

Urlea, Cristian (2021) Optimal program variant generation for hybrid
manycore systems. PhD thesis.

http://theses.gla.ac.uk/81928/

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge

This work cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,
title, awarding institution and date of the thesis must be given

Enlighten: Theses
https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

http://theses.gla.ac.uk/81928/
mailto:research-enlighten@glasgow.ac.uk

Optimal program variant generation
for hybrid manycore systems

Cristian Urlea

Submitted in fulfilment of the requirements for the

Degree of Doctor of Philosophy

School of Engineering

College of Science and Engineering

University of Glasgow

January 2021

Abstract

Field Programmable Gate Arrays (FPGAs) promise to deliver superior energy efficiency in het-
erogeneous high performance computing (HPC), as compared to multicore CPUs and GPUs.
The rate of adoption is however hampered by the relative difficulty of programming FPGAs.
High-level synthesis tools such as Xilinx Vivado, Altera OpenCL or Intel’s HLS address a large
part of the programmability issue by synthesizing a Hardware Description Languages (HDL)
representation from a high-level specification of the application, given in programming lan-
guages such as OpenCL C, typically used to program CPUs and GPUs. Although HLS solutions
make programming easier, they fail to also lighten the burden of optimization. Application de-
velopers must rely on expert knowledge to manually optimize their applications for each target
device, meaning that traditional HLS solutions do not offer a solution to the issue of perfor-

mance portability. This state of fact prompted the development of compiler frameworks such
as TyTra that operate at an even higher level of abstraction, amenable to the use of Design

Space Exploration (DSE). With DSE the initial program specification can be seen as the start-
ing location in a search-space of correct-by-construction program transformations. In TyTra
the search-space is generated from the transitive-closure of term-level transformations derived
from type-level transformations. Compiler frameworks such as TyTra theoretically solve the is-
sue of performance portability by providing a way to automatically generate alternative correct
program variants. They however suffer from the very practical issue that the generated space
is often too large to fully explore. As a consequence, the globally optimal solution may be
overlooked.

In this work we provide a novel solution to issue performance portability by deriving an
efficient yet effective DSE strategy for the TyTra compiler framework. We make use of categor-

ical data types to derive categorical semantics for the formal languages that describe the terms,
types, cost-performance estimates and their transformations. From these we define a category
of interpretations for TyTra applications, from which we derive a DSE strategy that finds the
globally optimal transformation sequence in polynomial time. This is achieved by reducing the
size of the generated search space. We formally state and prove a theorem for this claim and then
show that the polynomial run-time for our DSE strategy has practically negligible coefficients
leading to sub-second exploration times for realistic applications.

i

Contents

Abstract i

Acknowledgements viii

Declaration ix

1 Introduction 1
1.1 Design Space Exploration . 3
1.2 Thesis statement . 5
1.3 Contributions and Publications . 6

2 Background 7
2.1 Performance portability . 8
2.2 Taxonomy of parallel computation . 10

2.2.1 Narrow and wide: data parallelism . 11
2.2.2 High and low: abstraction level . 15
2.2.3 Near and far: locality . 17
2.2.4 The middle way . 22

2.3 Formal methods . 23
2.3.1 Models of computation . 24
2.3.2 Imperative languages . 26
2.3.3 Functional languages . 28
2.3.4 Bridging models . 32

2.4 The TyTra Compiler Framework . 33
2.4.1 TyTra Compiler workflow . 33
2.4.2 TyTra Coordination Language . 38
2.4.3 TyTra Intermediate Representation . 45
2.4.4 TyTra Semantics . 46

2.5 Introduction to Category Theory . 50

ii

CONTENTS iii

3 Related Work 58
3.1 Practical . 58

3.1.1 Imperative Languages . 59
3.1.2 Functional Languages . 67
3.1.3 Program and Behavioural Synthesis 71
3.1.4 Compiler Optimization Techniques 72

3.2 Theoretical . 73
3.2.1 Structured Parallelism . 73
3.2.2 Categorical Data Types and Techniques 74

3.3 Graphical summary . 78

4 Categorical Semantics 80
4.1 Categorical Data Types . 81

4.1.1 Optimisation from recursion schemes 85
4.1.2 Terms and Transformations . 87
4.1.3 Types and Type Constructors . 90
4.1.4 Cost-Performance Estimates . 95

4.2 DSE in Categorical Terms . 99
4.2.1 Specification . 99
4.2.2 Analysis . 106
4.2.3 Selection . 107

4.3 Optimal DSE in TyTra . 108
4.3.1 Naïve tactic . 111
4.3.2 Expert tactic . 116

4.4 TyTra Categorical Semantics . 123
4.4.1 Type Inference and checking . 124
4.4.2 Correct term transformation . 125
4.4.3 Cost-performance aware transformation 126
4.4.4 Borrowing structure . 127
4.4.5 Fused DSE . 137

4.5 Efficient DSE Theorem . 140
4.5.1 Proof . 140

5 Experimental Evaluation, Conclusion & Future Work 143
5.1 Experimental validation . 144
5.2 Conclusion . 151
5.3 Future work . 152

List of Figures

1.1 Conceptual DSE stages: specification, analysis, selection. 3

2.1 Abstract three-dimensional space of programming languages and compilers. . . 10
2.2 CPU (narrow) and GPU (wide) architectures, representing the number of parallel

compute units . 11
2.3 Pragma directives have a local effect, typically function, variable scope or basic-

block level. 13
2.4 SIMD (left) vs scalar (right) addition. 14
2.5 FPGAs: A switched sea of lookup tables. 15
2.6 Harvard Architectures and logical distance. 18
2.7 Relations between parallel architectures and tools. 22
2.8 Graphical depiction of a finite state machine. 26
2.9 Composition of finite state machines. 27
2.10 Lambda abstraction and application. Execution Trace. 29
2.11 I and K combinators. 30
2.12 The Haskell Monad interface. 31
2.13 High-level view of the TyTra Compiler Workflow. 33
2.14 Detailed view of the TyTra Compiler Workflow. 34
2.15 Performance measured in clock-cycles. 36
2.16 Simplified presentation of the performance model. 37
2.17 TyTra CL term-level expression grammar. 39
2.18 TyTra CL expressions and actions . 39
2.19 Alternative graphical representation for TyTra CL expressions and actions. . . . 39
2.20 TyTra CL Size Constructors. 41
2.21 The TyTra CL Atomic Type Constructor . 41
2.22 TyTra CL Structural Type Constructors. 42
2.23 Graphical depiction of a TyTra CL expression and types. 42
2.24 An abstract type transformation. 43
2.25 Nested type constructors can be simply seen as a single constructor. 43
2.26 The effect of Vector type Split and Merge operations on terms. 44

iv

LIST OF FIGURES v

2.27 Type-level merge/split rules. Their composition yields the identity transformation. 44
2.28 TyTra IR, its sub-languages and the relationship to TyTra CL 45
2.29 Abstract and full interpretation (sequential). 49
2.30 Abstract interpretation (average time). 49
2.31 The category C with three objects. 50
2.32 Composition or morphisms f and g in C. 51
2.33 The composition of morphisms must be associative. 51
2.34 The objects of a category are identified by their identity morphisms. 52
2.35 Functors: structure preserving maps between categories. 52
2.36 Triangle identity. 54
2.37 Pentagon identity. 54
2.38 Morphisms from Initial F-Algebra to all F-Algebras in that category. 56

3.1 OpenCL compilation and runtime. 59
3.2 OpenCL optimization workflow. 60
3.3 Fusion rules in Lift. 69
3.4 Cancellation rules in Lift. 69
3.5 The OpenCL Specific map, reduce and reorderStride rules in Lift. 69
3.6 Denotational semantics relating the various map implementations to an abstract

map operation in the Lift compiler. 69
3.7 The build/fold rule corresponds to the Hylomorphism recursion scheme. 77
3.8 Overview of the relationship between practical and theoretical related work. . . 78
3.9 Hylomorphisms as a unifying construct for the object-language of Structured

Arrows. 79
3.10 Hylomorphisms as a unifying construct for the meta-language of the TyTra

Compiler Framework. 79

4.1 ListF : 1+a×List a describes an Endofunctor. 81
4.2 Category of Integers and List of Integers. 82
4.3 F-Algebra on a list of Integers. 82
4.4 Objects and morphisms in the category of F-Algebras over a functor F 84
4.5 A term-level structure of nested list functors. 85
4.6 The TermVar data constructor is a functor from the category of Strings to the

category of TyTra CL Terms . 87
4.7 The Type of TyTra CL AST Transformations. 88
4.8 Functorial Type TyTra CL AST Transformations 88
4.9 Identity morphisms on TyTra CL types . 89
4.10 TyTra CL Type System derivation rules. 90
4.11 Atomic Types as objects of a category (top) and the category of names (bottom). 91

LIST OF FIGURES vi

4.12 Tuple Type projections are morphisms in the category of TyTra CL Types. . . . 92
4.13 A Vector Type of size 2 corresponds to a binary tuple Tup(a,a). 92
4.14 Vec is a polynomial functor. 93
4.15 Distributivity of products over sums. 93
4.16 Function types. 94
4.17 Fin3: the category of finite natural numbers up to the value 3. 96
4.18 Relationship between Fin3 and a vector type Vec3 a. 96
4.19 Sub-terms (blue/purple circles) as projections (grey arrows) in the category of

terms, and their transformations (blue/purple morphisms). 99
4.20 Design Space of cuboids. 100
4.21 The category of Point objects. 101
4.22 The category of Design’ objects where Line is the initial object and its relation

to Design. 102
4.23 A parametrized design space of cuboids. 103
4.24 The category of Point objects. 103
4.25 The unit cube: the initial object in the category of cuboids. 104
4.26 Analysis: maps the design space into an (ordered) space of properties. 106
4.27 Selection via Functors. 107
4.28 Selective object construction. 107
4.29 Map fusion rule. 109
4.30 Family of split transformations. 109
4.31 Power set of transformations. 111
4.32 Brute force FSA accepting states. 111
4.33 Data Variable Terms generate DS with expressed parallelism ≤ size of vector. 112
4.34 Function Variable Terms generate DS with expressed parallelism ≤ EFI. 113
4.35 Design Space merging . 113
4.36 Design space structure traversal producing program transformations. 114
4.37 Cost-performance model output. 115
4.38 Final selection of program transformation sets. 115
4.39 A computational pipeline. 116
4.40 Effect of Split Transform on computational pipeline. 116
4.41 Balanced computational pipeline. 117
4.42 Map Fusion on balanced computational pipeline. 117
4.43 Fold Term fission transformation. 118
4.44 Tuple Term distributes bounds. 119
4.45 Application Term merges bounds. 119
4.46 ZipT Term merges bounds. 120
4.47 Elt Term. 121

LIST OF FIGURES vii

4.48 Stencil Term. 121
4.49 DSE on an isolated sub-term. 122
4.50 DS merge improvement. 122
4.51 Functor from the category of term F-Algebras to the category of type F-Algebras. 124
4.52 Functor from the category of type F-Algebras to the category of term F-Algebras. 125
4.53 Endofunctor on the category of term F-Algebras. 125
4.54 Adjoint functors relating term transformations to cost-performance expressions. 126
4.55 Category of performance measures. 126
4.56 Algebra pairs. 127
4.57 Defining an interpreter on TyTra CL terms as transformation on TermBB. . . . 130
4.58 Type-level application of viewTerm to termApp (termLit "foo") (termLit "bar"). 130
4.59 Term-level application of viewTerm to termApp (termLit "foo") (termLit "bar"). 130
4.60 Term-level: Application of viewTerm to termApp (termLit "foo") (termLit "bar").

. 132
4.61 The three DSE stages are dependent. 134
4.62 Homomorphism from TermBB to CostBB. 135
4.63 Strict CostBB merge operation. 136
4.64 Case-splitting on the TermBB encoding of the application. 140
4.65 Graphical summary for the proof of Theorem 1. 141
4.66 Additive sub-space mixing. 142

5.1 Hardware resource limit bounded Design Space (left) vs Filtered Design Space
(right) for Synth Kernel on XC6SLX150T. 147

5.2 Hardware simulation showing program variants generated through DSE present
the expected cost-performance characteristics. 149

Acknowledgements

I would like to express the most heartfelt thanks to my supervisor, Wim Vanderbauwhede, for
introducing me to functional programming, shaping my professional development and support-
ing me with nothing but kindness and understanding. The same is true of my second supervisor,
Jeremy Singer whom not only introduced me to the area of optimizing compilers but also en-
couraged me to start on this journey. I find it impossible to imagine a more suitable choice of
supervisors.

Many thanks go out to the numerous people who have listened to my ideas, contributed their
own thoughts and made building this tiny sand castle an enjoyable experience. Amongst these
individuals are: Syed Waqar Nabi who has poured countless hours into the TyTra project, many
of which for the sole purpose of validating my own work; Sorin Suciu, Andrey Mokhov, Dejice
Jacob, Marco Monti who have painstakingly read through many unfinished copies and engaged
in discussing some of the most frustrating of half-baked ideas that have come to mind; the many
examiners that have sat through my yearly progression vivas; the students that have taught me
more than I could ever teach them. A special round of thanks go to my internal and external
examiners: Anna Lito Michala and Vijay Nagarajan. Their attention to detail and inquisitive
nature have left a very deep and positive mark both this work. Without their effort, this work
would have been truly incomplete.

I am grateful to my family and friends for their unbounded love and support. None have
unconditionally given more of themselves than my mother, Denisa Urlea, and my dear friend
Laura Voinea, who have been there for me through thick and thin. To those looking to cash in
their bets: I must admit defeat. I have lost the race to complete this PhD to my mother, who
completed hers with a full week’s worth of lead time.

Support from the UK EPSRC under grant EP/L00058X/1 is gratefully acknowledged.

viii

Declaration

I hereby declare that, except where specific references are made to the work of others, the con-
tents of this document are original and have not been submitted, in whole or in part, for consid-
eration for any other degree or qualification, in this or any other university. This doctoral thesis
is the result of my own work, under the supervision of Prof. Dr. Wim Vanderbauwhede and Dr.
Jeremy Singer. Nothing included is the outcome of work done in collaboration, except where
otherwise indicated within the text.

Chapters 1, 2 and 3 contain introductory material, background and a discussion of related
work. The use of the royal "we" as it appears in relation to the TyTra project throughout this
work indicates that what follows is a personal contribution/statement made, or interpretation/-
conclusion drawn, by the author of this work. Work or results derived from work involving other
TyTra project members are explicitly indicated.

ix

Chapter 1

Introduction

Heterogeneous High-Performance Computing (HPC) describes the use of multiple parallel hard-
ware architectures in tackling large and complex applications [SEP+09], primarily for reasons
having to do with energy efficiency. Specialized hardware architectures are more energy efficient
at solving particular problems [SEP+09]. A system incorporating multiple architectures can be
used to solve larger and more diverse problem sets [BBL+16] [ESFC14]. The most common
types of compute hardware used in HPC can be roughly described as follows.

• Multi-core central processing units (CPUs) greatly benefit from the economies of scale in
manufacturing. They can execute general purpose applications which exhibit locally di-

vergent behaviour [ESFC14]. Geoscience workloads, for example, are typically memory
bound [LCP+11]. This means that the abundance of system memory that can be connected
to CPUs can benefit them greatly. With more memory, larger problems can be solved by
saving intermediate results in main memory.

• Graphical Processing Units (GPUs) implement massively parallel architectures, typically
single instruction, multiple data (SIMD) [DKK09]. Although SIMD architectures feature
many more compute units than CPUs, meaning that they can process more data items
in parallel, divergent behaviour is problematic as groups of compute units operate syn-
chronously sharing a single instruction decoder [DAF11] among them.

• Field Programmable Gate Arrays (FPGAs) implement highly configurable architectures
that allow for massive parallelism. They also have a higher degree of energy efficiency
than CPUs and GPUs [BTL10] [SCP02] [CCA+11]. FPGAs can be seen as configurable
circuits that can solve domain-specific problems. The down-side to FPGAs is that they
are relatively difficult to program and optimize [BTL10] [CCA+11].

1

CHAPTER 1. INTRODUCTION 2

The relative difficulty of programming and optimizing FPGAs is a symptom of the much
wider issue of performance portability. Many programming languages (PLs) and compilers
have been created to tackle this issue in. particularly in the field of parallel and distributed com-
putation that encompasses HPC. Programming languages are often tightly coupled to particular
hardware architectures or features [KS97] [RVDDB10]. as well as the abstractions used to de-
scribe distributed computation [BST89]. Applications written in one programming language,
that targets a certain system, may be difficult to optimize for execution on new platforms. With
every new hardware architecture, programmers must analyse, reimplement or refactor complex
applications in order to obtain the much desired speed-up promised by the new hardware. This,
in a nutshell, is the issue of performance portability [RVDDB10] [FLP+18].

There are many ways in which a programming language can be influenced by architec-
tural decisions. A CPUs memory model, for example, may spell out the semantics of mem-
ory operations [BDW16]. Implementation choices for memory caches and prefetching mech-
anisms may be driven by an assumed type of workload which can vary between workstations
and servers [Dow06]. Consumer-grade GPUs may favour single-precision floating point op-
erations, whilst professional-grade hardware, intended for use in computer-aided design may
deliver better double-precision performance [PKB14]. FPGAs were initially used as reconfig-
urable circuits, able to perform the same tasks as application specific circuits (ASIC). Such de-
vices came with small amounts of memory, enough to store the lookup tables which simulate the
intended circuit configuration. More recently, FPGAs with large amounts of memory [Leo08]
have become available. These can now be used to solve larger and more complicated problems,
however, the circuit description of computation is no longer appropriate. In Heterogeneous HPC
performance is critical, and it depends on the ability of a programmer to fully account for the
architectural differences in the hardware used [GFG+16] [BDPV99]. Unfortunately the indi-
viduals that would stand to benefit the most from HPC, scientists and artists are already highly
specialized in their respective fields and consequently may not have the breadth of parallel pro-
gramming expertise required to leverage all of these platforms effectively [SSJ19].

The TyTra compiler framework solves the issue of performance portability by providing an
automated optimization route from the programming languages currently used in scientific and
high performance computing [VNU19], but also introduces another more specific issue. In Ty-
Tra the optimization schedule is recovered through Design Space Exploration (DSE), a process
that involves generating a set of possible optimized applications, analysing them to determine
their effectiveness, and finally selecting the best performing candidate solution. The issue to be
solved is that DSE can be very computationally expensive. The search-space generated from
even the most trivial of applications can appear to be intractable. Through the present work we
solve this issue by providing an efficient DSE implementation for TyTra.

CHAPTER 1. INTRODUCTION 3

1.1 Design Space Exploration

Design Space Exploration is a process of finding one or more solutions, called design points,
that satisfy a set of requirements by searching through a design space, and is applicable in many
problem domains [KSS+09] [KJS10]. Conceptually. DSE can be seen as a process having
three stages, as depicted in Figure 1.1 below. The first stage, specification, can be understood
as generating the design space of candidate solutions. The second stage, analysis, determines
properties of interest related to the candidate solutions. The third and final stage, selection,
leverages these properties to select one or more viable solutions, according to the set of specified
requirements.

specification analysis selection

Figure 1.1: Conceptual DSE stages: specification, analysis, selection.

We are primarily interested in the interpretation of DSE within the context of the TyTra com-
piler framework. TyTra was designed to tackle the issue of optimizing parallel streaming data-
flow applications and so it provides the infrastructure required for the specification [NV15b]
[VN19] analysis [NV15b] and selection of optimizing transformations for parallel applications.

Specification involves generating a design space of optimizing program transformations
through from type-level equivalences. The application to be compiled, defines an initial program

variant made up of term-level expressions that can be described through a powerful dependent
type system. Equivalent type expressions denote semantically equivalent implementations that
may nonetheless exhibit different performance characteristics. From such equivalences at the
type-level, the TyTra compiler defines a set of optimizing transformations for the term-level rep-
resentation. A sequence of transformations defines a candidate solution, a program variant. The
exhaustive set of all transformation sequences defines the total design-space generated in this
specification phase.

Analysis involves working out the expected performance an resource use of each program
variant. In TyTra, the analysis phase involves applying the transformation sequence defined by
a candidate solution to the initial program variant, and then running the cost-performance model
implemented by the TyTra back-end compiler.

Selection means that the best performing but least resource-intensive program variant found
is returned as the winning solution from the entire search-space generated by the specification
stage and characterized by the analysis phase.

CHAPTER 1. INTRODUCTION 4

Through this work we contribute an efficient DSE strategy implementation for the TyTra
compiler. This requires a slightly different interpretation of the three stages we have just out-
lined.

Specification

Program variants are generated in the TyTra compiler by applying semantics-preserving trans-
formations to an initial program variant. The initial specification is described by a TyTra Coordi-
nation Language (TyTra CL) application [section 2.4.2]. Each program variant thus corresponds
to a unique sequence of program transformations [NV15b] [VN19] [VNU19]. Rather than con-
sidering a design space to be a set of program variants, we will take on a different interpretation,
that a design-space is equivalent to the function that generates it. This alternative view of the
specification stage highlights the difference between intentional and extensional definitions for
semantics [section 2.4.4].

Analysis

The TyTra compiler specifies a straight-forward approach to DSE which must execute the cost-
performance model on every program variant produced by the specification stage [NV15b].
This approach implies that every generated transformation sequence must be applied to the ini-

tial program variant, thus generating a new TyTra CL representation for the application. The
resulting TyTra CL representation must then be passed through the code-generator, giving a
TyTra IR encoding. Each program variant encoded in the TyTra IR must then be interpreted
using the cost-performance model to yield the total performance estimate and resource cost.
The approach we take in this work is to compute cost-performance estimates at the level of each
sub-term expression, allowing us to compose the overall cost-performance estimate of each term
expression, from the estimates of its sub-terms. In this way, we may compute estimates along-
side a representation of the reduced search-space, without having to invoke the code-generator
during DSE.

Selection

The selection phase in the TyTra compiler must select the best performing yet least resource-
intensive program variant from an exhaustive search-space. In our approach the selection phase
is fused into the specification phase, restricting the number of generated solutions. We generate
only the most efficient and performant solutions. We restrict the generation of solutions that
are dominated by already generated program variants, as well as those requiring more hardware
resources than are available on the compilation target.

CHAPTER 1. INTRODUCTION 5

1.2 Thesis statement

As we will see in section 2.1, the issue of performance portability in the context of optimizing
compilers of HPC, can be solved through DSE. The challenge that remains is to define an effi-
cient exploration strategy for very large design spaces. In practical terms, searching through a
design space can prove to be intractable, even for small systems and applications. Automated
DSE, meaning that which lacks the help of a human expert to guide the exploration process, is
even more susceptible to this issue. The set of decisions to be made during exploration naturally
increases [HHV15] when expert help is not available.

Statement: Through this work we show that it is possible to implement automatic design
space exploration strategies for the purpose of identifying effective optimizing transformations
for streaming data-flow applications within a parallel compiler targeting heterogeneous HPC
clusters that incorporate FPGAs, that are both effective and efficient.

We have said that in the case of the TyTra compiler for streaming data-flow applications, a
design space consists of alternative program optimizing transformation sequences. The TyTra
back-end compiler ultimately generates code for FPGAs. In contrast to CPUs and GPUs, gen-
erating code for FPGAs also implies a spatial scheduling of hardware resources, and not just a
temporal one. TyTra, being concerned with the optimization of long-running scientific compu-

tations, implies that we primarily seek to improve an application’s throughput, rather than its
latency. Having established the hardware target, as well as the primary optimization criteria, the
attributes effective and efficient concerning DSE can be given a more specific interpretation.

• An effective DSE strategy is one that does not overlook the particular sequence of op-
timizing transformations that would yield the maximum possible throughput for a given
application - hardware device pair.

• An efficient DSE strategy is one that can be focused on the smallest sub-region of the
design space which contains the best performing design point or configuration. From
the more practical point of view of solving the issue of heterogeneous HPC cluster pro-
grammability, an efficient DSE strategy must yield its solution within minutes, not hours
or days as is the case with current high-level FPGA programming frameworks.

Towards the end of this document, in section 4.5, we will use this specific interpretation of
effective and efficient DSE to derive, and thereafter prove, a more formal theorem that embodies
the thesis statement just given. In section 1.3 that follows, we use the same interpretation of the
thesis statement to describe the three specific contributions made through this work.

CHAPTER 1. INTRODUCTION 6

1.3 Contributions and Publications

The primary contribution is the size reduction of the search-space of optimizing program trans-

formation sequences generated by the TyTra compiler. The reduction is from an exponential

design-space to an additive space without compromise to the effectiveness of the TyTra com-
piler. The reduced search-space is shown to be the globally pareto-optimal frontier of the ex-

haustive search-space. This contribution takes is given in terms of a formal theorem and proof,
both which are presented in section 4.5.

The secondary contribution is a validation of the theoretical results in section 4.5 through ex-
perimental evaluation of our resulting DSE strategy, on a number of representative applications
form the domain of scientific computing. This contribution is given through the experimental
methodology presented in section 5.1 which shows that our DSE strategy is not only a function
having a polynomial complexity, but also that the constant time-factors in this polynomial are
practically small enough, for representative applications, to yield a total design space explo-
ration time that is virtually instantaneous.

The tertiary contribution is the specification of categorical data types and categorical se-

mantics for the TyTra Coordination Language, its type system, the cost-performance estimates
returned by the TyTra back-end compiler, as well as the design space exploration portion of
the TyTra compiler. This contribution borrows methodology form the realm of programming
language research, such as defining categorical data types, to enable the theoretical develop-
ment that supports and enables our primary contribution. The presentation of these concepts
and methods is contained within chapter 4.

Previous publications

1. A part of the initial work on the TyTra Coordination Language and DSE has been pub-
lished in Wim Vanderbauwhede, Syed Waqar Nabi, and Cristian Urlea. Type-driven auto-
mated program transformations and cost modelling for optimising streaming programs on
fpgas. International Journal of Parallel Programming, 47(1):114–136, 2019.

2. Preliminary results regarding the search space reduction have been published in Cristian
Urlea, Wim Vanderbauwhede, and Syed Waqar Nabi. Efficient FPGA cost-performance
space exploration using type-driven program transformations. In David Andrews, René
Cumplido, Claudia Feregrino, and Marco Platzner, editors, 2019 International Conference

on ReConFigurable Computing and FPGAs, ReConFig 2019, Cancun, Mexico, December

9-11, 2019, pages 1–2. IEEE, 2019.

Chapter 2

Background

Scientific Computation is a multidisciplinary field concerned with solving large problems using
computational methods. Applications from the scientific computation domain simulate complex
patterns of physical or abstract interactions to gain insight into the behaviour and trajectory of
such systems [JQR06]. Weather and climate forecasting applications are representative exam-
ples of scientific computation. Problems such as these are solved by running complex simula-
tions involving large numbers of data-points representing parameters such as temperature, air
pressure and humidity. Climate models in particular must account for both local and global

interactions, such as the relationship between atmospheric conditions and total solar radiation.
Furthermore, the input data-points are continuously updated with measurements from real-world
data gathered by weather balloons and ground-stations. The sheer amount of data required to
encode the state of such a complex system, as well as the computational effort needed to de-
rive probable future states, are the main limiting factors to the granularity and precision of such
applications [VT13]. Financial simulation applications are another example of scientific com-
putation. Modern financial institutions straddle the line between finance and technology. They
have a moral and legal obligation to ensure that their clients are not over-exposed to financial
risk, and so they must run incredibly complex risk calculations that ingest enormous amounts
of real-world data, such as currency exchange rates, outstanding debt and market prices with
a much higher frequency [Tho10] than weather forecasting applications. The amount of com-
putational power needed to run such applications is reflected in the energy consumption of the
HPC clusters that run them [WOPW13]. Computational power and energy use translate directly
into monetary expense. This in turn implies that there exists a significant financial incentive
to build more energy-efficient HPC system, capable of running such applications. One way of
improving the energy efficiency of HPC is to use more energy efficient hardware. Field Pro-
grammable Gate Arrays (FPGA) are known to offer massively parallel computational power
that is also more energy efficient that the more commonly used multi-core CPUs and GPUs for
certain workloads [LNLG20] [ZMS+16] but they are also significantly more difficult to program
and optimize. More broadly, the underling issue is that of performance portability.

7

CHAPTER 2. BACKGROUND 8

2.1 Performance portability

The cost of energy used to run HPC clusters can easily equal [Ben12] or even surpass the hard-
ware cost. Physically building bigger and better HPC clusters with more powerful and energy
efficient hardware is however only half of the story. When single-core Central Processing Units
(CPUs) were replaced by their modern, super-scalar and multi-core variants, a great deal of ef-
fort was required to adapt compilers and programming frameworks to make adequate use of the
additional computational power [vAVSvN09]. Likewise, the adoption of Graphics Processing
Units (GPUs) required significant engineering effort [vAVSvN09] [HTWB10]. More recently,
Field Programmable Gate Arrays (FPGAs) have become a viable and more energy-efficient al-
ternative for HPC workloads [LNLG20] [VN14] as modern FPGA implementations have larger
amounts of on-board memory and better floating-point performance which brings them closer
to the raw memory and compute capacity of GPUs. Porting applications to FPGAs is even more
difficult task [GBL10] [CLS+08] [HCG+07] than adapting legacy software to run on multicore
CPUs and GPUs because the computational abstractions used are very different [HCG+07].

The common theme that describes the main challenges in adapting HPC applications to
newer hardware is that of Performance portability which describes the ability of a software appli-
cation to not only execute on a multitude of hardware targets, but to do so efficiently. Numerous
compilers and programming language frameworks have been developed to address the issue of
performance portability. For applications that target CPUs, languages such as Java, which popu-
larized the phrase "Write once, execute anywhere" [Cur98] offer a possible solution. High-level
programming languages such as Java are compiled down to a bytecode representation, an ab-
stract equivalent of an assembly language which can be interpreted by a programming language
Virtual Machine (VM) [SN05]. As long as suitable runtime implementation exists for a particu-
lar hardware target, a bytecode representation of the application can be readily executed [Cur98].
All interpreters, including those that take bytecode as input incur a performance penalty relative
to natively compiled code. Just-in-time (JIT) compilation techniques can recover some of the
performance that would otherwise be lost due using bytecode interpretation [Ayc03]. JIT com-
pilers can, at times, deliver more performant code and better resource utilisation [Doe03] [JK13]
than the more traditional ahead-of-time (AOT) compilers [SC19]. Clearly, in the case of CPUs,
VMs and JIT compilers deliver good performance.

When it comes to GPUs and FPGAs however, VM implementations and JIT compilers,
such as those we cover in section 2.2 can not deliver the same benefits because they require
significant general purpose compute capacity that is logically close to the application, as we will
explain in subsection 2.2.3. Briefly stated, VMs continuously analyse the relationship between
application performance and certain properties of input or intermediate data which requires a
high-bandwidth connection between the VM, and the computational hardware and memory.
The JIT compiler must likewise be able to quickly alter running code.

CHAPTER 2. BACKGROUND 9

GPUs and FPGAs have little or no general purpose compute capacity and must rely on the
language runtime, executing on the host computer to orchestrate. From a bandwidth and latency
perspective the host is too far away. The OpenCL framework [Gro09], for example, offers func-
tionality somewhat equivalent to that of a VM and JIT compiler for GPUs and FPGAs. The
programming language used in this case is OpenCL C, a superset of the C programming lan-
guage. The software to be executed implemented as a number of so-called kernel functions as
well as a host application that compiles, invokes and ships data to and from these kernels which
are loaded on to the acceleration device. The host application is compiled ahead of time. When
executed, the host application calls upon the OpenCL runtime to determine the actual hardware
target and then triggers the compilation of the kernel functions right before they are executed.
The host-side application thus has the potential to optimize the execution schedule and imple-
mentation of kernels, in a manner similar to a VM runtime. This potential is however not often
realized, as the application developer, rather than the OpenCL runtime, must implement what is
effectively an application-specific VM and JIT strategy every time. We contend that this might
be the case primarily because the abstraction level of popular programming languages (PLs), as
may be found in OpenCL C Java, inherently matches the execution model of super-scalar and
out-of-order CPUs. With multi-core CPUs as well as modern GPUs, such PLs no longer map
quite as well to the complex hardware features available. There is a impedance mismatch be-

tween the computational abstractions representable in such PLs and structure of the underlying

hardware. Certain language features give developers very granular control over shared-memory

data-structures and thread synchronization mechanisms. This allows developers to fine-tune the
performance of their applications. The same language features make it impossible for the com-
piler to automatically work out efficient optimization strategies. Consequently, programmers
are expected to annotate their applications with explicit compiler directives which specify how
certain applications segments are to be transformed and optimized [KSA+10].

The flexibility and reconfigurability of FPGAs which makes them such energy efficient tar-
gets also widens the semantic gap between current programming languages and hardware. High-
Level-Synthesis (HLS) [NSP+16] tools seek to address this gap by compiling applications de-
scribed at a higher level of abstraction, in a programming language typically designed for CPUs
or GPUs which have static data pathways, down into a more traditional Hardware Description
Language (HDL) [SG79] such as VHDL and Verilog [Smi96]. The HDL representation can then
be used to synthesize an executable implementation for FPGAs. Current generation HLS tools
however fail to deliver on the promise of performance portability, as we will see in chapter 3,
because the mapping from the high-level languages to the circuit interpretation of an application
requires a better approach to automatic parameter space exploration [ZMS+16] than is currently
available.

CHAPTER 2. BACKGROUND 10

2.2 Taxonomy of parallel computation

We will now explore some of the reasons why programming languages and techniques com-
monly used to program FPGAs fail to deliver the same degree of performance portability we
have come to expect from systems which target CPUs. We will do so by presenting a taxon-
omy of programming languages and compiler frameworks which is based on the analogy to the
three-dimensional space we inhabit.

Abstraction
Locality

Bottom

Middle

Top

Width

Figure 2.1: Abstract three-dimensional space of programming languages and compilers.

On the bottom-most level of our space, shown with red in Figure 2.1, we include those
programming languages that assume a low-level of abstraction. Examples include the VHDL
and Verilog HDLs, as well as the assembly languages that were once a popular vehicle for
writing performance-critical CPU code. The middle layer shown in blue corresponds to the
HLS compilers and frameworks currently used to translate applications written in a high-level
language such as Java or OpenCL C, into the languages that inhabit the bottom-most layer.
These two first layers will be discussed in the present section. At the top, we find programming
languages and frameworks that operate at an even higher level of abstraction, such as the TyTra
compiler framework, in the context of which our work rests. This layer warrants closer attention
as it is specialized to account for the peculiarities of the TyTra compiler. Consequently, the
top-most layer corresponds to section 2.4.

The three dimensions of our taxonomy are as follows. The Width axis is used to describe the
degree of data parallelism in the target hardware devices. A narrow architecture, in this taxon-
omy, is one that can only process relatively few data items at once, such as typical consumer-
grade CPU. A wide architecture, as found on modern GPUs is in contrast capable of processing
many data-items side-by-side, hence our choice of terminology. The Abstraction dimension we
have already explained as serving the purpose of categorizing programming languages and com-
pilers. Locality, the third and final dimension serves to describe both a logical and a physical
interpretation of distance in computation as we will explain in subsection 2.2.3.

CHAPTER 2. BACKGROUND 11

2.2.1 Narrow and wide: data parallelism

In the context of hardware architectures, we use width to describe the number of bits that a
register may hold. A CPU architecture that has large or wide registers may process operations
on larger values, or alternatively, multiple data items with a single instruction. This can lead to
achieving super-linear speed-ups. From a logical perspective, GPUs can be said to have wider
registers. This is motivated by the nature of computation in the context graphical operations
which is highly parallel. A typical GPU architecture may feature thousands of compute units.
Each of these, in turn, may feature numerous data registers. All of these registers can be seen as
fragments of a single yet wide logical register that can store thousands of data items at once.

Narrow Architectures

An example of a narrow architecture, in our terminology, is that of a general purpose Central
Processing Unit (CPU). In contrast to wide architectures, general purpose CPUs are designed to
process a relatively small number of independent data-items at once.

Control

Cache

ALU

ALU

ALU

ALU

Control

Cache
ALU ALUALU ALU

Control

Cache

Control

Cache

Control

Cache

ALU

ALU ALUALU ALUALU

ALU ALUALU ALUALU

ALU ALUALU ALUALU

Figure 2.2: CPU (narrow) and GPU (wide) architectures, representing the number of parallel
compute units

CPUs, as general purpose processors, can be seen as unspecialized circuits to contrast them
to FPGAs. They incorporate a variety of functional units that enable them to perform numerous
types of operations. A typical CPU architecture may specify that a number of functional units for
floating point division, others for multiply-accumulate operations, and yet another set of to deal
with a particular video format [SKH+99]. There exists a wide variety of operations that general
purpose CPU may be required to perform, yet the surface area available to instantiate functional
units is limited by the physics of chip manufacturing. This means that not all such operations
may be accelerated through the inclusion of duplicate functional units to support them. Multi-
core CPUs may even share functional units among the cores under the assumption that not all
concurrent tasks will require access to the same units at the same time [Gee05]. Compilers that
target general purpose CPUs account for these structural properties. This might explain why
the most popular source programming languages are also largely general purpose, rather than
domain specific programming languages (DSLs) [Cas18a] [MR13].

CHAPTER 2. BACKGROUND 12

Despite the overwhelming popularity of general purpose programming languages, they are
not always the best tool for the job. DSLs can provide a more natural way to express certain
applications, making application optimization tasks less complex [Hud97]. The set of opti-

mizing transformations that must be considered by an optimizing compiler for general purpose
programming languages is naturally larger than what may be expected of a domain specific
compiler. At the same time, compiler developers are naturally risk-averse. Breaking changes in
compiler semantics can affect a larger number of end-users. Safety, being the number one prior-
ity, implies that the complexity of the compiler implementation must be mitigated. One way to
resolve the tension between performance and safety is to reduce the set of automatic optimizing
transformations the compiler considers. Compiler flags are options passed to the compiler by
the programmer that enable or parametrize certain optimization passes. It is a well known that
compiler flag selection is a non-trivial task, as many compiler optimizations can have conflicting
effects [Bot12].

−ansi −std=standard −fgnu89−inline

−fpermitted−flt−eval−methods=standard

−aux−info filename −fallow−parameterless−variadic−functions

[..]

Listing 2.1: A few GCC Flags.

Compiler flags can be used to implement coarse optimization strategies. A set of compiler
flags can be applied to an entire source-code module or file and so have a global effect on
the compiler’s interpretation of each such module. The ansi flag [WVH04] in Listing 2.1, for
example, dictates what sub-set of a source programming language is considered valid. Certain
optimizing transformations may take enumerable parameters. These may be likened to compiler
flags because their parameters usually feature a reduced cardinality. A small numeric parameter
may be regarded as equivalent to a small number of boolean compiler flags. In standard C
compilers the -std flag, for example, can take one of a a fixed number of values that dictates
what standard C++ version should be used when interpreting the source code. Valid instances
of this flag include -std=c++11, -std=c++1, and so on. Compiler or pragma directives such
as those used to specify loop transformations [KF19] are somewhat more specific than compiler
flags. Pragmas are language constructs that are added to the source-code representation of an
application in specific places.

int main() {

const int size = 256; double sinTable[size];

#pragma omp simd

for (int n=0; n<size; ++n) {

sinTable[n] = std :: sin(2 * M_PI * n / size);

}

Listing 2.2: Example: Use of OpenMP SIMD pragma directive

CHAPTER 2. BACKGROUND 13

Pragma declarations alter the compilation process by instructing the compiler to processes
the input in differently. The name evokes a pragmatic approach to programming that, when used
appropriately can improve the performance of an application. The effect of pragmas directives
is local as the example in Figure 2.3 shows. It contains a pragma directive (green) that is applied
to the basic block (unit of code) corresponding to the for loop that follows.

main()

for(int n=0; n<size; ++n) {

 sinTable[n] = std::sin(2 * M_PI * n / size);

}

#pragma opt simd basic block

basic block

const int size = 256;

double

sinTable[size];

basic block

Figure 2.3: Pragma directives have a local effect, typically function, variable scope or
basic-block level.

Iterative optimization can be used to search for optimal sets of compiler optimizations. The
basic methodology implies adding optimizing transformations to a candidate set, recompiling
the application and checking if the newly expanded optimization set leads to better results. Iter-

ative optimization, appears to be frequently used in related work. We speculate that this might
be the case because the operational semantics view of program transformation makes it difficult
to accurately predicting the performance impact program transformations. In the absence of a
fast cost-performance model, iterative optimization is used to approximate an optimal solution
by trying out different optimization schedules without having to explore the entire search-space.

When using compiler flags, expanding the candidate set simply equates the addition of a
previously unconsidered flag. At an abstract level, we can think of the empty set of compiler
flags as the base case in an inductive proof. Adding a fresh compiler flag that improves the
performance of the application can then be seen as the inductive case for a proof that an optimal
set of transformations exists. In the case of pragma directives, one must not only enumerate all
possible directive parameters, but also the locations in the application’s source code where they
are to be applied. This approach is taken by current generation HLS tools as well as by the Lift
compiler which is our most closely related work, as we will show in chapter 3.

CHAPTER 2. BACKGROUND 14

Wide architectures

We say that GPUs, FPGAs and Very Long Instruction Word (VLIW) processors have a wide

architecture because they make use of wide registers to store and process many data items at
once. In the case of GPUs and VLIW processors, the architecture usually specifies a single

instruction multiple data (SIMD) approach to processing. In the case of FPGAs, there are two
approaches. The implemented circuit can be replicated as many times as will fit on the device,
allowing multiple instances of the application to be executed concurrently. The other approach
is to replicate the sub-circuits that implement the computational circuits such that multiple data
items from a stream or list of values, can be processed in parallel, effectively implementing a
local, customized SIMD processors.

A1 A2 A3 A4

B1 B2 B3 B4

A

B

A1+B1 A2+B2 A3+B3 A4+4 A+B

+

=

+

=

Figure 2.4: SIMD (left) vs scalar (right) addition.

These wide architectures are often optimized for domain specific workloads where control-
flow divergence is not a major factor in the algorithm being executed. As SIMD architectures
share an instruction decoder amongst many functional units [BS91], control-flow divergence can
be a major issue. Graphical Processing Units (GPUs), are normally used to generate computer
graphics provide massive amounts parallelism that can be used to accelerate many computational
tasks [JLBF10]. This is possible because both graphically intensive games and computational
workloads such as weather prediction [SGPJ12] or financial simulation packages [GKSC13], de-
pend, performance-wise, on a small set of highly parallel functional units, that typically acceler-
ate operations such as matrix-matrix multiplication [FSH04]. Early compilers and programming
languages that targeted GPUs came under the umbrella term of General-Purpose computation

on Graphics Processing Units or GPGPU in short. Two-dimensional graphics operations are
essentially matrix operations. Likewise, three-dimensional transformations including transla-

tion and rotation can be expressed as matrix operations. Early GPGPU implementations relied
on hardware and programming constructs/languages that were less amenable to general purpose
computation [WL08]. As hardware developed, frameworks for general purpose computa-
tion, on massively parallel architectures such as OpenCL, became available and allowed ap-
plications developers to accelerate and deploy their computation to a wide range of platforms
including CPUs, GPUs and even FPGAs [CAD+12]. In section 3.1.1 we will go over related
work consisting of optimizing compiler frameworks including OpenCL, for wide architectures.

CHAPTER 2. BACKGROUND 15

2.2.2 High and low: abstraction level

FPGA programming is recognized to be a difficult task and often requires the expertise of hard-
ware programmers [BRS13]. There are many programming languages, compilers and synthesis
frameworks available to reduce the burden placed on the programmer. Each of these brings
specific trade-offs in performance, programmability and complexity. Broadly speaking, we can
classify these according to the level of abstraction used to represent computation. Field Pro-
grammable Gate Arrays are the descendants of CPLDs [BR96]. Both are seen as configurable

circuits and as such, at the lower-end of the abstraction spectrum, FPGA programming tools
take a circuit view of computation. At the higher-end, FPGA programming tools look more like
traditional software compilers.

A simple FPGA implementation might consist of a configurable switch that routes data be-
tween the lookup tables (LUTs) that encode the behaviour of logical circuit components, as
shown in Figure 2.5. The LUTs embedded within the configurable switch fabric can be made to
emulate any discreet function that is small enough to fit.

LUT LUT LUT

LUT LUT LUT

LUT LUT LUT

FPGA

Figure 2.5: FPGAs: A switched sea of lookup tables.

Because of this view of FPGAs as circuits, the programming languages used are usually
called Hardware Description Languages (HDL). The two best know instances of HDLs are
Verilog and VHDL. The primitive constructions used in HDLs are named using circuit design
terminology but can be likened to programming language constructs. Wires that connect com-
ponents can be likened to function calls because they carry the input parameters to a circuit.
Registers can be seen as intermediary value stores and so can be linked to variables. Ports can
be seen as defining an interface and can thus be likened to function signatures.

CHAPTER 2. BACKGROUND 16

There are also numerous differences that warrant the distinction between HDLs and other
types of programming languages.

• Mainstream imperative programming languages specify a sequential instruction evalua-
tion order. Functional programming languages are also compiled down to machine in-
structions which are executed sequentially. In contrast, HDLs have an entirely parallel
evaluation strategy. The application defines a circuit in which all components are to pro-
cess their inputs as soon as these become available.

• With HDLs program behaviour must be specified at a much more granular level. In con-
trast, software applications can be built up in using many layers of abstraction. Certain
details pertaining to the application can be resolved at run-time, meaning that a software
developer may not need to specify the entire solution at all.

• Software developers use the various exception mechanisms provided by their program-
ming language of choice. In hardware, there is no generic catch-all exception mecha-
nism that can trap unexpected errors. Every possible execution path must be explicitly
accounted for.

• Wires may be likened to function calls, however, the programmer must effectively decide
upon and implement the right calling convention for each such "function" being called.

• Registers that implement intermediary value stores materialize every time, unlike vari-
ables used in imperative programming languages that may be represented in the compiled
application, depending on the choices made by the optimizing compiler.

• Ports defined using an HDL are also more likely to be used only where the interface they
define is a complete match for the use-case at hand. In other programming languages,
interfaces can be extended abstractly, and they can be implemented by multiple classes in
different ways.

These differences are particularly troublesome in the context of HPC and scientific comput-
ing where the size and complexity of the applications is significant. Ideally, programmers should
be able to use the abstractions and tools they are already familiar and the compiler should be
smart enough to automatically work out the best circuit layout that matches the application’s
specification. To some extent, this is what High Level Synthesis tools offer: a way around
the programmability issue raised by HDLs that relies on an automated translation process from
high-level languages down to HDLs, known as behavioural synthesis. A particular class of HLS
tools are so-called C-to-Gates tools because the front-end programming language used often
resemble C. In subsection 3.1.1 we argue that imperative programming languages, including C
derivatives, are a poor choice for HLS as they are semantically misaligned with the HDL rep-
resentations they must generate. Fortunately, the C-to-Gates flavour of HLS tools are only one
possible solution out of many.

CHAPTER 2. BACKGROUND 17

2.2.3 Near and far: locality

On the Locality axis in Figure 2.1 we differentiate between languages designed to explore the
parallelism opportunities found locally within any one machine, and those languages and frame-
works that provide distributed computing abstractions. As computing science progresses, the
lines between what constitutes a singular machine or computer, and what constitutes a cluster

are starting to blur.

• Modern CPUs deliver greater economies of scale by implementing chiplet designs. Rather
than attempting to fabricate large, defect-free CPUs featuring many processing cores, ven-
dors produce smaller chiplets embedding a relatively few cores. Chiplets are then assem-
bled on top of silicon interposers that play the role similar to that of a data network,
keeping CPU caches, memory and peripheral devices synchronized.

• Hardware accelerators that deliver orders of magnitude more computational power than
the CPU are now commonplace. GPUs and FPGAs expansion cards are used for a variety
of tasks, ranging from graphics rendering to database acceleration and video encoding. All
of these devices are connected to the CPU, and indeed amongst themselves using the PCI
Express (PCIe) interface which is effectively a short-distance, high-bandwidth switched
network. Devices exchange Transaction Layer Packets (TLP) over these networks. Spe-
cialized routers called non-transparent bridges can even allow multiple workstations to
share acceleration hardware.

Programmers stand to benefit greatly from the convergence of these technologies. If pro-
gramming languages and compilers evolve such that one may use a single set of abstractions to
reason about computation at any scale, then this greatly simplifies the task of writing safe and
efficient applications by lowering cognitive load and the burden of testing.

Whenever discussing multi-core machines with hardware accelerators, or perhaps datacen-
ters containing thousands of machines, the most important factor that determines performance
is that of distance. Physical distance dictates which data movement operations are permissible.
The ultimate limit in the universe, the speed of light, dictates hard minimum bounds for latency.
Beyond physical distance, we must also consider the notion of logical distance in computation.
The address of a value stored in memory can be used as a measure of distance from some other
location in memory. We may speak of the distance between two subsequent input values to some
application, and likewise of some memory address distance between two instructions waiting to
be executed. Efficient application execution requires that both kinds of distances, logical and
physical, be minimized. Furthermore, distance uniformity matters greatly. High memory access
latency, if uniform, can be detrimental to performance but in most cases it can also be masked
through careful task scheduling. Sporadic and non-deterministic latency increases, on the other
hand, can be impossible to mitigate.

CHAPTER 2. BACKGROUND 18

Locality of reference as a term, describes a relationship between the temporal ordering of
instructions waiting to be executed on the one hand, and the spatial ordering of input data in
memory. Every concrete layout for input data implies a specific optimal temporal ordering of
instructions. The exact needed mapping can however be difficult to find in practice. Hardware
vendors persist in maintaining a layer of opacity in their memory cache implementations, for
example. This makes it difficult to effectively model their behaviour.

outputMap

Instruction memory

Data memory

(a,b) (a,b)

(a,b)

h

(a,b) c

(a,b)

(a,b)

(a,b) (a,b)

c c c c c c c

distance = 2 distance = 2

distance = 1
define void @h(args) par {

uil8 %1 = add uil8 %a, %b
uil8 %2 = add uil8 %1, %c

}

Figure 2.6: Harvard Architectures and logical distance.

Assuming the ever-present Harvard architecture, where instructions are logically separated

from data, there has to be a way for instructions to reference the data they act upon. The issue of
locality of reference thus relates to the discrepancy in distance between subsequent instructions
to be executed, and subsequent items of data these instructions act upon. This issue is further
compounded by the many layers of abstraction introduced by the algorithms, programming lan-
guages and operating systems that form the application stack. Problems and the algorithms that
solve them are, for now at least, specified almost entirely by humans. Programmers are free to
build up and structure these problems in a way that makes sense, that is to say has meaning or
semantics,in the problem domain they are most comfortable utilizing. Input data and interme-
diate results can be organized into stacks, heaps, tries and any other variety of data structure
imaginable. This flexibility in structuring data directly translates into efficient implementations,
as some data structures naturally pair with certain algorithms.

CHAPTER 2. BACKGROUND 19

Consider the case of sorting an array of values, perhaps using the well-known merge-sort al-
gorithm. The efficiency of merge-sort stems entirely from decomposing the problem, resolving
each sub-problem and merging the partial solutions to form the intermediate and final outputs.
The algorithm can thus be seen as an operation over a tree representation of intermediate so-
lutions. In contrast, the computational hardware used may assume an entirely different, more
linear, execution structure. Main memory is often thought of as having a linear layout. The
abstract notion of an address-space is what gives this linear view of access to data. Caching and
branch prediction mechanisms rely on this linear view of memory addresses to enhance applica-
tion performance, however they can also obscure the compiler’s view of potential optimizations.
Whereas the logical view of memory is linear, the effects of cache mechanisms is that they
provide non-linear speed-ups. If the caching mechanism fits the inherent access pattern of the
application, large efficiency gains can occur.

As technology advances, simple caching mechanisms such as first in first out or least recently

used stores, that are easy to implement and model, give way to more obscure implementations.
Take for example AMD’s branch prediction implementation that supposedly employs a neural

network, modelling the effects of which seems improbable for now. Further complicating the
issue of determining and mitigating the effects of locality of reference within a compiler, there
can be many nested layers of obscure caching mechanism within the processor, memory con-
troller, or even the network when discussing distributed computation.

Breaking down the problem of locality of reference we can have a look at how programming
languages and compilers deal with this problem when the components are relatively near to
one-another. Dealing only with caching layers present on one work-station, and eliding the
discussion on network latency and throughput somewhat simplifies the discussion. Compiler
writers are acutely aware of locality issues. It is likely the most common drain of performance
one can encounter. The relative performance difference between an application that is fully
aligned with the caching mechanism, that is to say every memory access is a cache hit, and one
that is not can be absolutely staggering. A more pronounced performance differential can be seen
between accesses to main memory and a solid state drive (SSD) or an SSD and a mechanical
hard-drive.

Hardware Access time Relative latency
CPU Registers 1 ns 1x

CPU Cache 10 ns 10x
Main Memory 100 ns 100x

Solid State Disk 100 µs 1000000x
Magnetic Disk 100 ms 1000000000x
Magnetic Tape 10 s 1e+10x

Table 2.1: Memory access latency.

CHAPTER 2. BACKGROUND 20

It feels odd having to include such a table in a thesis document in 2020, yet the cold harsh
truth is that access times are absolutely fundamental to the issue of performance. The fact
that these technologies give access times that are orders of magnitude apart all boils down to
some notion of distance. It may be the physical distance that the read head has to cover in a
HDD, or it may be the logical distance between row-buffer operations in RAM, yet it is distance
nonetheless. Modern compilers must account for all of these different types of distance. There
are two major types of strategies that try to minimize access times.

• Computation reordering. The instructions that make up the applications are ordered or
scheduled such that they happen to execute at the appropriate time when data becomes
available in the lowest access time memory.

• Data reordering. Data is processed and reordered such that the hardware can efficiently
access the required memory locations as quickly as the application’s instructions demand.

Instruction scheduling is typically performed at compile-time, and thus falls under the re-
mit of a traditional compiler. For Very long instruction word (VLIW) architectures these must
schedule every instruction accurately, in what is known as software pipe-lining [Lam88] because
the processor can not reorder instructions on the fly. Data reordering, on the other hand, can be
performed by the compiler but more often falls under the remit of a runtime or standard library
as they are sometimes called. Reordering data, rather than instructions, means that certain safety
invariants can be maintained more easily: the application’s code can be checked statically, be-
fore execution. At the same time, the exact type of input data may only be known at execution
time. Reordering instructions would require an expensive recompilation, as opposed to simply
copying values between memory regions. More often, data ordering is specified, statically, by
the programmer, after a thorough set of profiling runs with representative examples of applica-
tion input. Computation and data reordering can both be automated and used together. Modern
compilers, particularly those that make use of Just-In-Time (JIT) compilation techniques, as is
the case with the Java Virtual Machines (JVM) will perform automated runtime profiling which
in turn triggers the recompilation and optimization of the most demanding regions of code in
the application. The same type of instruction reordering can also happen in hardware. Cur-
rent generation x86 CPUs implement a Reduced Instruction Set Computer architecture that is
hidden away behind a facade. The x86 instruction set that is exposed to the user is not only
translated but also transformed by the compatibility layer as well as the out-of-order execution

mechanisms implemented deep within the CPU. The translation and transformations applied are
programmable behaviour specified through microcode updates. Effectively they are a hardware
assisted JIT compiler, albeit a hidden one.

CHAPTER 2. BACKGROUND 21

Compilers implement transformations that deal with both data and instruction reordering.
Polyhedral transformations help by reordering access to memory, in a manner consistent with
the computation, such that the locality of reference is improved. The compiler reorders com-
putation, the individual instructions and statements that access data, based on identified data
dependencies. Inlining serves a number of roles in a typical compiler. Besides enabling other
transformations by co-locating blocks of code and increasing sharing, it also removes indirec-
tions caused by statically computable blocks, increasing the locality of reference of instructions
to be executed. Work stealing mechanisms, typically implemented as part of an application’s
run-time support library allow computation to be dynamically rescheduled, for example by hav-
ing a thread steal work items from another thread’s work queue. This is one example of a
fully dynamic approach, that can easily have an adverse effect on performance if improperly
implemented.

Distributing computation across a networked cluster of compute devices adds another layer
of complexity on top of the already convoluted issue of locality. There are a number of popu-
lar distributed computation frameworks in use within the realm of scientific computation. The
large majority of these provide a thin layer of abstraction over the networking layer and assume
that the programmer will respect the style and protocols established through documentation. In
many ways, this layered approach simplifies matters greatly. Programmers can take an existing
body of code and augment it by inserting additional calls to the distributed computation frame-
work. Message Passing Interface (MPI) [SGO+98] is one example of such a framework. The
MPI framework is centred around the idea of encapsulating local state and explicitly updating
participants through the sending and receiving of explicit messages. Having to explicitly en-
code updates to the global state in messages forces programmers to think about the ordering
and timing of these events, in stark contrast to the shared memory model. Distributed com-
putation frameworks such as MPI are sometimes used to take advantage of parallel hardware
even if it is not distributed amongst multiple machines. A message passed between two local
processes is conceptually the same as a message passed between two networked processes. In
practice however, this may be somewhat inefficient due to the overheads involved in creating
a message structure and "sending it" across a virtual network socket. OpenMP [Cha01] is an
implementation of the multithreading approach to parallel programming that is quite different
from the message passing. It has been called the industry standard API for shared-memory

programs [DM98], and can be quicker than MPI if the underlying architecture supports it. Hy-

brid approaches that utilize both methodology also exist [MRRP11]. Programmers often make
use of OpenMP or similar frameworks to schedule local concurrent work, whilst explicitly dis-
tributing larger tasks amongst networked machines or perhaps even virtual machines running on
physically distinct CPU cores, using MPI. Although both approaches solve the same concep-
tual issue: that of scheduling and distributing parallel computation, programmers must become
familiar with, develop and test their applications using both.

CHAPTER 2. BACKGROUND 22

2.2.4 The middle way

We’ve seen how the parallel architectures and programming solutions covered thus far rely on
very different programming abstractions. These architectures can be programmed and opti-
mized, arguably rather inefficiently, using the same or very similar programming languages. In
all cases, the optimization process seems to be treated as an afterthought. The programmer first
specifies the application and only then directs the compiler or HLS tool, using flags or pragma
directives, towards a more efficient optimization schedule. In section 2.4 we will have a close
look at the TyTra compiler which, in contrast to this approach to application specification and
optimization, relies on Design Space Exploration to expose a design-space of program transfor-
mations that can be automatically searched, rather than manually traversed using programmer-
provided annotations. Before moving on to the specifics of the TyTra compiler framework,
we will have a closer look at what ties the underlying models of computation for all of these
platforms.

HPC

CPU GPU FPGA

HDL

HLS

Imperative PL

Functional PL

OpenCL

Hardware

Languages

Manual
OptimisationFlags Pragmas

Formal Language Formal
MethodsModel

Automated
OptimisationDesign Space Exploration

Figure 2.7: Relations between parallel architectures and tools.

Trivially, every programming language is a formal language. Compiler flags and pragma
directives can also be seen as the constructs of an additional formal language. All of these formal
languages can be assigned one ore more models of computation. In section 2.3 we will see how
all of these parallel architectures can be related by their underlying models of computation.

CHAPTER 2. BACKGROUND 23

2.3 Formal methods

Programming languages are formal languages. We can distinguish between different program-
ming languages by discussing either their syntax or the semantics assigned to them. Of the two,
the concrete syntax of a programming language is what defines a formal language.

Definition: Formal Language.
A Formal Language is a collection of words over some alphabet. The alphabet is a Set

of symbols A. A word is a concatenation of one ore more symbols in the alphabet A. A
language is thus representable as some subset of words L⊂ A∗.

Depending on the level of abstraction required, as well as space and aesthetic considerations,
the alphabet of a formal language can either be a literal alphabet having single character sym-
bols, or as is more often the case, a set of key-words where are considered to be atomic symbols
and other characters denoting various operators or scope limits. The size and complexity of
a formal language’s alphabet can vary wildly. Most general purpose programming languages
restrict themselves to words made up of the ASCII character set, though some like Agda may
incorporate Unicode symbols to evoke the mathematical underpinnings of certain operators and
constructs. The concrete syntax of a programming language is primarily designed for ease of
use and interaction with a real human being. There is also another notion, that of an abstract

syntax that can be used to give a programming language an interpretation. The abstract syntax
retains only the intent behind an application specification, that which is required by the compiler
to transform the application into something that will ultimately execute on real hardware. The
term semantics denotes the meaning of a word or a phrase in some language.

The semantics attached to a programming language are the mapping of the language’s syn-
tax into some domain of interpretation. If the interpretation domain is formed of commands

or other constructs that can be likened to concrete actions in the real world, we classify the
language as having operational semantics. If on the other hand, the domain of interpretation
is more abstract, perhaps as a result of being defined by some other formal language, then we
say the language has denotational semantics. The abstract syntax of a language too is often
highly correlated with the semantics given to the language. Imperative PLs for example, often
provided with operational semantics imply an abstract syntax representation where the nodes
roughly correlate to commands. Functional programming languages, tend to favour even more
abstract representations that can better relate the syntax to the denotational semantics of higher

order functions.

CHAPTER 2. BACKGROUND 24

2.3.1 Models of computation

We said that programming languages are formal languages and that the syntax specifies how we
may form and structure applications whilst semantics allow us to map the syntax into a domain
of interpretation. To do so, we must distinguish valid syntactical constructions, formally called
sentences, from arbitrary words.

Definition: Sentence.
A sentence is a boolean valued, finite sequence of symbol, with no free variables, that is
taken from a given alphabet and is part of a formal language.

A sentence in this context may also be called a theorem. A set of sentences, taken as a col-
lective whole, define a formal theory.

Definition: Formal Theory.
A formal theory is a set of sentences in a formal language.

Let us look at a concrete example, that of defining the syntax and semantics of a simple
language which corresponds to the notion of natural numbers. Intuitively we know that natural
numbers behave in a certain way: we add or multiply them to yield other natural numbers. We
can specify this using a formal theory by relating the words in the language of natural numbers.
This example is so well known that it bears its own name: Hutton’s Razor, which we will denote
simply H. We will represent the syntax for H using the Extended Backus-Naur form (EBNF)
notation below.

〈N〉 ::= 0
| ‘successor’ 〈N〉

〈expr〉 ::= 〈N〉
| 〈expr〉 ‘+’ 〈expr〉

In this particular representation of natural number, the formal language is defined as having
two classes of terms. The first class is that of natural numbers N. These terms are defined
as being either the literal value 0, or any term constructed by (perhaps iteratively) applying the
successor constructor. The second class of terms is that of expressions. An expression can either
be a natural number, or the addition of two such other expressions. If we also provide a way
to interpret the expressions that can be constructed using this language, then we can define a
computational model of natural number addition.

CHAPTER 2. BACKGROUND 25

Given a formal language L, a set M together with an interpretation (or evaluation) of L into M

implies that M is a model of a theory T if for every sentence in T it’s interpretation in M is True.
Note that the set M may have many more values than the Boolean set containing True and False

which was used to define a formal sentence. By expanding the interpretation co-domain, that is
moving away from the Boolean set to a richer one, we can derive judgements that hold a deeper,
context-dependent meaning. Let us take the set of natural numbers literals N = {0,1,2,3...}
the set M used to construct a model of H. We will use the Oxford brackets as the operator that
assigns an interpretation to a word in our formal language. The subscript to the operator denotes
a domain of interpretation, in this case M = N.

J0KN = 0
Jsuccessor(n)KN = JnKN+1

Simple as this example may be, the theory of natural numbers represents the foundation of
inductive definitions and recursive computation. The example above assigns the literal value
0 from the N set as the meaning of our 0 term. It also gives the semantics of the successor

operation as a recursive interpretation. Any successor(n) term can now be interpreted by first
finding the meaning of the sub-term n and then making use of the +1 operation in the domain of
interpretation N. Using the same technique we can define the semantics of the addition operator
in H.

∀x. ∀y. Jsuccessor (x)+ yKN = Jsuccessor (x+ y)KN

The semantics we have given to the successor and + operations in our formal language
are defined by pattern-matching: we identified certain parts of the left-hand side (LHS) of an
equation with specific terms in the language, and then gave them the meaning of the expression
on the right-hand side (RHS). We now see the Oxford brackets more abstractly as an evalua-
tion function that gives, to some term t from a domain A, semantics in a codomain B, denoted
JKB : A→ B. This notion of evaluation is frequently used to provide models of computation
for functional programming languages where the meaning of the algorithm or application be-
ing computed is described by the functional dependency between inputs and outputs. Pattern-
matching can be used to accurately describe the semantics of functional languages that are said
to be pure, meaning that the outcome of the computation depends on nothing else but the ex-
pression being pattern-matched. In the case of imperative programming languages, however, the
computation may also depend on other factors that collectively make up the state of an applica-
tion.

We will now have a closer look at some of the more common models of computation used
in both imperative and functional programming languages, to better understand their strengths
and weaknesses as well as how the may be better related.

CHAPTER 2. BACKGROUND 26

2.3.2 Imperative languages

Imperative programming languages describe computation as the sequencing of commands. That
is to say, programmers describe their applications by specifying the order in which instructions

are to be applied to the application’s state, replacing and transforming it until the final state, the
output, has been determined. Applications described through the ordering of state manipulating
instructions are said to be given operational or small-step semantics. An application execution
state is given by the memory contents of the machine it is executing on. It can be denoted as a
context Γ. An impure assignment action can then be modelled as a transition function between
contexts.

Γ0→ Γ1

An assignment operation might relate the initial state of the context Γ0 to the new context
following the assignment Γ1. The initial context could be empty, or it may already contain a
set of name-value pairs. Assuming Γ0 is the empty context, then executing an expression such
as answer := 42 will yield a new context Γ1 that contains the pair (answer,42). This idea of
sequentially transforming an application state lends itself to sequential models of computation
such as those provided by Finite State Automatons (FSA) (equivalently Finite State Machines

(FSM)), Turing Machines and Pushdown Automatons. Of these, Finite State Machines model
imperative computation quite closely. An abstract state machine specifies a set of states S, a
particular state s0 denotes the initial state. A transition function δ : S×Σ→ S specifies how the
machine moves from one state to another, for every given current state, and some input from the
alphabet set Σ. A sub-set F ⊂ S of final states denote termination. All-together, a deterministic
Finite State Machine model is given by the (Σ,S,s0,δ ,F) tuple.

start

0 1

1 0

Figure 2.8: Graphical depiction of a finite state machine.

FSMs can also be represented as graphs. The arrows between nodes denote the transitions
specified by δ and are labelled with the input required to perform the transition. The initial state
is marked with an incoming arrow, either source-less or marked with "start", whilst final states
are denoted using a double circle to distinguish them from other states.

CHAPTER 2. BACKGROUND 27

The graphical representation of FSMs is appealing because it is easy to check the execution
of some computation by walking tracing edges within the graph. These can also be used to paint
an intuitive picture of composition.

start

0 1

1 0

start

start

0 1

1 0

Figure 2.9: Composition of finite state machines.

The issue with FSAs is that they are verbose, as far as computational models go. Repre-
senting every possible state and transition is quite simply not a feasible approach in the case of
larger applications. The internal workings of an alarm clock or perhaps a washing machine can
be readily understood by looking at a graphical representation, yet the same does not hold true
for numerical simulation applications. That is not to say that there is no benefit in the latter case.
Certain aspects of larger applications can be readily described and understood using finite state
machines. Consider, for example, the need to model the memory use of an application. This can
be done using an FSA representation. The use of FSMs to track certain application properties
is quite widespread that. Certain programming languages include FSM specific keywords and
operations in their very specification. One example is that of the nesC language supported by
the TinyOS programming environment. The programming model behind this language specifies
that FSMs are derived from syntactic descriptions of event-driven computation [KMG08]. Push-

down Automata are effectively Finite State Machines that come attached with a stack. Having
access to a stack for storage means we can reduce the number of state nodes. This helps to lower
verbosity when compared to the simple FSM model. Reasoning about large applications is still
cumbersome, however.

CHAPTER 2. BACKGROUND 28

2.3.3 Functional languages

The conceptual difference between expressions and statements is highly representative of the
difference between functional and imperative programming languages, however many program-
ming languages implement constructs from both paradigms.

• Expressions are compositions of terms that can be evaluated to yield values. Expression
evaluation is pure and side-effect free.

• Statements are a representation of instructions that manipulate an application’s state.
Binding statements for example, change the state of an application such that a variable’s
name is associated to a new value.

A defining feature of functional programming languages (FPLs) is that they represent com-
putation as expressions rather than statements. From the point of view of FP, both data values

and functions are simply expressions, first class citizens of the language. Variables in FPLs are
represented as immutable values. There are no statements to speak of, so there is no way to alter
the contents of variables. Instead, new variables are created to simulate the effect of assignment
statements. Stale variables are simply removed by the garbage collector. Continuation Pass-
ing Style (CPS) is a functional programming approach to dealing with the lack of statements.
Consider the following listing.

#include <stdio.h>

int foo (int number) { return number + 3; }

void main() {

int temp = foo (5);

printf ("The new number is %d", temp);

}

Listing 2.3: A simple C application.

Rather than represent computation as a series of statements that manipulate state, whenever
we compute a new state we pass it on to a continuation function which represents the remainder

of computation yet to be performed. Here is how our example might look when using CPS.

#include <stdio.h>

void continuation(int number) { printf ("The new number is %d", temp); }

int foo (int number, void* continuation) {

*continuation(number + 3);

}

void main() { foo (5); }

Listing 2.4: Example C application using continuation passing style.

CHAPTER 2. BACKGROUND 29

This style of programming may seem odd in an imperative PL as presented in Listing 2.3 and
Listing 2.4, however, it is crucial for certain optimizations, such as the removal of the intermedi-
ate value (stored in temp) shown in those listings. The use of CPS is more natural in functional
programming languages where data and functions are expressions and can be passed is as val-
ues, without the need for explicit pointer manipulation. This can be seen in Listing 2.5 where
the same example is shown as expressed in Haskell, a pure functional programming language.

main :: IO ()

main = (\number −> print (number + 3)) 5

Listing 2.5: Continuation passing style in Haskell.

The syntax of functional programming languages is often chosen to evoke the familiar notion
of mathematical functions. On a semantic level, many functional languages can be related to
mathematical formalisms such as the lambda calculus or combinatory logic. Such formalisms
lend functional programming the very useful property of compositionality. In FPLs, partial
programs can be implemented as abstract functions. These in turn can be composed to form
more complex solutions whilst minimizing the risk of introducing errors. Let us now have a
closer look at one of the mathematical formalisms just mentioned, the lambda calculus, It is a
universal model of computation that can be described using just three term constructors.

• Variables: x

• Lambda abstractions: λx . x

• Applications: e e

These express functional abstraction, application and enable composition. The usefulness
and simplicity of the lambda calculus mean that it can be used as a core language. Functional
programming languages that feature more complicated computational abstractions can be com-

piled down to the lambda calculus or one of its many extensions. The sample Haskell code we
gave to showcase CPS, in Listing 2.5 and be compiled down to the following lambda calculus
expression.

(λ . x→ x+3) 5
(5+3)

8

Figure 2.10: Lambda abstraction and application. Execution Trace.

The lambda calculus execution model is quite simple. Code can be executed by progressively
reducing the lambda calculus terms until reduction is no longer possible.

CHAPTER 2. BACKGROUND 30

There are numerous other calculi bedsides the lambda calculus. The SKI combinator calcu-

lus is another example that also has three term constructors:

• The identity combinator , I that returns its argument: I x = x

• The constant combinator, K that returns only the first of two arguments: K x y = x

• The substitution operator , S which initially applies the first argument to the third, takes
the result and applies it to the result of applying the second argument to the third: S x y z

= (x z) (y z)

What is more interesting to FPGA programmers is that SKI combinators have a straight-
forward mapping to the representation of computation as circuits. The I and K combinators
for samples might be implemented by the following circuits. The equivalent circuit to the I
combinator is a wire that carries the untainted signal and the K combinator is represented as a
circuit that returns one of the inputs and discards the other.

I
x x

K

x x

y

Figure 2.11: I and K combinators.

The various types of functional calculi can all be used within the same compiler, to make use
of the combined power their individual abstractions. Just as a higher-level functional program-
ming language can be compiled down to the lambda calculus, so too, can the lambda calculus be
compiled down to the SKI combinator calculus through abstraction elimination. For example,
the lambda abstraction is representable as the I combinator: λx.x = I. Better still, we can inter-
pret SKI combinators in terms of other SKI combinators. The I combinator can be represented
as SKK. Interpretations such as this can be used to simplify the representation of an application.
In an optimizing compiler this can be very useful indeed. Any transformations that follow can
simply deal with S and K terms given the knowledge that all I terms have been removed.

The computational models exposed by the lambda and SKI calculi are indeed useful as part
of an optimizing compiler but come with issues of their own. One problem is that they represent
computation at a far too granular level of abstraction. Another issue is that although applications
represented in these calculi can be readily composed, not all compositions are necessarily valid.
Both of these issues can be side-stepped by letting the programmer work at a slightly higher level
of abstraction, using computational abstractions such as monads that can be compiled down to
the lambda/SKI calculus.

CHAPTER 2. BACKGROUND 31

A monad is a computational structure that can be used to sequence computation and thus
simulate stateful computation. There are two fundamental operations that monads must imple-
ment. Return an operation that embedded a value into the monadic context Bind an operation
that receives as input: a value embedded within a monadic context as well as a function from
values to values embedded in the same context. Bind sequences the two inputs, by applying the
second input to the unpacked version of the first.

x x

y

x x + 2

y + 2
return bind

Figure 2.12: The Haskell Monad interface.

The context into which the return operation embeds a value can be used to track numerous
effects that would have otherwise been implicit in an imperative programming language. Exam-
ples of such effects might be: Computing with exceptions; Modelling computation that can fail

to terminate; Input/Output operations such as printing or accepting user input; Computational
nondeterminism. Each of the effects we have enumerated corresponds to a particular monad.
Computation that might fail can be represented using to the Maybe monad. In Haskell, this is
modelled through the following data-type:

data Maybe a = Just a | Nothing

returnMaybe :: a −> Maybe a

returnMaybe x = Just x

bindMaybe :: Maybe a −> (a −> Maybe b) −> Maybe b

bindMaybe (Just x) foo = foo x

bindMaybe Nothing = Nothing

Listing 2.6: The Haskell Maybe Monad.

Notice that the type annotations clearly denote which terms in the language correspond
to pure values, free of any side-effects, as well as which terms might fail. The former are
represented by simple type variables such as a and the latter are denoted by types such as Maybe

a. The compiler can make use of these type annotations to track effects as they appear throughout
the source-code. The type-checking phase in a compiler can make use of this information to
reject applications that might fail silently.

CHAPTER 2. BACKGROUND 32

2.3.4 Bridging models

We have now seen how the computational models of imperative and functional programming
languages differ. In subsection 2.3.3 we have also seen that there exists a bridge from a func-
tional model of computation to an imperative notion of evaluation known as the Continuation

Passing Style transformation. Building a bridge that leads the other way, from imperative models
to the pure land of functional programming, in our particular context of application optimization
at least, is more complicated but not impossible. Doing so requires a change in perspective and
a limitation of scope. The shift in perspective requires that instead of modelling the entire set
of application semantics, we look only at a certain set of properties related to the performance

and expected hardware resource use of the application. Such properties collectively define a
cost-performance model which can be understood to be a partial evaluation of the formal lan-
guage used to encode the specification into a domain of cost-performance estimates. The cost-
performance estimates produced by such a model will then be related, via denotational seman-
tics, to the optimizing transformations that can be applied by a compiler written in a functional
programming language, rather than the semantics of the application being compiled. The limi-
tation in scope we mentioned is also related to this change in perspective. If we are to establish a
sound relationship between the compiler’s optimizing transformations and the cost-performance
estimates produced by our model, then we must limit ourselves to a certain class of applications
which satisfies the following requirements.

• The application being optimized may be represented in any imperative programming lan-
guage and contain side-effects or non-deterministic computation, however, such behaviour
must be limited to the smallest possible scope, typically that of a function call.

• The cost-performance model must be as accurate as possible. It must neither over-estimate

the performance of a give application nor under-estimate the quantity of hardware re-
sources needed to implement it. If either of these adverse situations arise, an optimizing
compiler may not be able to correctly pick the best transformation sequence for a given
application.

At first glance these requirements may appear to be quite restrictive and this is true in a gen-
eral sense. In our particular context of optimizing scientific applications for FPGAs however,
these constraints can be shown to be satisfied. The OpenCL programming framework that is
typically used to accelerate scientific computations for GPUs and FPGAs, for example, limits
the scope of non-deterministic computation to so-called kernel functions, as we will see in sub-
section 3.1.1. The requirement for an accurate cost-performance model is satisfied by the TyTra
compiler framework, which we present next in section 2.4. The exact relationship between the
cost-performance model, optimizing transformations and the application itself will be define by
the Design Space Exploration strategy we contribute to the TyTra compiler in chapter 4 using
the basic category theoretical notions presented in section 2.5 that concludes this chapter.

CHAPTER 2. BACKGROUND 33

2.4 The TyTra Compiler Framework

Within this section we will discuss some of the more important features and structural details
belonging to the TyTra compiler and the intermediate representations it supports: TyTra CL and
TyTra IR.The TyTra Compiler Framework [VNU19] was developed with the explicit purpose
of producing an efficient and correct-by-construction optimized program variant from an initial
specification of a streaming data-flow applications. The compiler framework will ultimately
target Heterogeneous HPC platforms and has the initial goal of optimizing the execution of sci-
entific applications on FPGAs. In this sub-section we will present background information on
the following TyTra compiler aspects, which all constitute prior work, except where otherwise
specified.

In subsection 2.4.1 we show the TyTra compiler workflow, the nature of the optimizing
transformations the compiler must consider, as well as a high-level view of the cost-performance
model used to explore the space of optimizing transformations. In subsection 2.4.2 we give an
overview of the TyTra Coordination Language (CL) which represents the data-flow structure of
the applications under optimization. The representation we use is slightly different from that
in previous work [VNU19] as our more efficient approach to DSE elides the need to represent
concrete optimization decisions within the TyTra CL itself. In subsection 2.4.3 we present the
TyTra Intermediate Representation (IR) which encodes the low-level implementation details
needed to generate an executable version of the application, as well as the execution performance
and hardware resource use estimates needed for DSE.

2.4.1 TyTra Compiler workflow

The TyTra Compiler Framework enables FPGA Design Space Exploration by generating pro-
gram variants using type transformations [NV15b]. This workflow assumes a High-level Lan-
guage (HLL) implementation of the application to be compiled as its input. From this, the TyTra
Front-End Compiler, detailed in this section, below, produces the TyTra CL and TyTra IR repre-
sentations. From the latter representation, the cost performance model, detailed in section 2.4.1
produces an accurate cost/performance estimate.

HLL define void @h(args) par {
 uil8 %1 = add uil8 %a, %b
}

TyTra IR

cost-performance model

design space exploration

back-end compiler Verilog
define void @h(args) par {
 uil8 %1 = add uil8 %a, %b
}

TyTra CL
front-end compiler

Figure 2.13: High-level view of the TyTra Compiler Workflow.

CHAPTER 2. BACKGROUND 34

Whilst a preliminary description of a naïve but complete automated design space exploration
approach for the TyTra Compiler is given in [NV15b], an automated method of generating pro-

gram variants was left as future work. We claim the following contribution to the TyTra Com-
piler frameworks: a method of reducing the search space that must be traversed to yield the
optimized program variant. Through this reduction of the search space size we produce a more
efficient compiler, meaning one that requires a much shorter optimization cycle. A more efficient
optimizing compiler is also a more effective as it can be used to optimize larger applications.

Fortran App

hinput outputMap

TyTra CL

define void @h(args) par {
 uil8 %1 = add uil8 %a, %b
}

TyTra IR

cost-performance model

design space exploration

(cost,perf)

(cost,perf)

(cost,perf)

(cost,perf)

transform

input outputMap Map h

back-end compiler Verilog

Figure 2.14: Detailed view of the TyTra Compiler Workflow.

We propose to automate the process of obtaining performance portability within the TyTra
correct-by-construction compiler by altering the workflow shown in Figure 2.13 in a way that
reduces the overall search-space whilst retaining the globally optimum solution. This would
enable scientists to effortlessly re-target legacy applications towards modern hardware, and in
particular FPGAs, thus bringing further benefits in terms of performance and power-efficiency.

CHAPTER 2. BACKGROUND 35

Front-end compiler

The TyTra Front-End compiler is responsible for identifying and extracting patterns of parallel
computation from an application’s source-code representation [VD17]. It works by separating
parallel computation constructs from all other implementation details. This allows the compiler
to effectively reason about parallelism, while at the same time lowering the complexity of im-
plementing the compiler. Other High-Level Synthesis tools rely on the user to supply pragma

directives that identify computations amenable to optimization, as we show in section 3.1. In
contrast, the TyTra Front-End compiler performs data-flow analysis and conversion to identify
such computations. The analysis and data-flow conversion stages generate two representations
of the application:

1. The TyTra CL representation (see subsection 2.4.2) which is a functional coordination
language. Syntactically it resembles the Haskell programming language [VNU19]. It
features: let-statements and higher-order functions such as map and fold, stream represen-
tation changing operations: zipt and unzipt; as well as stencil computation operations. A
dependent type system allows the compiler to reason about size-indexed types.

2. The TyTra IR representation. In contrast with the TyTra CL, the TyTra IR is defined at a
lower-level of abstraction. It contains the implementation details pertaining to the function

bodies, or as we call them opaque functions, in addition to the computational structure
expressed in TyTra CL that only represents how opaque functions are glued together using
higher-order functions such as map and fold , as shown in subsection 2.4.2. The language
itself syntactically resembles LLVM IR and it has static-single-assignment semantics as
explained in subsection 2.4.3. The lower-abstraction level allows us to interpret TyTra
IR through an accurate cost-performance model in a straight-forward manner, not hugely
more complicated than simple instruction counting.

The patterns of parallel computation that the TyTra Front-End compiler extracts have a good
correspondence to parallel algorithmic skeletons, which we describe in greater detail in sec-
tion 3.2.1. Briefly speaking, parallel algorithmic skeletons represent patterns of computation
that may be mapped to one of many optimized yet ad-hoc, parallel implementations. Through
the present work we contribute a formal definition of category theoretical semantics for the Ty-
Tra CL, in section 2.5. Doing so requires that we alter the structure of the coordination language
as presented in [VNU19]. The restructured CL, as it appears in subsection 2.4.2 and its cate-
gorical semantics enable us to reason about notions such as expressed parallelism intensionally

rather than extensionally, a distinction made more clear in section 2.4.4.

CHAPTER 2. BACKGROUND 36

Back-end compiler

The TyTra Back-End compiler implements functionality that is dependent on the operational

details of the target hardware architecture. This includes an accurate and fast cost-performance

model which can estimate the latency, throughput and hardware resource use metrics [NV17]. It
also implements a prototype Verilog code-generator [NV15b]. Both classes of features accept
TyTra IR representations as input.

Cost-Performance Model

The TyTra Cost-Performance model is essential to deriving an efficient DSE strategy. Having
access to a quick and accurate cost-performance model means we can compare and choose pro-
gram variants without going through a lengthy hardware synthesis cycle. The model makes use
of the TyTra IR which has Static-Single-Assignment semantics [NV15a], meaning that it ex-
presses computation as a data-flow structure with immutable variables. It explicitly encodes the
functional properties of each expression that make up what is called an opaque function. In prior
work, the cost-performance model is used in the first and last stages of DSE. In the specification

stage, the performance estimate is used to generate the overall search space. In the selection

phase, the hardware resource estimates are used to eliminate candidate solutions that could not
be possibly implemented on the target hardware device, whilst both the performance and cost
estimates are used to rank competing solutions.

Each instruction within the TyTra IR has well-defined properties which can be determined
by the cost-performance model. On the performance estimate side this includes such measures
as the number of clock-cycles required to execute the instruction. An example is shown below,
in Figure 2.15, where the addition and multiplication instructions both take 4 clock cycles.

f2
f1

main

5 6 7 81 2 3 4

mul
add

call f2
call f1

clock cycles

add

9 10 11 12

Figure 2.15: Performance measured in clock-cycles.

Under the hood, the cost-performance model is actually more granular. It accounts for the
number of clock-cycles required by an instruction to begin processing and denotes this as the
delay. The number of clock-cycles required to produce one item of output, for each item of input

received is called latency. Each instruction may be internally pipelined meaning that there may
be hidden internal buffers and functional units that hide latency.

CHAPTER 2. BACKGROUND 37

To account for this behaviour, the cost-performance model exposes further parameters, in-
cluding the firings per output and aggregates of such properties, further details of which can be
found in [VNU19].

input_1

5 61 2 3 4
delay

add

clock cycles

input_2 add
addinput_3

Figure 2.16: Simplified presentation of the performance model.

On the cost side, every instruction is assigned numerical values representing how much of
each type of hardware resource is required to implement the instruction. This may include: the
number of Digital Signal Processing (DSP) slices, the number or embedded memory blocks
(Bram), the amount of on-device memory required (Dram), the number of logical slices or
Lookup-Tables (LUTs).

Code Generation

Modern optimizing compilers such as Graal [DSW+13], Numba [LPS15], LLVM [LA04], the
Glasgow Haskell Compiler [JHH+93] split up the compilation process into a number of phases,
the last of which is code-generation. By treating the issues of optimization and code-generation

separately, compiler implementations can be made more efficient and maintainable. All-though
code-generation is conceptually the last stage in a compiler, it is often the case that it is followed
up by further, lower-level translation processes to either machine code or some other intermedi-
ate representation.

The TyTra Code Generator produces an HDL representation of the application which re-
quires further processing using vendor provided tools. Because HDLs are intended to be human-
readable representations, one may view TyTra as a source-to-source compiler from Fortran to
Verilog. Neither internal intermediate representation, TyTra CL nor TyTra IR, can be directly
executed. The same is true of the Verilog representation generated by TyTra which requires
a further hardware synthesis step that generates the bitstream representation that is ultimately
uploaded to the FPGA [NV15a]. The Verilog representation of the application that is code-
generated expresses a circuit view of computation. FPGAs are widely seen as a form of a con-

figurable circuit that can be made to behave according to a specification [GS08] [GSAK00]
[Bol08] [CH05]. Circuits must be fully defined and inter-connected in order to work, which
means this model of computation demands strict evaluation semantics. Because the TyTra Back-
End compiler converts the application into a circuit [NV15a], we can interpret this saying that
TyTra assigns strict evaluation semantics to the application during code-generation.

CHAPTER 2. BACKGROUND 38

2.4.2 TyTra Coordination Language

Within this section we introduce the TyTra CL by showing the syntax and semantics of the
language and briefly discussing the type-system. We will also cover the manner in which type-
level transformations induce a set of corresponding optimizing transformations at the term-level.

Structure

The TyTra Coordination language is a general purpose, dependently typed, and functional co-
ordination language. The use of the Coordination Language term is to highlight its role and
contrast it to that of a general purpose programming language: The CL representation of an
application encodes the manner in which the computation is structured. It does not provide the
implementation details for the opaque functions but simply specifies the data-types used and the
data-flow structure. The TyTra CL representation of an application can be roughly divided in
two sections: A header that contains the data-type annotations, and a body consisting of term-

level assignments, both of which are depicted in Listing 2.7. Type annotations are a mapping

from variable names to type-level expressions. Term-level assignments are mappings from term
names to term-level expressions.

pow :: Float −> Float −> Float
cos :: Float −> Float
sin :: Float −> Float

ker0 :: (Float, Float) −> Float
ker1 :: Float −> (Float, Float)
ker2 :: (Float, Float) −> Float

vin1 :: Vec s Float
vin2 :: Vec s Float

pout = map ker2 (map ker1 (map ker0 (zipt (vin1, vin2))))

Listing 2.7: TyTra CL representation example.

Type annotations use the :: operator, whereas term-level assignments are denoted by the =

operator. In both cases, the term or type name is the left side of the operator, whilst the definition
is on the right. Type-level expressions consist of either atomic types, such as Int in the exam-
ple above, or a more complicated type, built using one or more TyTra type constructors. The
Vec s Int type in Listing 2.7 is constructed using the Vec type constructor, which is parametrized
by the Int type and indexed by a size s.

CHAPTER 2. BACKGROUND 39

TyTra CL Terms

Term expressions are either the occurrence of an input variable; the application of an opaque

function to previously defined term expression; or a nested application of higher-order functions

that have been adequately parametrized. The following grammar defines lawful term construc-
tion in the TyTra CL.

〈action〉 ::= ‘Id’
| ‘Opaque’ 〈name〉
| ‘Map’ 〈action〉
| ‘Fold’ 〈action〉
| ‘Elt’ 〈index〉
| ‘Stencil’ [〈index〉]
| ‘Zipt’
| ‘Unzipt’

〈name〉 ::= 〈string〉

〈index〉 ::= 0 .. N

〈expr〉 ::= ‘Var’ 〈name〉
| ‘App’ 〈action〉 〈expr〉
| ‘Tup’ [〈expr〉]

Figure 2.17: TyTra CL term-level expression grammar.

We can observe that the CL terms are split into two categories: actions and expressions.
There are three data-constructors for expressions.

• Variable constructors wrap a name, signifying a stream of data.

• Tuple constructors wrap multiple expressions into a single expression that support projec-

tion (indexing) operations.

• Application constructors apply actions to expressions.

The last of these constructors bridges the action and expression kinds by equating fully
applied or saturated actions to expressions.

Figure 2.18: TyTra CL expressions and actions

As we rely heavily on the isomorphism between data and computation, we will sometimes
use a different graphical presentation, in which we denote the App constructor as an arrow.

Figure 2.19: Alternative graphical representation for TyTra CL expressions and actions.

CHAPTER 2. BACKGROUND 40

Actions correspond to either user-defined opaque functions or one of the built-in higher-order
operations defined for the TyTra CL.

• Opaque functions are referred to by name. The compiler keeps track of the type of these
functions in the type context. Implementation details are not represented in the Coor-
dination Language at all. Instead, the compiler makes use of the simple understanding
that opaque functions are deterministic and side-effect free, a term we explain in subsec-
tion 3.1.2.

• Id represents the polymorphic identity function that yields any input expression provided.

• Map actions, are higher-order functions. A map action may be parametrized by an opaque

function or any other action. When given an opaque function f : A→ B as input, map f

denotes a function that takes any sized vector of type A and produces a vector of the same
size parametrized by B. In other words map f : VecsA→VecsB.

• Fold actions are somewhat similar to maps in that they too are higher-order functions. The
crucial differences being that: A fold action reduces a vector of values to a scalar. A fold
actions are parametrized by binary Function Types. For a given function g : A→ B→ A

the function obtained by applying fold has the type f oldg : A→ VecsB→ A. The first
argument is the initial state of the accumulator. The second is the vector of values to be
folded.

• Elt is a short name for element. In a way it is a highly specialized version of a fold action.
The parameter specifies an index into a Vector Type to be returned as the output. The type
of elti is thus elti : VecsA→ A with the understanding that i≤ s.

• Stencil takes as an argument a list of relative indices. When applied to a Vector Type it
produces a vector of tuples, each tuple being composed of those elements in the vector
found at the relatively offset positions as specified by the indices.

• ZipT and UnzipT actions serve to reshape a tuple of vectors into a vector of tuples and
vice-versa.

Term transformations in the TyTra compiler are derived from the type-level transformations
we discussed in the previous sub-section. More specifically they are derived from the class of
transformations having the kind ∗ 7→ ∗, which excludes the atomic type constructors, as well
as the size constructors. The TyTra compiler derives term-level transformations from type-level
transformations that work on the structured, not the atomic, types in the language. Coming
back to the examples of type transformations we provided in the previous section, we have
another look at split and merge, this time explicitly highlighting that these functions on types
are parametrically polymorphic.

CHAPTER 2. BACKGROUND 41

Types and Transformations

Alongside the computational structure, the CL contains type definitions for the opaque func-
tions, program input parameters and the program’s output. Types pertaining to intermediary data
structures, storing partial results, are generally inferred by the type-system. What the CL does
represent, which concerns not only opaque functions but input expressions and higher-order

functions are certain properties that can be expressed as data-types. The TyTra CL resembles a
subset of the Haskell programming language, with the major distinction that terms are assigned
dependent-types.

We must first distinguish Types by their Kinds. A Kind is another, less ambiguous name for
the Type of a Type. Kinds are necessary to ensure that Type Constructors, which can be alter-
natively viewed as functions on types are themselves well typed. In other words the kind system

ensures we only pass the right kind of type where it is expected.

The coordination language features the following kinds: Names, Sizes and Types. Names are
simply Strings used as a proxy for unique identifiers. Sizes are natural numbers defined in the
usual manner as Peano numbers with a constant Zero literal and the Successor function.

ZeroZero : N
p : N

SuccSucc p : N
n : N SizeSize n : Size

Figure 2.20: TyTra CL Size Constructors.

Types are denoted with the shorthand symbol ∗. Atomic Types are nominal meaning that
the compiler distinguishes atomic types by name and not by structure, in the same manner as it
distinguishes opaque functions.

name : Name Atomic TypeType name : ∗

Figure 2.21: The TyTra CL Atomic Type Constructor

The non-functional properties of to atomic types, such as how quickly data can be accessed
and the amount of memory required to store a given value can only be assessed indirectly,
through the cost-performance model the choice of representation for data can be highly platform
dependent. Given that our ultimate goal is to achieve true performance portability, it stands to
reason that platform details should be encoded in the cost-performance model, which is obvi-
ously already tied to the underlying hardware. Representing types nominally allows the compiler
to remain flexible with regard to what constitutes the set of primitive values.

CHAPTER 2. BACKGROUND 42

At a more fundamental level, the compiler can only be concerned with the structure of com-

putation. This equates to viewing program transformations as parametrically polymorphic func-

tions which in turn implies a quantified view of type parameters.

name : Name Atomic TypeType name : ∗

A : ∗ B : ∗ Tuple
(A, B) : ∗

A : ∗ . . . Z : ∗ k-ary Tuple
Tup A . . . Z : ∗

s : Size T : ∗ VectorVecs T : ∗
A : ∗ B : ∗ FunctionA→ B : ∗

Figure 2.22: TyTra CL Structural Type Constructors.

Tuple types are a simple example of a compound data-type which appears in most program-
ming languages. Values having a Tuple Type are sometimes referred to as pairs or products. The
TyTra CL defines k-ary tuples, that is to say tuples with k components. Without loss of gener-
ality we may simply define a binary Tuple Type constructors. We recover full k-ary tuples by
defining an associator in Figure 4.15. For now, it suffices to point out that Binary Tuples are de-
noted by separating their components by a comma and encapsulating within a set of parentheses.

Vector types can be thought of as homogenous k-ary tuples. A Vector Type of size k contains
exactly k elements of the same type. More interestingly, Vector Types are indexed by their size.
Indexed Type Constructors define an entire family of Types. Notice that as the size is of kind
Size the Vector Type Constructor is effectively an unary type-constructor, the size being an index
and not a type parameter.

Function types are associated with the opaque functions referenced within the coordination
language. They are constructed with the binary Function Type Constructor denoted by the usual
infix arrow.

hinput outputMap

Figure 2.23: Graphical depiction of a TyTra CL expression and types.

We depict the mapping of an opaque function h over some input of type Veck+m a in Fig-
ure 2.23. The blue boxes in the upper-right corner of each term represent the types associated
with those terms. The type of map operation is determined from that of the opaque function and
the input as shown by the type derivation rules in subsection 4.1.3.

CHAPTER 2. BACKGROUND 43

Type transformations are functions that act upon types. Within the TyTra compiler we are
primarily concerned with type transformations that witness isomorphisms between types. That
is to say they change the representation of the type while maintaining its meaning. A caveat we
must avoid is the confusion between type transformations, or functions on types from function

types, meaning types of kind ∗→ ∗ in the TyTra CL.

• Type transformations are functions implemented within the TyTra compiler.

• Function Types describe functions belonging to the application being compiled.

We denote type transformations by their names, usually as single letters in uppercase such
as F or G. In type derivation rules specified we also denote type transformations by a different
arrow, as below:

A : ∗ F : ∗7→ ∗ Type Transformation
F A : ∗

Figure 2.24: An abstract type transformation.

An important class of type transformations is that of the Type Constructors we presented in
the previous sub-sections. The Atomic Type constructor is a function that takes a type of kind
Name and it produces a type of kind Type, in other words: Name 7→ ∗. More complicated types
that are inductively defined, such as nested vector types are likewise constructed using functions
on types, or type transformations. The only difference is that we can think of the output type
as resulting from an iterative application of type constructors, or equivalently, a composition of
type transformations that is applied to the input.

A : ∗ Veck : ∗7→ ∗
Veck A : ∗ Vecm : ∗7→ ∗

Veck Vecm A : ∗

Figure 2.25: Nested type constructors can be simply seen as a single constructor.

This last example shows exactly what is meant by saying that type transformations witness
type-level isomorphisms: If we are to split the type derivation above according to the bottom-
most horizontal line, we can state that the type derivation on top (the repeated application of the
vector type constructor) and the bottom one are isomorphic. The transformations that witness
the isomorphism on vector types are:

• Split: Vecm×k b→ VeckVecm b

• Merge: VeckVecm b→ Veck×m b

CHAPTER 2. BACKGROUND 44

The fact that Split and Merge witness the isomorphism between a flat vector of size k×m

and a k−sized vector of m-sized vectors is shown graphically in Figure 2.26 below.

Split
Merge

hinput outputMap

a a a a a a a a a a

b b b b b b b b b b

input outputMap

a a a a a
a a a a a

b b b b b
b b b b b

Map h

Para
llelSeq

uen
tial

Figure 2.26: The effect of Vector type Split and Merge operations on terms.

In other words, the type-level equivalence gives rise to a term-level program transformation

that can be used to trade additional resources for performance. We will primarily denote the
term-level transformations through Haskell type signatures as below.

split :: forall b. (k :: Size, m :: Size) -> Vec (m * k) b -> Vec k (Vec m b)
merge :: forall b. (k :: Size, m :: Size) -> Vec k (Vec m b) -> Vec (m * k) b

split ◦ merge = merge ◦ split = id :: forall a. a -> a

Figure 2.27: Type-level merge/split rules. Their composition yields the identity transformation.

CHAPTER 2. BACKGROUND 45

2.4.3 TyTra Intermediate Representation

In this section we will briefly describe the TyTra Intermediate Representation (TyTra IR) as
introduced by its authors [NV15a]. We claim no contribution to the development of the TyTra

IR in this work as the design-space exploration strategy we contribute simply relies on the cost-

performance estimates derived from the TyTra IR.

output

TyTra IR

h
define void @h(args) par {

uil8 %1 = add uil8 %a, %b
uil8 %2 = add uil8 %1, %c

}

TyTra CL

input

Compute-IR

define void @kTop(args) par {
call @h (%a_vin, %b_vin)

}
Manage-IR

Figure 2.28: TyTra IR, its sub-languages and the relationship to TyTra CL

The TyTra Coordination Language represents the data-flow structure of applications. This
structural information can be used by the optimizing compiler to determine an overall set of
semantics-preserving program transformations. A sub-set of these optimizing transformations
may yield better-performing program variants, however a compiler would have no way of telling
which of the transformed variants performs better nor which sub-set satisfies the hardware re-
source constraints imposed by the target device. The TyTra IR, on the other hand, represents
the low-level information missing from the TyTra CL. The concrete syntax of the TyTra IR re-
sembles the intermediate language used by the LLVM compiler, called LLVM IR. Semantically,
the TyTra IR is a statically typed, static single assignment (SSA), representation which can be
further divided into two sub-languages [NV15a].

• Manage-IR, the subset of the language that roughly corresponds to the structural infor-
mation also expressed within the TyTra CL representation.

• Compute-IR, the remaining part of the TyTra IR describing the computational opera-
tions that occur within an opaque function, as well as the dataflow streams between these
operations.

Operations within the Compute-IR subset are expressed at a very fine level of granularity
which enables the cost-performance model to derive accurate performance and hardware re-
source use estimates. The fine granularity also enables the back-end code-generator which emits

a Verilog representation of the application.

CHAPTER 2. BACKGROUND 46

2.4.4 TyTra Semantics

The TyTra compiler framework proposed a correct-by-construction methodology for program
optimization [NV15b]. This is an inductive approach which grantees that the compiler’s output
program variant can be attributed the same functional semantics as those attributed the initial/in-
put program variant.

• The initial program variant, represented in the TyTra CL, is assumed to be a correct spec-
ification of the the application to be optimised and compiled. We check this assumption
for every input application, through the use of a type-checking and inference mechanism

we have developed as part of this work, in support of our previous publication [VNU19].

• Every term-level optimizing transformation applied by the TyTra compiler is derived from
a type-level equality [NV15b], meaning that, for every correct input application the com-
piler produces a correct, transformed, application.

Under the operational view of semantics, two applications or operations, are indistinguish-
able if they are observationally equivalent meaning that for all possible inputs, they produce the
same outputs [Weg72]. Under the denotational view of semantics, two applications are equiva-
lent if they are denoted or represented by the same terms in the domain of interpretation [SS71].
In the case of pure dataflow programming languages, operational semantics are entirely equiv-
alent, in a general sense, to denotational semantics [Fau82].

By using denotational semantics we can check that two term-level constructs, operations
or applications are indeed identical by checking that they are denoted by the same type. This
however requires the assumption of parametricity. A function is said to be parametrically poly-

morphic if it acts upon a data type generically, by inspecting the data-types structure and not its
contents. Cousout et al define the semantics of programs as "the set of all possible behaviours
of those programs when executed for all possible input data" and abstract interpretation as "a
method for designing approximate semantics of programs which can be used to gather infor-
mation about programs in order to provide sound answers to questions about their run-time
behaviours" [CC92].

Intensional and Extensional Semantics

While the TyTra Coordination Language is given streaming semantics that map very well to both
the application domain and targeted hardware platforms, this interpretation alone is not enough
to automatically derive efficient transformation routines. We further require a view into those
properties that denote the performance of a transformed program, as well as some measure of
computational resources such a variant may consume.

CHAPTER 2. BACKGROUND 47

The TyTra Cost-Performance model gives us this particular view of computation. It takes
into account not only the coordination-language but also the lower level intermediate represen-
tation of an application in TyTra IR to produce values that represent the performance, roughly
speaking the throughput and latency measures, of a program variant, as well as measures of
hardware resource use. Having access to a measurement apparatus is not the whole story. We
must relate the semantics of a program variant to its cost-performance properties in a sound and
reliable way. Ideally, we would link both a program meaning, and its cost-performance proper-

ties in a unified view of computation.

This issue is not only known but also well explored. As Brookes and Geva point out: “Exten-

sional semantics are typically appropriate for proving properties such as partial correctness, but

an intensional semantics at a lower abstraction level is required in order to reason about com-

putation strategy and thereby support reasoning about intensional aspects of behaviour such

as order of evaluation and efficiency” [BG91]. Going further, Brookes and Geva introduce a
notion of intensional semantics by modelling the meaning of an application, in the extensional
sense, to be a function from and to data values, and relating to it the intensional notion of com-
putation as a function from computations to values [BG91]. In spirit, this is what the TyTra
cost-performance also accomplishes: it attaches a measure of performance and resource use (the
value) to the computation.

Streaming Semantics

Streaming computation can be described by the Iterator pattern which according to Gibbons
and Oliveira implies an "interface for element-by-element access to a collection of independent
values" [GdSO09] and "has two simultaneous aspects: mapping and accumulating". The TyTra
Coordination Language implements the following element-by-element access constructs. Map-

ping which refers to the act of applying a given transformation to every item of data that we
iterate over. Every item of input is transformed, in precisely the same way by iterating over a
sequence of inputs, and applying the same function to all values. As each item is processed
independently, it is easy to see that a genuine mapping is a parallel operation. Accumulations

on the other hand are not as approachable. Multiple items of input are required to produce each
item of output, meaning that there is some dependency between these values. Certain accumu-

lations, also known as reductions, can be processed in parallel if the underlying operation that
relates any such mutually dependent values is associative.

The structured assembly of maps and accumulations allows for the construction of complex
applications and is a hallmark trait of functional programming languages which can describe
such structures through higher-order functions [Hug89]. The TyTra compiler implements an
extended version of this formalism that features zip unzip and stencil operations.

CHAPTER 2. BACKGROUND 48

Zip and Unzip operations witness the relationship between two streams of values, and a sin-
gle stream of value pairs. Stencil Operations group values selected from a stream, producing a
stream of tuples or pairs. Stencils thus allow computations that depend on multiple values to be
nonetheless expressed as pure mapping operations. The streaming semantics of the coordination
language also reflect in the type system. Sequences of values to be processed are represented by
dependently typed vector types. Vector types are parametrized by other types and are indexed by
their size. A size index provides static access to a vector’s dimension, which in turn enables a
number of key optimizations. The size index serves as a convenient proxy by which an exhaus-
tive search space of term level transformations can be defined. This search-space is generated
and traversed by a design space exploration process to yield an optimal sequence of program
transformations.

Abstract Semantics and Interpretation

To interpret an application usually means to evaluate the expression it defines or otherwise fully
execute it, such that the final output value is produced. An interpretation of the term expression
1+2+3+4, for example, yields the sum of these numbers, the value 10. The concrete manner
in which this is achieved may vary. One possible interpretation is shown in the trace of this
calculation below.

1 + 2 + 3 + 4

>> (1 + 2) + 3 + 4

>> (3 + 3) + 4

>> (6 + 4)

>> 10

In contrast, Abstract interpretation serves to produce an abstract or partial result. Such
approaches are useful in determining a certain property of the output value, rather than the
property itself. Suppose we wanted to determine if the same term expression above yields a
result that is greater or equal to the value 6, but did not care as to what the exact result of the
computation is.

1 + 2 + 3 + 4

>> (1 + 2) + 3 + 4

>> (3 >= 6 == False , 3 + 3 + 4)

>> (6 >= 6 == True , 6 + 4)

Notice that this answer can be computed without having to fully evaluate the term expression,
provided that the only permitted operation is addition, and that all input values are positive.
Giving an application abstract semantics, meaning that we define an abstract interpretation

mechanism, thus allows certain answers to be computed more quickly than otherwise possible.

CHAPTER 2. BACKGROUND 49

Powerful as abstract interpretation is, it is not a universal answer to application optimization.
In the example just presented, abstract interpretation could be used because of the specific re-
strictions imposed on the construction of the expression being evaluated, which are also highly
related to the nature of the question being asked. Counter-intuitively, although the question
asked in the second instance is more complex, the answer can be found more quickly. In most
circumstances it would seem as if the reverse situation is true. Running two interpreters sequen-
tially such that the first produces an abstract solution, and the second yielding the final output
value, would appear to be slower than simply computing the output directly.

time0

partial interpreter full interpreter

Figure 2.29: Abstract and full interpretation (sequential).

This sort of intuition is correct if what is being computed is a single, iteratively defined value.
The benefits of abstract interpretation are more likely to manifest as average runtime speed-ups

when computing collection of values, possibly related by some property, rather than a single
value that depends upon the entirety of the input.

time0

F FF F
P F P F P F P F

P P P FP

Figure 2.30: Abstract interpretation (average time).

If the partial output computed by the abstract interpreter is enough to determine weather
or not the full output value would satisfy the property of interest, then we may be able save
on the overall average run time of the application never executing the full interpreter when
this is warranted. This is precisely the case with Design Space Exploration where most of the
design space has to be thrown away, with potentially a single design point being the sought-after
solution. Benefits stemming from abstract interpretation are counter-balanced by the need to
ensure our abstractions are sound. The example we presented benefits from quicker execution
only when all Integer values provided as input are positive. Abstract interpretation can be used
to speed up computation if there exists an abstraction relation between the full results and the
abstract or partial results.

CHAPTER 2. BACKGROUND 50

2.5 Introduction to Category Theory

Category Theory, sometimes lovingly referred to as abstract nonsense 1 is a formalism intro-
duced by Eilenberg and Mac Lane [EM45] to unify and simplify the presentation of many math-
ematical systems and structures. It has found numerous applications in a variety of scientific
fields, amongst which Computing Science is perhaps the most representative. Type theory, and
functional programming language research in general, borrow many category theoretical con-
cepts. In this section, we present formal definitions for some of the more basic notions in
category theory, on top of which we will build our primary contribution. Readers interested
in acquiring a deeper understanding of category theory may wish to look towards Mac Lane’s
work [ML13] on category theory or Skillicorn’s Foundations of Parallel Programming [Ski05].
The presentation given here, being specialized to our particular needs is fairly terse and may fall
short of conveying the underlying beauty and expressive power of category theory.

At first glance, Category Theory may appear to be a complicated formalism that requires
many years of study. In truth however, Category Theory is surprisingly uncomplicated. A
very small set of primitive notions can be used, composed, and layered on top of themselves,
yielding a language that is powerful enough to model even some of the more abstract parts of
mathematics and other sciences. A category denotes a collection of objects on the one hand, and
a collection of morphisms between those objects on the other. Categories are subject to a number
of simple laws, to be defined shortly. The laws revolve around the central idea of composition

and abstraction. Diagrams are frequently used in Category Theory, both as a vehicle for intuition
as well as a means to prove certain properties. In Figure 2.31 we can see a simple category with
three objects and a number of morphisms.

b

a c

idb

g

ida

f

idc
h

Figure 2.31: The category C with three objects.

The objects in C, the category shown in Figure 2.31 are denoted by the symbols a, b and c.
The entire collection of objects may also be denoted Ob(C) where a,b,c∈Ob(C). The category
in Figure 2.31 contains three such objects, denoted by labels: a,b,c. The morphisms in this
category are likewise denoted with lower-case letters f , g and h. For every pair of objects a,b ∈
Ob(C) there exists a set HomC(a,b) ∈ Set, called the hom-set, whose elements are morphisms

from a to b.

1https://en.wikipedia.org/wiki/Abstract_nonsense

https://en.wikipedia.org/wiki/Abstract_nonsense

CHAPTER 2. BACKGROUND 51

Every morphism has two associated functions, src() and dst(). These return the source and
destination objects assigned to them. The source and destination of a morphism correspond to
the concrete notions of a domain and co-domain as they pertain to mathematical functions. The
f morphism in Figure 2.31, for example, has the following source and destination objects.

src(f) = a

dst(f) = b

If the source object of a morphism matches the destination object of another, then such
morphisms can be composed. Given any three objects, a,b,c in a category C, composition
is defined as the function ◦ : HomC(b,c)×HomC(a,b)→ HomC(a,c). The composition of
morphisms can be seen as a more general variety of function composition. In so-called small

categories where the collection objects is precisely defined as a set, the morphisms or arrows
between these objects are in fact functions. Given a category C with three objects and two
suitable morphisms between them, shown in Figure 2.32 we can see that the composition of
morphisms simply yields another morphism.

a b c
f

f◦g

g

Figure 2.32: Composition or morphisms f and g in C.

The product × operation is simply a way of saying that the composition function takes two
arguments HomC(b,c) and HomC(a,b). The composition of morphisms must be an associa-

tive function, meaning that for any three morphisms f ,g,h that compose in the right way, the
following equality holds.

f ◦ (g◦h) = (f ◦g)◦h.

Figure 2.33: The composition of morphisms must be associative.

For every object a in a category C, there must also exist a morphism ida : a→ a , called the
identity morphism, which maps each such object onto itself. Given any x∈C, we can expect that
the corresponding identity morphism idx preserves the source and destination. In other words:
src◦ idx = src(x) and dst ◦ idx = dst(x), as follows from the laws and definitions of composition

and the identity morphism and gives rise to the left and right unit laws.

Definition: Left and right units.
Given a morphism f : a→ b ∈ C the identity morphism ida is the left unit of composi-

tion while the idb identity morphism is the right unit. The left and right unit’s satisfy the
equalities: idb ◦ f = f and f = f ◦ ida

CHAPTER 2. BACKGROUND 52

The identity morphisms in a category are in a one-to-one correspondence to the objects of
that category and are often omitted from the graphical presentation. Alternatively a category can
be depicted by simply showing the labelled arrows that depict morphisms, including the identity
morphisms and denote objects by simple dots.

.

. .

idb

g

ida

f

idc
h

Figure 2.34: The objects of a category are identified by their identity morphisms.

A category is said to be small if instead of having general collections of objects/morphisms
it specifically has small set of objects/morphisms. A small set in simply means a proper set.
Small categories are the objects of a special category called Set. Morphisms in Set are total

functions between sets. We are mostly interested in working with small categories as they pro-
vide enough expressive power to model the Types and terms of the TyTra CL as we will see in
subsection 4.1.3.

b F(b)

a F(A)

F

f

F

F(f)

Figure 2.35: Functors: structure preserving maps between categories.

Just as Set is the category with sets as objects, there exists a category, called Cat, in which
the objects are themselves categories. The morphisms in Cat are also called Functors.

Definition: Functor.
A functor F between two categories C and D is a structure-preserving map C ⇒ D,
meaning that it maps the objects and morphisms in C to the objects and morphisms in D
whilst preserving the source and destination of the morphisms, morphism composition
and the associativity of composition.

If the two categories that a Functor maps between coincide, meaning that F : C⇒ C then it
is called an Endofunctor. Endofunctors are particularly useful in computing science as they can
be used to define categorical data types, as we will see in section 4.1.

CHAPTER 2. BACKGROUND 53

In a category C where the objects are types, an Endofunctor F : C⇒ C models a type con-

structor. The source object to F is then a type parameter, whilst the destination object is the
newly constructed type. Type constructors may take more than one parameter, in which case the
source object is the product of two other objects in C.

Definition: Product object.
Given a category C and any family of objects xi∈I , the product of these objects, if it exists
is denoted ∏

i∈I
Xi ∈ C. This product of xi∈I is a unique object (up to unique isomorphism)

and comes equipped with a family of projection functions pi :
(

∏
i∈I

xi

)
−→ xi.

Product objects can thus be used to represent the notion of a tuple type, also known as prod-

uct type, from type theory. The projection operations are the accessor functions that give us
access to the components of a tuple. In type theory there also exists the notion of a sum type

which corresponds to a sum object in category theory. Just as with product types, sum types take
two type parameters. Sum and product objects in category theory are dual constructions. To
understand the relationship between dual constructions, let us first define an opposite category.

Definition: Opposite Category.
Given a category C, the opposite category Cop is defined as having all objects and mor-
phisms in C, with the slight difference that morphisms have their direction reversed. For
every morphisms h : a→ b ∈C the corresponding morphisms is denoted h− : b→ a ∈
Cop .

The product object in a category C corresponds to the sum object in Cop. This relationship
explains why sum objects are also called co-products. An Endofunctor F : C⇒ C is called
a Covariant Functor because it preserves the direction of morphisms. A Functor G : C⇒Cop

that reverses the direction of morphisms is called contra-variant. Whereas product objects are
defined by their projection operations, sum objects are defined by injection morphisms. Notice
that the arrows denoting injections point to the sum object, whereas the projection arrows pointed
away from the product object.

a+b

a b

in ja in jb

Whereas product objects can be used to model tuple types which hold multiple values, each
having the respective type of the corresponding type parameter, sum objects correspond to a
choice of type constructor. The resulting type can only hold one value, that of the type parameter
selected by the injection that was used.

CHAPTER 2. BACKGROUND 54

The relationship between product and sum objects, as dual constructions is described en-
tirely by the definition of a contra-variant functor we briefly mentioned. A category may have
both sum and product objects. If additionally the products distribute over sums, then we have a
distributive category.

Definition: Distributive Category.
A Distributive Category is a category C that has both finite products and finite coprod-

ucts in which the distributive law holds: ∀a,b,c ∈ C. a×b+a× c→ a× (b+ c).

Distributivity is a very useful property, it allows us to reason about the equivalence between
a list of tuples and a tuple of lists, which gives rise the split and merge program transformations
in TyTra. To define lists however, we also require our category of types to be a monoidal cate-
gory.

Definition: Monoidal Category.
A monoidal category is one that is C equipped with: A functor ⊗ : C×C→ C, called a
tensor product; A unit object 1 ∈C. A natural isomorphism a : ((−)⊗ (−))⊗ (−) '−→
(−)⊗ ((−)⊗ (−)) called an associator; Two natural isomorphisms: λ : (1⊗ (−)) '−→
(−) called the left unitor and ρ : (−)⊗1 '−→ (−) called the right unitor.

The tensor functor maps objects and morphisms from the product category of C with itself,
to the objects and morphisms of C. The unit object is the neutral element of the tensor product

operation.In a monoidal category the triangle identity (Figure 2.36), and the pentagon identity

(Figure 2.37) must hold.

(x⊗1)⊗ y x⊗ (1⊗ y)

x⊗ y
ρx⊗1y

ax,1,y

1x⊗λy

Figure 2.36: Triangle identity.

(w⊗ x)⊗ (y⊗ z)

((w⊗ x)⊗ y)⊗ z (w⊗ (x⊗ (y⊗ z)))

(w⊗ (x⊗ y))⊗ z w⊗ ((x⊗ y)⊗ z)

αw,x,y⊗zαw⊗x,y,z

αw,x,y⊗idz

αw,x⊗y,z

idw⊗αx,y,z

Figure 2.37: Pentagon identity.

CHAPTER 2. BACKGROUND 55

A distinctive type of monoidal category is the cartesian monoidal category, often simply
called a cartesian category.

Definition: Cartesian Category.
A monoidal category C is a Cartesian monoidal category if the monoidal structure is
given by the product and it’s terminal object is the unit of the product..

Having defined a Cartesian Category we can also define Closed Categories as:

Definition: Closed Category.
A category C is closed if for any pair of objects a,b ∈ Ob j(C) hom(a,b) is an object in
that category.

Closed Cartesian Categories are of great interest because they allow us to construct exponen-

tial objects as defined below. Exponential objects represent sets of morphisms between objects,
as objects in the same category. This is required if to represent function types and function ap-

plication as the objects in a category of types.

Definition: Exponential Object.
Given a category C with objects x,y ∈ C in which all binary products with y exist,
an exponential object is an object denoted xy equipped with an evaluation morphism

apply : xy× y→ x which is universal.

Given a few further restrictions, a closed category can be a closed monoidal category. A
closed monoidal category C has for every object x ∈ C : A functor (−)× x : C→ C. That is
to say, the action of creating the product with any object of the category is a functor; A functor
[x,−] : C→ C forming the hom-object. Additionally, these two functors are adjoint.

Definition: Adjoint Functors.
Given categories C and D, functors L : C→ D and R : D→ C are called adjoint if there
exists a natural isomorphism between hom-functors of the form: HomD(L(−),−) '
HomC (−,R(−)). In this case, L is called the left adjoint whilst R is the right adjoint.

Adjoint functors can serve as the theoretical basis for correct program transformations in
the TyTra compiler [subsection 4.4.2]. They also serve as the fundamental concept required
to link TyTra CL term expressions to cost-performance estimates [subsection 4.4.3] and derive
an efficient DSE strategy that fuses the design-space generation process with program variant
selection [subsection 4.4.5].

CHAPTER 2. BACKGROUND 56

Before we can appreciate the usefulness of adjoint functors, a few more definitions are re-
quired. An F-Algebras attributes meaning to expressions built using functors.

Definition: F-Algebra.
An F-Algebra in the category C is the the triple (F,x, α) where F is an endofunctor on
that category, the object x ∈ C is the carrier, and the morphism α : F(x)→ x is the eval-
uation function.

Conversely, an F-CoAlgebra is the dual construction of an F-Algebra. It defines a way to
build up more complicated expressions, using a functor F from simpler ones.

Definition: F-CoAlgebra.
An F-CoAlgebra in the category C is the the triple (F,x, α) where F is an endofunctor
on that category, the object x ∈ C is the carrier, and the morphism α : x→ Fx is the
co-evaluation function.

F-Algebras, dually F-CoAlgebras, can also be seen as the objects of a category. Certain
special objects in a category can be identified from their relationships with other objects. An
Initial Algebra, if it exists, is the initial object in a category of F−Algebras.

Definition: Initial Object.
The initial object of a category is that unique object from which there exists a structure-
preserving morphism to every other object in that category.

If one represents F −Algebras as a,b,c , the objects in the category of F −Algebra, the
initial F-Algebra is denoted (). Given that () is the initial object, there are morphisms from ()

to every object a,b,c.

a = (F,a,αa :: Fa→ a)

() = (F,1,α1 :: F1→ 1) b = (F,b,αb :: Fb→ b)

c = (F,c,αc :: Fc→ c)

ida

id()

idb

idc

Figure 2.38: Morphisms from Initial F-Algebra to all F-Algebras in that category.

CHAPTER 2. BACKGROUND 57

Dually, we may speak of a Final F-CoAlgebra if the there exists a terminal object in the
category of F-CoAlgebras. A terminal object is the dual object to the initial object. Stated an-
other way, the terminal object in a category C is the initial object in the opposite category Cop.

Definition: Terminal Object.
The terminal object of a category, if it exists, has a unique structure-preserving mor-
phism pointing to it, from every other object in the category.

Because F-Algebras and F-CoAlgebras are objects in their respective categories, we may
also speak of the morphisms in those categories.

Definition: Catamorphism.
Given an initial F-Algebra ()= (F,1,α1 :: F 1→ 1) and a choice of some other F-Algebra
in the category of F-Algebras, a = (F,a,αa :: Fa→ a), the unique structure-preserving
morphism ()→ a is called a Catamorphism.

Note that we have overloaded the use of a label. The outer use denotes an F-Algebra, whilst
the inner use denotes the carrier object. Catamorphisms are more commonly known as fold op-
erations. We will later see that Catamorphisms can serve as the basis of an efficient implemen-
tation strategy for type inference [section 4.4.4] and cost-performance modelling [section 4.4.4]
within our DSE strategy.

The dual construction to a Catamorphism is another recursion scheme called an Anamor-
phism. Anamorphisms are also referred to as unfolds.

Definition: Anamorphism.
Given an terminal F-CoAlgebra ⊥ = (F,⊥,ω⊥ :: ⊥→ F⊥) and a choice of some other
F-CoAlgebra in the category of F-CoAlgebras, a = (F,a,ωa :: a → Fa), the unique
structure-preserving morphism ⊥→ a is called an Anamorphism.

Whereas a Catamorphism removes structure, an Anamorphism creates structure starting from
a singluar value. The structure is defined in terms of the functor on which its underlying co-
algebra is defined. The composition of an Anamorphism with a Catamorphism defines a hy-
lomorphism, the theoretical foundation for the build/fold rule we have seen in section 3.2.2.
This construct is useful because it gives rise to numerous optimization opportunities. Fusing

the evaluation of a Catamorphism with that of an Anamorphism means that we can avoid the
construction of certain intermediate data-structures, as we will see in subsection 4.4.5.

Chapter 3

Related Work

In the first section we cover related work that is of a practical nature. We will look at a number
of optimizing parallel compilers and behavioural/program synthesis tools to highlight the dif-
ference in approach to tackling performance portability, and discuss the implications this has on
the efficiency and effectiveness of an optimizing compiler. In the second section we present the
theoretical related work. Our primary contribution is a practical result that stems from the theo-
rem and proof we give in section 4.5, and so we can claim no significant contribution to category
theory itself. Our theorem does however rely on a particular interpretation of key notions from
the fields of category theory, type theory and parallel programming language research which is
related to the theoretical work discussed in this section.

3.1 Practical

High Level Synthesis allows software developers to specify their application using a high-level
programming language. The compiler/HLS tool maps PL constructs to equivalent HDL ones, in
a process known as behavioural synthesis. Depending on the difference in the level of abstrac-
tion representable in the high-level language used to describe the application, and the low-level

language used to code-generate an implementation, there can exist many alternative paths that
the compiler can take whilst performing behavioural synthesis. There are two broad classes of
parallelism that must be considered.

1. Instruction-level parallelism. Primitive gates, in HDLs can be trivially given meaning as
an entirely parallel circuit. Instructions in C-like languages, which are most often used as
source HLS languages, may only be evaluated in parallel after performing a potentially
costly dependency analysis.

2. Data-level parallelism. HLS tools primarily rely on pragmas and platform dependent
intrinsic operations.

58

CHAPTER 3. RELATED WORK 59

By clearly separating instruction-level parallelism from data-parallelism, the burden placed
on behavioural synthesis is greatly reduced. Pragmas and intrinsic operations can be seen
as forming a meta-language, that is largely disconnected from the source-code that represents
the actual application. This makes dependency analysis easier, as it no longer has to consider
the effects of data-level parallelism. At the same time, this separation of concerns, between
the language that expresses the application and the meta-language of data-level parallelism and
compiler optimizations makes certain optimization opportunities inaccessible to the compiler.
In concrete terms, the programmer must specify the level of data-level parallelism that should
be expressed in the final, optimized, application. This is done by annotating the source code
with appropriate pragma declaration, in the absence of immediate feedback. The programmer
must compile and explicitly test the application such as to determine the effects of the newly
added pragmas.

3.1.1 Imperative Languages

Most of the vendor-supported HLS tools make use of the same OpenCL [Gro09] standard used
to program GPUs as the source framework from which FPGA implementations are synthesized.

OpenCL

OpenCL [Gro09] is a standard programming framework that provides a way to develop portable
application for GPUs, CPUs, and FPGAs. What it does not provide, is a way to ensure that these
applications perform to their full extent, i.e. performance portability. OpenCL C code must
be tailored to the target device by specialist programmers, such that it delivers the expected
performance. The OpenCL standard provides a number of constructs for program optimization
that are baked into the language, in addition to the more loosely coupled techniques we have
already covered: compiler flags and pragma directives. In OpenCL terminology, programs
are consist of a host-side application and a number of kernels that execute on the compute
accelerator.

GPU

CPU

FPGA

Host CPU

OpenCL
Host Code

OpenCL
Kernel compiler runtime compiler

Figure 3.1: OpenCL compilation and runtime.

Kernel instances form work groups which are scheduled in a way that makes the best use
of the underlying computational resources by the OpenCL runtime executing on the host CPU

as shown in Figure 3.1. The OpenCL optimization workflow is shown in Figure 3.2, reproduced
from "OpenCL Programming Guide for Mac" [App].

CHAPTER 3. RELATED WORK 60

Figure 3.2 reveals the iterative and highly-manual nature of optimizing OpenCL applica-
tions. On the one hand, this is needed because of the imperative aspect of the OpenCL C

programming language which is a super-set of the C programming language. The most im-
portant additional features are: memory namespaces, intrinsic vector operations and the more
recently standardized channels feature. On the other hand, the OpenCL optimization process is
also largely manual because of the execution model disparity between the different platforms
that can be targeted using OpenCL. These problems are perhaps further compounded by the fact
that hardware vendors have a perceived financial incentive to not standardize their programming
interface.

Generate Compute/
Memory Access Peak

Benchmark

Write code to validate
results

Choose an algorithm Write the code Validate the results

Identify bottleneckFind solution/
workaround

Done

Fast enough ?

Figure 3.2: OpenCL optimization workflow.

The code we show in Listing 3.1 features an OpenCL specific optimization: memory pinning.
This allows a programmer to explicitly dictate what memory-spaces a buffer should use.

cmPinnedBufIn = clCreateBuffer(cxGPUContext

, CL_MEM_READ_ONLY | CL_MEM_ALLOC_HOST_PTR, memSize

, NULL, NULL);

cmPinnedBufOut = clCreateBuffer(cxGPUContext

, CL_MEM_WRITE_ONLY | CL_MEM_ALLOC_HOST_PTR, memSize

, NULL, NULL);

Listing 3.1: OpenCL Pinned Memory

This workflow highlights the iterative nature of optimizing OpenCL applications which, to
a large extent, mirrors that of optimizing applications through the manual selection of compiler
flags or introduction of pragma declarations

CHAPTER 3. RELATED WORK 61

When using OpenCL, the programmer must drive the optimization process by deciding:

• The optimal size for a work group

• Which work groups can be automatically or manually scheduled

• What memory space should be used for each of the intermediary buffers

These decisions are heavily influenced by the target hardware architecture. Whilst OpenCL
is most popular for GPU programming, implementations exist for CPUs and FPGAs as well.
Xilinx’s SDAccel [Xil14] and Intel’s AOCL [CAD+12] allow programming FPGAs using the
standard OpenCL syntax. Optimization of the application is largely in the hands of the appli-
cation’s developer, whom must specify where and how the application should be transformed
by the compiler through the introduction of the previously mentioned pragma declarations. The
most common and effective transformation is loop unrolling

__kernel void example(__global const int * restrict x, __global int * restrict sum){

int acc = 0;

#pragma unroll

for (size_t i=0; i < 4; i++) {

acc += x[i + get_global_id(0) * 4];

}

sum[get_global_id(0)] = acc;

}

Listing 3.2: Altera OpenCL Loop Unroll pragma.

The introduction of the loop unroll pragma can lead to increased performance by telling the
compiler that a for loop body can be safely instantiated multiple times, allowing multiple data
items to be processed concurrently. In the example show in Listing 3.2 the AOCL compiler can
further improve performance by coalescing the concurrent read operations required to execute
evert loop body instance. These optimizations can only be applied if dependency analysis can
show there are no hazards within the loop body. Intel’s HLS Compiler 1 is in many ways similar
to OpenCL solutions that target FPGAs. It is a HLS tool that processes C++ into RTL optimized
for Intel FPGAs. As with OpenCL, Intel HLS also requires explicit unroll annotations to inform
the compiler about instances of kernel invocations that should be parallelized. Syntactically the
pragma declaration is identical to that in Altera OpenCL.

#pragma unroll

for(int i=0; i < N; i++) { ... }

Listing 3.3: Intel HLS Loop Unroll

1https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/
wp/wp-01274-intel-hls-compiler-fast-design-coding-and-hardware.pdf

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01274-intel-hls-compiler-fast-design-coding-and-hardware.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01274-intel-hls-compiler-fast-design-coding-and-hardware.pdf

CHAPTER 3. RELATED WORK 62

Weller et al [WOL+17] demonstrate that FPGAs, programmed via OpenCL, show promising
performance when implementing partial differential equations based scientific models. How-
ever, they also indicate that they had to write the OpenCL kernel code in a slightly different
manner, depending on the targeted hardware device, in order to obtain good performance. This
requirement for the manual tweaking of the implementation, to account for hardware-dependent
behaviour, is present in Intel’s HLS tool as well. Take for example the advice provided within
the Intel HLS best practices guide 2 under section 3.1.5 , related to the performance of passing a
small arrays of values as an argument to, and a return value from a component, or function. On
FPGAs, packing all values together into a struct and thereafter passing that structure in and out
of the component, by value, is likely to lead to better performance than indirect access through
an array pointer. This advice may seem counter-intuitive to a software developer that used to
writing code for a CPU where such packing and unpacking would only introduce overhead. The
downsides of segregating the programming language used to define the program’s behaviour,
from the meta-language used to describe the program optimization begins to show through in
Listing 3.4.

struct int_v8 {

int data [8];

}

component int_v8 vector_add(int_v8 a, int_v8 b) {

int_v8 c;

#prama unroll 8

for (int i = 0; i < 8; ++i) {

c.data[i] = a.data[i] + b.data[i];

}

return c;

}

Listing 3.4: Intel HLS example with a small array operation.

The loop unroll factor which serves as a parameter to the loop unroll pragma on line 7 has
a concrete value of 8. The same value is used to define the size of the struct on line 2 which is
in turn used to pass the entire array of values in and out of the component. Finally, this value
is also included as a textual hint within the structure’s name, defined on line 1. An experienced
programmer may recognize the connection between all occurrences of the character ’8’ within
this block of code; however, the disconnect between the source and meta languages means the
compiler may not be aware of this connection.

2https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/
hb/hls/ug-hls-best-practices.pdf

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/hls/ug-hls-best-practices.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/hls/ug-hls-best-practices.pdf

CHAPTER 3. RELATED WORK 63

Vivado is Xilinx’s own HDL synthesis and analysis suite. Increasing parallelism requires
developers to annotate their solutions with appropriate directives. Whilst Vivado provides a di-
verse range of directives, such as partial loop unrolling and automatic loop fusion, due to choice
of internal representation, the user has to take up responsibility for ensuring the transformations
preserve correctness 3. Winterstein et al. show a more detailed picture of the types of manual
transformations a user must perform such that Vivado can perform HLS [WBC13].

Maxeler

Maxeler [PA12] is yet another good example of a mature HLS framework. In contrast to OpenCL
for FPGAs or Intel’s HLS tool, the Maxeler approach is centred around a custom dataflow lan-
guage that is embedded within the Java programming language. The programmer writes Java

code which is then used to code-generate a .max file that describes the computation to be per-
formed and how data is to be marshalled to and from the device. Embedding a data-flow descrip-
tion within the programming language itself allows the compiler to reason about and manipulate
expressions that exist on two levels, at once:

• The object level expressions that represent the actual computation to be performed. These
are the expressions and values computed as part of the "real work" performed by the
application.

• The meta level expressions that dictate how the application’s terms are manipulated.

The additional compilation step, from Java code to .max, imbues the application with a
certain degree of reflection or introspective capability. Introducing a further intermediate repre-

sentation allows information to flow between the object and the meta levels much more freely
than pragma directives allow. In particular, information can flow in both directions between the
object and meta language constructs. Even with a dataflow approach, the process is still largely
manual.

The "Maxeler DFE Debugging and Optimization Tutorial" enumerates 4 the following steps:
Create a C application; Determine code segments to accelerate; Debug through simulation; De-
bug through hardware synthesis; Optimize. These steps are the same as those we needed for
OpenCL application development on FPGAs. There are however certain advantages with a data-
flow language. For example, the by value copy operation in Listing 3.4 translates into a simple
assignment, eliding the need to pack and unpack operations before and after every transfer.

3http://users.ece.utexas.edu/~gerstl/ee382v_f14/soc/vivado_hls/VivadoHLS_
Improving_Performance.pdf

4https://www3.diism.unisi.it/~giorgi/teaching/esercitazioni/
esercitazioni217/maxdebug-tutorial_45f1310.pdf

http://users.ece.utexas.edu/~gerstl/ee382v_f14/soc/vivado_hls/VivadoHLS_Improving_Performance.pdf
http://users.ece.utexas.edu/~gerstl/ee382v_f14/soc/vivado_hls/VivadoHLS_Improving_Performance.pdf
https://www3.diism.unisi.it/~giorgi/teaching/esercitazioni/esercitazioni217/maxdebug-tutorial_45f1310.pdf
https://www3.diism.unisi.it/~giorgi/teaching/esercitazioni/esercitazioni217/maxdebug-tutorial_45f1310.pdf

CHAPTER 3. RELATED WORK 64

OpenACC

OpenACC which stands for open accelerators, is a directive-based programming model for
heterogeneous parallel computation. The programming model is somewhat similar in spirit to
OpenMP in that it requires the user to annotate code with an expression of the intended degree
of parallelism. OpenACC has a larger scope than OpenMP a it targets both GPUs and CPUs.
OpenACC can be used alongside OpenCL and CUDA [HGMS+12] [RLFdS12], but it can also
be used as a replacement for these programming frameworks.

As is the case with OpenCL, CUDA and OpenMP, the OpenACC approach to application
optimization is also largely manual. The user annotates existing code with pragmas which in-
struct the compiler on how the application should be parallelized. The benefit is that the core
algorithms, implemented in the application, can be generally left untouched whilst enabling the
application to run on CPUs and GPUs alike. The unstated requirement here is that the imple-
mented algorithm must be amenable to optimization via the transformations specified by these
directives. The kernels OpenACC directive, for example, can be used on a loop construct. It
instructs the compiler to extract a kernel function from the loop body and attempt to accelerate
the computation by automatically parallelizing the implementation of the extracted kernel.

#pragma acc kernels

for (int j = 1; j< n−1; j++)

{

for (int i = 1; i <m−1; i++)

{

a_new[j][i] = 0.25 * a[j][i+1]

+ a[j][i−1] + a[j−1][i] + a[j +1][i +1];

}

}

Listing 3.5: OpenACC stencil computation acceleration.

In contrast, the TyTra compiler automatically extracts kernel functions without the use of
pragma directives. This means that the optimization can be fully automated but poses a problem
for design space exploration. Automatic kernel extraction in TyTra means that the generated
search-space can be many times larger than a manually identified search-space, where the expert
programmer has already identified the kernels that are most likely to impact performance.

CHAPTER 3. RELATED WORK 65

On the other hand, the cost-performance model in the TyTra compiler can be used to deter-
mine an optimal parallelization strategy automatically, whereas OpenACC compilers rely en-
tirely on user-provided guidance. The kernels directive shown in Listing 3.5 tells the OpenACC
compiler what loops to parallelize, but it does not indicate weather or not those loops are worth
parallelizing, and if so, to what extent they should be unrolled. Furthermore, every annotated
loop-nest is treated independently. This means that entire data set needed by each loop-nest may
be moved from the CPU to the GPU accelerator and back again, only to be migrated once more
for a subsequent loop nest.

int iter = 0;

#pragma acc data copy(A), create(Anew)

while (iter < iter_max)

{

#pragma acc kernels

for (int j = 1; j< n−1; j++)

{

for (int i = 1; i <m−1; i++){

a_new[j][i] = 0.25 * a[j][i+1]

+ a[j][i−1] + a[j−1][i] + a[j +1][i +1];

}

}

// [..]

iter_max++;

}

Listing 3.6: OpenACC stencil computation acceleration with data-flow hints.

The mitigation strategy in OpenACC is of course, another set of pragma directives. The
copy directive instructs the compiler to copy the entire data-set needed by the loop nest to the
GPU before the while loop begins executing, and to copy it back once all iterations have been
performed. The create pragma instructs the compiler to allocate storage for the intermediate
value store a_new on the GPU, and to keep it on the GPU until the while loop is done executing.
Although the addition of these pragmas does not change the structure of the algorithm’s im-
plementation, it nonetheless depends on this structure. In effect, the programmer must specify
enough information about the application’s data-flow, as to indicate to the compiler what the best
optimization strategy is. Given an accurate cost-performance model, such as that in the TyTra
compiler, the information encoded by these additional pragmas can be recovered automatically.

CHAPTER 3. RELATED WORK 66

DSE for kernel loop optimisation

Zhong et al. [ZVL+14] also use Design Space Exploration to optimize applications that consist
of multiple loops for execution on FPGAs. Their method of reducing the design space to be
explored also relies on data-flow dependence information, however there are a number of key
differences between our respective approaches.

Solution Complete Exploration Dataflow Detection Scope
[ZVL+14] 7 part of DSE Kernel-level

Ours X before DSE Application-level

Table 3.1: Difference in approach between our solution and [ZVL+14].

The first difference is that the TyTra cost-performance model gives us accurate throughput,
latency and resource. Thus, with the improved DSE methodology we propose that makes use of
these estimates, a fully working solution can be found with zero HLS invocations and deployed
for execution with a single invocation. In contrast, the method presented in [ZVL+14] requires
a number of HLS tool invocations to sample the cost-performance space and guide the search.
Because of the accurate cost-performance mode in TyTra, our optimized DSE strategy is also
complete meaning that we do not miss any of the pareto-optimal design points. In contrast, the
authors of the related work report that: "we can observe that the approximate Pareto-optimal

curve by our method does not cover all the Pareto-optimal design points [...]" [ZVL+14].

The second difference has to do with the characteristics of the language in which applica-
tions are expressed. As we derive structured design spaces form the structure of TyTra CL
applications, there is no need for an additional "Dataflow Detection", as in the related work,

which "checks whether dataflow feature can be enabled for the application" [ZVL+14].

The third and most crucial difference is that the focus in this particular related work is on the
optimization of kernels functions, invoked as part of a larger application. Zhong et al. attack the
problem of kernel optimization by transforming the loop operations that occur within them. The
related work thus solves the much smaller problem of determining the optimal loop unrolling

schedule for each kernel function in isolation. In contrast, we optimize the parallel structure of
the overall application by taking account of the interactions between all kernel functions. The
kernels, or what we call opaque functions in TyTra CL are separately optimized to achieve the
highest degree of internal pipe-lining [NV19].

CHAPTER 3. RELATED WORK 67

3.1.2 Functional Languages

The single most important difference between imperative and functional programming language
has to do with the notion of side-effects. Computations with side-effects are of particular inter-
est to us because the bridge the gap between the operational or imperative and the denotational

or functional models.Imperative programming not only allows, but often encourages the use of
side-effects to perform computation. Writing to a global variable can be seen a type of side-

effect. An application might make use of global variable writes to coordinate the efforts of
various concurrent threads of executing code. Functional programming, on the other hand, is
entirely premised on the idea that side-effects should never occur.

Algebraic Effect Handlers can be used to represent, or rather simulate, side-effects in func-
tional programming languages, whilst maintaining the property of safety that functional pro-
grammers enjoy. Algebraic effect handlers embody an often used, two-step, problem-solving
technique:

1. Decomposing the main problem into a collection of sub-problems and specifying a se-
quence of actions that solve them. More generally, the collection of actions may be any
structure, for example a tree rather than a list.

2. Implementing an interpreter that evaluates the structure of actions or sub-problems.

Certain problems may be broken down into sub-problems that have possibly many solutions.
In such cases, we would represent the solution as a tree of alternative sub-solutions. The inter-
preter would then pick the appropriate action, for each sub-solution, before finally composing

sub-solutions. If this description appears to be familiar, it is perhaps because:

1. Generating a structure of sub-problems, or equivalently, generating a structure of sub-

solutions are both examples of Anamorphisms

2. Folding sub-solutions into an overall solution is an example of a Catamorphism

3. Effect structures are like configurable Monads. An effect-free computation is the equiv-
alent of a monadic return. The monadic bind operation is just one type of effect, the
sequencing effect.

4. Generating sub-solutions and then picking one, is a description of Design Space Explo-
ration we have given repeatedly in the present work.

The similarities or breath of overlapping scope among these approaches to bridging the
imperative-functional gap can be readily observed. As we will see in the following chapter,
these methods and techniques are can be modelled and explained trough Category Theory.

CHAPTER 3. RELATED WORK 68

Lift Language and Compiler

Lift The Lift Project also aims to bring performance portability to CPUs, GPUs [Ste15] for
linear-algebra, sparse matrix and stencil computations, by transforming applications using rewrite
rules. The Iterative application of these re-write rules generate a search space of program trans-
formations with varying degrees of expressed parallelism and resource use. Due to the wide set
of target architectures the search space can grow at a rather alarming pace. The authors have
proposed allowing developers to specify their own heuristics, or tactic, to help guide the search
space. The Lift projects shares many of the same ambitions as for the TyTra project and is thus
one of the more closely related works we must consider. At a surface level, the approach to
program optimization in the Lift project is not too dissimilar to our own: a sub-set of optimizing
transformations in Lift overlaps with those in TyTra. Fundamentally however, there are two key
differences in approach.

1. The optimizing transformations in Lift are specified as rewrite rules based on: a) algo-

rithmic skeletons and b) target or problem specific optimizations. We recover a more
basic definition for optimizing transformations in terms of category theoretical notions,
by extending the approach of defining categorical data types, covered in subsection 3.2.2.

2. The approach to solution discovery in Lift is presently two-fold. The first approach to op-
timizing transformations is specified as a search-space that the application developer must
manually traverse by writing an optimization schedule. The second approach, involving
an automatic solution discovery method is covered in [SFLD15]. Here the key difference
is that the approach in Lift is stochastic, whereas our own is analytical.

We believe that these differences in approach are largely due to two factors. The first fac-
tor is that the Lift project primarily targets GPUs whilst TyTra focuses on FPGAs. This, we
believe, has a large influence on the design of a programming language and its compiler. As
TyTra primarily targets FPGAs, we were lead down the path of phrasing the optimization of
an application as both a spatial layout and temporal scheduling problem, whereas in Lift the
problem boils down to temporal scheduling only. This causes Perhaps counter-intuitively, this
makes solution discovery somewhat easier. The spatial layout sub-problem naturally leads to
the generation of additional constraints on the search-space. Additionally, the configurability of
FPGAs means that application performance and resource use can be more accurately modelled,
whereas GPUs are somewhat opaque to performance analysis. The second has to do with the
ad-hoc nature of the transformations rules. The automated search algorithm in Lift makes use
of "macro rules which perform multiple small steps at once by applying a set of rules in a pre-

defined order" [SFLD15]. These macro-rules appear to be manual optimization integrated by
Lift’s authors, yet the example given that, that of a map-reduce fusion macro-rule indicates that
these are a sub-set of what can be automatically derived from type-level equivalences in TyTra.

CHAPTER 3. RELATED WORK 69

Expanding upon the first difference we see that the optimizing rewrite rules in Lift are of two
primary types. The first type of rule can be roughly identified with parallel skeletons [SFLD15].
Examples include the fusion (Figure 3.3) and cancellation (Figure 3.4) rules shown below.

map M ◦map N→ map(M ◦N)
reduceSeq M N ◦mapSeq P→ reduceSeq(λ (acc,x).M (acc,P x)) N.

Figure 3.3: Fusion rules in Lift.

join◦ split I | splitA,J ◦ joinA,J → id
joinVec◦ splitVec I | splitVecA,J ◦ joinVecA,I,J → id

Figure 3.4: Cancellation rules in Lift.

The second type of Lift rewrite rule is derived from OpenCL specific transformations, ex-
amples of which are shown in Figure 3.5. These map the abstract operations defined by an
expression into concrete implementations that match the semantics of the OpenCL framework.

map M→ mapWorkgroup M | mapLocal M | mapGlobal M | mapSeq M
reduceA,I M N→ reduceSeqA,A,I M N
reorderA,I×J → reorderStrideA,JI | id

Figure 3.5: The OpenCL Specific map, reduce and reorderStride rules in Lift.

Both types of rules are meant to transform a high-level expression in a singular and very
specific way. The two classes of rules are related through denotational semantics. OpenCL-
specific map routines are, for example, denoted by the same term as the abstract map operation,
as shown below in Figure 3.6.

JmapWorkgroupK = JmapLocalK = JmapGlobalK = JmapSeqK = JmapVecK = JmapK

Figure 3.6: Denotational semantics relating the various map implementations to an abstract
map operation in the Lift compiler.

We note that the map operations shown Figure 3.6 are manually specified to be equiva-
lent by the compiler developer. This limits the utility of the type system in Lift to the task of
verifying that this equivalence is sound. In the TyTra compiler there are no target-specific im-
plementations, however, the latter three terms in Figure 3.6 have direct equivalents. The first
and last terms: mapSeq and map are simply represented as map operation. The middle mapVec

implementation is represented by splitting the input to the map operation and merging the re-
sult. At the same time, the JmapVecK = JmapK equivalence is recovered automatically from the
mergek ◦ splitk identity that falls out of the Veck×m a = Veck (Vecma) type-level equality. This
level of automation, however, is only practical if an efficient DSE strategy, such as the one we
presently contribute exists.

CHAPTER 3. RELATED WORK 70

The second major difference between the approach in Lift and our own has to do with au-
tomatic program optimization search algorithm. In Lift this is derived from Bandit-based op-

timization [dMRVP09], and is "rather basic and just designed to prove that it is possible to

find good implementations automatically" [SFLD15]. Concretely this is based on the Monte-

Carlo method, and is thus a stochastic routine. Broadly it can be described as an iteration of the
following steps, [SFLD15]:

• For each high-level expression, determining the set of all valid rewrite rules.

• Randomly applying a sub-set of these rules.

• Executing the code-generator for each selected set of rewrites.

• Measuring the performance of each thus generated solution.

Once the best-performing solution has been determined for the sub-set corresponding to
the high-level term, it is used as the input to the subsequent iteration consisting of the same
steps. This process is repeated until a "terminal expression" is reached, although the meaning
of a "terminal expression" term is not explained in [SFLD15]. Whenever a target-dependent
rewrite rule takes a numerical parameter, the authors indicate that they "limit the choices [..]
to a reasonable set appropriate for our test hardware". This indicates that even the automated
solution requires manual intervention from the application developer. The definition of what
constitutes an appropriate set is not discussed fully discussed either, leading us to believe that
the set is to be determined through trial and error, on a case-by-case basis. Given the primary
target device (GPU), the absence of an analytical cost-performance model and the ad-hoc re-

lation that ties OpenCL-specific transformation rules to the high-level ones, we feel that the
approach taken in Lift, although far from ideal in terms of compilation time, is appropriate for
the stated goal. Without an analytical cost-performance model the numerical parameters can not
be automatically discovered. Without a deeper semantic connection that can interpret hardware

or problem-specific rewrites as design-space transformations, there is no choice but to fully or
randomly sample the search-space thus defined.

We believe that the Lift compiler could be extended to benefit from our analytical design-

space exploration strategy, despite the different choices of primary hardware target and opti-

mizing transformation representation. This last comment is entirely aligned with the vision for
Lift’s future expressed by the authors: "We envision replacing this exploration strategy in the fu-

ture by using machine-learning techniques to avoid having to search the space at all" [SFLD15].
In more concrete terms, we suggest that a possible way forward is to overcome the fact that
GPUs are relatively opaque to cost-performance analysis by deriving a reasonably accurate

cost-performance model through other stochastic methods, perhaps the application of machine-

learning. We also suggest that a broader set of exploration-optimising macro rules could be
automatically derived by adopting the type-driven transformation approach in TyTra.

CHAPTER 3. RELATED WORK 71

3.1.3 Program and Behavioural Synthesis

We have seen that different programming languages tend to favour certain models of computa-
tion, yet the compilers that support these languages often make use of multiple such models as
they steadily transform the source-code into an ultimately optimized piece of executable code. It
would stand to reason that it may be possible to transform applications written in an imperative

programming language into functional programming language representations, such as to make
use of the optimizations available in both paradigms.

To a certain extent, that is precisely the case with the High-Level Synthesis tools we’ve
looked at in section 3.1. With HLS tools source language is often an imperative programming
language such as C. The target is usually one of the HDL standards: perhaps Verilog or VHDL.
HLS straddles the fine line between programming paradigms by way of code-generation. The
language that the application writer interacts with is more closely aligned with a particular model
of algorithms or an abstract notion of the meaning of the application. HLS tools often adopt the
syntax of programming languages intended for other hardware targets, such as CPUs and GPUs
to leverage existing programmer familiarity, at the cost of perhaps a more loose coupling be-
tween the semantics assumed by a software engineer familiar with these platforms, and the
semantics demanded by the circuit model of computation assumed by the tooling such as hard-
ware place and route further downstream. The two primary issues with existing HLS tools is are
as follows. For one sub-set of these, the issue is of a practical and syntactic nature. The design
choices taken in developing the language used to express algorithms is too closely aligned to
either an operational view of computation. The remaining sub-set, although it adopts a func-
tional view of computation, fails by not accounting for a more uniform view of computational
semantics.

Similar to how HLS tools generate circuits from specifications of algorithms, synthesis in
the context of functional programming languages refers to generating programs from specifi-
cations of the problem they seek to solve. ADATE is a system for automatic functional pro-
gramming [Ols95]. It makes use of a specification of constraints to synthesis correct, novel and
often unexpected functional programs that feature recursive behaviour and useful auxiliary re-
cursive functions. The synthesis process involves an incremental approach: better programs are
developed through refinement. The key to success seems to be that ADATE a systematic search
process that traverses sequences of transformations.

CHAPTER 3. RELATED WORK 72

This incremental synthesis process makes use of transformations such as expression replace-

ment, function abstraction, case distribution and type embedding whilst being guided by a mea-
sure of program correctness, syntactic complexity and time complexity. Correct program syn-

thesis from specifications is a task that is in many ways related to the issue of efficient design
space exploration that we are trying to solve:

• We can think of the TyTra CL as a specification of the application to be synthesized. The
optimizing transformations may not generate an entirely new implementation that meets
this specification, but they generate a different implementation that hopefully performs
better.

• We may also think of the process of optimizing our DSE strategy as being a program

synthesis task. We use the TyTra CL specification to synthesize and optimal DSE strategy.

• The DSE process itself requires that we synthesize multiple program variants and ulti-
mately select the best performing one.

The fact that we are able to relate DSE to program synthesis in not one, but three ways hints
at one benefit of functional programming. We can establish relationships between program
transformations and transformations of the compilation process.

3.1.4 Compiler Optimization Techniques

Polyhedral transformation

In subsection 2.4.2 have seen the relationship an input vector size and a nesting of map opera-
tions. This indicates that our solution is in part related to the well known polyhedral transfor-

mation technique, on which many parallelizing compilers rely [Bas04]. Each of the possible
permutations of prime factors that collectively would correspond to a type of polyhedral trans-
formation that takes a purely sequential implementation of a loop nest to a parallel one.

Collective optimization

As our DSE optimizations source heuristics from the interactions of the terms, types, cost-

performance model and the DSE strategy itself, it stands to reason that different applications
having necessarily distinct term-level representations may nonetheless share certain term-level

patterns. Rather than explore all interactions between these representations at the applica-
tion’s compilation time, we believe that a single exploratory run and the use of memoization

can achieve the same result. This would indicate that our solution might be seen as a speculative

(and functional programming language) equivalent of collective optimization frameworks such
as described by Fursin et. al in [FT10].

CHAPTER 3. RELATED WORK 73

3.2 Theoretical

3.2.1 Structured Parallelism

Parallel Skeletons

One such technique is to use of well-known parallel structures or patterns, sometimes called
Parallel Skeletons, that naturally arise from certain functional programming constructs. Cole ar-
gued in his manifesto [Col04] for a pragmatic approach to parallel programming and introduced
the eSkel library. This is based on the C programming language and the MPI framework The
eSkel library is a perfect example of what it means to bridge the gap between programming lan-
guage paradigms: an imperative programming language and parallel programming framework
are used together with formalism arising from functional programming to solve a real world pro-
grammability issue. Cole’s manifesto is not only instrumental the entire domain of structured
parallel programming at large, but it has also played a significant role in shaping the view-points
that underpin the TyTra compiler. Our only criticism is that eSkel does not go far enough in its
stated goal of raising the abstraction layer. We quote:

"Skeletal programming is not functional programming, even though it may be concisely ex-

plained and expressed as such. Nor is it necessarily object-oriented programming, although the

increasing interest in such technologies for HPC will make such an attractive embedding viable

soon" [Col04]

We believe that time has indeed come and that design space exploration can be used to
bridge the small remaining gap between functional programming and the imperative languages
that continue to benefit from widespread adoption and support in industry. Parallel skeletons are
conceptually simple yet very powerful abstractions. A skeleton is simply a recipe, or a pattern

of computation that can be reused. The Java programmers amongst us might liken each skeleton
to an Interface. Each parallel skeleton is backed by a number of alternative implementations.
One implementation may be optimized for CPU execution, whilst others might target GPUs or
FPGAs. The programmer’s sole job is to reference the parallel skeleton that abstractly remains
the type of parallel computation they wish to perform, leaving the tedious job of providing an
efficient implementation to the skeleton library. The remaining issue to be solved is simply
the automation of the mapping of abstract skeletons selected by the programmer to the best

implementation.

CHAPTER 3. RELATED WORK 74

Recursion schemes

Recursion Schemes are related to Parallel Skeletons in that they represent patterns of recursive

behaviour. The connection between recursion schemes and parallel skeletons is also noted by
Barwell et al. [BBH18] who describe a way to perform recursion scheme identification. Their
technique looks for certain instances of recursion schemes that are known to have parallel im-
plementations defined as parallel skeletons. In functional programming, recursion schemes are
fundamental constructs that continuously reappear. Terminology can vary to such an extent that
one may be intimately familiar with recursion schemes and not know it. For now, we will briefly
present two of the most important recursion schemes. More formal descriptions will follow in
subsection 4.1.1.

• Catamorphisms, also known as folds or reductions, consume a structured collection of

data values producing a singular output value.

• Anamorphisms are the opposite of Catamorphisms. They are also known as unfolds or
generators. Anamorphisms take a data value as input, producing a structured collection

of data values as output.

Catamorphisms and Anamorphisms are generalized versions of the fold and unfold opera-
tions that operate on lists. More importantly, composing these two recursions schemes, in certain
circumstances, yields another recursion scheme called a hylomorphism which is more efficient
than running the component computations sequentially. In subsection 3.2.2 that follows, we will
see a that there exists a category-theoretical construction for data types. In subsection 4.4.1 we
will further see how the recursion schemes briefly introduced here are connected to categorical
data types.

3.2.2 Categorical Data Types and Techniques

Modelling Data Types in category-theoretical terms is not a new concept by far. Whereas our
approach was to recover category-theoretical semantics for the TyTra compiler after the TyTra
CL, IR and cost-performance model where largely defined through previous work, others have
remarked on the expressive power of categorical semantics in developing applications for paral-
lel computers long before this work began.

In Foundations of Parallel Programming [Ski05], Skillicorn laid out a precise way of de-
veloping applications that can be executed by parallel computers. The approach is described
as a generalization of abstract data types, which is based on categorical data types "as a model

of parallel computation, that is an abstract machine that decouples the software level from the

hardware level" [Ski05].

CHAPTER 3. RELATED WORK 75

One of the benefits of this approach, touted by Skillicorn is that "the categorical data type

approach [..] provides both a structured way to search for algorithms, and structured programs

when they are found" [Ski05]. Through our own experience we found these statements to be
true. By providing a categorical data type interpretation for the TyTra CL, shown in section 4.1
we were able to find a structured optimization search algorithm, our DSE strategy, though a
process that is itself highly structured.

There are indeed many similarities between our work and that of Skillicorn. Amongst these
is the central idea of using category theory to precisely describe data types and their operations,
and then use those detailed descriptions to optimize the application. This idea appears so fre-
quently that even Skillicorn felt compelled to state that "A book like this does not spring from

a single mind" [Ski05] and mentioned being introduced to the idea of constructing categorical
data types by Malcolm who also authored [Mal90] and [Mal89] that breach this topic by extend-
ing the ideas previously shown by Bird [Bir87] and Meertens [Mee86]. There are however also
a number of key aspects that differentiate our work from that of Skillicorn, Malcom, Bird and
Meertens. In Foundations of Parallel Programming, Skillicorn focuses on the use of categorical
data types to develop applications, rather than on the issue of optimizing legacy applications by
recovering the underlying categorical data types as we do. The difference here is rather subtle
and is best described using Futamura’s words below.

"There are two methods to formally describe the semantics of programming languages. One of

them is to describe the procedure by which the language to be defined is translated into another

language whose semantics are already known. The other is to describe a procedure evaluating

the results of a statement belonging to the language to be defined" [Fut99]

Because of the hardware we target, meaning FPGA devices, and that of our objective - max-
imizing performance, we were directed towards taking both views of semantics at once. One
aspect of the semantics we give to the TyTra CL are purely based on a translation to category
theory terms, as in the case of Skillicorn, the other is based on the evaluation of a TyTra appli-
cation as an FPGA circuit. Skillicorn makes use of the same dual view of language semantics
to derive a strategy for parallel cost calculus in the context of targeting list-processing applica-

tions towards an abstract model of a parallel machine, a PRAM that consists of a set of abstract
processors and a large amount of shared memory. The difference between our work and Skil-
licorn’s, in this matter, is roughly the same as that between our work and Castro’s Structured

Arrows [Cas18b], which we discuss later in this section, namely: we utilize categorical data
types and an accurate cost-performance model to efficiently find an optimal program transfor-
mation, whereas Skillicorn and Castro use categorical data types to derive a cost model. In the
book, Skillicorn also touches upon the topic of optimizing search problems but only focuses on
the specific issue of optimizing applications that perform structured text queries.

CHAPTER 3. RELATED WORK 76

Distributable Homomorphisms

In [Gor96], Gorlatch identifies a class of problems, called Distributable Homomorphisms that
can be given efficient parallel implementations, and specifies a solution by derivation in the
Bird-Meertens formalism. This general solution is given under the assumption that the number
of processors is bounded. We believe the same limitations may apply to our solution, and that the
reason why we are were able to achieve our results is because FPGAs are inherently bounded.
A search for an optimal implementation on an FPGA depends on finite limits imposed by the
space of hardware resources available, whereas a CPU centric approach is unlimited as the only
search dimension is temporal. Although we did not use Gorlatch’s work in deriving our DSE
strategy, we believe the work on Distributable Homomorphisms and the stated requirement that
for a bounded number of processors is can be seen as a partial bridge, from Skillicorn’s Parallel

Cost calculus on the PRAM execution model, to the use of a cost-performance model in TyTra
to find an optimal transformation schedule.

Structured Arrows

As in the case of Skillicorn’s Foundations of Parallel Programming discussed at the begin-
ning of this sub-section, Castro’s work on Structured Arrows solves the dual issue of deriving
a cost model from a categorical specification of parallel application. Castro’s Structured Ar-

rows [Cas18b] framework tackles the issue of parallelizing sequential code by abridging algo-

rithmic skeletons to structured parallelism through the use of Hylomorphisms to represent the
functional behaviour of parallel programs and to define a mechanism for deriving cost models

for parallel applications using the operational semantics of queues.

This approach, we argue, can be augmented by reasoning about the compiler, its type-

checking phase and the eventual run-time in the same terms as those used to describe the ap-
plication, thereby leading to greater optimization potential. Castro’s use of Hylomorphisms to
describe the application’s term language can be easily paired with our view of DSE as a hylo-

morphism. We show proof of this through our use of the Böhm-Berarducci encoding to describe
the TyTra CL and the results that we obtain. The Böhm-Berarducci encoding, which we de-
scribe in the following paragraph, naturally reveals the hylomorphic structure of categorical
data-types, although we have not set out the explicit goal of formally defining a core language
centred around Hylomorphisms. The optimization power of Hylomorphisms can be understood
by examining the related work on the build/fold rule, a specialization of Hylomorphisms to the
data-type structure of lists, which we describe at the end of this sub-section.

CHAPTER 3. RELATED WORK 77

Böhm-Berarducci encoding

The Böhm-Berarducci encoding, as described by Kiselyov "translates algebraic data types and

the operations on them into System F, which contains only abstractions and application base

type constants" [Kis12]. We use the Böhm-Berarducci encoding to recover structured higher-

order functions that are specialized to the structure of the application that is being optimized.
Effectively, these higher-order functions allow us to apply efficiently apply multiple evaluators

by dynamically selecting the evaluation morphism that will replace each of the data-types con-
structors. Much of the same effect can be obtained using type classes in what are known as the
Typed Tagless Final Interpreters [Kis10].

Build/Fold rule

Gill et al. [GLJ93] remark on the use of list data-types as glue between dependent computational
phases, and they propose an automatic technique to improve the performance of such programs
by removing intermediate list representations that relies on a single, local transformation, which
they call the build/fold rule. On a theoretical level, the build/fold rule corresponds to the relation-
ship Anamorphisms, Catamorphisms and Hylomorphisms we briefly discussed in section 3.2.1
as we now show in Figure 3.7.

Parallel Skelletons

Recursion Schemes

Anamorphism Catamorphism

Hylomorphism
Build Fold

Figure 3.7: The build/fold rule corresponds to the Hylomorphism recursion scheme.

In many ways our optimized DSE strategy is a specialized version of this result, however, by
using the Böhm-Berarducci encoding we can effectively generalize the build/fold rule from its
simple application to intermediate lists of results to a broader use when constructing/consuming
arbitrary data-types. Gibbons [Gib06] remarks on this build operator’s argument being a Church-
encoded representation of a List constructor. As Church-encoding is the untyped relative of the
Böhm-Berarducci encoding, it stands to reason why our choice of encoding terms, types, and
cost-performance records into Böhm-Berarducci terms enables us to reap the benefit of short-cut
deforestation across all stages of the compiler.

CHAPTER 3. RELATED WORK 78

3.3 Graphical summary

We concluded chapter 2 by showing that, despite the architectural differences between CPUs,
GPUs and FPGAs, such devices are largely programmed and optimised using the same program-
ming languages, tools and abstractions. At the end of that chapter, specifically in Figure 2.7, we
hinted at the connection between the program transformation abstractions commonly used in
frameworks such as OpenCL and more sophisticated DSE solutions. In the same spirit, we now
sketch the connections between practical and theoretical related work presented in this chapter.

OpenACC

OpenCL

OpenMP

Practical

Zhong et al

Structured
ArrowsLift TyTra

Imperative Functional

Parallel Skeletons Recursion Schemes Categorical DatatypesTheoretical

Build/fold rule

Anamorphism

Catamorphism

Hylomorphism

Alternative
Implementations

Implementation
selection

Data
Constructors

Pattern-
matching

Bohm-Berarducci encoding

DSE

F-Algebra
morphisms

DSE

Distributable Homomorphisms

Optimal TyTra DSE

Figure 3.8: Overview of the relationship between practical and theoretical related work.

The upper-left quadrant of Figure 3.8, labelled with the Imperative heading, shows that tradi-
tional parallel programming frameworks such as OpenCL can be directly augmented with DSE
techniques such as that of Zhong et al. [ZVL+14]. The lower-left quadrant, headed Parallel

Skeletons shows the technique used by a more sophisticated optimization solution, the Lift com-
piler [Ste15] which is implemented in a functional programming language, Lift uses rewrite
rules, corresponding to parallel skeletons, to optimize an imperative programming language
specification of the application. Limitations imposed by two-dimensional drawings mean that
the right-hand side of Figure 3.8, corresponding to Structured Arrows and our own solution only
shows part of the overall story.

CHAPTER 3. RELATED WORK 79

The approach taken by Castro in the presentation of Structured Arrows [Cas18b] was to give
denotational semantics in terms of Hylomorphisms as a unifying construct for Parallel Skeletons.
The application to be optimized is expressed as the composition of Hylomorphisms with Struc-

tured Parallel Processes which in turn are a representation of computation as the composition of
Parallel Skeletons. The denotational semantics of Parallel Skeletons as Hylomorphisms is spec-
ified for the object-language, allowing one to understand the application being optimized as
a Hylomorphic structure that can be transformed to alter its performance characteristics safely.
The semantics given for the object language constrains the meta-language that describes the
optimizing transformations the compiler may apply.

Parallel Skeletons hylomorphisms cost model

term trans f ormations optimal trans f ormation

denotational semantics operational semantics

equivalence selection criteria

Figure 3.9: Hylomorphisms as a unifying construct for the object-language of Structured
Arrows.

In chapter 4 which immediately follows we will take a different route that involves the use of
Hylomorphisms to describe the semantics of the meta-language for the TyTra compiler frame-
work rather than the object-level semantics of TyTra applications, as briefly summarized in
Figure 3.10.

Terms Types Cost-Perf

Type Transformations

Anamorphism

Catamorphism

SelectionSpecification

Analysis

Cost-Perf Model

TyTra DSE
TermF TypeF CostPerfF

Initial F-Algebra Initial F-Algebra Initial F-Algebra

Initial F-Algebra

Anamorphism Catamorphism

Optimal DSE
as a Hylomorphism

Categorical Data Types

Bohm-Berarducci encodingF-Algebra Pairs

Build-Fold Rule

Figure 3.10: Hylomorphisms as a unifying construct for the meta-language of the TyTra
Compiler Framework.

Chapter 4

Categorical Semantics

In this chapter present our main contributions.

• In section 4.1 we will define our models in terms of category theoretical notions, for
the TyTra CL, its type system, and the cost-performance estimates. We thus extend the
approach of defining categorical data types, covered in subsection 3.2.2 to handle the
particular flavour of search problem we are faced with. These models give us an abstract

view of what TyTra CL applications are and how they behave.

• In section 4.2 we will give a high-level view of DSE structured around the three conceptual
stages we presented in section 4.1, namely: specification, analysis and selection. In this
high-level presentation we will see what is required to design a DSE strategy for a simple
example problem, exploring a design space of cuboid shapes. This will allow us to identify
the evaluation morphisms required to implement a DSE strategy, on the categorical data
types we build in section 4.1 without going into the more complex details of the TyTra CL

and the TyTra IR.

• In section 4.3 we give a lower-level view of DSE as defined for the TyTra compiler, to
show how the required DSE evaluation morphisms identified in section 4.2 relate to the
problem of optimizing TyTra CL applications. This will allow us to connect the program-

ming language theoretical notions of program optimization used in TyTra to the evaluation
morphisms and categorical data types presented in the previous two sections.

• In section 4.4 we will use the categorical data type structures defined in section 4.1 to
define Categorical Semantics for the evaluation morphisms identified as required in sec-
tion 4.1, for the TyTra compiler. This will enable us to relate TyTra CL applications to
their globally optimal transformations.

• Finally, in section 4.5 we formally state and prove our main theorem, namely that a cor-
rect, polynomial-time DSE strategy exists for the TyTra compiler, through the use of the
categorical semantics presented in this chapter.

80

CHAPTER 4. CATEGORICAL SEMANTICS 81

4.1 Categorical Data Types

In this first section we will briefly describe categorical data type (CDT) construction by building
a data type for lists of values, roughly in line with the presentation of CDTs in Foundations of

Parallel Programming [Ski05] we mentioned in subsection 3.2.2. This will help in explaining
the utility of the category theoretical concepts covered in section 2.5 and give us the tools to iden-
tify the exact construction of categorical data types for TyTra terms, types and cost-performance

estimates in section 2.5. The first step in categorical data type construction is the identification
of a category and an Endofunctor on it, which models the properties we seek [Ski05]. In Haskell,
a homogeneous list of values having the type a, is modelled as a data type ListF a with two data
constructors: Empty : ListF a and ConsF : a→ ListF a→ ListF a as shown in Listing 4.1.

data ListF a = EmptyF | ConsF a (ListF a)

Listing 4.1: Haskell data type that encodes Lists.

This list data type allows us to define operations on lists of values, in terms of operations
defined for the values stored within. Given a function f : a→ b we can derive a function map :
List a→ List b, shown in Listing 4.2.

map :: (a −> b) −> ListF a −> ListF b

map f EmptyF = EmptyF

map f (ConsF h t) = ConsF (f h) (map f t)

Listing 4.2: Haskell implementation for the map operation.

ListF a is parametrized by a type argument a meaning that for every object a in a category
of types, ListF a is also an object in that category. If every type a is the object in a category of
types, then ListF a identifies another object in that category, meaning that it too is a type. At
the same time, the map function in Listing 4.2 identifies a morphism f : a→ b with a morphism
between the objects constructed using ListF .

List a ListF b

a b

f map f

ListF

f

ListF

Figure 4.1: ListF : 1+a×List a describes an Endofunctor.

We know that a Functor maps the objects and morphisms of one category to the objects
and morphisms in another category. If the source and destination categories coincide, then it is
called an Endofunctor. Taken together, the pair of ListF and f map forms an Endofunctor on the
category of types. For convenience, we can simply overload the name ListF to denote both.

CHAPTER 4. CATEGORICAL SEMANTICS 82

Suppose we made the choice of a explicit by saying that the category of types includes
Integers, meaning that a = Integer. We can see that for any function f : Integer→ Integer the
map operation gives us a List Homomorphism, a structure preserving morphism on lists, in this
case of Integers.

Integer ListF Integer

Integer ListF Integer

f map f

Figure 4.2: Category of Integers and List of Integers.

If both Integer and List Integer are valid type objects, we may also want to compute func-
tions that take a List Integer input and produce a single Integer value. Let us denote one such
morphism evalInt as shown in Figure 4.3.

ListF Integer Integer
evalInt

Figure 4.3: F-Algebra on a list of Integers.

We see that the type signature for functions such as evalInt is the same as that of an F-

Algebra, a concept we came across in section 2.5. For a given functor F that defines a data-type,
and a carrier type x an F-algebra is identified with an evaluation morphism evalFx : Fx→ x. The
type signature for an F-Algebra can be encoded in Haskell simply as type Algebra f a= f a→ a.
F-Algebras evaluate a structure of x values: Fx by pattern matching on the data constructors that
make up the functor F and replacing them with operations on the carrier type x. In this example,
the functor in question is ListF and the carrier object is Integer. Suppose that the evaluation
we wanted to compute was the sum of all Integer values in the list, there are then only two
data-constructors to pattern match on, EmptyF and ConsF . These could be replaced with the 0
literal and the (+) operation on Integers, respectively however there is first a small problem to be
addressed. All-though the first parameter to Cons is of type Integer, the second parameter is of
type ListF a. We know that the type for the sum operation is (+) : Integer→ Integer→ Integer

rather than (+) : Integer→ ListF Integer→ Integer. One way of solving this issue is to define
the F-Algebra as the recursive function shown in Listing 4.7.

sumAlg :: ListF Integer −> Integer
sumAlg Empty = 0

sumAlg (ConsF h t) = h + (sumAlg t)

Listing 4.3: A List F-algebras that summs the contents.

CHAPTER 4. CATEGORICAL SEMANTICS 83

A second and better option is to treat recursion as a separate issue altogether. This can be
done by defining the list data type as the fixpoint of the Endofunctor. In Haskell, the fixpoint
of a functor is obtained by providing the type-level equality, shown in Listing 4.4. This simply
states that for any functor F the data-type defined by Fix F is equal to an expression built using
f that contains sub-terms of type Fix F .

newtype Fix f = Fix {unFix :: f (Fix f)}

Listing 4.4: Fixpoint definition (Haskell).

From the Haskell type-level equality in Listing 4.4 we get the two type-level functions that
witness it, namely Fix : f (Fix f)− > Fix f and unFix : Fix f → f (Fix f). Using the first,
we can take our ListF Endofunctor, replace the recursive part of its definition with a new type
parameter r, and then define a recursive list data type definition as the fixpoint of this new
functor.

data ListF a r =

EmptyF

| ConsF a r

deriving Functor

type List a = Fix (ListF a)

Listing 4.5: A List type is the fixpoint of ListF.

We can now redefine our sumAlg evaluation morphism as below.

sumAlg :: List Integer −> Integer
sumAlg (Fix EmptyF) = 0

sumAlg (Fix (ConsF h t)) = h + t

Listing 4.6: A List F-algebras that summs the contents.

We can now easily define other evaluation morphisms by simply choosing appropriate values
to replace the list data constructors with. Replacing an empty list constructor with the value 1
and the second constructor with the product operation on integers, we obtain an F-Algebra that
computes the product of all integers contained in a list.

prodAlg :: List Integer −> Integer
prodAlg (Fix EmptyF) = 0

prodAlg (Fix (ConsF h t)) = h * t

Listing 4.7: A List F-algebras that multiplies the contents.

Note that all such evaluation morphisms are in fact related in a very specific way. The
fixpoint of the ListF functor is the initial object in the category of F-Algebras where sumAlg

and prodAlg are also objects.

CHAPTER 4. CATEGORICAL SEMANTICS 84

In section 2.5 an F-Algebra in a category C was defined as a three component tuple (F,x,α :
F(x)→ x). Such F-Algebra triplets are primarily identified by their third component, the evalu-
ation morphism, because each such morphism implies an exact choice of functor F and carrier
type x. The F-Algebras for a given functor F that specify a data type form a category in which
the initial object is the initial F-Algebra which defines that type, Fix F . The objects in this
category represent every possible way of interpreting a value of type Fix F .

F(Fix F)→ (Fix F)

F a→ a F b→ b

id

id id

Figure 4.4: Objects and morphisms in the category of F-Algebras over a functor F .

The object at the top of Figure 4.1 is the initial object in the category of F-Algebras. Note
that its type signature is given by the unFix : Fix f → f (Fix f) function. If we look closely
at the definitions of sumAlg and prodAlg in Listing 4.6 and Listing 4.7 respectively, we see that
both of them pattern-match on the outer Fix constructor of values having the type Fix ListF to
reveal the inner ListF(Fix ListF) data structure. The effect of this pattern matching is the same
as first calling unFix and then pattern-matching on the inner ListF value. This is important
because the morphisms in Figure 4.1 describe a way of transforming one evaluation function
into another. The arrows pointing away from the initial object towards F a→ a and F b→ b

are exactly such morphisms. They are a transformation from operations represented as Fix F

values, to operations on a and b values respectively. Recall that we defined the list data type as
the fixpoint of the ListF functor, meaning that the values having a List a type are constructed
using the same Fix type-level function as below.

empty :: List a

empty = Fix EmptyF

cons :: a −> List a −> List a

cons h t = Fix (ConsF h t)

Listing 4.8: List a data constructor functions.

It may seem as if we have put in a lot of effort to define a simple list data type. The value of
categorical data types becomes apparent when we consider data types with more structure.

CHAPTER 4. CATEGORICAL SEMANTICS 85

4.1.1 Optimisation from recursion schemes

So far we have seen that F-algebras can be used to evaluate a structure of values by replacing
the constructors that define said structure with the operations of a carrier type. Likewise, an
F-CoAlgebra can create structure from an initial seed value. If we are given or perhaps required
to create a nested structure of values, such as the list of integer lists shown in Figure 4.5, then
F-Algebras and F-CoAlgebras may not be sufficiently strong as to fully describe the required
operation.

[[]]

[]

1 []

2 4 []

3 5 7

ConsF

ConsF
ConsF

ConsF ConsF
ConsF

ConsF ConsF ConsF

Figure 4.5: A term-level structure of nested list functors.

Producing an aggregate value, such as the sum of all numbers in the nested data-structure
in Figure 4.5 implies a call to the evaluation function for each nested layer. Here one call
produces the aggregate of the inner list, denoted by the vertical arrows standing in for the ConsF

constructor, whilst another call aggregates the outer list denoted by the black diagonal lines. In
the case of both sumAlg and prodAlg, the order of evaluation is not significant because both
the (+) and (∗) operators used to define them are associative and commutative on the Integer

type. Had we chosen a different carrier type however, perhaps a matrix of values, then order
of evaluation would indeed be significant. Recursion schemes are higher-order functions that
specify an exact order of evaluation. They are parametrized by F-Algebras and F-CoAlgebras.
One particularly useful recursion scheme is a Catamorphism, more commonly known as a fold

operation. Another useful recursion scheme, is the Anamorphism, which is the opposite concept
to that of a Catamorphism. The Haskell type signature for both recursion schemes is shown in
Listing 4.9.

cata :: Functor f => (f a −> a) −> f a −> a

ana :: Functor f => (a −> f a) −> a −> f a

Listing 4.9: Haskell type signatures for Catamorphisms/Anamorphisms.

CHAPTER 4. CATEGORICAL SEMANTICS 86

Catamorphisms correspond to traversals of nested data-structures. The F-Algebra supplied
as the first argument is iteratively applied to every intermediary data structure. The exact order
of evaluation chosen to implement the Catamorphism can have an effect on the overall per-
formance. Processing certain nested data-structures may be quicker if it’s done top-to-bottom,
whilst others may be faster done bottom-up. The optimizing power of Catamorphisms, partic-
ularly in the case of list operations is discussed at length in Foundations of Parallel Program-

ming [Ski05], however, Catamorphisms alone are also insufficient for our purposes. Conversely,
an Anamorphism parametrized by some F-CoAlgebra can be used to recursively build a nested
data-structure. The first application of the F-CoAlgebra generates a structure of new seed values
on which the F-CoAlgebra can be recursively applied. Given that recursion schemes are higher-

order functions and knowing that functions means that simple recursion schemes such as cata

and ana can be used to define other, more complicated recursion schemes. A Hylomorphism,
for example, is defined as the composition of an Anamorphism with a Catamorphism, as shown
in Listing 4.10.

hylo :: Functor f => (f b −> b) −> (a −> f a) −> a −> b

hylo f g = h where h = f . fmap h . g

Listing 4.10: Hylomorphism signature in Haskell.

The composition of two recursion schemes can also be more efficient than the sequential
application of its components. A Hylomorphism may be seen as altering the Anamorphism

component to never produces those structures removed by the Catamorphism. The removal
of intermediate representations as an optimization strategy is known as automatic deforesta-
tion [Wad88]. In the TyTra compiler, the process of generating candidate program variants is
effectively an Anamorphism. The seed value in this case is the TyTra CL expression that was
provided as the input to the compiler. This initial program variant is used to generate a search-
space of optimized variants. Likewise, selecting the most performant and least costly program
variant is a Catamorphism. The structure of the search-space is consumed until all that is left is a
single globally optimal program variant. At the same time, the data types for TyTra terms, types
and cost-performance estimates are all defined as the Anamorphisms and Catamorphisms pro-
vided by the Fix and unFix type-level functions shown in Listing 4.4. We can see now that our
goal is to describe the entire design space exploration process as a composite recursion scheme
that provides an optimal evaluation order. Doing so requires careful planning as the data struc-
tures we must work with are significantly more complicated than a simple or nested list. The
recursion scheme we are looking for is parametrized by different F-Algebras and F-CoAlgebras

and relies on multiple functors including: TermF, TypeF and the cost-performance base functors
we will construct next, in subsection 4.1.2.

CHAPTER 4. CATEGORICAL SEMANTICS 87

4.1.2 Terms and Transformations

Before we can specify Categorical Semantics for the TyTra compiler framework, we must first
define categorical data-types for the structures on which it operates. We will begin by analysing
the TyTra CL term language implementation in the Haskell programming language.

data TermI = TermVar String
| TermApp TermI TermI

| TermTup [TermI]

| TermZip

| TermUnZip

| TermStencil [Integer]

| TermMap TermI

| TermFold TermI

| TermElt Integer

Listing 4.11: Haskell data type for TyTra CL Terms.

The Haskell representation for the data type in Listing 4.11 defines an Abstract Syntax Tree

for TyTra CL expressions. We can see that the TermI data type is constructed by listing out a
number of data constructors, each having an unique name. The TermVar data constructor, for
example, can be used to represent input variables and opaque functions as both of these are
entirely identified by their names, encoded as simple String values. From a categorical data type
perspective, data constructors can be seen as functors. Data constructors such as TermVar map
the objects and morphisms of one category, in this case the category of String literals, into the
category of terms. Recursive data constructors are then Endofunctors because their source and
destination categories coincide.

"foobar"

String

"foo" "bar"

TermI

TermVar "foobar"

TermVar

TermVar "foo" TermVar "bar"

Figure 4.6: The TermVar data constructor is a functor from the category of Strings to the
category of TyTra CL Terms

CHAPTER 4. CATEGORICAL SEMANTICS 88

TyTra CL AST transformations are functions that take and return term values meaning they
have the type shown in Figure 4.1.2 below.

TermI TermI

Figure 4.7: The Type of TyTra CL AST Transformations.

Just as the list data type can be interpreted as the fixpoint of the ListF functor, so can the
terms of the TyTra CL. The Haskell data type encoding of TyTra CL terms we showed in List-
ing 4.11 can just as well be defined as Fix TermF , the fixpoint of TermF , a functor, shown
below.

data TermF a = TermVarF String
| TermAppF a a

| TermTupF [a]

| TermZipF

| TermUnZipF

| TermStencilF [Integer]

| TermMapF a

| TermFoldF a

| TermEltF Integer
deriving (Functor)

newtype Term = Fix TermF

Listing 4.12: Haskell Functor that defines the structure of TyTra CL Terms.

The sumAlg and prodAlg evaluations of lists of integers were relatively straight-forward
Catamorphisms over the ListF functor. In contrast to those, the evaluations of TyTra CL terms
is significantly more complicated. On the one hand this is due to the richer structure of the
TermF Endofunctor. On the other hand, a correct and efficient DSE strategy requires that we
define transformations on TyTra CL expressions, in terms of their evaluation as TyTra CL types

and cost-performance estimates which we have yet to define. At the term-level we have no way
of guaranteeing that the transformation process does not alter the meaning of the application. If
we represented the input and output TyTra CL AST nodes using their Functor type format, we
would obtain a simple function signature more like:

TermF TermI TermF TermI

Figure 4.8: Functorial Type TyTra CL AST Transformations

The type for the argument passed to this function exposes the outer-most data-constructor
of whatever TyTra CL expression is passed in. Any evaluation function that takes arguments of
this type are consequently limited. They can only inspect this outer-most constructor.

CHAPTER 4. CATEGORICAL SEMANTICS 89

We can implement simple transformations such as the identity transformation, which per-
forms no work, and corresponds to the identity morphism on TermF TermI objects. One possi-
ble (but purposely incorrect) implementation is shown in Listing 4.13.

idTerm :: TermI −> TermI

idTerm Termvar name = TermVar name

idTerm TermApp f i = TermApp f i

idTerm TermTup ts = TermTup ts

idTerm TermZip = TermZip

idTerm TermUnZip = TermUnZip

idTerm TermStencil ixs = TermStencil ixs

idTerm TermElt ix = TermElt ix

idTerm TermMap f = TermFold f −− Incorrect behaviour

idTerm TermFold f = TermMap f −− Incorrect behaviour

Listing 4.13: Incorrect identity transformation on TyTra CL terms.

Specifying term-level transformations for our TermI data type is a straight-forward but po-
tentially error-prone process. The case expression in Listing 4.13 pattern-matches a data con-
structor on the left-hand-side of the arrow operator and then replaces it with another expression
given on the right-hand-side. That being said we can easily see that this idTerm implementation
is incorrect because it replaces a TermMap data constructor with a TermFold constructor, and
vice-versa. An abstract data type, on the other hand, can be entirely defined by the operation
it supports without having to also specify a concrete term representation.

Suppose we have already defined a category for the TyTra type system where the objects
are types and the morphisms between these objects define type-level transformations. Given
any term-level representation constructed using the TermI data-type, denoted as the term object
below, a type-evaluation function typeEval would be the functor that maps the term object and
its morphisms, to an object t and its morphisms, in the category of types as shown in Figure 4.9.

term t

idTerm

typeEval

id

Figure 4.9: Identity morphisms on TyTra CL types

Using typeEval we can determine the correct identity transformation on terms by seeing
which morphism on terms it maps to the identity morphism on types. Next in subsection 4.1.3
we will define this category of type objects which we presumed to exist.

CHAPTER 4. CATEGORICAL SEMANTICS 90

4.1.3 Types and Type Constructors

The TyTra CL type system is defined inductively meaning that more complicated types are con-
structed by applying type-level constructors to already defined types. If every type is an object
in the category of types, then type-level constructors are Endofunctors on the category of types.
The TyTra CL term-level constructors specified by the TermI data type each identify not one but
an entire family of Endofunctors. This is because the exact or concrete set of types that corre-
spond to any given TyTra CL term is not just a function of the term’s structure, but also a function
of the type context or set of type annotations that are valid for the TyTra CL term in question. Let
us now have a closer look at the individual data constructors and how they determine relations
on types. At the beginning of subsection 4.1.2 we said that the TermVar data constructor is a
functor from the category of String literals to the category of TyTra CL Terms. The term object
identified by the TermVar functor and a given String literal value "foo" simply denoted TermVar

foo, is mapped by the typeEval functor to a family of Endofunctors TypeΓ : Type→ Type on the
category of TyTra CL Types.

This family is indexed by type contexts meaning that for a given Γ type context, the product
object (Γ , TermVar foo) identifies a specific Type(Γ, f oo) : Type→ Type Endofunctor such that
Γ ` TermVar f oo : Type(Γ, f oo) () where () is the initial object in the category of TyTra CL
Types. Because Type(Γ, f oo) is an Endofunctor, meaning that its source and destination categories
coincide. It can just as well be understood as a morphism between type objects, or a function
on types. If the "foo" variable name is given a concrete type definition in some context, perhaps
Γ ` f oo : Int , then the Type(Γ, f oo) () identifies the type-level constant function ()→ Int, more
simply known as the Int type object. The same reasoning can be applied to all other term
constructors, as shown through the type derivation rules below. Above the line we specify the
type objects assigned through Γ to the sub-terms required by each such constructor. Below the
line we see the constructed term and the type object assigned to it by the typeEval functor.

Γ ` f : Typea 7→ Typeb Γ ` i : Typea
(TermApp f a) : Typeb

Γ ` f : a→ b
TermMap f : Vecsa→Vecsb

Γ ` a : Typea . . . Γ ` z : Typez

TermTup(a, . . ., z) : (Terma, . . . ,Typez)
Γ ` f : a→ b

TermFold f : Vecsa→ b

Γ ` a : Vecsa Γ ` b : Vecsb
TermApp TermZip (a, b) : Vecs(a,b)

Γ ` i : Vecs(a,b)
TermApp TermZip i : (Vecsa,Vecsb)

Γ ` i : Vecsa
TermApp (TermStencil [ix1, . . ., ixn]) i : SVecna

Γ ` v : Vecsa
TermApp (TermElt ix) v : a

Figure 4.10: TyTra CL Type System derivation rules.

CHAPTER 4. CATEGORICAL SEMANTICS 91

The type constructors used to form the output of the typeEval functor describe the Haskell
data type shown in Listing 4.14 below.

data TypeI =

| TyAtom String
| TyProd TypeI TypeI

| TyVec Size TypeI

| TySVec Size TypeI

| TyTup [TypeI]

| TyFun TypeI TypeI

Listing 4.14: Haskell data type that encodes TyTra CL Types.

We will now unpack this definition to identify the categorical notions that are needed to
princely describe the TyTra type system.

Atomic Types are unique objects

The category of String literals, or names, is depicted at the bottom of Figure 4.11 by showing
an object for every possible string literal. A given TyTra CL application may only use a finite
number of these names, each identifying a unique object in the category of TyTra CL Types,
such as the TypeAa and TypeZz Atomic Types shown at the top of Figure 4.11.

Types TypeAa TypeZz

”Aa” ”Ab” ... ”Az” ”Za” ... ”Zz”

”A” ”B” ”C” ... ”Z”

Names ””

Figure 4.11: Atomic Types as objects of a category (top) and the category of names (bottom).

The Atomic Type constructor, depicted with a double arrow in Figure 4.11, is the Functor that
assigns each name a particular Atomic Type. Note the similarity between this functor and that
used to define term-level variables, depicted in Figure 4.6. As with opaque functions, a String
representation for a unique type name is all that is required. The concrete properties pertaining
to individual atomic types, that may be required during DSE, can be recovered from the context
of cost-performance estimates through a lookup operation that takes this String representation
as an argument, as we will see in Listing 4.49.

CHAPTER 4. CATEGORICAL SEMANTICS 92

Tuples Types are Product Objects

Given two types a and b, the tuple type (a,b) denotes an aggregate value that contains a value
of type a and a value of type b. If a and b are the objects of a category, then the tuple type
(a,b) is the product object of a and b in that category. Every binary type (a,b) comes with two
projection functions that may be used to access the component values. In the Haskell program-
ming language, these projections are the frequently used f st : (a,b)→ a and snd : (a,b)→ b

functions, depicted in Figure 4.1.3 below.

(a,b)

a b

f st snd

Figure 4.12: Tuple Type projections are morphisms in the category of TyTra CL Types.

A Binary Tuple Type Constructor must then be the Endofunctor that defines the following
structure-preserving map: TupOb : a×b→ Tup(a,b). We have also previously mentioned that
binary tuples are sufficient to model k− ary tuples. An explanation follows in the subsequent
discussion of Vector Types.

Vector Types Constructors are Indexed Endofunctors

Vector Type Constructors correspond to homogenous tuples, for which all projections point to
the same destination object. The projection functions from a Vector Type may yield different
values yet all of these will have the same type and can thus be denoted by the same object in
our category of types. We say that Vector Types in TyTra CL are indexed by their size and
parametrized by a type parameter.

Vec2a = Tup(a,a)

Figure 4.13: A Vector Type of size 2 corresponds to a binary tuple Tup(a,a).

Recall that Functors (including Endofunctors are morphisms in Cat, the category of cate-
gories. There may exist multiple morphisms between the objects of a language, but they are
all isomorphic. A Vector Type Constructor, being an Endofunctor in the category of TyTra CL
Types, is then a morphism in Cat. The meaning of the size index that distinguishes Veck a from
Vecm a, is give by the concept of an Indexed Functor. For our purposes it is sufficient to state
that parametrizing the Vector Type Constructor by a type parameter a yields a Family of Type
Constructors Veci a where a particular type constructor may be selected by indexing with i, the
size index. Setting the index i to a value of 2 for a vector parametrized by the a atomic type, as
in Figure 4.13, yields the Binary Tuple Constructor (parametrized in both places with a) as the
particular Endofunctor from the family that defines Vector Types.

CHAPTER 4. CATEGORICAL SEMANTICS 93

The Category of Types is Distributive

Vector Data-Types have two data constructors. A type having a choice of two or more type

constructors is known as a sum type. The first V Nil yields the empty vector value, having
a type that is indexed with the size value 0. The second data constructor, VCons, takes two
parameters: type a by which the vector type is parametrized, and another vector to which the
value is prepended.

Veck+1a : 1+a× (Veck a)

Figure 4.14: Vec is a polynomial functor.

Here the output size index is implicitly defined as the successor (+1) of the input size index.
The fact that the output type depends on an input value shows that the TyTra CL type system is
dependently typed. The category of TyTra CL types is a distributive category. The higher-order
operations: ZipT and UnZipT witness the distributive law.

(1+a×Veca)× (1+b×Vecb) = 1+(a×b)×Veca×b (4.1)

Reading Equation 4.1 from left-to-right yields the ZipT operation. Conversely, reading from
right-to-left gives the opposite operation, UnZipT. The distributive property of products over

sums witnessed by these operations is useful in proving what that encoding all k-ary tuples as

binary tuple types leads to no loss of generality. We now show the proof in graphical form which
defines Vector Types are homogenous tuples.

a a

(a,a) ((a,a),a) (a,(a,a)) (a,a)

a a a a

Assoc

Assoc−

elt0 elt1

elt0

elt1

elt0◦elt0

elt1◦elt0

Assoc elt0

elt1

elt1◦elt1

elt0◦elt1Assoc− elt0 elt1

Assoc

Assoc−

Assoc

Assoc−

Figure 4.15: Distributivity of products over sums.

CHAPTER 4. CATEGORICAL SEMANTICS 94

The arrows between each pair of corresponding objects on the left and right, labelled Assoc

and Assoc− in the diagram are Endofunctors. They are structure preserving maps from the cat-
egory of TyTra CL Types into itself. Both map objects to objects and morphisms to morphisms
whilst preserving the sources, destinations, composition of morphisms, and associativity of com-
position for all morphisms.

Assoc and Assoc− are each-other’s inverse, together they form a natural isomorphism. If we
couple this notion with a tensor product operator, in our case the binary tuple constructor, as
well as an unit object we can show that the category of types is a monoidal category. The object

mapping part of the Assoc and Assoc− Endofunctors are morphisms in the category. Together
they witness isomorphism between the source and destination objects.

If we have another look at the Assoc , Assoc− functors, we will see they are adjoint End-
ofunctors. They identify the isomorphisms between k-ary Tuple Types, or equivalently, Vector

Types of size k functors. We can likewise define the meaning of the Elt action by defining a
pair of adjoint functors between the category of natural numbers N and that part of the category
corresponding to Vector Types.

Function Types are Exponential Objects

The TyTra type system also has function types. The categorical object that defines function
types is the exponential object, also called an internal hom-set because it represents the set of
all morphisms between two other objects in the category. Recall that an exponential object xy

comes with an evaluation morphism apply : xy×y→ x. An exponential object xy that represents
the hom-set of all morphisms f such that f : y→ x would be represented as TyFun y x , in
accordance to the data type of TyTra CL types we have shown in Listing 4.14. The typeEval

functor applied to a TermApp expression identifies this apply evaluation morphism according to
the commutative diagram shown in Figure 4.16 below.

TermApp f i

f xy× y→ x i

xy y

typeEval

typeEval typeEval

Figure 4.16: Function types.

CHAPTER 4. CATEGORICAL SEMANTICS 95

4.1.4 Cost-Performance Estimates

The data type that defines cost-performance estimates is simply a tuple of tuples. The outer tuple
has a performance estimate component and a resource use component. Each of these, in turn,
is a tuple of measurements or estimates. The values in these inner tuples are natural numbers

having the type Nat as shown in Listing 4.15.

data PerformanceKI = PerformanceKI {

efi :: Nat, afi :: Nat , lat :: Nat, sd :: Nat, lfi :: Nat, fpo :: Nat

}

data ResourceKI = ResourceKI {

regs :: Nat , bram :: Nat, dsps :: Nat , aluts :: Nat, propDelay :: Nat

}

data CostPerf = CostPerf PerformanceKI ResourceKI

Listing 4.15: Haskell data type for cost-performance estimates.

Natural numbers can be represented as Peano numerals. This means defining natural num-
bers as having two data constructors. The first is a nullary constructor Zero :: Nat corresponding
to the value 0. The second is Successor :: Nat→ Nat, a recursive data-constructor.

data Nat = Zero | Successor Nat

Listing 4.16: The type of natural numbers (Haskell).

The corresponding functor is NatF such that Nat = Fix NatF.

data NatF a = ZeroF | SuccessorF a

Listing 4.17: Functor of natural numbers (Haskell).

From a category theory perspective, ZeroF is the initial object in the category of natural
numbers Nat. Every natural number, apart from 0, is defined as a sequence of applications of
the SuccessorF endofunctor to the initial object defined by ZeroF . The value 1 is defined as
SuccessorF ZeroF, the value 2 corresponds to SuccessorF (SuccessorF ZeroF) and so on. The
reason for our choice of representing performance and resource-cost estimates using Peano-
encoded natural numbers becomes apparent when we recall the functor that defined list data
types from Listing 4.1. There exists a very close relationship between these two functors. The
ZeroF constructor can be mapped to EmptyF , the empty list constructor, whilst a sequence of
k applications of the SuccessorF constructor corresponds to pattern-matching k applications of
the ConsF constructor, in other words, selecting the kth element of a potentially unbounded list.

CHAPTER 4. CATEGORICAL SEMANTICS 96

Recall that the TyTra type system includes size-indexed vector types, rather than unbounded
lists. From the Peano encoding of natural numbers we may obtain a new type that describes
bounded or finite natural numbers up to a selected value k. For any selected k value we define
a functor from Nat into the opposite category Fink that maps a k, into the initial object. Given
the duality between the initial object in one category and the terminal object in the opposite
category, the same functor maps ZeroF into the terminal object of Fink. Suppose we chose a
concrete value k = 3. Using the method just described, we can define a data type of finite natural
numbers up to the value of three, as shown in Figure 4.17.

Z SZ S(SZ) S(S(SZ))
PredF PredF PredF

PredF◦PredF

PredF◦PredF◦PredF

Figure 4.17: Fin3: the category of finite natural numbers up to the value 3.

The successor morphism in Nat defined by the SuccessorF Endofunctor on Nat is mapped
into the predecessor morphism in Fin3 which corresponds to the PredF Endofunctor. The
choice of a concrete value k = 3 means that Fin3 has four objects in total, described by the
types T hree, Two, One and Zero shown in Listing 4.18. Where the Nat category was related to
lists, a Fink category is related to a finite vector type Veck.

data PredF a = PredF a

data Three = Three

newtype Two = PredF Three

newtype One = PredF (PredF Three)

newtype Zero = PredF (PredF (PredF Three))

Listing 4.18: Finite Numbers.

The relationship between Fin3 and a TyTra vector type Vec3 a becomes apparent when we
consider the element selection operation on vector types. We can produce exactly four values
from a vector of type Vec3 a. Three of these values are of type a stored in the vector, whilst the
fourth value denotes an empty vector type.

Z S(Z) S(S(Z)) S(S(S(Z)))

NilF a : [] a : a : [] a : a : a : []

PredF
PredF PredF

ConsF a ConsF a ConsF a

Figure 4.18: Relationship between Fin3 and a vector type Vec3 a.

CHAPTER 4. CATEGORICAL SEMANTICS 97

The relationship between Fin3 and vector types Vec3 a shown in Figure 4.18 gives rise
to most of the optimizations to our DSE strategy. Consider the task of parallelizing a simple
application where the only operation performed is a map over a vector of 5 integers. The type
for this expression is Vec5 Int → Vec5 Int. The specification or search-space generation phase
of a DSE strategy would normally produce a list of program variants that parallelize this map
operation. The input vector has a finite size of 5 meaning that at most 5 program variants from
this potentially infinite list, can lead to worth-while implementations. The simple matter of fact
is that no parallel FPGA implementation can speed up a mapping operation, where the kernel
function has an opaque definition, above the limit imposed by data availability. This means
that using the input vector’s type size index, the value 5, we can generate a finite vector of
program transformations with the same size index Vec5 (Vec5 Int → Vec5 Int). Furthermore,
every program transformation in this vector is defined by its relation to the value 5 using the
PredF functor. The fifth value in the vector might represent a parallelization factor of 5, the
fourth value a factor of 4 and so on, until the terminal value 0 is reached. Because of this
relation between the size index and the program transformations, we can also work out the
maximum cost of any parallelization factor, for map operations, up to a size index k as shown in
Listing 4.19.

smulRKI :: Nat −> ResourceKI −> ResourceKI

smulRKI k (ResourceKI ar ab ad aa apd) = ResourceKI (k*ar) (k*ab) (k*ad) (k*aa) apd

Listing 4.19: Scalar resource cost multiplication.

Note the type signature for smulRKI shown in Listing 4.19. The first argument is of type
Nat rather than Fin5 to make the Haskell implementation easier. This is neither a practical nor
a theoretical issue as the corresponding Fin5 value is simply the same object in the opposite
category to Nat. The interpretation of this type signature as a function says that: given a paral-
lelization factor k and a resource-cost estimate, we can work out the resource-cost estimate of
a k-parallel implementation. At the same time, the selection phase of our DSE implementation
removes program variants that would consume more hardware resources than the target FPGA
can provide. Suppose we represented the hardware resource limits as a value l : ResourceKI. A
select function on lists of program variants/transformations could be implemented as shown in
Listing 4.20.

select :: ResourceKI −> [ResourceKI] −> [ResourceKI]

select l variants = case variants of
[] −> []

(x:xs) = if smulRKI (size xs + 1) x < l

then x : select l xs

else []

Listing 4.20: Resource cost based selection.

CHAPTER 4. CATEGORICAL SEMANTICS 98

If the hardware resource limits imposed by l are less than any of the values contained in
the variants input list, the output will be a list having a size index kl , strictly smaller than k

which is the size-index for the input vector that generated the list of variants. Otherwise, the
output list will have exactly k values, meaning that in all cases kl ≤ k. Rather than generate
and filter a list, we can simply use the relationship between k and a vector type Veck shown
in Figure 4.18, alongside the relationship between the elements of a vector of parallel program
variants generated for a map term and the total resource cost given by smulRKI shown in List-
ing 4.19, to equationally work out the value of kl . Knowing that the ResourceKI data-type is a
product of natural numbers, we can simply use integer division on every component of l against
every projection of the ResourceKI estimation for the opaque function in question, and then take
the minimum integer divisor found. If the opaque function has minimal hardware resource use
estimates, we may find that k≤ kl . In this we simply redefine kl = min kl k. to ensure that in the
end, kl ≤ k.

addRKI :: ResourceKI −> ResourceKI −> ResourceKI

addRKI

(ResourceKI ar ab ad aa apd)

(ResourceKI br bb bd ba bpd)

= ResourceKI (ar+br) (ab+bb) (ad+bd) (aa+ba) (apd + bpd)

Listing 4.21: Resource cost addition is defined point-wise.

Evidently, not all TyTra CL applications are as simple as a map operation over a single vector
input. If a TyTra CL term t has two sub-terms, s1 and st , then we need a way of working out
the overall resource-cost of t from the costs of s1 and s2. This can be done using the addRKI

function shown in Listing 4.21 which is defined as point-wise addition. The addition of natural
numbers represented with a Peano encoding is given by the S n+m = S (m+n) equation. The
performance side of a cost-performance estimate means that the performance of t is simply the
component-wise minimum of performance components of s1 and s2 as shown in Listing 4.22.

minPKI :: PerformanceKI −> PerformanceKI −> ResourceKI

minPKI

(PerformanceKI aefi aafi alat asd afpo)

(PerformanceKI befi bafi blat bsd bfpo)

= ResourceKI (min aefi befi) (min aafi bafi) [..]

Listing 4.22: Minimum of two performance estimates.

The overall performance of a term is defined as the minimum of its sub-terms because of
the functional dependency of circuits, which is explained in subsection 4.3.2. In section 4.2 that
immediately follows, we will see how the categorical data types and the category-theoretical
semantics we have defined for TyTra can be used to implement our efficient DSE strategy.

CHAPTER 4. CATEGORICAL SEMANTICS 99

4.2 DSE in Categorical Terms

The structure of the presentation in this section is based on the three conceptual DSE stages we
presented in section 1.1, namely specification, analysis and selection. Our formal definition for
a DSE process is given alongside its application to a toy example, a DSE strategy for the space
of cuboid designs, the three-dimensional equivalent of a rectangle. This presentation will allow
us to cover all required definitions without going into the complexities of the TyTra compiler
and the two formal languages used therein: the TyTra CL and the TyTra IR. Deriving an efficient
DSE strategy for the TyTra compiler hinges on our ability to bridge the semantic gap between
the TyTra CL and the TyTra IR, this will be explained in subsection 4.1.2.

4.2.1 Specification

A design space, we said, may be seen as a collection of design points. If need only consider the
end result, then we might represent every transformed program variant (or term) as the object in
a category of programs, as categories are collections of objects. In Figure 4.19 below, we show
these objects as grey circles. Morphisms in this category would then be equivalent to program

transformations, and are shown using the black arrows connecting these objects.

i

1

3

2

4

Figure 4.19: Sub-terms (blue/purple circles) as projections (grey arrows) in the category of
terms, and their transformations (blue/purple morphisms).

We call the objects in this category design points. Each of these corresponds to one or more
design decisions, meaning that each design point is effectively a configuration with multiple
options being set. If the design point represents the term of a programming language, then
design decisions might correspond to sub-terms.

CHAPTER 4. CATEGORICAL SEMANTICS 100

Assuming that the terms of a language can be represented as the objects of a category with
finite products, then the sub-terms can be identified with the projection morphisms, shown in
blue and purple in Figure 4.19. It is easy to see that in such cases, there exists a correspondence
between term-transformations and sub-term transformations: a pair of blue and purple arrows
represents the same information as its corresponding black arrow. To illustrate why category

theory is such a useful tool in optimizing a DSE strategy, as well as the limitations that apply to
this technique, let us consider a more simple problem: optimizing design space exploration in
a search space of cuboids. We will start from the basic specification of the cuboid as the three-
dimensional equivalent of a rectangle, an example of which is depicted below in Figure 4.20.

A

B C

D

E

F G

H

Figure 4.20: Design Space of cuboids.

If a design point represents a specific cuboid, which may itself be represented as a collection
of design decisions, then we must choose a suitable representation for these design decisions.
In the ideal case, the structure of a design point would map perfectly on to the structure of the
object which we are attempting to optimize. For a cuboid, this might that a design point has one
of the following definitions, depending on our choice of granularity, as a collection of:

• Corner Point objects, denoted A,B,C,D,E,F,G,H in Figure 4.20. The concrete collection
might be a finite product of these points, the eight-tuple: (A,B,C,D,E,F,G,H).

• Line objects which are binary products of Point objects: ((A,B),(B,C) . . .).

• Rectangles or Face objects, represented either by products of Line objects or products of

Point objects, as defined above.

Reading these definitions in a top-down order, we see that they are progressively more struc-
tured. With increased structure comes more safety: an arbitrary set of eight points can denote
many shapes, not just cuboids, yet a collection of rectangles is closer to the true meaning of a
cuboid. Geometrically, we know that there is a set of relations that must hold true for the points,
lines or rectangles that make up a cuboid. It is also true that these relations are connected across
specification granularity boundaries by a higher-level of relation. Given two points that do not
form a valid line (perhaps they coincide) we can not possibly form a valid rectangle.

CHAPTER 4. CATEGORICAL SEMANTICS 101

This means that valid design points can only be constructed from, or decomposed into, struc-

tured collections of design decisions using structure-preserving transformations. The structure
that must be preserved is defined by the correctness criteria for such designs. We already have
a name for such structure-preserving transformations: they are functors. A Point object may
itself be represented in the Haskell programming language as product of three natural numbers
as shown in Listing 4.23.

data Point = MkPoint Nat Nat Nat

aPoint = MkPoint 0 0 0

bPoint = MkPoint 1 1 1

Listing 4.23: Point data-type definition.

The complete formal definition for a Point object relies on two notions. One is the functor

pointing from the category of natural numbers, into the category of Designs, shown using the
red arrows in Figure 4.21 below. The second is the universal property that defines products,
shown using the blue arrows in the same figure.

0

1

2 (1,2,0)

Nat

Design

sndfst

1 2

(_,2,_)

(1,_ ,_)

s

s

 0
thrd

(_,_,0)

Figure 4.21: The category of Point objects.

Having defined the Point object using the universal property of a product object, we know
that it is the initial object in that category. This means that every other object in the category can
be identified through a morphism from that object. The universal property for product objects
states that if products exist, then every other object in that category must be factored through that
object. Here the other objects are the components values of a Point. They are factored through
the product object using the projection operations: fst, snd and thrd. As we have suggested
previously, using the notion of a Point alone is not enough to define what a valid cuboid is.

CHAPTER 4. CATEGORICAL SEMANTICS 102

We would have to use an evaluation function, perhaps that shown in Listing 4.24 to determine
whether a collection of points constitutes a cuboid.

isCuboid :: Design −> Bool
isCuboid a b c d e f g h =

length a b == length c d && length c d == length e f & length e f == length g h

&& length a d == length b c && length b c == length f g && length f g == length e h

[...]

Listing 4.24: A predicate for correct cuboids.

Clearly, isCuboid defined in Listing 4.24, is cumbersome to use. Seeing that this function
used the length property of a line to determine the validity of a cuboid, we might do well to
represent the notion of a line in a new category, Design’ where a Line is the initial object,
defined as a product of two distinct Point objects.

(0,0,0)

Design

sndfst

0 0

0
thrd

(0,0,1)

sndfst

0 0

1
thrd

(0,0,0)

Design'

sndfst

0 0

0
thrd

(0,0,0)

sndfst

0 0

1
thrd

((0,0,0),(0,0,1))

fst snd

MkLine

Figure 4.22: The category of Design’ objects where Line is the initial object and its relation to
Design.

By defining the constructor functor MkLine shown with the red arrows in Figure 4.22 we
move complexity from the Design object into a new structure. A Line can be directly evaluated
to determine its length, by taking the distance between its component points. We can see that
through the addition of structure, we can define a safer design space that excludes more of the
invalid designs. We have not yet shown how we can make DSE more efficient. For that purpose,
we must first identify which of the properties for these designs we care about.

CHAPTER 4. CATEGORICAL SEMANTICS 103

If the problem that must be solved is that of finding the most voluminous cuboid that will
fit certain dimensions, such as length, width, and height shown in Figure 4.23, then defining a
search space in terms of those dimensions is an even better approach. The trouble is that, in the
general case, checking a property is easier than defining an object that has it.

width

height
depth

Figure 4.23: A parametrized design space of cuboids.

Recall that a definition given in terms of some property that must be respected is intensional

whilst a definition given by enumeration is extensional. Given sufficient structure, we can at
least relate these definitions. In the case of cuboids defined as collections of lines, we can
use the evaluation morphism (from lines to lengths), to determine the cuboids dimensions, and
then index the initial object that describes cuboids with the newly determined properties. This
will allow to recover a definition for suitable comparison operations on cuboids, from those on
lengths.

Rational

0

0.1

1

n

Line Line Line Line

Cuboid

Design''

Length Width Height

(_, (L,W,H))

(L,W,H)

Dimensions

Figure 4.24: The category of Point objects.

In Figure 4.24 we have shown a category where the initial object, called Cuboid, is repre-
sented as a product of lines (only some of which are shown due to space considerations). Each
of these lines, defined as a product of points, can be evaluated using the functor pointing to the
category of rational numbers, to determine its length. A three-tuple of lengths fully specifies
all dimensions that a cuboid may have, and so the object shown as the (L,W,H) in the cate-
gory of Dimensions represents this. The functor labelled (_,(L,W,H)) identifies all cuboids in
the Design” category that have those dimensions. Because functors also map the morphisms in
a category, not just the objects, the ≤ operation on rational numbers induces three comparison
operations on cuboids indexed by dimensions: ≤L, ≤W and ≤H ; one for each dimension.

CHAPTER 4. CATEGORICAL SEMANTICS 104

We will call the functor from Design” to Rational: MkLength, to distinguish it from MkDim,
the functor from Rational to Dimensions. We know that the composition of two functors is also
a functor, we’ll call the composition of MkDim and MkName simply F. This functor F is adjoint

with the functor pointing in the inverse direction: (_,(L,W,H)). This pair of adjoint functors triv-
ially preserves the ordering relations that were defined through it, namely: ≤L, ≤W and ≤H . It
also defines a weak notion of equivalence between a Cuboid and (L,W,H) objects. This notion is
weak as there may be multiple cuboids with having the same dimensions.

Having shown that a pair of adjoint functors can relate an intensional definition to an ex-

tensional one, we now seek a way of deriving one definition from the other. Whilst this may
not be possible in the general case, it is viable in certain conditions. The trick is to first define
an initial object in the category that describes our design space, that a canonical value for each
property that we are interested in, and then define every other object in that category through
transformation of this initial object. In the case of cuboid design spaces a strong intensional
definition would be phrased in terms of transformations applied to a unit cube, depicted below
in Figure 4.25.

(0,0,1)

(0,0,0) (1,0,0)

(1,0,1)

(0,1,1)

(0,1,0) (1,1,0)

(1,1,1)

Figure 4.25: The unit cube: the initial object in the category of cuboids.

Having statically defined the unit cube such that all three of its dimensions are set to the unit
value, we can use it as a point of reference for every other cuboid. The literal value for this unit
cube is given in Listing 4.25.

unitCube :: Design

unitCube = MkDesign

(MkPoint 0 0 0) (MkPoint 1 0 0) (MkPoint 1 1 0) (MkPoint 0 1 0)

(MkPoint 0 0 1) (MkPoint 1 0 1) (MkPoint 1 1 1) (MkPoint 0 1 1)

Listing 4.25: The unit cube.

CHAPTER 4. CATEGORICAL SEMANTICS 105

We can define a full cuboid design space by providing a way to transform this initial value,
such that any valid input generates a valid cuboid as the output. If we defined a specification

function that used such transformations to generate a design space, starting from the initial value
of a unit cube, its type would look something along the lines of that shown in Listing 4.26.

specifyCuboids :: Design −> [Design]

specifyCuboids = [id unitCube, transform_1 unitCube, transform_2 unitCube, ...]

Listing 4.26: Cuboid space specification anamorphism.

If instead of specifying a concrete collection, in this case a list, we generalize the collection
to be any functor F then the type becomes speci f yCuboids : Design→ FDesign.

Any cuboid having dimensions: (l,w,h) can now be reconstructed from the unit cube by
lengthening each dimension according to the ratios (l/1,w/1,h/1). Notice that this type matches
that of an Anamorphism, as defined in section 2.5. This specification definition generates a
structure containing multiple Design values from a one. Specifying the act of generating a de-

sign space as an Anamorphism, not only requires that our choice of collection representation
F be a valid functor, but also that the F-CoAlgebra on this functor F is a structure preserving

morphism. The identity operation, id in Listing 4.26 trivially satisfies this requirement as it does
not change the input Design value in any, as shown in Listing 4.27.

idCuboid :: Cuboid −> Cuboid

idCuboid c = c

Listing 4.27: Identity transformation on cuboids.

The other transformations used to specify a design space must likewise be structure-preserving.
This simply means that the output Design agrees with the input Design in every property of in-
terest. For cuboids the correctness property was specified using isCuboid. In Haskell, we can
check this property as shown in Listing 4.28.

data Face = One | Two ... Six

doubleCuboid :: Face −> Design −> Design

doubleCuboid f c = [...]

Listing 4.28: Doubling transformation for cuboids.

CHAPTER 4. CATEGORICAL SEMANTICS 106

4.2.2 Analysis

Specifying the problem of DSE using Category Theory allows us to reason about the analysis

phase as well. Whereas the specification phase can be represented as an Anamorphism because
it creates a structure of sub-problems, from the initial condition, the analysis phase must simply
translate each sub-problem into a domain where the objective function can be specified. The
analysis phase is thus a simple mapping operation, parametrized by an evaluation function.

analysis

Figure 4.26: Analysis: maps the design space into an (ordered) space of properties.

The trick to deriving an efficient analysis phase is much the same as the trick we used
to define the specification phase: we must decompose the problem of determining a term’s

properties into a set of smaller problems: determining each sub-term’s properties of interest, and
then recomposing the partial solutions into a greater one. Splitting up this problem is straight-
forward: all of our generated design-point retain full structural information by definition as
structure-preserving morphisms.

transformAnnotated :: (Design, Cost, (Length, Width, Height))

−> Dim −> Scale

−> (Design, Cost, (Length, Width, Height))

transformAnnotated (d , cost, (l ,w,h)) dim scale = case dim of
Length −> (transform d dim scale, cost + costL, (l * scale , w, h)

Width −> (transform d dim scale, cost + costW, (l , w * scale, h)

Height −> (transform d dim scale, cost + costH, (l , w, h * scale)

Listing 4.29: Scaling transformation for cuboids.

In practice, we may not always have access to an entirely accurate cost-performance model

but instead have to rely on an approximation of one. If we had, then the optimal solution would
have been computable from the specification of the problem. If the cost-performance model is
not fully accurate, then we must instead specify the minimum level of accuracy required. For-
mally, finding the globally optimum solution means there exists no other with better performance
and a lesser cost. This translates into the practical requirement that the cost-performance model

never under-estimates the cost and also never over-estimates the performance of a solution.

CHAPTER 4. CATEGORICAL SEMANTICS 107

4.2.3 Selection

The last stage in DSE is the selection of the best-performing and least costly design point found
within the design-space. This process can be implemented as a Catamorphism over the structure
of the design space. We are searching for both the most performant and least resource-intensive
solution meaning that we must solve a multi-objective optimization problem. The objects that
make up a category are only distinguishable by their relation to other objects in the category.
These relations are embodied by the morphisms between the objects meaning that the selection
phase is can be modelled by a forgetful functor that retains only the objects that have the required
morphisms. For example, let us represent the design space of cuboids as a category where
objects are the product of every cuboid’s dimensions. Suppose that we wanted to select those
cuboids having both smallest first dimension and second dimensions.

2 (2,2,1) 2

(2,1,1)

1 (1,1,1) 1

π2π1

≤π2

π2

π1≤Nat

π2π1

≤π1

≤Nat

Figure 4.27: Selection via Functors.

The morphisms that related the properties of interests are ≤π1 and ≤π1 shown in Figure 4.27
above. If we stick to the initial view of DSE as a three stage process, then the objects in our cate-
gory of cuboids will first have to be constructed and only then filtered. Filtering requires that we
define ≤π1 and ≤π1 as the composition of either the π1 or the π2 projection functor respectively,
and an additional adjoint functor for each, that identifies the morphism.

1 (1,1,1) 1

in j1 in j2

Figure 4.28: Selective object construction.

This means running and collecting the relations for each property of interest, which is clearly
less than ideal. Instead, we will interpret this category differently, by fusing the selection phase
into the generation phase. In this way, only the objects that satisfy the required properties are
constructed.

CHAPTER 4. CATEGORICAL SEMANTICS 108

4.3 Optimal DSE in TyTra

We’ve shown that a Design Space can be generated from a collection of transformations. In
more formal terms, a Design Space is equivalent to or identified by the transitive closure of
these transformations. Recall that in section 2.2.1 we considered compiler flags to be a repre-

sentation of program transformations. If we consider a static collection of compiler flags than
a compact representation for the entire collection might be a list of boolean values, as shown in
subsection 4.3.1, where each value denotes whether a particular transformation is to be applied.

designSpace :: [Bool]
designSpace = [True, False, True, True]

Listing 4.30: A simple Design Space Structure.

With this representation we may define an exhaustive DSE strategy that simply enumerates
all possible binary strings, measures the relative performance and resource-cost of each and then
selects the best overall solution. There are a number of problems with this approach.

1. This representation for a design space includes every possible program transformation,
however, for a given input only a sub-set of these transformations may be applicable. It is
readily apparent that a program consisting purely of map operations would not benefit in
any way from the application of fold-specific transformations, for example.

2. There are only two possible states for each transformation: either it is globally enabled or
disabled. The same transformation that is beneficial when applied to a certain sub-term,
may also be counter-productive when applied to a different sub-term.

The first of these issues can be solved with a simple representation and methodology change.
We can inspect the structure of the application and only represent the applicable program trans-

formations. Because the set of transformations under consideration is now application depen-
dent, we can no longer identify each transformation with its index in the ordered collection, and
so we must explicitly denote each transformation by its name, as shown in Listing 4.31.

designPoint :: [String]

designPoint = ["MapFusion", "FoldFission", ...]

Listing 4.31: A Human-readable Design Space Structure.

The representation in Listing 4.31 is more efficient than, but entirely equivalent to, that
shown in Listing 4.30. We are simply leveraging the set-inclusion relation to encode the previ-
ously explicit boolean value. If a transformation is included in the set, it is enabled.

CHAPTER 4. CATEGORICAL SEMANTICS 109

The map fusion and fold fission transformations lend themselves to both the boolean list
representation of design spaces and the string list representation of a design point. This is
because they are non-parametric transformations, akin to the doubleCuboid transformation
defined in Listing 4.28. The fact that they are representable as such is due to the exists of a
unique isomorphism between a sequence of map applications and the application of a single,

fused map operation.

input output

input outputMap

map fusion

Map Map

Figure 4.29: Map fusion rule.

Other optimizing transformations, are parametrized and thus can not be represented by their
name alone. The split transformation, for example, takes a number k which specifies a degree of
parallelism to be expressed. Consequently, the split transformation can be seen as entire family
of non-parametric transformations.

hinput outputMap

input output

split 1

h

input outputMap
h
h
h

hMap

split k

Figure 4.30: Family of split transformations.

The parameter must additionally be a valid divisor of the size of the input vector to a map or
non-trivial fold operation because the act of splitting an input vector of type Veck∗m a using split

k must produce an output type of type Veck (Vecm a). Our choice of representation is proving
to be unwieldy, however workable.

CHAPTER 4. CATEGORICAL SEMANTICS 110

Each conceivable transformation parameter is of a finite type meaning that we can enu-

merate all of them. The result of this is initial collection of applicable transformations. The
design-points in the application-specific search-space are then all possible combinations of
these transformations. A simple way of encoding this additional information is to attach a path

that specifies which sub-term each of these transformations targets.

newtype DesignPoint = [String]

newtype DesignSpace = [DesignPoint]

designPoint_one :: DesignPoint

designPoint_one = ["MapFusion", "FoldFission", "Split_6"]

designPoint_two :: DesignPoint

designPoint_two = ["MapFusion", "FoldFission", "Split_2"]

designSpace :: DesignSpace

designSpace = [designPoint_one, designPoint_two]

Listing 4.32: DesignPoints with serialized parameters.

The second issue can be solved by further altering our representation of design spaces. Recall
that in section 2.2.1 we mentioned the benefit of using pragma directives over compiler flags:
they contain targeting information. This means that our design space must not only encode
whether a particular transformation is enabled, but also for which sub-terms.

newtype Location = [Int]

newtype DesignPoint = [(Location, String)]

newtype DesignSpace = [DesignPoint]

designPoint :: DesignPoint

designPoint_one = [([0], "MapFusion"), ([0,0], "FoldFission")]

Listing 4.33: A location-aware Design Space.

If we also specify a serialization strategy searialize : Design→ String we can revert to the
second definition of a design point, shown in Listing 4.31 but retain the efficiency benefits of
only generating the design space that corresponds to the application’s structure. This is not
the most efficient solution, but it does provide a way to generate an exhaustive yet application-

specific search-space as we now show in subsection 4.3.1.

CHAPTER 4. CATEGORICAL SEMANTICS 111

4.3.1 Naïve tactic

Let us denote transformations through symbols f ,g,h, .. ∈ S where S is the set of all enumerated

transformations. We might call this set the initial transformation set and use it to define the
total design space as the power set of S : P(S).

{ f ,g,h}

{ f ,g} { f ,h} {g,h}

{ f} {g} {h}

φ

Figure 4.31: Power set of transformations.

Having defined an initial set of transformations and a way to enumerate the entire design
spaces. We can start from the distinguished element of the power set: φ , known as the empty set,
which, in the present context, corresponds to the identity transformation. It has no operational
effect but, because it is equivalent to the identity morphism in Category Theory, it also the left

and right unit of morphism composition:

φ ∪{ f}= { f}= { f}∪φ

We can continue by enumerating other sets d ∈ P(S) by incrementally adding transforma-
tions from S and forking the state space, spelling out a brute-force backtracking approach to
DSE. We can model this iterative process with a finite state automaton that recognizes the words

of our transformation language and has qφ as the starting state.

qφstart

q f

qg

qh

f

g h

Figure 4.32: Brute force FSA accepting states.

Every other state within the FSA is reachable by adding one of the remaining program

transformations f ,g,h,∈ S. The exact make-up of the initial set of transformations S depends
upon the structure of the application being compiled.

CHAPTER 4. CATEGORICAL SEMANTICS 112

Specification

We will assume that the types for the application under consideration have been inferred and
checked using the process we will show in subsection 4.4.1. If that is the case, we can pattern
match on the type-level structure to generate an exhaustive design-space. In the case of Variable

Terms, for example, the underlying expression may be either an opaque function or an input

variable.

generateTypeLevel :: Term −> TypeEnv −> DesignSpace

generateTypeLevel term tyEnv =

case term of
(Variable name) −>

case (inferType tyEnv term) of
VarTy tyName −> [...]

FunTy iTy oTy −> costBased name

Listing 4.34: Generate Initial Transformations (Type).

Variable Terms are a very simple type of TyTra CL term expression. They retain the symbol
name provided as a String argument to the constructor. As we pattern match on the structure of
the TyTra CL type constructors, we necessarily increase the complexity of this discussion.

input outputMap f

Figure 4.33: Data Variable Terms generate DS with expressed parallelism ≤ size of vector.

If a type-level inspection of the Variable Term reveals an input data node, this signifies that
we can replicate it, as we do with opaque functions, to deliver more performance. It may then
seem as if there is no need to perform DSE on such simple expressions. That situation is only
valid for Scalar Types. With Vector Typed data, however, we may choose to deliver more or less
components at any one time. This choice gives rise to a design subspace as the number of data
items deliver per clock cycle dictates the maximum degree of parallelism for consuming nodes.

CHAPTER 4. CATEGORICAL SEMANTICS 113

Opaque functions can be parallelized up to a factor the permits them to process one item
of data per clock-cycle at their steady-state. This factor is equal to the Effective Firing Interval

(EFI) which is a component of the performance estimate, shown with the yellow (cost,perf) box.

input outputMap f

Figure 4.34: Function Variable Terms generate DS with expressed parallelism ≤ EFI.

Beyond Variable Terms there may be other intermediate or top-level expression such as
application node. With these, we must compute the set of transformations from the sets of

transformations corresponding to their component expressions.

merge

input outputMap f

Figure 4.35: Design Space merging

As we traverse the TyTra CL AST, we accumulate an increasing design space by taking the
cross-product of subspaces generated by the component expressions. This is perhaps the great-
est source of inefficiency in this approach to DSE. With this running example, the subspaces
belonging to the input variable contained three design points, that belonging to the opaque func-
tion contained two, leading to an overall count of six design points for the parent expression.

CHAPTER 4. CATEGORICAL SEMANTICS 114

Analysis

Having produced an overall design space for the entire TyTra CL application, we must now rank
design points by their ability to produce high-performance program variants. Decomposing this
process, we notice that it involves a sequence of structural traversals on:

1. The design space structure to project the contained design points.

2. The structure of each design point to reveal the selected transformations.

3. The term and type structure of the application to apply the transformations.

4. The term-level structure of the now transformed application to run the cost-performance

model once more

5. The structure of the cost-performance estimate to compare results.

The first two of these traversals are straight-forward, thanks to our choice of representing
design spaces and design points as simple lists.

["sf3", "si3"]

["sf3", "si2"]

["sf2", "si3"]

["sf2", "si2"]

Figure 4.36: Design space structure traversal producing program transformations.

The third traversal is similar to term-level traversal we employed to generate the space.

transformTypeLevel :: Term −> TypeEnv −> Term

transformTypeLevel term tyEnv =

case term of
(Variable name) −>

case (inferType tyEnv term) of
VarTy tyName −> si2 term

FunTy iTy oTy −> sf2 term

Listing 4.35: Term/Type Post Analysis Transform.

CHAPTER 4. CATEGORICAL SEMANTICS 115

It would be superfluous to list out the remaining traversals as it now clear that the second ma-
jor source of inefficiency with this approach is the amount of effort spent repeatedly packing and
unpacking the data structures used to represent the design space, the term level representation

of the application, the type information and the cost-performance estimates.

(cost,perf)

(cost,perf)

(cost,perf)

(cost,perf)

Figure 4.37: Cost-performance model output.

Selection

One last hurdle remains, and that is to select the best performing set of transformations. Since
the output of the cost-performance model gives us an ordering, we need to sort our design points
and filter out those that violate any constraint, such as utilizing more hardware resources than
are available for our target device.

(cost,perf)

(cost,perf)

(cost,perf)

(cost,perf)

(cost,perf)

(cost,perf)

(cost,perf)

(cost,perf)

filter

Figure 4.38: Final selection of program transformation sets.

Looking at our example, we notice that even though d4 may have outperformed all other
candidate solutions in terms of throughput, it required us to replicate f more times than our
hardware resource budget allows. Another design point d1 would have also exceeded resource
bounds, and would not have given us any better performance results. The remaining solutions,
d3 and d2 are all that remain. We’ll select the least costly of these: d3 as the final answer.

CHAPTER 4. CATEGORICAL SEMANTICS 116

4.3.2 Expert tactic

Seeking to improve the performance of our DSE strategy, we looked into how FPGA program-
ming experts optimize their applications and particularly into the heuristics they use.

It turns out that one of the most important heuristics applicable to dataflow applications

is conceptually rather simple.If the application can be represented as a computational pipeline

then the most resource-efficient way to maximize throughput is to shape the pipeline such that
the flow of data is balanced throughout.

Map

f

h

g

input output

Map

Map

Figure 4.39: A computational pipeline.

The term-level split transformation derived from Vector Type isomorphisms can transform
the pipeline depicted in Figure 4.39 by replicating computational nodes, scattering the inputs
and gathering the outputs, such that the result still has the appropriate type.

Map

f

h

g

input output

Map

Map

Map

f h

g

input output

Map

Map

split

h
h
h

Figure 4.40: Effect of Split Transform on computational pipeline.

Where the h opaque function would have initially taken four clock cycles to produce an item
of output, the transformed version is now capable of producing an output on every cycle.

CHAPTER 4. CATEGORICAL SEMANTICS 117

Splitting computational nodes enough times to deliver peak throughput does not guarantee
that said performance is achievable in practice. To understand why, let us consider a simple
pipeline with two opaque functions f and g, both of which require a four way splitting.

g

input outputMap
g
g
g

Map
f
f
f

f

input outputMap

map fusion

Figure 4.41: Balanced computational pipeline.

The two nodes in Figure 4.41 make up a balanced pipeline. As soon as f produces an output,
g is ready to receive its input, thus there are no stalls. Whenever f and g operate in lock-step, we
can make use of map fusion to eliminate one multiplexer and one demultiplexer from the circuit
and simplify the overall design space.

g

input outputMap
g
g
g

Map
f
f
f

f

prune

f

input outputMap
g
g
g

Map
f
f
f

ff g

Figure 4.42: Map Fusion on balanced computational pipeline.

If for any reason f can only be replicated three times, we can rebalance the pipeline and
save on hardware resources by pruning g, at no detriment to throughput. The more general
implication of this heuristic is even more interesting. For certain kinds of terms, the space
generated by sub-terms may functionally depend on one another.

CHAPTER 4. CATEGORICAL SEMANTICS 118

Variable Terms are treated exactly the same as in the brute-force approach. More complex
terms such as Map Terms and Fold Terms need further attention because they have a recursive
constructor argument. In both cases the parameter is a single TyTra CL expression with a func-

tion type and thus there is no need to merge design spaces. Map Terms and Fold Terms simply
cause their parameter’s design space bounds to be expressed in the outer expression.

input outputfMap gFold

input outputfooFold

fold fission

express

Figure 4.43: Fold Term fission transformation.

According to the equational reasoning enabled by the category theoretical semantics we
gave to the TyTra CL language in subsection 4.3.1, Fold term can be treated as a special case
of Map Terms. The category theoretical concept that maps to folds is that of Catamorphisms

which consume structure, as we have shown in Listing 4.9. Because the output of the fold
operation depends on both the structure and the values contained within that structure we can
split them into a parametrically polymorphic function and a monomorphic function. This is
known more widely as the fold fission law and states that a fold can be represented as another,
potentially simpler aggregation, fold g, and an additional map operation, map f which can no be
treated in the same way as any other map operation.

f old f oo = f old g◦ (map f) (4.2)

The simpler aggregation f old g has no mapping component as that part of the computation
that can be represented as a map is entirely represented by map f . Although it is technically
possible to further split the primitive aggregation, there would be no point in doing so. The
nested fold splitting would yield the equation: f old g = f old h◦map id. In the larger equation
this means that f old f oo = f old h ◦map id ◦map f . By applying the map fusion law we can
simplify this to f old f oo = f old h◦map (id ◦ f). Given that ∀ f .id ◦ f = f ◦ id = f it must be
that g = h.

CHAPTER 4. CATEGORICAL SEMANTICS 119

Tuple Terms have Product Object semantics. The bounds produced by a tuple expression
are the product of the bounds of its projections. Set in the context of balanced computational

pipelines Tuple Terms are a statement of the fact that: the property of a pipeline being balance
is distributive. This means that all of a tuple’s sub-terms are functionally codependent.

input outputfTup

expressBinary

merge

g

Figure 4.44: Tuple Term distributes bounds.

Application Terms, denoted as the simple black arrows, introduce a mutual dependence
between the action expression, meaning the function to be applied, and the input expression.

input outputfMap

express

merge

Figure 4.45: Application Term merges bounds.

Note the similarity in the effects that Tuple Terms and Application Terms have on their re-
spective design spaces, they both merge sub-search spaces in the same way. This is due to the
adjoint relation between product and exponential objects in a Closed Cartesian Category.

.

CHAPTER 4. CATEGORICAL SEMANTICS 120

ZipT and UnZipT Terms are simply convenient symbols for a pair of dual higher-order
functions that pack a tuple of vectors into a vector of tuples, and vice-versa. Their occurrence
within a TyTra CL expression necessarily implies a parent Application Term which introduces
a mutual performance dependence between the function being applied and all ZipT input com-

ponents, respectively UnZipT output component.

input_a

outputfMap

express

input_b

merge

Tup input_a input_b

ZipT

merge

Figure 4.46: ZipT Term merges bounds.

CHAPTER 4. CATEGORICAL SEMANTICS 121

Elt Term are parametrized by an index that specifies which component of a finite product

must be extracted.

input outputf
b

supress

Elt t

merge

Figure 4.47: Elt Term.

Elt Terms influence DSE somewhat differently from all other terms we’ve covered so far.
They alter the cost-performance estimate of the expression they are applied to, by increasing
the initial delay with an absolute number of clock-cycles equal to the index parameter. Stencil
Terms are parametrized by a collection of relative indices and thus introduce a buffering re-

quirement. This leads a significant but constant hardware resource cost growth. Stencil Terms

increase the initial delay similarly to Elt Terms, however they do so by a number that is equal to
the largest difference between the index parameters.

Mapinput outputf

alter

Stencil t s

merge

Figure 4.48: Stencil Term.

Elt and Stencil terms represents actions that will be applied to some input, however they only
have an effect on the latency and not the throughput of the overall expression, meaning that they
do not influence the balancing aspect.

CHAPTER 4. CATEGORICAL SEMANTICS 122

Having looked at the effects of using the balanced pipeline heuristic to remove sub-standard
solutions from an overall search-space, we can see that there exists a functional dependency
between the search-space generators corresponding to certain sub-terms. This means that the
operations which merge design subspaces, which we have shown with fuchsia-coloured boxes,
not only represent an opportunity to balance the computational pipeline but also the best place
to limit the growth of the overall search space.

Mapinput outputf

merge

Generation Analysis Selection

Figure 4.49: DSE on an isolated sub-term.

There are however two issues to be resolved. The first is shown in Figure 4.49. If we want to
use every merge operation as an opportunity to remove inefficient designs points from the search
space, we must perform all three stages of DSE on each sub-term, as shown in Figure 4.50. The
first stage generates the full design space, the second produces cost-performance estimates for
each design point whilst the third filters the output, retaining only the most valuable solutions.

generateMerge

costMerge

merge

(cost,perf)

(cost,perf)

(cost,perf)

(cost,perf)

(cost,perf)

(cost,perf)

fitlerMerge

Figure 4.50: DS merge improvement.

The second issue is that our design-space as a simple list of design points makes it difficult
to separate the sub-spaces that have a functional dependency on the sub-term currently under
consideration. To fix both of these issues, in the next section, we will simply borrow a richer
design-space structure form the application itself through categorical semantics.

CHAPTER 4. CATEGORICAL SEMANTICS 123

4.4 TyTra Categorical Semantics

Having defined the structure for TyTra CL term, type and cost-performance estimate categori-

cal data types, as the fixpoints of several functors including TermF and TypeF we now need to
consider the semantics of the language they collectively define. We will do so using the same
notions used to construct these categorical data types. This will allow us to relate and transform
the evaluation morphisms between these types and thus construct a more efficient Design Space

Exploration strategy. Let first see what evaluation morphisms are required in the TyTra compiler.

Correct-by-construction transformations on TyTra CL terms are derived from type-level equiv-

alences and transformations. This implies two evaluation morphisms.

• An evaluation of TyTra CL terms as TyTra CL types:
in f erType : Fix TermF → Fix TypeF

• An evaluation of TyTra CL types as TyTra CL term transformations:
generateSpace : Fix TypeF → (Fix TermF → Fix TermF)

For this reason we will see how TyTra CL terms are evaluated by the type inference and

checking part of the TyTra compiler to produces a type-level representation in subsection 4.4.1.
At the same time we know that the selection phase of DSE removes program variants that have
a lower performance and higher resource cost than other solutions already found, requiring two
further evaluation morphisms, listed below and presented in detail in subsection 4.4.3.

• An evaluation of terms as cost-performance estimates:
costPer f : Fix TermF →CostPer f

• An evaluation of Design Spaces that selects the globally optimal program variant:
restrictSpace : (Fix TermF → Fix TermF)→ (Fix TermF → Fix TermF)

Once we have given categorical semantics for these evaluators, we will define a category
where the program to be optimized is the initial object. The globally optimal transformation
in relation to a given set of resource constraints, is the terminal object in this same category.
More importantly, we will see that the paths between the initial and terminal objects in this
category are defined in terms of term, type and cost-performance estimate transformations.
This category gives us a directed and minimal search-space that contains the optimal solution.
To define this category however, we must solve the issue of merging the evaluation morphisms.
Endofunctors that describe our categorical data types each define their own, distinct categories
of F-Algebras. We will solve this issue in subsection 4.4.4.

CHAPTER 4. CATEGORICAL SEMANTICS 124

4.4.1 Type Inference and checking

The TyTra CL structure defined by the TermF functor is mostly the same as that of the Simply
Typed Lambda Calculus (STLC). One choice for type inference is Algorithm W, for which
there are numerous accounts of implementation including [Gra06]. Another choice [Ste], much
to our preferment, is closer in spirit to constraint solving. The type signature for in f erType :
Fix TermF → Fix TypeF shows that this function constructs a TypeF structure while pattern-
matching on the TermF functor. In truth this evaluation morphism is also dependent on the
type-signatures present in the TyTra CL which is not reflected by the TermF functor, so we will
simply pass in an extra argument of type TyEnv with an associated lookup : TyEnv→ String→
Fix TypeF function.

inferType :: Fix TermF −> TyEnv −> Fix TypeF

inferType termF tyenv = case termF of
Fix (TermVarF name) −> lookup tyenv name

Fix (TermAppF f i) −> let
fSubs = generateTypeSubs f tyenv

iSubs = generateTypeSubs i tyenv

typeSchema = FunctionSchema

in unifyTypeSubs typeSchema (fSubs ++ iSubs)

[...]

generateTypeSubs :: Fix TermF −> TyEnv −> [Substitution]

unifyTypeSubs :: TypeSchema −> [Substitution] −> Fix TypeF

Listing 4.36: Sketch of type inference as constraint solving.

At a high-level, inferType has the same structure as our DSE process. We traverse the term-
level structure and, at every level, build a set of candidate solutions from which we pick the best
one. Rather than dwell on the specifics of type inference algorithms, we will focus on what is
more important: the inferType function identifies an initial object Fix TermF in the category of
F-Algebras over the term we are compiling, with the initial object Fix TypeF in the category of
F-Algebras over the type of the term we are compiling.

Fix TermF Fix TypeF

TermF a→ a TermF b→ b TypeF a→ a TypeF b→ b

in f erType

Figure 4.51: Functor from the category of term F-Algebras to the category of type F-Algebras.

CHAPTER 4. CATEGORICAL SEMANTICS 125

4.4.2 Correct term transformation

We can derive term-level transformations from type-level transformations by specifying an eval-
uation morphism from a special object in the category generated by the Fix TypeF , namely the
initial object. As with the inferType function we previously discussed, this evaluation morphism
represents a functor. In this case it points in the opposite direction, as shown in Figure 4.4.2.

Fix TermF Fix TypeF

TermF a→ a TermF b→ b TypeF a→ a TypeF b→ b

in f erType

generateSpace

Figure 4.52: Functor from the category of type F-Algebras to the category of term F-Algebras.

The functors defined by inferType and generateSpace are in fact adjoint. If we evaluate a
particular TyTra CL term identified by an object TermF a→ a through inferType we identify
the TypeF a→ a object in the category of types. Considering every morphism that points away
from TypeF a→ a in Figure 4.4.2 to be a valid type-level transformation, the adjoint functor
defined by generateSpace identifies the morphisms in the category of terms that define func-

tionally correct term transformations. We know that the composition of functors also defines
a functor. The pair of adjoint functors given by inferType and generateSpace compose, giving
us an Endofunctor on the category of terms that, for every object in the category, identifies a
category of valid transformations.

Fix TermF

TermF a→ a TermF b→ b

generateSpace ◦ in f erType

Figure 4.53: Endofunctor on the category of term F-Algebras.

By defining categorical data types for TyTra CL terms and types, as well as by giving the
TyTra CL categorical semantics, we have obtained the ability to define a data type for the specific
TyTra CL terms that is sensitive to the type context of a given TyTra CL application. The
Haskell data-type for terms shown in Listing 4.11 can express any TyTra CL term, including
ones that are functionally incorrect in a specific type context. By restricting term constructors to
those returned by the Endofunctor defined as generateSpace ◦ in f erType we ensure that only
semantically correct terms can be represented using our categorical data type.

CHAPTER 4. CATEGORICAL SEMANTICS 126

4.4.3 Cost-performance aware transformation

We will now look at the relationship between the category of TyTra CL terms, and the category
of cost-performance estimates. This will allow us to further refine our categorical data type such
that we can compare transformed terms based on their performance and hardware resource use.
We define a pair of adjoint functors, defined by the costPerf and restrictSpace evaluation shown
in Figure 4.54 below.

Fix TermF CostPer f

TermF a→ a TermF b→ b CostPer f CostPer f

costPer f

restrictSpace

Figure 4.54: Adjoint functors relating term transformations to cost-performance expressions.

In subsection 4.1.4 we defined the type of cost-performance estimates as the objects in a cat-
egory with finite products CostPer f = (Fix Per f ormanceKIF,Fix ResourceKIF). This means
that the category in which CostPer f is an object can be constructed using a pair of functors from
the categories in which Fix Per f ormanceKIF and Fix ResourceKIF are the respective initial
objects.

Fix Per f ormanceKIF CostPer f Fix ResourceKIF

pa pb ca cb

(pa, pb) (ca,cb)

min(pa,pb) CostPer f add(ca,cb)

minper f ∆sumcost

πper f πcost

Figure 4.55: Category of performance measures.

Internally, the objects in both the category of performance estimates, and those in the cate-
gory of resource costs, are nothing more than products of natural numbers for which the usual
operations and relations, including addition and ≤Nat are defined. The functors that relate the
category of CostPer f objects to the objects in the categories of performance and resource costs
are identified by the projection operations πper f and πcost in Figure 4.55. The Endofunctor

identified by the minper f ∆sumcost morphism is defined as the Algebra pair of the operations on
performance and resource cost objects, which we explain in subsection 4.4.4. We can then define
the restrictSpace evaluation morphism, which corresponds to an Endofunctor in the category of
Fix TermF objects that is sensitive to the performance and resource-cost.

CHAPTER 4. CATEGORICAL SEMANTICS 127

4.4.4 Borrowing structure

In subsection 4.4.3 we identified the need to define an evaluation morphism for a product object

in terms of the evaluation morphisms for its components. The solution to this need is not only
helpful in describing an overall cost-performance evaluation in terms of separate performance

and resource-cost morphisms, but also in relating all the various interpretations of terms, types

and cost-performance estimates as the components of an overall F-Algebra over the polynomial
functor TermF .

Polynomial F-Algebras

A pair of F-Algebras is the binary product of F-Algebras, meaning the product object in the
category of F-Algebras. As with any product, we may recover the component algebras through
the projection operations.

(F,a,αa :: F a→ a)× (G,b,αb :: G b→ b)

(F,a,αa :: F a→ a) (F,b,αb :: G b→ b)

f st snd

Figure 4.56: Algebra pairs.

The evaluation morphism for an F-Algebra pair is thus a higher-order function parametrized
by the evaluation morphisms for its component F-Algebras.

appPair :: (F a −> a, F b −> b) −> (G a, G b) −> (a , b)

applyPolynomial :: (H c −> c) −> H c −> c

Listing 4.37: Application of F-Algebra Pairs and F-Algebra polynomials

Note that the functor on which the overall evaluation morphisms operates is neither the F

nor the G component, but the functor H defined as the product H = (F,G). In a Cartesian closed

category of F-Algebras the idea of F-Algebra pairs can be generalized, giving us a way to con-
struct a category of F-Algebras for any polynomial functor H. This follows trivially from the
duality of sum and product objects.

The fact that we have replaced the two type parameters a and b by a single type variable c

need not be a cause for alarm. If we are dealing with F-Algebra pairs then the new type pa-
rameter is simply understood to be the product object c = (a,b). This can be generalized to any
polynomial data constructor, not just pairs.

CHAPTER 4. CATEGORICAL SEMANTICS 128

The Böhm and Berarducci Encoding

Recall that any TyTra CL AST can be represented as a value having the recursive data-type
identified by the fixpoint of TermF , the polynomial functor shown in Listing 4.12 and that we
can represent evaluations of such ASTs as F-Algebras over TermF . We will now compose the
multiple evaluators we have covered in section 4.4 into a single, more efficient, F-Algebra using
a typed equivalent of the Church Encoding, introduced by Böhm and Berarducci [BB85], and
most helpfully explained by Kiselyov [Kis12]. We will from now on refer to this encoding as
the BB encoding.

newtype TermBB = TermBB {

unTermBB :: forall a.

(String −> a) −− varlit

−> (a −> a −> a) −− app

−> ([a] −> a) −− term tup

−> a −− zipbb

−> a −− unzip

−> (IndexListBB −> a) −− stencil

−> (a −> a) −− map

−> (a −> a) −− fold

−> (NatBB −> a) −− elt

−> a

}

Listing 4.38: BB encoding for TermF from Listing 4.12

Listing 4.12 shows the BB encoding, in Haskell syntax, for the TyTra CL AST data-type.
Notice there is a single data-constructor TermBB parametrized by a unTermBB polymorphic
function. We can read this as saying that: given a function having the same type as unTermBB,
our data-constructor yields a value of type TermBB. The unTermBB function is parametrized by
a number of possibly constant polymorphic functions, all of which have an output type a that
yields a value of type a. Each of unTermBB’s parameters are understood to be the TyTra CL AST
data-constructors and thus, any function having the same type as unTermBB can be understood
as one that selects a particular data-constructor and applies it to the required inputs. To make
this more concrete, let us look at the data-constructor for TyTra CL variable terms.

termLit :: String −> TermBB

termLit name =

TermBB $ \lit app ttup tzip tuzip tstencil tmap tfold telt −> lit name

Listing 4.39: TyTra CL Variable Term constructor (BB encoding).

CHAPTER 4. CATEGORICAL SEMANTICS 129

The termLit data-constructor shown in Listing 4.39 parametrizes TermBB with an anony-
mous function, having the same type as unTermBB. This anonymous function applies its first
parameter to the String input provided to termLit, yielding what must be a value of type a. A
tuple term data-constructor called termTup can be likewise defined, as shown in Listing 4.40.

termTup :: [TermBB] −> TermBB

termTup fs =

TermBB $ \lit app ttup tzip tuzip tstencil tmap tfold telt−>

ttup (map
(\ t −> unTermBB t lit app ttup tzip tuzip tstencil tmap tfold telt) fs)

Listing 4.40: TyTra CL Tuple Term constructor (BB encoding).

The termTup constructor provides a function having the same type as unTermBB that selects
and applies its third parameter to a list of sub-terms. The same technique can be used to de-
fine all TyTra CL term constructors. Notice that the recursive arguments to termTup, our tuple
constructor, will be first evaluated through the recursive application of unTermBB before the
tuple term is constructed. Every term constructor defined in this way can be understood to be
a specification of how the constructed term will be evaluated in the future when an evaluation
morphism for each data constructor is defined. At the moment of term construction, these eval-
uation morphisms are not yet defined, but are simply referred to by name. The data-constructors
and the TermBB encoding define a universal interpretation of a TyTra CL Terms that all other
interpretations must factor through. Recall that this was the exact definition of a data-type as
the initial object in a category of F-Algebras for a given functor. The morphisms from the ini-
tial object to every other evaluation of TermBB can all be constructed through an appropriate
application of unTermBB. Let us look at an example, that of pretty printing TyTra CL terms.

viewTerm :: TermBB −> String
viewTerm t = unTermBB t lit app ttup tzip tuzip tstencil tmap tfold telt

where
lit name = name

app f x = f ++ " $(" ++ x ++ ")"

ttup fs = "(" ++ (intercalate ", " fs) ++ ")"

tzip = "zip "

tuzip = "unzip "

tstencil its = " stencil " ++ show its

tmap a = "map " ++ a

tfold a = "fold " ++ a

telt n = " elt " ++ show n

Listing 4.41: TermBB Evaluator producing a String.

CHAPTER 4. CATEGORICAL SEMANTICS 130

Through the application of unTermBB to a number of functions that determine the interpre-
tation of TyTra CL Terms as Strings, we obtain a new interpreter. This interpreter is simply
defined as the composition of unTermBB with the various functions that the data-constructors
are mapped to.

TermBB String

id

viewTerm

id

Figure 4.57: Defining an interpreter on TyTra CL terms as transformation on TermBB.

The interpreter defined by viewTerm in Listing 4.41 is an F-Algebra morphism that maps
the F-Algebra object denoting the TyTra CL Term, to the F-Algebra object on Strings which
represents is human-readable form. Let us see how this interpreter could be applied to a simple
term: termApp (termLit "foo") (termLit "bar"). At the type level, this application is represented
as shown in Figure 4.58 below.

f = termLit ” f oo” i = termLit ”bar”

termApp f i

lit(termLit” f oo”) :: ()→ String app :: String→ String→ String lit(termLit”bar”) :: ()→ String

app (lit (termLit” f oo”)) :: String→ String

app(lit(termLit” f oo”))(lit(termLit”bar”)) :: String

Figure 4.58: Type-level application of viewTerm to termApp (termLit "foo") (termLit "bar").

In Figure 4.59 we show the term-level view of the same example. We notice that the compo-
sition of unTermBB with the individual functions defined in the scope of viewTerm is equivalent
to an F-Algebra over TermF with a String carrier.

termLit ” f oo” termLit ”bar” ” f oo” ”bar”

termApp f i ” f oo”++”$(”++”bar”++”)”

viewTerm

Figure 4.59: Term-level application of viewTerm to termApp (termLit "foo") (termLit "bar").

CHAPTER 4. CATEGORICAL SEMANTICS 131

Type inference with the BB Encoding

Having shown the simple example of pretty printing a TyTra CL term, let us now look at a more
complex example: the type inference function that determines a term’s type. We will first define
the data-type of TyTra CL Types using the same BB Encoding as shown in Listing 4.42.

newtype TypeBB = TypeBB {unTypeBB :: forall a.

(TVar −> a) −− type variable

−> (String −> a) −− literal

−> (a −> a −> a) −− internal products

−> (Tag −> Size −> a −> a) −− sized vectors

−> ([a] −> a) −− heterogenous lists / tuples

−> (a −> a −> a) −− function type

−> a

}

Listing 4.42: BB encoding for TyTra CL Types.

Data constructors for TypeBB values are defined in the same way as TermBB data-constructors,
by selecting the appropriate evaluation morphism. This is shown below in Listing 4.43.

tyvarbb :: TVar −> TypeBB

tyvarbb var = TypeBB $ \ tyvar tycon typrod tyvec tytup tyfun −> tyvar var

tyconbb :: String −> TypeBB

tyconbb name = TypeBB $ \tyvar tycon typrod tyvec tytup tyfun −> tycon name

prodbb :: TypeBB −> TypeBB −> TypeBB

prodbb a b = TypeBB $ \tyvar tycon typrod tyvec tytup tyfun −> typrod

(unTypeBB a tyvar tycon typrod tyvec tytup tyfun)

(unTypeBB b tyvar tycon typrod tyvec tytup tyfun)

Listing 4.43: Data constructors for TyTra CL Types using the BB Encoding.

The three data-constructors shown in Listing 4.43 correspond to type variables, type literals

and product types. Type variables are needed to represent types which have not yet been fully
determined. Type literals correspond to the type-level assignments in the TyTra CL represen-
tation of an application. The product types are used to as a more granular representation for
tuples and vector types. Using TypeBB we can now rephrase the constraint-solving approach to
type-inference and checking functionality described in subsection 4.4.1 as a morphism defined
by composing unTermBB with a number of new interpreters for each TyTra CL Term constructor
that generate and solve constraint sets.

CHAPTER 4. CATEGORICAL SEMANTICS 132

Constraint generation requires that we apply unTermBB to the TermBB encoding of a TyTra
CL Term and define a number of constraint generators for each data-constructor, as shown in
Listing 4.44. The output type of the genConstraints evaluator indicates that this is a monadic
computation in the TypeCheck context. This is needed to generate fresh type variable symbols
and provide better error reporting in the compiler but can be safely ignored in the context of this
presentation. We will instead focus on the output type (TermBB,TypeBB,Subst).

genConstraints :: TermBB −> TypeCheck TermBB (TermBB, TypeBB, Subst)

genConstraints term = do
(termTerm, termTy , termSubst) <− unTermBB term

gcLit gcApp gcTup gcZip gcUnZip gcStencil gcMap gcFold gcElt

return (term, termTy , termSubst)

Listing 4.44: Type inference using BB Encoding

The first component is simply the identity morphism on the term structure. The second
component is a TypeBB expression that represents the inferred type which may contain undeter-
mined type variables. The third and final component of type Subst is a collection of substitutions
that must be applied to fully determine a TyTra CL Type.

(TermBB,TypeBB,Subst)

TermBB TypeBB Subst

TermBB

π1
π2

π3

id

Figure 4.60: Term-level: Application of viewTerm to termApp (termLit "foo") (termLit "bar").

The evaluation morphisms provided as parameters to unTermBB must all have the same
output type. Let us look at gcLit which generates the partially resolved TypeBB representation
for variable terms.

gcLit :: String −> TypeCheck TermBB (TermBB, TypeBB, Subst)

gcLit name = do
env <− ask

case M.lookup name env of
Nothing −> do
tv <− freshTyVar

return (termLit name, tyvarbb tv, mempty)

Just ty −>

return (termLit name, ty, mempty)

Listing 4.45: Type inference using BB Encoding.

CHAPTER 4. CATEGORICAL SEMANTICS 133

Inferring the type for a TyTra CL Term variable as described in Listing 4.45 implies a lookup
in the type-context for that variable name. If a type definition exists for the variable name in
question, then this is simply returned, along with the term expression and an empty set of type-
level substitutions. If the variable name is not found in the type context, then it is assigned a
fresh variable symbol and likewise returned. The type inference evaluators for the other term-
constructors are more complicated, as we can see for gcMap in Listing 4.46 below.

gcMap action = do
(aTerm, aType, aSubs) <− action

tvi <− freshTyVar

tvo <− freshTyVar

sv <− freshSzVar

let
actGuess = funbb (tyvarbb tvi) (tyvarbb tvo)

actSubs = aSubs <> (fromMaybe mempty $ mgu actGuess aType)

mGuess = apply actSubs $ funbb

(vecbb (SizeVar sv) (tyvarbb tvi))

(vecbb (SizeVar sv) (tyvarbb tvo))

return (termMap aTerm, mGuess , actSubs <> aSubs)

Listing 4.46: Type inference using BB Encoding.

In the case of map terms we can guess that the output type will be that of a function on vector
types. In Listing 4.46 we see that we first create two fresh type variables and one fresh size
variable. These correspond to the parameters and size-index required by the input and output
vector types. We likewise assume that the map term’s sub-term will be a function type from
the fresh input type variable, to the fresh output type variable. The mgu function that appears
in Listing 4.46 is an implementation of a most-general unifier that simply computes the most
general set of substitutes required to match our guessed type scheme to the actual type inferred
for the map term’s parameter.

mgu :: TypeBB −> TypeBB −> Maybe Subst

Listing 4.47: Most general unifier for type inference (function type).

Any substitutions in the context are then applied to the guessed type schema. Concrete types
replace variables where these can be determined, yielding a simplified TypeBB representation.
If the overall TermBB value for which the type inference evaluation is being performed is well
typed. in the supplied context, then the output TypeBB representation will contain no type
variables.

CHAPTER 4. CATEGORICAL SEMANTICS 134

Recall that the overall type-inference evaluation defined in Listing 4.44 computes three out-
put values at once. In addition to producing a type for the given input term, it also returns the
input term itself and a set of substitutions. From a categorical perspective, this is because the
unTermBB evaluation is the initial object in a category with product objects. We can use this to
work around the issue of having to run all three phases of our DSE strategy to trim off inefficient
solutions using the balanced pipeline heuristic. Recall that there exists a dependence between
the three DSE stages. From the term representation we infer the types. From these types we
can derive the costs. Lastly, from the terms, types and costs we derive a collection of program
transformations. In a category of TyTra CL term interpreters with product objects, as we have
constructed and now shown in Figure 4.61, there must exist a unique object that is the product
of these interpreters.

TypeBB CostBB [TermBB→ TermBB]

TermBB×TypeBB×CostBB× [TermBB→ TermBB] CostBB× [TermBB→ TermBB]

TermBB TermBB× (TermBB→ TermBB) TermBB→ TermBB

costLookup costGen

π2
π3

π4

π1
dse

select◦π4

in f

costPer f

Figure 4.61: The three DSE stages are dependent.

The three DSE stages are not just dependent on one another, but are fragments of a larger
function that computes all three stages at once. As non-leaf terms are constructed from sub-
terms, the product object of evaluators is really defined by some operation over the product
objects that correspond to the sub-terms. Here, the CostBB object is the data-type shown in
Listing 4.48 which describes how the overall cost-performance estimate for a term is constructed
from the estimates of its sub-terms.

newtype CostBB = CostBB {

unCostBB :: forall a.

((PerformanceKI, ResourceKI) −> a)

−> (a −> a −> a)

−> a

}

costPerfLit :: (PerformanceKI, ResourceKI) −> CostBB

costPerfLit costPerf = CostBB $ _lit _merge −> _lit costPerf

costPerfMergeL :: CostBB −> CostBB −> CostBB

costPerfMergeL cpA cpB = CostBB $ \lit_ merge_ −> merge_ a b

Listing 4.48: BB-encoded cost-performance model.

CHAPTER 4. CATEGORICAL SEMANTICS 135

Structural Cost-Performance Model

This data-type has two constructors. The costPerfLit constructor takes cost-performance es-
timates for opaque functions directly from the back-end cost-performance model. The cost-

PerfMergeL constructor simply states that the cost-performance estimate for a term is com-
puted from the estimates of its sub-terms, but does not specify how it is computed. Using the
cost-performance data-type and the data-constructors shown in defined in Listing 4.48 a cost-
performance evaluation morphism costPer f :: TermBB→CostBB that produces cost-performance

estimates for every term. We know that such a morphism must exist because a type inference
morphism in f :: TermBB → TypeBB and a cost lookup morphism costLookup :: typeBB →
CostBB exist and compose. Their composition gives us costPer f = costLookup◦ in f , shown in
Listing 4.49 below.

costPerf :: TermBB −> CostEnv −> CostBB

costPerf term costEnv = unTermBB term lit app ttup [..]

where
lit name = case (Map.lookup name costEnv) of
Just cst −> costPerfLit cst

app f x = costPerfMergeL f x

[..]

Listing 4.49: Abstract cost-performance evaluator.

The costPerf evaluation morphism can be understood as an abstract interpreter it replaces,
or rather, composes a TermBB constructor with a CostBB constructor. Both of these are higher-
order functions that must be parametrized by first-order functions before they can be fully eval-
uated. Their composition is then also a higher-order function that performs the work of both. In
Figure 4.62 below, we show how an application term having two sub-terms: a function f oo and
a variable input onto which f oo is applied; would be abstractly interpreted using costPerf.

f oo input

appTermBB

(3,4) costPer f MergeL (1,2)

costPer f Lit costPer f Lit

map costPer f map costPer fmap costPer f

Figure 4.62: Homomorphism from TermBB to CostBB.

CHAPTER 4. CATEGORICAL SEMANTICS 136

Notice that both viewTerm and costPerf are Catamorphisms over the term structure. Recall
that Catamorphisms are generalized folds and that certain folds can be fissioned. If we view the
definition of the costPerf function shown in Listing 4.49 through the lens of Equation 4.2 that
describes fold fissioning, we can that costPerf must be composed of a primitive fold operation,
and a map operation. The map operation is represented by the entire where block in Listing 4.49
which substitutes TermBB constructors for CostBB constructors as shown in Figure 4.62. The
primitive fold side of the fissioned costPerf function, we will have to perform the actual merge
operation to produce the total cost-performance estimate.

(3,4) (1,2)

costPer f Lit costPer f Lit

costPer f MergeL

costPer f Lit

(1,6)

costPer f MergeS

Figure 4.63: Strict CostBB merge operation.

To compute the concrete cost-performance estimate we will need a strict implementation of
the merge operation, shown in Listing 4.48 below. We can see that this is also a homomorphism
as it simply maps one CostBB constructor to another.

costPerfMergeS :: CostBB −> CostBB −> CostBB

costPerfMergeS ac bc = costPerfLit $ foldCostBB $ costPerfMergeL ac bc

Listing 4.50: BB-encoded cost-performance model.

The strict merge implementation is only needed in the later stages of DSE. Recall that in
Figure 4.61 we had shown a morphism costGen :: CostBB→ [TermBB→ TermBB]. This mor-
phism generates a design space corresponding to a term based on its concrete cost-performance

estimates. What is not shown in Figure 4.61 is that this is morphism is one part of a larger mor-
phism. In fact, the complete picture is quite a bit more nuanced. We can however see how the
BB encoding, together with the category-theoretical semantics we defined for the TyTra com-
piler allow us to easily compose/transform interpreters and thus the DSE process. What follows
in subsection 4.4.5 is the result of putting these categorical semantics together.

CHAPTER 4. CATEGORICAL SEMANTICS 137

4.4.5 Fused DSE

Our DSE strategy is a function that traverses the TyTra CL term structure from the inner-most
sub-terms to the root, or overall term that defines the application. As it pattern-matches on
the structure of the term being optimized, a function that computes the cost-performance
estimate for every sub-term is generated. This requires access to a cost-performance estimate
environment with the type CostEnv. As program variants that exceed the resources available on
the target FPGAs must be opportunistically removed, a measure of the resource bounds is given
by a value of type Board. The type signature for our DSE strategy, accounting for all of these
input parameters is shown in Listing 4.51.

fusedFilterGenVariants :: TermBB −> CostEnv −> Board

−> (TermBB, [(Ratio Integer, ResourceKI)])

Listing 4.51: Fused/optimized DSE implementation (signature).

The output type of this function is a pair, containing the input structure, as well as an or-
dered list of performance ratios and estimated resource uses for each of the program variants
that can be generated. In the compiler implementation, there is a third component that contains
the transformation function, which would generate a program variant with the performance and
resource use indicated by the other two components. To keep this presentation manageable, we
elide this third component, but note that it is simply defined as a lazy composition of the trans-
formations on the sub-terms. The term-level pattern-matching functionality is given directly by
the unTermBB which defines the TyTra CL term destructor in the BB encoding. The unTermBB

destructor is a higher-order function, parametrized by a number of functions which are used to
replace the data-constructors which make up the structure of the term being compiled, as shown
in Listing 4.52.

fusedFilterGenVariants term costEnv board =

unTermBB term lit app ttup leaf leaf leaf tmap tfold leaf

where [...]

Listing 4.52: Fused/optimized DSE implementation calls unTermBB.

TyTra CL Term constructors that are not recursively defined, aside from the variable terms
that could represent either input variables or opaque functions, are simply replaced with the leaf

constant. It is assumed that such expressions have no impact on performance, and that they
require a constant amount of resources. In the compiler implementation these costs are different
between say Stencil terms and Elt terms, however this does not affect the soundness of our result.

[...]

leaf = (term , [(1, nullRKI)])

Listing 4.53: Fused / Optimised DSE Implementation

CHAPTER 4. CATEGORICAL SEMANTICS 138

Input variable terms are likewise assumed to have no effect on performance and a negligible
resource use. In the compiler we would model the size of the required data transfers from main
memory and used that as an additional component of the hardware resource use estimates. We
can tell input variables apart from opaque functions simply by checking the cost-performance
estimate context, which only contains entries for opaque functions.

lit name =

case (Map.lookup name costEnv) of
Nothing −> (term , [(1, nullRKI)])

Just cst −>

let
efiVal = efi . fst $ cst

rkiVal = snd cst

factors = [1..(efi . fst $ cst)]

res = (term , filter (\ t −> snd t <= bound)

$ zip
(map (\i −> (fromInteger i) % fromIntegral efiVal) factors)

(map (\f −> smulRKI f rkiVal) factors)

)

in res

Listing 4.54: Design-space generating anamorphism replaces variable constructors.

A successful lookup for opaque functions returns the (Per f ormanceKI,ResourceKI) tuple.
The first component is use to generate a bounded number of program variants that parallelise
map operations up to a degree equal to the function’s input-to-output latency denoted by the
e f i component of the Per f romanceKI value. Program variants that take up more resources
than available are immediately filtered out. The merge operation discussed in section 4.3 is
implemented as mixDesigns shown in Listing 4.55. Note that we make use of the fact that
sub-term generated search-spaces are ordered in ascending order of performance.

mixDesigns b varF varX =

let
fMap = Map.fromAscListWith min varF

xMap = Map.fromAscListWith min varX

goMix f x =

map (\ t −> (t , head $ filter (\ s −> fst s >= fst t) (Map.toList x))) $ Map.toList f

in
map (\((i , iC),(j , jC)) −> (min i j , addRKI iC jC))

$

if length varF >= length varX then goMix xMap fMap else goMix fMap xMap

Listing 4.55: The merge operation on sub-spaces.

CHAPTER 4. CATEGORICAL SEMANTICS 139

The lit function that replaces variable terms shown in Listing 4.54 is an Anamorphism, as it
generates an ordered list of cost-performance estimates from each variable term. The app and
ttup functions in Listing 4.56 are Catamorphisms that generate an overall search-space from a
pair of sub-term generated spaces, in the case of app which replaces application terms, and a
k−ary tuple of sub-spaces in the case of ttup which replaces tuple constructors.

app (_, varF) (_, varX) = (term , filter (\ t −> snd t <= bound)

$ mixDesigns bound varF varX)

ttup xs = (term, filter (\ t −> snd t <= bound)

$ foldr1 (mixDesigns bound) $ map snd xs)

Listing 4.56: Applicaion and Tuple terms mix their sub-term generates search-spaces.

Notice that the mixDesigns function in Listing 4.55 inspects each of the sub-term generated
search-spaces and merges them in order, from the smallest to the largest (last line). Finally, tmap

and tfold simply pass along the sub-space generated by their respective recursive arguments, and
are thus simply search-space homomorphisms.

tmap a = (term, snd a)

tfold a = (term, snd a)

Listing 4.57: Map and fold search-spaces are generated entirely by their recursive argument.

Once the entire fusedFilterGenVariants function is applied to a BB-encoded TyTra CL term
value of type TermBB, its first argument, the unTermBB higher-order function is parametrized
by the functions we have just presented. This yields a new, first-order function that takes the
second argument, the cost-performance estimate environment of type CostEnv and returns an-
other function which, when given a description of the hardware target, would generate the search
space. Because we have not yet supplied all required arguments, none of fusedFilterGenVari-

ants’s output can yet be determined, and so no computation is executed. Once the third and final
argument of type Board is supplied, the composition of Anamorphisms, Catamorphisms and
Homomorphisms that make up fusedFilterGenVariants is optimized by the language run-time.
We know that the composition of an Anamorphism (the lit function), with a Catamorphisms (
the app and ttup functions) yields a hylomorphism which is optimized in the sense that it does
not produce intermediary values that are not required by the output. Each of the instances where
we see a call to the filter function in these Catamorphisms can be seen as being propagated to
the closest place where it can be fused with the lit Anamorphism, meaning that fusedFilterGen-

Variants generates the minimum size of search-space required. In section 4.5 that follows next,
we’ll present this result as a formal theorem and proof of efficiency for the DSE strategy we
have just defined.

CHAPTER 4. CATEGORICAL SEMANTICS 140

4.5 Efficient DSE Theorem

Having given categorical semantics to the TyTra CL, its dependent type system, and the design-

space exploration process, we can now state and prove our main theorem.

Theorem 1. Given an arbitrary term t in the TyTra Coordination language, a type context Γ

under which t is well typed, a set of accurate cost-performance estimates for every opaque
function occurring in t and a bounding measure of hardware resources for a target device,

the globally optimum parallel implementation of t that fits the target device can be found in

polynomial time.

4.5.1 Proof

Recall the presentation of our DSE strategy in Listing 4.52 which shows that search-space con-
struction involves applying the specific unTermBB function defined by the outer term of the
application being compiled, parametrized by a number of search-space generating functions,
each corresponding to every possible term-level constructor. The TermBB encoding of the ap-
plication will have been constructed by nesting functions such as termLit from Listing 4.39 and
termTup from Listing 4.40.

termFold f

term

termApp f i termTup [..] termZip termUnziptermMap ftermLit String termStencil [..] termElt i

Terms

Figure 4.64: Case-splitting on the TermBB encoding of the application.

The TermBB constructors are all shown in Figure 4.64 and can be categorized as either re-
cursive or non-recursive functions. For example, the termLit constructor shown in Figure 4.64
is non-recursive because all of its arguments have a type different from TermBB. In Listing 4.38
we can see that the same is true for termZip, termUnzip, termStencil and termElt. The remaining
constructors: termMap, termFold, termApp and termTup; are all recursive constructors meaning
that calling unTermBB on the terms produced by these constructors will involve further nested
calls to unTermBB on their nested sub-terms, as we have shown in Listing 4.40 for tuple terms.

We can give a proof by structural induction on our TermBB representation. The non-
recursive term-constructors represent the base case whilst the recursive constructors make up
the inductive case.

CHAPTER 4. CATEGORICAL SEMANTICS 141

Proof of Theorem 1 . By induction on the structure of the TermBB representation.
Base case. In Listing 4.54 we can see that the termLit constructor is replaced by a design

space generating function. If the term in question corresponds to an input variable, the generator
will produce a single design point. The same is true for all non-recursive constructors. If on
the other hand the term corresponds to a function type, then the space generating function can
produce as many design points as would be required to overcome the effective firing rate of the
opaque function in question.

factors = [1..(efi . fst $ cst)]

This design space generating function is pre-composed with a filter that ensures only pro-
gram variants that would fit on the target device will be generated. It must be stressed that at this
point, no program variants or cost-performance estimates are actually generated. We’ve only
created the function that would produce them.

res = (term , filter (\ t −> snd t <= bound) $ zip
(map (\i −> (fromInteger i) % fromIntegral efiVal) factors)

(map (\f −> smulRKI f rkiVal) factors))

Induction case. Recursive constructors are those for map, fold, tuple and application terms
which all contain TermBB sub-terms. Map and fold terms include a single sub-term each. The
design space they generate has the same number of design points as their respective sub-terms.
Tuple terms constructed with termTup, as well as application terms built using termApp con-
tain multiple TermBB sub-terms. Calling untermBB on these sub-term constructors yields a
design-space generating function for each. These functions are composed using the mixDesigns

function as exemplified in Listing 4.56 and shown in the orange section of Figure 4.65.

Types

Terms

Search
Space

termFold f

term

termApp f i termTup [..] termZip termUnziptermMap ftermLit String termStencil [..] termElt i

Figure 4.65: Graphical summary for the proof of Theorem 1.

CHAPTER 4. CATEGORICAL SEMANTICS 142

In the naive implementation this would have been implemented as taking the cross-product

of sub-spaces, meaning that there would have been an exponential blow-up in the number of
solutions. While the search space generated by the naive strategy is indeed complete, it is also
particularly large. If every TermAppF , TermTupF or TermZipF sub-term produces a search-
space by taking the cross-product of their respective sub-terms’ search spaces, then the overall
search-space is clearly exponential due to the simple algebraic identity that relates products to
exponentials: s1× s2 . . .× sk = sk. In our optimized DSE strategy, the cross-product operation is
replaced with the mixing function shown in Listing 4.55. The mixDesigns function that replaces
the cross-product generates a design space having a s1 + s2 cardinality where s1 and s2 are the
cardinalities of the sub-term search-spaces by pre-composing the space-generating functions
with a filter that ensures program variants are only generated if their throughput can be achieved
in practice, in a balanced pipeline. This filter is the goMix helper function below.

goMix f x =

map (\ t −> (t , head $ filter (\ s −> fst s >= fst t) (Map.toList x))) $ Map.toList f

The goMix helper traverses the smallest of the two sub-spaces to determine the quantized
levels of achievable throughput and selects a program variant that archives an equal or higher
throughput for the minimum cost, from the larger sub-space as shown below.

map (\((i , iC),(j , jC)) −> (min i j , addRKI iC jC)) $

if length varF >= length varX then goMix xMap fMap else goMix fMap xMap

In Figure 4.66 we can see that the output of the mixDesigns function has a size that is at most
the sum of the input design-space sizes.

Increasing Throughput

t

max = optimal pipelinemin = specfication

Figure 4.66: Additive sub-space mixing.

Given that the base-case generates a linear design-space for non-recursive terms, and that
the inductive case shows all such spaces produce additive compounds spaces, we have now
shown that we can efficiently generate a complete design-space using a polynomial-time function
by opportunistically pruning design points that can not be implemented within the resource
constraints as well as those that consume more resources to deliver the same performance as
other candidate solutions.

Chapter 5

Experimental Evaluation, Conclusion &
Future Work

Through this work we have sought to show that design space exploration can be an effective and

efficient way to derive application optimization schedules. This we have indeed achieved, as
witnessed by the proof in section 4.5, however, this theoretical result may be rightfully attacked
with the observation that: Given sufficiently large constants, a polynomial-time algorithm may

be of little practical use. To dispel this possibility, we will present experimental results that
show our contributed DSE strategy to be of practical utility, meaning that the constant factors
which define the polynomial-time complexity are suitably small.

The experimental results shown in section 5.1 are related to the optimization of a number
of representative examples of applications from the domain of scientific high-performance com-
puting. Part of the data used in this section is derived from work produced in collaboration, as
part of the following publication: Cristian Urlea, Wim Vanderbauwhede, and Syed Waqar Nabi.
Efficient FPGA cost-performance space exploration using type-driven program transformations.
In David Andrews, René Cumplido, Claudia Feregrino, and Marco Platzner, editors, 2019 In-

ternational Conference on ReConFigurable Computing and FPGAs, ReConFig 2019, Cancun,

Mexico, December 9-11, 2019, pages 1–2. IEEE, 2019. Figure 5.2 shows experimental results
produced in joint unpublished work with Syed Waqar Nabi.

In section 5.2, we will give our concluding remarks regarding design space exploration in the
TyTra compiler. Finally, in section 5.3, we speculate on a number of possible future directions
for expanding this work.

143

CHAPTER 5. EXPERIMENTAL EVALUATION, CONCLUSION & FUTURE WORK 144

5.1 Experimental validation

Compiler developers often give empirical evidence of effectiveness and efficiency by running
their compilers on benchmark applications. This approach is problematic because what ex-

actly constitutes a representative application is a matter of debate. Optimizing transformations
imply a trade-off between certain classes of properties. When applications gain in execution

speed they may also require an equivalent increase in the resource utilization. Structurally dif-
ferent applications may imply different trade-offs in performance and resource use. Although
benchmarking may not conclusively prove such properties as effectiveness or efficiency by it-
self, benchmarking can be used validate a formal proof that such properties hold, as we have
given in section 4.5. To this end, we ran our design space exploration strategies on a number of
examples, derived from real-world scientific and numerical applications. Note that the TyTra
CL representation for these examples only denotes the application’s data-flow structure. The
implementation details pertaining to the opaque functions are only represented in the TyTra IR
which is not shown. For layout reasons, the example in Listing 5.1 also elides the the type dec-
larations within the TyTra CL. This means that the opaque function signatures, such as shapiro

:: Float → SVec 5 (Float, Float) → Float, an the input, intermediate or output variable type
annotations, such as structures hzero :: Vec 500 Float, are not shown. The concrete point of this
exercise is to show:

1. That our polynomial-time design-space exploration strategy runs in a practically small
amount of time, for a set of representative applications. If this is indeed the case, then the
constant time factors in this polynomial-time strategy will have been shown to be small.
The practicality of the search strategy is shown for any TyTra CL application.

2. The ratio between the explored search-space and the exhaustive search-space validates
the theoretical result that the optimized search space for a term t is an additive function of
the search spaces for all sub-terms s ∈ t, rather than a multiplicative one.

The example applications chosen are the computationally intensive sections from: a large
eddy weather simulator [NTN12]; an ocean model [Käm09]; a synthetic example derived from
the latter. The TyTra CL representation for the second example is shown in Listing 5.1. At first
glance, the structure and size of this example may appear to indicate that it is a trivial, but this is
not the case. The examples used to validate our result are structurally complete. They showcase
every language feature currently available to TyTra CL applications. In addition to the basic
language constructs such as let expressions and the appearance of input and opaque function
variable terms, the examples also make use of: higher-order operations on opaque functions:
map and fold; data-container restructuring operations: zip and unzip; stencil.

CHAPTER 5. EXPERIMENTAL EVALUATION, CONCLUSION & FUTURE WORK 145

Another reason why these example seem trivial is that the TyTra CL language, which at
heart is effectively a dependently-typed sub-set of Haskell. It has a concrete syntax with a much
higher density of computational constructs than the imperative languages commonly supported
by vendor-supported HDL and HLS solutions.

vout =

let
eta_stencil = stencil [0,500] eta

wet_stencil = stencil [0,1,500] wet

un_vn = map (create_un_vn g) (zipt (eta_stencil, wet_stencil , u, v))

(un,vn) = unzipt un_vn

un_stencil = stencil [−1,0] un

vn_stencil = stencil [−500,0] vn

un_vn_stencil = zipt (un_stencil, vn_stencil)

hs1 = [−500,−1,0,1,500]

h_stencil = stencil hs1 h

etan = map (sea_level_predictor dx dy dt) (zipt (un_vn_stencil, h_stencil))

wet_etan = zipt (wet,etan)

wet_etan_stencil = stencil [−500,−1,0,1,500] wet_etan

eta’ = map (shapiro eps) wet_etan_stencil

h_u_v_wet1 = map (upd1 dt dx dy eps g hmin) (zipt (eta’, hzero, un, vn))

h_u_v_wet2 = map (upd2 dt dx dy eps g hmin) h_u_v_wet_1

h_u_v_wet3 = map (upd3 dt dx dy eps g hmin) h_u_v_wet_2

(h ’, u ’, v ’, wet’) = unzipt h_u_v_wet3

in
zipt (h ’, u ’, v ’, wet’)

Listing 5.1: Example TyTra CL Application (No Types)

Having broadly described the examples, we now look at the target hardware devices. In
Table 5.1 we show the target FPGA model names and their hardware resource counts.

FPGA Slices Logic Cells Block Ram DSPs
XC6SLX4 600 3840 12 8
XC6SLX9 1430 9152 32 16

XC6SLX16 2278 14579 38 32
XC6SLX25 3758 24051 52 38
XC6SLX45 6822 43661 116 58

XC6SLX150T 23038 147443 268 180

Table 5.1: FPGA Resource Bounds.

CHAPTER 5. EXPERIMENTAL EVALUATION, CONCLUSION & FUTURE WORK 146

The target FPGA devices listed in Table 5.1 showcase a wide spectrum of available hardware
computational resources. Each hardware target represents a particular Xillinx FPGA chip from
the vendor’s commercial offering at the time of evaluation. All devices considered belong to the
same product line, meaning that the internal structure of these devices is identical thus estimated
performance can only be influenced by computational resource availability, rather than other
architectural considerations. We performed one design-space exploration run for each example-
target pair, yielding the results shown in Table 5.2 below.

Example FPGA Perf reg bram dsp lut vars dse ratio speedup
SOR baseline 0.017 2432 3 40 4631 0 0 1x
SOR XC6SLX4 0.031 3136 6 44 5473 8 0.001 1.8x
SOR XC6SLX9 0.218 21248 39 304 37469 19 0.01 12x
SOR XC6SLX16 0.375 36224 66 520 63992 33 0.02 22x
SOR XC6SLX25 0.625 59904 108 864 106092 55 0.03 36.7x
SOR XC6SLX45 1.0 95424 171 1380 169242 88 0.05 58.0x
1DS baseline 0.043 64 0 4 0 0 0 1x
1DS XC6SLX4 1.0 1472 0 92 0 23 1.0 23x

Synth baseline 0.037 1388 7 13 3380 9 0 1x
Synth XC6SLX4 0.26 8520 42 82 21122 13 0.02 7x
Synth XC6SLX9 0.69 22496 112 214 55343 34 0.05 18x
Synth XC6SLX16 1.0 32308 161 307 79424 49 0.07 27x

Table 5.2: Best performing (example, board) pairs showing achieved/theoretical maximum
throughput, hardware resource use and ratio of explored design space.

The first column, labelled Example indicates which of the three applications these results
belong to. These are separated by the horizontal border. The second column indicates the target
hardware device which sets the hardware resource limits. Notice that the target devices are or-
dered from top to bottom in order of increasing hardware resource availability. We only show
those FPGA targets that yield a performance that is less than or equal to the theoretical maxi-
mum. Targeting a larger device would have no impact on the application performance nor the
efficiency of the DSE process, so there is no point in showing these. As a pair, the first and sec-

ond columns define a complete yet bounded search-space. The limits are set by the structure and
types of the application, the hardware resource limits pertaining to the selected device and the
cost-performance estimates for the application’s opaque functions. The third column, labelled
Perf, indicates the ratio between the throughput achieved by the best performing program vari-
ant found, and the theoretical maximum throughput for the application in question, as could be
achieved on the targeted FPGA device. Columns four through seven, labelled reg, bram, dsp
and lut represent the hardware resource usage of the best performing program variant in the
search-space. The eighth column, labelled dse ratio shows what proportion of the exhaustive

search-space our solution searched until the best performing program variant, that fits within the
device’s resource limits, was found.

CHAPTER 5. EXPERIMENTAL EVALUATION, CONCLUSION & FUTURE WORK 147

The ninth and final column, labelled speed-up, indicates the ration between the forecasted
throughput of the best performing program variant found, and the performance of the initial
program variant from which the search had started.

In Figure 5.1 we show the overall and the pruned design spaces produced for the Synth ex-
ample when targeting the largest device: XC6SLX150T. As we previously mentioned, Table 5.2
shows only those example-device pairs that exhibit a throughput that is less than or equal to the
theoretical maximum. A close inspection of Figure 5.1 will reveal that the search-space pro-
duced by the (Synth,XC6SLX150T) example-target pair is identical to the largest space shown in
Table 5.2 that corresponds to the (Synth,XC6SLX16) pair.

Figure 5.1: Hardware resource limit bounded Design Space (left) vs Filtered Design Space
(right) for Synth Kernel on XC6SLX150T.

In both plots, the X-Axis corresponds to the performance ratio between individual design
points and the optimal program variant that corresponds to a single instance of a fully balanced

pipeline implementation. At each performance point on th X-Axis in the left-hand plot, we
find an entire set of design points. Each design point is represented by multiple symbols, each
of which corresponds to one of the hardware resource types. The left-hand side of Figure 5.1
shows that section of the exhaustive search-space that fits within the hardware resource bounds

given by the target device, XC6SLX150T. Note that this is already significantly smaller than the
space produced by the naïve approach. Design points that exceed the resources available on a
XC6SLX150T FPGA were pruned at the earliest opportunity to generate the plot in a reasonable
time-frame. The right-hand plot shows the search-space generated by our most efficient DSE
strategy. It can be readily observed that the search-space contains a single solution for each
discrete performance value: the hardware resource cost solution. The Y-Axis shows the amount
of a hardware resource, that used by each design point.

CHAPTER 5. EXPERIMENTAL EVALUATION, CONCLUSION & FUTURE WORK 148

The shape of the plots correspond to our expectations. The right-most plot marks out the
pareto-optimal frontier of the total design space, generated by this particular example on the
largest device XC6SLX150T. As these plots show design points through multiple symbols, it may
be difficult to observe that the optimized search space is now defined by an additive function. Let
us take a further example and verify that the number of design points is in line with our theorem.
This last example is an application from the realm of high-performance computing: the 2D
Shallow-Water Model derived from an ocean model [Käm09] and focused on a particular part
of this example application that can be roughly described as a sequence of three map operations,
each with its own opaque function implementation, collectively acting upon a vector of input
values. We denote the opaque functions as f , g and h respectively. For each of these, we show
the effective firing interval, the expressed parallelism as well as a count of total clock-cycles
required to produce the final output, the total cycles per item of data, and the total resource use
estimate in the number of lookup tables used.

Firing
Intervals
(f, g, h)

Map
Factor

Simulated
Cycles

CPI
(cycles/
item)

Resource
Estimate
(LUTs)

(9, 15, 28) (1,1,1) 204971 50.04 9588
(9, 15, 28) (1,2,4) 37076 9.05 10988
(9, 15, 28) (4,10,23) 9431 2.30 23688
(9, 15, 28) (9,15,28) 4316 1.05 32688

Table 5.3: Experimental results for an extended 2D Shallow-Water Model, having three stalling
nodes with varying Firing Interval, each parallelized to varying degrees as to generate design

variants. The cycle count is from a cycle-accurate simulation based on Verilog-HDL generated
automatically by the TyTra backend. The resource cost estimates are generated by the backend

as well.

Looking at this particular slice of the DSE problem we can observe that even a simple ap-
plication such as this generates a very large search-space, when using the naïve approach. The
total space generated by loop unrolling the three map operations contains a number of products
equal to the product of the opaque function firing interval. That is 3780 total program variants to
be considered. Synthesizing and checking the performance of each variant is clearly unfeasible:
synthesis alone can take on the order of tens of hours to perform.

Device CLBs LUTs
XC6SLX25 3758 15032
XC6SLX45 6822 27288
XC6SLX75 11662 46648

Table 5.4: Three Xilinx Spartan-6 FPGA devices targeted in the experiments, showing the
maximum CLB and LUT resources available on each (Each CLB provides 4 LUTs).

CHAPTER 5. EXPERIMENTAL EVALUATION, CONCLUSION & FUTURE WORK 149

In Figure 5.2 we show experimental results produced in joint unpublished work with Syed
Waqar Nabi 1. These correspond to the design-space exploration for a 2D Shallow-Water Model.
Each of the three stalling nodes is replicated to varying degrees. Assuming lookup tables (LUTs)
are the limiting resource, the figure shows which of the design variants can fit inside the three
devices considered.

-3

2

7

12

17

22

27

32

37

42

47

0

50

100

150

200

250

2dsw-4096-(1,1,1) 2dsw-4096-(1,2,4) 2dsw-4096-(4,10,23) 2dsw-4096-(9,15,28)

FP
G

A
 R

e
so

u
rc

e
 E

st
im

at
e

 (
LU

Ts
)

Th
o

u
sa

n
d

s

Si
m

u
la

te
d

 E
xe

cu
ti

o
n

 C
yc

le
 C

o
u

n
t

Th
o

u
sa

n
d

s

Execution Cycle Count Resource Consumption (LUT)

CPI = 50.04

CPI = 9.1

CPI = 2.3
CPI = 1.1

XC6SLX75 Ceiling

XC6SLX45 Ceiling

XC6SLX25 Ceiling

Figure 5.2: Hardware simulation showing program variants generated through DSE present the
expected cost-performance characteristics.

Having confirmed through simulation that the solutions found by our DSE strategy lead
to the expected performance gains, and consume the expected amount of hardware resources
we moved on to confirm that the asymptotic complexity improvement shown logically by the
reduction of the search space translates into physical speed-ups of the DSE process.

Firing
Intervals
(f, g, h)

real
time

user
time

sys
time

Variants

(9, 15, 28) 0m0.644s 0m0.570s 0m0.072s 850500
(90, 15, 28) 0m4.113s 0m3.545s 0m0.568s 8505000

(90, 150, 28) crash crash crash crash

Table 5.5: Naive DSE strategy results.

For this purpose, we ran the three versions of our DSE strategy against the first example
application, SOR, with modified costs, whilst gathering tracing data to see the amount of time
spent in each. Unsurprisingly, as we raised the firing interval, the brute-force tactic quickly
succumbed to the larger and larger design space, crashing early on.

1Syed Waqar Nabi produced the HDL representation of the program variants selected through DSE and the
simulation results shown in Figure 5.2

CHAPTER 5. EXPERIMENTAL EVALUATION, CONCLUSION & FUTURE WORK 150

With the expert tactic, but no hardware resource limits and filtering performed at the end,
the results are more promising, but we could only scale up the firing interval so far before the
process ran out of memory and was killed.

Firing
Intervals
(f, g, h)

real
time

user
time

sys
time

Variants

(90, 150, 280) 0m0.219s 0m0.196s 0m0.024s 480
(250, 190, 280) 0m0.263s 0m0.241s 0m0.023s 700

(1250, 1190, 1280) 0m3.421s 0m3.060s 0m0.356s 3700
(9250, 1190, 1280) 0m19.795s 0m18.179s 0m1.616s 11700
(9250, 9190, 1280) crash crash crash crash

Table 5.6: Filtered DSE strategy results.

With the fused strategy the size of the resulting design space and the exploration time are
further reduced. An unexpected “issue” occurred, where we realised that by scaling up the
firing interval but leaving the opaque function costs intact, eventually none of the solutions were
viable.

Firing
Intervals
(f, g, h)

real
time

user
time

sys
time

Variants

(9, 15, 28) 0m0.209s 0m0.183s 0m0.028s 28
(90, 15, 28) 0m0.179s 0m0.168s 0m0.012s 90

(90, 150, 28) 0m0.179s 0m0.169s 0m0.011s none
(9250, 9190, 128) 0m0.181s 0m0.157s 0m0.024s none

Table 5.7: Fused DSE strategy results, with hardware limits

Because we also filter for hardware resource limits bounds, there is no solution that fits on
the selected device, XC6SLX150T, once we increase the firing intervals past (90,150,28). To test
the limits of our solution, we lowered the cost of the opaque functions such that the hardware
resource limits would not intervene until much later.

Firing
Intervals
(f, g, h)

real
time

user
time

sys
time

Variants

(9250, 9190, 1280) 0m11.746s 0m11.660s 0m0.087s 9250
(9250, 9190, 121280) 1m46.542s 1m46.115s 0m0.416s 121280

Table 5.8: Fused DSE strategy results, with hardware limits, lowered kernel cost.

The runtime measurements conclusively prove that our improved DSE strategy is orders of
magnitude quicker, in line with the design space exploration ratio shown in Table 5.2 indicating
that the runtime is proportional to the design space size, and thus that our reasoning is sound. �

CHAPTER 5. EXPERIMENTAL EVALUATION, CONCLUSION & FUTURE WORK 151

5.2 Conclusion

Throughout this work we have seen how modern HLS solutions bring considerable improve-
ments to FPGA application development, particularly in the context of Heterogeneous HPC,
where the HDL workflow is ill-suited for the task. It is true that certain applications can still
benefit from a hand-crafted approach to optimization that revolves around the circuit-view of
computation. This is primarily true for applications where the complexity of computation is
low and timing requirements are strict. In general however, the ability to specify intended ap-
plication semantics at a higher level of abstraction enables brings numerous benefits in terms
of porting flexibility, reducing development cost and minimizing software errors. Where HLS
solutions fall short, is in their ability to deliver optimal performance without significant input
from an expert programmer.

We have also seen how taking the general idea of HLS further, as TyTra Compiler Frame-
work does, can help deliver on the promise of performance portability. The TyTra front-end

compiler recovers a functional description of the application structure that can be safely trans-
formed into a large number of alternative implementations. The resulting program variants
come with different performance and hardware resource costs, and thus expose a searchable
design-space from which a DSE strategy can choose the optimal implementation. The TyTra
Back-end compiler is responsible with Verilog code-generation as well as producing accurate
cost-performance estimates.

The efficient Design Space Exploration strategy we have contributed through this work ex-
tends the TyTra Compiler framework by enabling it to automatically find the best set of opti-
mizing transformations within a very small amount of time, orders of magnitude quicker than a
brute force approach.

Our third chapter served to contrast our approach to those used in a number of practical
and theoretical related works. On the practical side, we have seen that other HLS solutions
can also benefit greatly from the use of DSE to maximise performance and reduce the amount
of computational resources required to parallelize applications. On the theoretical side, we
have seen that there is a strong connection between the imperative and functional programming
language approaches to parallel computation. The link between parallel skeletons and recursion
schemes on the one hand, and the link between recursion schemes, categorical data types and
the Böhm-Berarducci encoding on the other seem to indicate that Design Space Exploration can
be used to gain a tighter coupling between the semantics of the application being compiled and
the optimizing compiler. In section 5.3, we speculate on the subject of future work that may
benefit from this tighter coupling.

CHAPTER 5. EXPERIMENTAL EVALUATION, CONCLUSION & FUTURE WORK 152

5.3 Future work

Design space exploration is a process that is widely used outside the specific area of optimizing
parallel applications for FPGAs that we have tackled through this work. We expect that the
search-space reduction method we have successfully applied to the TyTra compiler could be
applied in other areas of computing science, in some cases with minimal translation effort. In
this section we will highlight some of the areas and key problems we believe may benefit from
our approach.

Cryptography

Cryptographic protocols are an abstract specification for cryptographic functions that can be de-
scribed as the composition of cryptographic primitives. These cryptographic primitives usually
belong one of the following types of functions.

• Cryptographic hash functions. Functions that summarize the input in a cryptographically
safe way, allowing them to be compared, usually for equality, without having to reveal the
exact input used.

• Symmetric encryption routines. Bijective functions that can obscure or reveal the mean-
ing of a message, the so-called clear-text. Symmetric encryption routines use a single
cryptographic key for both the encryption and decryption operations.

• Asymmetric encryption routines. Cryptographic functions that use different keys for the
encryption and decryption operations. These enable secure communication amongst mul-
tiple parties using a shared medium.

Although numerous cryptographic primitives have been shown to provide adequate levels of
security against direct attacks, either through formal methods or simply the test of time, prov-
ing that specific cryptographic protocols, which makes use of such primitives, are also secure
remains difficult. In a survey on the formal verification of cryptographic protocols [Mea94],
Meadows highlights several issues, including that:

• Methods based on state machines are insufficiently powerful, leading to situations where
a human expert must assist in guiding the search for a secure cryptographic protocol.

• The granularity used to assess the quality of a cryptographic model can make the issue of
searching for a cryptographic protocol design intractable.

Drawing on the parallels to the correct-by-construction approach in the TyTra compiler, we
speculate that the DSE strategy optimization methods we have presented through this work may
be used to solve the issue of cryptographic protocol design. This poses an immediate research
question: what constitutes an appropriate cost-performance model in this context?

CHAPTER 5. EXPERIMENTAL EVALUATION, CONCLUSION & FUTURE WORK 153

Artificial Neural Networks

Artificial Neural Network (ANN) design is a hot topic in the field of machine learning and
artificial intelligence. The structure of of ANNs is remarkably similar to that of the dataflow
computations the TyTra compiler framework was designed to handle, as we will now show.

• Artificial neurons, sometimes called perceptrons can be represented as pure, functional
terms. A simple perceptron implementation is a function that computes the weighted sum
of its inputs, adds a bias term and then squashes the result using a sigmoid function.

• Perceptrons are arranged into layers. The connections between these layers compose sub-
solutions, sometimes called features into larger scale and more complex decisions.

• Information flow between perceptrons is completely defined by the connections between
them and implying that a fully parallel execution model is appropriate. This makes FPGAs
a particularly appealing target for the implementation of ANN inference passes.

Others have attempted to optimize such payloads for FPGAs using their own formula-
tions of DSE which produce good results, but must exhaustively search the entire search space
[ZLS+15]. We believe that a quicker exploration strategy could be derived from our method-
ology by simply defining a cost-performance model that also accounts for the precision and

accuracy of ANNs.

Edge/Fog Computing

Edge computing represents a current that both opposes and augments that of cloud computing.
The central idea is that of lowering latency by moving some or all computation away from the
cloud and closer to the user. Where a particular computation serves a single user, a lower la-
tency translates into better performance. If the computation to be performed serves multiple,
perhaps competing users, moving the computation to an equidistant location means that ser-
vice delivery is fair to everyone. Moving computation closer to the user can also help deliver
better privacy grantees by keeping data within regional borders where specific legislation is in
force. Optimizing such movement of computation is a use-case that resembles that of optimizing
dataflow computations on FPGAs in two ways. Firstly, services can be distributed to a network
of machines, each of which can be seen as the equivalent to a functional unit in a dataflow archi-
tecture. Secondly, the network that connects these machines is in some ways analogous to the
tiered memory architecture found on FPGAs and GPUs. The key challenge here is more compli-
cated than simply providing an adequate cost-performance model, however. The dynamic nature
of public and private networks makes this problem potentially more difficult to solve. FPGAs
provide a static target for the compiler, whereas data networks are subject to real-time changes.

Bibliography

[App] Apple. Opencl programming guide for mac. https://

developer.apple.com/library/archive/documentation/

Performance/Conceptual/OpenCL_MacProgGuide/

TuningPerformanceOntheGPU/TuningPerformanceOntheGPU.

html/. [Online; accessed 17-Mar-2020].

[Ayc03] John Aycock. A brief history of just-in-time. ACM Comput. Surv., 35(2):97–113,
2003.

[Bas04] Cédric Bastoul. Code generation in the polyhedral model is easier than you think.
In 13th International Conference on Parallel Architectures and Compilation Tech-

niques (PACT 2004), 29 September - 3 October 2004, Antibes Juan-les-Pins,

France, pages 7–16. IEEE Computer Society, 2004.

[BB85] Corrado Böhm and Alessandro Berarducci. Automatic synthesis of typed lambda-
programs on term algebras. Theor. Comput. Sci., 39:135–154, 1985.

[BBH18] Adam D Barwell, Christopher Brown, and Kevin Hammond. Finding parallel
functional pearls: Automatic parallel recursion scheme detection in haskell func-
tions via anti-unification. Future Generation Computer Systems, 79:669–686,
2018.

[BBL+16] Thomas Bridi, Andrea Bartolini, Michele Lombardi, Michela Milano, and Luca
Benini. A constraint programming scheduler for heterogeneous high-performance
computing machines. IEEE Trans. Parallel Distributed Syst., 27(10):2781–2794,
2016.

[BDPV99] Bruno Bacci, Marco Danelutto, Susanna Pelagatti, and Marco Vanneschi. Skie:
A heterogeneous environment for HPC applications. Parallel Comput., 25(13-
14):1827–1852, 1999.

[BDW16] Mark Batty, Alastair F. Donaldson, and John Wickerson. Overhauling SC atomics
in C11 and opencl. In Rastislav Bodík and Rupak Majumdar, editors, Proceed-

ings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of

154

https://developer.apple.com/library/archive/documentation/Performance/Conceptual/OpenCL_MacProgGuide/TuningPerformanceOntheGPU/TuningPerformanceOntheGPU.html/
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/OpenCL_MacProgGuide/TuningPerformanceOntheGPU/TuningPerformanceOntheGPU.html/
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/OpenCL_MacProgGuide/TuningPerformanceOntheGPU/TuningPerformanceOntheGPU.html/
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/OpenCL_MacProgGuide/TuningPerformanceOntheGPU/TuningPerformanceOntheGPU.html/
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/OpenCL_MacProgGuide/TuningPerformanceOntheGPU/TuningPerformanceOntheGPU.html/

BIBLIOGRAPHY 155

Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22,

2016, pages 634–648. ACM, 2016.

[Ben12] Shajulin Benedict. Energy-aware performance analysis methodologies for HPC
architectures - an exploratory study. J. Netw. Comput. Appl., 35(6):1709–1719,
2012.

[BG91] Stephen Brookes and Shai Geva. Computational comonads and intensional se-

mantics. Citeseer, 1991.

[Bir87] Richard S Bird. An introduction to the theory of lists. In Logic of programming

and calculi of discrete design, pages 5–42. Springer, 1987.

[Bol08] Thomas Bollaert. Catapult synthesis: a practical introduction to interactive c
synthesis. In High-Level Synthesis, pages 29–52. Springer, 2008.

[Bot12] Mirela-Madalina Botezatu. A study on compiler flags and performance events.
Conseil Européen pour la Recherche Nucléaire, 2012.

[BR96] Stephen Dean Brown and Jonathan Rose. FPGA and CPLD architectures: A
tutorial. IEEE Des. Test Comput., 13(2):42–57, 1996.

[BRS13] David F. Bacon, Rodric M. Rabbah, and Sunil Shukla. FPGA programming for
the masses. Commun. ACM, 56(4):56–63, 2013.

[BS91] Thomas B. Berg and Howard Jay Siegel. Instruction execution trade-offs for
SIMD vs. MIMD vs. mixed mode parallelism. In V. K. Prasanna Kumar, editor,
The Fifth International Parallel Processing Symposium, Proceedings, Anaheim,

California, USA, April 30 - May 2, 1991, pages 301–308. IEEE Computer Society,
1991.

[BST89] Henri E. Bal, Jennifer G. Steiner, and Andrew S. Tanenbaum. Programming lan-
guages for distributed computing systems. ACM Comput. Surv., 21(3):261–322,
1989.

[BTL10] Brahim Betkaoui, David B. Thomas, and Wayne Luk. Comparing performance
and energy efficiency of fpgas and gpus for high productivity computing. In Jinian
Bian, Qiang Zhou, Peter Athanas, Yajun Ha, and Kang Zhao, editors, Proceedings

of the International Conference on Field-Programmable Technology, FPT 2010,

8-10 December 2010, Tsinghua University, Beijing, China, pages 94–101. IEEE,
2010.

[CAD+12] Tomasz S. Czajkowski, Utku Aydonat, Dmitry Denisenko, John Freeman,
Michael Kinsner, David Neto, Jason Wong, Peter Yiannacouras, and Deshanand P.

BIBLIOGRAPHY 156

Singh. From opencl to high-performance hardware on FPGAS. In Dirk Koch,
Satnam Singh, and Jim Tørresen, editors, 22nd International Conference on Field

Programmable Logic and Applications (FPL), Oslo, Norway, August 29-31, 2012,
pages 531–534. IEEE, 2012.

[Cas18a] Stephen Cass. The 2017 top programming languages. IEEE Spectrum, 31, 2018.

[Cas18b] David Castro. Structured arrows: a type-based framework for structured paral-

lelism. PhD thesis, University of St Andrews, UK, 2018.

[CC92] Patrick Cousot and Radhia Cousot. Abstract interpretation frameworks. J. Log.

Comput., 2(4):511–547, 1992.

[CCA+11] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kam-
moona, Jason Helge Anderson, Stephen Dean Brown, and Tomasz S. Czajkowski.
Legup: high-level synthesis for fpga-based processor/accelerator systems. In John
Wawrzynek and Katherine Compton, editors, Proceedings of the ACM/SIGDA

19th International Symposium on Field Programmable Gate Arrays, FPGA 2011,

Monterey, California, USA, February 27, March 1, 2011, pages 33–36. ACM,
2011.

[CH05] S Chtourou and O Hammami. Systemc space exploration of behavioral synthesis
options on area, performance and power consumption. In 2005 International

Conference on Microelectronics, pages 5–pp. IEEE, 2005.

[Cha01] Rohit Chandra. Parallel programming in openMP. Morgan Kaufmann, 2001.

[CLS+08] Shuai Che, Jie Li, Jeremy W. Sheaffer, Kevin Skadron, and John Lach. Acceler-
ating compute-intensive applications with gpus and fpgas. In Proceedings of the

IEEE Symposium on Application Specific Processors, SASP 2008, held in con-

junction with the DAC 2008, June 8-9, 2008, Anaheim, California, USA, pages
101–107. IEEE Computer Society, 2008.

[Col04] Murray Cole. Bringing skeletons out of the closet: a pragmatic manifesto for
skeletal parallel programming. Parallel computing, 30(3):389–406, 2004.

[Cur98] Matt Curtin. Write once, run anywhere: Why it matters. Technical Article.

http://java.sun.com/features/1998/01/wo, 1998.

[DAF11] Mayank Daga, Ashwin M Aji, and Wu-chun Feng. On the efficacy of a fused cpu+
gpu processor (or apu) for parallel computing. In 2011 Symposium on Application

Accelerators in High-Performance Computing, pages 141–149. IEEE, 2011.

BIBLIOGRAPHY 157

[DKK09] Gregory Diamos, Andrew Kerr, and Mukil Kesavan. Translating gpu binaries
to tiered simd architectures with ocelot. Technical report, Georgia Institute of
Technology, 2009.

[DM98] Leonardo Dagum and Ramesh Menon. Openmp: an industry standard api for
shared-memory programming. IEEE computational science and engineering,
5(1):46–55, 1998.

[dMRVP09] Frédéric de Mesmay, Arpad Rimmel, Yevgen Voronenko, and Markus Püschel.
Bandit-based optimization on graphs with application to library performance tun-
ing. In Andrea Pohoreckyj Danyluk, Léon Bottou, and Michael L. Littman, edi-
tors, Proceedings of the 26th Annual International Conference on Machine Learn-

ing, ICML 2009, Montreal, Quebec, Canada, June 14-18, 2009, volume 382 of
ACM International Conference Proceeding Series, pages 729–736. ACM, 2009.

[Doe03] Osvaldo Pinali Doederlein. The tale of java performance. J. Object Technol.,
2(5):17–40, 2003.

[Dow06] Jack Doweck. White paper inside intel® core™ microarchitecture and smart
memory access. Intel Corporation, 52:72–87, 2006.

[DSW+13] Gilles Duboscq, Lukas Stadler, Thomas Würthinger, Doug Simon, Christian
Wimmer, and Hanspeter Mössenböck. Graal ir: An extensible declarative in-
termediate representation. In Proceedings of the Asia-Pacific Programming Lan-

guages and Compilers Workshop, 2013.

[EM45] Samuel Eilenberg and Saunders MacLane. General theory of natural equiv-
alences. Transactions of the American Mathematical Society, 58(2):231–294,
1945.

[ESFC14] Pacôme Eberhart, Issam Said, Pierre Fortin, and Henri Calandra. Hybrid strat-
egy for stencil computations on the apu. In Proceedings of the 1st international

workshop on high-performance stencil computations, Vienna, pages 43–49, 2014.

[Fau82] Antony A. Faustini. The equivalence of an operational and a denotational se-

mantics for pure dataflow. PhD thesis, University of Warwick, Coventry, UK,
1982.

[FLP+18] Franz Franchetti, Tze Meng Low, Doru-Thom Popovici, Richard Michael Ve-
ras, Daniele G. Spampinato, Jeremy R. Johnson, Markus Püschel, James C. Hoe,
and José M. F. Moura. SPIRAL: extreme performance portability. Proc. IEEE,
106(11):1935–1968, 2018.

BIBLIOGRAPHY 158

[FSH04] Kayvon Fatahalian, Jeremy Sugerman, and Pat Hanrahan. Understanding the
efficiency of GPU algorithms for matrix-matrix multiplication. In Michael D.
McCool and Tomas Akenine-Möller, editors, Proceedings of the ACM SIG-

GRAPH/EUROGRAPHICS Symposium on Graphics Hardware 2004, Grenoble,

France, August 29-30, 2004, pages 133–137. Eurographics Association, 2004.

[FT10] Grigori Fursin and Olivier Temam. Collective optimization: A practical collabo-
rative approach. ACM Trans. Archit. Code Optim., 7(4):20:1–20:29, 2010.

[Fut99] Yoshihiko Futamura. Partial evaluation of computation process - an approach to
a compiler-compiler. High. Order Symb. Comput., 12(4):381–391, 1999.

[GBL10] Cristian Grozea, Zorana Bankovic, and Pavel Laskov. FPGA vs. multi-core cpus
vs. gpus: Hands-on experience with a sorting application. In Rainer Keller, David
Kramer, and Jan-Philipp Weiss, editors, Facing the Multicore-Challenge - Aspects

of New Paradigms and Technologies in Parallel Computing [Proceedings of a

conference held at the Heidelberger Akademie der Wissenschaften, March 17-

19, 2010], volume 6310 of Lecture Notes in Computer Science, pages 105–117.
Springer, 2010.

[GdSO09] Jeremy Gibbons and Bruno C. d. S. Oliveira. The essence of the iterator pattern.
J. Funct. Program., 19(3-4):377–402, 2009.

[Gee05] David Geer. Industry trends: Chip makers turn to multicore processors. Com-

puter, 38(5):11–13, 2005.

[GFG+16] Abhishek Gupta, Paolo Faraboschi, Filippo Gioachin, Laxmikant V. Kalé,
Richard Kaufmann, Bu-Sung Lee, Verdi March, Dejan S. Milojicic, and Chun Hui
Suen. Evaluating and improving the performance and scheduling of HPC appli-
cations in cloud. IEEE Trans. Cloud Comput., 4(3):307–321, 2016.

[Gib06] Jeremy Gibbons. Datatype-generic programming. In Roland Carl Backhouse,
Jeremy Gibbons, Ralf Hinze, and Johan Jeuring, editors, Datatype-Generic Pro-

gramming - International Spring School, SSDGP 2006, Nottingham, UK, April

24-27, 2006, Revised Lectures, volume 4719 of Lecture Notes in Computer Sci-

ence, pages 1–71. Springer, 2006.

[GKSC13] Scott Grauer-Gray, William Killian, Robert Searles, and John Cavazos. Accel-
erating financial applications on the GPU. In John Cavazos, Xiang Gong, and
David R. Kaeli, editors, Proceedings of the 6th Workshop on General Purpose

Processor Using Graphics Processing Units, GPGPU-6, Houston, Texas, USA,

March 16, 2013, pages 127–136. ACM, 2013.

BIBLIOGRAPHY 159

[GLJ93] Andrew John Gill, John Launchbury, and Simon L. Peyton Jones. A short cut to
deforestation. In John Williams, editor, Proceedings of the conference on Func-

tional programming languages and computer architecture, FPCA 1993, Copen-

hagen, Denmark, June 9-11, 1993, pages 223–232. ACM, 1993.

[Gor96] Sergei Gorlatch. Systematic efficient parallelization of scan and other list homo-
morphisms. In Luc Bougé, Pierre Fraigniaud, Anne Mignotte, and Yves Robert,
editors, Euro-Par ’96 Parallel Processing, Second International Euro-Par Con-

ference, Lyon, France, August 26-29, 1996, Proceedings, Volume II, volume 1124
of Lecture Notes in Computer Science, pages 401–408. Springer, 1996.

[Gra06] Martin Grabmüller. Algorithm w step by step, 2006.

[Gro09] Khronos OpenCL Working Group. The opencl specification. https://www.
khronos.org/registry/OpenCL/specs/opencl-1.0.pdf, 2009.
[Online; accessed 22-July-2019].

[GS08] David J. Greaves and Satnam Singh. Kiwi: Synthesis of FPGA circuits from
parallel programs. In Kenneth L. Pocek and Duncan A. Buell, editors, 16th IEEE

International Symposium on Field-Programmable Custom Computing Machines,

FCCM 2008, 14-15 April 2008, Stanford, Palo Alto, California, USA, pages 3–12.
IEEE Computer Society, 2008.

[GSAK00] Maya B. Gokhale, Janice M. Stone, Jeffrey M. Arnold, and Mirek Kalinowski.
Stream-oriented FPGA computing in the streams-c high level language. In 8th

IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM

2000), 17-19 April 2000, Napa Valley, CA, USA, Proceedings, pages 49–58. IEEE
Computer Society, 2000.

[HCG+07] Martin C. Herbordt, Tom Van Court, Yongfeng Gu, Bharat Sukhwani, Al Conti,
Josh Model, and Douglas DiSabello. Achieving high performance with fpga-
based computing. Computer, 40(3):50–57, 2007.

[HGMS+12] JA Herdman, WP Gaudin, Simon McIntosh-Smith, Michael Boulton, David A
Beckingsale, AC Mallinson, and Stephen A Jarvis. Accelerating hydrocodes with
openacc, opencl and cuda. In 2012 SC Companion: High Performance Comput-

ing, Networking Storage and Analysis, pages 465–471. IEEE, 2012.

[HHV15] Ábel Hegedüs, Ákos Horváth, and Dániel Varró. A model-driven framework for
guided design space exploration. Autom. Softw. Eng., 22(3):399–436, 2015.

[HTWB10] Hans Hacker, Carsten Trinitis, Josef Weidendorfer, and Matthias Brehm. Consid-
ering GPGPU for HPC centers: Is it worth the effort? In Rainer Keller, David

https://www.khronos.org/registry/OpenCL/specs/opencl-1.0.pdf
https://www.khronos.org/registry/OpenCL/specs/opencl-1.0.pdf

BIBLIOGRAPHY 160

Kramer, and Jan-Philipp Weiss, editors, Facing the Multicore-Challenge - As-

pects of New Paradigms and Technologies in Parallel Computing [Proceedings of

a conference held at the Heidelberger Akademie der Wissenschaften, March 17-

19, 2010], volume 6310 of Lecture Notes in Computer Science, pages 118–130.
Springer, 2010.

[Hud97] Paul Hudak. Domain-specific languages. Handbook of programming languages,
3(39-60):21, 1997.

[Hug89] John Hughes. Why functional programming matters. Comput. J., 32(2):98–107,
1989.

[JHH+93] SL Peyton Jones, Cordy Hall, Kevin Hammond, Will Partain, and Philip Wadler.
The glasgow haskell compiler: a technical overview. In Proc. UK Joint Frame-

work for Information Technology (JFIT) Technical Conference, volume 93, 1993.

[JK13] Michael R. Jantz and Prasad A. Kulkarni. Exploring single and multilevel JIT
compilation policy for modern machines. ACM Trans. Archit. Code Optim.,
10(4):22:1–22:29, 2013.

[JLBF10] Yang Jiao, Heshan Lin, Pavan Balaji, and Wu-chun Feng. Power and performance
characterization of computational kernels on the GPU. In Peidong Zhu, Lizhe
Wang, Feng Xia, Huajun Chen, Ian McLoughlin, Shiao-Li Tsao, Mitsuhisa Sato,
Sun-Ki Chai, and Irwin King, editors, 2010 IEEE/ACM Int’l Conference on Green

Computing and Communications, GreenCom 2010, & Int’l Conference on Cyber,

Physical and Social Computing, CPSCom 2010, Hangzhou, China, December

18-20, 2010, pages 221–228. IEEE Computer Society, 2010.

[JQR06] P Joly, A Quarteroni, and J Rappaz. Scientific computation. 2006.

[Käm09] Jochen Kämpf. Ocean modelling for beginners: using open-source software.
Springer Science & Business Media, 2009.

[KF19] Michael Kruse and Hal Finkel. Design and use of loop-transformation pragmas.
In Xing Fan, Bronis R. de Supinski, Oliver Sinnen, and Nasser Giacaman, ed-
itors, OpenMP: Conquering the Full Hardware Spectrum - 15th International

Workshop on OpenMP, IWOMP 2019, Auckland, New Zealand, September 11-13,

2019, Proceedings, volume 11718 of Lecture Notes in Computer Science, pages
125–139. Springer, 2019.

[Kis10] Oleg Kiselyov. Typed tagless final interpreters. In Jeremy Gibbons, editor,
Generic and Indexed Programming - International Spring School, SSGIP 2010,

BIBLIOGRAPHY 161

Oxford, UK, March 22-26, 2010, Revised Lectures, volume 7470 of Lecture Notes

in Computer Science, pages 130–174. Springer, 2010.

[Kis12] Oleg Kiselyov. Beyond church encoding: Boehm-berarducci isomorphism of
algebraic data types and polymorphic lambda-terms. http://okmij.org/

ftp/tagless-final/course/Boehm-Berarducci.html, 2012.
[Online; accessed 22-July-2019].

[KJS10] Eunsuk Kang, Ethan K. Jackson, and Wolfram Schulte. An approach for effec-
tive design space exploration. In Radu Calinescu and Ethan K. Jackson, editors,
Foundations of Computer Software. Modeling, Development, and Verification of

Adaptive Systems - 16th Monterey Workshop 2010, Redmond, WA, USA, March

31- April 2, 2010, Revised Selected Papers, volume 6662 of Lecture Notes in

Computer Science, pages 33–54. Springer, 2010.

[KMG08] Nupur Kothari, Todd D. Millstein, and Ramesh Govindan. Deriving state ma-
chines from tinyos programs using symbolic execution. In Proceedings of the 7th

International Conference on Information Processing in Sensor Networks, IPSN

2008, St. Louis, Missouri, USA, April 22-24, 2008, pages 271–282. IEEE Com-
puter Society, 2008.

[KS97] Christoph W. Keßler and Helmut Seidl. The fork95 parallel programming lan-
guage: Design, implementation, application. Int. J. Parallel Program., 25(1):17–
50, 1997.

[KSA+10] Kazuhiko Komatsu, Katsuto Sato, Yusuke Arai, Kentaro Koyama, Hiroyuki Tak-
izawa, and Hiroaki Kobayashi. Evaluating performance and portability of opencl
programs. In The fifth international workshop on automatic performance tuning,
volume 66, page 1, 2010.

[KSS+09] Joachim Keinert, Martin Streubühr, Thomas Schlichter, Joachim Falk, Jens Glad-
igau, Christian Haubelt, Jürgen Teich, and Michael Meredith. Systemcodesigner -
an automatic ESL synthesis approach by design space exploration and behavioral
synthesis for streaming applications. ACM Trans. Design Autom. Electr. Syst.,
14(1):1:1–1:23, 2009.

[LA04] Chris Lattner and Vikram S. Adve. The LLVM compiler framework and infras-
tructure tutorial. In Rudolf Eigenmann, Zhiyuan Li, and Samuel P. Midkiff, edi-
tors, Languages and Compilers for High Performance Computing, 17th Interna-

tional Workshop, LCPC 2004, West Lafayette, IN, USA, September 22-24, 2004,

Revised Selected Papers, volume 3602 of Lecture Notes in Computer Science,
pages 15–16. Springer, 2004.

http://okmij.org/ftp/tagless-final/course/Boehm-Berarducci.html
http://okmij.org/ftp/tagless-final/course/Boehm-Berarducci.html

BIBLIOGRAPHY 162

[Lam88] Monica S. Lam. Software pipelining: An effective scheduling technique for
VLIW machines. In Richard L. Wexelblat, editor, Proceedings of the ACM SIG-

PLAN’88 Conference on Programming Language Design and Implementation

(PLDI), Atlanta, Georgia, USA, June 22-24, 1988, pages 318–328. ACM, 1988.

[LCP+11] Olav Lindtjorn, Robert G. Clapp, Oliver Pell, Haohuan Fu, Michael J. Flynn,
and Oskar Mencer. Beyond traditional microprocessors for geoscience high-
performance computing applications. IEEE Micro, 31(2):41–49, 2011.

[Leo08] Philip Heng Wai Leong. Recent trends in FPGA architectures and applications. In
4th IEEE International Symposium on Electronic Design, Test and Applications,

DELTA 2008, Hong Kong, January 23-25, 2008, pages 137–141. IEEE Computer
Society, 2008.

[LNLG20] Joshua Lant, Javier Navaridas, Mikel Luján, and John Goodacre. Toward fpga-
based HPC: advancing interconnect technologies. IEEE Micro, 40(1):25–34,
2020.

[LPS15] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: a llvm-based python
JIT compiler. In Hal Finkel, editor, Proceedings of the Second Workshop on the

LLVM Compiler Infrastructure in HPC, LLVM 2015, Austin, Texas, USA, Novem-

ber 15, 2015, pages 7:1–7:6. ACM, 2015.

[Mal89] Grant Malcolm. Homomorphisms and promotability. In Jan L. A. van de Snep-
scheut, editor, Mathematics of Program Construction, 375th Anniversary of the

Groningen University, International Conference, Groningen, The Netherlands,

June 26-30, 1989, Proceedings, volume 375 of Lecture Notes in Computer Sci-

ence, pages 335–347. Springer, 1989.

[Mal90] Grant Malcolm. Data structures and program transformation. Sci. Comput. Pro-

gram., 14(2-3):255–279, 1990.

[Mea94] Catherine A. Meadows. Formal verification of cryptographic protocols: A survey.
In Josef Pieprzyk and Reihaneh Safavi-Naini, editors, Advances in Cryptology -

ASIACRYPT ’94, 4th International Conference on the Theory and Applications

of Cryptology, Wollongong, Australia, November 28 - December 1, 1994, Pro-

ceedings, volume 917 of Lecture Notes in Computer Science, pages 135–150.
Springer, 1994.

[Mee86] LGLT Meertens. Algorithmics: Towards programming as a mathematical activity.
1986.

BIBLIOGRAPHY 163

[ML13] Saunders Mac Lane. Categories for the working mathematician, volume 5.
Springer Science & Business Media, 2013.

[MR13] Leo A. Meyerovich and Ariel S. Rabkin. Empirical analysis of programming
language adoption. In Antony L. Hosking, Patrick Th. Eugster, and Cristina V.
Lopes, editors, Proceedings of the 2013 ACM SIGPLAN International Conference

on Object Oriented Programming Systems Languages & Applications, OOPSLA

2013, part of SPLASH 2013, Indianapolis, IN, USA, October 26-31, 2013, pages
1–18. ACM, 2013.

[MRRP11] Pablo D. Mininni, Duane Rosenberg, Raghu Reddy, and Annick Pouquet. A
hybrid mpi-openmp scheme for scalable parallel pseudospectral computations for
fluid turbulence. Parallel Comput., 37(6-7):316–326, 2011.

[NSP+16] Razvan Nane, Vlad Mihai Sima, Christian Pilato, Jongsok Choi, Blair Fort, An-
drew Canis, Yu Ting Chen, Hsuan Hsiao, Stephen Dean Brown, Fabrizio Ferrandi,
Jason Helge Anderson, and Koen Bertels. A survey and evaluation of FPGA
high-level synthesis tools. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.,
35(10):1591–1604, 2016.

[NTN12] Hiromasa Nakayama, Tetsuya Takemi, and Haruyasu Nagai. Large-eddy sim-
ulation of urban boundary-layer flows by generating turbulent inflows from
mesoscale meteorological simulations. Atmospheric Science Letters, 13(3):180–
186, 2012.

[NV15a] Syed Waqar Nabi and Wim Vanderbauwhede. An intermediate language and es-
timator for automated design space exploration on fpgas. CoRR, abs/1504.04579,
2015.

[NV15b] Syed Waqar Nabi and Wim Vanderbauwhede. Using type transformations to gen-
erate program variants for FPGA design space exploration. In Michael Hübner,
Maya B. Gokhale, and René Cumplido, editors, International Conference on Re-

ConFigurable Computing and FPGAs, ReConFig 2015, Riviera Maya, Mexico,

December 7-9, 2015, pages 1–6. IEEE, 2015.

[NV17] Syed Waqar Nabi and Wim Vanderbauwhede. FPGA design space exploration for
scientific HPC applications using a fast and accurate cost model based on roofline
analysis. Journal of Parallel and Distributed Computing, 2017.

[NV19] Syed Waqar Nabi and Wim Vanderbauwhede. Automatic pipelining and
vectorization of scientific code for fpgas. Int. J. Reconfigurable Comput.,
2019:7348013:1–7348013:12, 2019.

BIBLIOGRAPHY 164

[Ols95] Roland Olsson. Inductive functional programming using incremental program
transformation. Artif. Intell., 74(1):55–81, 1995.

[PA12] Oliver Pell and Vitali Averbukh. Maximum performance computing with dataflow
engines. Comput. Sci. Eng., 14(4):98–103, 2012.

[PKB14] Nikolay Pydiura, Pavel Karpov, and Yaroslav Blume. On the efficiency of cpu and
hybrid cpu-gpu systems in computational biology tasks. Comput. Sci. Applicat,
1(1):48–59, 2014.

[RLFdS12] Ruymán Reyes, Iván López-Rodríguez, Juan J. Fumero, and Francisco de Sande.
accull: An openacc implementation with CUDA and opencl support. In Christos
Kaklamanis, Theodore S. Papatheodorou, and Paul G. Spirakis, editors, Euro-

Par 2012 Parallel Processing - 18th International Conference, Euro-Par 2012,

Rhodes Island, Greece, August 27-31, 2012. Proceedings, volume 7484 of Lecture

Notes in Computer Science, pages 871–882. Springer, 2012.

[RVDDB10] Sean Rul, Hans Vandierendonck, Joris D’Haene, and Koen De Bosschere.
An experimental study on performance portability of opencl kernels. In
2010 Symposium on Application Accelerators in High Performance Computing

(SAAHPC’10), 2010.

[SC19] Lars Schütze and Jerónimo Castrillón. Efficient late binding of dynamic function
compositions. In Oscar Nierstrasz, Jeff Gray, and Bruno C. d. S. Oliveira, editors,
Proceedings of the 12th ACM SIGPLAN International Conference on Software

Language Engineering, SLE 2019, Athens, Greece, October 20-22, 2019, pages
141–151. ACM, 2019.

[SCP02] Ronald Scrofano, Seonil Choi, and Viktor K. Prasanna. Energy efficiency of fpgas
and programmable processors for matrix multiplication. In Proceedings of the

2002 IEEE International Conference on Field-Programmable Technology, FPT

2002, Hong Kong, China, December 16-18, 2002, pages 422–425. IEEE, 2002.

[SEP+09] Michael Showerman, Jeremy Enos, Avneesh Pant, Volodymyr Kindratenko,
Craig Steffen, Robert Pennington, Wen-mei Hwu, et al. Qp: A heterogeneous
multi-accelerator cluster. In Proc. 10th LCI International Conference on High-

Performance Clustered Computing, 2009.

[SFLD15] Michel Steuwer, Christian Fensch, Sam Lindley, and Christophe Dubach. Gen-
erating performance portable code using rewrite rules: from high-level functional
expressions to high-performance opencl code. In Kathleen Fisher and John H.
Reppy, editors, Proceedings of the 20th ACM SIGPLAN International Conference

BIBLIOGRAPHY 165

on Functional Programming, ICFP 2015, Vancouver, BC, Canada, September 1-

3, 2015, pages 205–217. ACM, 2015.

[SG79] SHIVA SG. Computer hardware description languages. a tutorial. PROC.

I.E.E.E.; USA; DA. 1979; VOL. 67; NO 12; PP. 1605-1615; BIBL. 88 REF., 1979.

[SGO+98] Marc Snir, William Gropp, Steve Otto, Steven Huss-Lederman, Jack Dongarra,
and David Walker. MPI–the Complete Reference: the MPI core, volume 1. MIT
press, 1998.

[SGPJ12] Jerôme Schalkwijk, Eric J Griffith, Frits H Post, and Harm JJ Jonker. High-
performance simulations of turbulent clouds on a desktop pc: Exploiting the gpu.
Bulletin of the American Meteorological Society, 93(3):307–314, 2012.

[SKH+99] Masakazu Suzuoki, Ken Kutaragi, Toshiyuki Hiroi, Hidetaka Magoshi, Shin’ichi
Okamoto, Masaaki Oka, Akio Ohba, Yasuyuki Yamamoto, Makoto Furuhashi,
Masayoshi Tanaka, et al. A microprocessor with a 128-bit cpu, ten floating-point
mac’s, four floating-point dividers, and an mpeg-2 decoder. IEEE Journal of

Solid-State Circuits, 34(11):1608–1618, 1999.

[Ski05] David B Skillicorn. Foundations of parallel programming. Number 6. Cambridge
University Press, 2005.

[Smi96] Douglas J. Smith. VHDL & verilog compared & contrasted - plus modeled exam-
ple written in vhdl, verilog and C. In Thomas Pennino and Ellen J. Yoffa, editors,
Proceedings of the 33st Conference on Design Automation, Las Vegas, Nevada,

USA, Las Vegas Convention Center, June 3-7, 1996, pages 771–776. ACM Press,
1996.

[SN05] James E. Smith and Ravi Nair. The architecture of virtual machines. Computer,
38(5):32–38, 2005.

[SS71] Dana Scott and Christopher Strachey. Toward a mathematical semantics for com-

puter languages, volume 1. Oxford University Computing Laboratory, Program-
ming Research Group Oxford, 1971.

[SSJ19] V Venkatesh Shenoi, Vaishali Shah, and Sandeep K Joshi. Hpc education for
domain scientists: An indian experience and perspective. In 2019 26th Interna-

tional Conference on High Performance Computing, Data and Analytics Work-

shop (HiPCW), pages 64–70. IEEE, 2019.

[Ste] Diehl Stephen. Hindley-milner inference. http://dev.stephendiehl.

com/fun/006_hindley_milner.html#constraint-generation.

http://dev.stephendiehl.com/fun/006_hindley_milner.html#constraint-generation
http://dev.stephendiehl.com/fun/006_hindley_milner.html#constraint-generation

BIBLIOGRAPHY 166

[Ste15] Michel Steuwer. Improving programmability and performance portability on

many-core processors. PhD thesis, Universität Münster, 2015.

[Tho10] David B Thomas. Acceleration of financial monte-carlo simulations using fpgas.
In 2010 IEEE Workshop on High Performance Computational Finance, pages 1–
6. IEEE, 2010.

[UVN19] Cristian Urlea, Wim Vanderbauwhede, and Syed Waqar Nabi. Efficient FPGA
cost-performance space exploration using type-driven program transformations.
In David Andrews, René Cumplido, Claudia Feregrino, and Marco Platzner, edi-
tors, 2019 International Conference on ReConFigurable Computing and FPGAs,

ReConFig 2019, Cancun, Mexico, December 9-11, 2019, pages 1–2. IEEE, 2019.

[vAVSvN09] Alexander S. van Amesfoort, Ana Lucia Varbanescu, Henk J. Sips, and Rob van
Nieuwpoort. Evaluating multi-core platforms for HPC data-intensive kernels. In
Gearold Johnson, Carsten Trinitis, Georgi Gaydadjiev, and Alexander V. Veiden-
baum, editors, Proceedings of the 6th Conference on Computing Frontiers, 2009,

Ischia, Italy, May 18-20, 2009, pages 207–216. ACM, 2009.

[VD17] Wim Vanderbauwhede and Gavin Davidson. Domain-specific acceleration and
auto-parallelization of legacy scientific code in FORTRAN 77 using source-to-
source compilation. CoRR, abs/1711.04471, 2017.

[VN14] Mário P. Véstias and Horácio C. Neto. Trends of cpu, GPU and FPGA for
high-performance computing. In 24th International Conference on Field Pro-

grammable Logic and Applications, FPL 2014, Munich, Germany, 2-4 September,

2014, pages 1–6. IEEE, 2014.

[VN19] Wim Vanderbauwhede and Syed Waqar Nabi. Towards automatic transformation
of legacy scientific code into opencl for optimal performance on fpgas. CoRR,
abs/1901.00416, 2019.

[VNU19] Wim Vanderbauwhede, Syed Waqar Nabi, and Cristian Urlea. Type-driven auto-
mated program transformations and cost modelling for optimising streaming pro-
grams on fpgas. International Journal of Parallel Programming, 47(1):114–136,
2019.

[VT13] Wim Vanderbauwhede and Tetsuya Takemi. An investigation into the feasibility
and benefits of gpu/multicore acceleration of the weather research and forecasting
model. In International Conference on High Performance Computing & Simula-

tion, HPCS 2013, Helsinki, Finland, July 1-5, 2013, pages 482–489. IEEE, 2013.

BIBLIOGRAPHY 167

[Wad88] Philip Wadler. Deforestation: Transforming programs to eliminate trees. In Har-
ald Ganzinger, editor, ESOP ’88, 2nd European Symposium on Programming,

Nancy, France, March 21-24, 1988, Proceedings, volume 300 of Lecture Notes in

Computer Science, pages 344–358. Springer, 1988.

[WBC13] Felix Winterstein, Samuel Bayliss, and George A. Constantinides. High-level
synthesis of dynamic data structures: A case study using vivado HLS. In 2013

International Conference on Field-Programmable Technology, FPT 2013, Kyoto,

Japan, December 9-11, 2013, pages 362–365. IEEE, 2013.

[Weg72] Peter Wegner. Operational semantics of programming languages. ACM SIGACT

News, (14):128–141, 1972.

[WL08] Enhua Wu and Youquan Liu. Emerging technology about GPGPU. In IEEE

Asia Pacific Conference on Circuits and Systems, APCCAS 2008, Macao, China,

November 30 2008 - December 3, 2008, pages 618–622. IEEE, 2008.

[WOL+17] Dennis Weller, Fabian Oboril, Dimitar Lukarski, Jürgen Becker, and
Mehdi Baradaran Tahoori. Energy efficient scientific computing on fpgas using
opencl. In Jonathan W. Greene and Jason Helge Anderson, editors, Proceedings

of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate

Arrays, FPGA 2017, Monterey, CA, USA, February 22-24, 2017, pages 247–256.
ACM, 2017.

[WOPW13] Michal Witkowski, Ariel Oleksiak, Tomasz Piontek, and Jan Weglarz. Practi-
cal power consumption estimation for real life HPC applications. Future Gener.

Comput. Syst., 29(1):208–217, 2013.

[WVH04] Kurt Wall and William Von Hagen. Basic gcc usage. In The Definitive Guide to

GCC, pages 59–99. Springer, 2004.

[Xil14] Xilinx. The xilinx sdaccel development environment, 2014.

[ZLS+15] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason
Cong. Optimizing fpga-based accelerator design for deep convolutional neural
networks. In George A. Constantinides and Deming Chen, editors, Proceedings

of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate

Arrays, Monterey, CA, USA, February 22-24, 2015, pages 161–170. ACM, 2015.

[ZMS+16] Hamid Reza Zohouri, Naoya Maruyama, Aaron Smith, Motohiko Matsuda, and
Satoshi Matsuoka. Evaluating and optimizing opencl kernels for high perfor-
mance computing with fpgas. In John West and Cherri M. Pancake, editors,
Proceedings of the International Conference for High Performance Computing,

BIBLIOGRAPHY 168

Networking, Storage and Analysis, SC 2016, Salt Lake City, UT, USA, November

13-18, 2016, pages 409–420. IEEE Computer Society, 2016.

[ZVL+14] Guanwen Zhong, Vanchinathan Venkataramani, Yun Liang, Tulika Mitra, and
Smaïl Niar. Design space exploration of multiple loops on fpgas using high level
synthesis. In 32nd IEEE International Conference on Computer Design, ICCD

2014, Seoul, South Korea, October 19-22, 2014, pages 456–463. IEEE Computer
Society, 2014.

	2021Urlea
	cristian_urlea_thesis
	Abstract
	Acknowledgements
	Declaration
	Introduction
	Design Space Exploration
	Thesis statement
	Contributions and Publications

	Background
	Performance portability
	Taxonomy of parallel computation
	Narrow and wide: data parallelism
	High and low: abstraction level
	Near and far: locality
	The middle way

	Formal methods
	Models of computation
	Imperative languages
	Functional languages
	Bridging models

	The TyTra Compiler Framework
	TyTra Compiler workflow
	TyTra Coordination Language
	TyTra Intermediate Representation
	TyTra Semantics

	Introduction to Category Theory

	Related Work
	Practical
	Imperative Languages
	Functional Languages
	Program and Behavioural Synthesis
	Compiler Optimization Techniques

	Theoretical
	Structured Parallelism
	Categorical Data Types and Techniques

	Graphical summary

	Categorical Semantics
	Categorical Data Types
	Optimisation from recursion schemes
	Terms and Transformations
	Types and Type Constructors
	Cost-Performance Estimates

	DSE in Categorical Terms
	Specification
	Analysis
	Selection

	Optimal DSE in TyTra
	Naïve tactic
	Expert tactic

	TyTra Categorical Semantics
	Type Inference and checking
	Correct term transformation
	Cost-performance aware transformation
	Borrowing structure
	Fused DSE

	Efficient DSE Theorem
	Proof

	Experimental Evaluation, Conclusion & Future Work
	Experimental validation
	Conclusion
	Future work

