

1
3

4

5

7

P(2,1,0)

0
1

2
3

4

6

7

0

1

2

(a)

P(0,1,2) = (0,0,0) (1,0,0) (0,1,0) (1,1,0) (0,0,1) (1,0,1) (0,1,1) (1,1,1)

P(1,0,2) = (0,0,0) (0,1,0) (1,0,0) (1,1,0) (0,0,1) (0,1,1) (1,0,1) (1,1,1)

P(2,1,0) = (0,0,0) (0,0,1) (0,1,0) (0,1,1) (1,0,0) (1,0,1) (1,1,0) (1,1,1)

(b)

Figure 11.7.: Vector lane mapping according to brush projections. 11.7a: Vector lane numbers drawn onto
tensor coordinates. 11.7b: Respective coordinates at vector lanes.
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11.6. SIMD Code Generation

This section describes the generation of SIMD instructions for a tensorized loop nest starting from scalar
code and the analysis data that has been gathered up to this stage. The analysis data are tensor shapes
(Section 11.3) and memory access groups (Section 11.4). The loop trip counts are trivially transformed
by scaling them by the brush sizes.

Section 11.6.1 describes the algorithm for widening code with tensor shapes to SIMD instructions
and Section 11.6.2 covers how we efficiently vectorize tensor memory accesses.

11.6.1. Widening with Tensor Shapes

We widen tensorized loop nests into SIMD code with the following procedure. The algorithm visits
every instruction in the loop nest in reverse post-order and emits SIMD code according to the tensor
shapes of the instruction. We deal with memory access separately (Section 11.6.2). The generic scheme
distinguishes two cases for the vector shapes: all-strided and one-varying. We assume that all instructions
except memory accesses are free of side effects.

All Strided. The Ąrst case applies when the tensor shape is strided (or uniform) in all dimensions
with brush size greater than 1. In this case, we emit a scalar instruction that computes the result of the
instruction at the zero coordinate (0, .., 0). Since the operation is side-effect free, there is no need to
replicate it for all coordinates, we only have to provide the computed result for all brush coordinates.
Finally, we can compute the results at all other coordinates whenever needed simply by adding an
appropriate multiple of the strides.

One Varying. If the tensor shape of an operation is ⊤ in at least one dimension, the scalar data type
will be widened to a vector data type. The length of the vector is the product of all dimension sizes
of the brush B. For example, if the brush is 4 × 2 × 4 and the data type of the operations is double,
the widened vector instruction will operate on the data type <32 x double>. If any of the operands
of the operation fell in the all-strided case they will now be instantiated into the lanes of a full vector
according to the brush projection, P.

Vector Register Tiling. We leverage the legalization phase of LLVM to effectively implement vector
register tiling. During legalization, the LLVM compiler splits SIMD operations and variables to make
them Ąt into the SIMD registers of the target. Tiling by leglization is triggered if the number of
coordinates in the brush is greater than the vector register length. For example, if B = 2 × 8 and the
element type is double, our code generation phase will initially emit a 16-element vector instruction in
LLVM IR. However, the SIMD register length for double of the AVX512 SIMD ISA 8 and so LLVM
will replace the instruction by two vector instructions with 8 elements.

11.6.2. Memory Access Chunking

Memory chunking is the process of partitioning the accessed elements into contiguous parts, called
chunks. Each chunk is then loaded or stored with a fast contiguous memory instruction.

On the top right of Figure 11.8, we show a single memory access in a loop nest of depth two. Consider
that this loop nest is tensorized with a brush of 4 × 4. Using the generic one-varying strategy, the load
would be vectorized with a slow gather instruction. However, scatter and gather instruction are the least
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+
1 // scalar loop nest
2 for (i=0; i<k; ++i) // dim 0
3 for (j=0; j<m; ++j) { // dim 1
4 x = A(j, i);
5 ...
6 }

1 // tensorized loop nest
2 for (i=0; i<k; i += 4) // dim 0
3 for (j=0; j<m; j += 4){ // dim 1
4 // chunked load
5 a0 = vload_4 (A(j, i));
6 a1 = vload_4 (A(j+1, i));
7 a2 = vload_4 (A(j+2, i));
8 a3 = vload_4 (A(j+3, i));
9

10 // shuffling
11 x = shufflevector [
12 a0[0], a1 [0], a2 [0], a3 [0],
13 a0[1], a1 [1], a2 [1], a3 [1],
14 a0[2], a1 [2], a2 [2], a3 [2],
15 a0[3], a1 [3], a2 [3], a3 [3],
16 ];
17 ...
18 }

Figure 11.8.: Chunking a tensor load into contiguous memory accesses for B = 4 × 4. Left: The load A(i, j)

is chunked into contiguous loads a0 to a1. Below, the loaded chunks are shuffled according to
the brush projection PB = (1, 0). Numbers in the cells refer to the lane number. Right: The
scalar loop nest on top. Below, the tensorized version with chunked loads and shuffles.

effective means of accessing memory on AVX512. It is advisable to use contiguous memory accesses
whenever possible.

We build memory access groups as presented in Section 11.4 and partition the groups into strips
of contiguous memory accesses. This results in the contiguous loads a0 to a3 shown below. This is
an AVX2 example (256bit SIMD registers) and thus each consecutive vector load can transfer four
contiguous element from the double array.

Finally, the lanes need to be shuffled into the vector according to the brush projection. We do the
inverse, shuffling followed by consecutive stores, to vectorize the tensor store.

11.7. Data Layout Transformation

Stencil codes beneĄt from tensorization by exposing opportunities for reuse of already loaded values,
as discussed in Section 11.4. This section describes a technique to further optimize SIMD loads by
reorganizing the data in the image buffers through a data layout transformation. Consider Figure 11.9,
that shows two different buffer layouts.

Standard Layout. Figure 11.9a shows the standard layout of a two dimensional image buffer. Rows
are layed out contiguously in memory along the dimension of i. We overlap the memory layout with
the load footprint of a 5-point jacobi stencil tensorized with a 2 × 2 brush. As the diagram shows, four
SIMD loads are needed to retrieve the data necessary to compute all four result elements.

2 × 2 Layout. Figure 11.9b shows the layout of the input data after a data layout transformation.
Here, the image is subdivided into blocks of two by two elements, which are layed out contiguously
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(a) Standard contiguous memory layout (1 × 1).
Four SIMD loads required.
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i
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(b) Transformed data layout (2 × 2). Two SIMD
loads required.

Figure 11.9.: Comparison of memory layouts of a 2D image buffer A(j,i) of double elements. Element ranges
that are loaded by a single contiguous SIMD load (AVX512) are color coded. The overlayed
outline indicates the load footprint of jacobi 5-point stencil tensorized for a 2 × 2 brush.

in memory. The ordering of blocks is again contiguous in the dimension of i. We again overlap the
diagram with the footprint of the 5-point jacobi stencil. Thanks to the changed layout, the footprint
only overlaps the elements of two SIMD loads.

Implementation. The memory access grouping phase (Section 11.4) builds on LLVMŠs Scalar Evolution

analysis [Pop et al., 2005] (SCEV). With the SCEV analysis an array access A[m*j+i] can be decomposed
into an access at index (j, i) into buffer A. Transforming the data layout then means constructing
a new SCEV expression from that decomposition. Since the transformation modiĄes the SCEV
representation and all other parts of the system that touch memory accesses leverage SCEV, this data
layout transformation is completely transparent.

SpeciĄcally, consider switching from the standard layout shown in Figure 11.9a to the 2 × 2 layout
shown in Figure 11.9b for a given buffer A. Every memory access to A needs to decompose to the base
pointer A and some index vector (j, i) with m being the length of a row. The transformed SCEV is then
computed as: A[i%2 + (i/2)*4 + (j%2)*2 + (j/2)*2*m].

11.8. Related Work

Stratton et al. [2010] describe variance vectors attached to instructions to classify the variance of variables
with respect to the work item dimensions of CUDA kernels. Each dimension that the instruction varies
in is an element of the variance vector, meaning that the approach relates to the tensor shapes presented
in Section 11.3 as a form of basic multi-dimensional divergence lattice. The variance vector is not
used for actual multi-dimensional code generation. The tensor shape analysis is a multi-dimensional
generalization of Chapter 6.

There is limited support for multi-dimensional vectorization in the ISPC programming language [Pharr
and Mark, 2012] through the foreach_tiled statement. However, lacking a multi-dimensional diver-
gence analysis, ISPC will use scatter/gather to vectorize every memory access that is not fully uniform
in that mode.

Plagne and Bojnourdi [2017] present a multi-dimensional vector code generation library based on
C++ template programing. Library-based techniques require the programs to be specially written
whereas our approach starts from regular LLVM IR.
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Since most modern systems have single dimensional memory, even contiguous accesses in higher
dimensions lead to strided memory accesses that require gather and scatter instructions. This was
addressed in Vector Folding [Yount, 2015] by performing data layout transformations as a preprocessing
step before multi-dimensional vectorization. Data layout transformations have also been used Henretty
et al. [2011] to reduce shuffle operations induced by unaligned memory accesses. In our approach, we use
shuffles with contiguous loads to generate operand vectors [Caballero et al., 2015; Eichenberger et al.,
2004].

The polyhedral model [Feautrier, 1992b] is only applicable in loop nest tenorization if all branch
conditions are piecewise affine functions in the iteration vector. However, all transformations and
analyses of RV are generally applicable in the multi-dimensional context of TensorRV.
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Chapter 12.

Related Work

In this chapter, we compare the RV vectorization system as a whole to other systems that have been
proposed in the literature.

12.1. SIMD Programming Languages and Compilers

SIMD programming languages offer scalar data types and guarantee that the language compiler emits
SIMD code such that each lane realizes one instance of the code. This is the programming model of
P-LLVM but as a structured programming language.

Systems of this domain are the Intel SPMD Program Compiler (ISPC) [Pharr and Mark, 2012] and
the Sierra language compiler [Leißa et al., 2014]. The ISPC and Sierra compilers operate exclusively
on the AST representation of the program. These systems are monolithic in the sense that they emit
SIMD code directly from the AST without any intermediate representation. Transformation phases exist
only in so far as the AST is decorated with analysis results. This is problematic as transformations are
restrained by the structural limits of the AST, e.g. it is only possible to insert BOSCC (skip-all-false
branches) over nested AST nodes.

Further, ISPC and Sierra are domain-speciĄc languages and programs in general purpose languages
such as C/C++ or Fortran have to be ported to leverage them. This is complicated by the fact that
even though Sierra and ISPC might have a C-like syntax the language semantics differs in subtle ways,
i.e. in case of automatic type conversion [Pohl et al., 2016]. An alternative approach is to re-structure
a program given in compiler IR to use the existing vectorization techniques of ISPC and Sierra. We
discuss in Section 12.7 why re-structuring is not ideal for vectorizing general CFGs.

12.2. Explicit SIMD Programming

Compilers expose target-speciĄc SIMD types and instructions as builtin types and functions. Pro-
gramming with SIMD intrinsics is tedious and non-portable across SIMD architectures. Several SIMD
programming libraries have been developed that offer a portable interface abstracting from speciĄc target
intrinsics [Kretz, 2015; Estérie et al., 2012; Georgiev and Slusallek, 2008]. Such a programing model has
recently been standardized for the C++ language with the parallelism v2 TS [ISO 19570:2018].

Extensions have been proposed for Fortran and C/C++ to target SIMD CPUs through the abstraction
of arrays. This was Ąrst done for Fortran [Albert et al., 1988; Hendrickson, 1979; Guzzi et al., 1990]
and re-emerged for C/C++ with Intel Array Building Blocks [Newburn et al., 2011]. Array extensions
provide array types with SIMD-like operations, including structured forms of element shuffling and
explicitly masked SIMD operations.
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However, explicit SIMD programming entails explicit handling of divergent control Ćow and manual
inference of uniform and varying values. In comparison, the RV programming model accepts any scalar
code and performs divergence analysis and transformations automatically.

One telling example of this is the Embree raytracer [Wald et al., 2014]. The raytracing codes
in Embree use explicit SIMD programming with compiler intrinsics to furnish specialized code paths
for every recent x86 SIMD ISA (AVX2, AVX512). This is in contrast to the raytracer generator
Rodent [Pérard-Gayot et al., 2019]. Rodent leverages, among other techniques [Leißa et al., 2018], the
RV vectorization system for implicit SIMD programming. The raytracing parts speciĄcally rely on
whole-function vectorization through the RV vectorization system to generate SIMD code. Pérard-Gayot
et al. [2019] show that the generated raytracing codes perform on par with the handwritten intrinsic
codes of the Embree system while being portable to non-X86 platforms.

12.3. Vectorizers for Superword-Level Parallelism

Vectorizers for Super-word level Parallelism (SLP) originally [Larsen and Amarasinghe, 2000] group
independent scalar operations into SIMD operations. Several enhancements have been proposed, for
SLP in the context of control Ćow [Shin et al., 2005], improved cost models [Mendis and Amarasinghe,
2018; Porpodas and Jones, 2015] and by relaxing constraints on legal instruction groupings [Porpodas
et al., 2015; Mendis et al., 2019].

All of these techniques intrinsically build on the notion of independence of instructions under
sequential execution. As such, SLP vectorization is also applicable in the data-parallel setting by
grouping independent instructions within a thread. It has been noted, however, that outer-loop
vectorization can be framed as unroll-and-jam of a loop nest followed by SLP vectorization [Nuzman
and Zaks, 2008]. Yet, being limited to scalar instruction instances, standard SLP vectorizers do not
implement data-parallel vectorization.

Further, grouping instruction instances across loop iterations has been explored in the context of
loop vectorization: Zhou and Xue [2016] present an approach that mixes SLP vectorization with loop
vectorization techniques. Nuzman et al. [2006] and Anderson et al. [2016] present techniques to generate
efficient SIMD code for interleaved scalar memory accesses.

Being deĄned in the setting of sequential control, none of these approach consider data-parallelism
or horizontal operations. However, SLP and inter-leaving techniques can be used as optimizations
in widening stage of a data-parallel vectorizer. Consider, e.g. the data re-use optimizations in Ten-
sorRV (Chapter 11).

12.4. Whole-Function Vectorizer

Karrenberg and Hack [2011, 2012]; Karrenberg et al. [2013]; Karrenberg [2015] pioneered whole-function
vectorization for SSA-based CFGs. The whole-function vectorizer is described as a pass-based vectoriza-
tion pipeline similar to the RV system. However, WFV does not have one data-parallel intermediate
representation but maintains aspects of semantics in separate data structures that are not considered
part of the program. This includes, for example, a data structure to describe the masking code of
basic blocks. RV is designed the other way round by putting the program representation, P-LLVM, at
the core of the vectorizer. P-LLVM too is implemented with overlays and data structures on top of
LLVM IR but there is one crucial difference: The data structures serve to implement P-LLVM, which
gives each program a deĄned semantics. The RV vectorizer is thus a pipeline of combinable passes that
each transform P-LLVM programs.
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12.5. Loop Vectorizers

Loop nests of scalar operations have long been the target of automatic vectorizers.

Early automatic loop vectorizers used source-to-source translation [Allen and Kennedy, 1987].
Ngo [1995] deĄnes the DOVEC loop statement, which models lock step execution in structured loop
nests. However, the statement is only used for the purposes of correct dependence modelling not code
transformation.

Loop vectorizers are typically restricted to uniform loop nests [Nuzman et al., 2006; Nuzman and
Zaks, 2008], otherwise resorting to if-conversion. Even if a loop is annotated as parallel, for example by
means of OpenPM pragmas, this may not mean more than that the vectorizer can assume that there
are no loop-carried dependences. Horizontal operators are, due to the lack of a proper data-parallel
semantics for loops, unavailable in standard loop vectorizers.

Masten et al. [2018] propose a technique to implement whole-function vectorization with an outer-
loop vectorizer. In their approach, the scalar function body is wrapped in a loop, which is then inserted
into the vector function declaration. While this offers whole-function vectorization with an outer-loop
vectorizer, the approach does not solve the problem of vectorization.

Program Dependence Graph. Various intermediate representations have been proposed to expose
the latent parallelism in programs. The re-occurring theme is to dissolve the strict execution order
imposed by imperative programming languages, or the Control-Flow Graph. Among these representations
are the Program Dependence Graph (PDG) [Ferrante et al., 1987] and the (Regionalized) Value State
Dependence Graph ((R)VSDG) [Johnson and Mycroft, 2003] and several variations thereof, such as the
Parallel Program Graph (PPG) [Sarkar, 1992].

The Program Dependence Graph (PDG) [Ferrante et al., 1987] has been used as a representation
for vectorizing compilers [Baxter and III, 1989]. This was foremost motivated by the need to identify
parallel loops. Simons et al. [1990] noted that transforming a PDG into a sequential CFG is a non-trivial
task. Generating a CFG from the PDG is, however, necessary since the branch instructions of CPUs
implement unstructured, sequential control-Ćow. This problem does not exist in the RV vectorization
system since P-LLVM is CFG based.

Polyhedral Model. The polyhedral model [Feautrier, 1991, 1992a,b] represents loop nests as affine
polyhedra. This is possible if all branch conditions and loop bounds are piecewise affine functions of
the iteration variables. Several vectorization systems have been developed that leverage the polyhedral
model to vectorize loop nests [Kong et al., 2013; Trifunovic et al., 2009] and OpenCL kernels [Moll et al.,
2016]. These techniques deliver good results if the loop nest is representable in the polyhedral domain.
Otherwise, vectorization fails since polyhedral techniques are not applicable to general codes.

12.6. Specialized Code Generators

The importance of efficient codes for certain computational problems warrants the design of specialized
code generators that also leverage SIMD instructions. Among these are works on tree traversal codes [Jo
et al., 2013], dense and sparse matrix multiplication [Heinecke et al., 2016; Spampinato et al., 2018],
sorting networks [Hou et al., 2015] and FFTW [McFarlin et al., 2011] to name a few. These approaches
excel in their target domain but are not applicable to the vectorization of general codes.

Several frameworks have been proposed with data-parallel code representations with the end of
transforming the program in the compiler. The Lift IR Steuwer et al. [2017] is a functional compiler IR
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that translates to OpenCL code in the Lift compiler backend. It is therefore on the OpenCL driver to
perform the actual vectorization. The Halide IR [Ragan-Kelley et al., 2013] is a image processing DSL
and compiler. Both frameworks can express parallel loops and, in case of Halide, loop vectorization.
However, Halides loop vectorizer does not consider control Ćow.

12.7. Restructuring Vectorizers

Techniques for the vectorization of structure code are available, e.g. in the ISPC compiler [Pharr and
Mark, 2012]. Many of the analyses and transformations required in a vectorizer become simpler when
only considering structured codes [Leißa, 2017; Reiche, 2018].

The common notion of structured control Ćow [Sharir, 1980] is that the code decomposes into single-
entry single-exit (SESE) subgraphs. Each SESE region has the control-Ćow of a canonical, structured
control-Ćow element (IFTHEN, IFTHENELSE, BLOCK). The children of these structured elements are
again SESE subgraphs.

Transformations that are simpler under the assumption of structured control are the divergence
analysis and control-divergence analysis, partial if-conversion schemes and techniques similar to the
BOSCC gadget proposed in Section 9.2. Hence, it may be tempting to restructure the CFG to employ
the existing techniques for structured code. Besides the fact that restructuring distorts the original
program Ćow, the question remains whether this would produce adequate results.

A

B

C

m = mask ()
f(m) total

D

E

(a) Unstructured control with horizontal operation.

A

B

C

m0 = mask ()
f(m0) total

D

m1 = mask ()
f(m1) total

DŠ

E

X

(b) Semantic change after splitting the node D.

Figure 12.1.: Re-structuring by node splitting violates the semantics of horizontal operators in P-LLVM.

We consider two restructuring techniques: The Ąrst is the classic node splitting technique [Hecht,
1977]. The second is tail predication. Tail predication was recently proposed by Reissmann et al. [2016]
to restructure Control-Flow Graphs without extra blocks [Reissmann et al., 2016, Fig. 3]. The example
CFGs for our discussion are shown in Figure 12.1a and Figure 12.2a.

Node Splitting. Consider the unstructured P-LLVM program in Figure 12.1a. The DAG is unstruc-
tured because the block D is an immediate successor of B but B does not it nor does D post-dominate B.
Node splitting creates one copy of the block for each incoming edge. We split the block D, resulting in the
CFG of Figure 12.1b. We also insert a new empty basic block X to form a proper SESE region from B to
X. The DAG in Figure 12.1b is structured. However, the restructured program has a different behavior.
The block D contains a mask query and the result of that query is passed into a total function call. When
the block D is split into D and DŠ, the mask query and the function call are also duplicated. Clearly,
if the branch in A is divergent then the two programs have a different semantics. In the unstructured
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CFG, since all valid schedules are greedy schedules, it is guaranteed that the function call in D executes
only once. After splitting, the function call is split in two and the f function may be called twice for
different active threads and even with different arguments than before. In short, node splitting is not
generally applicable in the context of data-parallel programs.

Tail Predication. Tail predication is an alternative technique to restructure programs. Consider the
unstructured DAG shown in Figure 12.2a. This CFG is restructured with tail predication in Figure 12.2c.
In tail predication, blocks that violate structuredness are put on a new branch controlled with a new
boolean variable. Even though the existing blocks are not split, the transformation still comes at the
price of additional blocks and instructions: Blocks are added only for the sole purpose of establishing
control structure, instead of one ϕ node, there are now eight.

Setting aside code size considerations, tail predication affects the result of partial linearization. For
the sake of the example, assume that all branches in the CFG are uniform except for the divergent branch
in C. Figure 12.2b shows the original CFG of Figure 12.2a after partial linearization and Figure 12.2d
the result of partially linearizing the restructured CFG in Figure 12.2c. In Figure 12.2b, partially
linearization preserves the control-Ćow edge of D that jumps to F, skipping E. In Figure 12.2d, the block
E always executes.

Practical Considerations. Reissmann et al. [2016] analyzed the 240 data-parallel kernels of Ro-
dinia [Che et al., 2009] for their control-Ćow structuredness. They did not Ąnd any irreducible loop.
However, they did Ąnd 11 benchmarks with unstructured, reducible control Ćow. This is consistent with
an earlier survey on structure in GPU kernels [Wu et al., 2012], which found unstructuredness but no
irreduciblity in Parboil [Stratton et al., 2012], the Optix render [Parker et al., 2010] and the CUDA
benchmark suite. This empirical evidence backs the control-Ćow assumptions in this thesis: in real codes,
control-Ćow is often unstructured, however, irreducible loops are rare.

Conclusion. To summarize, re-structuring seems tempting at Ąrst since it simpliĄes the control-
divergence analysis and partial if-conversion. However, there is a hidden cost: the process of re-
structuring itself already degrades the CFG leading to inferior overall outcomes in detected uniform
variables (Figure 12.2) and speciĄcally retained control Ćow (Figure 12.2d). Earlier surveys support the
control-Ćow assumptions that we make in this thesis: control Ćow is often unstructured but irreducible
loops are rare.
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(a) Unstructured CFG. The only divergent branch is
in C.

A

B

C

D

x = φ[A ,0] [B ,2] [D ,2]
// .. = ..x..

E

F

(b) Unstructured CFG (Figure 12.2a) after partial
linearization. Uniform edge from D to F retained.
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(d) Tail-predicated CFG (Figure 12.2c) after partial
linearization. Uniform edge from D to F lost.

Figure 12.2.: Tail-predication restructures CFGs at a potential loss of uniform control Ćow.
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Chapter 13.

Evaluation

We evaluate the RV vectorization system with respect to the following questions.

• How does the RV vectorization system compare to other data-parallel vectorizers? We evaluate
RV on a range of tree traversal codes and compare it against the ISPC SIMD code generator and
a scalar baseline (Section 13.1).

• How relevant is RV for actual application codes? We present two case studies: the nab_s benchmark
of SPEC2017 (Section 13.2) and XSBench (Section 13.3).

• What are the performance beneĄts of tensorization and how performance-sensitive is the technique
to the brush? We evaluate the TensorRV systems on Ąve different stencil codes and matrix
transpose under various brushes and two different daya layouts (Section 13.4).

Evaluation Systems. We run the experiments on four different platforms, comprising four different
microarchitectures and three different SIMD ISAs.

• ARM-A72 ARM Cortex-A72 cores of a Rockchip RK3399 system (NEON, 128 bit SIMD registers,
2 cores).

• ARM-A53 ARM Cortex-A53 cores of a Rockchip RK3399 system (NEON, 128 bit SIMD registers,
4 cores).

• Ryzen-2 AMD Ryzen 5 2600X Six-Core Processor (AVX2, 256 bit SIMD registers, 6 cores,
12 threads). Turbo boost disabled.

• Skylake-X Intel Core i9-7900X CPU @ 3.30GHz (AVX512, 512 bit SIMD registers, 10 cores).
Hyperthreading and turbo boost disabled.

Compilers. We evaluate the system with the following compilers.

• GCC (9.1.0) GNU C Compiler.

• ICC (19.0.4.243) Intel C Compiler. This compiler is only available on the Intel Skylake-X
machine.

• Clang (llvm/trunk 369781) Default Clang O3 pipeline.

• RV Clang pipeline with RV but without LLVM LoopVectorizer or LLVM SLPVectorizer. The RV
passes are inserted at the EP_VectorizerStart extension point of the LLVM pass pipeline.

• ISPC (1.12.1dev) Intel SPMD Program Compiler. The compiler is built with the same LLVM
version as Clang and RV. The ISPC compiler only supports speciĄc combinations of SIMD
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ISAs, vector widths and data sizes (--target=<t> switch). These are: avx2-i32x8, avx2-i64x4,
avx512skx-i32x16 and neon-i32x4.

• AOCC (2.0.0-Build191) AMD Optimizing C/C++ Compiler. This compiler is only available
on the Ryzen-2 machine.

All compilers were conĄgured for 1-ULP error bound on the vector math functions. RV uses the
vector math functions from the SLEEF 3.2 vector math library [Shibata et al., 2019].

Branches Loops Lp. Exits Load Masks Store Masks Allocas

uni div uni div uni div none uni var none uni var uni var

mpc 16 4 5 5 23 6 12 5

mpc9 20 10 7 2 2 4 3 19 14 4 7 2 20

kd 6 12 2 11 10 2 13 3

kd9 10 18 4 2 2 4 9 26 32 5 21 20 19

pc 4 12 2 11 10 2 10 3

pc9 8 18 4 2 2 4 9 26 32 5 20 20 18

vp 3 1 1 13 1 2 3 1

vp9 3 1 3 37 1 23 3 5

bh 3 2 16 4 5 2 1

bintree 5 3 1 1 1 1 4 2 2 1

kmeans 6 12 2 11 10 2 13 3

kmeans9 10 18 4 2 2 4 9 26 32 5 21 20 19

xsbench 2 2 1 1 1 1 1

nab/rv/1 2 7 1 5 1 6 4

nab/boscc/1 5 7 1 5 1 6 4

nab/rv/2 2 2 1 21 3 15 5 1 4

nab/boscc/2 2 2 1 21 3 15 5 1 4

nab/rv/3 1 7 1 26 4 17 5 1 4

nab/boscc/3 4 7 1 26 4 17 5 1 4

Figure 13.1.: Vectorization statistics for the benchmarks. Lp. Exits is referring to the exits of divergent loops.
Load and Store Masks are categorized as having the activation 1 (none), a uniform activation
(uni) or a varying activation (var).

Figure 13.1 shows code statistics for the RV-vectorized versions of the benchmarks.
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13.1. Tree Traversal Codes

We evaluate RV on a set of tree traversal codes. The codes are stack based and feature mixed uniform
and divergent branches, which exercise some components of RV in particular. The Divergence Analysis
has to prove the uniformity of the traversal stacks. This happens in interplay with the Control Divergence
Analysis (Chapter 7) and Alloca SSA (Section 6.6). Some of the kernels contain divergent loops that
are handled by the divergent loop transform (Section 9.1). Finally, partial linearization (Chapter 8) is
required to transform the divergent branches, retaining uniform control Ćow.

Benchmarks. We adopted the Vantage Point, Nearest Neighbor, Point Correlation, k-means clustering
and Barnes-Hut data analytics kernels and data sets from the existing Lonestar [Kulkarni et al., 2009]
and Treelogy [Hegde et al., 2016] benchmark suites and added two new benchmarks: multi-radius point
correlation (mpc) and binary tree (bt). To make the kernels amenable to vectorization, we replaced
their recursive implementation by an explicit stack. Furthermore, we added a speculative traversal
technique [Aila and Laine, 2009], a well-known technique to increase SIMD utilization for such codes.
The following list describes the benchmarks and their input sets in further detail:

• bh 3D n-body simulation using the ModiĄed Barnes-Hut algorithm by Barnes [1990]. The
underlying acceleration structure is an OctTree. random: 1000,000 random bodies. plummer:

100,000 bodies from a plummer model.

• kd Nearest Neighbor search (1-NN) with a kd tree. random: 1000,000 random points (diameter
141.421). city: 2,673,765 city coordinates (diameter 385.32). covtype: 581,012 data points with
nine integer features from a tree coverage data set [Blackard and Dean, 1999] (diameter 10246.1).

• pc Point Correlation (number of points around a query coordinate within a radius) on a kd tree.
Same datasets as kd.

• mpc Multi-Radius Point Correlation. The sample coordinate is drawn uniformly at random
between 0.0 and q times the data box diameter.

• km k-means with 128 clusters (drawn uniformly at random from the data bounding box). Same
datasets same as kd.

• vp 1-NN on a Vantage Point tree [Yianilos, 1993]. Same datasets as kd.

• Binary tree (bt) Element search on a binary tree. random: 16,777,216 random elements.

• XSBench binary search (xs) Binary search in sorted array for maximal element below a quarry.
This is the inner-most loop of the XSBench benchmark [Tramm et al., 2014]. random: 10,000,000
elements.

Anatomy of Speculative Traversal. Figure 13.2 shows the data-parallel binary tree kernel (bt).
We discuss it here as a prototypical example for all the tree traversal codes in the benchmark suite.
When the kernel is vectorized the variable i is contiguous in the thread id (it has a (1, W ) shape).

The function maintains a stack that holds all nodes that need to be visited by at least one thread
(Line 2). Each trip of the loop in Line 9 fetches a node off the stack. If any remaining thread in the loop
is seeking an element that is less than the label of the current node, that node is pushed on the stack
(Line 19). Symmetrically, the child node to the right is put on the stack (Line 21). If a thread Ąnds the
query element it takes a divergent exit out of the loop (Line 15). All threads start at the root of the
tree. Threads diverge in the traversal if some threads proceed to the left child while others go to the
right. In that case both nodes are put on the stack and when the child nodes are processed only a part
of the threads actually make progress in the traversal. However, the later the threads diverge in their
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1 int search (Node * nodes , float * Q, int i) {
2 int stack [512];
3 stack [0] = 0;
4 int top = 1;
5

6 float elem = Q[i];
7 int result = -1;
8

9 while (top > 0) {
10 int next = stack[--top ];
11 float label = nodes [next ]. data;
12 int right = nodes [next ]. right;
13 int left = nodes[next ]. left;
14

15 if (label == elem) {
16 result = next;
17 break;
18 }
19 if (any(mask () & (elem < label )) && left > 0)
20 stack [top ++] = left;
21 if (any(mask () & (label < elem )) && right > 0)
22 stack [top ++] = right;
23 }
24 return result ;
25 }

Figure 13.2.: Data-parallel element search in a binary tree.

descend into the tree the fewer child nodes are pushed on the stack and the quicker the stack is depleted.
The efficiency of the traversal is thus input dependent, which is what makes this scheme speculative.

Programming Model. The Clang and RV versions of the tree traversal kernels are written as
scalar C++ functions. The dataset dimension is a C++ template parameter. Each kernel version
was instantiated four times: by a factor of two for the datatype (64 bit or 32 bit) in combination
with the choice of dataset dimension (2D and 9D). The kernel versions for RV make use of horizontal
operations (popcount and any) to implement the speculative traversal. The kernels are then whole-
function vectorized by RV with pre-supplied vector shapes for the function arguments and into vector
function signatures.

Multi-Radius Point Correlation. For the bh, kd, pc, vp and km benchmarks, the query coordinate
is always varying while all other parameters to the query are uniform. It has been noted [Gray and
Moore, 2001] that some machine learning applications beneĄt from a SIMD version of Point Correlation
that takes a vector of radii and a single coordinate. Using our approach, we can automatically create
such a SIMD kernel from the normal Point Correlation source code simply by changing the parameter
shapes. The multi-radius point correlation kernel (MPC) is a point correlation kernel with a uniform
coordinate and varying radii.

ISPC versions. We re-implemented some of the RV kernels in the ISPC language. These are the 2D
versions of vp,pc,mpc,kd,kmeans and bintree. We assist the ISPC compiler by exhaustively annotating
variables and stack objects as uniform where possible. This means that the ISPC version of mpc is
a complete reimplementation with different variables annotated as uniform. Note that annotation of
variables is not necessary for the RV kernel versions since inference of uniformity is automatic, including
the traversal stacks.

Query Inputs. The performance of speculative SIMD traversal codes is sensitive to how far the query
inputs are apart in the search space. To this end, we evaluate some of the traversal codes with 10
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different input sets that differ in their degree of coherence. These are kd, vp, pc and mpc. The query
coherence is controlled by the spread factor, a real value between 0 and 1. For kernels with varying
query coordinate (kd, vp and pc) the spread factor describes a bounding box for the query coordinates.
The size of that bounding box in each dimension is fraction of the bounding box of the data set. For
example, if the spread factor is 0.4, then the sample coordinates are drawn from a random box with 40%

size in each dimension of the data bounding box. We draw 256 random coordinates from each sample
box and for 10 query boxes in total. We do this to have the same query spread for all vector widths
while guaranteeing that the query coordinates are identical across targets. The pc and mpc benchmarks
have an additional radius argument. In pc, the sample radius is 1.0 − q times the diameter of the data
box where q is the spread factor. The mpc uses q times the data bounding box diameter as the query
radius. In case of bintree, we take 4096 random samples from the data range with 50% chance of being
a tree element. This array is then sorted. For the XSBench binary search, we draw 214 values uniformly
at random from the dataset range. All versions of the kernels were run with the exact same inputs and
query order. Performance differences are therefore due to vectorization and the employed compiler.

All tree benchmarks were evaluated in single threaded mode. Reported runtimes are the median
execution times of the traversal parts in 35 full program iterations.

Note that our goal is generic vectorization of CFGs. Therefore, we do not compare against prior work
on dedicated automatic vectorization of tree traversals [Jo et al., 2013] that achieves even better results
but is limited to this particular kind of code and are not applicable to other codes such as 644.nab_s.

13.1.1. Spread Factor Results

We evaluate the pc, vp, kd and mpc benchmarks with a spread factor ranging from 0.1 to 1.0 in increments
of 0.1. The results for the 2D versions of those kernels are shown in Figure 13.3 for random coordinates
and in Figure 13.4 for the city data set. The 9D version results for random coordinates are shown
in Figure 13.5 and for the covtype data set in Figure 13.6.

We show runtime measurements as a function of the spread factor of the queries. We do so because
the performance of speculative tree traversal kernels is sensitive to the spread of the query inputs.
Comparing runtime measurements of a single query input is thus not representative for the performance
behavior across the range of spreads.

This is because the kernels use a traversal stack to keep track of nodes that need to be visited in the
traversal. This scheme is efficient if the query inputs grouped in the SIMD traversal function lie close
together. Then, the set of all nodes that need to be visited for the whole of the query inputs is smaller
than the sum of nodes that the scalar traversal needs to process. If the spread of the queries is high, the
individual traversal of the input diverge early in the tree and the gain by speculative traversal is less
pronounced. In the worst case, only one lane of the SIMD input will make progress in one iteration of
the traversal loop.

Comparison to ISPC. Summarizing across all machines, kernels and conĄgurations where ISPC is
available, in the geometric mean RV delivers about 15% better performance compared to ISPC. There is
a signiĄcant performance variation, however. In the worst case, ISPC is about 30% faster than RV (pc,
2D, rand, avx2). In the best case, RV is about 83% faster than ISPC (kd, 2D, rand, a53). RV is available
with all conĄgurations, different to the ISPC compiler, which only supports certain combinations of
vector width, data type and target ISA.

Performance Impact of the Spread Factor. The pc kernel is different to kd, vp and mpc when it
comes to the aspect of the spread factor. The sample radius is anti-proportional to the spread of the
query coordinate. This conĄguration makes the performance of the pc kernel mostly invariant under
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Figure 13.3.: 1-NN and PC kernels (2D random).

the spread factor. The spread factor 1 represents a degenerate corner case of the pc kernel and is thus

left out from the plots. There, the query radius is 0 and since no coordinate lies within a sphere of

size 0 the kernel does not perform any work. Regarding all other values of the spread factor for pc, we

conclude that the performance hazard of spread out query coordinates is countered by the work saved

due to a tighter query radius. Asymptotically, the scalar version scales better with the spread factor.

The kd tree was build such that the leaf nodes hold up to 4 coordinates before they are subdivided and

become inner nodes. The mpc kernel counts the number of coordinates within the query radius. The

number of nodes that need to be visited are in the order of r
D where r is the query radius and D is the

dimensionality of the data set.
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Figure 13.4.: 1-NN and PC kernels (2D city).

Dependence of Kernel Performance on the Data Set. Considering the 9d vp kernel, the

random dataset favors the SIMD kernel whereas the random dataset is faster traversed with the scalar

implementation. We observe that the performance of the 2D kernels is less susceptible to the choice of

the data set.

Comparison of 64 bit against 32 bit Results. We see similar scaling behavior for 32 bit and

64 bit kernels for the same machine and data set. There is one outlier: the RV-vectorized version of the

kd9 kernels takes a major performance hit compared to the scalar baseline.

The ISPC and RV kernels behave similar for all data sizes. Only for the 2D kd kernel, we see that in

case of 64 bit, RV offers better performance than ISPC while it is the other way round for 32 bit. This is
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Figure 13.5.: 1-NN and PC kernels (9D random).

because for 32 bit the 2D coordinate type has 64 bit and Ąts exactly in the scalar register of the target

machines. LLVM thus preserves these as <2 x f32> values in the IR. The kernel code however requires

that the elements are extracted and broadcast, leading to inefficient SIMD code. The ISPC compiler

breaks up the short vectors already in the frontend, an optimization that could also be implemented in

RV.

Comparison against Scalar Baseline. The vectorized, speculative traversal scheme for traversal

kernels is not always beneĄcial. For example, for an 1-NN search in the vantage point tree the scalar

traversal is more efficient except for the 9D random dataset.
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Figure 13.6.: 1-NN and PC kernels (9D covtype integer features).

Divergence Analysis of Tree Traversal Codes. Divergence analysis statistics for the tree traversal

codes discussed thus far are shown in the upper third of Figure 13.1.

As indicated in the Allocas column, the divergence analysis was able to prove that all traversal

stacks are uniform. Proving stack uniformity exercises the Alloca SSA functionality of the divergence

analysis Section 6.6.

Further, the 9D variants of the mpc,kd and pc kernels feature divergent loops, requiring the divergent

loop transform Section 9.1. These loops are part of a box intersection test that loops over all dimensions

and exits early if an intersection was found. That same loop is unrolled in the 2D variants of those

kernels.
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We show the vector shape of the activation masks separate for load and store operations. Partial
linearization guarantees that a block with a uniform control mask will only execute if the mask is
true (Section 8.6). Therefore, for uniform and constant masks, the loads and stores do not require
masking at all. In the 9D case, loop divergence causes varying predicates and incurs masked memory
accesses.

13.1.2. Other Tree Kernels
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Figure 13.7.: Benchmarks without spread factor: Binary tree element search (bt), Barnes-Hut n-body simulation
(bh), kmeans (km) and the quarry search kernel of the XSBench proxy application (xs).

Figure 13.7 shows runtime results on tree traversal benchmarks that do not have a spread factor.
Due to code generation issues there is no kmeans9 result for 64 bit (double) on the AArch64 platforms.
The binary tree implementation for RV is shown in Figure 13.2. The reported runtimes are normalized
to the default Clang O3 pipeline. Increasing the vector width introduces more potential for divergence
since more locations in the tree are accessed at once. However, comparing each 64 bit to each 32 bit
result, the experiments show that doubling the vector width (halving the element size) is still beneĄcial.

13.2. Case Study: 644.nab_s

We use the 644.nab_s benchmark of SPEC2017 to show the efficacy of the BOSCC gadget. We evaluated
on the SPEC2017 refspeed data set for AVX512/AVX2 and on the reftrain data set for Adv. SIMD
because of memory constraints. We compare against Clang (with PGO), GCC, ICC (Skylake-X only)
and the AOCC (Ryzen2 only) compilers as shown in Figure 13.8a, Figure 13.8b, Figure 13.8d and
Section 13.2.
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About 77% of the running time in 644.nab_s is spent in three hot loops of the egb function (aminos
proĄle). We will refer to these loops by the order they occur in the code (loops 1 to 3). We applied
RV to all three loops with the full vector length of the target by annotating them with the directive
#pragma omp simd of OpenMP. We measured the time spent in each of these loops and the total
running time on the benchmark. The Ąrst and third loop have the deep, divergent if-cascade as outlined
in Figure 9.4.

The AOCC, GCC and Clang compilers are not able to vectorize any of the three loops.

RV inserts three BOSCC gadgets in each the Ąrst and the third loop. The BOSCC gadgets reĆect in
differences between the regular RV-vectorized variant and the RV+BOSCC variant in the code statistics
table Figure 13.1. Code statistics for RV-vectorized loops without the gadget are named nab/rv/n where
n is the number of the loop in program order. Statistics for the RV+BOSCC variants are analogously
named nab/boscc/n.

Intel C Compiler. ICC chooses a vector width of 4 for the AVX512 Skylake-X target. RV vectorizes
for the full vector width of 8 as the dominating data type is double. Inspection of the machine code
reveals that ICC inserts a total of 16 BOSCC branches in the code. All three loops are vectorized. We
use -fp-model=precise and add OpenMP reduction clauses to the loop pragmas to make sure that
ICC performs FMA contraction but does not re-associate fp operations, except for the reductions in the
SIMD loops.
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Figure 13.8.: SPEC2017 - nab.

157



avx512 avx2 a72 a53

0

0.2

0.4

0.6

0.8

1
s
p

e
e

d
u

p
/

fa
s
t
e

s
t

ICC/AOCC GCC Clang RV

Figure 13.9.: XSBench results.

13.3. Case Study: XSBench

XSBench is a proxy benchmark for the key computational kernel of the Monte Carlo neutronics application
OpenMC [Romano et al., 2015]. About 85% of the total runtime of the actual OpenMC application
is spent in this code [Tramm et al., 2014]. We run XSBench (Version 14) with the nuclide grid type
option. The input sizes were XL for AVX2 and AVX512 and large for the ARM system due to memory
constraints. We apply RV to an outer loop that internally runs the xs kernel as part of the simulation
code. The loop is annotated with the #pragma omp simd of OpenMP for all tested compilers. As
shown in Figure 13.1 the vectorization of that loop requires the divergent loop transform and partial
linearization to preserve the uniform loop. The runtime results are shown in Figure 13.9. Our approach
attains a speed up of 21.6% (AVX512) and 27.8% (AVX2) over the best of GCC, Clang and ICC. We
did not observe any signiĄcant performance variation for the ARM system.
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13.4. TensorRV: Stencil Codes

We evaluate the TensorRV system, described in Chapter 11, on Ąve different stencil codes and matrix
transpose. We show the stencil patterns of all evaluated stencils in Figure 13.10.

◦

(a) Jacobi-5

◦

(b) Jacobi-9

◦

(c) Sparse Jacobi-5

◦

(d) Seidel-9

◦

(e) Seidel-25

Figure 13.10.: Stencils used in the evaluation. The central element (zero coordinate) of the stencils is marked
with the ◦ symbol.

13.4.1. Experiment Setup

All results were obtained on the Skylake-X AVX512 machine. We evaluate every stencil with and without
the modiĄed data layout described in Section 11.7. The stencils are applied to an inner 1024 × 1024

patch of double data. The array boundaries are padded to accommodate the stencils (e.g. Jacobi-9 is
evaluated on the interior of a 1026 × 1026 array).

13.4.2. Runtime Results

2 4 8 16

2 0.94 0.90 0.95 0.90 0.98 0.94

4 0.96 0.92 0.97 0.93 0.98 0.87

8 0.82 1.03 0.92 0.93

16 0.75 1.11

(a) Jacobi-5

2 4 8 16

2 0.94 0.88 0.92 0.94 0.95 1.00

4 0.87 0.87 1.00 0.91 1.04 0.98

8 0.70 0.99 0.91 1.04

16 0.67 0.98

(b) Seidel-9

2 4 8 16

2 1.04 1.16 0.95 1.02 1.03 1.12

4 0.90 1.18 1.09 1.19 1.02 1.15

8 0.78 1.25 1.05 1.23

16 0.74 1.24

(c) Jacobi-9

2 4 8 16

2 0.93 0.92 1.19 1.10 1.10 1.03

4 0.65 0.85 1.01 0.96 1.29 1.20

8 0.56 0.80 0.89 1.01

16 0.49 0.72

(d) Seidel-25

2 4 8 16

2 0.96 1.05 0.94 0.96 0.97 1.03

4 0.96 1.06 0.95 1.09 1.02 1.06

8 0.96 1.15 0.99 1.16

16 0.90 1.26

(e) Sparse Jacobi-5

2 4 8 16

2 1.59 1.31 1.26

4 2.30 2.37 2.00

8 3.79 3.78

16 3.92

(f) Matrix transpose

Figure 13.11.: Single core TensorRV results. Columns: inner-loop brush size. Rows: outer-loop brush size.
Left sub columns: unchanged data layout. Right sub columns: with 2 × 2 data layout.

We show single core results in Figure 13.11 and multi core results in Figure 13.12. The reported
numbers are speedups over vectorization in the inner-most loop with a vector length of 8, which is the
native vector length for double elements on AVX512. We report median results of 51 iterations. We
explain the structure of the runtime tables with an example. Consider the 1.23 result reported in the
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2 4 8 16

2 1.00 1.00 0.96 1.04 0.99 1.25

4 0.96 1.19 0.92 1.23 0.95 1.15

8 0.91 1.15 0.85 1.06

16 0.79 1.14

(a) Jacobi-5

2 4 8 16

2 0.86 1.09 0.99 1.23 1.02 1.10

4 0.87 1.28 0.96 1.07 0.99 1.08

8 0.82 0.99 0.90 1.23

16 0.85 1.04

(b) Seidel-9

2 4 8 16

2 0.97 1.35 1.00 1.11 0.95 1.11

4 0.97 1.09 0.96 1.40 0.97 1.46

8 0.83 1.40 0.94 1.39

16 0.82 1.10

(c) Jacobi-9

2 4 8 16

2 0.92 1.07 0.99 1.02 1.01 1.10

4 0.76 0.85 1.02 1.05 1.02 1.35

8 0.79 1.01 0.92 1.04

16 0.58 0.84

(d) Seidel-25

2 4 8 16

2 1.01 1.20 0.97 1.14 0.99 1.13

4 0.97 1.07 0.93 1.14 0.97 1.46

8 0.92 1.28 0.93 1.30

16 0.91 1.06

(e) Sparse Jacobi-5

2 4 8 16

2 1.26 1.31 1.26

4 1.90 1.97 1.48

8 6.03 6.07

16 6.11

(f) Matrix transpose

Figure 13.12.: Multi core TensorRV results. Result tables structured as in Figure 13.11.

fourth column and third row of the table in Figure 13.11c. The runtime table has row labels and column
labels, which tell us the tensor brush that was used in this conĄguration. The column indicates the size
of the brush in the inner loop, in this case 4. The row tells us the brush size in the outer loop, in this
case 8.

The are two entries in the table for that brush, of which the 1.23 result is on the right. The left
entry is the speedup without data-layout transformation and the right one was measured with the 2 × 2

layout. We thus know that the 9-point Jacobi stencil with a 2 × 2 data layout and the brush B = 8 × 4

achieves a speedup of 1.23 over the loop vectorized version.

13.4.3. Machine Code Statistics

We complement the runtime results with an analysis of the machine code of each stencil variant.

The result of this is analysis is shown in Figure 13.13. The AVX512 SIMD instructions in the assembly
fall into three categories: shuffle instructions, memory instructions and Ćoating-point instructions.
According to Agner FogŠs instruction tables [Fog, 2011], the execution ports for these instructions mostly
do not interfere.

Shuffle instructions (shuffle ops) are those matching vshuff* or vperm* or vinsert* (port 5).
Floating-point instructions (fp ops) are those matching vadd* or vmul* (port 0 or 5). Memory instructions
(memory ops) are those matching vmov* with an address operand (ports 2,3,7,4). Shuffle instructions
that combine a load and a shuffle operation are counted twice as a shuffle op and a memory op. 1

Each one of the three scatter plots in Figure 13.13 plots the relative amount of one instruction
category (y axis) against the speedup over the inner-loop vectorized version (x axis). Every data point
is one combination of stencil, brush, data layout and threading conĄguration. This includes the base
line versions with a speedup of 1.0.

1The code contains a few other, scalar instructions, e.g. for loop control. The Skylake-X CPU executes those in parallel

with the AVX512 instructions and on separate execution units. Hence, scalar instructions can be ignored for the

purposes of performance analysis.
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Figure 13.13.: Each data point is one combination of stencil (excluding transpose), datalayout, brush and
threading. Speedup over inner-loop vectorized version (x axis). Left: fraction of shuffle
instructions. Center: fraction of fp arithmetic instructions. Right: fraction of memory
instructions.

Threshold Lines. The data points in the Ąrst plot form two clusters. We overlay the plot with a
threshold line at 35% shuffle instructions to separate the clusters. Data points above that threshold are
drawn in light colors in the second and third plot. We apply another threshold in the second plot at 50%

Ćoating-point instructions. Data points that are above that threshold are again drawn in light colors in
the third plot on the right-hand side. Thus, if a data point in the third plot is drawn with a light color
then the corresponding stencil variant surpasses at least one of the thresholds in the plots to the left.

13.4.4. Discussion

We start with observations on all stencil variants before moving into the discussion of individual stencils.
These observations on stencils do not apply to matrix transpose because it has a different memory access
pattern and no computations.

Interpretation of Machine Code Statistics. We turn to the machine code statistics in Figure 13.13
to get an overview over all generated stencil variants.

Some variants on the standard layout are imbalanced in that their machine code is dense in shuffle
instructions. Those are the variants in the upper cluster in the shuffle ops plot of Figure 13.13 with
35% shuffle instructions and above. The Skylake-X CPU can issue up to one shuffle instruction in each
cycle [Fog, 2011]. We interpret the slowdown of the variants in the Ąrst cluster as a sign that this
capacity is maxed out at around 35% shuffle instructions.

As shown in the center plof of Figure 13.13, variants that have more than 50% Ćoating-point
operations are below a speedup of 1.1× with the exception of two outliers. These are two variants of the
Seidel-25 stencil with a 2 × 8 and 4 × 8 brush both on the 1 × 1 data layout.

Effect of Data Layout Transformation. The thresholds in the Ąrst and second plot of Figure 13.13
exclusively separate off variants of the standard layout. Stencil variants with the transformed layout
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are more balanced in their mix of SIMD instructions. This results in better performance as shown
in Figure 13.11 and Figure 13.12.

We compare the runtimes in Figure 13.11 and Figure 13.12. We Ąnd that switching from single
to multi core execution generally ampliĄes the speedups. This holds in particular for the 2× 2 data
layout variants that already surpass the performance of the inner-most vectorized baseline. There are
also improvements for the standard layout when switching to multi core execution. However, those stay
below the performance of the baseline.

Matrix Transpose. The matrix transpose kernel is the operation A(i,j) = B(j,i) where i is the
iteration variable of the inner loop. The store to A is therefore contiguous in the iteration variable j of
the outer-loop. Consider the performance of the kernel for different brush sizes in Figure 13.12. The
speedup increases with the brush size in the outer loop. The exact cause for this performance behavior
merits further investigation.

13.5. Conclusion

How does the RV vectorization system compare to other data-parallel vectorizers? Our
comparison against ISPC shows that RV is able to match and sometimes outperform it. However, RV is
a much more Ćexible system vectorizing any LLVM IR program with reducible control Ćow whereas
ISPC is strictly limited to its structured DSL representation. The tree traversal codes were manually
translated into the ISPC language. This required extensive use of uniform qualiĄers to compensate
for deĄciencies in the divergence analysis of ISPC and reach the same SIMD code quality as RV. In
comparison, RV vectorized data-parallel C++ implementations where only the vector shapes of function
arguments were pre-supplied.

How relevant is RV for actual application codes? We conducted two case studies to see how RV
performs in standard benchmark codes. Our results show that RV is able to achieve speedups over state-
of-the-art C++ compilers for those platforms. Different to the tree traversal results, these benchmarks
were not written for automatic vectorization. The results thus corroborate that the transformations for
divergent control Ćow offered by RV are also beneĄcial in general applications codes.

What are the performance beneĄts of tensorization and how performance-sensitive is the
technique to the brush? The TensorRV results show that the framework is capable of delivering
speedups on stencil codes over naive loop vectorization. However, tensorization extends the search space:
which brush and data layout should be used for which kernel? Our experiments show that there is not
one best brush size but that this depends on the stencil at hand. Still, we found some hard thresholds
for performance in the fraction of shuffle and Ćoating point operations. We leave the exploration of cost
factors and the elaboration of a proper cost model for TensorRV to future work.
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Chapter 14.

Conclusions

Technological limitations do not admit to continue the trend of ever-improving scalar compute perfor-
mance. Instead CPUs offer signiĄcant parallel processing power locked in their SIMD units. Exploiting
SIMD is thus mandatory to implement high-performance applications on modern CPUs. There are two
main ways to program SIMD: either directly through compiler builtin functions and types, which are
tedious to program and result in target-speciĄc code, or through vectorization tools and libraries.

Vectorization of data-parallel codes is a fundamental technique that underlies many of these tools,
ranging from outer-loop vectorizers to whole-function vectorizers to vectorizers for explicitly data-parallel
programming languages. While vectorization techniques for structured programs are well understood
and readily available, there was no reliable vectorization framework for unstructured codes. Yet, many
programs are naturally unstructured or become unstructured due to beneĄcial code optimizations.

This thesis presents the RV vectorization system for data-parallel, unstructured codes in a CFG-based
compiler IR. The RV system features a novel vectorizer IR along with algorithms and analyses to build
a complete vectorizer system from it. RV vectorizes all IR programs with reducible control Ćow that are
valid under data-parallel, lock-step execution.

We observe the following: First, a general, data-parallel vectorizer for unstructured CFGs can
match and exceed the performance of more specialized systems for structured languages or outer-loop
vectorization. Second, the developed algorithms are surprisingly simple, making feasible proofs of
correctness and other properties. Proved properties simplify transformations or enable more aggressive
optimizations. Finally, by deĄning a single, full-featured vectorizer IR for the whole vectorization process,
vectorization becomes a question of composing transformation passes, a model that has proven itself in
modern compilers.

We believe that the RV system offers a robust foundation for future research in data-parallel
vectorization. The exact relation between greedy schedules and partial linearization warrants further
investigation and the space of runtime schedules is largely unexplored. We also leave to future work the
extension to irreducible control-Ćow, which prompts the question which iterations in irreducible loops
are supposed to synchronize.

On the practical side, we see opportunities in inter-procedural vectorization and novel transformations
that were too complicated to implement in earlier systems.
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Appendix A.

Correctness and Precision of local_joins

Listing 9 is a simpliĄed variant of the local_joins algorithm in Listing 4 of Chapter 7. The claims of

correctness and precision are enshrined in Theorem 2, which we prove in the conclusion of this appendix.

Listing 9: Single-source, all-sinks disjoint paths algorithm for DAGs.
Input: A ∈ V, Divergent branch label.
Output: DomMap : dominating node map.

1 DomMap ← ¶b→ ⊥ ♣ b ∈ V♢
// Divergent Successors

2 foreach divergent A→ s do
3 DomMap[s]← s

4 end
// Uniform Successors

5 foreach uniform A→ s do
6 DomMap[s]← u

7 end
// Join computation

8 foreach b in rpo() do
9 d← DomMap[b]

10 if d = ⊥ then
11 foreach q → b do

12 d← d
b
⊔DomMap[q]

13 end
14 DomMap[b]← d

15 end

16 end

DeĄnition 25 (Disjoint Path Join).

x
⊔ : V

′ × V
′ → V

′

a
x
⊔ b 7→



















a if a = b∨ b = ⊥

b if a = ⊥∧ b ̸= ⊥

x otherwise

where V
′ = ¶ u,⊥ ♢∪ V.
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We make the following assumptions to simplify the proofs. We assume for every successor s of A

that A is the only predecessor of s, that is A → s is the only edge leading into s. This property can

be established by replacing every edge (A, i, s) ∈ E with two edges (A, i, pA) and (pA, 0, s) for a new,

unique block pA with an unconditional branch to s. This operation takes time linear in the number of

original control-Ćow edges. Further, as established in Section 2.4, every exit block of a loop has exactly

one incoming loop-exiting edge.

Normally, either branches are completely uniform (there is no control divergence) or they are

completely divergent (disjoint paths may originate from any control-Ćow edge out of the node). Partial

divergence arises from collapsing divergent loops into nodes with some uniform and some divergent

successors as described in Section 7.3.

Lemma 3 (Properties of the Disjoint Path Join). The Disjoint Path Join operator
x
⊔ is distributive,

commutative, and associative.

Lemma 4 (Monotonicity of DomMap). For any b ∈ V either DomMap[b] ∈ ¶⊥, u♢ or

BlockIndex(DomMap[b]) ≤ BlockIndex(b).

Lemma 5 (Completeness of Listing 9). Let A ∈ V, then for the result of Listing 9, the following are

equivalent for any p ∈ V, BlockIndex(p) ≥ BlockIndex(A)

1. DomMap[p] ̸= ⊥.

2. There exists a path A→+ p.

Proof. We prove the claim by induction over the block index. The induction hypothesis is Lemma 5,

where p ∈ V is the induction variable, identiĄed by its block index number n ∈N, respectively.

Base case (BlockIndex(p) = 0) The graph is acyclic and so there is no edge p → p. Hence,

DomMap[p] = ⊥. Also, there can be no path from p to p in a DAG.

Step (n→ n + 1, direction (1) =⇒ (2)) Let BlockIndex(p) = n + 1 with DomMap[p] ̸= ⊥. There

are two ways that Listing 9 can deĄne DomMap[p] to be different from ⊥: Either, p is an immediate

successor of A and so A→ p is a path from A. Otherwise, DomMap[p] is computed as
p
⊔

q→p
DomMap[q].

By DeĄnition 25, for DomMap[p] ̸= ⊥ there has to be a q → p such that DomMap[q] ̸= ⊥. We apply

the induction hypothesis for BlockIndex(q) < BlockIndex(p) with DomMap[q] ̸= ⊥ and get that there

is a path A→∗ q. Since q → p, also A→+ p.

Step (n→ n + 1, direction (2) =⇒ (1)) Let BlockIndex(p) = n + 1 such that there is a path

t ∈ A →∗ q → p for some q ∈ V. Consider the case q = A, then A → p and DomMap[p] ∈ ¶ u, p ♢

and the claim follows directly. Otherwise, t ∈ A →+ q → p and t has a preĄx path r ∈ A →+ q. In

this case, p is not the immediate successor of A and DomMap[p] is computed as
p
⊔

q→p
DomMap[q] Since

BlockIndex(q) < BlockIndex(p) and r ∈ A →+ q, the induction hypothesis yields DomMap[q] ̸= ⊥.
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Hence, also DomMap[p] ̸= ⊥.

Lemma 6 (Divergent path out of A). Given any A, p ∈ V. The following statements are equivalent:

1. There is a path A→ q →∗ p such that A→ q is a divergent edge out of A.

2. DomMap[p] ̸∈ ¶ ⊥, u ♢.

Proof. We prove the claim by induction over the length of the longest path from A→+ p.

Base case (A→ p), (1) =⇒ (2) Let A→ p be a divergent edge out of A. Since p is an immediate

divergent successor of p, DomMap[p] = p ̸∈ ¶ ⊥, u ♢.

Base case (A→ p), (2) =⇒ (1) Let DomMap[p] ̸∈ ¶ ⊥, u ♢. By DeĄnition 25 and since A is the

only predecessor of p, it must hold that A→ p is a divergent edge out of A.

Step (longest path length n ≥ 2), (1) =⇒ (2) There is a simple path A→+ q → p that starts in a

divergent edge. We apply the induction hypothesis to q and obtain that DomMap[q] ̸∈ ¶ u,⊥ ♢. Being a

successor of q ̸= A, p is not also an immediate successor of A. Therefore, DomMap[p] is computed as

DomMap[p] = DomMap[q]
p
⊔X for X representing the join of all other predecessors of p. By DeĄnition 25

and because DomMap[q] ̸∈ ¶ u,⊥ ♢, DomMap[p] ̸∈ ¶ u,⊥ ♢.

Step (longest path length n ≥ 2), (2) =⇒ (1) The node p is not an immediate succssor of A. There-

fore, DomMap[p] is computed as DomMap[p] =
p
⊔

DomMap[qi]
qi→p

. Given that DomMap[p] ̸∈ ¶ u,⊥ ♢

and DeĄnition 25 there has to be such a qi → p with DomMap[qi] ̸∈ ¶ u,⊥ ♢. The longest path to that

qi is shorter than the longest path to p and we can apply the induction hypothesis. This yields a path

t ∈ A→+ q that starts in a divergent edge. The extension t→ p also starts in a divergent edge.

Corollary 1. Given that there exists a path A→+ p. DomMap[p] = u, only if for all paths t ∈ A→

q →∗ p for any q it holds that A→ q is a uniform edge out of A

Proof. This is the contraposition of Lemma 6.

Theorem 2 (Disjoint Path Invariant). Let DomMap be the result of Listing 9 for a partially divergent

node in label A. Consider any two p, p′ ∈ V. If DomMap[p] = d and DomMap[p′] = d′ with d, d′ ̸= ⊥,

then the following two statements are equivalent

1. d ̸= d′
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2. There exist almost node-disjoint paths t ∈ A→ q →∗ p, t′ ∈ A→ q′ →∗ p′ such that at least one of

A→ q or A→ q′ is a divergent edge out of A.

Proof. First, consider the case that p = p′. Trivially, DomMap[p] = DomMap[p′] and there are also not

two almost node-disjoint paths t ∈ A→+ p and t′ ∈ A→+ p. For the following proof, we may therefore

assume that p ̸= p′ and wlog that BlockIndex(p) < BlockIndex(p′)

We will proof Theorem 2 by induction over the block index number n ∈N.

Induction Hypothesis

Theorem 2 holds for any two nodes p, p′ ∈ V, such that BlockIndex(p) ≤ n and BlockIndex(p′) ≤ n.

Base case (n = 0)

Trivially, there are no two labels p, p′ ∈ V with p ̸= p′ and BlockIndex(p) ≤ 0 and BlockIndex(p′) ≤ 0.

Base case (DomMap[p′] = ⊥)

By Lemma 5, there is no path A→+ p′.

Base case (A→ p′ and DomMap[p′] = p′)

Given any p ∈ V with BlockIndex(p) < BlockIndex(p′) it is clear that for any path t ∈ A→+ p, it holds

that p′ ̸∈ t because the graph is acyclic. Also DomMap[p] ̸= p′ because of Lemma 4.

Base case (A→ p′ and DomMap[p′] = u)

Consider the case that DomMap[p] = u. By Corollary 1, equivalently all paths A →+ p therefore

start in a uniform edge and there is no path A →+ p that starts in a divergent edge. Otherwise,

DomMap[p] ̸∈ ¶ u,⊥ ♢. By Lemma 6, equivalently there has to be a path A→+ p starting in a divergent

edge out of A. Given that for any path t ∈ A→+ p, it holds that p′ ̸∈ t because the graph is acyclic.

Induction Step (n → n + 1), (1) =⇒ (2)

Case (d′ = u and d ̸= u)

Given d′ = u, all paths A→+ p′ are uniform and do not start in start in a divergent edge. Since this is

covered by a base case, we may assume that there is no edge A→ p′. Therefore for all edges q′ → p′, it

must hold that DomMap[q′] ∈ ¶ u,⊥ ♢. Otherwise not d′ = u because of DeĄnition 25. By the same

token, there has be an q′ → p such that DomMap[q′] = u. As d ̸∈ ¶ u,⊥ ♢ and DomMap[q′] = u, we can

apply the induction hypothesis. By the IH, there exist two almost node-disjoint paths t′

q ∈ A→+ q′ and

t ∈ A→+ p such that one of them starts in a divergent edge out of A. Note that since DomMap[q′] = u

and by Corollary 1, among the two paths only t can start in a divergent edge out of A. Also, the

extension t′

q → p′ is also almost node-disjoint from t because BlockIndex(p) < BlockIndex(p′) and the
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graph is acyclic.

Induction Step (n → n + 1), (1) =⇒ (2)

Case (d′ ̸= u)

Assume d ̸= d′. Since this is covered by a base case, we may assume that there is no edge A → p′.

Then, there has to be a q′ → p′ such that DomMap[q′] ̸= u. This is because otherwise by DeĄnition 25

DomMap[p′] = u, which violates the assumption of the case.

Further, either DomMap[q′] ̸= d or DomMap[q′] = d and there has to be another q′′ → p′ such that

DomMap[q′′] ̸∈ ¶ ⊥, d ♢, also by DeĄnition 25. In either case, there has to be a predecessor q′′′ → p with

DomMap[q′′′] ̸∈ ¶ ⊥, d ♢. We can apply the induction hypothesis to q′′′ and p: There are two almost

node-disjoint paths tq ∈ A→+ q′′′ and t ∈ A→+ p and one of them starts in a divergent edge out of A.

Then, again, the extension t′ = tq → p′ is also almost node-disjoint from t. If t was the divergent path out

of A, then the claim follows directly. Otherwise if tq is a divergent path out of A, then so is its extension t′.

Induction Step (n → n + 1), (2) =⇒ (1)

Case (almost node-disjoint paths t ∈ A→+ p and t′ ∈ A→+ p′, t is divergent out of A)

Since t′ = A→ p′ is covered by a base case, we can assume that t′ = A→+ q′ → p′. By Lemma 5 and

the existence of t and t′, ⊥ ̸∈ ¶DomMap[p], DomMap[p′], DomMap[q′] ♢. Further since t is a divergent

path out of A, DomMap[p] ̸= u.

We will assume the contradiction: DomMap[p′] = DomMap[p]. From Lemma 4, we conclude that

DomMap[p′] ̸= p′ because DomMap[p] ̸= d ̸∈ ¶ u,⊥ ♢. Since DomMap[q′] ̸= ⊥, it must also hold that

DomMap[q′] = p′. However, the preĄx A →+ q′ is almost node-disjoint from the path t and hence

the induction hypothesis yields DomMap[q′] ̸= DomMap[p]. This is a contradiction since not at the

same time DomMap[q′] ̸= DomMap[p] and DomMap[q′] = DomMap[p′] = DomMap[p]. Therefore,

DomMap[p′] ̸= DomMap[p].

Induction Step (n → n + 1), (2) =⇒ (1)

Case (almost node-disjoint paths t ∈ A→+ p and t′ ∈ A→+ p′, t′ is divergent out of A)

DomMap[p′] ̸∈ ¶ u,⊥ ♢ because of Lemma 5 and Lemma 6. Also, DomMap[q] ̸= ⊥ because of

Lemma 5. Since t′ = A → p′ is covered by a base case, we can assume that t = tq → p′ with

tq ∈ A→+ q′. Since t1 is a preĄx of t′ it also does not start in a divergent edge out of A. The induction

hypothesis thus yields that DomMap[q′] ̸= DomMap[p].

However, as p′ is not a direct successor of A and q′ → p′ the value DomMap[p′] = DomMap[q′]
p′

⊔X

for some X ∈ V
′. Then, DomMap[p′] ̸= DomMap[p] because DomMap[q′] ̸= DomMap[p].

Theorem 7 (Sync Dependence Criterion). Given A, z ∈ V, the following statements are equivalent:
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1. There exist two edge-disjoint paths t, t′ ∈ A→+ z such that at least one of them starts in a divergent

edge ouf of A and t and t′ are node-disjoint except t[0] = t′[0] and their last nodes.

2. There is no edge A→ z and DomMap[z] = z.

Proof. By structural assumption of the DAG there is no other incoming edge into z, if A→ z. However,

the path A→ z is not edge-disjoint with itself. Therefore, we may assume that there is no direct edge

from A→ z.

(1) =⇒ (2) In that case t ∈ A →+ q → z and t′ ∈ A →+ q′ → z with q ̸= q′. We apply Theo-

rem 2 and obtain that DomMap[q] ̸= DomMap[q′]. Further ⊥ ̸∈ ¶DomMap[q], DomMap[q′] ♢ because

of Lemma 5. Since z is no immediate successor of A, DomMap[z] = DomMap[q]
z
⊔DomMap[q′]

z
⊔X for

some X ∈ V
′. By applying DeĄnition 25 for DomMap[q] ̸= DomMap[q′], we get DomMap[z] = z

(2) =⇒ (1) Assume that DomMap[z] = z. Since z is no immediate successor of A, DomMap[z] =
z
⊔

q→z
DomMap[q]. Hence, the only way that DomMap[z] = z if z is that there are two predecessors of z,

q → z and q′ → z with DomMap[q] ̸= DomMap[q′] and ⊥ ̸∈ ¶DomMap[q], DomMap[q′] ♢. Application

of DeĄnition 25 and yields that that there are two almost node-disjoint paths t ∈ A →+ q and

t ∈ A→+ q′ such that one of them starts in a divergent edge out of A. We extend the path to tz = t→ z

and t′

z = t′ → z. Clearly, tz and t′

z are edge disjoint because t and t′ are almost node-disjoint. Also

tz, t′

z ∈ A→+ z by construction.
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Appendix B.

Properties of Partial Linearization

We prove three properties of partial linearization that simplify the design of the vectorizer pipeline. The

Ąrst, preservation of dominance implies that partial linearization preserves all SSA properties. The

second, preservation of uniform control dependence implies that if a block mask is uniform then the

vector code generator does not have to predicate the block at all. Finally, preservation of uniform

branches yields a simple criterion under which uniform branches are preserved. This, in turn, simpliĄes

optimizations for divergent control such as BOSCC, as shown in Section 9.2.

B.1. Extended Notation

We write ⪰PD

ℓ and cdepℓ to refer to post dominance and control dependence on the partially linearized

graph Gℓ.

We use the notation x@q for q ∈ V and x being a variable in the algorithm to refer to the value of

variable x after its update in the outer loop iteration of block q. For example, next@p is the value of

variable next after line 14, if p has a varying branch. If p has a uniform branch than next@p refers to

the value of next after line 8. In case of uniform branches there can be multiple deĄnitions of next for

next@b. The inner loop iteration next@b is referring to will be made clear in the context.

B.1.1. General Remarks

Note that line 18 can be removed from the algorithm without any effect on the resulting Gℓ. This is

because D@b is only read in the deĄnitions of T@b′ with b′ > b. Further, line 18 is the only statement

that removes entries from the deferral relation. Thus, after a new pair (x, d) ∈ D@b is added in line 10

or line 16, it will be the case that d ∈ T@x.

B.2. Preservation of Uniform Control Dependence

Lemma 2. If uni(k) then cdep(k) = cdepℓ(k) where cdepℓ is the control dependence in Gℓ.
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It is the purpose of this Section to prove Lemma 2 that was used as an unproven lemma in the proof

of Theorem 4.1.

B.2.1. Auxiliary Lemmas

Lemma 7.

c ∈ T@b =⇒ ∀(b, s) ∈ Eℓ [(s, c) ∈ D@b ∨ s = c]

Note that T @b contains the deferral targets of b before D is modiĄed while D@b includes the updates to

D after the outer loop iteration for b has Ąnished.

Proof. For any such c ∈ T@b, we distinguish three cases in the outer loop in the iteration of b ∈ V :

Case 1. b has a divergent branch and x = min(T@b) with ∀s ∈ S@b.x ≤ s.

Since x ≤ min(S@b∪ T@b) always next@b = x. If x = c then (b, 0, c) ∈ Eℓ. Otherwise, if x ̸= c, then

(b, 0, x) ∈ Eℓ and (x, c) ∈ D@b after line 16.

Case 2. b has a divergent branch and s = min(S@b) < min(T@b).

So, next@b = s and next@b ̸∈ T@b. We get (b, 0, s) ∈ Eℓ and (s, c) ∈ D@b because next@b ̸∈ T@b.

Case 3. b has uniform branch.

For every iteration of the inner loop, there are two cases for each (b, i, s) ∈ E: If next@b ̸= c then

(b, i, next@b) ∈ Eℓ and (next@b, c) ∈ D@b since c ∈ T@b and c ̸= next@b. Otherwise, if next@b = c

then (b, i, next@b) ∈ Eℓ.

Lemma 8. c ∈ T@b =⇒ c ≻PD

ℓ b

Proof. Given that c ∈ T@b, consider every complete path π ∈ b↓ in Gℓ. Since π is complete it ends in

some x ∈ V where x is a block without successors in Gℓ. When the outer loop processed x, it also held

that T @x = ∅. However, when b was processed it held that c ∈ T @b. Hence, there must be a node m ∈ π

where next@m = c. To see why, assume that there was no m ∈ π with next@m = c. By Lemma 7, it

must therefore hold that c ∈ T@x. However, this contradicts that x has no successors in Gℓ. As this

reasoning applies to any complete path π from b in Gℓ, the node c is element of any such path π. Thus,

by deĄnition of post dominance, c ≻PD

ℓ b.

Lemma 9. a ⪰PD x =⇒ a ⪰PD

ℓ x

Proof. We show the claim by induction over the post dominance relation in G.

Base case The claim trivially follows for a = x.

Induction step Assume that a ≻PD x. For every successor p with x → p in E it holds that a ⪰PD p.

By the induction hypothesis therefore a ⪰PD

ℓ p. For every edge (x, i, next@x) ∈ Eℓ there are two cases:

Either immediately next@x = p or it holds that next@x ̸= p. In the latter case (next@x, p) ∈ D@x after

the update to D and so p ≻PD

ℓ next@x by Lemma 8 with a ⪰PD

ℓ p. Therefore, in general a ≻PD

ℓ x.
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Lemma 10. uni(a) =⇒ T@a = ∅

Proof. We will prove this claim by an outer induction over the block index and an inner induction over

the post dominance region of a node. For the outer induction, the induction hypothesis is equivalent to

the claim uni(a) =⇒ T = ∅.

Outer base case For the Ąrst node in the block index, the claim follows from the initial state with

D = ∅.

Outer induction step We may assume that given uni(a) it holds that ∀d ∈ cdepB(a).T @d = ∅. This

is because uni(a) implies uni(cdep(a)). It remains to show that then also T @a = ∅. We will prove this

by induction over the post dominance region of a in block index order. The induction hypothesis for the

inner induction step is a ⪰PD p =⇒ (∀t ∈ T@p.a ⪰PD t). For the case that p = a, this implies that

T@a = ∅ because ∀t ∈ T@a.t > a.

Inner base case The base case for the inner induction is the minimum node p ∈ V with a ⪰PD p. If

T@p = ∅ the claim follows trivially. Otherwise, assume there exists a t ∈ T@p.

First, note that p ̸∈ T@x for any x ∈ V . Assume that p ∈ T@x, there must be a node s with the

edge s → p ∈ E during which processing the pair (next@s, p) was inserted into the deferral relation.

Then, a ̸⪰PD s because p is the minimum node with a ⪰PD p and hence s→ p ∈ cdep(a). With uni(a) it

follows that s has a uniform branch and the outer induction hypothesis implies that T @s = ∅. Therefore,

always (next@s, p) ̸∈ D@s after line 10, for any such s → p ∈ E. This contradicts p ∈ T@x for any

x ∈ V .

So, if t ∈ T@p due to (next@q, t) ∈ D@q with next@q = p then q → p ∈ E. However, then again

q → p ∈ cdep(a) and q must have a uniform branch and the outer induction hypothesis yields T @q = ∅.

Thus, (next@q, t) ̸∈ D@q after the outer loop has Ąnished processing q. Therefore, t ∈ T@p can not

exist and Ąnally T@p = ∅.

Inner induction step We proceed with the inner induction step for a node p ∈ V such that a ⪰PD p.

Again, consider there was a t ∈ T@p such a ̸⪰PD t while a ⪰PD p. There must have been an outer loop

iteration of the algorithm for a node s ∈ V (i.e. "b = s") such that next@s = p and (p, t) ∈ D@s after

the iteration.

We distinguish three cases for s:

Case 1. s→ p ∈ cdep(a). Therefore s has a uniform branch and by the (outer) hypothesis if holds

that T@s = ∅. This leads to the contradiction that (p, t) ̸∈ D@s after s was processed.

Case 2. a ⪰PD s. As s < p, we can apply the inner induction hypothesis and obtain ∀z ∈ T @s.a ⪰PD

z. Since s < p and a ⪰PD p, a ≻PD s. From a ≻PD s it follows also that ∀s→ n ∈ E.a ⪰PD n. Therefore,

regardless whether s has a uniform or varying branch it holds that a ⪰PD t, which contradicts the

assumption.
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Case 3. s→ p ̸∈ cdep(a) ∧ a ̸⪰PD s. We know that s→ p ̸∈ E because otherwise s→ p would be a

control dependence of a. Hence, there must be a different q ∈ V with q → p ∈ E, such that p ̸∈ T @q but

(next@q, p) ∈ D@q after the update of D in the iteration of q.

As a ⪰PD p, also a ⪰PD q. To see why assume that a ̸⪰PD q and so q → p ∈ cdep(a). By the outer

induction hypothesis q must have a uniform branch and T@q = ∅. However, in that case p was never

added as a deferral target in line 10. Therefore, a ⪰PD q.

Since p = next@s and s → p ̸∈ E, there must be in particular such a node q with q → p ∈ E and

a path π′ ∈ q →∗ x → s in Gℓ. Note that for every node m ∈ π′ it holds that next@m ∈ T@m or

next@m is an immediate successor of m. By the inner induction hypothesis and a ≻PD m, it follows that

∀t ∈ T@m.a ⪰PD t. Likewise, since a ≻PD m also a ⪰PD next@m if next@m is an immediate successor

of m. Finally, x ∈ π′ and next@x = s and so also a ⪰PD s. This contradicts the assumption of the case

that a ̸⪰PD s. Hence, Case 3 can never occur.

Lemma 11. if uni(k) with k ∈ V

then for all b ∈ V , k ⪰PD b =⇒ (∀t ∈ T@b.k ⪰PD t).

Proof. This is the inner induction hypothesis of Lemma 10. It is thus proved by the accompanying proof

of that Lemma. We will use the induction hypothesis as a standalone argument and thus rephrase it

here as a corollary.

Lemma 12. If uni(k) with k ∈ V

then for all b ∈ V , [∃t ∈ T@b. (k ⪰PD t)] =⇒ k ⪰PD b

Proof. We will prove the claim by induction over the block index.

Base case The base case is given for instances where T@b = ∅, which includes the entry block of the

CFG. If T@b = ∅ then ∀t ∈ T@b.(k ̸⪰PD t).

Induction step We prove the induction step for b ∈ V . Since T@b ̸= ∅, the node b = next@p for

some p ∈ V with p < b. When each such p is processed by partial linearization, it will add new entries

of the form (b, d) to the deferral relation that result in entries d ∈ T@b. Note that D = ∅ initially, and

these transfers by nodes p with next@p = b are the only way to add elements to T@b.

We thus distinguish the following cases for t ∈ T@b with k ⪰PD t where (b, t) was added to the

deferral relation for a node p with next@p = b.

Case 1. ∃i.(p, i, b) ∈ E

If k ⪰PD t for t ∈ T @p then by the induction hypothesis, k ⪰PD p. Further, since p→ b ∈ E, immediately

k ⪰PD b.
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Case 2. ̸ ∃i.(p, i, b) ∈ E

In this case b = next@p ∈ T@p. By the induction hypothesis with t ∈ T@p, k ⪰PD p. So, it follows

from Lemma 11 with uni(k) that ∀t ∈ T@p.k ⪰PD t and in particular k ⪰PD next@p = b.

Lemma 13. if ∀a→ b ∈ E.uni(a→ b) then

∀b.a→ b ∈ E ⇐⇒ a→ b ∈ Eℓ

Proof. uni(a → b) implies that a has a uniform branch and thus ∀a → b ∈ E.uni(a → b). Since

uni(a) then T@a = ∅ by Lemma 10. Because of that a → b ∈ E implies a → b ∈ Eℓ by the

algorithm. This means that ♣ ¶ b ♣ a→ b ∈ Eℓ ♢ ♣ ≥ ♣ ¶ b ♣ a→ b ∈ E♢ ♢ ♣. However, the algorithm will

only reduce the degree of branches. This means that ♣ ¶ b ♣ a→ b ∈ Eℓ ♢ ♣ ≤ ♣ ¶ b ♣ a→ b ∈ E♢ ♢ ♣. Thus,

∀b.(a→ b ∈ E ⇐⇒ a→ b ∈ Eℓ).

Lemma 14. if uni(a) then [a ⪰PD b ⇐= a ⪰PD

ℓ b]

Proof. We prove the claim by induction over the post dominance relation in Gℓ. The induction hypothesis

is as follows with induction performed over the node b with an arbitrary but Ąxed node a:

If uni(a) then a ⪰PD

ℓ b =⇒ a ⪰PD b.

In the following assume uni(a). The base case is given by the roots of the post-dominator tree that

is the b ∈ V , such that there is no a with a ≻PD

ℓ b.

Base case Lemma 9 implies that a ⪰PD b =⇒ a ⪰PD

ℓ b. Since b is a root of the post-dominator tree,

there is no other a ∈ V with a ⪰PD

ℓ b but a = b and so it follows that a ⪰PD b.

Induction step For the induction step, we will show the contraposition a ̸⪰PD b =⇒ a ̸⪰PD

ℓ b. Given

that a ̸⪰PD b and b is processed in the outer loop, we distinguish the following cases:

Case 1. There exists (b, i, next@b) ∈ Eℓ with next@b ∈ T@b.

In this case, it follows directly from Lemma 12 that a ̸⪰PD b implies a ̸⪰PD next@b. By the induction

hypothesis for next@b, we conclude that a ̸⪰PD

ℓ next@b. Since b→ next@b ∈ Eℓ therefore also a ̸⪰PD

ℓ b.

Case 2. For all (b, i, next@b) ∈ Eℓ it holds that next@b ̸∈ T@b.

In this case next@b is drawn from the immediate successors of b in G.

Sub case 2.1. b has a divergent branch.

Assume there was a b→ s ∈ E with a ̸⪰PD b and a ⪰PD s. This implies that b→ s ∈ cdep(a). However,

as uni(a) the node b must have a uniform branch, which contradicts the assumption. Therefore, such an

edge can not exist and thus if b has a divergent branch it follows from a ̸⪰PD b that ∀b→ s ∈ E.a ̸⪰PD s.
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So, if b→ next@b ∈ E then a ̸⪰PD next@b. We apply the induction hypothesis to obtain a ̸⪰PD

ℓ next@b

and Ąnally a ̸⪰PD

ℓ b.

Sub case 2.2. b has a uniform branch.

Since a ̸⪰PD b there must be an edge b → s ∈ E such that a ̸⪰PD s. By assumption of Case 2, the

node s is also an immediate successor of b in Gℓ. By the induction hypothesis a ̸⪰PD

ℓ s. Therefore, also

a ̸⪰PD

ℓ b.

B.2.2. Main Proof

This is the main proof of Lemma 2.

Proof. In the following we will assume that uni(c) for some c ∈ V . We will prove the two directions of

the equivalence separately, that is A =⇒ B and B =⇒ A.

Direction: a→ b ∈ cdepℓ(c) =⇒ a→ b ∈ cdep(c)

By deĄnition of control dependence, we obtain c ⪰PD

ℓ b and c ̸⪰PD

ℓ a and a→ b ∈ Eℓ. By Lemma 9 and Lemma 14,

given that uni(c), it follows that c ⪰PD b and c ̸⪰PD a. It remains to show that a→ b ∈ E. Assume this

was not the case, that is a → b ∈ Eℓ and a → b ̸∈ E. As a → b ∈ Eℓ, we get b ∈ T@a and therefore,

by Lemma 8, b ⪰PD

ℓ a. Since also c ⪰PD

ℓ b this contradicts the assumption that c ̸⪰PD

ℓ a. Thus, a→ b ∈ E.

Finally, from a→ b ∈ E and c ⪰PD b and c ̸⪰PD a it follows by deĄnition that a→ b ∈ cdep(c).

Direction: a→ b ∈ cdepℓ(c) ⇐= a→ b ∈ cdep(c)

Given a→ b ∈ cdep(c) and uni(c) we conclude that uni(a→ b). Therefore, by Lemma 13, a→ b ∈ Eℓ

because a has a uniform branch and a→ b ∈ E. a→ b ∈ cdep(c) also implies c ⪰PD b and c ̸⪰PD a by

deĄnition of control dependence. However, by Lemma 9, c ⪰PD b implies c ⪰PD

ℓ b and since uni(c) it

also follows by Lemma 14 that c ̸⪰PD a implies c ̸⪰PD

ℓ a. In short, a→ b ∈ Eℓ and c ⪰PD

ℓ b and c ̸⪰PD

ℓ a

and so by deĄnition a→ b ∈ cdepℓ(c).

B.3. Preservation of Uniform Branches

Theorem 5. Given a dominance-compact block index, partial linearization will preserve an edge

b→ y ∈ E if there exists a block d ∈ V with the following properties in G:

1. d ⪰D b ∧ d ≻D y (d dominates the edge b→ y).

2. uni(b→ y) in the dominance region Gd of d.

In this section, we will prove Theorem 5. We will prove that the edges that d ∈ V dominates in

the partially linearized subgraph Gd
ℓ are part of the whole linearized subgraph Gℓ. The proof considers

two instances of partial linearization, one on G and the other on Gd and shows that they maintain an

equivalent state with respect to the equivalence relation of DeĄnition 26.
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We will show inductively that the equivalence relation holds when executing the two instances in

lock step for each visited note b ∈ V . This the lock step execution over the outer loop (line 3) and the

inner loop (line 7) in case that b ends in a uniform branch. We pad the loop of the instance on Gd with

empty loop iterations for blocks b ∈ V \ V d and edges e ∈ E \ E
d such that both instances can execute

in lock step over all of b ∈ V . Note that the two instances operate on the same block index, that is

BlockIndex(b) = BlockIndexd(b) for b ∈ V d.

Finally, the equivalence relation implies that all edges in Gd
ℓ that d dominates are indeed embedded

in Gℓ. By extension if an edge a→ b ∈ E with d ≻D b is uniform in Gd for any node d ∈ V then it will

be preserved in Gd
ℓ and thus also in the whole partially linearized Gℓ.

DeĄnition 26. The instances of the partial linearization algorithm on G and on Gd are in an equivalent

state at the outer loop iteration for block b, if Dd@b ∼ D@b and E
d
ℓ @b ∼ Eℓ@b where these are deĄned as:

Dd@b ∼ D@b iff

∀x, d ≻D y.
[

(x, y) ∈ Dd@b ⇐⇒ (x, y) ∈ D@b
]

E
d
ℓ @b ∼ Eℓ@b iff

∀d ⪰D x ∧ d ≻D y.
[

x→ y ∈ E
d
ℓ @b ⇐⇒ x→ y ∈ Eℓ@b

]

B.3.1. Main Proof

Theorem 8. Partial linearization maintains the equivalence relation of DeĄnition 26.

Proof. We will prove this by induction over the two instances of the algorithm. The induction hypothesis

states that the equivalence relation of DeĄnition 26 holds before a new outer loop iteration for a block

b ∈ V in both G and Gℓ. We need to show that the equivalence relation still holds after the outer loop

iteration for a block b ∈ V .

Base case (Ąrst block) The equivalence relation holds before the Ąrst outer loop iteration because

up to line 3 Dd = D = ∅ and E
d
ℓ = Eℓ = ∅.

Induction step (case d ̸≻D next@b) Dd@b ∼ D@b Assume there was a (next@b, y) ∈ D@b with

d ≻D y after the outer loop iteration for b. Then next@b < y and further next@b < d because the block

index is dominance compact. There must be an edge p→ y ∈ E with p ≤ b < next@b ≤ d < y because

either p = b or p must have been processed before b to add y as a deferral target. However, if p < d

then d ̸⪰D p and also d ̸≻D y, which contradicts the assumption.

E
d
ℓ @b ∼ Eℓ@b: The ∀-quantiĄer in the deĄnition of E

d
ℓ @b ∼ Eℓ@b does not quantify over edges

b→ next@b ∈ Eℓ@b with d ̸⪰D next@b. These are the only kind of edges added to Eℓ and E
d
ℓ in this case.
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Induction step (case d ≻D next@b) We Ąrst show that d ⪰D b. The new branch target next@b

either originates from the direct successors of b or from T @b. So, there must be an edge p→ next@b ∈ E

with p ≤ b. Since d ≻D next@b also d ⪰D p and d ≤ p. As b < next@b either d ⪰D b or b < d. However,

in case that b < d then b < p and so p has not been processed yet, which contradicts the existence of

p→ next@b ∈ E.

We now turn to the induction step. Note that the node b has the same set of successor edges in both

Gd and G by the deĄnition of Gd (DeĄnition 22). Further, D ∼ Dd and Eℓ ∼ E
d
ℓ before line 7 for a uniform

branch or line 13 for a divergent branch. Therefore, we only need to show that next@b = nextd@b for

each step. It then follows that D@b ∼ Dd@b and Eℓ@b ∼ E
d
ℓ @b after the step.

Case 1. Inner loop step for uniform branch in b.

Let (b, i, s) ∈ E be the edge in Gd and G processed by the inner loop. Because the inner loop executes

in lock step s@b = sd@b. We need to show that next@b = nextd@b after line 8.

Consider the case that next@b ∈ T@b. Then, because d ≻D next@b and D@b ∼ Dd@b, also

next@b ∈ T d@b. There could not be a t ∈ T@b with d ̸≻D t and t < next@b since d ⪰D b and

d ≻D next@b and so t < b, which contradicts t > b. Hence, next@b = nextd@b.

Case 2. b has a divergent branch.

We need to show that next@b = nextd@b after line 14 where next ← min(T ∪ S).

In case that next@b ∈ T@b there can not be a t ∈ T@b with t < next@b for the same reason as in

the uniform case. Note that S@b = Sd@b because d ⪰D b and so min(S@b) = min(Sd@b). Therefore,

next@b = nextd@b.

It remains to show that line 18 does not affect the equivalence relation. First, note that the expression

D ← D \ ¶ (b, s) ♣ (b, s) ∈ D ♢ does not add new pairs to either D or Dd. Finally, if before the line there

was en edge (b, z) ∈ D@b and (b, z) ∈ Dd@b with d ≻D z, it will be removed from both D@b and D@b.

Therefore, both instances are in equivalent state after an outer loop iteration on b ∈ V .
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Glossary

activation The bit mask that determines, which threads will actively execute a scheduled basic block in

a P-LLVM program. The activation is deĄned as the conjunction of the block predicate and the

control mask (see DeĄnition 8). 38, 69, 178, 179

block index A block index is a topological enumeration of all blocks that is compact in all loops and

dominated block sets. An enumeration is compact in any given Ąnite set, if the set is empty or the

difference between the maximum and minimum number assigned to the blocks in the set plus one

is equal to the size of the set (see Section 2.5). 8, 101, 102

BOSCC gadget Branch on Superword Condition Code (BOSCC) is a branch that skips a part of the

CFG, which would otherwise execute with an all-false activation (see Section 9.2). 111

brush projection The brush projection describes how the coordinates in a d-dimensional tensor are

mapped to one-dimensional SIMD registers (see Section 11.5). 132, 136, 138

CFG Control-Flow Graph (see Section 2.2). 7, 20, 79, 104, 109, 142, 144, 146, 178Ű180

concurrent next block Two blocks are concurrent next blocks when at any point in the execution of

a P-LLVM program there is one thread with an enabled control mask for each of the blocks

(see DeĄnition 20). If this is the case, the threads have the potential to reconverge later in the

execution, which may cause ϕ nodes to become varying because each thread selects a different

incoming value. 83

control mask The control mask of a thread is true if the scheduled block is compatible with the threadŠs

control state (see DeĄnition 6). The conjunction of the control mask and a blockŠs predicate form

the activation, which determines whether a thread executes a scheduled block actively. 53, 58, 74,

156, 178, 180

control state Every thread that executes a P-LLVM program holds in its execution state two block

labels: The next block (ℓnext) is the block that the thread has branched to but has not yet executed.

The incoming block (ℓin) is the predecessor of the next block from which the thread has branched

to the next block. The pair of incoming and next block is called the control state of the thread.

The next block is a speciĄc block label, □(r ∈ V) to show that the thread has executed a return

statement with return value r, or ⊤ to signal that any successor of the incoming block is a valid

branch target for this thread. The incoming block is a speciĄc block label, or ⊥ in the initial state

where the entry block is the next block. 178

178



control uniform A terminator is control-uniform if all threads that actively execute it advance to the

same successor. A P-LLVM program is control-uniform if all its terminators are control-uniform.

15, 16, 19, 31, 34, 66, 100, 179, 180

control-divergence analysis When threads part ways at a divergent branch and reach the same ϕ node

from different incoming blocks, the divergent branch has induced divergence in the ϕ node. The

Control-Divergence Analysis Ąnds for a given branch in a CFG all basic blocks whose ϕ nodes

become divergent if the branch is divergent (see Chapter 7). The divergence analysis queries the

control-divergence analysis to detect divergent ϕ nodes after it has identiĄed a divergent branch. 2,

21, 22, 58, 81, 83, 144, 179

DAG A Directed Acyclic Graph (DAG) is a CFG without cycles (see Section 2.2). 81, 99, 180

definition mask Due to thread activation, a thread in a P-LLVM program may execute an instruction

that syntactically deĄnes a SSA variable without deĄning it semantically. The deĄnition mask is

true, only if the execution of an SSA variable assignment is considered a deĄning assignment. The

deĄnition mask differs from the activation for the current block for ϕ nodes and instructions with

the total modiĄer (see DeĄnition 10). 53, 68

divergence analysis The analysis that identiĄes non-uniform branches and variables in a program

(see Chapter 6). 2, 7, 14Ű16, 20Ű22, 31, 53, 58, 66, 69, 79Ű82, 118Ű121, 123, 129, 144, 155, 162, 179

divergence lattice The divergence analysis assigns elements of the divergence lattice to program variables

and branches in P-LLVM programs. The elements represent what relation exists between the

values of the variable for different threads as they execute the deĄning instruction in lock step.

A divergence lattice always contains a uniform element to identify variables that hold the same

value across all threads and branches that are control uniform. In case of RV, the elements of the

divergence lattice are called vector shapes. In case of TensorRV, the elements are called tensor

shapes. 67, 180

divergent loop transform The transformation that makes loops control uniform (see Section 9.1). 28,

31, 46, 66, 100, 111Ű114, 117, 149

greedy schedule The execution of a P-LLVM program is driven by a runtime scheduler, which produces

a potentially inĄnite sequence of block labels that all thread execute in lock step. Among all

possible schedules for a program, only a subset materializes in the SIMD code that RV generates.

This is the class of Greedy Schedules (see DeĄnition 12). 58, 62, 64, 80, 83, 88, 145

LCSSA In Loop-Closed SSA form, the only allowed users of a loop-deĄned variable outside the deĄning

loop are ϕ nodes in immediate exit blocks of the loop (see Section 2.4). Compilers such as GCC and

LLVM ship with transformations that establish LCSSA form. In the course of the transformation,

new single-entry ϕ nodes are inserted in immediate loop exit blocks to break data-Ćow edges that

violate the LCSSA property. 69

179



lock step Lock-step execution is a form of data-parallel execution where a thread array executes the

same program on different inputs. In lock-step execution, the only way to execute an instruction is

for all threads of the thread array to execute it concurrently. 25, 27Ű29, 38, 179

masked concretization The vector shapes of non-total instructions and non-shadow ϕ nodes are only

meaningful for those threads that execute the operation actively. The masked concretization has an

extra activation vector input to mask out those lanes in the concretization, which in effect allows

any value on masked-off lanes (see Section 6.2). 79

partial control-flow linearization The partial if-conversion technique discussed in Chapter 8 Partial

linearization takes a DAG with uniform and divergent branches and makes it control uniform. It

retains the uniform branches in the process. 28, 66

progress Constraints the space of legal schedules: at least one thread must have an active control mask

and branches on uniform conditions must not cause control divergence (see DeĄnition 14). 59

reducible CFG A CFG where every depth-Ąrst search yields the same set of retreating edges and for

every retreating edge x→ y ∈ E the sink y dominates the source x (see Section 2.4). 7, 84, 100

tensor brush In loop nest tensorization multiple nested loop are vectorized at once. There is not one

vectorization width but instead one width per loop. The tuple of those widths is the tensor brush

(see DeĄnition 24). 131, 132, 136, 160

tensor shape An element of a multi-dimensional, abstract divergence lattice (see Section 11.3). Tensor

shapes are the elements of the divergence lattice for TensorRV. 132, 179

thread array The array of threads execution the same P-LLVM program (see DeĄnition 2). 17, 32, 39,

44, 66, 119, 132, 180

uniform A uniform variable always holds the same value for all threads that execute the deĄning

instruction in lock-step. A uniform branch goes the same way for all threads that execute it in

lock-step - the branch is control uniform. Branches and variables that are non-uniform are called

divergent or varying. 100, 179, 180

vector shape An element of a single-dimensional, abstract divergence lattice. Vector shapes are the

elements of the divergence lattice for RV. We deĄne minimal requirements for vector shape lattices

in Section 6.1, e.g. the existence of a uniform vector shape. Chapter 10 presents a more expressive

set of vector shapes that RV exploits to generate faster SIMD code. 67, 70, 71, 73, 118, 119, 121,

122, 124, 126, 128, 179
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