
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

Trends in Data Locality Abstractions for HPC
Systems

Didem Unat, Anshu Dubey, Torsten Hoefler, John Shalf,
Mark Abraham, Mauro Bianco, Bradford L. Chamberlain, Romain Cledat, H. Carter Edwards, Hal Finkel,
Karl Fuerlinger, Frank Hannig, Emmanuel Jeannot, Amir Kamil, Jeff Keasler, Paul H J Kelly, Vitus Leung,

Hatem Ltaief, Naoya Maruyama, Chris J. Newburn, and Miquel Pericás

Abstract— The cost of data movement has always been an important concern in high performance computing (HPC) systems. It has
now become the dominant factor in terms of both energy consumption and performance. Support for expression of data locality has
been explored in the past, but those efforts have had only modest success in being adopted in HPC applications for various reasons.
However, with the increasing complexity of the memory hierarchy and higher parallelism in emerging HPC systems, locality
management has acquired a new urgency. Developers can no longer limit themselves to low-level solutions and ignore the potential for
productivity and performance portability obtained by using locality abstractions. Fortunately, the trend emerging in recent literature on
the topic alleviates many of the concerns that got in the way of their adoption by application developers. Data locality abstractions are
available in the forms of libraries, data structures, languages and runtime systems; a common theme is increasing productivity without
sacrificing performance. This paper examines these trends and identifies commonalities that can combine various locality concepts to
develop a comprehensive approach to expressing and managing data locality on future large-scale high-performance computing
systems.

Index Terms—Data locality, programming abstractions, high-performance computing, data layout, locality-aware runtimes

F

• D. Unat is with the Department of Computer Engineering, Koç Univer-
sity, 34450, Istanbul, Turkey
E-mail: dunat@ku.edu.tr

• A. Dubey is with Argonne National Laboratory, Lemont, IL 60439, USA
• T. Hoefler is with ETH Zürich, 8092 Zürich, Switzerland
• J. Shalf is with Lawrence Berkeley National Laboratory, Berkeley, CA

94720, USA
• M. Abraham is with KTH Royal Institute of Technology, 17121 Solna,

Sweden
• M. Bianco is with Swiss National Supercomputer Centre, 6900 Lugano,

Switzerland
• B. Chamberlain is with Cray Inc., Seattle, WA 98164, USA
• R. Cledat is with Intel Cooperation
• C. Edwards is with Sandia National Laboratories, Albuquerque, NM

87185, USA
• H. Finkel is with Argonne National Laboratory, Argonne, IL 60439, USA
• K. Fuerlinger is with Ludwig-Maximilians-Universität München, D-

80538 Munich, Germany
• F. Hannig is with University of Erlangen-Nuremberg, 91058 Erlangen,

Germany
• E. Jeannot is with INRIA Bordeaux Sud-Ouest, 33405 Talence, France
• A. Kamil is with University of Michigan, MI 48109, USA and with

Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
• J. Keasler is with Lawrence Livermore National Laboratory, Livermore,

CA 94550, USA
• P. Kelly is with Imperial College London, London, UK
• V. Leung is with Sandia National Laboratories, Albuquerque, NM 87185,

USA
• H. Ltaief is with King Abdullah University of Science and Technology,

Thuwal 23955, Kingdom of Saudi Arabia
• N. Maruyama is with RIKEN, Kobe, Hyogo, 650-0047, Japan
• C. J. Newburn is with Nvidia Corporation
• M. Pericás is with Chalmers University of Technology, 41296 Göteborg,

Sweden

Manuscript received June 1, 2016

1 INTRODUCTION

The computing industry has entered a period of technology
transition as we strive for the next 1000x performance im-
provement over the previous generation of petaflops-scale
computing platforms. Over the past 30 years, we have come
to expect a 1,000x increase in HPC system performance
via technology scaling. With the end of conventional im-
provements to technology (Dennard scaling), which started
in approximately 2004, single processing core performance
has ceased to improve with each generation. The industry
has adopted a new approach to performance scaling by
packing more cores into each processor chip. This multi-
core approach continues to drive up the theoretical peak
performance of the processing chips, and the computing
industry is on track to have chips with thousands of cores
by 2020 [43]. The other consequence of the new technology
scaling trend is that the energy efficiency of transistors is
improving as their sizes shrink, but the energy efficiency
of wires is not improving. Therefore, the relative cost of
computation to data movement has become further skewed
in favor of computation.

By 2018, further improvements to compute efficiency
will be undercut by the energy required to move data to
the computational cores on a chip [1] and are manifested in
substantial bandwidth tapering at every level of the mem-
ory and communication hierarchy. Bandwidth tapering has
been a challenge since the dawn of cache hierarchies, and
the remedies (loop blocking, strip-mining, tiling, domain de-
composition, and communication optimizations/topology
mapping) have been studied for decades. Although the
research community has developed extensive compiler and



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2

library solutions, only a fraction of these are available in
general-purpose systems. Furthermore, with the increase in
the parallelism and memory hierarchy going from system
to node to compute unit level, the already difficult task
of managing parallelism has become much more complex.
The solutions for bandwidth tapering challenges now need
their counterparts at the intranode, internode and global
system level communication. Moreover, the dual tension
of increasing levels of parallelism and core heterogeneity
create an intractable explosion in complexity. There is an
urgent need for higher level of abstraction in order to shield
the applications developers from this complexity and reduce
the effort needed to port codes to different computing
platforms.

One critical abstraction needed for future tractability of
the application space is data locality; a way of expressing
computations so that information about proximity of data
to be used can be communicated to the optimizing software
stack. The impact of data locality optimization has moved
from being a tuning option to a central feature of code
writing to get any performance improvement at all. There
needs to be a formalization of commonly used approaches
to make the implementations reusable and parametrizable
so that a common data abstractions can be used portably
and flexibly across multiple architectures, without manually
re-tuning for each new system. The need for performance
portability is on the rise in direct correlation with the rise in
platform heterogeneity.

Application developers have begun to realize the enor-
mity of the challenge facing them and have started a di-
alogue with researchers in programming abstractions to
look for effective solutions. This development has opened
up a real opportunity for the higher level abstractions to
gain traction in the applications communities, especially
when the application developers are kept in the loop. We
conducted a series of workshops on the topic of program-
ming abstractions for data locality for high performance
computing (HPC) that gather practitioners and researchers
from all applicable areas, including the computational sci-
entists from multiple science domains [55], [56], [67]. This
survey paper distills the outcomes of the series thus far. The
objective of this effort is to facilitate the development of this
critical research area by; (1) defining a common terminology
to facilitate future exchange of ideas in the field, (2) describe
the current trends in various research domains that directly
influence data locality, and (3) recommend directions for
future research. We do not claim to have solved or covered
every aspect of this enormous challenge, however, the inter-
disciplinary exchanges between domain scientists and com-
puter scientists at the workshop, and dissemination of the
gathered knowledge plays an essential role in maintaining
forward progress in this area.

Locality can be expressed and managed at various level
in the computational ecosystem. The bulk of the paper is
divided into sections corresponding to research areas that
are actively engaged in exploring the issues of locality.
Section 2 defines common terminology used to describe the
state of the art in concerned research areas. We examine data
locality in the context of data structures and library support
in Section 3, language and compiler support in Section 4,
runtime approaches in Section 5, and systems level support

in Section 6. All of these research areas have one goal in
common, to help applications effectively use the machine
for computational science and engineering. Section 7 serves
two purposes, it describes challenges and expectations from
application developers, which in turn provide perspective
and cohesiveness to the research areas discussed in earlier
sections. We summarize our findings in Section 8.

2 TERMINOLOGY
We begin by defining commonly used terminology in de-
scribing efforts aimed at addressing data locality.

Data locality is indicative of how close data is to where
it needs to be processed, shorter distance imply better
data locality. A data structure is the organization of a
data type onto some particular memory architecture. The
memory subsystem is composed of several memory arrays,
which can be defined as memory spaces. Not all memory
spaces can be managed directly by the programmer (e.g.
caches). However, new architectures tend to have multiple
user-manageable memory spaces with varying performance
characteristics and usage restrictions (e.g., constant memory
of GPUs).

Application performance is constrained by both time
and energy costs of moving data in service of the compu-
tation, which is directly affected by the data access pattern.
The data access pattern is a composition of data layout,
data decomposition, data placement, task placement, and
how the parallel tasks traverse the data structure. Figure 1
illustrates these concepts.1 Given a data type and memory
space (e.g. an array of memory cells), we define data layout
as an injective mapping from the elements of the data type
to the cells of the single memory space. By extension, we
define a distributed layout as the mapping of the elements
to multiple memory spaces. Usually a layout can be con-
sidered a parameter of a data structure. Layout affects data
access patterns, and hence performance, therefore, selecting
an appropriate map to data structures is important.

Data decomposition is the way that data is partitioned
into smaller chunks that can be assigned to different mem-
ory spaces for introducing data parallelism or improving
data locality. Data placement is the mapping of the chunks
of data from a domain-decomposed data structure to mem-
ory spaces. Task placement is the assignment of threads of
execution to a particular physical processor resource and
its related set of memory spaces. Many contemporary pro-
gramming environments do not offer an automatic method
to directly relate the task placement to the data placement,
aside from loose policies such as first touch memory affinity.
Index space defines the index domain for data. Iteration
space refers to the set of points in a multi-dimensional
loop nest irrespective of traversal order. The dimensionality
of the iteration space is typically defined in terms of the
number of loop nests (e.g., an N-nested loop defines an N-
dimensional iteration space). Traversal order indicates the
order in which the loop nest visits these indices.

A tiling layout is often used to exploit the locality of
hierarchical memories. This layout can be viewed as adding
additional dimensions to the iteration space in order to iden-
tify the tiles and the elements within the tiles. Thus a fully

1. The figure is inspired by Fuchs and Fuerlinger [21].



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 3

Index Space 

0" 1" 2" 3" 4" 5"

6" 7" 8" 9" 10" 11"

12" 13" 14" 15" 16" 17"

18" 19" 20" 21" 22" 23"

Data Decomposition 

0" 1" 2" 3" 4" 5"

6" 7" 8" 9" 10" 11"

12" 13" 14" 15" 16" 17"

18" 19" 20" 21" 22" 23"

Data Layout 

0" 1" 6" 7" 16" 17" …"

2" 3" 8" 9" 14" 15" …"

4" 5" 10" 11" 12" 13" …"

Iteration Space 

0" 1" 2" 3" 4"

5" 6" 7" 8" 9"

10" 11" 12" 13" 14"

Data Placement 

0" 1" 2" 3" 4" 5"

6" 7" 8" 9" 10" 11"

12" 13" 14" 15" 16" 17"

18" 19" 20" 21" 22" 23"

Traversal Order 

0" 1" 2" 3" 4" 5"

6" 7" 8" 9" 10" 11"

12" 13" 14" 15" 16" 17"

18" 19" 20" 21" 22" 23"

Fig. 1. illustration of concepts that are important for data locality for a
dense two dimensional array. Example iteration space, traversal order,
decomposition, data placement and data layout are shown.

tiled D-dimensional array will have 2 ⇤ D dimensions. An
array implementation may retain a D-dimensional interface
by using integer division and modulo (or integral bit shift
and mask) operations to map a D-dimensional tuple to a
2 ⇤D tuple and then to the tile and element. Algorithms are
usually written in terms of the higher-dimensional layout,
so loop nests are deeper than D levels. A benefit of tiling
is because of their explicitly defined sizes, the compiler can
perform optimizations that would not be available other-
wise.

An array may have a recursive tile layout where the
member is itself a tile, for example, hierarchical tiled arrays [8].
Such hierarchical layouts may be used to better manage
the locality of data in a hierarchy of memory spaces; for
example, the top level mapped to a set of distributed mem-
ory spaces and the nested levels corresponding to the cache
hierarchy within a local memory space.

A library is an active library if it comes with meth-
ods for delivering library-specific optimizations [68], for
example, template metaprogramming in C++ or lightweight
modular staging in Scala. An embedded domain-specific
language (DSL) is a technique for delivering a language-
based solution within a host general-purpose language.
Directive-based language extensions such as OpenMP and
OpenACC use annotations to drive code transformation.
Object visibility determines whether data objects are visible
globally from anywhere or are visible only locally on the
node. Multiresolution language philosophy is a concept in
which the programmers can move from language features
that are more declarative, abstract, and higher level to those
that are more imperative, control oriented, and low level as
required by their algorithm or performance goals.

The task-based runtime implements a scheduling strat-
egy that imposes a partial ordering on the tasks within
each queue and optionally among queues as well. The
runtime may use the specific knowledge of the underlying
machine. Scheduling can be static so that data locality can
be enforced. Scheduling can also be dynamic, using work
sharing where a single queue lists all the work to be done, or
work stealing, where a queue is assigned to each computing
resource and an idle process can steal work from another’s
queue.

3 DATA STRUCTURES AND LIBRARY SUPPORT

The traditional view of flat memory is not consistent with
the actual memory subsystems of modern computers. Mem-

ory is organized into banks and NUMA regions, cache hi-
erarchies, specialized memories such as scratchpad storage,
read-only memories, etc. This disconnect makes develop-
ment of efficient data structures very challenging.

3.1 Key Points
We identified two design principles as important and de-
sired by application programmers: algorithmic execution
dependencies and separation of concerns. Note that, in this
Section, we use the term application as the user of a library,
which in a layered software architecture may be another,
higher-level, library or domain-specific language.

3.1.1 Algorithmic Execution Dependence
In general determining what layout an algorithm should use
is difficult. The implementation of an algorithm is written
by accessing data elements through some interfaces, for in-
stance using a tuple of indices to access a multidimensional
array. An implementation can leverage temporal locality
by accessing the same data elements multiple times, and
spatial locality by accessing nearby data elements, where
nearby is here a logical concept related to the abstract data
type, and not to the implementation of the data structure.
We refer to this locality as algorithmic locality. The optimal
data locality of the implementation is reached when the
data structure layout, in memory, lets the algorithm find
the corresponding elements in the closest possible location
(relative to the processing elements used by the threads).
Different implementations have different algorithmic locali-
ties and therefore require different data structures layouts.

Typically, the algorithmic locality also depends upon
input, so the layout can be chosen only for the likelihood
of locality. For certain applications such as linear algebra or
finite-difference stencils, the trace can be determined by a
few simple parameters such as array sizes, which can be
used to determine the best layout effectively. These cases
are well represented in HPC applications, and several solu-
tions have been implemented to exploit locality, especially
in computing nodes. Multi-node implementations require
the integration with the system-scale locality management
discussed in Section 6.

Note that we highlight the usefulness of picking the
best layout by analyzing the abstract algorithm instead of
re-structuring an existing code. The latter would usually
lead to convoluted, non-portable, and unmaintainable code.
A library of algorithms and data structures should enable
an efficient coupling of algorithms and data structures
mappings. Libraries differ on how this coupling can be
specified or found, and how concerns are separated between
application programmers and library programmers.

3.1.2 Separation of Concerns
Separation of concerns is a fundamental motivation for
developing libraries of algorithms and data structures to
be used within applications. A well-defined separation of
concerns clearly identifies who (library or application) is
responsible for what. Our focus is on managing data locality,
so we limit this what to the mapping of data structures to
memory spaces and algorithms to execution spaces.

Separating Explicitly by Threads



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 4

A parallel-enabling library should provide concurrent
threads. Different solutions differ on the guarantees they
provide for safety, progress, and placement of threads. Low
level libraries like pthreads leave all these concerns to the
application, others offer different levels of guarantees de-
pending on the applications (and programmers) they are
targeting. An emerging trend in HPC is to delegate respon-
sibilities to libraries, compilers, and runtime systems.

Separating by Parallel Patterns
A common separation is a parallel pattern and code

body that is executed within a pattern. This can also be
explained as decoupling loop iteration space from the loop
body itself. For example, a loop over a range of integers (e.g.,
FORTRAN do-loop, C/C++ for-loop) is a serial loop pattern
that executes a loop body (codelet). Depending on the inter
loop actions performed by the loop body this serial loop
pattern can often be simply translated to the foreach, reduce,
or scan (i.e., prefix sum) data-parallel pattern. Other patterns
are possible, as stencil-like iterations on multidimensional
arrays.

In this strategy the application is responsible for identi-
fying the parallel pattern and providing the codelet that is
(thread) safe to execute within that pattern. The library is
then responsible for mapping execution of that codelet onto
the execution space according to the pattern and for man-
aging the pattern’s inter thread interactions. For example, a
parallel reduce requires thread-local temporary values and
inter thread reduction of those temporary values.

Separating Location Policies
The mapping of application code bodies via parallel pat-

terns has a spatial and temporal scheduling consideration:
for example, on which core or when the execution of the
code body will occur and whether the mapping is static or
dynamic. We label the set of parameters that govern the
answers to these questions as an location policy. The number
and extensibility of such parameters that a parallel-enabling
library has and exposes define the flexibility of that library.

Separating Data Structure Layout
Within a memory space a computer language hard codes

the layout of their data structures, for example FORTRAN
arrays, C/C++ arrays, or C/C++ classes. A library can
define data types that abstracts the layout specification from
the data type mapping. The parameter(s) of this specifica-
tion may be static (defined at compile time) or dynamic
(defined at runtime) and affect the compiler’s ability to
optimize code accordingly. A library can also define data
types with distributed layouts that span multiple memory
spaces and can define operations for moving data between
memory spaces. The flexibility of this strategy is limited by
the layout capabilities and their extensibility.

Integrating Separations
These separation-of-concerns strategies can provide sig-

nificant flexibility through high-level abstractions (spaces,
patterns, policies, layouts). However, the data locality and
thus the performance of a parallel algorithm is determined
by the mappings (data and execution) to hardware that
are implemented by these abstractions. Thus, the integrated
set of parameters for these abstractions must be chosen
appropriately for the algorithm and underlying hardware

Lib. Scale Threads Patterns Policies Layout
Kokkos Node Yes Yes+ Yes Yes
TiDA Node+ Yes No Yes Yes

GridTools Node Yes Yes Yes Yes
hStreams Node Yes No Yes Future

DASH System No Yes+ No Yes
TABLE 1

Comparison of the libraries discussed in Section 3.2 with respect to the
separation of concerns. “Scale” refer to the ability of the library to

handle inter-node communication. TiDA has ongoing development to
do so. “Threads” tells if the library handles low level thread managing.
In “Pattern”, a “Yes+” entry symbolizes the fact that the library provide

patterns but also direct managing by the application.

in order to achieve locality and thus performance. A well-
designed parallel-enabling library will provide and expose
these parameters such that changing the underlying hard-
ware requires no changes to the application codelets and
trivial changes to the abstractions’ parameters. Such param-
eter changes could even be chosen automatically based on
the target hardware architecture.

3.2 State of the Art
Within the confines of existing language standards one is
constrained to leveraging market breadth of the supporting
tool chain (e.g., compilers, debuggers, profilers). Wherever
profitable, the research plan can redeem existing languages
by amending or extending them (e.g., by changing the spec-
ifications or by introducing new APIs). Examples include
Kokkos [19], TiDA [66], GridTools [7], hStreams [35], and
DASH [22].

The Kokkos library supports expressing multidimen-
sional arrays in C++, in which the polymorphic layout
can be decided at compile time. An algorithm written
with Kokkos uses the abstract machine of C++ with the
data specification and access provided by the interface of
Kokkos arrays. Locality is managed explicitly by matching
the data layout with the algorithmic locality. TiDA allows
the programmer to express data locality and layout at the
array construction. Under TiDA, each array is extended
with metadata that describes its layout and tiling policy
and topological affinity for an efficient mapping on cores.
Like Kokkos, the metadata describing the layout of each
array is carried throughout the program and into libraries,
thereby offering a pathway to better library composability.
TiDA is currently packaged as Fortran and C++ libraries and
adopted by the BoxLib AMR framework [75].

GridTools provides a set of libraries for expressing dis-
tributed memory implementations of regular grid applica-
tions, such as stencils on regular and icosahedral grids. It
is not meant to be universal, in the sense that non regular
grid applications should not be expressed using GridTools
libraries. Since the constructs provided by GridTools are
high level and semi-functional, locality issues are taken
into account at the level of performance tuners and not by
application programmers [28]. It expects the application to
use its patterns. The hStreams library provides mechanisms
for expressing and implementing data decomposition, dis-
tribution, data binding, data layout, data reference charac-
teristics, and location policy on heterogeneous platforms.
DASH is built on a one-sided communication substrate



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 5

and provides a PGAS (Partitioned Global Address Space)
abstraction in C++ using operator overloading. The DASH
abstract machine is basically a distributed parallel machine
with the concept of hierarchical locality. It is a very general
library designed to address scaling of applications at system
scale, while leaving the managing of threads in a node to the
application.

Table 1 offers a quick comparison between the libraries
presented in this Section. This is intended to be a simple
sketch and should not be treated as a comprehensive com-
parison of these quite complex and rich libraries.

Clearly, no single way of treating locality concerns exists,
nor is there consensus on which one is the best. Each of
these approaches is appealing in different scenarios that
depend on the scope of the particular application domain.
The opportunity arises for naturally building higher-level
interfaces by using lower-level ones. For instance, TiDA
or DASH multidimensional arrays could be implemented
using Kokkos arrays, or GridTools parallel algorithms could
use the DASH library and Kokkos arrays for storage. This
is a potential benefit from interoperability that arises from
using a common language provided with generic program-
ming capabilities. One outcome of the survey is to initiate
efforts to explicitly define the requirements for a common
runtime infrastructure that could be used interoperably
across these library solutions.

4 LANGUAGE AND COMPILER SUPPORT FOR DATA
LOCALITY

While significant advances have been seen in libraries for
existing programming languages, especially C++, in facil-
ities that allow for data-locality optimizations, significant
limitations remain in what can be accomplished with li-
braries alone. C/C++ and Fortran, which dominate the high-
performance computing landscape, offer limited facilities
for compile-time introspection. By contrast, custom lan-
guages are designed to present language-intrinsic abstrac-
tions that allow the programmer to explicitly expose par-
allelism and locality. Such abstractions in turn significantly
simplify compiler analysis and optimization and also assist
locality management at both runtime and system levels
discussed in Sections 5 and 6.

4.1 Key Points
The following features are key to understanding and de-
signing for data locality from the language and compiler
perspective.

4.1.1 Object Visibility
One of the most significant axes in the relevant design
space is the choice between local-by-default and global-by-
default object visibility. Local-by-default visibility (or local-
only visibility) is familiar to any user of MPI, and message-
passing is still often an effective way to optimize for data
locality. MPI, however, is not the only common example;
most GPU-targeted programming models (OpenCL, CUDA,
etc.) explicitly represent local memory domains and force
the programming to arrange any necessary transfers. The
disadvantage of local-by-default visibility, however, is that

it tends to be cumbersome to use. Furthermore, programmer
productivity can be low because data locality must be man-
aged in every part of the code, even where performance is
not critical or the necessary management logic is boilerplate.

Two commonplace language-design techniques improve
upon this local-by-default situation. The first, exemplified
by Loci [45], provides a programming environment in
which declarative annotations, and other functional pro-
gramming techniques can be employed to drive the auto-
mated generation of the communication-management and
task-scheduling logic. Declarative solutions tend to have
much greater semantic freedom than those embedded in
imperative programming languages, allowing more inva-
sive transformations between the input and the resulting
implementation. The disadvantage of such systems tends to
be generality, and such systems tend to be domain specific.

The second commonplace technique to improve upon
the local-by-default situation is to move toward a global-by-
default model, at least for certain classes of objects. PGAS
models, now widely available from Fortran Co-Arrays [47],
Chapel [14], Julia [38], and many other languages, provide
some differentiation between local and global objects but
allow global access without explicit regard for locality con-
siderations. The compiler and/or runtime system might op-
timize layout and placement of objects based on their global
access pattern, but the degree to which this optimization can
be usefully done is still an open question.

On the far end of the spectrum are solutions that do
not expose any data-locality information to the user directly
but depend solely on compilers and runtime libraries to
perform any desirable data-locality optimizations. OpenMP
falls into this camp, and current experience suggests that
the more advanced data locality optimizations sought might
prove indefinitely out of reach for its trivial user-facing
locality model. One might argue that such optimizations
are more important for tools not restricted to the shared-
memory part of the hierarchy; but experience suggests that
between NUMA and the proliferation of cores per node,
data-locality optimizations are important both on-node and
over distributed-memory systems.

4.1.2 Requirements
Effective abstractions for data locality need to have low
overhead and high-level semantic information, including
information about data dependencies needed by the com-
piler’s optimizer and runtime library. Dealing with side-
effects is key to dependence analysis, and this is an area in
which declarative solutions and novel languages often hold
distinct advantages because traditional languages make
conservative assumptions about the behavior of external
function calls. The abstractions need to cover data move-
ment, be it automatic (via caching or similar) or explicit;
different levels of control are desirable for different use
cases. Profiling, auto-tuning and user feedback are impor-
tant additions to purely static determinations, and while
user-provided hints will remain important, only tools using
these more automated measurement-driven techniques are
likely to scale to large codes. Finally, the abstractions have to
be composable as no convergence exists yet on what are the
most productive paradigms for portable high-performance
codes. While the hierarchical nature of modern hardware



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 6

is well established, the extent and semantics of exposure
to the users are not yet settled; and the optimal answer
may be domain specific. Some solutions may be specific to
parts of the hierarchy; and an overall solution may require
separate tools for different parts of the solution, making
composability a key requirement.

A generic goal, at a programmatic level, is to encourage
programmers to expose all available parallelism in their
source code and let the compiler and/or runtime system
choose how to best use that freedom on a particular hard-
ware architecture. In practice, this means that the paral-
lelism often needs to be coarsened into larger task units.
For example, even if all discretized grid points are indepen-
dent, having one dispatched task per grid point is likely
impractical. The space of potential coarsenings often grows
quickly, and so some combination of profile-driven feedback
and auto-tuning, user-provided grouping preferences, and
heuristics are necessary in practical tools. We also note that
even within a particular coarsening scheme, task-execution
ordering is important to preserve locality, and ordering
considerations must be part of the relevant cost model.

4.1.3 Adoption
Regardless of the flavor of the solution, widespread adop-
tion can be supported only if the implementations are
treated as proper software engineering projects. It is critical
to have invested stakeholders because these projects often
involve long time horizons and considerable infrastructure
work. They also need a coherent support model and quick
bug fixes. Adoption is also greatly enhanced for tools with a
small initial learning curve and those that enable incremen-
tal transitioning from existing codebases to new ones.

4.2 State of the Art
Advances are being made in both C++ and FORTRAN.
In C++ memory-aliasing attributes and parallel-algorithm
abstractions are being designed, while in FORTRAN PGAS-
style Co-Arrays [51] are now part of the standard. New
languages, both general-purpose languages such as Chapel
and Julia and domain-specific languages such as Loci,
have production-quality implementations and growing user
communities. Custom languages have also benefited from
strong community compiler infrastructures, which enable
functionality reuse. Higher-level tools need standardized, or
at least well-supported, lower-level interfaces upon which
to build. We also note that the line between the language and
library is fuzzy in terms of capability and responsibility, and
successful programming models often combine a targeted
set of language capabilities with strong libraries built on top
of those facilities.

Chapel [14] is an emerging language that uses a first-
class language-level feature, the locale, to represent regions
of locality in the target architecture. Programmers can rea-
son about the placement of data and tasks on the target
architecture using Chapel’s semantic model, or runtime
queries. Chapel follows the PGAS philosophy, supporting
direct access to variables stored on remote locales based
on traditional lexical scoping rules. Chapel also follows the
multiresolution philosophy by supporting low-level mecha-
nisms for placing data or tasks on specific locales, as well

as high-level mechanisms for mapping global-view data
structures or parallel loops to the locales. Advanced users
may implement these data distributions and loop decompo-
sitions within Chapel itself and can even define the model
used to describe a machine’s architecture in terms of locales.

X10 [60] is another PGAS language that uses places as
analogues to Chapel’s locales. In X10, execution must be
colocated with data. Operating on remote data requires
spawning a task at the place that owns the data. The user can
specify that the new task run asynchronously, in which case
it can be explicitly synchronized later and any return value
accessed through a future. Thus, X10 makes communication
explicit in the form of remote tasks. Hierarchical Place Trees
[72] extend X10’s model of places to arbitrary hierarchies,
allowing places to describe every location in a hierarchical
machine.

Unified Parallel C (UPC), Co-Array Fortran (CAF), and
Titanium [73] are three of the founding PGAS languages.
UPC supports global-view data structures and syntactically
invisible communication while CAF has local-view data
structures and syntactically evident communication. Tita-
nium has a local-view data model built around ZPL-style
multidimensional arrays [15]. Its type system distinguishes
between data guaranteed to be local and data that may be
remote, using annotations on variable declarations. On the
other hand, access to local and remote data is provided by
the same syntax. Thus, Titanium strikes a balance between
the HPF and ZPL approaches, making communication ex-
plicit in declarations but allowing the same code fragments
to operate on local and remote data.

Recent work in Titanium has replaced the flat SPMD
model with the more hierarchical Recursive Single-Program,
Multiple-Data (RSPMD) model [40]. This model groups
together data and execution contexts into teams that are ar-
ranged in hierarchical structures, which match the structure
of recursive and compositional algorithms and emerging
hierarchical architectures. While the total set of threads is
fixed at startup as in SPMD, hierarchical teams can be
created dynamically, and threads can enter and exit teams as
necessary. Titanium provides a mechanism for querying the
machine structure at runtime, allowing the same program to
target different platforms by building the appropriate team
structure during execution.

Other work has been done to address the limitations of
the flat SPMD model in the context of Phalanx [23] and
UPC++ [76], both active libraries for C++. The Phalanx
library uses the Hierarchical Single-Program, Multiple-Data
(HSPMD) model, which is a hybrid of SPMD and dynamic
tasking. The HSPMD model retains the cooperative nature
of SPMD by allowing thread teams, as in RSPMD, but it
allows new teams of threads to be spawned dynamically.
Unlike SPMD and RSPMD, the total set of executing threads
is not fixed at startup. Both RSPMD and HSPMD allow
expression of locality and concurrency at multiple levels,
although through slightly different mechanisms, allowing
the user to take advantage of hierarchical architectures. The
UPC++ library uses RSPMD as its basic execution model
but additionally allows X10-style asynchronous tasks to be
spawned at remote locations. This allows execution to be
moved dynamically to where data are located and adds a
further degree of adaptability to the basic bulk-synchronous



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 7

SPMD model.
Compilations of both local-by-default and global-by-

default languages can be facilitated with recent develop-
ment in polyhedral analysis, which allows the compiler to
model the iteration space and all data dependencies for so-
called affine code regions. An affine region is a block of code
where all loop iteration variables and array accesses can be
modeled by affine functions in Presburger arithmetic [41].
The polyhedral program representation can be used to
automatically parallelize programs [9] and more recently
automatically map them to complex accelerator memory
hierarchies [27], [69].

5 TASK-BASED RUNTIME APPROACHES FOR DATA
LOCALITY

Traditionally, task-based runtime systems have been used
to enable a problem-centric description of an application’s
parallelism while hiding the details of task scheduling to
complex architectures from the programmer. This separa-
tion of concerns is probably the most important reason
for the success of using runtime environment systems for
task models. It enables developers to taskify their appli-
cations while focusing on the scientific algorithms they
are most familiar with. This paradigm breaks the standard
bulk synchronous programming model inherent to runtimes
supporting many state-of-the-art languages (e.g., PGAS), as
previously mentioned in Section 3. Programmers delegate
all responsibilities related to efficient execution to the task
scheduling runtime thereby achieving higher productivity
and portability across architectures. In light of the growing
importance of locality management, runtime systems will
need to move past only considering task-centric attributes
(load balance, etc.) to ones that take into account data-centric
attributes (data movement, memory bandwidth, etc.).

5.1 Key Points
At a very basic level, a locality-aware runtime is responsible
for mapping the abstract expression of tasks and data at
the application level to hardware resources, both compute
and memory. The important question, however, is where
one draws the line between the programmer (or higher-level
abstraction), the runtime and the hardware. Traditionally,
hardware has managed a lot of the locality (through the use
of cache), but this is shifting as, necessarily, hardware can
implement only a limited number of schemes that may not
be adapted to all application patterns. Although the exact
borders of a locality-aware runtime remain the subject of
healthy research, researchers agree that with exascale sys-
tems, locality-aware runtimes will need greater cooperation
between software and hardware.

5.1.1 Runtime involvement in data locality
Data locality is relevant at three levels: the expression of par-
allelism in the application, the association of this expressed
parallelism and the data, and the mapping of the tasks and
data to computing and memory resources. Parallelism can
be expressed in either a data centric or a task centric view.
In the former case, parallelism is expressed mostly through
the chunking of data into subsets that can independently

be operated on, whereas in the latter case, parallelism is
obtained through the chunking of the computation into in-
dependent subsets. The expression of parallelism is usually
done outside the runtime either directly by the programmer
or with the help of higher-level toolchains.

Whether the application has been divided in a task-
centric or a data-centric manner, data and tasks need to be
respectively associating tasks and/or data with the chunks
and making runtime aware of them with the respective
task chunks and data chunks identified in the first step.
Whether the chunking is task-centric or data-centric, the
association between specific data or task and their respective
chunks must be made known to the runtime. The question
of task and data granularity also comes up at this level,
but additional information is available to answer it: at this
stage, tasks and data are associated so the runtime has
more information to determine the optimal granularity level
taking into account both computing resources and memory
resources. For example, the presence of vector units and
GPU warps may push for the coarsening of tasks to be able
to fully occupy these units; this will be, in turn, limited by
the amount of memory (scratchpads, for example) that is
close by to feed the computation units. Considerations such
as over-provisioning which provides parallel slack and helps
ensure progress, will also factor in granularity decisions at
this level.

The third level involving data locality is scheduling.
Previous efforts in resource allocation have frequently fo-
cused on improving the performance of an application for
a particular machine, for example, by optimizing for cache
size, memory hierarchy, number of cores, or network inter-
connect topology and routing. This is most efficiently done
with static scheduling. Task-based runtimes that schedule
statically may still make use of specific knowledge of
the machine to perform their scheduling decisions. Static
scheduling of tasks has several advantages over dynamic
scheduling provided a precise enough model of the under-
lying computing and networking resources is available.

The static approach will become more difficult with
increase in machine variability. Therefore, while static or
deterministic scheduling enables offline data locality opti-
mizations, the lack of a dependable machine model may
make the benefits of dynamic scheduling, namely, adapt-
ability and load-balancing, more desirable. Of course, in the
presence of a machine model, the dynamic scheduling may
also take advantage of the machine hardware specifications
by further refining its runtime decisions. This holistic data-
locality strategy at the system level is further explained in
Section 6.

5.1.2 Abstractions for Locality
Task-based programming models are notoriously difficult to
reason about and debug given that the parameters specified
by the programmer to constrain execution (dependences)
purposefully allow for a wide range of execution options.
Certain task-based runtime systems, which allow the dy-
namic construction of the task-graph (such as OCR), only
exacerbate these problems. Tools allowing the programmer
to understand the execution of a task-based program need
to be developed. This is particularly true when the decisions
taken by these runtimes will be more and more impacted by



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 8

data locality considerations that may be obscure to the end
user.

These tools will need to cover two broad areas: 1) infor-
mation on the execution flow of the application in terms of
the tasks and data-elements defined by the user and, more
importantly 2) information about the mapping of those tasks
and data-elements to the computing and memory resources.
For instance, OmpSs [4] and its dynamic runtime Nanos++
comes with substantial supports for performance analysis in
the form of instrumentation tools for tracing and profiling of
the task executions. In particular, the core instrumentation
package Extrae [2] and the flexible data browser Paraver [3]
provide useful insights on task scheduling and hardware
usage in order to help the application developer identifying
potential performance bottlenecks.

Nested or recursive algorithmic formulation as in cache
oblivious algorithms [20] is a well-known technique to
increase data reuse at the high levels of the memory hier-
archy and, therefore, to reduce memory latency overheads.
This often requires slight changes in the original algorithm.
Nested parallelism can also enable a smart runtime to deter-
mine an optimal level of granularity based on the hardware
available. This does require, however, that the runtime be
made aware of the hierarchical nature of the tasks and data
so that it may properly co-schedule iterations that share the
same data. This approach is well suited for applications that
have well defined data domains that can be easily divided
(spatial decomposition, for example).

For algorithms that do not expose as much structure,
nested parallelism may not be suited. A more generalized
notion of closeness is needed: programmers need to be able
to express a certain commonality between tasks in terms of
their data. The reason is that reducing data movement needs
to happen at all levels of the system architecture in order
to be effective: from the single CPU socket within a multi-
socket shared-memory node up to multiple distributed-
memory nodes linked through the high-performance net-
work interconnect. This bottom-up approach highlights the
need for programmers to expose various levels of closeness
so that a runtime can map the application’s abstract struc-
ture to the concrete hardware instance it is executing on, as
detailed by the machine model.

Many numerical algorithms are often built on top of opti-
mized basic blocks. For instance, dense eigensolvers require
three computational stages: matrix reduction to condensed
form, an iterative solver to extract the eigenvalues, and back
transformation to get the associated eigenvectors. Each stage
corresponds to an aggregation of several computational
kernels, which may already be optimized independently
for data locality. However, the ability to express locality
constraints across the various steps is important. In other
words, the way locality can be composed is important to
express.

5.2 State of the Art
Standardization is widely considered desirable, but there is
a disagreement as to the level at which this standardization
should happen. One option is to standardize the APIs at
the runtime level in a way similar to the Open Commu-
nity Runtime (OCR) [36]. Another option is to standardize

the interface of the programming model, as OpenMP or
OmpSs [4] do. Currently there is no clear reason to decide
for a particular scheme, so both approaches are being ac-
tively researched.

A locality-aware runtime needs to know about associa-
tions of data and tasks in order to simultaneously enable
scheduling tasks and placing data. This association can
be explicitly specified by the user (for example in OCR),
discovered by an automated tool (for example, with the
RStream compiler [46]), extracted from a more high-level
specification from the user (Legion [5], HTA [8], RAJA [33],
OpenMP, etc.), or from the application meta-data as in
Perilla [50].

Another big challenge is how to communicate the hi-
erarchical data properties of an application to the runtime
so that they can be exploited to generate efficient sched-
ules. Classical random work stealers (e.g., Cilk) do not
exploit this. Socket-aware policies exist (e.g., Qthread [52])
that perform hierarchical work stealing: first among cores
in a socket and then among sockets. Some programming
models expose an API that allows programmers to specify
on which NUMA node/socket a collection of tasks should
be executed (e.g., OmpSs [4]). Configurable work stealers
that can be customized with scheduling hints have also been
developed [71]. A more extreme option is to allow the
application programmer to attach a custom work-stealing
function to the application [48].

6 SYSTEM-SCALE DATA LOCALITY MANAGEMENT

The highest level in the stack is the whole system, which
usually comprises a complex topology ranging from on-
chip networks to datacenter-wide interconnection topolo-
gies. Optimizing for locality during program execution at
this level is equally important to all other levels.

6.1 Key Points
System-scale locality management consists of optimizing
application execution, taking into account both the data
access of the application and the topology of the machine
to reduce node-level data movement. Therefore, in order to
enable such optimization two kinds of models are required:
an application model and an architecture model. At system
scale one must describe the whole ecosystem. Among the
relevant elements of the ecosystem are: the cache hierarchy;
the memory system and its different operating modes such
as slow and large vs. fast and small, or persistent vs.
volatile; the operating system; the network with concerns
such as protocol, topology, addressing, and performance;
the storage with its connected devices and strategy; and
the batch scheduler which has the knowledge of available
resources, and other applications running that may interfere
with execution.

Applications need abstractions allowing them to express
their behavior and requirements in terms of data access,
locality and communication at runtime. For these, we need
to define metrics to capture the notions of data access,
affinity, and network traffic. Defining metrics to describe
the application behavior in a concise and precise manner
is still a research topic. Often, an affinity graph describing



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 9

how the different parts of the application interact is useful
in managing locality. However, such affinity can be positive
(components need to be mapped close together due to
shared data) or negative (components need to be spread
across the system because of potential contention when
accessing shared resources: memory, storage, network, etc.).
A good model of affinity is not yet available in the literature.

A hardware model is needed to control locality. Model-
ing future large-scale parallel machines will have to describe
the memory system better, provide an integrated view with
the nodes and the network. The models will also need to
exhibit qualitative knowledge, and provide ways to express
the multiscale properties of the machine.

6.1.1 Trends and Requirements
We can see different trends affecting the way locality is
managed at system scale.

Concerning node and topology modeling, we note that
even if most NUMA systems are mostly hierarchical, this is
no longer true when we consider the network. Moreover,
manycore architecture such as the Intel Knights Landing do
not feature a strict hierarchical memory. This means that
process placement algorithms need to be able to address
arbitrary topologies.

Moreover, even large networks often have low diameter
(e.g., diameter-3 Dragonfly [42] or diameter-2 Slim Fly [6]
topologies). Therefore, topology mapping could become
less important in some cases as the placement may have
a smaller impact on the performance or simple random
strategies provide close-to-highest performance. Yet, this is
not generally true for low-diameter topologies [59]. Precise
models of application behavior and the underlying platform
are needed in order to understand how placement and data
layout impact performance.

In the case of very large machines such as top-end
supercomputers featuring millions of cores, the algorithmic
cost of process placement becomes very high. Being able to
design hierarchical algorithms is required in that setting.

Another important consideration is the ability to deal
with dynamic behavior. Topology-aware dynamic load bal-
ancing is a hot topic [37], [58], which concerns itself with
managing change in application behavior and coping with
affinity dependence in the input dataset. This requires mod-
ification of the affinity modeling from a static model (e.g.
the same communication matrix for the whole application
execution) to a dynamic model (e.g. instantiating the com-
munication matrix at runtime).

At system scale it is important to manage affinity for the
whole application ecosystem. Currently, locality is managed
independently for the volatile memory, the NVRAM, the
storage, the network, etc. It is crucial to account for these dif-
ferent resources at the same time to perform global locality
optimizations. For instance, optimizing storage access and
memory access simultaneously results in good performance
gain as shown in early results [64].

Additionally, research into the layer above the parallel
file system is beginning to uncover methods of orchestrat-
ing I/O between applications [16]. This type of high-level
coordination can assist in managing shared resources such
as network links and I/O gateways and is complementary
to an understanding of the storage data layout itself. It can

also enable optimization of locality management for several
applications at the same time.

6.2 State of the Art
No strict standard way exists to describe and enforce
process and thread mapping. For example, techniques for
thread binding depend on the underlying operating system,
the runtime system (MPI, PGAS, etc.), and even the imple-
mentation (e.g., OpenMPI vs. MPICH).

Arguably some progress has been made, for example,
MPI-3 provides an interface that allows one to detect which
processes are in a shared-memory domain (i.e., on the same
node) [32]. Other interfaces, for example, thread binding
at startup, are not standardized, but MPI allows them to be
implemented at the mpiexec level.

Modeling the data-movement requirements of an appli-
cation in terms of network traffic and I/O can be supported
through performance-analysis tools such as Scalasca [24]
for distributed memory or performance counter analysis for
shared-memory systems. It can also be done by tracing data
exchange at the runtime level with a system such as OVIS
[53], [63], by monitoring the messages transferred between
MPI processes, for instance.

Hardware locality (hwloc) [25], [34] is a library and
a set of tools for discovering and exposing the hardware
topology of machines, including processors, cores, threads,
shared caches, NUMA memory nodes, and I/O devices.
Netloc [26], [49] is a network model extension of hwloc to
account for locality requirements of the network, including
the fabric topology. For instance, the network bandwidth
and the way contention is managed may change the way
the distance within the network is expressed or measured.

The problem is even more important if we consider
the way applications are allocated to resources and how
they access storage. This requires optimizations between
applications. Currently, resource managers or job schedulers
such as SLURM [74], OAR [11], LSF [77], or PBS [30] allocate
nodes to processes.However, none of them can match the
application requirements in terms of communication with
the topology of the machine and the constraints incurred by
already mapped applications. Similarly, parallel file systems
such as Lustre [10], GPFS [61], PVFS [12], and PanFS [70]
and I/O libraries such as ROMIO [65], HDF5 [29], and
Parallel netCDF [44] are responsible for organizing data
on external storage (e.g., disks) and moving data between
application memory and external storage over system net-
works.

7 APPLICATIONS EXPECTATIONS FROM
ABSTRACTIONS

An application developer is concerned with end-to-end
parallelization and may be faced with different paralleliza-
tion needs in different parts of the application [62]. Data
locality for applications is often a direct map from their
modeling and discretization methods. We can loosely map
the applications along two dimensions: spatial connectivity
and functional connectivity. In this map the lower end of
the spatial connectivity axis would have applications that
are embarrassingly parallel and the top end would have



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 10

dynamic connectivity such as adaptive meshing. The func-
tional connectivity axis would have single physics applica-
tions at the lower end, whereas at the high end would be
applications where the components are swapped in and out
of active state. Being placed higher along an axis implies
greater challenges in achieving locality. HPC applications
typically fall into the fourth quadrant, both spatial and
functional connectivities are high [67].

Applications communities have well known and valid
concerns about wisely utilizing the developers time and pro-
tecting the investment already made in the mature produc-
tion codes of today [13], [31]. An important consideration
for the applications community, therefore, is the time scale
of change in paradigms in the platform architecture and
major rewrites of their codes. Even with those constraints,
however, many possibilities exist in application infrastruc-
ture design to expose the potential for data locality, and
therefore performance, if appropriate abstractions can be
made available. A stable programming paradigm with a
lifecycle that is several times the development cycle of the
code must emerge for sustainable science. It can take any of
the forms under consideration, such as embedded domain-
specific languages, abstraction libraries, or full languages,
or some combination of these, as long as long term support
and commitment are provided, as well as a way to make
incremental transition to the new paradigm.

7.1 Overview of Concerns

Abstractions often apply easily to simple problems; but
where the computation deviates from the simple pattern,
the effectiveness of the abstraction decreases. A useful ab-
straction would allow itself also to be ignored or turned off
as needed. In the context of data locality that might mean
an ability to express the inherent hierarchical parallelism in
the application in a declarative instead of imperative way,
leaving the code translators (compilers or autotuners) to
carry out the actual mapping.

Other less considered but possibly equally critical con-
cerns relate to expressibility. Application developers can
have a clear notion of their data model without finding
ways of expressing the models effectively in the available
data structures and language constructs. There is no the-
oretical basis for the analysis of data movement within
the local memory or remote memory. Because of this lack
of formalism to inform application developers about the
implications of their choices, the data structures get locked
into the implementation before the algorithm design is fully
fleshed out. The typical development cycle of a numerical
algorithm focuses on correctness and stability first, and then
performance. By the time performance analysis tools are
applied, it can be too late for anything but incremental
corrective measures, which usually reduce the readability
and maintainability of the code. A better approach would
be to model the expected performance of a given data
model before completing the implementation and to let the
design be informed by the expected performance model
throughout the process. Such a modeling tool would need
to be highly configurable, so that its conclusions might be
portable across a range of compilers and hardware and
valid into the future, in much the same way that numerical

simulations often use ensembles of input-parameter space
in order to obtain conclusions with reduced bias. Below we
discuss application developers’ concerns that tie into the
data locality abstractions discussed in earlier sections.

7.2 Data Structures

Data layout and movement have a direct impact on the
implementation complexity and performance of an appli-
cation. Since these are determined by the data structures
used in the implementation, this is an important concern
for the application. Any effort that moves in the direction of
allowing the application to describe the working set through
a library or an abstraction is likely to prove useful.

Most languages provide standard containers and data
structures that are easy to use in high-level code; yet few
languages or libraries provide interfaces for the application
developer to inform the compiler about expectations of data
locality, data layout, or memory alignment. For example, a
common concern for the PDE solvers is the data structure
containing multiple field components that have identical
spatial layout. Should it be an array with an added di-
mension for the field components or a structure; and within
the array or structure, what should be the order for storing
in memory for performance [17], [18]. There is no one best
layout for every platform. State of the art abstractions and
tools described in Section 3 are working towards making
that a programming abstraction concern instead of an appli-
cation concern. Other abstractions that could be helpful for
performance include allowing persistence of data between
two successive code modules.

7.3 Languages and Compilers

The state of the art in parallel programming models cur-
rently used in applications is a hybrid model such as
MPI+OpenMP or MPI+CUDA/OpenCL. The former is both
local-by-default (MPI) and global-by-default (OpenMP),
while the latter is local-by-default only (object visibility
defined in Section 4). Since the two models target different
classes of platforms, they do not really overlap. PGAS mod-
els have much less penetration in the field than do the above
two models. In general a global-by-default model is easier to
adopt but it is much harder to make it performant. The real
difficulty in designing for parallelism lies in finding the best
hierarchical decomposition inherent to the application. That
is basically the hierarchical version of the local-by-default
approach. Abstractions such as tiling can be helpful in ex-
pressing hierarchical parallelism. Because of being explicitly
aware of locality, local-by-default design can be more easily
mapped to a performant global design.

The transition to a new programming language, al-
though likely to be optimal eventually, is not a realistic
solution in the near term. In addition to the usual chal-
lenge of sustainability (it might go away), need for ver-
ification dictates incremental adoption for existing codes.
Therefore, either embedded DSLs or new languages with
strong interoperability with the existing languages are likely
to have better chance at being adopted. The amount of
effort required by the applications to transition to the new
programming model will be another factor in its success.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 11

Irrespective of which solution emerges, it must provide a ro-
bust and clean way of handling threads for interoperability
among various components of the application. Also, just-in-
time compilation will be helpful to many applications with
highly variable runtime characteristics.

7.4 Runtime

The vast majority of applications in computational sci-
ence and engineering continue to operate in largely bulk-
synchronous mode, with a few notable exceptions such as
Uintah [54], and applications built upon Charm++ [39] such
as NAMD [57]. As the applications see it, this approach
has two major benefits: many applications have a built in
regularity, and therefore map well to the bulk-synchronous
mode, and it takes care of dependencies within the appli-
cation trivially. Evidence indicates, however, that this state
of affairs may not remain attractive or even feasible because
heterogeneity in hardware is unfavorable to regulate lock-
step execution. Additionally, capability additions in appli-
cations make them more heterogeneous. However, the jury
is still out on whether the overheads of asynchronicity will
be outweighed by the benefits of pipelining and overlap-
ping permitted by the task-based runtime. A good API
that allows articulating the hierarchical decomposition and
dependencies easily is likely to be helpful to applications
to think about runtime locality, and to reason about their
code functionally without implementing it in a functional
language. Such an approach is needed to their way away
from bulk synchronism.

7.5 System-Scale

System-wide scalability is an important cross-cutting issue
since the targets are very large-scale, high-performance
computers. On the one hand, application scalability will
depend mostly on the way data is accessed and locality is
managed. On the other hand, the proposed solutions and
mechanisms have to run at the same scale as the application
which limits their inner decision time. That, in turn, makes
it important to tackle the problem for the whole system:
taking into account the whole ecosystem of the application
(e.g., storage, resource manager) and the whole architecture
(i.e., from cores to network). Novel approaches are needed
to control data locality system wide, by integrating cross-
layer I/O stack mechanisms with cross-node topology-
aware mechanisms. Another challenge is that often each
layer of the software stack is optimized independently to
address the locality concerns with the result that outcomes
sometime conflict. It is therefore important to observe the
interaction of different approaches and propose integrated
solutions that provide a global optimization across differ-
ent layers. An example of such an approach is mapping
independent application data accesses to a set of storage
resources in a balanced manner. This approach requires an
ability to interrogate the system regarding what resources
are available, some distance metric in terms of application
processes, and coordination across those processes (perhaps
supported by a system service) to perform an appropriate
mapping. Ultimately, the validation of the models and solu-
tions to the concerns and challenges will be a key challenge.

8 SUMMARY

The objective of the series of workshops on Programming
Abstractions for Data Locality (PADAL) is to form a commu-
nity of researchers with the notion that data locality comes
first as the primary organizing principle for computation.
This paradigm shift from compute-centric towards data-
centric specification of algorithms has upended assumptions
that underpin our current programming environments. Par-
allelism is inextricably linked to data locality, and current
programming abstractions are centered on abstractions for
compute (threads, processes, parallel do-loops). The time
has arrived to embrace data locality as being the anchor
for computation. PADAL has identified a community that
is actively exploring a wide-open field of new approaches
to describing computation and parallelism in a way that
conserves data movement. A number of these projects have
produced working technologies that are rapidly approach-
ing maturity. During this early phase of development, it
is crucial to establish research collaborations that leverage
for commonalities and opportunities for inter-operation be-
tween these emerging technologies.

Much research in this area (as with all emerging fields
of research) has focused on rapidly producing implementa-
tions to demonstrate the value of data-centric programming
paradigms. In order to get to the next level of impact, there
is a benefit to formalizing the abstractions for representing
data layout patterns and the mapping of computation to
the data where it resides. It is our desire to create standards
that promote interoperability between related programming
systems and cooperation to ensure all technology imple-
mentations offer the most complete set of features possible
for a fully functional programming environment. The only
way to achieve these goals is for this community to organize,
consider our impact on the design of the software stack at
all levels, and work together towards the goal of creating
interoperable solutions that contribute to a comprehensive
environment.

ACKNOWLEDGMENTS

Authors would like to thank other PADAL14 and PADAL15
workshop participants: Maciej Besta, Jed Brown, Cy Chan,
Sung-Eun Choi, Jack Choquette, Brice Goglin, Jesus Labarta,
Leonidas Linardakis, Edward Luke, Satoshi Matsuoka, Pe-
ter Messmer, Lawrence Mitchell, Kathryn O’Brien, David
Padua, Robert B. Ross, Marie-Christine Sawley, Robert
Schreiber, Thomas Schulthess. James Sexton, Suzanne
Michelle Shontz, Adrian Tate, Gysi Tobias, Engo Toshio,
Mohamed Wahib, Chih-Chieh Yang. This work was partially
supported by the German Research Foundation under con-
tract TE 163/17-1. This work was partially supported by the
Grant 655965 by the European Commission.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 12

REFERENCES

[1] J. A. Ang, R. F. Barrett, R. E. Benner, D. Burke, C. Chan, J. Cook,
D. Donofrio, S. D. Hammõnd, K. S. Hemmert, S. M. Kelly, H. Le,
V. J. Leung, D. R. Resnick, A. F. Rodrigues, J. Shalf D. Stark,
D. Unat, and N. J. Wright. Abstract machine models and proxy
architectures for exascale computing. In Proceedings of the 1st
International Workshop on Hardware-Software Co-Design for High
Performance Computing, Co-HPC ’14, pages 25–32, Piscataway, NJ,
USA, 2014. IEEE Press.

[2] Barcelona Supercomputing Center. Extrae: a Paraver trace-files
generator. https://tools.bsc.es/extrae.

[3] Barcelona Supercomputing Center. Paraver: a flexible performance
analysis tool. https://tools.bsc.es/paraver.

[4] Barcelona Supercomputing Center. The OmpSs Programming
Model. https://pm.bsc.es/ompss.

[5] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken. Legion:
Expressing locality and independence with logical regions. In
Proceedings of the International Conference on High Performance Com-
puting, Networking, Storage and Analysis, SC ’12, pages 66:1–66:11,
Los Alamitos, CA, USA, 2012. IEEE Computer Society Press.

[6] M. Besta and T. Hoefler. Slim fly: A cost effective low-diameter
network topology. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, SC
’14, pages 348–359, Piscataway, NJ, USA, 2014. IEEE Press.

[7] M. Bianco and B. Cumming. Euro-Par 2014 Parallel Processing:
20th International Conference, Porto, Portugal, August 25-29, 2014.
Proceedings, chapter A Generic Strategy for Multi-stage Stencils,
pages 584–595. Springer International Publishing, Cham, 2014.

[8] G. Bikshandi, J. Guo, D. Hoeflinger, G. Almasi, B. B. Fraguela,
M. a. J. Garzarán, D. Padua, and C. von Praun. Programming
for parallelism and locality with hierarchically tiled arrays. In
Proceedings of the eleventh ACM SIGPLAN symposium on Principles
and practice of parallel programming, PPoPP ’06, pages 48–57, New
York, NY, USA, 2006. ACM.

[9] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. A
practical automatic polyhedral parallelizer and locality optimizer.
In Proceedings of the 29th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’08, pages 101–113, New
York, NY, USA, 2008. ACM.

[10] P. J. Braam. The lustre storage architecture. Technical report,
Cluster File Systems, Inc., 2003.

[11] N. Capit, G. Da Costa, Y. Georgiou, G. Huard, C. Martin,
G. Mounié, P. Neyron, and O. Richard. A batch scheduler with
high level components. In Cluster Computing and the Grid, 2005.
CCGrid 2005. IEEE International Symposium on, volume 2, pages
776–783. IEEE, 2005.

[12] P. H. Carns, W. B. Ligon III, R. B. Ross, and R. Thakur. PVFS:
A parallel file system for linux clusters. In Proceedings of the 4th
Annual Linux Showcase and Conference, pages 317–327, Atlanta, GA,
Oct. 2000. USENIX Association.

[13] J. C. Carver. Software engineering for computational science and
engineering. Computing in Science & Engineering, 14(2):8–11, 2012.

[14] B. L. Chamberlain, D. Callahan, and H. P. Zima. Parallel pro-
grammability and the chapel language. International Journal of High
Performance Computing Applications, 21:291–312, 2007.

[15] B. L. Chamberlain, S.-E. Choi, E. C. Lewis, C. Lin, L. Snyder, and
W. D. Weathersby. Zpl: A machine independent programming
language for parallel computers. IEEE Trans. Softw. Eng., 26(3):197–
211, Mar. 2000.

[16] M. Dorier, G. Antoniu, R. Ross, D. Kimpe, and S. Ibrahim. CAL-
CioM: Mitigating I/O interference in HPC systems through cross-
application coordination. In Proceedings of the International Parallel
and Distributed Processing Symposium, May 2014.

[17] A. Dubey, A. Almgren, J. Bell, M. Berzins, S. Brandt, G. Bryan,
P. Colella, D. Graves, M. Lijewski, F. Loffler, B. O’Shea, E. Schnetter,
B. V. Straalen, and K. Weide. A survey of high level frameworks
in block-structured adaptive mesh refinement packages. Journal of
Parallel and Distributed Computing, 74(12):3217–3227, 2014.

[18] A. Dubey, S. Brandt, R. Brower, M. Giles, P. Hovland, D. Lamb,
F. Lffler, B. Norris, B. O’Shea, C. Rebbi, M. Snir, R. Thakur, and
P. Tzeferacos. Software abstractions and methodologies for hpc
simulation codes on future architectures. Journal of Open Research
Software, 2(1), 2014.

[19] H. C. Edwards, C. R. Trott, and D. Sunderland. Kokkos: Enabling
manycore performance portability through polymorphic memory
access patterns. Journal of Parallel and Distributed Computing, 2014.

[20] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran.
Cache-oblivious algorithms. In 40th Annual Symposium on Founda-
tions of Computer Science (Cat. No.99CB37039), pages 285–297, 1999.

[21] T. Fuchs and K. Fuerlinger. Expressing and exploiting multidimen-
sional locality in DASH. In Proceedings of the SPPEXA Symposium
2016, Lecture Notes in Computational Science and Engineering,
Garching, Germany, Jan. 2016. to appear.

[22] K. Fuerlinger, C. Glass, J. Gracia, A. Knüpfer, J. Tao, D. Hünich,
K. Idrees, M. Maiterth, Y. Mhedheb, and H. Zhou. DASH: Data
structures and algorithms with support for hierarchical locality. In
Euro-Par Workshops, 2014.

[23] M. Garland, M. Kudlur, and Y. Zheng. Designing a unified pro-
gramming model for heterogeneous machines. In Supercomputing
2012, November 2012.

[24] M. Geimer, F. Wolf, B. J. N. Wylie, E. Ábrahám, D. Becker, and
B. Mohr. The Scalasca performance toolset architecture. Concur-
rency and Computation: Practice and Experience, 22(6):702–719, Apr.
2010.

[25] B. Goglin. Managing the Topology of Heterogeneous Cluster
Nodes with Hardware Locality (hwloc). In Proceedings of 2014 In-
ternational Conference on High Performance Computing & Simulation
(HPCS 2014), Bologna, Italy, July 2014.

[26] B. Goglin, J. Hursey, and J. M. Squyres. netloc: Towards a
Comprehensive View of the HPC System Topology. In Proceedings
of the fifth International Workshop on Parallel Software Tools and
Tool Infrastructures (PSTI 2014), held in conjunction with ICPP-2014,
Minneapolis, MN, Sept. 2014.

[27] T. Grosser and T. Hoefler. Polly-ACC: Transparent compilation to
heterogeneous hardware. In Proceedings of the the 30th International
Conference on Supercomputing (ICS’16), Jun. 2016.

[28] T. Gysi, T. Grosser, and T. Hoefler. Modesto: Data-centric analytic
optimization of complex stencil programs on heterogeneous archi-
tectures. In Proceedings of the 29th ACM on International Conference
on Supercomputing, ICS ’15, pages 177–186, New York, NY, USA,
2015. ACM.

[29] HDF5. http://www.hdfgroup.org/HDF5/.
[30] R. L. Henderson. Job scheduling under the portable batch system.

In Job scheduling strategies for parallel processing, pages 279–294.
Springer, 1995.

[31] L. Hochstein and V. R. Basili. The asc-alliance projects: A case
study of large-scale parallel scientific code development. Com-
puter, 41(3):50–58, 2008.

[32] T. Hoefler, J. Dinan, D. Buntinas, P. Balaji, B. Barrett, R. Brightwell,
W. Gropp, V. Kale, and R. Thakur. MPI + MPI: a new hybrid
approach to parallel programming with MPI plus shared memory.
Journal of Computing, May 2013. doi: 10.1007/s00607-013-0324-2.

[33] R. Hornung and J. Keasler. The raja portability layer: Overview
and status. Technical Report, LLNL-TR-661403, 2014.

[34] Hwloc. Portable Hardware Locality. http://www.open-mpi.org/
projects/hwloc/.

[35] Intel Open Source. Hetero Streams Library. https://01.org/
hetero-streams-library.

[36] Intel Open Source. Open Community Runtime. https://01.org/
open-community-runtime.

[37] E. Jeannot, E. Meneses, G. Mercier, F. Tessier, and G. Zheng.
Communication and Topology-aware Load Balancing in Charm++
with TreeMatch. In IEEE Cluster 2013, Indianapolis, États-Unis,
Sept. 2013. IEEE.

[38] Julia. Language. http://julialang.org/.
[39] L. V. Kale and S. Krishnan. Charm++: A portable concurrent object

oriented system based on c++. In Proceedings of the Eighth Annual
Conference on Object-oriented Programming Systems, Languages, and
Applications, OOPSLA ’93, pages 91–108, New York, NY, USA,
1993. ACM.

[40] A. Kamil and K. Yelick. Hierarchical computation in the SPMD
programming model. In The 26th International Workshop on Lan-
guages and Compilers for Parallel Computing, September 2013.

[41] R. M. Karp, R. E. Miller, and S. Winograd. The organization
of computations for uniform recurrence equations. J. ACM,
14(3):563–590, July 1967.

[42] J. Kim, W. J. Dally, S. Scott, and D. Abts. Technology-driven,
highly-scalable dragonfly topology. SIGARCH Comput. Archit.
News, 36(3):77–88, June 2008.

[43] P. M. Kogge and J. Shalf. Exascale computing trends: Adjusting to
the new normal’ for computer architecture. Computing in Science
and Engineering, 15(6):16–26, 2013.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 13

[44] J. Li, W.-K. Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp,
R. Latham, A. Siegel, B. Gallagher, , and M. Zingale. Parallel
netCDF: A high-performance scientific I/O interface. In Proceed-
ings of SC2003, Nov. 2003.

[45] Loci. Language. https://sourceforge.net/projects/
loci-framework/.

[46] B. Meister, N. Vasilache, D. Wohlford, M. M. Baskaran, A. Leung,
and R. Lethin. Encyclopedia of Parallel Computing, chapter R-Stream
Compiler, pages 1756–1765. Springer US, Boston, MA, 2011.

[47] J. Mellor-Crummey, L. Adhianto, W. N. Scherer, III, and G. Jin. A
new vision for coarray fortran. In Proceedings of the Third Conference
on Partitioned Global Address Space Programing Models, PGAS ’09,
pages 5:1–5:9, New York, NY, USA, 2009. ACM.

[48] J. Nakashima, S. Nakatani, and K. Taura. Design and Implemen-
tation of a Customizable Work Stealing Scheduler. In International
Workshop on Runtime and Operating Systems for Supercomputers, June
2013.

[49] Netloc. Portable Network Locality. http://www.open-mpi.org/
projects/netloc/.

[50] T. Nguyen, D. Unat, W. Zhang, A. Almgren, N. Farooqi, and
J. Shalf. Perilla: Metadata-based optimizations of an asynchronous
runtime for adaptive mesh refinement. In Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’16, pages 81:1–81:12, Piscataway, NJ, USA,
2016. IEEE Press.

[51] R. W. Numrich and J. Reid. Co-array fortran for parallel program-
ming. ACM FORTRAN FORUM, 17(2):1–31, 1998.

[52] S. L. Olivier, A. K. Porterfield, K. B. Wheeler, M. Spiegel, and J. F.
Prins. OpenMP task scheduling strategies for multicore NUMA
systems. International Journal of High Performance Computing Appli-
cations, 26(2):110–124, May 2012.

[53] Ovis. Main Page - OVISWiki. https://ovis.ca.sandia.gov.
[54] S. G. Parker. A component-based architecture for parallel multi-

physics PDE simulation. Future Generation Comput. Sys., 22:204–
216, 2006.

[55] P. Participants. Workshop on programming abstractions for
data locality, PADAL ’14. https://sites.google.com/a/lbl.gov/
padal-workshop/, 2014.

[56] P. Participants. Workshop on programming abstractions for
data locality, PADAL ’15. https://sites.google.com/a/lbl.gov/
padal-workshop/, 2015.

[57] J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid,
E. Villa, C. Chipot, R. D. Skeel, L. Kalé, and K. Schulten. Scal-
able molecular dynamics with NAMD. Journal of Computational
Chemistry, 26(16):1781–1802, 2005.

[58] L. L. Pilla, P. O. Navaux, C. P. Ribeiro, P. Coucheney, F. Broquedis,
B. Gaujal, and J.-F. Mehaut. Asymptotically optimal load balancing
for hierarchical multi-core systems. In Parallel and Distributed
Systems (ICPADS), 2012 IEEE 18th International Conference on, pages
236–243. IEEE, 2012.

[59] B. Prisacari, G. Rodriguez, P. Heidelberger, D. Chen, C. Minken-
berg, and T. Hoefler. Efficient task placement and routing of
nearest neighbor exchanges in dragonfly networks. In Proceedings
of the 23rd International Symposium on High-performance Parallel and
Distributed Computing, HPDC ’14, pages 129–140, New York, NY,
USA, 2014. ACM.

[60] V. Saraswat, B. Bloom, I. Peshansky, O. Tardieu, and D. Grove. X10
Language Specification Version 2.4. IBM Research, May 2014.

[61] F. Schmuck and R. Haskin. GPFS: A shared-disk file system for
large computing clusters. In First USENIX Conference on File and
Storage Technologies (FAST’02), Monterey, CA, Jan. 28-30 2002.

[62] J. Segal and C. Morris. Developing scientific software. Software,
IEEE, 25(4):18–20, 2008.

[63] M. Showerman, J. Enos, J. Fullop, P. Cassella, N. Naksinehaboon,
N. Taerat, T. Tucker, J. Brandt, A. Gentile, and B. Allan. Large
scale system monitoring and analysis on blue waters using ovis.
In Proceedings of the 2014 Cray User’s Group, CUG 2014, May 2014.

[64] F. Tessier, P. Malakar, V. Vishwanath, E. Jeannot, and F. Isaila.
Topology-Aware Data Aggregation for Intensive I/O on Large-
Scale Supercomputers. In 1st Workshop on Optimization of Com-
munication in HPC runtime systems (IEEE COM-HPC16), Held in
conjunction with ACM/IEEE SuperComputing’16 Conference, page 10,
Salt Lake City, UT, USA, Nov. 2016.

[65] R. Thakur, W. Gropp, and E. Lusk. On implementing MPI-IO
portably and with high performance. In Proceedings of the Sixth
Workshop on Input/Output in Parallel and Distributed Systems, pages
23–32, May 1999.

[66] D. Unat, T. Nguyen, W. Zhang, M. N. Farooqi, B. Bastem, G. Mich-
elogiannakis, A. Almgren, and J. Shalf. TiDA: High-Level Pro-
gramming Abstractions for Data Locality Management, pages 116–135.
Springer International Publishing, Cham, 2016.

[67] D. Unat, J. Shalf, T. Hoefler, T. Schulthess, A. D. (Editors), et al.
Programming Abstractions for Data Locality. Technical report,
Joint report of LBNL/CSCS/ETH/ANL/INRIA, 2014.

[68] T. L. Veldhuizen and D. Gannon. Active libraries: Rethinking the
roles of compilers and libraries. CoRR, math.NA/9810022, 1998.

[69] S. Verdoolaege, J. Carlos Juega, A. Cohen, J. Ignacio Gómez,
C. Tenllado, and F. Catthoor. Polyhedral parallel code generation
for cuda. ACM Trans. Archit. Code Optim., 9(4):54:1–54:23, Jan. 2013.

[70] B. Welch, M. Unangst, Z. Abbasi, G. Gibson, B. Mueller, J. Small,
J. Zelenka, and B. Zhou. Scalable performance of the Panasas
parallel file system. In Proceedings of the 6th USENIX Conference on
File and Storage Technologies (FAST), pages 17–33, 2008.

[71] M. Wimmer, D. Cederman, J. L. Träff, and P. Tsigas. Work-stealing
with configurable scheduling strategies. In Proceedings of the 18th
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’13, pages 315–316, New York, NY, USA,
2013. ACM.

[72] Y. Yan, J. Zhao, Y. Guo, and V. Sarkar. Hierarchical place trees:
A portable abstraction for task parallelism and data movement.
In Proceedings of the 22nd International Workshop on Languages and
Compilers for Parallel Computing, October 2009.

[73] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Kr-
ishnamurthy, . P. Hilfinger, S. Graham, D. Gay, P. Colella, and
A. Aiken. Titanium: A high-performance Java dialect. In Workshop
on Java for High-Performance Network Computing, February 1998.

[74] A. B. Yoo, M. A. Jette, and M. Grondona. Slurm: Simple linux
utility for resource management. In Job Scheduling Strategies for
Parallel Processing, pages 44–60. Springer, 2003.

[75] W. Zhang, A. Almgren, M. Day, T. Nguyen, J. Shalf, and D. Unat.
Boxlib with tiling: An adaptive mesh refinement software frame-
work. SIAM Journal on Scientific Computing, 38(5):S156–S172, 2016.

[76] Y. Zheng, A. Kamil, M. Driscoll, H. Shan, and K. Yelick. UPC++:
A PGAS extension for C++. In The 28th IEEE International Parallel
and Distributed Processing Symposium (IPDPS14), May 2014.

[77] S. Zhou. Lsf: Load sharing in large heterogeneous distributed
systems. In Workshop on Cluster Computing, 1992.

Didem Unat is an Assistant Professor of Computer Science and Engi-
neering at Koç University, Istanbul, Turkey. Previously she was at the
Lawrence Berkeley National Laboratory. She is the recipient of the Luis
Alvarez Fellowship in 2012 at the Berkeley Lab. Her research interest
lies primarily in the area of high performance computing, parallel pro-
gramming models, compiler analysis and performance modeling. Visit
her group webpage for more information parcorelab.ku.edu.tr.

Anshu Dubey is a Computer Scientist in the Mathematics and Com-
puter Science Division at Argonne National Laboratory, and a Senior
Fellow at the Computation Institute. From 2013 to 2015 she was at
Lawrence Berkeley National Laboratory, where she served as work lead
and computer systems engineer. Prior to that she was associate director
and computer science/applications group leader in Flash Center For
Computation Science at the University of Chicago. She received her
Ph.D. in Computer Science from Old Dominion University in 1993 and
a B.Tech in Electrical Engineering from Indian Institute of Technology,
New Delhi.

Torsten Hoefler is an Assistant Professor of Computer Science at
ETH Zürich, Switzerland. He is active in the Message Passing Interface
(MPI) Forum where he chairs the “Collective Operations and Topologies”
working group. His research interests revolve around the central topic
of “Performance-centric Software Development” and include scalable
networks, parallel programming techniques, and performance modeling.
Additional information about Torsten can be found on his homepage at
htor.inf.ethz.ch.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 14

John Shalf is CTO of the National Energy Research Supercomputing
Center and head of the Computer Science Department at Lawrence
Berkeley National Laboratory. His research interests include parallel
computing software and high-performance computing technology. Shalf
received a MS in electrical and computer engineering from and Virginia
Tech. He is a member of the American Association for the Advancement
of Science, IEEE, and the Optical Society of America, and coauthor of
the whitepaper The Landscape of Parallel Computing Research: A View
from Berkeley (UC Berkeley, 2006). Contact him at jshalf@lbl.gov.

Mark Abraham is a research scientist at the KTH Royal Technical Uni-
versity in Stockholm, Sweden. He manages the worldwide development
of the high-performance molecular simulation package GROMACS.

Mauro Bianco is currently a Computer Scientist at Swiss National
Supercomputing Centre. His focus is on the design and development
of domain specific C++ libraries for parallel and portable scientific simu-
lations.

Bradford L. Chamberlain is a Principal Engineer at Cray Inc. where
he serves as the technical lead for the Chapel parallel programming
language project. He earned his PhD from the Department of Computer
Science and Engineering at the University of Washington and remains
associated with the department as an Affiliate Professor.

Romain Cledat is currently a leading developer on the Open Com-
munity Runtime (OCR) as part of DoE’s XStack project which aims
to develop the software infrastructure for Exascale computing. Romain
graduated in 2011 from the Georgia Institute of Technology with a PhD
in Computer Science. He also holds a MS in Electrical and Computer
Engineering from Georgia Tech and a Masters in Engineering from the
Ecole Centrale de Lyon (France).

H. Carter Edwards is a Principal Member of Technical Staff at Sandia
National Laboratories in Albuquerque, New Mexico, where he leads
research and development for performance portable programming mod-
els on next generation manycore architectures. He lead the Kokkos
(github.com/kokkos) project and represents Sandia on the ISO/C++
standards committee.

Hal Finkel is a computational scientist at Argonnes Leadership Com-
puting Facility. He works on the LLVM compiler infrastructure, the Hard-
ware/Hybrid Cosmology Code (HACC), and represents Argonne on the
C++ standards committee.

Karl Fuerlinger is a lecturer and senior researcher at the Ludwig-
Maximilians-University (LMU) Munich, working in the area of parallel
and high performance computing. His research is focused on tools for
program analysis and parallel programming models.

Frank Hannig (M’01–SM’12) leads the Architecture and Compiler De-
sign Group in the CS Department at Friedrich-Alexander University
Erlangen-Nürnberg (FAU), Germany. His main research interests are
the design of massively parallel architectures, ranging from dedicated
hardware to multi-core architectures, domain-specific computing, and
architecture/compiler co-design.

Emmanuel Jeannot is a senior research scientist at Inria, in Bordeaux,
France. He leads the Tadaam (Topology-Aware System-Scale Data
Management for High-Performance Computing) project team and works
on runtime system and process placement.

Amir Kamil is a Lecturer at the University of Michigan and a Computer
Systems Engineer at Lawrence Berkeley National Laboratory (LBNL).
He completed his PhD at UC Berkeley, where his research focused on
program analysis and optimization for parallel languages and program-
ming models for hierarchical machines. He has continued his research
on programming models at LBNL, while also investigating communica-
tion optimizations for dense grid applications and contributing to UPC++,
a C++ library for distributed computation.

Jeff Keasler worked for over a decade as a member of the ALE3D
application team at LLNL. He is co-PI with Rich Hornung for both the
LULESH proxy application and the RAJA portability layer.

Paul H J Kelly is Professor of Software Technology at Imperial College
London, where he has been on the faculty since 1989. He leads Im-
perial’s Software Performance Optimization research group, and is co-
Director of Imperial’s Centre for Computational Methods in Science and
Engineering. His research focus is domain-specific program optimiza-
tion.

Vitus Leung is a Principal Member of Technical Staff at Sandia National
Laboratories in Albuquerque, New Mexico, where he leads research in
distributed memory resource management. He has won R&D 100, US
Patent, and Federal-Laboratory-Consortium Excellence-in-Technology-
Transfer Awards for work in this area. He is a Senior Member of the
ACM and has been a Member of Technical Staff at Bell Laboratories
in Holmdel, New Jersey and a Regents Dissertation Fellow at the
University of California.

Hatem Ltaief is a Senior Research Scientist in the Extreme Computing
Research Center at KAUST. His research interests include parallel nu-
merical algorithms, fault tolerant algorithms, parallel programming mod-
els, and performance optimizations for multicore architectures and hard-
ware accelerators. His current research collaborators include Aramco,
Total, Observatoire de Paris, NVIDIA, and Intel.

Naoya Maruyama is a Team Leader at RIKEN Advanced Institute
for Computational Science, where he leads the HPC Programming
Framework Research Team. His team focuses on high-level parallel
frameworks for computational science applications.

Chris J Newborn serves as an HPC architect, focused on Intel’s Xeon
Phi product family. He has contributed to a combination of hardware and
software technologies over the last twenty years. He has a passion for
making the richness of heterogeneous platforms easier to use. He has
over 80 patents. He wrote a binary-optimizing, multi-grained paralleliz-
ing compiler as part of his Ph.D. at Carnegie Mellon University. He’s
delighted to have worked on volume products that his Mom uses.

Miquel Pericás is an Assistant Professor of Computer Science and
Engineering at Chalmers University of Technology in Gothenburg, Swe-
den. From 2012 to 2014 he was a JSPS postdoctoral fellow at the
Tokyo Institute of Technology, and before that a Senior Researcher at
the Barcelona Supercomputing Center. His research focuses on parallel
runtime systems and communication-efficient computer architectures.




