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Abstract
This work is based on the seminar titled “Resiliency in Numerical Algorithm Design
for Extreme Scale Simulations” held March 1-6, 2020 at Schloss Dagstuhl, that
was attended by all the authors. Advanced supercomputing is characterized by very
high computation speeds at the cost of involving an enormous amount of resources
and costs. A typical large-scale computation running for 48 hours on a system
consuming 20 MW, as predicted for exascale systems, would consume a million
kWh, corresponding to about 100k Euro in energy cost for executing 1023 floating-
point operations. It is clearly unacceptable to lose the whole computation if any of
the several million parallel processes fails during the execution. Moreover, if a single
operation suffers from a bit-flip error, should the whole computation be declared
invalid? What about the notion of reproducibility itself: should this core paradigm of
science be revised and refined for results that are obtained by large scale simulation?
Naive versions of conventional resilience techniques will not scale to the exascale
regime: with a main memory footprint of tens of Petabytes, synchronously writing
checkpoint data all the way to background storage at frequent intervals will create
intolerable overheads in runtime and energy consumption. Forecasts show that the
mean time between failures could be lower than the time to recover from such a
checkpoint, so that large calculations at scale might not make any progress if robust
alternatives are not investigated.
More advanced resilience techniques must be devised. The key may lie in exploiting
both advanced system features as well as specific application knowledge. Research
will face two essential questions: (1) what are the reliability requirements for a
particular computation and (2) how do we best design the algorithms and software
to meet these requirements? While the analysis of use cases can help understand
the particular reliability requirements, the construction of remedies is currently wide
open. One avenue would be to refine and improve on system- or application-level
checkpointing and rollback strategies in the case an error is detected. Developers
might use fault notification interfaces and flexible runtime systems to respond to
node failures in an application-dependent fashion. Novel numerical algorithms or
more stochastic computational approaches may be required to meet accuracy
requirements in the face of undetectable soft errors. These ideas constituted an
essential topic of the seminar.
The goal of this Dagstuhl Seminar was to bring together a diverse group of scientists
with expertise in exascale computing to discuss novel ways to make applications
resilient against detected and undetected faults. In particular, participants explored
the role that algorithms and applications play in the holistic approach needed to
tackle this challenge. This article gathers a broad range of perspectives on the role
of algorithms, applications, and systems in achieving resilience for extreme scale
simulations. The ultimate goal is to spark novel ideas and encourage the development
of concrete solutions for achieving such resilience holistically.
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1 Introduction
Numerical simulation is the third pillar in science discovery at the same level as theory
and experiments. To cope with the ever demanding computational resources needed
by complex simulations, the computational power of high performance computing
systems continues to increase by using an ever larger number of cores or by specialized
processing. On the technological side, the continuous shrinking of transistor geometry
and the increasing complexity of these devices affect their sensitivity to external effects
and thus diminish their reliability. A direct consequence is that High Performance
Computing (HPC) applications are increasingly prone to errors. Therefore the design
of resilient systems and numerical algorithms that are able to exploit possible unstable
HPC platforms has became a major concern in the computational science community.
To tackle this critical challenge on the path to extreme scale computation an holistic
and multidisciplinary approach is required that needs to involve researchers from
various scientific communities ranging from the hardware/system community to applied
mathematics for the design of novel numerical algorithms. In this article, we summarize
and report on the outcomes of a Dagstuhl seminar held March 1-6, 2020,∗ on the topic
Resiliency in Numerical Algorithm Design for Extreme Scale Simulations. We should
point out that, although error and resiliency was already quoted by J. von Neumann in
his first draft report on EDVAC [2, P.1, Item 1.4], it became again a central concern for
the HPC community in the late 2000’ when the availability of the first exascale computers
was envisioned for the forthcoming decades. In particular, several workshops were
organized in the IESP (International Exascale Software Project) and EESI (European
Exascale Software Initiative) framework [3].

The hardware/system resilience community has previously defined terminology
related to how faults, errors, and failures occur on computing systems [4]. In this article
our focus is less on the cause of an error (or the underlying fault), and more on how
an error presents itself at the algorithmic level (or layer), impacting algorithms and
applications. We thus simplify the terminology often used in the hardware resilience
and fault-tolerance community by not using terms like soft error or hard error, and
generally do not concern ourselves with the reproducibility of an error (e.g., transient,
intermittent or permanent). This abstraction keeps the algorithmic techniques discussed
herein general and applicable to a variety of fault models, current architectures, and
hopefully of use in future technologies.

∗https://www.dagstuhl.de/en/program/calendar/semhp/?semnr=20101
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To this end, we broadly categorize errors presenting themselves to the algorithmic
layer as either detected or undetected. Note that this categorization does not mean an error
is undetectable but rather that when it reached the algorithmic layer it was not detected
by earlier layers (e.g., hardware, operating system or middleware/system software). This
suggests the algorithmic layer has the opportunity to detect a previously undetected error
and, if possible, to deploy mitigation methods to make the algorithm resilient; effectively
transforming an undetected error at the algorithmic layer into a detected error. This in turn
may result in a failure if the algorithm is unable to handle it. For example, an undetected
data corruption which results in an application accessing an incorrect memory address
may be detectable by the algorithm but it may not be possible for the algorithm to recover
what the original memory address was and it may be forced to fail. If the algorithm could
not detect the corruption before accessing the memory region, this would conventionally
end in a failure (e.g., SIGSEGV issued by the operating system).

Many computing-intensive scientific applications that are dependent on HPC
performance upgrades can end up with disrupted schedules because of lack of resilience.
A typical example is related to current efforts towards exascale numerical weather
prediction [5, 6]. On one side, regular upgrades in weather forecast models in operations
at weather centres and their spatial resolution have gone hand in hand with expanding
computational resources. On the other side, scientific and socioeconomic significance of
forecasts crucially hinges on tight time-bound computing schedules and timely forecast
dissemination, most notably for high-impact weather events. Current disk-checkpointing
schedules still take up acceptable portions of forecast runtimes, but are hardly sustainable
- indeed, they already saturate file systems bandwidth. In addition, many weather
forecast codes feature preconditioned iterative solvers of linear systems with several
hundred thousand unknowns, many thousand times per run. Such components represent
vulnerable points in a context of increasingly frequent detected and undetected errors.
Novel low-overhead solutions to enhance algorithmic fault-tolerance or provide higher-
level system resilience are therefore in high demand in this and other fields where
nonlinear dynamics is simulated.

In this article we take a different approach at the classification of errors in HPC
systems. In general, we try to divide errors in two main groups, those that are detected
and corrected by the hardware/system (which is the focus of Section 2) and those that
are detected and sometimes corrected by the numerical algorithms (Section 3). However,
the HPC resilience ecosystem is not black and white, but it rather shows a wide palette
of greys in between, with multiple fault tolerance tools implemented at the middleware
level that are assisted by the applications/algorithms and vice-versa. Figure 1 shows this
wide range of different error classifications depending on how much effort is needed at
the application/algorithmic level in order to detect/correct the error.

The first category we observe in the leftmost leaf of the tree (blue color) is the case
of errors that are both detected and transparently corrected by the hardware/middleware
but without any intervention of the applications/algorithms. The clearest example would
be a detectable and correctable error in the memory generated by a single bit flip. These
types of errors are transparently corrected by the system without any knowledge at the
application/algorithmic level that such error mitigation occurred. Other examples could
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Figure 1. A classification of error handling.

be process replication, system-level checkpointing, process migration, among many
others (see Section 2.1).

The second category is the case of errors that are detected at the hardware/system level
and are mitigated at the system/middleware level (not at the algorithmic level) but with
assistance from the application/algorithm (green color). The most clear example of this is
application-based checkpointing libraries, which handle all or most of the data transfers
between the compute nodes and the Parallel File System (PFS) independently from the
application, but it gets hints from it to know what datasets need to be checkpointed and
when should the checkpoint happen. Other relevant examples are fault tolerant message
passing programming models and resilient asynchronous tasks. We divide these sections
in those approaches that require just a minor addition in the application code versus those
that require a complete change in the programming paradigm (see Section 2.2).

The other leaves of the tree (red color) correspond to those errors that cannot be
corrected or mitigated at the hardware/system level and have to be mitigated by changing
the algorithm or numerical methods to be able to tolerate those errors. We observe three
different types of algorithms in this branch of the tree.

The first type of algorithms focuses on the mitigation of errors that have been detected
(first red leaf from left to right), we call them error-aware algorithms. Please note that
these algorithms are not in charge of detecting the errors but only of mitigating them.
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Also, it is important to notice that these algorithms do not depend on how the error
was actually detected; it could be hardware/middleware detection as well as algorithmic
detection, in the end the process of detection is irrelevant for the mitigation algorithm
(see Section 3.2).

The second type of algorithms are those dedicated to the detection of errors that were
not detected at the lower levels (fourth leaf from left to right). A good example would be
Silent Data Corruption (SDC) errors that pass invisibly through the hardware but then
can be caught at the algorithmic level using some numerical techniques (e.g., checksum).
These algorithms do not try to mitigate the error per se but only detect it. Once the error
has been detected, it can be passed to an error aware algorithm in order to attempt a
correction/mitigation (see Section 3.1).

Finally, there also exist algorithms that can operate, tolerate and absorb errors without
ever being aware that the error ever occurred (last leaf to the right); we called these, error
oblivious algorithms. These are somehow similar to the very first (blue) category, in that
the errors are transparently corrected/absorbed, see Section 3.3.

In the following sections we discuss algorithmic and application approaches to address
these two categories of errors and distinguish how the approaches vary or are similar.
Broadly speaking, the report is divided into two parts. In Section 2 and Section 3 we
discuss the state-of-the-art in the areas of infrastructure and algorithms, while in Section 4
we propose possible areas of interest in future research.

2 System infrastructure techniques for resilience
In this section we describe the state-of-the-art of hardware and system level error
detection and mitigation. As previously mentioned, we divide these methods in two
categories, the ones that mitigate the error in a completely transparent fashion, and those
that require assistance from the algorithmic/application level. The following subsection,
Section 2.1, concentrates on the methods falling in the first category. The second category
is explored in Section 2.2.

2.1 Detected and transparently corrected errors
A wide range of errors can be detected and immediately corrected by various layers in
the system, i.e., these errors become masked or absorbed and higher level layers do not
have to be involved. The detection/correction mechanisms have an extra cost in terms of
storage, processing and energy consumption.

Hardware reliability At the hardware level several techniques exist to detect and
correct errors. Most common examples are Error Correcting Codes (ECC) to detect and
correct single bit-errors, Cyclic Redundancy Checks (CRC) error correction for network
packets or RAID-1 (or higher) for I/O systems. A more comprehensive discussion of
these features can be found in the report “Towards Resilient EU HPC Systems: A
Blueprint” by Radojkovic et al. [7].

Operating system reliability Operating Systems (OS) have certain capabilities to
interact with architectural resilience features, such as ECC and machine check
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exceptions. OSs are mostly concerned with resource management and error notification.
However, some advanced OS resilience solutions exist such as Mini-ckpts [8]. It is a
framework that enables application survival despite the occurrence of a fatal operating
system failure or crash. It ensures that the critical data describing a process is preserved
in persistent memory prior to the failure. Following the failure, the OS is rejuvenated via
a warm reboot and the application continues execution effectively making the failure and
restart transparent. The mini-ckpts rejuvenation and recovery process is measured to take
3s to 6s and has a failure-free overhead of 3% to 5% for a number of key HPC workloads.

System-level checkpoint/restart Berkeley Lab Checkpoint/Restart (BLCR) [9] is a
system-level checkpoint/restart solution that transparently saves and restores process
state. In conjunction with a Message Passing Interface (MPI) [10] implementation,
it can transparently save and restore the process states of an entire MPI application.
An extension of BLCR [11–13] includes enhancements in support of scalable group
communication for MPI membership management, reuse of network connections,
transparent coordinated checkpoint scheduling, a job pause feature, and full/incremental
checkpointing. The transparent mechanism for job pause allows live nodes to remain
active and roll back to the last checkpoint, while failed nodes are dynamically replaced
by spares before resuming from the last checkpoint. A minimal overhead of 5.6% is
reported in case migration takes place, while the regular checkpoint overhead remains
unchanged.

The hybrid checkpointing technique [14] alternates between full and incremental
checkpoints: At incremental checkpoints, only data changed since the last checkpoint is
captured. This results in significantly reduced checkpoint sizes and overheads with only
moderate increases in restart overhead. After accounting for cost and savings, the benefits
due to incremental checkpoints are an order of magnitude larger than the overheads on
restarts.

Silent Data Corruption (SDC) detection and protection FlipSphere [15] is a tunable,
transparent Silent Data Corruption (SDC) detection and correction library for HPC
applications. It offers comprehensive SDC protection for application program memory
using on-demand memory page integrity verification. Experimental benchmarks show
that it can protect 50% to 80% of program memory with time overheads of 7% to
55%. Other data-prediction based SDC detection methods have been proposed such as
Adaptive Impact Driven SDC detector [16], MACORD [17] or for end-to-end detection
for protecting lossy compression in [18]. Note that the data-prediction based SDC
detectors can detect not only memory errors but also computation errors to a certain
extent in principle. They can also protect the errors by combining the checkpoint-restart
tools such as FTI.

Proactive fault tolerance using process or virtual machine migration Proactive fault
tolerance [19–21] prevents compute node failures from impacting running applications
by migrating parts of an application, i.e., tasks, processes, or virtual machines, away
from nodes that are about to fail. Pre-fault indicators, such as a significant increase
in temperature, can be used to avoid an imminent failure through anticipation and
reconfiguration. As computation is migrated away, application failures are avoided,
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which is significantly more efficient than checkpoint/restart if the prediction is accurate
enough. The proactive fault tolerance framework consists of process and virtual machine
migration, scalable system monitoring and online/offline system health analysis. The
process-level live migration supports continued execution of applications during much
of process migration and is integrated into an MPI execution environment. Experiments
indicate that 1s to 6.4s of prior warning are required to successfully trigger live process
migration, while similar operating system virtualization mechanisms require 13s to 24s.
This error oblivious approach complements checkpoint/restart by nearly cutting the
number of checkpoints by half when 70% of the faults are handled proactively.

Resiliency using task-based runtime systems Task-based runtime systems have
appealing intrinsic features for resiliency due to the fault isolation they provide by
design as they have a view of the task flow and dynamically schedule task on computing
units (often to minimize the time to solution or energy consumption). Once an error is
detected and identified by the hardware or the algorithm, the runtime system can limit
its propagation through the application by reasoning about the data dependencies among
tasks [22]. For example, one can envision the scenario where an uncorrectable hardware
error is detected triggering the runtime system to dynamically redistribute the tasks to the
remaining resources available.

Task-based runtime systems can also limit the size of the state needed to be saved
to enable restarting computations, when an error is encountered [23–25]. In classical
checkpoint-restart mechanisms, the size of the checkpoint can become very large for
large-scale applications, and managing it can take up a significant portion of the overall
execution. In the task-based programming model, each checkpoint is a cut in the task
graph, which can be expressed trivially within the task submission code, and only the
data of the crossing edges need to be saved. Even better, the synchronization between the
management of checkpoint data and application execution can be greatly relaxed. The
transfer of the data to the checkpoint storage can indeed be started as soon as the data
is produced within the task graph. It is not necessary to wait for all of the tasks before
the checkpoint to be completed. A checkpoint is finalised when all its pieces of data
have been collected. It is possible that tasks occurring after the checkpoint may run to
completion before the checkpoint itself is finished. Further, identification of idempotent
tasks can greatly help task-based runtimes to further reduce the overheads by completely
avoiding data backups specific to those tasks.

At the restarting point, the runtime also has all information to be able to achieve
a completely local recovery. The replacement node can restart from the last valid
checkpoint of the previously-failed node, while the surviving nodes can just replay the
required data exchanges.

Recent works on on-node task parallel programming models suggest that a simple
extension of the existing task-based programming framework enables efficient localized
recovery [26–28].

Parallel programming models such as Charm++ [29], HClib [30], HPX [31],
OmpSs [32] and StarPU [23] integrate a variety of resilient task program execution
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options such as replay, replication, algorithm-based fault tolerance and task-based
checkpointing.

With the recent emergence of heterogeneous computing systems utilizing Graphics
Processing Units (GPU), the task programming model is being used to offload
computation from the Central Processing Unit (CPU) to the GPU. VOCL-FT [33]
offers checkpoint/restart for computation offloaded to GPU using OpenCL [34]. It
transparently intercepts the communication between the originating process and the local
or remote GPU to automatically recover from ECC errors experienced on the GPU during
computation. Another preliminary prototype design extends this concept in the context
of OpenMP [35] using a novel concept for Quality of Service (QOS) and a corresponding
Application Programming Interface (API) [36]. While the programmer is specifying the
resilience requirements for certain offloaded tasks, the underlying programming model
runtime decides on how to meet them using a QOS contract, such as by employing task-
based checkpoint-restart or redundancy.

Resilience via complete redundancy The use of redundant MPI processes for error
detection has been widely analyzed in the last decade [37–40]. Modular redundancy
incurs high overhead, but offers excellent error detection accuracy and coverage with
few to no false positive or false negatives.

Complete modular redundancy is typically too expensive for actual HPC workloads.
However, it can make sense for certain subsystems such as parts of a PFS. The Meta Data
Service (MDS) of a networked PFS is a critical single point of failure. An interruption of
service typically results in the failure of currently running applications utilizing its file
system. A loss of state requires repairing the entire file system, which could take days
on large-scale systems, and may cause permanent loss of data. PFSs such as Lustre [41]
often offer some type of active/standby fail-over mechanism for the MDS. A solution [42]
for the MDS of the Parallel Virtual File System offers symmetric active/active replication
using virtual synchrony with an internal replication implementation. In addition to
providing high availability, this solution is taking advantage of the internal replication
implementation by load balancing MDS read requests, improving performance over the
non-replicated MDS.

Resilience via partial redundancy Partial redundancy has been studied to decrease
the overhead of complete redundancy [43–46]. Adaptive partial redundancy has also
been proposed wherein a subset of processes is dynamically selected for replication [47].
Partial replication (using additional hardware) of selected MPI processes has been
combined with prediction-based detection to achieve SDC protection levels comparable
with those of full duplication [48–50]. A Selective Particle Replication approach for
meshfree particle-based codes protects the data of the entire application (as opposed to
a subset) by selectively duplicating 1% to 10% of the computations within processes
incurring a 1% to 10% overhead [51].

Resilience via complete and/or partial redundancy RedMPI [52] enables a
transparent redundant execution of MPI applications. It sits between the MPI library
and the MPI application, utilizing the MPI Profiling Interface (PMPI) to intercept MPI
calls from the application and to hide all redundancy-related mechanisms. A redundantly
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executed application runs with r ∗m MPI processes, where m is the number of MPI
ranks visible to the application and r is the replication degree. RedMPI supports partial
replication, e.g., a degree of 2.5 instead of just 2 or 3, for tunable resilience. It also
supports a variety of message-based replication protocols with different consistency.
Not counting in the need for additional resources for redundancy, results show that
the most efficient consistency protocol can successfully protect HPC applications even
from high SDC rates with runtime overheads from 0% to 30%, compared to unprotected
applications without redundancy. Partial and full redundancy can also be combined with
checkpoint/restart [43]. Non-linear trade-offs between different levels of redundancy can
be observed when additionally using checkpoint/restart, since computation on non or
less redundant resources is significantly less reliable than computation on fully or more
redundant resources.

Interplay between resilience and dynamic load balancing Scheduling of application
jobs at the system level contributes to exploiting parallelism by placing and (dynamically)
balancing the batch jobs on the local site resources. The jobs within a batch are already
heterogeneous; yet, current batch schedulers rarely co-allocate, and most often only
allocate, computing resources (while network and storage continue to be used as shared
resources). Dynamic system-level parallelism can arise when certain nodes become
unavailable (due to hard and permanent errors) or recover (following a repair operation).
This can be exploited during execution by increasing opportunities for system-level
co-scheduling in close proximity of jobs that exhibit different characteristics (e.g., co-
scheduling a classical compute-intensive job in close proximity to a data-intensive job)
and by dynamic resource reallocation to jobs that have lost resources due to failures or to
waiting jobs in the queue.

2.2 Detected errors mitigated with assistance
In this section we focus on correction methods that need assistance from the upper
layers in order to achieve resilience and correctness. It is important to note that there
are multiple methods that offer assisted fault tolerance but some of them involve a few
additional lines of code while others require rewriting the whole applications using a
specific programming model. Therefore, we will divide this section into subsections
depending on the programming and/or redesign effort that is required.

2.2.1 Correction with incremental redesign As explained in Section 2.1, it is possible
to perform system-level checkpointing without any feedback from the application or
the algorithm or any upper layer. The issue with system-level checkpointing is that
the size (and therefore the time and energy cost) of checkpointing is much larger than
what is really required to perform a restart of the application. Thus, application-level
checkpointing is an attempt to minimize the size of checkpoints to the minimum required
for the application to be able to restart.

Performance modeling and optimization of checkpoint-restart methods Research
on simulation tools assessing the performance of certain checkpoint-restart strategies is
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presented in various publications [53–56]. Different theoretical approaches are used and
tools are developed that either simulate a fictional software or wrap an actual application.

A lot of work has been done to examine and model the performance of multilevel
checkpointing approaches [57–60]. Here, the parallel distribution of the snapshots as well
as the target storage system are considered as objectives for performance optimization.
Asynchronous techniques are considered, such as non-blocking checkpointing, where
a subset of processes are dedicated to manage the creation and reconstruction of
snapshots [61,62]. As a measure to saving storage and speeding up I/O, data compression
is another subject that is considered in the literature as, e.g., by Di and Cappello [63], and
in one of the case studies in Section 3.2.2.

Resilient checkpointing has been considered with the help of nonvolatile memory, as
for instance implemented in PapyrusKV [64], a resilient key-value blob-storage. Other
resilient checkpointing techniques include the self-checkpoint technique [65], which
reduces common redundancies while writing checkpoints, or techniques reducing the
amount of required memory through hierarchical checkpointing [66], or differential
checkpointing [67].

Message logging Message logging is a mechanism to log communication messages
in order to allow partial restart as for example examined by Cantwell et al. [68]. While
improving on basic checkpointing strategies, message logging-based approaches can
themselves entail large overheads because of log sizes. The checkpointing protocol
developed by Ropars et al. [69] does not require synchronization between replaying
processes during recovery and limits the size of log messages. Other approaches combine
task-level checkpointing and message logging with system-wide checkpointing [70].
This protocol features local message logging and only requires the restart of failing tasks.
It is also possible to combine message logging with local rollback and User Level Failure
Mitigation (ULFM) (Section 2.2.2) to improve log size [71].

Multilevel checkpointing libraries Current HPC systems have deep storage hierarchies
involving High-Bandwidth Memory, Dynamic Random-Access Memory, Non-Volatile
Memory, Solid-State Drives and the PFS, among others. Multilevel Checkpointing
libraries offer a way to leverage the different storage layers in the system through a simple
interface. The objective is to abstract the storage hierarchy to the user, so that one does
not need to manually take care of where the data is stored or the multiple data movements
required between storage levels. Each level of checkpointing provides a different trade-
off between performance and resilience, where usually lower levels use close storage
that offers higher performance but limited resilience, and higher levels rely on stable
storage (e.g., PFS), which is more resilient but slower. Mature examples of multilevel
checkpoint libraries are SCR [72], FTI [59], CRAFT [73] and VeloC [74]. Both SCR
and FTI provide support via simple interfaces for storing application checkpoint data on
multiple levels of storage, including RAM disk, burst buffers, and the parallel file system.
Both SCR and FTI provide redundancy mechanisms to protect checkpoint data when it
is located on unreliable storage and can asynchronously transfer checkpoint data to the
parallel file system in the background while the application continues its execution. In
addition, FTI also supports transparent GPU checkpointing. Finally, VeloC is a merge of
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the interfaces of both FTI and SCR. Note that some of these libraries offer the option for
keeping multiple checkpoints so that the application can roll-back to different points in
the past if necessary.

Containment Domains Containment Domains (CDs) provide a programming
construct to facilitate the preservation-restoration model, including nesting control
constructs, and durable storage [75]. The following features are attractive for large-scale
parallel applications. First, CDs respect the deep machine and application hierarchies
expected in exascale systems. Second, CDs allow software to preserve and restore
states selectively within the storage hierarchy to support local recovery. This enables
preservation to exploit locality of storage, rather than requiring every process to recover
from an error, and limits the scope of recovery to only the affected processors. Third,
since CDs nest, they are composable. Errors can be completely encapsulated, or escalated
to calling routines through a well-defined interface. We can easily implement hybrid
algorithms that combine both preservation-restoration and data encoding.

Use cases include an implementation of a parallel resilient hierarchical matrix
multiplication algorithm using a combination of ABFT (for error detection) and CDs
(for error recovery) [76]. It was demonstrated that the overhead for error checking and
data preservation using the CDs library is exceptionally small and encourages the use of
frequent, fine-grained error checking when using algorithm based fault tolerance.

Application versioning Global View Resilience (GVR) [77] accommodates APIs
to enable multiple versioning of global arrays for the single program, multiple data
programming model. The core idea is the fact that naive data redundancy approaches
potentially store wrong applications states due to the large latency associated with
error detection and notification. In addition to multiple versioning, GVR provides a
signaling mechanism that triggers the correction of application states based on user-
defined application error conditions. Use cases include an implementation of resilient
Krylov subspace solvers [78].

Mitigating performance penalties due to resilience via dynamic load balancing
Detected and corrected errors induce variation in the execution progress of applications
when compared to error-free executions. This can manifest itself as load imbalance.
Many application-level load balancing solutions have been proposed over the years and
can help to address this problem. We mention here a few available packages.

Available load balancing software includes Zoltan [79] that requires users to describe
the workload across processes as a graph and offers an object oriented interface. Further
we mention Dynamic Loop Scheduling for Load Balancing (DLS4LB) [80], a recently
developed library for MPI applications that contains a portfolio of self-scheduling based
algorithms for load balancing. StarPU [23] proposes support for asynchronous load-
balancing [24] for task-based applications. The principle is to let the application submit
only a part of its task graph, let some of it execute on the platform and observe the
resulting computation balance. A new workload distribution can then be computed
and the application is allowed to submit more of the task graph, whose execution
can be observed as well. OmpSs [32] is an effort to extend OpenMP in order to
support asynchronous execution of tasks including a transparent interface for hardware
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accelerators such as GPUs and FPGAs. OmpSs is built on top of the Mercurium
compiler [81] and the nanos++ runtime system [82].

HCLib [30] is a task-based programming model that implements locality-aware
runtime and work-stealing. It offers a C and C++ interface and can be coupled with
inter-process communication models, such as MPI. Charm++ [29] features an automatic
hierarchical dynamic load balancing method that overcomes the scalability limitation of
centralized load balancing as well as the poor performance of completely distributed
systems. Such a technique can be triggered dynamically after a failure hits the system
and the workload needs to be redistributed across workers.

2.2.2 Correction with major redesign The correction of some detected errors might
have a strong impact of the algorithm that has to implement the mitigation. The mitigation
design can be made more affordable if some components of the software stack have
already some appealing features to handle such situations.

Resilience support in the Message Passing Interface (MPI) Most MPI
implementations by default are designed to terminate all processes when errors are
detected. However, this termination occurs irrespective of the scope of the error, requiring
global shut-down and restart even for local errors in a single process. This inherent
scalability issue can be mitigated if MPI keeps all survived processes to continue and/or
if restart overheads are reduced. The MPI community has proposed several recovery
approaches, such as FA-MPI [83] or MPI-ULFM [84] to enable alternatives of global
shut-down, as well as better error handling extensions, like MPI Reinit [85], to reduce
overhead and impact of failures. Among these approaches, MPI-ULFM is the most
advanced and well known. It provides a flexible low-level API that allows application
specific recovery via new error handling approaches and dynamic MPI communicator
modification under process failures, although with significant complexities for the
application developer using the new APIs. Several approaches have been proposed to
mitigate this complexity by creating another set of library APIs built atop of MPI-
ULFM [68, 86–89]. However, as of now, in part due to its complexity when used on
real-world applications and limited support in system software, MPI-ULFM as a whole
has not been adopted in the MPI standard and hence is not readily usable for typical HPC
application programmers. Nevertheless, various aspects of ULFM are in the process of
standardization and will provide more mechanisms in MPI to build at least certain fault
tolerant applications, starting with the upcoming MPI 4.0 standard.

Resilience abstractions for data-parallel loops Data-parallel loops are widely
encountered in N -body simulations, computational fluid dynamics, particle hydrody-
namics, etc. Optimizing the execution and performance of such loops has been the focus
of a large body of work involving dynamic scheduling and load balancing. Maintaining
the performance of applications with data-parallel loops running in computing environ-
ments prone to errors and failures is a major challenge. Most self-scheduling approaches
do not consider fault-tolerance or depend on error and failure detection and react by
rescheduling failed loop iterations (also referred to as tasks). A study of resilience in self-
scheduling of data-parallel loops has been performed using SimGrid-based simulations
of highly unpredictable execution conditions involving various problem sizes, system
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sizes, and application and systemic characteristics (namely, permanent node failures),
that result in load imbalance [90]. Upon detecting a failed node, re-execution is employed
to reschedule the loop iterations assigned to the failed node.

A robust Dynamic Load Balancing (rDLB) approach has recently been proposed for
the robust self-scheduling of independent tasks [91]. The rDLB approach proactively and
selectively duplicates the execution of assigned chunks of loop iterations and does not
depend on failure or perturbation detection. For exponentially distributed permanent node
failures, a theoretical analysis shows that rDLB is linearly scalable and its cost decreases
quadratically with increasing system size. The reason is that increasing the number of
processors increases the opportunities for selectively and proactively duplicating loop
iterations to achieve resilience. rDLB is integrated into a dynamic loop scheduling library
(DLS4LB, see Section 2.2.1) for MPI applications. rDLB enables the tolerance of up to
(P − 1) process failures, where P is the number of processes executing an application.
For execution environments with performance-related fluctuations, rDLB boosts the
robustness of Dynamic Loop Self-scheduling (DLS) techniques by a factor up to 30 and
decreases application execution time up to 7 times compared to their counterparts without
rDLB.

Resilience extension for performance portable programming abstractions With the
increasing diversity of the node architecture of HPC systems, performance portability
has become an important property to support a variety of computing platforms with
the same source code while achieving a comparative performance to those programmed
with the platform specific programming models. Today, Kokkos [92] and Raja [93, 94]
accommodate modern C++ APIs to permit an abstraction of data allocation and parallel
loop execution for a variety of runtime software and node architectures. This idea can
be extended to express the redundancy of data and computation to achieve resilience
while hiding the details of the data persistence and redundant computation. Kokkos’
resilience extension provides (1) redundant execution for parallel loops and (2) automatic
checkpointing of Kokkos’ data objects. For checkpointing, all Kokkos data objects are
registered to the underlying checkpoint backend (C++ I/O, MPI I/O and VeloC [74]) and
the status of individual view instances are monitored by the Kokkos runtime. For invoking
checkpointing, Kokkos provides C++ Lambda to delineate the program source to indicate
(1) when checkpoint is performed and (2) where the checkpointed data is recovered when
re-executed. More information on the resilient Kokkos can be found in [95]

Software engineering approaches for resilience by design Resilience design
patterns [96, 97] offer an approach for improving resilience in extreme-scale
HPC systems. Frequently used in computer engineering, design patterns identify
problems and provide generalized solutions through reusable templates. Reusable
programming templates of these patterns can offer resilience portability across different
HPC system architectures and permit design space exploration and adaptation to
different (performance, resilience, and power consumption) design trade-offs. An early
prototype [98] offers multi-resilience for detection, containment and mitigation of silent
data corruption and MPI process failures.
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Table 1. Numerical error detection: Overview of error detection techniques and numerical
ingredients and methods where they are applied. Note that we mark a method as applicable
only if it is or can be used in the respective algorithm itself, not only at lower level functionality,
i.e., we do not mark checksums for multigrid as checksums are only used in the BLAS 2/3
kernels used as inner loops or in the GS/J/SOR smoothers.
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BLAS 2/3 × × ×
Direct Solvers × × ×
Krylov × × × ×
Multilevel / Multigrid × × × ×
Domain Decomposition × ×
GS/Jac/SOR × × ×
Nonlinear Systems × × ×
Time Stepping (ODEs) × × (×) ×
PDEs × × × × × ×
Quadrature × × × × ×

3 Numerical algorithms for resilience
In this section, we focus on the handling of errors at the algorithmic level. We see three
different classes of problems to tackle here: (i) detection of un-signaled errors (mostly bit
flips and other instances of silent data corruption, Section 3.1), (ii) correction of errors
that have been signaled but could not be corrected at the hardware or middleware layer
(by error aware algorithms, Section 3.2), (iii) design of error oblivious algorithms that
deliver the correct result even in the presence of (not too frequent) errors (Section 3.3).

In addition to correctness in the presence of errors, an important challenge in all our
considerations is efficiency in terms of algorithm runtime. In this context, additional
algorithmic components such as work stealing and asynchronous methods (where
missing data are simply an extreme case of delay) have to be considered. We mention
these methods when describing methods that can make use of such runtime optimizing
measures.

3.1 Error detecting algorithms
In this section, we focus on mechanisms to numerically detect errors that have not been
detected by the underlying system or middleware. We have identified several techniques
that allow us to (likely) notice the occurrence of an error at several layers of numerical
algorithms. Table 1 gives an overview of some detection techniques and the algorithmic
components or numerical methods where they are applicable.

3.1.1 Exceptions Exceptions are a way a program signals that something went wrong
during execution. We consider the case where exceptions are caused by data corruption
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that can, for example, lead to division by zero or out-of-range access. Most programming
languages support a way of handling exceptions. The algorithm programmer can register
an exception handler that gets called whenever an exception occurs. If the error is
recoverable, the exception handler will specify how best to continue afterwards. If the
error is not recoverable, the program will be aborted. Exceptions are a straight-forward
way to detect certain types of errors and can be applied to all numerical algorithms.
However, they obviously only see a small subset of all possible errors and it is not trivial
to decide when to use exceptions handlers in the light of a trade-off between correctness,
robustness and runtime efficiency.

3.1.2 Checksums Checksums could be used at the hardware or middleware layer
to detect errors, but here we will discuss checksums as employed on the algorithmic
layer where we have a more detailed knowledge about the existence of numerical
or algorithmic invariants. Checksum techniques have been used in various numerical
algorithms. We list some examples below.

BLAS 2/3: Checksum encoding matrices, introduced by Huang and Abraham [99]
requires (i) adding redundant data in some form (encoding), (ii) redesign of the algorithm
to operate on the respective data structures (processing), and (iii) checking the encoded
data for errors (detection). We ignore the recovery phase here and refer to Section 3.2.
Checksums are used in FT-ScaLAPACK [100] for dense matrix operations such as MM,
LU and QR factorization and more recently in hierarchical matrix multiplication [76].
Wu et al. give a good survey of checksum deployment in dense linear algebra [101].

Gauss-Seidel/Jacobi/SOR and multigrid: In [102], checksums are used to detect errors
in the Jacobi smoother, the restriction and interpolation operators of a multigrid method
solving a two-dimensional Poisson equation.

Krylov subspace methods: Tao et al. propose a new checksum scheme using multiple
checksum vectors for sparse matrix-vector multiplication, which is shown to be generally
effective for several preconditioned Krylov iterative algorithms [103]. Also [104,105] use
checksums for protection within the conjugate gradient (CG) algorithm.

FFT: Checksum can also be used in Fast Fourier Transforms (FFT)s similarly as in
matrix-vector multiplication. Liang et al. [106] develop a new hierarchical checksum
scheme by exploiting the special discrete Fourier transform matrix structure and employ
special checksum vectors. Checksums are applicable to many important kernels such as
matrix-matrix multiplication, but are costly. In addition, it can be difficult to specify a
suitable threshold for ‘equality’ in the presence of round-off errors. For many numerical
calculations such as scalar products, checksums are not applicable at all.

CNN: Convolutional Neural Networks are emerging as a promising novel component for
large scale simulations where hybridizing classical numerical algorithms and machine
learning techniques can be considered as an alternative to reduce some computational
effort and to better exploit the massive data produced by large simulations. Extending
ABFT principles to CNN has recently being investigated in [107] to detect and correct
CNN inference process.
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3.1.3 Constraints In some applications, constraints for different types of variables are
known. Examples are positivity constraints, conservation laws for physical quantities or
known bounds for internal numerical variables.
Krylov subspace methods: Resilience was already of importance in the early days of
digital computers. In the original PCG paper [108], Hestenes and Stiefel noticed that
the reciprocal value of α (the step length) is bounded above (repectively, below) by the
reciprocal of the smallest eigenvalues (respectively the inverse of the largest eigenvalue)
of the matrix. The inequality involving the largest eigenvalue (for which in practice it
may be cheaper to get an approximation) was used to equip PCG with error detection
capabilities in [105].
Partial differential equations: Checking for bounds can be associated with minimal
or extremely high cost depending on whether extra information has to be computed
(such as eigenvalues of matrices) or not. Reliability is, in general, an issue as only
those errors leading to violation of these constraints can be detected. An example of
the use of problem-informed constraints can be found in [109]. In this work, the authors
derive a priori bounds for the discrete solution of second-order elliptic PDEs in a domain
decomposition setting. Specifically, they show that the bounds take into account the
boundary conditions, are cheap to compute, general enough to apply to a wide variety of
numerical methods such as finite elements or finite differences, and provide an effective
way to handle faulty solutions synthetically generated.

3.1.4 Technical error information In many numerical large scale applications, the main
computational task involves the approximate computation of integrals, algebraic systems,
systems of ODEs or PDEs. For all these problems, various types of error information such
as residuals, differences between iterations, round-off error estimates and discretization
error estimates can be used as indicators of errors either by their size or by monotonicity
criteria. We give several examples from literature for different classes of numerical
algorithms.
Krylov subspace methods: Round-off error bounds can be used in Krylov subspace
methods. They fit in the general framework of round-off error analysis [110] and
have been considered in the context of Krylov subspace methods in finite precision
arithmetic [111, 112].

Vorst and Ye proposed a residual gap bound [113] (bound for the norm of the residual
gap between the true and the computed residuals) based on round-off error analysis that
was later used as a criterion for actual error detection in [105] when bit flips occur. The
detection of errors in Krylov methods via violation of orthogonality is proposed in [114].
Multigrid: Calhoun et. al [115] apply a residual/energy norm-based error detection for
algebraic multigrid. They use two criteria: (i) the reduction of the residual norm as a
weak criterion and (ii) the reduction of the quadratic form

E(x) = 〈Ax,x〉 − 2〈x, b〉,

when solving the linear system Ax = b for symmetric positive matrices.
The quadratic for E calculated at level i during the down-pass of a V-cycle should be

less than the energy calculated at level i during the down-pass of the next V-cycle.

Prepared using sagej.cls



20 Journal Title XX(X)

When using the full approximation scheme residual norm reductions can also be
verified at each level in the hierarchy of a multigrid-cycle. The structure of the full
approximation scheme additionally provides smart recovery techniques utilizing its lower
resolution approximations [116].
Time-stepping: For iterative time-stepping with spectral deferred corrections,
monitoring the residual of the iteration can be used to detect errors in the solution
vectors [117]. In the context of parallel-in-time integration with parareal, consecutive
iterates are considered in [118] to detect errors in the solution vector. In [119], an
auxiliary checking scheme in contrast to the original base scheme is used to detect
and correct errors during implicit and explicit time-integration. Estimating the local
truncation error with two different methods is used in [120] to implement a resilient,
high-order Runge-Kutta method. This “Hot Rod” approach is then also used for error
correction.

3.1.5 Multi-resolution Multi-resolution means that information is available at different
resolution levels, in terms of spatial discretization (PDE), time discretization (ODE and
PDE), order of discretization (PDE in space and time), matrix dimensions (numerical
linear algebra, multigrid), frequencies, and so on. This leads to a certain redundancy –
not an artificially introduced, but an inherently available one. This redundancy can be
used to detect discrepancies or anomalies and, hence, errors that could not be detected by
the system. There are numerous examples for the mentioned problem classes, we outline
one example in more detail here.
Sparse grids / Combination technique: Sparse grids [121] are one particular class of
multi-resolution methods. There, via the use of hierarchical bases, certain structures often
seen in d-dimensional data can be exploited to alleviate the curse of dimensionality,
without a significant loss of accuracy. Sparse grids have been successfully used in a wide
range of problem classes where spatial discretization plays a role, such as interpolation
[122], quadrature [123–125], solvers for PDEs [126, 127], or machine learning tasks
[128–130] (e.g., classification, regression, clustering, or density estimation). One
particular incarnation of sparse grid methods is the so-called combination technique
[131]. There, based on an extrapolation-style approach, a linear combination of a specific
set of full, but very coarse-grid solutions is used to get a sparse fine-grid solution. The
various coarse grid solutions can be obtained in a completely independent way, using
(parallel) standard solvers. This opens the way to (1) a natural two-level parallelization
and to (2) an easy and cheap detection of system undetected errors: Since we actually
compute solutions for the same problem on different (i.e., differently discretized) grids
anyway, we can use these to detect anomalies – just by comparing the available solutions.
And the detection leads immediately to a mitigation strategy (see Section 3.2.2), since
we can easily exchange coarse grids in case of errors, just by changing the combination
pattern [132–137]. Therefore, this is an example for a smart algorithm that is able to do
both detection and mitigation.

Further examples are mentioned in Section 3.1.4 as multi-resolution typically comes
with corresponding error estimates based on differences between solutions at different
resolution levels: multigrid and parallel time stepping.
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3.1.6 Redundancy Redundancy is a strategy for error detection that can be applied to
all of the numerical algorithms mentioned in Table 1. It covers two approaches. In the first
approach computational resources may be replicated twice or thrice. Such instances are
called DMR [138,139] or TMR [140,141]. In the second approach the computations are
repeated twice or thrice on the same resource [142, 143]. An advantage of this approach
is the flexibility at the application level. Note that the first approach costs more in space
or resources, the second approach costs more in time.

The redundancy based error detection technique described in [144] relies on in-
depth analysis of application and platform dependent parameters (such as the number
of processors and checkpointing time) to formalise the process of both resource and
computation replication. It provides a closed-form formula for optimal period size,
resource usage and overall efficiency.

Ainsworth et. al [145] use replication of fault-prone components as an error detection
technique in a multigrid method. Also error detection in the time stepping methods
from [119] mentioned in Section 3.1.4 can be interpreted as redundancy based error
detection.

The main disadvantage of replication is its cost in terms of performance, although
recomputing only some instructions instead of the whole application lowers the
time redundancy overhead [146]. However, redundancy in some calculations should
in particular be considered as a possible strategy for error detection as in modern
supercomputers the cost of arithmetic operations tends to decrease compared to
communication time.

3.2 Error aware algorithms
In this section, we look at error correction techniques within an application. We assume
that the application has been notified that part of the algorithm’s data is corrupted or lost.
In that context, mitigation or containment actions have to be undertaken at the algorithmic
design level, where the appropriate actions depend on the data detection granularity
and how the notification mechanism was activated. It is possible to design both lossy
and lossless mitigation procedures that are tailored to the numerical algorithms under
consideration.

In Section 3.2.1 we give a brief literature overview of ideas that can be used to
complement numerical mitigation or containment procedures. Then, in Section 3.2.2 we
offer a more detailed discussion of some recent successful attempts by presenting a few
case studies in the context of the solution of Partial Differential Equations (PDE).

3.2.1 Error aware algorithms for the solution of linear systems A wealth of literature
already exists on various, mostly isolated ideas and approaches that have appeared over
time. Checkpoint-restart methods are the most generic approaches towards resilience
for a broad spectrum of applications, see Section 2.2.1 for an introduction. We first
describe a general mental model to design resilient numerical algorithms independent of
actual machine specifications that lead to what is nowadays referred to as Local-Failure
Local-Recovery (LFLR) techniques. Then we move to ‘classical’ algorithm-based fault
tolerance, which originally was developed to detect and correct single bit flips on systolic
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architectures devoted to basic matrix computations, see Section 3.1.2. Finally, we discuss
a range of ideas and techniques not covered by the case studies below.

Local-failure local-recovery As far back as a decade ago, an abstract framework
was developed to separate algorithm design from unclear machine specifications,
see also Section 2.2.1. The idea of a selective reliability model as introduced by
Hoemmen [147, 148] is machine-oblivious and highly suitable for algorithm design for
machines with different levels of (memory) reliability. It has led to the concept of Local-
Failure Local-Recovery (LFLR) [88]. This model provides application developers with
the ability to recover locally and continue application execution when a process is lost.
In [88], Teranishi and Heroux have implemented this framework on top of MPI-ULFM
(Section 2.2.2) and analyzed its performance when a failure occurs during the solution
of a linear system of equations.

Original algorithm-based fault tolerance with checksums The term Algorithm-Based
Fault Tolerance (ABFT) was originally coined in conjunction with protecting matrix
operations with checksums to handle bit flips [149], mostly assuming exact arithmetic
calculation for detection and mitigation. (See Section 3.1.2 for a more detailed discussion
on checksums). The main drawback of checksums is that only limited error patterns
can be corrected and its robust practical implementation in finite precision arithmetic
can be complicated to tune to account for round-off errors. A second drawback is that
the checksum encoding, detection and recovery methods are specific to a particular
calculation. A new scheme needs to be designed and proved mathematically for each new
operation. A further drawback is to tolerate more errors, more encoded data is needed,
which may be costly both in memory and in computing time.

ABFT concepts have been extended to process failures for a wide range of
matrix operations both for detection and mitigation purposes [150–154] and general
communication patterns [155]. ABFT has also recently been proposed for parallel stencil-
based operations to accurately detect and correct silent data corruptions [156]. In these
scenarios the general strategy is a combination of checkpointing and replication of
checksums. In-memory checkpointing [154] can be used to improve the performance.
The main advantage of these methods is their low overhead and high scalability.

In practice, the significance of a bit flip strongly depends on its location, i.e., which bit
in the floating point representation is affected. Classical ABFT has been extended to take
into account floating point effects in the fault detection (checksums in finite precision)
as well as in the fault correction and to recover from undetected errors (bit flips) in all
positions without additional overhead [157].

Iterative linear solvers Iterative linear solvers based on fixed point iteration schemes
are, in general, examples of error oblivious algorithms, as described in Section 3.3. The
convergence history of the scaled residual norm observed within the iterative scheme
often resembles the curves displayed in Figure 2. In this case the iterative scheme is a
multigrid method, as in [158, 159]. The peaks in the residual occur after data has been
lost and when the iterations are allowed to restart with some form of replacement of the
lost data. In the simplest case, the lost data may just be re-initialized with the value of
zero, and recovery techniques to obtain better solutions are discussed in Section 3.2.2.
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It can be seen that, depending on when in the course of the iteration a small portion
of the approximate solution suffers from an error, we observe a delay in convergence,
directly proportional to an increase in runtime. In the case where errors appear too often,
the solver might not recover and other mitigation actions might have to be considered.
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Figure 2. Convergence history of the residual norm as a function of the iteration count for
three examples of information loss. From left to right: early, late, and multiple times

Explicit recovery at the algorithmic level from undetected errors have been studied
for iterative linear solvers [160]. In contrast to restarting, a number of algorithm based
recovery strategies have been proposed, including approximate or heuristic interpolation
methods [161]. An approach of exactly recovering the state of the iterative solver
before the node failure has been investigated for the Preconditioned Conjugate Gradient
(PCG) and related methods [162, 163]. This also includes studying scenarios with
multiple simultaneous node failures [164] and scenarios where no replacement nodes
are available [165].

Approximated recovery and restart in sparse numerical linear algebra For matrix
computations, eigensolvers or basic kernels such as iterative linear system solvers, some
recovery ideas rely on forming a small dimensional linear algebra problem where the
inputs are the still valid data and the unknowns are the lost/corrupted ones. The outcome
of this procedure is subsequently used to replace the lost/corrupted data and the numerical
algorithm is somehow started again from that meaningful initial guess. The recovery
procedure is tailored to the actual numerical algorithm. As an example, consider a fixed
point iteration scheme for a linear system and suppose the lost data are entries of the
iterate vector, the most dynamically evolving data in this computational scheme. Matrix
entries of the iteration scheme related to the lost data, as well as some neighbouring
entries, serve to build the left-hand side of a linear problem (either a linear system or a
least-square problem) while the right-hand side is built from valid data. The solution of
this small problem is then used to replace the corresponding lost entries of the iterate
vector. The complete, updated vector is taken as a new initial guess when restarting the
fixed point iteration. If the data is not corrupted too often the classical convergence
theory still applies and because the new initial guess incorporates updates from the
calculations performed before the error was detected, the global convergence rate is not
strongly affected. The method described in adaptive recovery techniques for extreme
scale multigrid in Section 3.2.2 is an example application of this technique.
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For numerical schemes based on nested subspace search, such as Krylov subspace
methods, closely related techniques have been successfully applied both for eigensolvers
and linear solvers that further exploit the sparsity structure of the matrices to reduce
the computational cost associated with the recovery procedure. At the cost of a light
checkpoint performed once when starting the linear solver (mostly the matrix and the
right-hand side vector in case of linear system solution) this mitigation approach has
no overhead if the data is not corrupted during the solution computation. We refer
to [161, 166, 167] for some illustrations on those numerical remedies in a parallel
distributed memory framework and to [168] where these ideas are exploited for a lower
granularity of data loss in a task-based runtime system. See Section 2 for references
relevant to task-based runtime systems.

We also note that these ideas can be extended to hybrid iterative/direct numerical
schemes, that have a domain decomposition flavor, where the recovery procedure can be
enriched with additional features of the parallel numerical scheme such as redundancy or
properties of the preconditioners [169]. They can also be extended to the time domain in
the context of multilevel parallel-in-time integration techniques [170].

3.2.2 Error aware algorithms for the solution of partial differential equations The
ideas introduced above in Section 3.2.1 are application agnostic but naturally apply
to linear systems arising from the discretization of a PDE. In that latter case, more
information from the underlying PDE can be closely tailored to intrinsic features of
solvers such as multigrid. In this section we discuss some research works on mitigation
and containment that exploit the properties of PDEs to aid the recovery techniques. We
also present some mitigation processes that are only relevant in the PDE setting.

Adaptive recovery techniques for extreme scale multigrid Some of the most efficient
solvers of PDE, such as parallel geometric multigrid methods [171, 172], can be
based on the exchange of ghost layers in a non-overlapping domain partitioning. This
automatically leads to a redundancy in interface data between subdomains that in turn
permits the design of an efficient two-step recovery strategy for iterative solvers. This is
of particular interest in large-scale parallel computations. When each subdomain is large,
then the ratio between the data on its surface and the volume data in its interior becomes
small.

When a processor fails, the information within one or several subdomains is lost. For
the recovery and continued solution, the redundant ghost layer information is used in a
first step, to recover locally either Dirichlet- or Neumann-type data for the subdomains.
The global problem can then be formulated in two partitions, the outer healthy subdomain
and the inner faulty subdomain, where the recovery must reconstruct the lost data. Both
subproblems must be bi-directionally coupled via the interface and the corresponding
ghost layers of unknowns.

After re-initialization, the corrupted and reinitialized data could pollute the solution
globally, meaning that the locally increased error in the faulty domain can spread
globally and thus also affect the healthy subdomain. In order to avoid this pollution,
the communication between the healthy and faulty sub-problems is interrupted during
the second step of the recovery process. In the second step, we continue with the original
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iterative solver restricted to the healthy sub-problem and select a suitable one for the
faulty one. After some number of asynchronous iteration steps both sub-problems are
reconnected, see [159], and the global iterative solver strategy is resumed. Note that the
reconnecting step is mandatory for the convergence of the iterative solver. The tearing
step separating the subdomains is mandatory to preserve the accuracy of the dynamic
data in the healthy sub-problem, and without this step the corrupted data from the faulty
sub-domain pollutes the global solution. Of critical importance for the performance of
the method are the accuracy of the faulty sub-problem solver at re-connection time and
the time spent in the recovery mode. In the faulty domain, the lost data can be initialized
with 0, or, alternatively, compressed checkpointed data can be used as described in the
following section on compression techniques for checkpoint-restart. Note, however, that
with straight-forward compression techniques, compressed checkpoint data will only be
useful to recover the low frequency components in the faulty domain. If the local recovery
is performed with multigrid, then the low frequencies are in any case cheap to recover,
as compared to the cost of recomputing the lost high frequency components.

The accuracy within a multigrid strategy can be easily controlled by a hierarchical
sum of weighted residuals [173]. The overhead cost for the a-posterior error indicator
is quite small compared to the overall solver cost. Having an estimate for the algebraic
error in both sub-problems at hand, the re-connection step is determined automatically.
To speed up the time which is spent in the recovery, a so-called ‘superman strategy’
is applied [159], see also Figure 3 for an illustration. More resources compared to
the situation before the fault are allocated to the faulty sub-problem. A short recovery
phase in combination with carefully selected re-coupling criteria then guarantees a highly
efficient fault-tolerant solver.

Of special interest is a massively parallel multigrid method as base solver. In
combination with the tearing and intersection approach for the recovery, it results in
a hybrid approach. In case of a Stokes-type system, yielding after discretization a
saddle point problem, the strategy can either be applied on the positive definite Schur
complement for the pressure or, as it was done in [174], on the indefinite velocity-
pressure system. In that case an all-at-once multigrid method with an Uzawa-type
smoother acting on both solution components turns out to be most efficient, see [175].
Numerical and algorithmic studies including multiple faults and large-scale problems
with more than 5 · 1011 degrees of freedom and more than 245000 cores have been
demonstrated [159, 174]. The automatic re-coupling strategy is found to be robust with
respect to the fault location and size and also handling multiple fault. In many scenarios
a complete recovery can be achieved with almost no increase in runtime and while
maintaining excellent parallel efficiency.

Adaptive mesh refinement, load balancing, and application level checkpointing
Adaptive Mesh Refinement (AMR) functionality and load balancing require similar data
linearization- and transfer functionality as is needed for application level checkpointing.
This is exploited in the waLBerla framework [176–178] that features an object oriented
design for composing coupled multiphysics simulation software. waLBerla’s load
balancing is based on routines to transfer simulation data between processors so that
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Figure 3. Illustration of the steps in the adaptive recovery technique for extreme scale
multigrid. Left: A detectable error occurred. Middle: The communication between the healthy
and faulty sub-domains is interrupted. Right: The original iterative solver restricted to the
healthy domain continues while another suitable solver is asynchronously used in the faulty
domain. Once the solution in the faulty domain reaches a certain accuracy, the
communication between the domains is re-enabled.

functionality to serialize, pack, send, and unpack all relevant data is already available
as a by-product of the AMR functionality. Note that the waLBerla software architecture
imposes this structure for Eulerian mesh based data as well as for Lagrangian particle-
based models and it canonically extends to coupled Eulerian-Lagrangian multiphysics
models. For this to work transparently, the routines for migrating simulation data
must be suitably encapsulated. Then this functionality can be used to write user level
checkpoints either on disk or in memory. Note that writing checkpoints will inevitably
imply overheads in memory consumption and communication time, but that restoring a
checkpoint is cheap, since it initially only requires re-activating the redundantly stored
data. This is especially true when in-memory checkpointing is used as explored and
analyzed in [57]. The simple restoration of checkpointed data may of course lead to
load imbalance, but the functionality to redistribute load is also available as part of
the parallel AMR functionality. In this sense, user-level checkpointing can be based
in a natural, efficient, and straightforward way on the functionality of parallel AMR
algorithms combined with load balancing functionality.

Compression techniques to accelerate checkpoint-restart for Kryloy-MG solvers
Compressed checkpointing is a possibility to improve the efficiency of classical
checkpoint-restart schemes, both in terms of the overhead to generate the checkpoints and
to recover the data if an error occurs. The added efficiency mainly comes from a reduced
memory footprint which is beneficial for communication and storage. It is particularly
efficient if the compression method is tailored to the target application. As an example, in-
memory compressed checkpoints combined with LFLR (see Section 3.2.1) for iterative
linear solvers, e.g., multigrid preconditioners in Krylov schemes, are described below.

Lossy Compression: As already mentioned in Section 3.2.2, paragraph ‘Approximated
recovery and restart’, initially only the dynamical data, i.e., the approximate solution, are
protected. Lossy compression allows a balance between the accuracy of the discretization
error of the assembled system and the numerical error within the solver. Specifically
in [179], the SZ library [180–182] is employed, which prefers, by construction, structured
data ideally associated with a structured grid. Another important feature is that the
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compression accuracy can be prescribed and adapted to the situation. Unfortunately,
a higher compression accuracy usually leads to a lower compression rate and higher
compression time, which is crucial in terms of resilience overhead. We mention that lossy
compression to alleviate the cost of checkpointing in iterative methods is also considered
in [183].

Note that multigrid can be interpreted as a lossy compression technique in itself,
with a number of mathematical peculiarities that need consideration [158]. Multigrid
algorithms use a hierarchy of grids to solve linear systems in an asymptotically optimal
way. This hierarchy can be used to restrict, i.e., lossily interpolate, the iterate from
fine to coarse grids. Such a lower-resolution representation of the iterate can then be
stored as a compressed checkpoint. Conversely, the multigrid prolongation (coarse-
to-fine grid interpolation) operator is used to decompress the data. With only small
additional computations, the multigrid hierarchy can also be used for error detection.

Recovery: Several recovery techniques can be devised [179]. As a baseline approach
checkpoint-restart is mimicked and the global iterate is simply replaced with its
decompressed representation, independently of the compression strategy. The second
proposed approach follows the LFLR strategy and re-initializes only the local data that
is lost on faulty computing nodes by using checkpoint data stored on neighbouring
computing nodes. Contrary to the first approach, this is mostly local and only needs
minimal communication to receive a remotely stored backup. In particular, the recovery
procedure itself does not involve the participation of other processes except those sending
the checkpointed data. As a worst-case fallback when the backup data is not sufficient,
a third recovery approach is established, which is still mostly local. Here, an auxiliary
problem is solved iteratively with boundary data from the neighbouring computing
nodes. This is similar to the adaptive recovery techniques for extreme scale multigrid
from above or the approximated recovery and restart of Section 3.2.1. An auxiliary
problem is constructed, either by domain decomposition overlap or the operator structure,
and solved with an initial guess based on the checkpoint data to accelerate the iterative
recovery phase. Experiments show that this approach can almost always restore the
convergence speed of the fault-free scenario independently of the used backup technique,
only the number of additional local recovery iterations varies. For more details, we refer
to [179].

Resilience with sparse grids Resilience can be added on various abstraction levels
of the algorithm. For PDE problems one traditionally adds resilience on the level of
linear algebra operations, on the solver level for linear/non-linear equations, or on
the time-stepping algorithm. However, this may in some cases not be coarse-grained
enough to minimize the overhead of resilience techniques, especially when errors occur
rarely. In [126,132,135–137,184] the authors demonstrate a fault-tolerant framework for
solving high-dimensional PDEs that applies fault tolerance on top of the individual PDE
solver. The framework boosts the scalability of black-box PDE solvers while making
it simultaneously resilient to faults by applying the sparse grid combination technique.
In this technique the PDE simulation is distributed over many coarse grids, which can
be processed in parallel. At regular intervals the results of these grids are combined to
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obtain the final sparse grid result. In presence of faults the affected grids can be neglected
and an alternative combination scheme is calculated via an optimization routine. If too
many grids are lost, the last combination result serves as an in-memory checkpoint to
recompute the required grids. In [132] it is shown that this lossy recovery provides very
good results even with high error frequencies. At the same time the parallel efficiency is
only slightly affected.

Adaptive mesh refinement Adaptive refinement techniques in combination with finite
element methods are well established for fault-free computations. In terms of fault
tolerance, this means that in addition to the assembled linear system, the geometric
mesh structure must be protected. This requires the reconstruction of the data structures
containing the mesh hierarchy. For the use of multigrid or multilevel methods, we also
need to recover multiple levels of adaptive grid refinement after a fault has occurred.
The recovery process must take into account the intra-grid as well as the inter-grid data
dependencies.

We refer to [185] for a parallel adaptive multigrid method that uses a sophisticated
dynamic data structures to store a nested sequence of meshes and the iterative evolving
solution. Stals demonstrates that it is possible to implement a fault recovery procedure
that builds on the original parallel adaptive multigrid refinement algorithm [186] in the
case of a fail-stop fault. It is assumed that a copy of the coarsest grid can always be
accessed after a fault has occurred, i.e., it is stored off the processor. The challenge
in recovering an adaptively refined grid is that the mesh distribution changes during
any load balancing procedures, i.e., the local information that was available during
the original refinement process will have been modified or removed. Nevertheless it is
demonstrated that the neighbouring healthy processors contain enough intact information
so that the necessary structure can be recovered to pass into the refinement routine. In
the case of uniform refinement, the original multilevel grid is recovered. In the case of
an adaptively refined grid, enough of the structure is recovered to re-establish the correct
communication pattern allowing the solution process to run to completion, but potentially
with reduced accuracy. The neighbouring healthy processors will only contain enough
information to guide the refinement around the edge of the recovered subgrid. Further
refinement within the interior of the recovered subgrid may be required to improve the
accuracy of the solution.

These techniques were implemented with minimal disruption to the original code.
An example of one the few necessary modifications is that in the original code,
communication was used to ensure that the elements were refined in the appropriate order
to avoid degenerate grids. In the resilient version of the the code that communication had
to be removed as the refinement was restricted to the faulty processor.

3.3 Error oblivious algorithms
In this section, we give examples of algorithms that are error oblivious in the sense that
they can recover without assistance from errors that do not occur too frequently. For
example, many fixed point iterative solvers are able to execute to completion if, e.g., a bit
flip error occurs in the solution vector. However, every error likely increases the execution
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time of the algorithm. We thus define two quality criteria for error oblivious algorithms
and use to assess the examples in the remainder of this section: (i) correctness, and (ii)
efficiency in terms of execution time.

Finding an algorithm that fulfills (i) and can also compete against error aware
algorithms as described in Section 3.2 remains an open problem.

Error oblivious usually means that an error slowly ‘leaves the system’ during several
iterative sweeps over the data. Error mitigation in error aware algorithms, on the other
hand, requires specific measures to correct the error, and can only be applied when the
error has been detected on a hardware, middleware or algorithmic layer, but removes the
disturbance of the calculation process by the error immediately.

We do not expect the error oblivious algorithms to be impervious to all types of errors.
An iterative method may be not error oblivious if the error changed the matrix entries.
This concept is defined as selective reliability, see Section 3.2.1.

3.3.1 Gossip based methods A potentially interesting alternative in large-scale
parallel environments that does not require any explicit error detection mechanisms
utilizes gossip-based methods and their inherent resilience properties. Such algorithms
by nature build up redundancy in the system and can thus can efficiently recover
automatically from various types of faults/errors without any need to explicitly detect
them. In particular, Gansterer et al. have studied and extended the resilience of gossip-
based aggregation and reduction methods [187–189]. Based on these building blocks,
they have developed and analyzed several more complex resilient numerical algorithms,
such as orthogonalization methods [189, 190], eigensolvers [191], and least squares
solvers [192].

While the strong resilience properties and execution-time robustness of these
approaches are promising, there is a certain price in terms of basic runtime compared
to classical deterministic numerical high performance algorithms. It remains to be
investigated whether they can be competitive in a fault-prone, but otherwise classical
system with global view and centralized control. Their competitiveness can be expected
to increase significantly if some of these classical properties have to be weakened at the
extreme scale.

3.3.2 Fixed-point methods We view fixed-point methods as methods that converge
globally when certain conditions are satisfied. For example, the Jacobi iterative schemes
will converge for any initial guess if the matrix is diagonally dominant. Fixed-point based
iterative methods are by design resilient to bit flips. However, the convergence delay can
be significant. Anzt et al. [193, 194] propose techniques improving the cost-robustness
with little overhead.

A class of numerical algorithms that by design have properties attractive for resilience
are asynchronous iterative methods [195–202]. In order to avoid misunderstandings, we
point out that this class of methods is unrelated to the idea of asynchronous dynamic load
balancing [203] as addressed in Section 2.1. Instead, asynchronous iterative methods,
stemming from the concept of chaotic iterations [204], are fixed-point methods that
seek the solution of a problem by independently updating subdomains – which can be
subdomains in the geometric sense, subsets, or individual components of the solution
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approximation – according to some fixed-point linear or nonlinear iterative scheme. A
particularity of the asynchronous methods is that the independent updates neither adhere
to a specific update order, nor synchronize in terms of a handshake with other updates,
but still converge globally in the asymptotic sense. In particular, these methods are robust
with respect to some subdomains being updated at a much lower pace as each update just
uses the most recent non-local information available. In that sense, asynchronous solvers
can have good performance in unreliable environments where messages can be dropped
or processes can become unresponsive for limited time. Also, in cases where messages
are corrupted (and corruption can be detected), an asynchronous solver can simply drop
such a message. In cases where processes remain unresponsive, a mechanism is still
needed to recover that process and its state, but the remaining processes can continue
computing unchanged. Therefore, asynchronous methods are somehow error oblivious.

With the increasing cost of global synchronizations, and the attractive properties
concerning fine-grained parallelization and resilience against communication delays
and errors, asynchronous methods have gained attention in particular for numerical
computations [205]. Chow et al. [206, 207] developed an asynchronous algorithm
for generating incomplete factorizations, Coleman et al. [208] further improved this
algorithm by employing measures that reduce the runtime overhead when encountering
errors. More general is the idea of asynchronously updating subdomains in Schwarz
decompositions. In particular asynchronous restricted additive Schwarz methods and
asynchronous optimized Schwarz methods have been identified to combine algorithm-
inherent resilience with scalability on pre-exascale hardware architectures [209–213].

Independently, asynchronous multilevel methods have been proposed and analyzed
under the name Fully Adaptive Multigrid method [214]. Here the multigrid smoothing
process is executed asynchronously so that it can be employed for concurrent
operations on different levels of the mesh hierarchy. The iteration is executed in a
Southwell style [215] and is controlled by efficient hierarchical error estimators [173].
The parallel implementation [216] will automatically correct errors. More recently,
asynchronous methods have been proposed for nonlinear multi-splitting [217] and
eigenvalue computations like Google’s Pagerank algorithm [218]. More recently, also
the idea of asynchronously solving coarse-grid error correction equations has been
investigated, leading to an asynchronous multigrid algorithm [219]. While case studies
reveal attractive properties, these newly developed asynchronous iterative methods (such
as asynchronous multigrid) are not fixed-point iterations, and developing a convergence
theory for those algorithms remains a challenge.

3.3.3 Krylov subspace solvers The authors of [5] present a monotonicity-based fault
detection and correction procedure for a Generalized Conjugate Gradient Krylov solve
and perform tests with manual fault injection. While the solver manages to converge
even with large amounts of corrupted data, the basic recovery procedure speeds up
convergence with minimal detection and correction overhead.

In [220] the authors use a slightly different terminology and call their method
numerically self-stabilizing, a term which originates in the context of distributed
systems [221]. They introduce two error oblivious [221] iterative linear solvers: one
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for the steepest descent and one for conjugate gradient. In the latter case, they consider
necessary conditions for conjugate gradient to converge. Those conditions are borrowed
from non-linear conjugate gradient [222] and are maintained in a correction step
(typically performed every other ten iterations). The correction step does not explicitly
correct errors, but re-computes quantities such as the residual at regular intervals.
Therefore, we classify these methods as error oblivious instead of error aware.

A recent study [179] showed that storing both the most recent iterate and search
direction can improve the CG recovery. Furthermore, CG recovery is viable for systems
with low fault rates, but for high fault rates GMRES is more robust to errors and local
recovery.

The efficiency of a Krylov subspace solver is heavily reliant on the preconditioner.
That being the case, it is prudent to ask how the solver will be impacted if the
preconditioner is compromised. Elliott [223, 224] investigates a nested solver strategy
that combines an unreliable, but cheap, inner solver with a reliable expensive outer
solver to minimize the numerical impact of soft errors. The CG and GMRES solvers are
evaluated with the algebraic multigrid as the preconditioner. Coleman et al. [208] propose
an alternative approached by developing a fault tolerant incomplete ILU algorithm.

3.3.4 Domain decomposition In [225] Griebel and Oswald use probabilistic analysis
to model the effect of errors on the convergence of the classical overlapping Schwarz
algorithm. They conclude that this method does indeed converge in the presence of
errors. Glusa et al. [226] mention that asynchronous domain decomposition methods
are by definition fault-tolerant. In [227–229], the authors discuss resiliency of a task-
based domain decomposition preconditioner for elliptic PDEs. By leveraging the domain
decomposition approach, the problem is reformulated as a sampling problem, followed
by a regression-based solution update. The regression is formulated and implemented
such that it is oblivious to corrupted samples. The authors combine this algorithmic
approach with a server-client implementation based on ULFM, see Section 2.2.2. They
show promising results of this approach in terms of resiliency to missing tasks, corrupted
data and hardware failure.

3.3.5 Time stepping In [117], iterative time-stepping using spectral deferred
corrections are shown to be error oblivious at the cost of more iterations for the affected
time-step. With error-estimators in place, time-integration techniques like Runge-Kutta
methods will repeat the calculation of a time-step with smaller step sizes, if errors in the
solution vectors are relevant [230]. This type of algorithms is resilient against errors in
the solution vector of the new time step. Repeating the new time step with a reduced time
step size is not the optimal measure in case of an error where repeating the step with the
same time step size would be more efficient, but it leads to correct results.

4 Future directions
In the final section we focus on the future direction of resilient algorithms. We highlight
what changes need to be made to current infrastructures to support the goals proposed
by algorithm and application developers. Furthermore, we list those algorithms that are
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likely to come to the forefront as resiliency plays a more important role in the cost-benefit
analysis of extreme scale simulations. Finally, we mention some numerical methods that
are yet to be fully explored in the context of resilient algorithms.

4.1 Systems in support of resilient algorithms
We propose that resiliency will only be obtained by a multilayered approach
incorporating operating systems, file systems, communication, programming models,
algorithms, applications and education. We refer the reader to the recently published
report by Radojkovic et al. [7] for an overview of the needs of the next generation HPC
systems.

4.1.1 Error correcting codes Poulos et al. [231] propose hardware ECC assistance
that can pass error syndrome information through to an application and use this to
fix detected errors. When an ECC hardware error occurs that results in a Detectable,
but Uncorrectable Error (DUE), the ECC hardware generates a syndrome which is a
byproduct of the error detection. For many ECC schemes, a syndrome that corresponds
to a DUE can be used to generate a list of possible corrections, one of which is taken
to be the original uncorrupted data. For the application studied in [231], work was
done to correct a hydrodynamics application using conservation laws and average of
neighbor cells. This work requires changes to the hardware error reporting techniques
and modification to the operating system to determine which application observed the
DUE and pass it to an interrupt handler.

4.1.2 Improving checkpoint/restart Checkpoint/restart will remain a necessary
component for any future resilient system. For one, no other technique can provide the
needed resilience against full system outages; further, checkpoint/restart is also needed
for developers to deal with limited job execution times and possible migration between
systems or debugging purposes at large scale.

Improving classical checkpoint/restart for homogeneous systems Observing the
necessity of checkpoint/restart makes it critical to further optimize, enhance and support
efficient checkpoint/restart mechanisms—even on classical, homogeneous systems—and
provide users with library based solutions for core checkpoint/restart functionality. In
particular, the following avenues should be pursued to optimize checkpoint/restart.

• Use additional algorithmic techniques to be able to reduce checkpoint frequency.
• Reduce data to be written to disk by eliminating redundancy and possibly

compressing checkpoint information. Note that suitable data compression will
typically require user-level knowledge, where suitable interfaces must be provided.

• Overlap/Offload checkpoint operations to allow for asynchronous check-
point/restart operations.

• Integrate checkpoint/restart with novel programming approaches to minimize
checkpointable state.

• Keep the restart requirements local to the neighbour nodes of the failed node.
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• Localize checkpoint data to own or localized nodes. This could be supported
by local non-volatile memory, as targets for checkpoint data. While this has the
potential to reduce communication, as it avoids remote data transfers, it may
require additional hardware support to retrieve data from non-functional nodes,
e.g., by accessing data through fast JTAG-like interfaces.

• In memory checkpointing.
• Exploit user-level knowledge for serializing, packing, compressing data, see

e.g., how existing AMR functionality [57] can be exploited for efficient
checkpointing in Section. 2.2.1.

Checkpoint/Restart for heterogeneous systems In addition to classical check-
point/restart for homogeneous systems, node-local checkpoint/restart support for hetero-
geneous systems will help containing error and failure propagation. Such support may
be provided transparently to the application by the underlying infrastructure, such as
GPU drivers or task-based environments, or exposed in the programming model, such as
OpenMP Offload [232].

4.1.3 Scheduler and resource management Support for resilience, especially at the
workflow-level, has a direct impact on resource management in HPC systems and hence
requires new developments in this area as well.

Node-level parallelism With increasing node-level parallelism, the impact of OS
noise (typically caused by unpredictable interrupts) becomes even more important.
Therefore, dedicated node-level resources are needed to exclusively run the OS and
minimize the impact of OS noise on the multi-threaded application running on the other
cores.

Adaptive system and application load balancing The batch scheduler needs to
adaptively balance the system load onto the available resources, via seamless application
migration. While the application needs to adapt to the capabilities of the newly allocated
resources, if different from the original allocation, without incurring performance
penalties. The former has typically been implemented via checkpointing and process
migration [233]. The latter has typically been implemented for applications that can
adjust their granularity, e.g., from finer to coarser, depending on resource availability
either triggered by the application or the system [234]. When exposing and expressing
parallelism in applications, in addition to accounting for and matching the multiple levels
of hardware parallelism (nodes, sockets, cores), the decomposition granularity needs to
be flexible to support evolvability and malleability and allow for adaptive load balancing
at the application and system levels.

4.2 Programming models with inherent resiliency support
Programming model and runtime support for resilience can offer transparent handling
of errors and failures or can assist the application in handling them. Consistent
programming model support for resilience based on realistic error/failure models is
needed to properly handle such events with low overhead. Higher-level abstractions
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Table 2. Properties of numerical algorithms fostering or helping resilience
categories solvers discretization
redundancy × ×
replication ×
hierarchical methods × ×
multi-precision × ×
error control × ×
locality-emphasizing schemes ×
asynchronous methods × ×
embarassingly parallel ×
stochastic > deterministic ×
iterative vs direct solvers ×
matrix-free / low memory footprint × ×

for programming resilient applications are needed to help with error/failure handling
complexities and to offer reuse of concepts and codes across applications.

4.3 Resilience friendly algorithms
The metrics used to measure the efficiency of an algorithm have changed with evolving
architectures. Historically, algorithms were ranked according to their flops. More
recently, the metrics were expanded to acknowledge memory access patterns. In this
section we mention some of the types of algorithms that are likely to be deemed efficient
if the metrics are modified to include resilience. We focus on discretizations for linear
and non-linear partial differential equations as well as solvers for the resulting discrete
and sparse systems of equations. Table 2 lists properties that we found are, or can be,
contributing to the resilience of these algorithms.

4.3.1 Iterative methods Fundamentally, iterative solvers may be viewed as inherently
more robust than direct solvers because they do not compute their solution using a pre-
defined sequence of numerical operations as direct solvers typically do. A number of
examples of iterative methods have been given in Section 3.

4.3.2 Locality, asynchronicity and embarrassing parallelism One important aspect of
resilient algorithms is error confinement as global dependencies propagate errors to other
processors and complicate recovery. Locality-emphasizing numerical algorithms achieve
this by limiting dependencies to local areas or completely removing them. Consequently,
error mitigation can be limited to a local subdomain. Typical examples for these schemes
are domain decomposition, which splits the domain into several subareas, and classical
discretization schemes such as finite elements (Finite Element Method (FEM)), finite
differences and finite volumes. See Section 3.2.2.

Domain decomposition schemes such as additive Schwarz methods, substructuring-
inspired FETI [235], the fully adaptive multigrid method [214], and the stochastic
subspace correction method [225] are naturally asynchronous and resilient to message
loss. Note that the matematical properties of such asynchronous methods contradict the
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requirements of classical Krylov methods when used as preconditioners. In this case,
Krylov acceleration must be used in a flexible form.

Note that here, we use the term asynchronous primarily in the sense of reducing the
time synchronicity in parallel computations. Section 3.2.1 included a number of examples
of these types of algorithms. Both the localized and asynchronous approaches, achieve
their impact through a decoupling of computations. Going further in this direction may
lead to embarrassingly or nearly embarrassingly parallel algorithms. Examples of such
methods are Monte Carlo simulations which are discussed in the next section.

4.3.3 Stochastic Stochastic methods can be superior to deterministic methods when it
comes to resilience. Stochastic methods do not require the program to take a deterministic
path, faulty parts can be neglected or exchanged easily by other results. A popular
example are Monte Carlo methods where we sample randomly in the computation
domain and can simply neglect failed samples.

Ensemble methods are examples where different instances or models of a concrete
problem setting are computed. Even if one of these computation fails, the ensemble
computation can still return a – maybe slightly less accurate – result. These methods,
however, need to be evaluated not just by highlighting their resilience properties, but also
taking into account the cost of a single run: if a single run is expensive to complete,
simply discarding it might be impractical.

The idea of interval arithmetic is to compute bounds of intervals that always contain
the exact result [236, 237]. Probabilistic methods for rounding error estimation [238–
242] require several executions of arithmetic operations with different perturbations
or different rounding modes (for instance three executions for Discrete Stochastic
Arithmetic [243]). With both approaches, the comparison of several computed results
enables one to control rounding errors (or detect and mitigate actually wrong results).

4.3.4 Redundancy and replication Redundancy techniques can be used to detect and
recover from data corruption and data loss. The performance of these algorithms is
usually measured in the amount of memory and computational overhead they entail, the
detection rate of errors, the rate of false-positives they achieve, and the accuracy of the
recovery.

One existing class of algorithms that apply redundancy are multiresolutional
techniques such as multigrid and the sparse grid combination technique described in
Section 3.2. Another class of algorithms add redundancy through recomputation with
different models and configurations such as in ensemble or multifidelity techniques.
A more straight-forward approach is to directly add redundancy through replication of
certain algorithmic paths, cf. the previous subsection on stochastic methods.

Depending on the underlying architecture, replication can be a competitive option to
increase detected and undetected error robustness. If computation speed significantly
outpaces memory access and communication, each operation can be executed multiple
times while the data is still accessible in the RAM. This can be used for redundancy-
based sanity checks of low-level operations or even for checksum-like approaches.

Overlapping data in parallel algorithms can serve as a starting point for mitigation,
albeit not for detection. In the case studies explored in Section 3.2.2, these are applied
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to elliptic PDEs, though an extension to other models should be feasible. Furthermore
by even increasing the ghost layer size and thereby adding extra redundancy, other
reconstruction possibilities might become possible. This could already be taken into
account during the domain partitioning process.

4.3.5 Hierarchy and mixed precision Hierarchical discretizations have proven to be
advantageous in various respects. Related notions are multi-resolution or multi-level
discretizations, but also (recursive) sub-structuring in the engineering nomenclature of
the FEM. Built into the hierarchy are problem-inherent information and structures that
are well-suited for modern hierarchy-based solvers. In FEM, for example, hierarchical
bases carry information about both location and frequency, which leads to a special built-
in redundancy that can be exploited for error detection (see Section 3.1).

From a solver perspective, multigrid methods for elliptic and parabolic PDE problems
are relevant approaches towards resilient numerical algorithms. They inherently act on
different granularities, representations, scales, and levels and can be used to quantify
differences between these levels. As stated in Section 4.3.4, the inherent redundancy
incorporated in these algorithms is also beneficial.

Mixed-precision arithmetics are typically used within the numerical solver parts to
speed-up computations. However, the discretization can enable the flexibility to store data
at varying precision. Examples for this are hierarchical approaches such as hierarchical
bases, where a function value is stored as a hierarchical surplus only. As another example,
the usage of wavelets in multiresolutional analysis can serve. In both cases, contributions
of higher levels typically require less accuracy, as only the most significant bits contribute
to the overall point values.

4.3.6 Error control For many numerical methods, a wide range of classical a priori
and a posteriori error estimation techniques are available, see among many others
[173, 244–249], which constitute the basis of many adaptive numerical algorithms.

Adaptive time discretization methods are the state of the art for ODE solvers, while,
for PDE solvers, spatial adaptivity techniques are also widely used. Local time step
adaptation is feasible in the framework of so called local time stepping or multirate
approaches, where different components of the system can have different time step sizes,
see [250–256], which are however still far from mainstream for most applications. For
PDE solvers, local spatial adaptivity techniques are also very common [257, 258], but
their incorporation in operational applications is still a research topic, see e.g. [259–263]
for developments concerning oceanography and numerical weather forecasting.

The error estimations on which all these methods rely on also constitute the basis of
an error detection mechanism, since some undetected errors, like bit flips on significant
floating point digits, will result in errors exceeding the allowed error tolerances. To some
extent, these techniques are also examples of ABFT or error oblivious approaches, since
bit flips and other silent errors occurring during the computation of the solution at the
next time step or on a refined mesh could be automatically corrected by the repeated
computations triggered by the error threshold violation. Furthermore, silent errors in the
data at the current time or mesh level could be identified by the failure of the time step or
mesh refinement to correct the error.
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Combined with other ABFT strategies, adaptive discretization strategies based on error
estimators can be a powerful and so far rather underrated tool for protecting a simulation
from undetected errors in the solution vectors. On the other hand, error estimators should
not be used as a black box for resiliency purposes. Indeed, errors can lead to severe over-
resolution or, potentially, even under-resolution in space or time and the error estimators
themselves could be affected by undetected errors.

As seen in Section 3.1.4, some iterative solvers for the solution of linear systems have
invariants, such as monotonicity for Krylov solvers. These properties can be put to good
use in devising error detection/DeB strategies, for example activating an additional restart
of the Arnoldi procedure as soon as an increase in the residual norm is observed.

4.3.7 Low memory footprint – matrix-free The classical approach to represent linear
operators as sparse matrices produces large amounts of static data which has to be
restored upon failure. Matrix-free methods do not represent the operators as static data.
Therefore, large sparse matrix data structures do not have to be restored upon failure as
they are computed on the fly in any event. Extreme-scale applications will benefit from
matrix-free approaches due to their low memory footprint, also in terms of runtime, (due
to high memory access cost) and higher limits for the overall problem size [264, 265].

In addition to saving memory and, therewith, reducing the risk of memory corruption,
matrix-free methods can also be combined with automatic code generation [266] in a
stencil-based approach, i.e., for finite difference methods on uniform structured grids. In
such cases, the matrix entries may be ‘hard wired’ into code, such as 5-point stencils for
Laplace’s equation. Automatic code generation provides a means to increase resiliency
in the code generator or domain specific language and, thus, facilitate resilience aware
software development.

For FEM, one can use local assembly kernels [267]. Here, the trade-off between
computation and storage and, in the future, resilience is relevant in particular for higher
order elements.

4.4 The final mile: towards a resilient ecosystem
The future directions described above will provide critical enhancements towards
providing resilient computation for numerical simulations. Alone, however, they are
insufficient, as they must be embedded in the larger ecosystem and in the efforts to make
that ecosystem support such novel resilience approaches. This requires another set of
crucial developments.

4.4.1 Tools to support resilience software development Developers will need the
right tools to support their algorithmic efforts. These tools, as they exist today, are often
designed without faults and errors in mind and, therefore, do not sufficiently support
the development of resilient systems. In particular, we identified three areas in which
enhanced tool support for resiliency is needed: a) introspection to help track errors and
failures along with their root causes, b) validation through controlled fault scenarios
to enable targeted testing of new error mitigation features, and c) transformation to
transparently add error and failure checks into codes.
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Tools for introspection Introspection is critical to ensuring early error detection and
the timely activation of correction and mitigation mechanisms throughout the various
layers of the software ecosystem.

System Monitoring: Knowing about the health state of a system requires monitoring
it and understanding its behavior. Future work needs to focus on scalable system
monitoring, real-time analyzes of system monitoring data, and autonomous decision
making on corrective actions for self-aware resilient systems. In order to gain a deeper
understanding, types of monitored data should be homogenized across system and sites,
and, if possible, sanitized logs should be available to the community.

Application and Data Structures Monitoring: Applications need to automatically
monitor their performance and correctness with the use of tools. The tools can be
developed in abstraction, at the compiler-level, or at the runtime-level.

Tools for validation Currently, there are no standard tools to test the correctness and
performance of resilient algorithms under undetected errors and fault. This is due to
a lack of fault injection tools that reflect realistic situations. Debardeleben et al. [268]
have developed a hardware error simulator tool to understand the behavior of numerical
algorithms under faulty hardware with a great accuracy, but this approach cannot evaluate
the execution time of resilient algorithms at scale. Vendors provide fault injection
tools [269, 270] for better execution efficiency, compromising the accuracy of the
hardware behavior. Compiler approaches or other in-house error injections [271, 272]
could allow the program to execute as efficiently as the original binary, but the
correctness is further compromised. There are also tools that can analyze an application’s
vulnerability very quickly but do not actually produce the application’s faulty output.
One technique for this, DiSCvar [273], uses algorithmic differentiation and exposes
how changes to each variable impact output results. It is important to note that these
techniques do not actually produce that corrupted output. Hence, they are very fast but
they may not be useful to developers looking to explore precisely how corruption changes
their application. It is likely that a combination of these techniques, which identify most
critical regions of an application coupled with fault injection at those locations, may serve
as a good compromise between the two techniques.

Any novel approaches that fill the gap between the accuracy and execution efficiency
of error injections will facilitate the code development of resilient algorithms, and the
new tools should be built with the existing continuous integration infrastructure. Such
tools likely require hardware knowledge that is considered intellectual property by the
semiconductor vendors. However, efforts which explore this space using open hardware
technologies (RISC-V, Sparc, etc.) can shed light on this space but may be of varying
usefulness when application developers look to understand how their applications will
perform on hardware that has not been fault injected at the register transfer or microcode
level.

Tools for code transformation Compilers are able to generate binaries with resilience
capability as suggested in the work by [274]; the generated binary instruments redundant
computation, register allocations to enable error detection and correction during
program execution. The recent work by Lin [275] leverages LLVM to generate SIMD
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instructions to perform redundant computation and verification. Source-to-source code
transformation has been proposed to enable triple modular redundancy in loops [276] and
automatic instrumentation of checkpointing [277]. Similarly, this idea can be extended
to redundant threading for error mitigation, facilitated with OpenMP-like programming
language extension [278]. These approaches automatically introduce resilience with
some performance penalty, preventing the users from selective adaptation of resilience
for performance optimization, and these redundant computations are benefited from the
memory hierarchy, preventing doubling (or tripling) of the execution time.

5 Conclusions

This article presents a snapshot of current research on resilience for extreme scale
computing. It has grown out of the Dagstuhl seminar 20101 held March 1-6, 2020,
bringing experts from the field together on the topic Resiliency in Numerical Algorithm
Design for Extreme Scale Simulations. This seminar became a starting point to develop a
synthesis between the system perspective on resilience and the algorithmic perspective.

While resilience is undoubtedly an issue for extreme scale computing, it is less clear
what algorithms on the user or application level can contribute to mitigate faults. The
seminar provided ample room to discuss these topics and thus became the starting
point for this article. Many diverse aspects were found to be relevant, that require a
holistic and multidisciplinary approach involving different and complementary scientific
communities.

In particular, it clearly appeared that a fundamental distinction lies in whether faults are
detected or not, and if they are not automatically detected, whether they are detectable.
If they are, algorithms can often be developed to detect errors and in a second stage to
correct them. It was found that some algorithms are naturally tolerant against faults or
have the intrinsic feature to be error oblivious. They can thus be naturally applied on a
system subject to errors.

Besides redundancy and checkpointing as classical techniques to mitigate faults,
new algorithm-based resilience techniques have been developed for several classes of
numerical algorithms. This includes linear algebra and solvers for partial differential
equations, two classes of algorithms that are prominent in many scientific workloads on
supercomputers. Some of these mitigation methods show remarkable success in the sense
that faults can be compensated algorithmically by recovery procedures with only little
extra cost in time or in silicon. On the other hand it also becomes clear that integrating
such techniques in a computational infrastructure is still facing many obstacles. This
includes the still poorly defined interface between user-level fault mitigation techniques
and system level functionality, as, it is, e.g., necessary to reliably and quickly detect a
device (core, memory, ...) failure on a large parallel machine.

Despite its breadth, the article is far from being comprehensive. The selection of topics
is a subjective overview of current research in the field of resilience for extreme scale
computing and it delivers an outlook into possible and promising future research topics
and solutions.
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Giraud, Rüde, Stals et al. 43

Processing. Springer International Publishing. ISBN 978-3-030-29400-7, pp.
346–360.

[29] Kale LV and Krishnan S. Charm++: A portable concurrent object oriented system
based on C++. In Proceedings of the Eighth Annual Conference on Object-
Oriented Programming Systems, Languages, and Applications. OOPSLA’93, New
York, NY, USA: Association for Computing Machinery. ISBN 0897915879, p.
91–108. DOI:10.1145/165854.165874. URL https://doi.org/10.1145/
165854.165874.

[30] Yan Y, Zhao J, Guo Y et al. Hierarchical place trees: A portable abstraction for
task parallelism and data movement. In International Workshop on Languages
and Compilers for Parallel Computing. Springer, pp. 172–187.

[31] Kaiser H, Heller T, Adelstein-Lelbach B et al. HPX: A task based
programming model in a global address space. In Proceedings of the 8th
International Conference on Partitioned Global Address Space Programming
Models. PGAS’14, New York, NY, USA: Association for Computing Machinery.
ISBN 9781450332477. DOI:10.1145/2676870.2676883. URL https://doi.
org/10.1145/2676870.2676883.
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orthogonalization based on randomized aggregation. In Alexandrov VN, Geist
A and Dongarra JJ (eds.) Proceedings of the second workshop on Scalable
algorithms for large-scale systems, ScalA@SC 2011, Seattle, WA, USA, November
14, 2011. ACM, pp. 7–10. DOI:10.1145/2133173.2133177. URL https:
//doi.org/10.1145/2133173.2133177.

[190] Gansterer WN, Niederbrucker G, Straková H et al. Scalable and fault tolerant
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[196] Spitéri P. Parallel asynchronous algorithms for solving boundary value problems.
In et al MC (ed.) Parallel Algorithms. North-Holland, 1986. pp. 73–84.

[197] Bertsekas D. Distributed asynchronous computation of fixed points. Math
Programming 1983; 27: 107 – 120.

[198] Bertsekas D and Tsitsiklis J. Parallel and Distributed Computation, Numerical
Methods. Englewood Cliffs N.J.: Prentice Hall, 1989.
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[214] Rüde U. Fully adaptive multigrid methods. SIAM Journal on Numerical Analysis
1993; 30(1): 230–248.

[215] Southwell RV. Relaxation methods in engineering science, a treatise on
approximate computation. Oxford, Oxford Univ. Pr., 1946. 1.ed., reprint.
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