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ABSTRACT 

CHARACTERIZATION OF THE R&R CONSENSUS REGION USING IN SILICO 

MOLECULAR MODELING 

By 

Nethaniah Dorh 

The R&R consensus sequence is a sequence of amino acids that have been found through 

sequence alignment studies to be relevant in chitin binding thus forming a chitin binding domain. 

Previous studies indicated that mutations of Y128 and F136 (tyrosine and phenylalanine) or 

mutations of T95 and D97 (threonine and aspartic acid) eliminated chitin binding (Rebers and 

Willis 2001). This suggested that these particular amino acids were crucial in the protein 

structure thus allowing chitin to bind. Threonine at position 95 was later hypothesized by 

Hamodrakas et al. (2005) to play a crucial role in the binding cleft of the RR-1 cuticular protein 

HCCP12 which was known to bind chitin.  In order to achieve this goal, molecular models of the 

native protein and other models of the mutated proteins were created. A series of programs 

including AutoDockTools were used for the docking and interpretation of binding interactions 

between a six-unit macromolecule of chitin and the proposed models of the AGCP2B chitin 

binding protein from Anopheles gambiae. The results of the study showed that the intermolecular 

energies were all relatively close for the mutations made. Analysis of an original mutation 

attempted by Rebers and Willis (2001), (GST+65YF) yielded similar results suggesting that the 

docking analysis was ineffective in determining the dynamics of the chitin binding between the 

Anopheles gambiae protein and chitin. 
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INTRODUCTION

Chitin is a polysaccharide made from a polymer of β-1-4 linked N-acetyl-D-

glucosamine and is one of the most abundant biological polymers worldwide (Gooday, 

1990). Chitin is a major component in the exoskeletons of arthropods such as crustaceans 

and insects like beetles and mosquitoes, and it is also found in the cell walls of fungi. 

Chitin fibers help to make up the cuticles of arthropods which are essentially composed 

of microfibrils of chitin embedded in a matrix of cuticular proteins (Anderson, 1998). 

A specific domain called the chitin binding domain was identified in cuticular 

proteins later found to bind chitin. Sequence alignments of six insect cuticular proteins 

revealed a conserved sequence that was suggested to play an important role in cuticular 

protein structure (Rebers and Riddiford, 1988). As additional cuticular protein sequences 

became available from a variety of arthropods, this consensus was recognized in a large 

number of proteins (Andersen et al., 1995; Willis et al., 2005; Willis, 2010), and came to 

be called the R&R consensus. Rebers and Willis (2001) showed that GST fusion proteins 

with 65 amino acids from the R&R consensus bound to chitin, showing that this region 

functioned as a chitin-binding domain. A few point mutations were attempted on this 

cuticular protein sequence from Anopheles gambiae (Rebers and Willis, 2001) which 

resulted in the loss of chitin binding. The current study focused on the particular reason 

these amino acids resulted in the loss of chitin binding. Further detail on the previous 

studies conducted and the information revealed will be emphasized later.
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This study investigated the hypothesis that conservative amino acid changes in the 

chitin binding domain result in binding comparable to the original protein sequence. In 

order to validate the hypothesis, the intermolecular energies between chitin and the chitin 

binding protein of Anopheles gambiae was used for comparison. 
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1. R&R Consensus

1.1 R&R Consensus region Overview

The class Insecta is the one of the most diverse group of animals on the Earth 

representing a large number of the life forms on the planet (Erwin, 1982). It is because of 

their diversity and prominence that they have been studied so extensively. This group of 

animals is also known for their life cycles usually involving molting of their exoskeleton 

forming a new external body. In arthropods, this exoskeleton can function as protection, 

support and even as food (Bengston, 2004). Chitin can be mixed with silica or calcium 

carbonate (Campbell, 1996) giving it the much harder form that most people are familiar 

with. 

The first chitin binding domain characterized in arthropods was found in chitinases 

and peritrophic membrane proteins (Shen and Jacobs-Lorena, 1999). The peritrophic 

membrane is a semi-permeable chitinous matrix lining in the gut of most insects and is 

thought to have important roles in the maintenance of the insect’s gut structure, 

facilitation of digestion, and protection from invasion by microorganisms and parasites 

(Elvin et al., 1996). Chitinases are enzymes involved in the break down of glycosidic 

bonds in chitin (Campbell, 1996). The chitin-binding domain in these proteins has a 

conserved sequence with cysteine residues that are important in chitin-protein interactions.

More recently, the R&R consensus domain found in cuticular proteins (Rebers and 

Riddiford, 1988) was shown to bind chitin (Rebers and Willis, 2001). Cuticular proteins do 

not include cysteine (Willis, 1999), so Rebers and Willis (2001) proposed that the R&R 

domain represented a new type of chitin-binding domain in arthropods, which they 

designated the “non-Cys CBD”.
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The R&R consensus was originally subdivided into one of two possible groups, 

the RR-1 sequence in proteins from soft cuticles and the RR-2 sequence in proteins from 

hard cuticles (Andersen, 1998). A third group of proteins called the RR-3 group had since 

been identified, but had not been clearly classified (Togawa et al., 2004) due to the fact 

that it had been identified in postecdysial cuticle of insects as well as in preecdysial 

cuticle (Iconomidou et al., 2005) which would put it in both RR-1 and RR-2 classification 

(Karouzou et al., 2007). The RR-1, RR-2 and RR-3 sequences have since been 

hypothesized to be defined by the region of the cuticle in which they are found 

(Karouzou et al., 2007).

The R&R-2 consensus sequence from Anopheles gambiae is shown below in caps 

(Red text, underlined and bold font), outlined from the known chitin binding protein 

sequence (65 amino acid sequence) of Anopheles gambiae (Rebers and Willis, 2001). 

Figure 1 shows the consenus sequence for Anopheles gambiae, Drosophila melanogaster 

and Hyalphora cecropia and identifies this region in both RR-1 and RR-2 cuticular 

proteins.
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80apanYeFsYsVhDehTGDiKsQhETRhGDeVhGqYSLLDsDGhqRiVDYhADhhtGFNAVVRReP144(1)
18shpqYsFnYdVqDpeTGDvKsQsESRdGDVVhGqYSVnDaDGyrRTVDYtADdvrGFNAVVRReP (2)
42YgyeTsnGiqhqesGqlnnvgte--negieVrGqFsYvgpDGvtysVtYtAg-QeGFkPvGahIP (3)
 xxPxYxFxYxVxDxHTGDxKSQxExRDGDVVxGxYSLxExDGxxRTVxYTADxxNGFNAVVxxEx RR2

                                 G   Y   DG      Y AD   GF P      RR

Fig. 1. Amino acids in bold, uppercase, red color and underlined represent the R&R-2 consensus. (1) 
is the chitin binding sequence found in Anopheles gambiae (AGCP2B with genbank accession number 
AAC05657). (2) is the chitin binding sequence found in Drosophila melanogaster (EDG84 with 
genpept accession number NP_524247). (3) is the chitin binding sequence found in Hyalophora 
cecropia (HCCP12 with Swiss-Prot accession number P45589). Superscript numbers indicate starting 
and end of sequence where applicable (Iconomidou et al. (1999). Differences in conserved residues, 
such as between (1) and (3), are allocated to differences in hard and soft cuticular proteins 
(Iconomidou et al., 1999). (1) and (2) are both RR-2 cuticular protein sequences while (3) is a RR-1 
cuticular protein sequence.  RR-2, and RR consensus are all indicated below aligned sequences. RR-2 
is in blue font color; RR is in orange font color. It is clear that the RR-2 is a version of the RR 
consensus such that the RR consensus is a subset of the RR-2. Please note that xEYDxx is not 
included at the N-terminus of the RR-2.

1.2 Experimental background on R&R Consensus region

Rebers and Willis (2001), conducted experiments with GST (glutathione-S-

transferase; an enzyme used to catalyze Glutathione reactions) fusion proteins. Using the 

AGCP2b cuticular protein sequence from the mosquito Anopheles gambiae (Fig. 1) as the 

test sequence, two different fusion clones were constructed using either 40 residues ((2) 

in Fig. 2) to GST or 65 residues ((1) in Fig. 2) to GST, consequently called the GST+40 

and GST+65 respectively (Fig. 2).
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(1) apanYeFsYsVhDehTGDiKsQhETRhGDeVhGqYSLLDsDGhqRiVDYhADhhtGFNAVVRReP 
(GST+65)

                         (2)TRhGDeVhGqYSLLDsDGhqRiVDYhADhhtGFNAVVRReP 
(GST+40)

Fig. 2. Sequence (1) identifies the original full length transcript thought to have chitin binding 
abilities. The sequence (2) represents the second clone used which contained only 40 of the amino 
acids from the full length transcript.

Rebers and Willis (2001), noted that the GST+65 clones bound chitin while the 

GST+40 clones did not bind chitin. The experiment also used site directed mutagenesis, 

making amino acid substitutions, in order to investigate whether chitin binding would be 

affected. This was of particular interest due to the proposed role of aromatic amino acids 

in conferring chitin binding to the protein sequence (Quiocho, 1989; Rebers and Willis, 

2001). Threonine and aspartic acid residues were also found to be highly conserved, 

especially in the RR-2 cuticular protein sequences, in a multiple sequence alignment 

(Iconomidou et al., 1999) and as a result, Rebers and Willis (2001) sought to investigate 

the effects of mutations in the locations of these particular residues.  

The results indicated that mutating Y128 (tyrosine at position 128) and F136 

(phenylalanine at position 136) to produce the new construct (fusion protein 

GST+65.YF) resulted in a loss of chitin binding. Also, mutating T95 (threonine at 

position 95) and D97 (aspartic acid at position 97) to produce the construct (fusion 

protein GST+65.TD) eliminated chitin binding. These findings helped to further 

characterize the consensus sequence indicating that a loss of tyrosine (136), 

phenylalanine (128), threonine (95) and aspartic acid (97) results in a loss of chitin 

binding ability.

6



In a subsequent study conducted by Hamodrakas et al. (2002), a structural model 

for the protein HCCP12 (RR-1 type cuticular protein) from Hyalophora cecropia was 

proposed. This model contained several attractive features which made it popular as a 

basic structural model for interactions with the chitin chains in the cuticle. The structure 

was made using the retinol binding protein as a template. The template shared similar 

secondary structure with the HCCP12 protein. The retinol binding protein is a 

mammalian protein (Rask et al., 1987) which is not closely related to the protein 

HCCP12 but due to similarities in structure, the retinol binding protein served as a good 

template. The authors used molecular modeling as a means to investigate the binding 

cleft of the HCCP12 protein as it related to binding with chitin. The results indicated that 

the structure was consistent with evidence shown in Rebers and Willis (2001). Rebers 

and Willis (2001), showed that chitin binding had been affected with mutations of key 

amino acids further supporting the claim for the structure’s accuracy (Hamodrakas et al., 

2002).

1.3 Why is characterizing this region important?

Essentially the binding cleft responsible for chitin binding in the HCCP12 protein 

was identified which raised new questions about the binding cleft used in hard cuticle 

proteins such as that of Anopheles gambiae.  Understanding the kind of cleft used, 

particularly the functional groups located in that region would allow for improved 

visualization of the chitin-protein interaction. 

The R&R consensus region defines the interaction between cuticular proteins and 

chitin. Since its discovery, several hypotheses have been circulating as to the reason this 

sequence is necessary for chitin binding. An understanding of the specifics of the 

7



sequence provides a key that opens the door to a plethora of applications for chitin and 

protein interactions. 

Interactions of chitin with cuticular proteins is of great importance because it will 

allow the scientific community to understand the mechanics involved with the chitin 

binding sequences. A secondary effect or application of this kind of study and other 

future advanced studies that will help to fully characterize the chitin binding domain 

could make it possible to control vectors like mosquitoes that transfer viruses and 

parasites efficiently. Control at this level could help to curtail the spread of these 

dangerous diseases that reduce the quality of human life worldwide.

1.4 How will this region be further characterized?

Keeping all of the aforementioned in mind, the specific objectives were to further 

characterize the R&R consensus sequence by making even more amino acid substitutions 

to analyze the effect on chitin binding. The amino acids chosen to be changed (tested) 

were selected on the knowledge that the aromatic amino acids are essential in chitin 

binding as well as the fact that threonine 95 was believed to participate in the binding 

cleft as well as in the maintenance of the structure of a sharp turn in the beta strand 

(Hamodrakas et al., 2002). An analogous substitution with serine should maintain the 

binding capacity and would provide support for threonine's proposed role in the chitin 

binding domain. Similar amino acids in charge and size will be selected as replacements 

for the test amino acids within the consensus sequence in an attempt to fully characterize 

the chitin binding.

Initially, these substitutions were attempted using in vitro site directed 

mutagenesis. However; due to several time consuming challenges, the method was 

8



switched to a computer modeling approach.  As a result, substitutions were achieved by 

simply changing the test amino acid in the GST+65 sequence which was then 

transformed into an electronic format (pdb – protein databank file).  This file was then 

used to model the protein in silico and allowed for further analysis. The sequences would 

be used to model chitin binding and observe the theoretical binding energy achieved by 

the interaction of each amino acid substitution with the chitin sequence.

Figure 3 indicates the GST+65 amino acid sequence showing substitutions 

already made by Rebers and Willis (2001) along with the proposed constructs indicating 

the substitutions to be made in order to allow the comparative analysis of chitin binding. 

Changes to be made include conservative substitutions at seven different positions using 

the GST+65 clone. The amino acids to be switched are tyrosine at 3 different locations, 

aspartic acid, phenylalanine at 2 different locations and threonine. Any information 

retrieved from these experiments will help to define the R&R consensus region even 

further. 

9



Fig. 3. GST+65 amino acid sequence of Anopheles gambiae with alanine substitutions already made 
(Rebers and Willis, 2001) indicated with an overhead asterisk, a bold underline (  ) and bold text. The 
proposed models (constructs) with substitutions to be made are underlined and in red text. In models 
shown, the original amino acid is replaced with the similar amino acid in red font.  

Models one through six indicate the substitutions for the aromatic amino acids 

with similar side chains while model seven is a serine substitution for threonine. Serine is 

the closest substitution in side chain and charge which can be made for threonine.

Another method, mentioned earlier, by which the R&R consensus region could be 

further characterized is through in vitro site directed mutagenesis. Using this method, 

clones of the mutations mentioned above are made targeting the amino acid of interest 

and changing it to the desired mutation. Specifics of the mutation process depend on the 

method being used. Analysis of binding would be done by attempting a chitin binding 

assay which allows for the protein to either bind to chitin beads or not bind to chitin 

beads. The amount of binding and comparison of binding between mutants would then 

have to be analyzed by western blotting paying attention to the amount of luminescence 

which would be recorded in order to create a clear understanding of the difference in 

10



binding between clones. However; as was mentioned earlier, this technique suffered 

significant setbacks and as a result was not used.
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2. Molecular Modeling using AutoDockTools

2.1 In Silico Molecular Modeling Overview

Molecular modeling uses a macromolecule (protein in this case) along with the 

use of a ligand (ion, molecule, protein) to mimic, analyze and predict interactions. It is a 

multidisciplinary field that requires the use of theoretical and computational techniques to 

make such predictions. Fields known to benefit from this unique tool include chemistry 

(organic and physical), biology and materials science (Leach, 2001). This tool relies 

heavily on computers to perform computational analyses on anything from a small scale 

interaction to large biomolecular interactions by taking an atom first type approach. The 

entire interaction can be defined in whole, but must first be defined in terms of the 

different atoms available in the system (Frenkel and Smit, 1996). 

Coupling molecular modeling with molecular dynamics allows for even greater 

applications. Molecular dynamics is essentially the link between the structure and 

function of a protein. It uses classical approximations of known physics concepts to 

estimate equilibrium constants, structure, dynamics and the thermodynamics of complex 

systems (Rapaport, 2004). This is done by first computing the vectors for every atom in 

the system for both ligand and macromolecule, using the force field to predict the 

different conformations. The force field typically takes into consideration the system 

internal energy (U) which is the sum of the kinetic and potential energies of a system. 

The force field used in molecular modeling includes energies describing bonding, 

torsions (rotations), angles, van der Waals interactions, non-bonding and electrostatic 

energies (see equations below). The total energy of a system is referenced as the sum of 

all of these individual energies. 
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Etotal = Ebonded  + Enon-bonded

Ebonded = Ebond + Eangle + Edihedral 

Enon − bonded = Eelectrostatic + EvanderWaals

Collectively, these energies or force field define the potential function of a system 

and depending on the implementation of the system can vary in terms included in the 

calculation.  For molecular dynamics, time is important as this process generates a 

computational simulation of the motion of the particles during interactions (Rapaport, 

1996)

The essential steps used in molecular modeling require the description of each 

atom in vector form inclusive of time, followed by the predictions of the different 

conformations given the specified force fields, and finally the analysis of the results to 

verify that the conformations are all plausible. Specifically for AutoDockTools, the 

procedure is further simplified to the creation of the coordinate files which provide 

information about the atoms and the location; setting of the grid points so as to specify 

the coordinates of localized minimum binding and allow for precalculation of the atomic 

affinities; docking of the ligand to the macromolecule; and finally the analysis of the 

results obtained. The force field employed in AutoDock uses all of the mentioned 

energies in addition to other parameters such as desolvation and directionality of 

hydrogen bonds (Huey et al., 2007). 

This force field is the AMBER (Assisted Model Building and Energy Refinement) 

force field originally defined in Pearlman et al. (1995) which is mostly used for proteins 

and DNA. According to the UserGuide for AutoDock4.2, the force field specifically 

includes six pair wise evaluations (labeled V) as well as an estimate of the 
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conformational entropy lost through binding (see equation below) (Goodsell and Olson, 

1990).

The L represents evaluations done for the ligand while the P represents evaluations done 

for the protein. The ΔS represents the entropy of the system. The ∆G refers to Gibbs free 

energy which in this case is a measure of the work exchanged by the system with its 

surroundings, minus the work of the pressure forces observed in a reversible 

transformation of the system from the same initial state to the same final state (Perrot, 

1998). It is further specified that each energy evaluation is calculated using the following 

equation relating the dispersion/repulsion, hydrogen bonding, electrostatics and 

desolvation. The W indicates weighting for the particular component, i.e., van der Waals, 

etc.

The AutoDock4.2 UserGuide (Morris et al., 2009) describes the equation as follows: 

“The first term is a typical 6/12 potential for dispersion/repulsion interactions. The 

parameters are based on the AMBER force field. The second term is a directional H-bond 

term based on a 10/12 potential. The parameters C and D are assigned to give a maximal 

well depth (resolution) of 5 kcal/mol at 1.9Å for hydrogen bonds with oxygen and 

nitrogen, and a well depth of 1 kcal/mol at 2.5Å for hydrogen bonds with sulfur. The 

function E(t) provides directionality based on the angle t from ideal h-bonding geometry. 

The third term is a screened Coulomb potential for electrostatics. The final term is a 
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desolvation potential based on the volume of atoms (V) that surround a given atom and 

shelter it from solvent, weighted by a solvation parameter (S) and exponential term with 

distance-weighting factor σ=3.5Å” (Goodsell and Olson, 1990). The four main 

contributions to the AutoDock force field are outlined in figure 4.

Fig. 4. The four main components of the AutoDock force field. “The desolvation potential is shown 
for a carbon atom, with approximately 10 atoms displacing water at each distance. The hydrogen 
bond potential, which extends down to a minimum of about –2 kcal/mol, is shown for an oxygen-
hydrogen interaction. The dispersion/repulsion potential is for interaction between two carbon atoms 
and the electrostatic potential is shown for interaction of two oppositely charged atoms with a full 
atomic charge” as described by the AutoDock UserGuide 4.2 (Morris et al., 2009). A = Electrostatics 
curve. B = Hydrogen Bonds curve. C = Desolvation curve. D = Dispersion/Repulsion curve.

Binding energy in AutoDock is based on a semiempirical free energy force field 

(Huey et al., 2007), such that the intramolecular energy for the unbound state of ligand 

and protein are first evaluated followed by the estimation of the intermolecular energy 
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required to transition ligand and protein into their bound states (Goodsell and Olson, 

1990). A simplified version of this is shown in figure 5 exaggerating the bound and 

unbound states of ligand and macromolecule.

Fig.5. Bound and unbound states of ligand and macromolecule as they contribute to the overall 
prediction of the interaction between ligand and macromolecule (Morris et al., 2009).

2.2 Using Autogrid

Autogrid is the software package included in AutoDockTools (Huey et al., 2007) 

which serves a number of preparatory roles before docking can be attempted. Autogrid 

uses a grid map (potential energies) to represent the receptor and thus define the area of 

interaction. One grid map is precalculated for each atom type present in the ligand. A grid 

map consists of a three dimensional lattice of regularly spaced points, surrounding the 

receptor (protein in this case) and is centered on the region of interest of the 

macromolecule under study (Huey et al., 2004). 
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Each point within the grid map is determined by the sum of the pairwise potential 

interaction energy of a predefined probe atom of a particular type with each of the atoms 

in the macromolecule. The resulting 3-dimensional volume allocated by the grid maps 

together with the 'n' active torsions in the ligand defines the 6 + 'n' dimensioned search 

space (Huey et al., 2004). 

When using the program the sequence of events required to create a grid plot is 

much more simplistic. The first step involves the preparation of the macromolecule file to 

be run in Autogrid. The automated steps first include the reading of the .pdb file (Protein 

Databank file).  This file is then initialized allowing for computing of Kollman or 

Gasteiger charges depending on whether the macromolecule is a peptide or not 

respectively. Gasteiger charges are an iterative partial equalization of the orbital 

electronegativity for all atoms in the molecules (Gasteiger and Marsili, 1980). Kollman 

charges are derived from the electrostatic potential of point charges through 

semiempirical means and have been referenced to produce close to empirical 

expectations (Besler et al., 1990). The use of either Kollman or Gasteiger charge 

calculations is set as default in Autodock, however; the option can be changed to user 

preference. The default represents the current use of the charge calculations in 

experimental literature. The next automated steps include checking and merging of non-

polar hydrogens and the determination of the atom types present in the macromolecule 

(default of 7 atom types can be tolerated). The macromolecule can also be modeled as 

flexible but the flexible portion would need to be specified and labeled accordingly 

(Goodsell et al., 1996).

In like manner, the ligand file is initialized as well from its pdb format involving; 
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checking and merging of non-polar hydrogens; checking of charges and computing 

and/or assignment of Kollman or Gasteiger charges depending on whether the ligand is a 

peptide or not respectively; and finally the renaming of planar carbons. In addition to this 

initial step, the number of torsions (rotatable bonds) can then be set if required. Rotatable 

bonds can be set manually or automatically depending on user preference. These changes 

made to macromolecule and ligand files are then saved in the applicable file format for 

use in Autogrid.

The grid coordinates for the grid box can then be set manually by the user or can 

be set to center on the macromolecule, ligand or any atom. An example of a grid box 

setup is indicated below (Fig. 6)

On completion of the gridbox setup, the grid parameter file is created retaining all 

of the specified information for running AutoGrid. A standard set of parameters and 

weights are used for the force field by AutoGrid. Once all the preliminary information is 

obtained, the AutoGrid program is used to perform all precalculations and returns useful 

information such as the minimum and maximum energy for each atom type as well as the 

electrostatic potential and desolvation potential. This information is all maintained in the 

output log file at the end of an AutoGrid run.

18



Fig.6. Grid box setup of the protein and ligand in AutoDockTools. The molecule to the right is the 
ligand and the molecule to the left with the multicolored box is the protein of interest. The blue areas 
indicate favorable carbon atom binding. The red areas indicate favorable oxygen atom binding. 

2.3 Using AutoDock

The next step in molecular modeling using AutoDockTools requires the use of 

AutoDock4 (Huey et al., 2007). In order to use AutoDock, a docking parameter file is 

created. This file indicates to AutoDock which map files are to be used, the ligand 

molecule that needs to be moved, what the center and number of torsions are for this 

ligand are, where to start the ligand, which docking algorithm to use and how many runs 

that need to be done (Morris et al., 1998). AutoDock currently uses four different docking 

algorithms: SA (simulated annealing), the original Monte Carlo simulated annealing; GA 

(Genetic Algorithm), a traditional Darwinian genetic algorithm; LS, local search; and 

finally, the GALS (Genetic algorithm local search also known as LGA or Lamarckian 

Genetic Algorithm), which is a hybrid genetic algorithm inclusive of a local search 

(Morris et al., 1998). 
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The Monte Carlo simulated annealing is essentially a extensive global search 

which gives a good approximation for the global minimum of a given function in a 

relatively large search area (Metropolis et al., 1953). It relies on repetitive random 

sampling in order to generate the approximations and as a result can easily be used on a 

wide range of scenarios (Granville et al., 1994). Genetic algorithms are different such that 

they rely on a different subset of parameters to generate the solutions. As such they are 

classified as evolutionary algorithms (Wang et al., 2007).This kind of algorithm takes 

into consideration parameters such as mutation, crossover, inheritance and even selection 

which can all be accounted for via various means such as successive generations. In a 

molecular modeling point of view, the best conformations are the “best fit” which get to 

supply information for the next generation. A local search algorithm is essentially a 

metaheuristic defined by the restrictive search area where an optimal match is retrieved. 

The search pattern is such that it moves from one possible solution to the next until the 

best approximation is made (Hoos and StÜtzle, 2005). The Lamarckian genetic algorithm 

is similar to the traditional genetic algorithm with the exception that adaptive traits of a 

phenotype become inheritable and as a result improves fitness (Morris et al., 1998). This 

allows for increased sensitivity and since it also combines a local search improves the 

focus of the problem.

The docking algorithm used in this experiment was the Lamarckian Genetic 

Algorithm (LGA) which is basically an adaptive genetic algorithm global-local search. 

Huey et al. (2007), referenced the LGA as the most effective genetic algorithm for 

ligands with rotatable bonds of 10 and more. AutoDock essentially attempts to dock the 

ligand and protein using multiple conformations of the ligand and uses the grid maps 
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produced by AutoGrid to evaluate the intermolecular interaction for each docked 

simulation. In order to attempt the simulations, the program requires that a docking 

parameter file be written to specify parameters to be used in the simulation.

The docking parameter file specifies the number of runs to be attempted, the 

random number generator seeds, the energy outside the grid, the maximum allowable 

initial energy, the maximum number of retries, the step size parameters, the output format

parameters and finally, whether or not to do a cluster analysis. In this case, the results are 

clustered to identify similar conformations using the root mean square deviation method. 

There are a few other parameters which can be changed but they are specialized 

parameters and are not required for this experiment. 

After loading the ligand file, the ligand parameters can be specified such as the 

initial position and dihedral offset. After the macromolecule is loaded, then the searching 

parameter can be specified. In this case, the Lamarckian Genetic Algorithm is specified. 

After the search parameters are chosen, then the docking parameters files are written with 

all of the specified information.

A docking log file is created on completion of the docking run which produces 

valuable information such as the different components of the force field, the state 

variables for each conformation, the clustering histogram, the RMSD (Root Mean Square 

Deviation) table and the docked conformations for the lowest energy docked 

conformation from each cluster. 

This log file signifies the end of the docking simulations and allows for analysis 

to determine the best docked conformation (hopefully a binding cleft) based on location 

of minimization and the type of atoms within that cleft.
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2.4 Analyzing data recovered

In order to analyze the results of docking simulations AutoDockTools includes 

several tools that allow for clustering results by conformational similarity, visualizing 

conformations, visualizing interactions between ligands and proteins, and finally, 

visualizing the affinity potentials (Goodsell et al., 1996). The first step involved in 

analysis of the docking from AutoDock requires a review of the docking log file. The 

clustering histogram is the best place to start as it gives an indication of the range of 

binding energies retrieved from the simulations. After reviewing this information, the 

actual output from each docking simulation is the next step. A favorable binding energy 

is negative and helps to provide some validation for the docked conformation. The other 

energies can then be analyzed to verify that they are in accordance with the binding 

energy provided. A typical docked result provides the atom information, Cartesian 

coordinates and the associated state variables that help define the docked structure.

Using this docking log file, all of the docked conformations can be visualized 

using the Conformation Player (CP) supplied with AutoDockTools. Loading the docking 

log file into the CP allows visualization of the all of the different conformations retrieved 

by AutoDock. At this point, it is possible to analyze the different conformations for 

location of docking as well as for the type of atoms located at this point. A favorable 

docked conformation which is not located in a binding cleft is an unlikely candidate for a 

real approximation of the binding between ligand and protein. 

On critical analysis of the results, a clear indication of the best docked 

conformation as well as the thermodynamics of the system should be evident. 
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3. Hypothesis

The previous experiments on the R&R consensus region created some questions 

as to the reason the chitin binding was lost when alanine was substituted for other amino 

acids.. Two reasons were suggested for the loss of chitin binding: either the specific 

amino acid eliminated was required due to its R group which allowed further interactions 

with the chitin or that the substitution to alanine changed the overall protein structure 

causing it to interact differently with chitin. Using molecular modeling and attempting 

seven similar substitutions using the original AGCP2B sequence from Anopheles  

gambiae will allow for some insight into these specific questions. The amino acids 

switched were three tyrosine residues at different locations, two aspartic acid residues at 

different location, two phenylalanine residues at 2 different locations and one threonine 

residue. Any information retrieved from these experiments will help to define the R&R 

consensus region even further. 

Due to the fact that these are all similar amino acids, chitin binding observed 

through similar binding energies should be maintained with all of the different models 

created. This was further evaluated by paying attention to the intermolecular energies and 

binding energies of the constructed models as they compare to the original model. In 

keeping with the expected binding, all of the sequences should have close to and similar 

intermolecular and binding energies. A control model using the original mutation made 

by Rebers and Willis (2001) (GST+65 YF), was also attempted in order to validate the 

findings that suggest that similar intermolecular energies are due to the amino acids 

chosen for these models. 
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Methods

Site directed mutagenesis

This method was attempted first but because of some unexpected difficulty and 

time restraints, molecular modeling was conducted. This method involved the creation of 

mutant clones (Fig. 3) using a commercially available site directed mutagenesis system. 

The first kit employed was the GeneEditor by Promega. Seemingly successful 

transformants were created using this kit, however; neither of the transformants contained 

any of the attempted mutant sequences and thus no successful clones. Subsequent trials to 

create mutant clones were also unsuccessful. As a result, a second kit was chosen to 

attempt the mutations, the GeneTailor kit by Invitrogen. Due to technical issues with the 

positive control and the proposed mutants, successful mutants for study were not 

obtained. As a result of this scenario, the in silico method was chosen for characterization 

of the R&R consensus region.

Search for template model for AGCP2B

The first step to creating a good model of any sequence which lacks 

crystallographic data is to find a suitable template. A template is important because it 

provides the atomic bonding information, bond length and positions that allow modeling 

to be done. The ideal model uses crystallographic data of the protein of interest. 

However; when getting this information is difficult, creation of a comparable model is 

acceptable. A template which already has crystallographic data can be used to produce a 

3-D model of the protein using only the protein's sequence. In order to do this, there are 

various tools available to retrieve such information.

A free program provided by NCBI (National Center for Biotechnology 
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Information) called Blastp (Alschul et al., 1990) was used to do an initial search for 

prospective modeling candidates. Blastp is a program which can be used to identify the 

protein sequence of interest or find protein sequences that are similar. The only parameter 

which was limited in order to conduct the initial Blastp search was that the databases 

option was set to “Protein Databank Proteins” which limited the similarity search to 

proteins with X-ray or NMR structures which total approximately 60,000 proteins.. 

A PSI-Blast (Altschul et al., 1990) search was also conducted to increase the 

chances of finding a meaningful match in the search. PSI-Blast can essentially be used to 

identify proteins in a particular family as well as to build a position-specific score matrix 

which shows much greater resolution than the Blastp for purposes of this experiment. The 

position-specific score matrix is an often used representation of motifs in biological 

sequences and assumes independence between positions in the pattern as it calculates 

scores at each position independently from the symbols at other position (Ben-Gal et al., 

2005).

A third search was conducted using QuickPhyre (Kelley and Sternberg, 2009), 

which essentially searches the Protein DataBank database as well as other protein 

databases for proteins that are similar in structure. QuickPhyre also produced secondary 

structure predictions.

Sequence alignment analysis

After obtaining suitable modeling template candidates for the AGCP2B sequence, 

ClustalW (Larkin et al., 2007) was used to run sequence alignments to identify 

similarities in primary structure. The  sequence for the oxidized form of the M314i 

mutant of peptidylglycine alpha-hydroxylating monooxygenase (PHM, Protein Data 

25



Bank Accession code 1YI9; Siebert et al., 2005) protein (discussed later) showed the 

greatest sequence similarity and as a result proposed the best template to model the 

AGCP2B sequence.

The sequence similarity was comparable to that of the retinol binding protein 

(RBP) template used to model the HCCP12 sequence in Hamodrakas et al., (2002). The 

sequence analysis with the retinol binding protein using Blastp (Altschul et al., 1990) 

showed a sequence identity of 25% (10/40), an E value of 6.1 and an alignment score of 

17.7. For the sequence analysis of the PHM sequence with the AGCP2B protein 

sequence, the identity was 40% (9/22) with an E value of 7.9 and an alignment score of 

24. An E value closer to zero is preferred for identifying a significant match. Essentially, 

the  E value determines the likelihood of finding another match like the one found given 

the database size. Although, the E values for either sequence alignment were not 

favorable, the model protein chosen (PHM) is still a reasonable choice when compared to 

sequence alignment data for the model (RBP) used by Hamodrakas et al. (2002). The 

AGCP2B sequence was also aligned to the RBP (data not shown), with sequence 

similarity almost identical to that of the chosen template (PHM).

In addition to sequence alignment analysis with the original AGCP2B protein, 

alignments were also conducted using the seven specified models mentioned in Fig. 3. 

This required the simple editing of the sequence which was then saved and stored using a 

format such as: AGCP2B_MX.txt where X is the number of the mutation as it 

corresponds to Fig. 3. All of the new sequences were aligned to the PHM protein 

sequence and recorded. This alignment provided sequence information regarding 

similarities in the sequences. This provided information necessary for creating a protein 
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data bank file (pdb) of all of the mutated sequences.

Determination of the secondary structure of AGCP2B sequence.

In order to generate a model of the AGCP2B sequence, it is useful to predict the 

secondary structure of the sequence. This is useful because it can be used for comparison 

purposes when choosing suitable crystallographic data upon which to model the 

sequence.

Using the program ProteinPredict (Rost et al., 2004), the secondary structure of 

the AGCP2B sequence was predicted using several prediction programs including PROF 

and PHDsec included in the ProteinPredict analysis. The results reported were obtained 

from PROF and are presented in later figures documenting only the first few rows 

specifying secondary structure. This secondary structure was compared to the output 

retrieved from QuickPhyre. Since all seven mutated sequence alignments were almost 

identical (with the exception of one  conservative amino acid substitution), secondary 

structure predictions were not attempted for these sequences as drastic changes in 

secondary structure were not expected.

Modeling the AGCP2B sequence

Modeling the AGCP2B sequence required the use of the crystallographic data for 

the template model PHM (the Oxidized Form Of The M314i Mutant Of Peptidylglycine 

Alpha-Hydroxylating Monooxygenase (Siebert et al., 2005); PDB ID: 1YI9: A) (Fig. 7) 

which was obtained from the PDB database for the organism Rattus norvegicus. 
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Fig. 7. RasWin (Sayle and Milner-White, 2005) was used to view and rotate PHM into current 
position exposing predominantly beta sheet and loop structure.

After the acquisition of the correct pdb file, the program Modeller9v6 (Sali and 

Blundell, 1993) was used to create the AGCP2B model in pdb format. The main use of 

Modeller9v6 is in homology modeling and three dimensional protein structures (Eswar et 

al., 2006; Sali  and Blundell, 1993). Modeller works by using a sequence alignment of the 

model sequence to the sequence to be modeled. Python scripts are written which direct 

the program to the appropriate files (pdb file of template model; parameter files; 

sequence alignment file). On completion of modeling, a pdb file of the protein sequence 

was retrieved (Fig. 8). A review of the new model was then conducted using RasWin to 

verify that the produced structure was similar to that predicted by the structure predicting 

programs used previously.
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Fig.8. Ball and stick model of AGCP2B sequence. Sequence starts from amino acid 80 on the bottom 
right to amino acid 144 on the left as referenced in figure 1. Protein sequence is modeled using 
RasWin 2.7.5 (Sayle and Milner-White, 2005). This sequence contains the R&R consensus region 
described by Rebers and Willis (2001) and was the sequence used in the experiment.

Using the seven sequences in text file (.txt) format from the sequence alignments, 

the modeling for each of these point substitutions was attempted using Modeller9v6. The 

resulting pdb file was saved in the format: AGCP2B_MX.pdb where X represented the 

corresponding substitution number as referenced in Fig. 3. 

Preparing Chitin pdb file

Since chitin is believed to interact with the AGCP2B protein sequence in the form 

of a four - six macromolecular unit (4Mer or 6Mer) (Togawa et al., 2004), a suitable 

model was built in order to facilitate this form. This was accomplished using the program 

Spartan (Kong et al., 2000).  Each atom was connected using the following figure of a 

monomer as a guideline for a 6Mer unit (Fig. 9). The original file was stored in Spartan 

format which would be converted to the required pdb format.
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Fig. 9. Figure of chitin dimer from Cambell (1996), showing two of the N-acetylglucosamine units 
that repeat to form long chains in the beta-1,4 linkage of Chitin.

On completion of the 6Mer unit, the entire structure was minimized to reduce 

constraints on bonds. The completed file was converted and exported as a pdb file as is 

shown modeled in RasWin (Fig. 10). The newly acquired pdb file, labeled as 

Chitin_6Mer.pdb for the ligand, was then used in the molecular mechanics interaction to 

characterize the chitin-protein interaction. 
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Fig.10. RasWin visualization of the chitin 6mer built in Spartan. Six NAG units are coupled by O-
glycosidic bonds.

Molecular docking of the AGCP2B protein with chitin

After the required files were prepared for AutoDockTools, intermolecular 

interactions between the AGCP2B sequence and the chitin 6Mer unit were investigated. 

As previously described, the pdb files for the macromolecule and ligand were loaded and 

initialized to account for parameters such as charge and the merging of polar hydrogens. 

After this initial stage, the respective files for ligand and protein required by the program 

for running AutoGrid were created. The total number of available torsions for the chitin 

6Mer was 42, however; only 32 were made active. The AutoDock program allows a total 

of  32 torsion and a maximum number of atoms set to 2000. In order to remedy this 

situation, the number of torsions for use was set to 32. The grid box parameters were then 

specified. Using information about nature of the binding pocket from Hamodrakas et al. 

(2002), the initial grid was set to coordinates containing a beta loop beta structure which 

contained aromatic amino acids that mimicked a binding cleft. 
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Subsequent analysis revealed the minimized energy area to be located at grid 

coordinates of 37, 26, and 44 (x, y, and z respectively). The grid box was centered along 

the macromolecule and then set to these coordinates manually. The box size was set to a 

volume of 58 X 58 X 58 with a spacing of 0.375 angstroms. The parameters for the 

AutoGrid were then saved using the file format AGCP2B_MX_Chitin_6Mer_AX.gpf 

with the exception of the original AGCP2B sequence which had the format 

AGCP2B_Y_Chitin_6Mer.gpf. In this case X represented the corresponding point 

substitution and Y represented the trial number for that run.  This creation of the grid 

parameter files was repeated for the other AGCP2B sequences files containing the single 

point substitution.

At this point, the AutoGrid program was initialized and set to run using the 

applicable grid parameter file. The output of the program was recorded in several files 

containing the individual atom map files, the log file indicating specifics of the AutoGrid 

run, the atomic affinity and electrostatics map and finally the minimum and maximum 

coordinates map file for the gridbox. The output provided all of the preliminary 

information required by the AutoDock program to evaluate and predict the possible 

conformations.

Having created the files containing the area of interest in the macromolecule, the 

AutoDock docking parameter file was then created. This file was used to specify the 

docking parameters and the algorithms used to perform such a task. The algorithm of 

choice, as described earlier, was the Lamarckian Genetic Algorithm (LGA) and the 

parameters specified were the number of runs to be attempted, the number of evaluations 

and the maximum number of generations. The number of runs attempted was set to 50 
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while the maximum number of evaluations was set to 2,500,000 and finally the number 

of generations set to 25,000. These specific parameters were guidelines for 

macromolecule of the particular size being used. The docking parameters were then 

saved in the output format specified as Lamarckian GA (LGA) with a filename set as 

AGCP2B_MX_Chitin_6Mer_AX.dpf where X specifies the number corresponding to the 

attempted amino acid substitution referenced in Fig. 3. The completed docking performed 

by AutoDock produces a log file which contains the information pertaining to all of the 

conformations examined in the docking run. The docking energy is a function of the sum 

of the intermolecular energies (Van der Waals, hydrogen bond, desolvation energy and 

electrostatic energy) and the internal energy of the system. The binding energy is a 

function of the sum of the intermolecular energies and the torsional free energy. For the 

purposes of this study, only the intermolecular energies were considered for comparative 

purposes. This was due to an issue with the calculation of the torsional free energy which 

was an overestimation and as result created an offset in the calculation of the binding 

energy. The docking software is usually used with relatively small ligands with very few 

torsions and as a result, the torsional free energy calculation would need correction to 

account for the differences. This resulted in binding energies which were not favorable 

for protein-chitin interactions.
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Results

The QuickPhyre search revealed less than favorable candidates for a model 

template listing E values as high as 31 with the lowest at 16 and sequence identities of 

less than 20% (See Appendix A). An E value closer to zero is considered a significant 

match. As a result, a suitable candidate for modeling was not chosen from this set of 

possibilities. Along with the listing of sequences, QuickPhyre also provided secondary 

structure information which served as insight into what should be expected when 

modeling the AGCP2B protein sequence. The secondary structure information reported is 

shown in Fig. 11.

Fig.11.  Secondary structure prediction for AGCP2B using QuickPhyre. The e represents the areas of 
interest where a beta sheet is expected to form. The C represents amino acids which are part of the 
coil and thus do not have a defined secondary structure type. Capital fonts show strong likelihood for 
the defined secondary structure. Despite the low resolution, it is evident that the structure is 
primarily beta sheets.

The general consensus is that the AGCP2B protein sequence is primarily beta 

sheets interconnected with loops (Fig. 11; consensus line). This is in line with what was 

reported for the HCCP12 protein sequence by Hamodrakas et al. (2002) as well as in 

many carbohydrate binding domains (Simpson and Barras, 1999).

The successful candidate for a model template was retrieved from a PSI-Blast 

search (Appendix B) which uses continuous iterations to produce greater resolution in the 

possible matches. The data retrieved suggested that the best option was the crystal 
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structure of the PHM (M314i Mutant of Peptidylglycine Alpha-Hydroxylating 

Monooxygenase) (Fig. 12) (Siebert et al., 2005). This is apparent in the data obtained 

from the search which lists a reasonable identity between sequences (9/22) as well as the 

crystal structure. The E-value was 7.6 which essentially meant that for a database of that 

size, one could expect to get a match like PHM 7.6 times. The lower or closer the E value 

to zero, the more significant the match.  When templates are chosen, crystal structures are 

generally preferred over NMR structures due to the greater resolution observed in crystal 

structures.

Fig.12. The data returned from PSI-Blast after searching using the AGCP2B protein sequence. The 
referenced E value is 7.9. Three iterations were attempted in total yielding similar results and no 
changes in identities or significant changes in E values.

 Since the alignment between PHM and the cuticular protein AGCP2B was not 

very significant, RBP and HCCP12 were aligned using Blastp (Altshul et al., 1990) for 

comparison. These proteins also gave a high E value (6.1) with 16/40 residues identical 

or similar. However, proteins that are not closely related at the primary sequence level 

can still provide useful templates to predict tertiary structures (Baker and Sali, 2001). 

This information was very necessary to validate the use of PHM as a suitable model for 

the AGCP2B template. The specific data is shown in Fig. 13.
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>sp|P45589.1|CU12_HYACE RecName: Full=Flexible cuticle protein 12; Flags: Precursor gb|

AAA85640.1| cuticle protein 12 [Hyalophora cecropia]

Length=105 Score = 17.7 bits (34), Expect = 6.1, Method: Compositional matrix adjust. 

Identities = 10/40 (25%), Positives = 16/40 (40%), Gaps = 3/40 (7%) 

Query 107 IDTDYETFAVQYSCRLLNLDGTCADSYSFVFARDPSGFSP 146 

          + T+ E   V+     +  DG    +YS +      GF P

Sbjct 61  VGTENEGIEVRGQFSYVGPDGV---TYSVTYTAGQEGFKP 97 

Fig.13. Blastp (Altschul et al., 1990) results for retinol binding protein and HCCP12 protein sequence 
alignment. Note the E value was stated as 6.1 with 16/40 residues being identical or similar.

Peptidylglycine alpha-hydroxylating monooxygenase is the enzyme that catalyzes 

the first of the two steps of the amidation reaction of many bioactive peptides at their 

carboxy terminus allowing them to exhibit full biological activity (Kolhekar et al., 1997). 

In the mutant form, PHM has the methionine (Met) at position 314 switched to isoleucine 

(Ile) in order to investigate structure and function differences between native and mutated 

protein. Kolhekar et al. (1997) revealed that the PHM mutant was inactivated with the 

change from methionine to isoleucine. The crystal structure of this mutant protein 

provided the best candidate for molecular modeling of the AGCP2B protein.

Having selected the best template for modeling, the AGCP2B sequence and the 

PHM sequence were then reanalyzed by ClustalW (Larkin et al., 2007) to produce a 

sequence alignment file (Fig.14). This alignment file was the basis on which the modeled 

protein was erected.
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CLUSTAL 2.0.10 multiple sequence alignment

M314i           CLGTIGPVTPLDASDFALDIRMPGVTPKESDTYFCMSMRLPVDEEAFVIDFKPRASMDTV 60

AGCP2b          ------------------------------------------------------------

                                                                         

M314i           HHMLLFGCNMPSSTGSYWFCDEGTCTDKANILYAWARNAPPTRLPKGVGFRVGGETGSKY 120

AGCP2b          -------------------------------------------APANYEFS--------Y 9

                                                            * .  *         *

M314i           FVLQVHYGDISAFRDNHKDCSGVSVHLTRVPQPLIAGMYLMMSVDTVIPPGEKVVNADIS 180

AGCP2b          SVHDEHTGDI---KSQHETRHGDEVH----------GQYSLLDSD-----G--------- 42

                 * : * ***   :.:*:   * .**          * * ::. *     *         

M314i           CQYKMYPMHVFAYRVHTHHLGKVVSGYRVRNGQWTLIGRQNPQLPQAFYPVEHPVDVTFG 240

AGCP2b          ------HQRIVDYHAD-HHTG------------FNAVVRREP------------------ 65

                        ::. *:.. ** *            :. : *::*                  

M314i           DILAARCVFTGEGRTEATHIGGTSSDEICNLYIMYYMEAKYALSFMTCTKNVAPDMFRTI 300

AGCP2b          ------------------------------------------------------------

                                                                            

M314i           PAEANIPIP 309

AGCP2b          ---------

Fig. 14. ClustalW sequence alignment to be used in the modeling of the AGCP2B protein sequence. 
The output also shows consensus symbols denoting the degree of conservation observed in each 
column. See text for description of symbols. Alignment of PHM and AGCP2B is shown.

The consensus symbols employed by ClustalW can be described as follows: "*" 

indicates that the residues or nucleotides in that column are identical in all sequences in 

the alignment. ":" indicates that conserved substitutions have been observed, and "." 
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means that semi-conserved substitutions are observed (Larkin et al., 2007). Due to the 

short length of the AGCP2B protein sequence, only the region between amino acid 99 to 

about amino acid 230 of the PHM protein was used in the modeling.

Before modeling was attempted, the secondary structure was predicted to give a 

glimpse as to what to expect in the complete model. ProteinPredict, which uses several 

prediction programs, yielded results proposing that the AGCP2B protein sequence was 

mostly beta sheets with interconnected loops in its structure (Fig. 15; Table 1). This was 

in agreement with the data collected by QuickPhyre described earlier.

PROF results (normal)

           ....,....10...,....20...,....30...,....40...,....50...,....60...,

AA         APANYEFSYSVHDEHTGDIKSQHETRHGDEVHGQYSLLDSDGHQRIVDYHADHHTGFNAVVRREP

OBS_sec                                                                     

PROF_sec        EEEEEE            E     EEEEEEEEE     EEEEEEEE     EEEEEEE  

Rel_sec    98750132000268878755530203677034467878078715888888457774488986348

SUB_sec    LLLL........LLLLLLLLL.....LLL....EEEEE.LLL.EEEEEEE.LLLL..EEEEE..L

Fig. 15. ProteinPredict Secondary structure approximations for AGCP2B. E represents the beta 
sheets and L represents the interconnecting loops. The structure predicted is approximately 4 beta 
strands forming a sheet.
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Table 1. Abbreviations used for defining results from ProteinPredict

AA : amino acid sequence
OBS_sec: observed secondary structure: H=helix, E=extended (sheet), blank=other (loop)

PROF_sec: PROF predicted secondary structure: H=helix, E=extended (sheet), blank=other (loop)

PROF = PROF: Profile network prediction HeiDelberg
Rel_sec: reliability index for PROFsec prediction (0=low to 9=high)

Note: for the brief presentation strong predictions marked by '*'

SUB_sec subset of the PROFsec prediction, for all residues with an expected average accuracy > 82% 

(tables in header) NOTE: for this subset the following symbols are used:

L: is loop (for which above ' ' is used)

.: means that no prediction is made for this residue, as the reliability is: Rel < 5

Table 1.  Description of the symbols used in the PROF report box from Fig.14. 

The PHM sequence was successfully used to generate a plausible molecular 

structure for the AGCP2B protein sequence (see Fig. 8). This allowed for use of 

AutoDockTools to generate feasible conformations that represent binding between the 

chitin 6Mer and the AGCP2B protein.

After running AutoGrid, the results indicated that the energy calculation was 

within the range of what was expected (Fig. 16).
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Grid Atom Minimum   Maximum

Map Type Energy    Energy 

      (kcal/mol) kcal/mol)

_________________________________________________

 1  C    -0.72  2.02e+05

 2  HD    -0.68  1.09e+05

 3  OA    -1.40  2.00e+05

 4  N    -0.73  2.00e+05

 5  e   -31.43  2.88e+01 Electrostatic Potential

 6  d     0.00  1.02e+00 Desolvation Potential 

Fig. 16. Typical results from AutoGrid energy calculations. Minimum and maximum energy 
estimations are reported in kcal/mol. Minimum van der Waals’ energies and hydrogen bonding 
energies are typically -10 to -1 kcal/mol, while maximum van der Waals’ energies are clamped at 
+105 kcal/mol. Electrostatic potentials tend to range from around -103 to +103 kcal/mol/e. C 
represents carbon; HD represents hydrogen; OA represents oxygen; N represents a nitrogen that 
cannot accept hydrogen bonds. 

Grid calculations for all of the 7 point mutations to be used in the AutoDock were 

also successful yielding an acceptable range of energy results. The specific values are 

referenced in Appendix C.

The completion of a successful AutoGrid run allows the next step to occur which 

produces the docked conformations of the ligand and the energies associated with such 

conformations. After AutoDock completed its run, a docking parameter file was 

produced. The clustering histogram provides a synopsis of all the attempted runs and 

gives a summary in a clear and concise manner. The results obtained for the docking run 

are shown (Table 2). 
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Table 2. Clustering results for AutoDock run using the original AGCP2B protein and the Chitin 
6Mer. The histogram reveals the minimum binding energy in Kcal/mol as well as the mean binding 
energy in kcal/mol. Also note that binding energies are all positive which suggest unfavorable 
interactions.

Using the root mean square deviation (RMSD) method, 4 total multi-member 
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conformation clusters were defined out of 50 runs. In order to continue the analysis of the 

results, the run with the lowest binding energy was chosen for further review. The lowest 

binding energy indicates favorable binding for the conformations of ligand and protein at 

the specified coordinates and parameters set. The data for this run specified the following 

(Fig. 17):

Run = 29

Cluster Rank = 1

Number of conformations in this cluster = 2

  

RMSD from reference structure      = 54.571 A

  

Estimated Free Energy of Binding   = +1.05 kcal/mol  [=(1)+(2)+(3)-(4)]

   

(1) Final Intermolecular Energy     =   -9.68 kcal/mol

    vdW + Hbond + desolv Energy     =   -9.27 kcal/mol

    Electrostatic Energy            =   -0.42 kcal/mol

(2) Final Total Internal Energy     =   -9.81 kcal/mol

(3) Torsional Free Energy           =  +10.74 kcal/mol

(4) Unbound System's Energy         =   -9.81 kcal/mol

Fig.17. Energy report for run 29 of 50 showing the lowest binding energy. The different energies 
included in the AutoDock force field are all shown.

Due to the significant contribution of the torsional free energy, the estimated free 

energy of binding was proposed to be +1.05 kcal/mol. The binding energy calculation as 

mentioned earlier is the sum of the final intermolecular energy and the torsional free 

energy. The torsional free energy is usually a product of a predefined constant (0.3113; 
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which is the AutoDock 4 force field torsional free energy parameter) and the total number 

of rotatable bonds. In this case, the chitin 6Mer had the maximum number of torsions 

allowed also demonstrated a relatively large torsional energy. This indicates that 

AutoDock is including unfavorable conformations of the ligand which would not be 

allowed in an in vivo or in vitro experiment and marking it as favorable. As a result, for 

comparison purposes, the favorable conformations were first identified by the lowest 

binding energies, but then compared using the final intermolecular energy. In this case, 

the final intermolecular energy for the untouched AGCP2B (original sequence without 

substitutions) and the chitin 6Mer was -9.68 kcal/mol (Fig. 17). This served as the 

reference to which all other conformations obtained from the mutations were compared 

given the same general position and parameters. 

The data recovered from all of the AutoDock runs for the amino acid substitutions 

was compiled and recorded in Table 3. 
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Table 3. Results from most favorable dockings for the point mutations

Mutation 

number

Lowest binding energy 

(kcal/mol)

Mean Binding energy 

(kcal/mol)

Run number

1 0.70 0.70 7

2 1.91 1.91 21

3 1.21 1.21 10

4 0.96 1.49 39

5 1.82 1.82 38

6 1.97 1.97 42

7 0.04 0.04 40

GST+65 YF 1.91 1.91 26

Table 3. Table showing the lowest binding energy dockings for each of the AutoDock runs. The 
mutation number corresponds to the construct number shown in Fig. 3. The lowest binding energy 
(kcal/mol) as well as the mean binding energy (kcal/mol) and the run number are also included for 
convenience. GST+65 YF is an original mutation attempted by Rebers and Willis (2001) known to 
eliminate chitin binding.

The data indicates that the serine substitution for threonine produced a much 

lower binding energy than the original binding energy. The standard deviation for the list 

of binding energies, not counting the GST+65 YF, was calculated as 0.543 kcal/mol. For 

comparison purposes, however; the final intermolecular energies are taken into 

consideration instead of the binding energy. Table 4 lists similar information but lists the 

final intermolecular energy and torsional free energy as well as the run and mutation 

number.
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Table 4 Final intermolecular energies of AutoDock runs for the mutations made

Mutation 

number

Final intermolecular 

energy (kcal/mol)

Torsional free energy 

(kcal/mol)

Run number

1 -10.04 10.74 7

2 -8.82 10.74 21

3 -9.52 10.74 10

4 -9.78 10.74 39

5 -8.92 10.74 38

6 -8.77 10.74 42

7 -10.70 10.74 40

GST+65YF -8.83 10.74 26

Table 4. Range of final intermolecular energies as supplied by the AutoDock docking log file. All 
intermolecular energies are negative which suggest favorableness.  The energies range from -8.77 
kcal/mol to -10.70 kcal/mol. GST+65 YF is an original mutation by Rebers and Willis (2001) known 
to eliminate chitin binding.

This data suggests that using a torsional free energy, which is a closer 

representation of the real life scenario, a more plausible binding energy could be 

calculated. Intermolecular energies are all negative indicating favorableness of the 

specified conformation. As a result, one can conclude that making the specified mutations 

(Fig. 3) would result in approximately the same level of binding to chitin as the original 

AGCP2B protein (see Figure 17) which yields a final intermolecular energy of -9.68 

kcal/mol. Specific clustering histograms for each docking run are included and referenced 

as Appendix D. Mutations made by substitution in models one, four and seven all show 

intermolecular energies that are relatively better than that of the native protein while the 

other constructs either show relatively close or lower intermolecular energies (Table 4).

When compared to a model of a protein which is known to eliminate binding, the 

results are less convincing. The GST+65 YF model yielded an intermolecular energy of 
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-8.83 kcal/mol which is within the range of all of the attempted models reviewed. 

Standard error for the Autodock4 forcefield with reference to intermolecular energy 

could be as much as  about 2.5 kcal/mol (Huey et al., 2007). Since all energies are within 

this range, then they are not considered significantly different.

The final portion of the AutoDock analysis required the visual screening of the 

docking conformation of interest for anomalies that would render the conformation 

invalid or unrealistic. This was conducted using the CP tool provided by AutoDockTools. 

On review of the favorable docking conformation for the original AGCP2B sequence 

with the chitin 6Mer, the conformation revealed that at its lowest binding energy 

conformation, the chitin 6Mer was located in the N-terminus region of the protein. Figure 

18 shows a ball and stick picture of the AGCP2B protein with the chitin 6mer at its 

lowest energy conformation for cluster one.
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Fig.18 A rendered picture of the AGCP2B original sequence and the chitin 6Mer in the lowest energy 
conformation. The solid blue line indicates the secondary structure of the AGCP2B sequence. The 
grey molecules are those of the AGCP2B sequence while the colored molecules (red, etc) are those of 
the chitin 6mer.

The following image shows the interaction between molecules as a surface view 

(Fig. 19). Using this visualization tool, it appears that the ligand (grey) is sitting in an 

area which appears to look like a binding pocket. This new view shows support for the 

chemical reasonableness of the docking conformation given the constraints and 

parameters previously specified in the methods. The surprising part is that this pocket 

appears to include the N-terminus amino acids where most of the extended loop structure 

is located. 
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Fig. 19. Surface view of the chitin and original AGCP2B protein interaction. The green molecules 
represent the AGCP2B protein and the grey represents the chitin 6Mer. The picture suggests that 
chitin is interacting with the protein using a binding pocket formed at the start of the sequence.

This view is even more evident when visualizing the secondary structure of 

AGCP2B interacting with the chitin 6Mer (Fig. 20).

 

Fig.20. Interaction between chitin 6mer (green) and AGCP2B (blue and grey) original sequence 
showing secondary structure position relative to that of the area of interaction. This suggests that the 
area is indeed a binding cleft. Blue regions indicate area of beta sheets.

          This information clearly suggests that a binding cleft is located in this area outlined 

by the beta sheets (blue) in which the aromatic amino acids are known to reside (Fig. 20).
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As a result, the information retrieved supports the hypothesis suggesting that the 

binding cleft is an area of beta sheets in which the aromatic amino acids are housed and 

also the area of interaction for the chitin 6mer ligand.

In order to identify the amino acids located in this binding pocket, a new view 

showing interaction areas of the specific amino acids and chitin as spheres was acquired 

and is shown below (Fig. 21).

 

Fig. 21. AGCP2B protein sequence interacting with chitin at its N-terminus position. The color 
scheme used is CPK (where red and blue spheres represent oxygen and nitrogen respectively, while 
white/gray spheres represent hydrogen) indicating hydrogen bonding for GLN 34, GLN 44, ARG 45 
and GLY 33. PRO 2 indicates the approximate start of the protein sequence. This supports that the 
binding pocket is located relatively towards the N-terminus.

In comparison to the other models, the position of the binding pocket was in the 

same region using some of the same amino acids, but not all. The overall binding concept 

was that the binding pocket's location was maintained regardless of changes in amino 

acids. This was a concept observed through even the modeled original mutation of Rebers 

and Willis (2001) (GST+65 YF). This can be seen in the following figures (Fig. 22, 23, 

and 24) containing interaction views of select models with chitin. Only select views are 

visualized due to the fact that the figures all show the same region.
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Fig. 22. Interaction view of the AGCP2B_M1 model with chitin. This interaction view is based on 
CPK colors where red and blue spheres represent oxygen and nitrogen respectively, while white/gray 
spheres represent hydrogen. Hydrogen bonding is observed for TYR 9, TYR 5, ASN 4 and PHE 7. In 
this case, only N-terminus amino acids are used in binding as opposed to the original sequence which 
had chitin in close proximity to the N-terminus as well as the middle amino acids where most of the 
bonding took place.

The next interaction view for the AGCP2B_M3 model also shows the same 

general region with hydrogen bonding including one of the same amino acids as the 

original AGCP2B sequence.

Fig. 23. Interaction view for the AGCP2B_M3 model with chitin. Amino acids noted to conduct 
hydrogen bonding with chitin are ASN4 and GLN 44. Color scheme is the same CPK mentioned 
previously.  Once again the area identified in binding to chitin is the N-terminus as well as a the 
middle amino acids (GLN 44 in this case).
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The AGCP2B_M7 model showed the least intermolecular energy as well as the 

largest binding energy, however; in contrast to the other models, the binding region as 

well as some of the amino acids used in binding were no different. This is clearly seen in 

Figure 24.

Fig. 24. Interaction view for the AGCP2B_M7 model with chitin. Color scheme used here is also CPK 
already described earlier. Amino acids identified as participating in hydrogen bonding with chitin 
are ASN 4 and ARG 45. ARG 45 was also seen in the interaction view of the original AGCP2B 
sequence with chitin. 

Visual analysis of the docking conformations for the original Rebers and Willis 

(2001) mutation model (GST+65 YF) was also conducted. The interaction view shows 

two very important details. First, the overall protein folding is clearly different to that of 

the original sequence as it is much more condensed. The second detail is that the 

interaction is conducted in the N-terminus region with at least one of the amino acids 

seen in previous interactions with a few of the models (TYR 5). This can be seen in the 

figure 25 outlining the details of the interaction between the AGCP2B mutant by Rebers 

and Willis (2001), the GST+65 YF and the chitin oligomer.
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Fig. 25. Interaction view of the GST+65 YF and the chitin oligomer. The color scheme used was 
CPK. The amino acids indicated to be involved in hydrogen bonding with chitin were TYR 5, THR 
55 and HIS 53. The chitin oligomer appears to be interacting with amino acids from both ends of the 
sequence which supports the alternative folding scenario.

This data thus suggests that the main area of interaction for chitin and the 

AGCP2B protein is at the N-terminus position with varied amino acids interacting with 

the chitin oligomer. Note that the bulk of the molecular surface of chitin is away from the 

GST+65_YF suggesting that interaction is occurring with surface amino acids due to 

convenience and availability. Greater resolution of the current torsional free energy 

calculations should allow better comparison of the models based on energies as well as 

docked conformations.
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Discussion 

A model for the AGCP2B protein was successfully built using the PHM protein as 

a template. This model showed greater resolution than a model built using the 1FEN 

template (Hamodrakas et al., 2002) due to better alignment scores (data not included). 

This suggests that the PSI-Blast search was indeed successful in rating the sequence 

similarity and as a result choosing a potential template. This allowed for increased 

sensitivity in the procedures that were used to compare binding of the original AGCP2B 

sequence to that of the mutated sequences.

The analysis of the results proposed that the interaction between chitin and the 

AGCP2B original sequence is composed primarily of oxygen and hydrogen interactions 

as shown in the 3D isocontour views of the maps constructed by AutoGrid (data not 

shown). This is what would be expected given the particular molecules in the binding 

cleft and particularly the secondary structure of the protein at that point. 

Given all of the information collected, it is plausible that the reason the original 

mutations made by Rebers and Willis (2001) eliminated binding was due to the change in 

the overall conformation of the binding cleft. This could be attributed to a lack of the 

substituted aromatic amino acid resulting in incomplete folding which rendered the 

binding cleft unfavorable for chitin binding and interaction. This claim is based solely on 

the difference in overall structure of the GST+65 YF (Fig. 25) as compared to the original 

AGCP2B sequence seen in previous figures. 

It is interesting to note that despite the 3D model for the GST+65 YF (data not 

shown) which predicted a mixture of alpha helices and beta strands which was different 

to the other constructed models which contained primarily beta strands, that the 
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intermolecular energies of all of the models were still rather close.  It is thus clear that in 

addition to binding energy, that the intermolecular energy may not have been the best 

guide for determining the worthiness of any of the models in question. Due to the fact 

that the program makes its calculations based on the differences in unbound and bound 

states, perhaps the unbound system's energy would have been a good start for 

investigating differences between models as compared to the original AGCP2B model. 

Although, this would not be ideal since the point of the experiment was to determine 

differences in models when interacting with chitin, it would still serve as reasonable 

starting point for troubleshooting as the GST+65 YF had an unbound energy of -7.81 

kcal/mol while the original AGCP2B and all of the other models created had an unbound 

energy of -9.81 kcal/mol or higher (data not shown). Values ranged from -9.01 kcal/mol 

to -13.22 kcal/mol with the exception of the M2 model (tyrosine to phenylalanine 

change) which had an energy of -8.17 kcal/mol. One could, however; argue that the 

differences between models is based primarily on the fact that each model is different in 

the number of atoms present. As a result, certain models with more or less atoms will 

show higher or lower unbound energies compared to the original as was indicated above.

On reviewing the binding energies produced by AutoDock, the positive energy 

seemed to be the entropy penalty (Torsions Free Energy) associated with the unusual 

number of torsions. The original AutoDock scoring function provided an additive type 

term for each torsion which was basically tuned to work with relatively small ligands 

(Morris et al., 2009). The specific calculation mentioned above can be tuned to more 

accurately address the torsional energy associated with the chitin ligand. A more ideal 

representation of the torsion will then allow for explicit comparison of the binding 
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energies and docking conformation for the original AGCP2B sequence and the mutated 

sequences. It would be interesting to further investigate the serine mutation due to the 

higher intermolecular energy compared to that reported for the native AGCP2B protein. 

A second option would be to have simpler formulations of the system. This can be 

accomplished by breaking up the ligand into two pieces and docking them separately, or 

by freezing some rotatable bonds. The latter was already attempted (data not included) 

yielding results which were no better than when the maximum number of torsions were 

specified. As a result, the only reasonable options would be to change the way the 

torsional free energy is calculated or to break up the ligand into a dimer unit and a 

tetramer unit. In general, an increase in the number of rotatable bonds in the ligand 

decreases the likelihood that a good docking conformation will be retrieved even in 

repeated docking experiments. As a future experiment, it would be plausible to adjust the 

chitin unit to a tetramer (Togawa et al., 2004), and observe how the calculation for 

torsional free energy affected the overall binding energy of the system. This would be a 

reasonable experiment as Togawa et al. (2004) showed that a chitin binding protein 

bound itself to a chitin tetramer. This would fix the issue with the number of rotatable 

bonds and thus yield better results as far the binding energy is concerned. Despite the fact 

that the kinetics of the chitin binding was not resolved, suitable models were built 

successfully which can be utilized in future experiments to further characterize the chitin 

binding domain. 

AutoDock4.2 was still successfully used for its initial proposed use which was in 

virtual screening. By virtually screening sequences, one can make inferences as to what 

to expect in an in vitro approach. As a result, the two techniques can be used together to 
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formulate a strong hypotheses, but, neither gives the entire picture if used on its own.
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Appendix A 

 

 

 

QuickPhyre results 

 

 

 

 

Sequence alignment search result for QuickPhyre 

 

View 
Alignments 

SCOP 
Code 

View Model E-value Estimated 
Precision 

BioText Fold/PDB descriptor Superfamily Family (beta-test) 

 

d1tza
a_  
(lengt
h:132) 
11% 
i.d. 

 

 

 

 

 

16 10 % n/a Immunoglobulin-like 
beta-sandwich 

ApaG-like ApaG-like n/a 

http://scop.mrc-lmb.cam.ac.uk/scop/search.cgi?search_type=scop&key=d1tzaa_
http://scop.mrc-lmb.cam.ac.uk/scop/search.cgi?search_type=scop&key=d1tzaa_
file:///F:/Research Stuff/New Folder/8ca6c5a5eeffd8ea/d1tzaa_.alig.html
file:///F:/Research Stuff/New Folder/8ca6c5a5eeffd8ea/d1tzaa_.model.pdb
file:///F:/Research Stuff/New Folder/8ca6c5a5eeffd8ea/d1tzaa_.model.pdb
file:///F:/Research Stuff/New Folder/8ca6c5a5eeffd8ea/d1tzaa_.model.pdb


 

62 
 

 

c2f1e
A_  
(lengt
h:127) 
14% 
i.d. 

 

 

 

 

 

18 10 % n/a PDB 
header:structural 
genomics, unknown 
function 

Chain: A: PDB 
Molecule:protei
n apag; 

PDBTitle:
 solution 
structure 
of apag 
protein 

n/a 

 

d1xq4
a_  
(lengt
h:123) 
14% 
i.d. 

 

 

 

 

 

19 10 % n/a Immunoglobulin-like 
beta-sandwich 

ApaG-like ApaG-like n/a 

 

c2pnw
A_  
(lengt
h:380) 
12% 
i.d. 

 

 

 

 

 

21 10 % n/a PDB 
header:hydrolase 

Chain: A: PDB 
Molecule:mem
brane-bound 
lytic murein 
transglycosylas
e; 

PDBTitle:
 crystal 
structure 
of 
membran
e-bound 
lytic 
murein2 
transglyco
sylase 
from 
agrobacte
rium 
tumefacie
ns 

n/a 

http://www.rcsb.org/pdb/explore/explore.do?structureId=2f1e
http://www.rcsb.org/pdb/explore/explore.do?structureId=2f1e
http://scop.mrc-lmb.cam.ac.uk/scop/search.cgi?search_type=scop&key=d1xq4a_
http://scop.mrc-lmb.cam.ac.uk/scop/search.cgi?search_type=scop&key=d1xq4a_
http://www.rcsb.org/pdb/explore/explore.do?structureId=2pnw
http://www.rcsb.org/pdb/explore/explore.do?structureId=2pnw
file:///F:/Research Stuff/New Folder/8ca6c5a5eeffd8ea/c2f1eA_.alig.html
file:///F:/Research Stuff/New Folder/8ca6c5a5eeffd8ea/c2f1eA_.model.pdb
file:///F:/Research Stuff/New Folder/8ca6c5a5eeffd8ea/c2f1eA_.model.pdb
file:///F:/Research Stuff/New Folder/8ca6c5a5eeffd8ea/c2f1eA_.model.pdb
file:///F:/Research Stuff/New Folder/8ca6c5a5eeffd8ea/d1xq4a_.alig.html
file:///F:/Research Stuff/New Folder/8ca6c5a5eeffd8ea/d1xq4a_.model.pdb
file:///F:/Research Stuff/New Folder/8ca6c5a5eeffd8ea/d1xq4a_.model.pdb
file:///F:/Research Stuff/New Folder/8ca6c5a5eeffd8ea/d1xq4a_.model.pdb
file:///F:/Research Stuff/New Folder/8ca6c5a5eeffd8ea/c2pnwA_.alig.html
file:///F:/Research Stuff/New Folder/8ca6c5a5eeffd8ea/c2pnwA_.model.pdb
file:///F:/Research Stuff/New Folder/8ca6c5a5eeffd8ea/c2pnwA_.model.pdb
file:///F:/Research Stuff/New Folder/8ca6c5a5eeffd8ea/c2pnwA_.model.pdb
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d1xvs
a_  
(lengt
h:124) 
14% 
i.d. 

 

 

 

 

 

23 5 % n/a Immunoglobulin-like 
beta-sandwich 

ApaG-like ApaG-like n/a 

 

c2g5d
A_  
(lengt
h:422) 
6% 
i.d. 

 

 

 

 

 

24 5 % n/a PDB 
header:hydrolase 

Chain: A: PDB 
Molecule:gna3
3; 

PDBTitle:
 crystal 
structure 
of mlta 
from 
neisseria 
gonorrhoe
ae2 
monoclinic 
form 

n/a 

 

d1h8l
a1  
(lengt
h:79) 
18% 
i.d. 

 

 

 

 

 

28 5 % n/a Prealbumin-like Carboxypeptida
se regulatory 
domain-like 

Carboxyp
eptidase 
regulatory 
domain 

n/a 

http://scop.mrc-lmb.cam.ac.uk/scop/search.cgi?search_type=scop&key=d1xvsa_
http://scop.mrc-lmb.cam.ac.uk/scop/search.cgi?search_type=scop&key=d1xvsa_
http://www.rcsb.org/pdb/explore/explore.do?structureId=2g5d
http://www.rcsb.org/pdb/explore/explore.do?structureId=2g5d
http://scop.mrc-lmb.cam.ac.uk/scop/search.cgi?search_type=scop&key=d1h8la1
http://scop.mrc-lmb.cam.ac.uk/scop/search.cgi?search_type=scop&key=d1h8la1
file:///F:/Research Stuff/New Folder/8ca6c5a5eeffd8ea/d1xvsa_.alig.html
file:///F:/Research Stuff/New Folder/8ca6c5a5eeffd8ea/d1xvsa_.model.pdb
file:///F:/Research Stuff/New Folder/8ca6c5a5eeffd8ea/d1xvsa_.model.pdb
file:///F:/Research Stuff/New Folder/8ca6c5a5eeffd8ea/d1xvsa_.model.pdb
file:///F:/Research Stuff/New Folder/8ca6c5a5eeffd8ea/c2g5dA_.alig.html
file:///F:/Research Stuff/New Folder/8ca6c5a5eeffd8ea/c2g5dA_.model.pdb
file:///F:/Research Stuff/New Folder/8ca6c5a5eeffd8ea/c2g5dA_.model.pdb
file:///F:/Research Stuff/New Folder/8ca6c5a5eeffd8ea/c2g5dA_.model.pdb
file:///F:/Research Stuff/New Folder/8ca6c5a5eeffd8ea/d1h8la1.alig.html
file:///F:/Research Stuff/New Folder/8ca6c5a5eeffd8ea/d1h8la1.model.pdb
file:///F:/Research Stuff/New Folder/8ca6c5a5eeffd8ea/d1h8la1.model.pdb
file:///F:/Research Stuff/New Folder/8ca6c5a5eeffd8ea/d1h8la1.model.pdb


 

64 
 

 

 

 

 

c2apn
A_  
(lengt
h:114) 
20% 
i.d. 

 

 

 

 

 

31 5 % n/a PDB 
header:structural 
genomics, unknown 
function 

Chain: A: PDB 
Molecule:protei
n hi1723; 

PDBTitle:
 hi1723 
solution 
structure 

n/a 

 

d1s98
a_  
(lengt
h:97) 
20% 
i.d. 

 

 

 

 

 

31 5 % n/a HesB-like domain HesB-like 
domain 

HesB-like 
domain 

n/a 

 

c1hfiA
_  
(lengt
h:62) 
15% 
i.d. 

 

 

 

 

 

31 5 % n/a PDB 
header:glycoprotein 

Chain: A: PDB 
Molecule:factor 
h, 15th c-
module pair; 

PDBTitle:
 solution 
structure 
of a pair of 
compleme
nt 
modules 
by2 
nuclear 
magnetic 
resonance 

n/a 

http://www.rcsb.org/pdb/explore/explore.do?structureId=2apn
http://www.rcsb.org/pdb/explore/explore.do?structureId=2apn
http://scop.mrc-lmb.cam.ac.uk/scop/search.cgi?search_type=scop&key=d1s98a_
http://scop.mrc-lmb.cam.ac.uk/scop/search.cgi?search_type=scop&key=d1s98a_
http://www.rcsb.org/pdb/explore/explore.do?structureId=1hfi
http://www.rcsb.org/pdb/explore/explore.do?structureId=1hfi
file:///F:/Research Stuff/New Folder/8ca6c5a5eeffd8ea/c2apnA_.alig.html
file:///F:/Research Stuff/New Folder/8ca6c5a5eeffd8ea/c2apnA_.model.pdb
file:///F:/Research Stuff/New Folder/8ca6c5a5eeffd8ea/c2apnA_.model.pdb
file:///F:/Research Stuff/New Folder/8ca6c5a5eeffd8ea/c2apnA_.model.pdb
file:///F:/Research Stuff/New Folder/8ca6c5a5eeffd8ea/d1s98a_.alig.html
file:///F:/Research Stuff/New Folder/8ca6c5a5eeffd8ea/d1s98a_.model.pdb
file:///F:/Research Stuff/New Folder/8ca6c5a5eeffd8ea/d1s98a_.model.pdb
file:///F:/Research Stuff/New Folder/8ca6c5a5eeffd8ea/d1s98a_.model.pdb
file:///F:/Research Stuff/New Folder/8ca6c5a5eeffd8ea/c1hfiA_.alig.html
file:///F:/Research Stuff/New Folder/8ca6c5a5eeffd8ea/c1hfiA_.model.pdb
file:///F:/Research Stuff/New Folder/8ca6c5a5eeffd8ea/c1hfiA_.model.pdb
file:///F:/Research Stuff/New Folder/8ca6c5a5eeffd8ea/c1hfiA_.model.pdb
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Appendix B 

 

 

 

 

PSI-BLAST Results 

 

 

 

 

PSI-Blast results from search using AGCP2B sequence 

pdb|1Q5F|A  Chain A, Nmr Structure Of Type Ivb Pilin (Pils) From Salmonella  

Typhi 

Length=156 

 

 Score = 26.6 bits (57),  Expect = 2.6, Method: Compositional matrix adjust. 

 Identities = 13/38 (34%), Positives = 18/38 (47%), Gaps = 0/38 (0%) 

 

Query  21  SQHETRHGDEVHGQYSLLDSDGHQRIVDYHADHHTGFN  58 

           ++  T  GD   G  +L +S G Q +V       TGFN 

Sbjct  49  AKGMTVSGDPASGSATLWNSWGGQIVVAPDTAGGTGFN  86 

 

pdb|1YI9|A  Chain A, Crystal Structure Analysis Of The Oxidized Form Of The  

M314i Mutant Of Peptidylglycine Alpha-Hydroxylating Monooxygenase 

Length=309 

 

 Score = 24.6 bits (52),  Expect = 7.9, Method: Composition-based stats. 

 Identities = 9/22 (40%), Positives = 13/22 (59%), Gaps = 0/22 (0%) 

 

Query  7    FSYSVHDEHTGDIKSQHETRHG  28 

            F+Y VH  H G + S +  R+G 

Sbjct  191  FAYRVHTHHLGKVVSGYRVRNG  212 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Protein&list_uids=159162874&dopt=GenPept&RID=078CX7C001R&log$=protalign&blast_rank=1
http://www.ncbi.nlm.nih.gov/Structure/cblast/cblast.cgi?blast_RID=078CX7C001R&blast_rep_gi=159162874&hit=159162874&blast_CD_RID=078CX1UJ01R&blast_view=onepair&hsp=0&taxname=none&client=blast&log$=structurealign&blast_rank=1
http://www.ncbi.nlm.nih.gov/Structure/cblast/cblast.cgi?blast_RID=078CX7C001R&blast_rep_gi=83753729&hit=83753729&blast_CD_RID=078CX1UJ01R&blast_view=onepair&hsp=0&taxname=none&client=blast&log$=structurealign&blast_rank=2
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pdb|1SDW|A  Chain A, Reduced (Cu+) Peptidylglycine Alpha-Hydroxylating 

Monooxygenase  

With Bound Peptide And Dioxygen 

Length=314 

 

 Score = 24.6 bits (52),  Expect = 7.9, Method: Composition-based stats. 

 Identities = 9/22 (40%), Positives = 13/22 (59%), Gaps = 0/22 (0%) 

 

Query  7    FSYSVHDEHTGDIKSQHETRHG  28 

            F+Y VH  H G + S +  R+G 

Sbjct  195  FAYRVHTHHLGKVVSGYRVRNG  216 

 

 

pdb|2VDU|B  Chain B, Structure Of Trm8-Trm82, The Yeast Trna M7g Methylation  

Complex 

 pdb|2VDU|D  Chain D, Structure Of Trm8-Trm82, The Yeast Trna M7g Methylation  

Complex 

Length=450 

 

 Score = 24.6 bits (52),  Expect = 8.3, Method: Composition-based stats. 

 Identities = 18/50 (36%), Positives = 24/50 (48%), Gaps = 8/50 (16%) 

 

Query  13   DEHTGDIKSQHETRHGDE-VHGQYSLL-------DSDGHQRIVDYHADHH  54 

            D ++ DI S  E +   E + G  S+L       DSDGHQ I+    D H 

Sbjct  172  DVYSIDINSIPEEKFTQEPILGHVSMLTDVHLIKDSDGHQFIITSDRDEH  221 

 

 

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Protein&list_uids=49258967&dopt=GenPept&RID=078CX7C001R&log$=protalign&blast_rank=3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Protein&list_uids=163310991&dopt=GenPept&RID=078CX7C001R&log$=protalign&blast_rank=4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Protein&list_uids=163310992&dopt=GenPept&RID=078CX7C001R&log$=protalign&blast_rank=4
http://www.ncbi.nlm.nih.gov/Structure/cblast/cblast.cgi?blast_RID=078CX7C001R&blast_rep_gi=49258967&hit=49258967&blast_CD_RID=078CX1UJ01R&blast_view=onepair&hsp=0&taxname=none&client=blast&log$=structurealign&blast_rank=3
http://www.ncbi.nlm.nih.gov/Structure/cblast/cblast.cgi?blast_RID=078CX7C001R&blast_rep_gi=163310991&hit=163310991&blast_CD_RID=078CX1UJ01R&blast_view=onepair&hsp=0&taxname=none&client=blast&log$=structurealign&blast_rank=4
http://www.ncbi.nlm.nih.gov/Structure/cblast/cblast.cgi?blast_RID=078CX7C001R&blast_rep_gi=163310991&hit=163310992&blast_CD_RID=078CX1UJ01R&blast_view=onepair&hsp=0&taxname=none&client=blast&log$=structurealign&blast_rank=4
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pdb|1YIP|A  Chain A, Oxidized Peptidylglycine Alpha-Hydroxylating Monooxygenase  

(Phm) In A New Crystal Form 

Length=311 

 

 Score = 24.6 bits (52),  Expect = 8.3, Method: Composition-based stats. 

 Identities = 9/22 (40%), Positives = 13/22 (59%), Gaps = 0/22 (0%) 

 

Query  7    FSYSVHDEHTGDIKSQHETRHG  28 

            F+Y VH  H G + S +  R+G 

Sbjct  193  FAYRVHTHHLGKVVSGYRVRNG  214 

 

 

pdb|1OPM|A  Chain A, Oxidized (Cu2+) Peptidylglycine Alpha-Hydroxylating  

Monooxygenase (Phm) With Bound Substrate 

 pdb|3PHM|A  Chain A, Reduced (Cu+) Peptidylglycine Alpha-Hydroxylating 

Monooxygenase  

(Phm) 

 pdb|1PHM|A  Chain A, Peptidylglycine Alpha-Hydroxylating Monooxygenase (Phm)  

From Rat 

Length=310 

 

 Score = 24.6 bits (52),  Expect = 8.4, Method: Composition-based stats. 

 Identities = 9/22 (40%), Positives = 13/22 (59%), Gaps = 0/22 (0%) 

 

Query  7    FSYSVHDEHTGDIKSQHETRHG  28 

            F+Y VH  H G + S +  R+G 

Sbjct  193  FAYRVHTHHLGKVVSGYRVRNG  214 

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Protein&list_uids=83753730&dopt=GenPept&RID=078CX7C001R&log$=protalign&blast_rank=5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Protein&list_uids=6137399&dopt=GenPept&RID=078CX7C001R&log$=protalign&blast_rank=6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Protein&list_uids=6137406&dopt=GenPept&RID=078CX7C001R&log$=protalign&blast_rank=6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Protein&list_uids=157833491&dopt=GenPept&RID=078CX7C001R&log$=protalign&blast_rank=6
http://www.ncbi.nlm.nih.gov/Structure/cblast/cblast.cgi?blast_RID=078CX7C001R&blast_rep_gi=83753730&hit=83753730&blast_CD_RID=078CX1UJ01R&blast_view=onepair&hsp=0&taxname=none&client=blast&log$=structurealign&blast_rank=5
http://www.ncbi.nlm.nih.gov/Structure/cblast/cblast.cgi?blast_RID=078CX7C001R&blast_rep_gi=6137399&hit=6137399&blast_CD_RID=078CX1UJ01R&blast_view=onepair&hsp=0&taxname=none&client=blast&log$=structurealign&blast_rank=6
http://www.ncbi.nlm.nih.gov/Structure/cblast/cblast.cgi?blast_RID=078CX7C001R&blast_rep_gi=6137399&hit=6137406&blast_CD_RID=078CX1UJ01R&blast_view=onepair&hsp=0&taxname=none&client=blast&log$=structurealign&blast_rank=6
http://www.ncbi.nlm.nih.gov/Structure/cblast/cblast.cgi?blast_RID=078CX7C001R&blast_rep_gi=6137399&hit=157833491&blast_CD_RID=078CX1UJ01R&blast_view=onepair&hsp=0&taxname=none&client=blast&log$=structurealign&blast_rank=6
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pdb|1YJK|A  Chain A, Reduced Peptidylglycine Alpha-Hydroxylating Monooxygenase  

(Phm) In A New Crystal Form 

Length=306 

 

 Score = 24.6 bits (52),  Expect = 8.8, Method: Composition-based stats. 

 Identities = 9/22 (40%), Positives = 13/22 (59%), Gaps = 0/22 (0%) 

 

Query  7    FSYSVHDEHTGDIKSQHETRHG  28 

            F+Y VH  H G + S +  R+G 

Sbjct  188  FAYRVHTHHLGKVVSGYRVRNG  209 

 

 

pdb|1YJL|A  Chain A, Reduced Peptidylglycine Alpha-Hydroxylating Monooxygenase  

In A New Crystal Form 

Length=306 

 

 Score = 24.6 bits (52),  Expect = 8.8, Method: Composition-based stats. 

 Identities = 9/22 (40%), Positives = 13/22 (59%), Gaps = 0/22 (0%) 

 

Query  7    FSYSVHDEHTGDIKSQHETRHG  28 

            F+Y VH  H G + S +  R+G 

Sbjct  188  FAYRVHTHHLGKVVSGYRVRNG  209 

 

 

 

 

  

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Protein&list_uids=83753731&dopt=GenPept&RID=078CX7C001R&log$=protalign&blast_rank=7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Protein&list_uids=83753732&dopt=GenPept&RID=078CX7C001R&log$=protalign&blast_rank=8
http://www.ncbi.nlm.nih.gov/Structure/cblast/cblast.cgi?blast_RID=078CX7C001R&blast_rep_gi=83753731&hit=83753731&blast_CD_RID=078CX1UJ01R&blast_view=onepair&hsp=0&taxname=none&client=blast&log$=structurealign&blast_rank=7
http://www.ncbi.nlm.nih.gov/Structure/cblast/cblast.cgi?blast_RID=078CX7C001R&blast_rep_gi=83753732&hit=83753732&blast_CD_RID=078CX1UJ01R&blast_view=onepair&hsp=0&taxname=none&client=blast&log$=structurealign&blast_rank=8
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pdb|2JIX|B  Chain B, Crystal Structure Of Abt-007 Fab Fragment With The Soluble  

Domain Of Epo Receptor 

 pdb|2JIX|C  Chain C, Crystal Structure Of Abt-007 Fab Fragment With The Soluble  

Domain Of Epo Receptor 

 pdb|2JIX|E  Chain E, Crystal Structure Of Abt-007 Fab Fragment With The Soluble  

Domain Of Epo Receptor 

Length=225 

 

 Score = 24.6 bits (52),  Expect = 9.0, Method: Composition-based stats. 

 Identities = 8/14 (57%), Positives = 9/14 (64%), Gaps = 0/14 (0%) 

 

Query  1   APANYEFSYSVHDE  14 

            P NY FSY + DE 

Sbjct  49  GPGNYSFSYQLEDE  62 

 

 

pdb|1ERN|A  Chain A, Native Structure Of The Extracellular Domain Of 

Erythropoietin  

(Epo) Receptor [ebp] 

 pdb|1ERN|B  Chain B, Native Structure Of The Extracellular Domain Of 

Erythropoietin  

(Epo) Receptor [ebp] 

Length=213 

 

 Score = 24.6 bits (52),  Expect = 9.0, Method: Composition-based stats. 

 Identities = 8/14 (57%), Positives = 9/14 (64%), Gaps = 0/14 (0%) 

 

Query  1   APANYEFSYSVHDE  14 

            P NY FSY + DE 

Sbjct  40  GPGNYSFSYQLEDE  53 

 

 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Protein&list_uids=152149143&dopt=GenPept&RID=078CX7C001R&log$=protalign&blast_rank=9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Protein&list_uids=152149144&dopt=GenPept&RID=078CX7C001R&log$=protalign&blast_rank=9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Protein&list_uids=152149146&dopt=GenPept&RID=078CX7C001R&log$=protalign&blast_rank=9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Protein&list_uids=6980762&dopt=GenPept&RID=078CX7C001R&log$=protalign&blast_rank=10
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Protein&list_uids=6980763&dopt=GenPept&RID=078CX7C001R&log$=protalign&blast_rank=10
http://www.ncbi.nlm.nih.gov/Structure/cblast/cblast.cgi?blast_RID=078CX7C001R&blast_rep_gi=152149143&hit=152149143&blast_CD_RID=078CX1UJ01R&blast_view=onepair&hsp=0&taxname=none&client=blast&log$=structurealign&blast_rank=9
http://www.ncbi.nlm.nih.gov/Structure/cblast/cblast.cgi?blast_RID=078CX7C001R&blast_rep_gi=152149143&hit=152149144&blast_CD_RID=078CX1UJ01R&blast_view=onepair&hsp=0&taxname=none&client=blast&log$=structurealign&blast_rank=9
http://www.ncbi.nlm.nih.gov/Structure/cblast/cblast.cgi?blast_RID=078CX7C001R&blast_rep_gi=152149143&hit=152149146&blast_CD_RID=078CX1UJ01R&blast_view=onepair&hsp=0&taxname=none&client=blast&log$=structurealign&blast_rank=9
http://www.ncbi.nlm.nih.gov/Structure/cblast/cblast.cgi?blast_RID=078CX7C001R&blast_rep_gi=6980762&hit=6980762&blast_CD_RID=078CX1UJ01R&blast_view=onepair&hsp=0&taxname=none&client=blast&log$=structurealign&blast_rank=10
http://www.ncbi.nlm.nih.gov/Structure/cblast/cblast.cgi?blast_RID=078CX7C001R&blast_rep_gi=6980762&hit=6980763&blast_CD_RID=078CX1UJ01R&blast_view=onepair&hsp=0&taxname=none&client=blast&log$=structurealign&blast_rank=10
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pdb|1EBP|A  Chain A, Complex Between The Extracellular Domain Of Erythropoietin  

(Epo) Receptor [ebp] And An Agonist Peptide [emp1] 

 pdb|1EBP|B  Chain B, Complex Between The Extracellular Domain Of Erythropoietin  

(Epo) Receptor [ebp] And An Agonist Peptide [emp1] 

Length=211 

 

 Score = 24.6 bits (52),  Expect = 9.0, Method: Composition-based stats. 

 Identities = 8/14 (57%), Positives = 9/14 (64%), Gaps = 0/14 (0%) 

 

Query  1   APANYEFSYSVHDE  14 

            P NY FSY + DE 

Sbjct  40  GPGNYSFSYQLEDE  53 

 

 

 

pdb|1EBA|A  Chain A, Complex Between The Extracellular Domain Of Erythropoietin  

(Epo) Receptor [ebp] And An Inactive Peptide [emp33]  

Contains 3,5-Dibromotyrosine In Position 4 (Denoted Dby) 

 pdb|1EBA|B  Chain B, Complex Between The Extracellular Domain Of Erythropoietin  

(Epo) Receptor [ebp] And An Inactive Peptide [emp33]  

Contains 3,5-Dibromotyrosine In Position 4 (Denoted Dby) 

Length=215 

 

 Score = 24.6 bits (52),  Expect = 9.0, Method: Composition-based stats. 

 Identities = 8/14 (57%), Positives = 9/14 (64%), Gaps = 0/14 (0%) 

 

Query  1   APANYEFSYSVHDE  14 

            P NY FSY + DE 

Sbjct  40  GPGNYSFSYQLEDE  53 

 

 

 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Protein&list_uids=2392299&dopt=GenPept&RID=078CX7C001R&log$=protalign&blast_rank=11
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Protein&list_uids=2392300&dopt=GenPept&RID=078CX7C001R&log$=protalign&blast_rank=11
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Protein&list_uids=3891371&dopt=GenPept&RID=078CX7C001R&log$=protalign&blast_rank=12
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Protein&list_uids=4140016&dopt=GenPept&RID=078CX7C001R&log$=protalign&blast_rank=12
http://www.ncbi.nlm.nih.gov/Structure/cblast/cblast.cgi?blast_RID=078CX7C001R&blast_rep_gi=2392299&hit=2392299&blast_CD_RID=078CX1UJ01R&blast_view=onepair&hsp=0&taxname=none&client=blast&log$=structurealign&blast_rank=11
http://www.ncbi.nlm.nih.gov/Structure/cblast/cblast.cgi?blast_RID=078CX7C001R&blast_rep_gi=2392299&hit=2392300&blast_CD_RID=078CX1UJ01R&blast_view=onepair&hsp=0&taxname=none&client=blast&log$=structurealign&blast_rank=11
http://www.ncbi.nlm.nih.gov/Structure/cblast/cblast.cgi?blast_RID=078CX7C001R&blast_rep_gi=3891371&hit=3891371&blast_CD_RID=078CX1UJ01R&blast_view=onepair&hsp=0&taxname=none&client=blast&log$=structurealign&blast_rank=12
http://www.ncbi.nlm.nih.gov/Structure/cblast/cblast.cgi?blast_RID=078CX7C001R&blast_rep_gi=3891371&hit=4140016&blast_CD_RID=078CX1UJ01R&blast_view=onepair&hsp=0&taxname=none&client=blast&log$=structurealign&blast_rank=12
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pdb|2GRY|A  Chain A, Crystal Structure Of The Human Kif2 Motor Domain In  

Complex With Adp 

Length=420 

 

 Score = 24.6 bits (52),  Expect = 9.6, Method: Composition-based stats. 

 Identities = 12/31 (38%), Positives = 19/31 (61%), Gaps = 1/31 (3%) 

 

Query  26   RHGDEVHGQYSLLDSDGHQRIVDY-HADHHT  55 

            R   ++HG++SL+D  G++R  D   AD  T 

Sbjct  311  RRKGKLHGKFSLIDLAGNERGADTSSADRQT  341 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Protein&list_uids=109158014&dopt=GenPept&RID=078CX7C001R&log$=protalign&blast_rank=13
http://www.ncbi.nlm.nih.gov/Structure/cblast/cblast.cgi?blast_RID=078CX7C001R&blast_rep_gi=109158014&hit=109158014&blast_CD_RID=078CX1UJ01R&blast_view=onepair&hsp=0&taxname=none&client=blast&log$=structurealign&blast_rank=13
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Appendix C 

 

 

 

Output information from AutoGrid for various mutations attempted 

 

 

 
Grid Atom Minimum    Maximum 

Map  Type Energy     Energy  

  (kcal/mol) (kcal/mol) 

____ ____ _____________ _____________ 

 1  C    -0.70  2.01e+05 

 2  HD    -0.68  1.13e+05 

 3  OA    -1.32  2.00e+05 

 4  N    -0.67  2.00e+05 

 5  e   -34.21  2.91e+01 Electrostatic Potential 

 6  d     0.00  1.02e+00 Desolvation Potential 

Fig. 26 Typical results from AutoGrid energy calculations for AGCP2B_M1. Minimum and 

maximum energy estimations are reported in kcal/mol. Minimum van der Waals’ energies and 

hydrogen bonding energies are typically -10 to -1 kcal/mol, while maximum van der Waals’ energies 

are clamped at +105 kcal/mol. Electrostatic potentials tend to range from around -103 to +103 

kcal/mol/e. C represents carbon; HD represents hydrogen; OA represents oxygen; N represents a 

nitrogen that cannot accept hydrogen bonds.  

 
Grid Atom Minimum    Maximum 

Map  Type Energy     Energy  

  (kcal/mol) (kcal/mol) 

____ ____ _____________ _____________ 

 1  C    -0.75  2.02e+05 

 2  HD    -0.69  1.09e+05 

 3  OA    -0.83  2.00e+05 

 4  N    -0.73  2.01e+05 

 5  e   -40.66  3.55e+01 Electrostatic Potential 

 6  d     0.00  1.02e+00 Desolvation Potential 

Fig. 27 Typical results from AutoGrid energy calculations for AGCP2B_M2. Minimum and 

maximum energy estimations are reported in kcal/mol. Minimum van der Waals’ energies and 

hydrogen bonding energies are typically -10 to -1 kcal/mol, while maximum van der Waals’ energies 

are clamped at +105 kcal/mol. Electrostatic potentials tend to range from around -103 to +103 

kcal/mol/e. C represents carbon; HD represents hydrogen; OA represents oxygen; N represents a 

nitrogen that cannot accept hydrogen bonds.  
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Grid Atom Minimum    Maximum 

Map  Type Energy     Energy  

  (kcal/mol) (kcal/mol) 

____ ____ _____________ _____________ 

 1  C    -0.77  2.03e+05 

 2  HD    -0.68  1.12e+05 

 3  OA    -0.85  2.00e+05 

 4  N    -0.75  2.00e+05 

 5  e   -34.31  4.44e+01 Electrostatic Potential 

 6  d     0.00  1.04e+00 Desolvation Potential 

Fig. 28 Typical results from AutoGrid energy calculations for AGCP2B_M3. Minimum and 

maximum energy estimations are reported in kcal/mol. Minimum van der Waals’ energies and 

hydrogen bonding energies are typically -10 to -1 kcal/mol, while maximum van der Waals’ energies 

are clamped at +105 kcal/mol. Electrostatic potentials tend to range from around -103 to +103 

kcal/mol/e. C represents carbon; HD represents hydrogen; OA represents oxygen; N represents a 

nitrogen that cannot accept hydrogen bonds.  

 

 
Grid Atom Minimum    Maximum 

Map  Type Energy     Energy  

  (kcal/mol) (kcal/mol) 

____ ____ _____________ _____________ 

 1  C    -0.76  2.01e+05 

 2  HD    -0.68  1.08e+05 

 3  OA    -0.84  2.00e+05 

 4  N    -0.75  2.00e+05 

 5  e   -36.92  3.20e+01 Electrostatic Potential 

 6  d     0.00  1.06e+00 Desolvation Potential  
Fig. 29 Typical results from AutoGrid energy calculations for AGCP2B_M4. Minimum and 

maximum energy estimations are reported in kcal/mol. Minimum van der Waals’ energies and 

hydrogen bonding energies are typically -10 to -1 kcal/mol, while maximum van der Waals’ energies 

are clamped at +105 kcal/mol. Electrostatic potentials tend to range from around -103 to +103 

kcal/mol/e. C represents carbon; HD represents hydrogen; OA represents oxygen; N represents a 

nitrogen that cannot accept hydrogen bonds.  

 

Grid Atom Minimum    Maximum 

Map  Type Energy     Energy  

  (kcal/mol) (kcal/mol) 

____ ____ _____________ _____________ 

 1  C    -0.67  2.01e+05 

 2  HD    -0.67  1.10e+05 

 3  OA    -0.74  2.00e+05 

 4  N    -0.65  2.00e+05 

 5  e   -37.88  4.38e+01 Electrostatic Potential 

 6  d     0.00  9.28e-01 Desolvation Potential 

Fig. 30 Typical results from AutoGrid energy calculations for AGCP2B_M5. Minimum and 

maximum energy estimations are reported in kcal/mol. Minimum van der Waals’ energies and 

hydrogen bonding energies are typically -10 to -1 kcal/mol, while maximum van der Waals’ energies 

are clamped at +105 kcal/mol. Electrostatic potentials tend to range from around -103 to +103 

kcal/mol/e. C represents carbon; HD represents hydrogen; OA represents oxygen; N represents a 

nitrogen that cannot accept hydrogen bonds.  
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Grid Atom Minimum    Maximum 

Map  Type Energy     Energy  

  (kcal/mol) (kcal/mol) 

____ ____ _____________ _____________ 

 1  C    -0.81  2.01e+05 

 2  HD    -0.68  1.10e+05 

 3  OA    -0.87  2.00e+05 

 4  N    -0.76  2.00e+05 

 5  e   -30.97  4.23e+01 Electrostatic Potential 

 6  d     0.00  1.08e+00 Desolvation Potential 

Fig. 31 Typical results from AutoGrid energy calculations for AGCP2B_M6. Minimum and 

maximum energy estimations are reported in kcal/mol. Minimum van der Waals’ energies and 

hydrogen bonding energies are typically -10 to -1 kcal/mol, while maximum van der Waals’ energies 

are clamped at +105 kcal/mol. Electrostatic potentials tend to range from around -103 to +103 

kcal/mol/e. C represents carbon; HD represents hydrogen; OA represents oxygen; N represents a 

nitrogen that cannot accept hydrogen bonds.  

 
Grid Atom Minimum    Maximum 

Map  Type Energy     Energy  

  (kcal/mol) (kcal/mol) 

____ ____ _____________ _____________ 

 1  C    -0.71  2.03e+05 

 2  HD    -0.69  1.09e+05 

 3  OA    -0.89  2.00e+05 

 4  N    -0.71  2.00e+05 

 5  e   -36.97  4.01e+01 Electrostatic Potential 

 6  d     0.00  1.04e+00 Desolvation Potential 

Fig. 32 Typical results from AutoGrid energy calculations for AGCP2B_M7. Minimum and 

maximum energy estimations are reported in kcal/mol. Minimum van der Waals’ energies and 

hydrogen bonding energies are typically -10 to -1 kcal/mol, while maximum van der Waals’ energies 

are clamped at +105 kcal/mol. Electrostatic potentials tend to range from around -103 to +103 

kcal/mol/e. C represents carbon; HD represents hydrogen; OA represents oxygen; N represents a 

nitrogen that cannot accept hydrogen bonds.  
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Appendix D 

 

 

 

Clustering Histogram data for AutoDock runs including the mutated AGCP2B 
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Table. 5 Clustering histogram for AGCP2B_M1 Run 
Clus | Lowest    | Run | Mean      | Num | Histogram                           

-ter | Binding   |     | Binding   | in  |                                     

Rank | Energy    |     | Energy    | Clus|    5    10   15   20   25   

30   

_____|___________|_____|___________|_____|____:____|____:____|____:____

|____ 

   1 |     +0.70 |   7 |     +0.70 |   1 |# 

   2 |     +2.42 |  14 |     +2.42 |   1 |# 

   3 |     +3.21 |  43 |     +3.21 |   1 |# 

   4 |     +3.31 |  19 |     +3.31 |   1 |# 

   5 |     +3.40 |  37 |     +3.40 |   1 |# 

   6 |     +3.41 |  17 |     +3.41 |   1 |# 

   7 |     +3.61 |   2 |     +3.61 |   1 |# 

   8 |     +3.62 |  47 |     +4.49 |   2 |## 

   9 |     +3.66 |  41 |     +3.66 |   1 |# 

  10 |     +3.69 |   8 |     +3.69 |   1 |# 

  11 |     +4.03 |  20 |     +4.03 |   1 |# 

  12 |     +4.14 |  15 |     +4.14 |   1 |# 

  13 |     +4.21 |  32 |     +4.21 |   1 |# 

  14 |     +4.27 |   4 |     +4.27 |   1 |# 

  15 |     +4.32 |  38 |     +4.32 |   1 |# 

  16 |     +4.40 |   9 |     +4.40 |   1 |# 

  17 |     +4.45 |  11 |     +4.45 |   1 |# 

  18 |     +4.73 |  13 |     +4.73 |   1 |# 

  19 |     +4.77 |  26 |     +4.77 |   1 |# 

  20 |     +4.98 |  12 |     +4.98 |   1 |# 

  21 |     +5.03 |  42 |     +5.03 |   1 |# 

  22 |     +5.14 |  25 |     +5.38 |   2 |## 

  23 |     +5.16 |  18 |     +5.16 |   1 |# 

  24 |     +5.31 |  50 |     +5.31 |   1 |# 

  25 |     +5.31 |  48 |     +5.31 |   1 |# 

  26 |     +5.44 |  27 |     +5.44 |   1 |# 

  27 |     +5.67 |  10 |     +5.67 |   1 |# 

  28 |     +5.73 |  22 |     +5.73 |   1 |# 

  29 |     +5.80 |   1 |     +5.80 |   1 |# 

  30 |     +5.87 |  49 |     +5.87 |   1 |# 

  31 |     +6.00 |  46 |     +6.00 |   1 |# 

  32 |     +6.05 |  45 |     +6.05 |   1 |# 

  33 |     +6.10 |   3 |     +6.10 |   1 |# 

  34 |     +6.15 |   5 |     +6.15 |   1 |# 

  35 |     +6.18 |  21 |     +6.18 |   1 |# 

  36 |     +6.19 |  23 |     +6.19 |   1 |# 

  37 |     +6.31 |  39 |     +6.31 |   1 |# 

  38 |     +6.68 |  30 |     +6.68 |   1 |# 

  39 |     +6.72 |  33 |     +6.72 |   1 |# 

  40 |     +6.79 |  35 |     +6.79 |   1 |# 

  41 |     +6.88 |  40 |     +6.88 |   1 |# 

  42 |     +6.89 |  34 |     +6.89 |   1 |# 

  43 |     +6.94 |   6 |     +6.94 |   1 |# 

  44 |     +6.95 |  24 |     +6.95 |   1 |# 

  45 |     +7.14 |  36 |     +7.14 |   1 |# 

  46 |     +7.15 |  16 |     +7.15 |   1 |# 

  47 |     +7.62 |  44 |     +7.62 |   1 |# 

  48 |     +8.75 |  31 |     +8.75 |   1 |# 

Table 5. Clustering histogram showing the results of the AutoDock run for the first mutation. 
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Table. 6 Clustering histogram for AGCP2B_M2 Run 
Clus | Lowest    | Run | Mean      | Num | Histogram                           

-ter | Binding   |     | Binding   | in  |                                     

Rank | Energy    |     | Energy    | Clus|    5    10   15   20   25   

30    

_____|___________|_____|___________|_____|____:____|____:____|____:____

|____ 

   1 |     +1.91 |  21 |     +1.91 |   1 |# 

   2 |     +2.13 |  11 |     +2.23 |   2 |## 

   3 |     +2.98 |  37 |     +2.98 |   1 |# 

   4 |     +3.22 |  35 |     +4.03 |   2 |## 

   5 |     +3.23 |   4 |     +3.23 |   1 |# 

   6 |     +3.23 |  27 |     +3.23 |   1 |# 

   7 |     +3.46 |  32 |     +4.09 |   2 |## 

   8 |     +3.82 |  50 |     +4.17 |   2 |## 

   9 |     +3.95 |  26 |     +3.95 |   1 |# 

  10 |     +3.99 |   6 |     +3.99 |   1 |# 

  11 |     +4.02 |   9 |     +4.52 |   2 |## 

  12 |     +4.07 |  44 |     +4.07 |   1 |# 

  13 |     +4.14 |  39 |     +4.14 |   1 |# 

  14 |     +4.14 |   5 |     +4.14 |   1 |# 

  15 |     +4.16 |  19 |     +4.16 |   1 |# 

  16 |     +4.29 |  40 |     +4.29 |   1 |# 

  17 |     +4.44 |  48 |     +4.44 |   1 |# 

  18 |     +4.47 |   2 |     +4.47 |   1 |# 

  19 |     +4.49 |  16 |     +4.49 |   1 |# 

  20 |     +4.51 |  33 |     +4.51 |   1 |# 

  21 |     +4.70 |  17 |     +4.70 |   1 |# 

  22 |     +4.72 |   7 |     +4.93 |   2 |## 

  23 |     +4.75 |  34 |     +4.75 |   1 |# 

  24 |     +4.91 |  13 |     +4.91 |   1 |# 

  25 |     +5.18 |  18 |     +5.18 |   1 |# 

  26 |     +5.25 |   1 |     +5.25 |   1 |# 

  27 |     +5.27 |  24 |     +5.65 |   2 |## 

  28 |     +5.30 |  12 |     +5.30 |   1 |# 

  29 |     +5.31 |  28 |     +5.53 |   2 |## 

  30 |     +5.36 |  25 |     +5.36 |   1 |# 

  31 |     +5.37 |  43 |     +5.37 |   1 |# 

  32 |     +5.49 |   8 |     +5.49 |   1 |# 

  33 |     +5.94 |  47 |     +5.94 |   1 |# 

  34 |     +6.14 |  46 |     +6.14 |   1 |# 

  35 |     +6.21 |  22 |     +6.21 |   1 |# 

  36 |     +6.29 |  10 |     +6.29 |   1 |# 

  37 |     +6.42 |  38 |     +6.42 |   1 |# 

  38 |     +6.56 |  15 |     +6.56 |   1 |# 

  39 |     +6.62 |  23 |     +6.62 |   1 |# 

  40 |     +7.28 |  45 |     +7.28 |   1 |# 

  41 |     +7.78 |  20 |     +7.78 |   1 |# 

  42 |     +8.15 |  41 |     +8.15 |   1 |# 

Table 6. Clustering histogram showing the results of the AutoDock run for the second mutation. 
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Table. 7 Clustering histogram for AGCP2B_M3 Run 
Clus | Lowest    | Run | Mean      | Num | Histogram                           

-ter | Binding   |     | Binding   | in  |                                     

Rank | Energy    |     | Energy    | Clus|    5    10   15   20   25   

30    

_____|___________|_____|___________|_____|____:____|____:____|____:____

|_____ 

   1 |     +1.21 |  10 |     +1.21 |   1 |# 

   2 |     +1.66 |  27 |     +2.93 |   2 |## 

   3 |     +1.98 |  21 |     +1.98 |   1 |# 

   4 |     +1.98 |  31 |     +1.98 |   1 |# 

   5 |     +2.60 |   4 |     +2.60 |   1 |# 

   6 |     +2.83 |  41 |     +2.83 |   1 |# 

   7 |     +2.86 |  26 |     +2.86 |   1 |# 

   8 |     +2.91 |  47 |     +2.91 |   1 |# 

   9 |     +2.94 |  45 |     +2.94 |   1 |# 

  10 |     +3.01 |  24 |     +3.01 |   1 |# 

  11 |     +3.04 |  38 |     +3.04 |   1 |# 

  12 |     +3.12 |  14 |     +3.12 |   1 |# 

  13 |     +3.45 |  42 |     +3.45 |   1 |# 

  14 |     +3.48 |  36 |     +3.48 |   1 |# 

  15 |     +3.60 |  46 |     +3.60 |   1 |# 

  16 |     +3.61 |  37 |     +3.61 |   1 |# 

  17 |     +3.70 |  30 |     +3.70 |   1 |# 

  18 |     +3.75 |  11 |     +3.75 |   1 |# 

  19 |     +3.77 |   2 |     +4.38 |   2 |## 

  20 |     +3.79 |  25 |     +3.79 |   1 |# 

  21 |     +3.90 |  50 |     +3.90 |   1 |# 

  22 |     +3.98 |  28 |     +3.98 |   1 |# 

  23 |     +4.04 |  34 |     +4.04 |   1 |# 

  24 |     +4.10 |   9 |     +4.10 |   1 |# 

  25 |     +4.16 |  32 |     +4.16 |   1 |# 

  26 |     +4.24 |  23 |     +4.24 |   1 |# 

  27 |     +4.50 |   8 |     +4.50 |   1 |# 

  28 |     +4.51 |  15 |     +4.51 |   1 |# 

  29 |     +4.58 |  17 |     +4.58 |   1 |# 

  30 |     +4.59 |  49 |     +4.59 |   1 |# 

  31 |     +4.65 |  18 |     +4.65 |   1 |# 

  32 |     +4.67 |  12 |     +4.67 |   1 |# 

  33 |     +4.69 |  35 |     +4.69 |   1 |# 

  34 |     +4.82 |  29 |     +4.82 |   1 |# 

  35 |     +4.88 |   1 |     +4.88 |   1 |# 

  36 |     +4.95 |   6 |     +4.95 |   1 |# 

  37 |     +4.96 |  40 |     +4.96 |   1 |# 

  38 |     +4.98 |  44 |     +4.98 |   1 |# 

  39 |     +5.32 |  43 |     +5.32 |   1 |# 

  40 |     +5.36 |  20 |     +5.36 |   1 |# 

  41 |     +5.47 |  39 |     +5.47 |   1 |# 

  42 |     +5.55 |  48 |     +5.55 |   1 |# 

  43 |     +5.57 |   3 |     +5.57 |   1 |# 

  44 |     +5.60 |  33 |     +5.60 |   1 |# 

  45 |     +5.61 |  22 |     +5.61 |   1 |# 

  46 |     +6.11 |   7 |     +6.11 |   1 |# 

  47 |     +6.69 |   5 |     +6.69 |   1 |# 

  48 |     +6.92 |  13 |     +6.92 |   1 |# 

Table 7. Clustering histogram showing the results of the AutoDock run for the third mutation. 
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Table. 8 Clustering histogram for AGCP2B_M4 Run 
Clus | Lowest    | Run | Mean      | Num | Histogram                           

-ter | Binding   |     | Binding   | in  |                                     

Rank | Energy    |     | Energy    | Clus|    5    10   15   20   25   

30    

_____|___________|_____|___________|_____|____:____|____:____|____:____

|____ 

   1 |     +0.96 |  39 |     +1.49 |   2 |## 

   2 |     +0.99 |   3 |     +0.99 |   1 |# 

   3 |     +1.34 |  29 |     +2.91 |   3 |### 

   4 |     +1.52 |  45 |     +1.52 |   1 |# 

   5 |     +2.28 |  26 |     +3.81 |   2 |## 

   6 |     +2.31 |  41 |     +2.31 |   1 |# 

   7 |     +2.43 |  14 |     +3.98 |   3 |### 

   8 |     +2.73 |  28 |     +2.89 |   2 |## 

   9 |     +2.93 |  50 |     +2.93 |   1 |# 

  10 |     +3.35 |  23 |     +3.35 |   1 |# 

  11 |     +3.58 |  21 |     +3.58 |   1 |# 

  12 |     +3.58 |   7 |     +3.58 |   1 |# 

  13 |     +3.59 |  36 |     +3.59 |   1 |# 

  14 |     +3.71 |  11 |     +3.71 |   1 |# 

  15 |     +3.86 |  42 |     +3.86 |   1 |# 

  16 |     +3.96 |  17 |     +4.92 |   2 |## 

  17 |     +4.15 |  10 |     +4.15 |   1 |# 

  18 |     +4.25 |  18 |     +4.73 |   2 |## 

  19 |     +4.47 |  12 |     +4.47 |   1 |# 

  20 |     +4.64 |   1 |     +4.64 |   1 |# 

  21 |     +4.66 |  34 |     +4.66 |   1 |# 

  22 |     +4.69 |  40 |     +4.69 |   1 |# 

  23 |     +4.74 |  27 |     +4.74 |   1 |# 

  24 |     +4.87 |  37 |     +4.87 |   1 |# 

  25 |     +5.02 |  19 |     +5.02 |   1 |# 

  26 |     +5.10 |  31 |     +5.10 |   1 |# 

  27 |     +5.51 |   4 |     +5.51 |   1 |# 

  28 |     +5.55 |  13 |     +5.55 |   1 |# 

  29 |     +5.60 |  25 |     +5.60 |   1 |# 

  30 |     +5.60 |  43 |     +5.60 |   1 |# 

  31 |     +5.78 |   5 |     +5.78 |   1 |# 

  32 |     +5.99 |  49 |     +5.99 |   1 |# 

  33 |     +6.09 |   2 |     +6.09 |   1 |# 

  34 |     +6.28 |   6 |     +6.28 |   1 |# 

  35 |     +6.43 |   9 |     +6.43 |   1 |# 

  36 |     +6.46 |  15 |     +6.46 |   1 |# 

  37 |     +6.48 |  48 |     +6.48 |   1 |# 

  38 |     +6.63 |  22 |     +6.63 |   1 |# 

  39 |     +6.70 |  24 |     +6.70 |   1 |# 

  40 |     +7.65 |   8 |     +7.65 |   1 |# 

  41 |     +7.84 |  16 |     +7.84 |   1 |# 

Table 8. Clustering histogram showing the results of the AutoDock run for the fourth mutation. 
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Table. 9 Clustering histogram for AGCP2B_M5 Run 
Clus | Lowest    | Run | Mean      | Num | Histogram                           

-ter | Binding   |     | Binding   | in  |                                     

Rank | Energy    |     | Energy    | Clus|    5    10   15   20   25   

30    

_____|___________|_____|___________|_____|____:____|____:____|____:____

|____ 

   1 |     +1.82 |  38 |     +1.82 |   1 |# 

   2 |     +1.86 |  40 |     +1.86 |   1 |# 

   3 |     +1.96 |   5 |     +1.96 |   1 |# 

   4 |     +2.11 |  11 |     +2.11 |   1 |# 

   5 |     +2.35 |  35 |     +2.35 |   1 |# 

   6 |     +2.66 |  28 |     +2.66 |   1 |# 

   7 |     +2.96 |  19 |     +3.98 |   2 |## 

   8 |     +3.10 |  16 |     +3.10 |   1 |# 

   9 |     +3.12 |  34 |     +3.65 |   2 |## 

  10 |     +3.23 |  36 |     +3.23 |   1 |# 

  11 |     +3.43 |  32 |     +3.43 |   1 |# 

  12 |     +3.43 |  17 |     +3.43 |   1 |# 

  13 |     +3.47 |  31 |     +3.47 |   1 |# 

  14 |     +3.49 |  46 |     +3.49 |   1 |# 

  15 |     +3.49 |  24 |     +3.49 |   1 |# 

  16 |     +3.49 |  21 |     +3.49 |   1 |# 

  17 |     +3.62 |  18 |     +3.62 |   1 |# 

  18 |     +3.64 |  47 |     +3.64 |   1 |# 

  19 |     +3.90 |  41 |     +3.90 |   1 |# 

  20 |     +3.93 |   9 |     +3.93 |   1 |# 

  21 |     +4.06 |  15 |     +4.06 |   1 |# 

  22 |     +4.06 |  39 |     +4.06 |   1 |# 

  23 |     +4.24 |  30 |     +4.24 |   1 |# 

  24 |     +4.25 |  25 |     +4.50 |   2 |## 

  25 |     +4.27 |  42 |     +4.27 |   1 |# 

  26 |     +4.29 |  13 |     +4.29 |   1 |# 

  27 |     +4.38 |   4 |     +4.38 |   1 |# 

  28 |     +4.48 |  45 |     +4.48 |   1 |# 

  29 |     +4.58 |  29 |     +4.58 |   1 |# 

  30 |     +4.78 |  22 |     +4.78 |   1 |# 

  31 |     +4.84 |  50 |     +4.84 |   1 |# 

  32 |     +4.91 |  26 |     +4.91 |   1 |# 

  33 |     +4.97 |  33 |     +4.97 |   1 |# 

  34 |     +4.99 |  43 |     +4.99 |   1 |# 

  35 |     +5.03 |  49 |     +5.03 |   1 |# 

  36 |     +5.07 |   6 |     +5.07 |   1 |# 

  37 |     +5.10 |  20 |     +5.10 |   1 |# 

  38 |     +5.14 |  14 |     +5.14 |   1 |# 

  39 |     +5.22 |  37 |     +5.22 |   1 |# 

  40 |     +5.46 |  27 |     +5.46 |   1 |# 

  41 |     +5.56 |   1 |     +5.56 |   1 |# 

  42 |     +5.64 |   3 |     +5.87 |   2 |## 

  43 |     +5.69 |  48 |     +5.69 |   1 |# 

  44 |     +6.13 |   7 |     +6.13 |   1 |# 

  45 |     +6.41 |  10 |     +6.41 |   1 |# 

  46 |     +6.86 |  44 |     +6.86 |   1 |# 

Table 9. Clustering histogram showing the results of the AutoDock run for the fifth mutation. 
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Table. 10 Clustering histogram for AGCP2B_M6 Run 
Clus | Lowest    | Run | Mean      | Num | Histogram                           

-ter | Binding   |     | Binding   | in  |                                     

Rank | Energy    |     | Energy    | Clus|    5    10   15   20   25   30    

_____|___________|_____|___________|_____|____:____|____:____|____:____|___

_ 

   1 |     +1.97 |  42 |     +1.97 |   1 |# 

   2 |     +2.69 |  44 |     +2.96 |   2 |## 

   3 |     +2.86 |   1 |     +2.86 |   1 |# 

   4 |     +3.20 |  35 |     +3.20 |   1 |# 

   5 |     +3.26 |  41 |     +3.26 |   1 |# 

   6 |     +3.38 |  47 |     +3.38 |   1 |# 

   7 |     +3.40 |  31 |     +3.40 |   1 |# 

   8 |     +3.50 |   2 |     +3.50 |   1 |# 

   9 |     +3.50 |  50 |     +3.50 |   1 |# 

  10 |     +3.51 |  32 |     +3.51 |   1 |# 

  11 |     +3.58 |  37 |     +3.58 |   1 |# 

  12 |     +3.76 |   5 |     +3.99 |   2 |## 

  13 |     +3.88 |   7 |     +3.88 |   1 |# 

  14 |     +3.93 |  13 |     +3.93 |   1 |# 

  15 |     +3.97 |   8 |     +3.97 |   1 |# 

  16 |     +4.25 |  27 |     +4.25 |   1 |# 

  17 |     +4.25 |  20 |     +4.25 |   1 |# 

  18 |     +4.57 |  49 |     +4.57 |   1 |# 

  19 |     +4.62 |   6 |     +4.62 |   1 |# 

  20 |     +4.72 |  14 |     +4.72 |   1 |# 

  21 |     +4.76 |  23 |     +4.76 |   1 |# 

  22 |     +4.98 |  16 |     +4.98 |   1 |# 

  23 |     +5.11 |  12 |     +5.11 |   1 |# 

  24 |     +5.20 |  25 |     +5.20 |   1 |# 

  25 |     +5.29 |  38 |     +5.29 |   1 |# 

  26 |     +5.39 |  36 |     +5.39 |   1 |# 

  27 |     +5.39 |  40 |     +5.39 |   1 |# 

  28 |     +5.43 |   3 |     +5.43 |   1 |# 

  29 |     +5.47 |  43 |     +5.47 |   1 |# 

  30 |     +5.47 |  45 |     +5.47 |   1 |# 

  31 |     +5.54 |  24 |     +5.54 |   1 |# 

  32 |     +5.77 |   4 |     +5.77 |   1 |# 

  33 |     +5.88 |  34 |     +5.88 |   1 |# 

  34 |     +5.93 |  48 |     +5.93 |   1 |# 

  35 |     +5.93 |  15 |     +5.93 |   1 |# 

  36 |     +6.00 |  33 |     +6.00 |   1 |# 

  37 |     +6.15 |  26 |     +6.15 |   1 |# 

  38 |     +6.15 |  22 |     +6.15 |   1 |# 

  39 |     +6.38 |  39 |     +6.38 |   1 |# 

  40 |     +6.48 |  18 |     +6.48 |   1 |# 

  41 |     +6.54 |  17 |     +6.54 |   1 |# 

  42 |     +6.66 |   9 |     +6.66 |   1 |# 

  43 |     +6.70 |  29 |     +6.70 |   1 |# 

  44 |     +6.72 |  28 |     +6.72 |   1 |# 

  45 |     +6.84 |  10 |     +6.84 |   1 |# 

  46 |     +7.04 |  11 |     +7.04 |   1 |# 

  47 |     +7.23 |  30 |     +7.23 |   1 |# 

  48 |     +7.64 |  19 |     +7.64 |   1 |# 

Table 10. Clustering histogram showing the results of the AutoDock run for the sixth mutation. 
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Table. 11 Clustering histogram for AGCP2B_M7 Run 
Clus | Lowest    | Run | Mean      | Num | Histogram                           

-ter | Binding   |     | Binding   | in  |                                     

Rank | Energy    |     | Energy    | Clus|    5    10   15   20   25   

30    

_____|___________|_____|___________|_____|____:____|____:____|____:____

|____ 

   1 |     +0.04 |  40 |     +0.04 |   1 |# 

   2 |     +1.03 |  17 |     +1.03 |   1 |# 

   3 |     +1.29 |  13 |     +2.34 |   4 |#### 

   4 |     +1.50 |  29 |     +1.50 |   1 |# 

   5 |     +1.65 |   1 |     +1.65 |   1 |# 

   6 |     +1.66 |  31 |     +1.66 |   1 |# 

   7 |     +1.67 |  41 |     +1.67 |   1 |# 

   8 |     +1.93 |  18 |     +2.49 |   2 |## 

   9 |     +2.30 |  27 |     +2.30 |   1 |# 

  10 |     +2.50 |  19 |     +2.50 |   1 |# 

  11 |     +2.53 |  36 |     +2.53 |   1 |# 

  12 |     +2.64 |  32 |     +2.64 |   1 |# 

  13 |     +2.65 |  48 |     +2.65 |   1 |# 

  14 |     +2.78 |  42 |     +2.78 |   1 |# 

  15 |     +2.99 |  34 |     +2.99 |   1 |# 

  16 |     +3.07 |  24 |     +3.07 |   1 |# 

  17 |     +3.16 |  21 |     +3.16 |   1 |# 

  18 |     +3.27 |  16 |     +3.27 |   1 |# 

  19 |     +3.33 |  37 |     +3.33 |   1 |# 

  20 |     +3.37 |  45 |     +3.37 |   1 |# 

  21 |     +3.41 |  35 |     +3.41 |   1 |# 

  22 |     +3.50 |   5 |     +3.50 |   1 |# 

  23 |     +3.56 |  14 |     +3.56 |   1 |# 

  24 |     +3.58 |   3 |     +3.58 |   1 |# 

  25 |     +3.62 |  46 |     +3.62 |   1 |# 

  26 |     +3.72 |   9 |     +3.72 |   1 |# 

  27 |     +3.82 |  30 |     +3.82 |   1 |# 

  28 |     +3.94 |  38 |     +3.94 |   1 |# 

  29 |     +4.04 |  22 |     +4.04 |   1 |# 

  30 |     +4.11 |  20 |     +4.11 |   1 |# 

  31 |     +4.27 |   2 |     +4.27 |   1 |# 

  32 |     +4.36 |  15 |     +4.36 |   1 |# 

  33 |     +4.39 |  50 |     +4.39 |   1 |# 

  34 |     +4.41 |  23 |     +4.41 |   1 |# 

  35 |     +4.50 |   7 |     +4.50 |   1 |# 

  36 |     +4.51 |  33 |     +4.51 |   1 |# 

  37 |     +4.57 |   6 |     +4.57 |   1 |# 

  38 |     +4.69 |  26 |     +4.69 |   1 |# 

  39 |     +4.75 |  49 |     +4.75 |   1 |# 

  40 |     +4.92 |  39 |     +4.92 |   1 |# 

  41 |     +4.94 |  47 |     +4.94 |   1 |# 

  42 |     +5.11 |  25 |     +5.11 |   1 |# 

  43 |     +5.26 |  43 |     +5.26 |   1 |# 

  44 |     +5.36 |  11 |     +5.36 |   1 |# 

  45 |     +6.35 |  44 |     +6.35 |   1 |# 

  46 |     +6.77 |  10 |     +6.77 |   1 |# 

Table 11. Clustering histogram showing the results of the AutoDock run for the seventh mutation. 
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