390 research outputs found

    Coordinate Regulation of G Protein Signaling via Dynamic Interactions of Receptor and GAP

    Get PDF
    Signal output from receptor–G-protein–effector modules is a dynamic function of the nucleotide exchange activity of the receptor, the GTPase-accelerating activity of GTPase-activating proteins (GAPs), and their interactions. GAPs may inhibit steady-state signaling but may also accelerate deactivation upon removal of stimulus without significantly inhibiting output when the receptor is active. Further, some effectors (e.g., phospholipase C-ÎČ) are themselves GAPs, and it is unclear how such effectors can be stimulated by G proteins at the same time as they accelerate G protein deactivation. The multiple combinations of protein–protein associations and interacting regulatory effects that allow such complex behaviors in this system do not permit the usual simplifying assumptions of traditional enzyme kinetics and are uniquely subject to systems-level analysis. We developed a kinetic model for G protein signaling that permits analysis of both interactive and independent G protein binding and regulation by receptor and GAP. We evaluated parameters of the model (all forward and reverse rate constants) by global least-squares fitting to a diverse set of steady-state GTPase measurements in an m1 muscarinic receptor–Gq–phospholipase C-ÎČ1 module in which GTPase activities were varied by ∌104-fold. We provide multiple tests to validate the fitted parameter set, which is consistent with results from the few previous pre-steady-state kinetic measurements. Results indicate that (1) GAP potentiates the GDP/GTP exchange activity of the receptor, an activity never before reported; (2) exchange activity of the receptor is biased toward replacement of GDP by GTP; (3) receptor and GAP bind G protein with negative cooperativity when G protein is bound to either GTP or GDP, promoting rapid GAP binding and dissociation; (4) GAP indirectly stabilizes the continuous binding of receptor to G protein during steady-state GTPase hydrolysis, thus further enhancing receptor activity; and (5) receptor accelerates GDP/GTP exchange primarily by opening an otherwise closed nucleotide binding site on the G protein but has minimal effect on affinity (Kassoc = kassoc/kdissoc) of G protein for nucleotide. Model-based simulation explains how GAP activity can accelerate deactivation >10-fold upon removal of agonist but still allow high signal output while the receptor is active. Analysis of GTPase flux through distinct reaction pathways and consequent accumulation of specific GTPase cycle intermediates indicate that, in the presence of a GAP, the receptor remains bound to G protein throughout the GTPase cycle and that GAP binds primarily during the GTP-bound phase. The analysis explains these behaviors and relates them to the specific regulatory phenomena described above. The work also demonstrates the applicability of appropriately data-constrained system-level analysis to signaling networks of this scale

    Computational Modeling and Automation Techniques to Study Biomolecular Dynamics

    Get PDF
    Physically-principled computational modeling and automation techniques have emerged as potent methodologies in exploring biomolecular dynamics and generating experimentally-testable hypotheses. In this dissertation, we develop a set of simulation automation techniques and present results on case studies of biomolecular simulation. Nucleosomes form the fundamental building blocks of eukaryotic chromatin. We use multiscale modeling and discrete molecular dynamics simulations to investigate the dynamics of the Xenopus laevis nucleosome core particle, the fundamental unit of chromatin. Histone tails are flexible and are poorly resolved in X-ray crystal structures. We probe how molecular-level dynamics of the histone tails, core histones and associated DNA mediate chromatin stability at the scale of single-nucleosomes. Based on the positional fluctuations of core histone residues, we postulate cold sites, a set of core histone residues essential for stabilizing the Xenopus laevis nucleosome core particle. We explore changes in the biophysical stability of mono-nucleosomes by designing mutations in core histones and using Medusa, a high-throughput computational technique to explore changes in mononucleosomal stability resulting from point mutations. The presence of centromere-specific H3 variant histone (Cse4) in centromere-specific nucleosomes defines the kinetochore locus. However, structural details of the centromere-specific nucleosomes remain to be completely understood. We construct a homology model of the Saccharomyces cerevisiae centromeric nucleosome and generate a biophysically-principled C-loop model for elongation of Saccharomyces cerevisiae kinetochore. We present simulation automation techniques by means of two web-based servers: iFold (http://iFold.dokhlab.org) and iFoldRNA (http://iFoldRNA.dokhlab.org). iFold enables automated simulations of protein folding, unfolding using discrete molecular dynamics. iFoldRNA enables ab initio RNA structure prediction using replica-exchange discrete molecular dynamics simulations. We also demonstrate rapid and accurate three-dimensional structure prediction of over 150 RNA molecules. We used all-atom molecular dynamics simulations to study the mechanistic and structural differences between two anticancer therapeutics - cisplatin and oxaliplatin. Our simulations suggest that the cisplatinated- and oxaliplatinated- DNA cause differential effects on the dynamics and bending propensities of adducted DNA. This study suggest a role of differential bending propensities in the efficacies of oxaliplatin and cisplatin. In summary, the research presented in this dissertation helps us understand the mechanisms of biomolecular interactions at atomic and mesoscale levels. This dissertation adds to scientific knowledge by a set of methodologies for exploring the dynamics of protein and RNA molecules. Physically-principled simulations of the nucleosome core particle yield experimentally-testable hypotheses on chromatin structure and function

    RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview

    Get PDF
    With both catalytic and genetic functions, ribonucleic acid (RNA) is perhaps the most pluripotent chemical species in molecular biology, and its functions are intimately linked to its structure and dynamics. Computer simulations, and in particular atomistic molecular dynamics (MD), allow structural dynamics of biomolecular systems to be investigated with unprecedented temporal and spatial resolution. We here provide a comprehensive overview of the fast-developing field of MD simulations of RNA molecules. We begin with an in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods. We also survey the closely related field of coarse-grained modeling of RNA systems. After dealing with the methodological aspects, we provide an exhaustive overview of the available RNA simulation literature, ranging from studies of the smallest RNA oligonucleotides to investigations of the entire ribosome. Our review encompasses tetranucleotides, tetraloops, a number of small RNA motifs, A-helix RNA, kissing-loop complexes, the TAR RNA element, the decoding center and other important regions of the ribosome, as well as assorted others systems. Extended sections are devoted to RNA-ion interactions, ribozymes, riboswitches, and protein/RNA complexes. Our overview is written for as broad of an audience as possible, aiming to provide a much-needed interdisciplinary bridge between computation and experiment, together with a perspective on the future of the field

    Computational Virtual Screening Towards Designing Novel Anticancer Drugs

    Get PDF

    Enhanced sampling in molecular dynamics using metadynamics, replica-exchange, and temperature-acceleration

    Get PDF
    We review a selection of methods for performing enhanced sampling in molecular dynamics simulations. We consider methods based on collective variable biasing and on tempering, and offer both historical and contemporary perspectives. In collective-variable biasing, we first discuss methods stemming from thermodynamic integration that use mean force biasing, including the adaptive biasing force algorithm and temperature acceleration. We then turn to methods that use bias potentials, including umbrella sampling and metadynamics. We next consider parallel tempering and replica-exchange methods. We conclude with a brief presentation of some combination methods. \ua9 2013 by the author; licensee MDPI, Basel, Switzerland

    A Kinetic Model of Trp-Cage Folding from Multiple Biased Molecular Dynamics Simulations

    Get PDF
    Trp-cage is a designed 20-residue polypeptide that, in spite of its size, shares several features with larger globular proteins. Although the system has been intensively investigated experimentally and theoretically, its folding mechanism is not yet fully understood. Indeed, some experiments suggest a two-state behavior, while others point to the presence of intermediates. In this work we show that the results of a bias-exchange metadynamics simulation can be used for constructing a detailed thermodynamic and kinetic model of the system. The model, although constructed from a biased simulation, has a quality similar to those extracted from the analysis of long unbiased molecular dynamics trajectories. This is demonstrated by a careful benchmark of the approach on a smaller system, the solvated Ace-Ala3-Nme peptide. For the Trp-cage folding, the model predicts that the relaxation time of 3100 ns observed experimentally is due to the presence of a compact molten globule-like conformation. This state has an occupancy of only 3% at 300 K, but acts as a kinetic trap. Instead, non-compact structures relax to the folded state on the sub-microsecond timescale. The model also predicts the presence of a state at of 4.4 Å from the NMR structure in which the Trp strongly interacts with Pro12. This state can explain the abnormal temperature dependence of the and chemical shifts. The structures of the two most stable misfolded intermediates are in agreement with NMR experiments on the unfolded protein. Our work shows that, using biased molecular dynamics trajectories, it is possible to construct a model describing in detail the Trp-cage folding kinetics and thermodynamics in agreement with experimental data
    • 

    corecore