100 research outputs found

    TFinDit: transcription factor-DNA interaction data depository

    Get PDF
    BACKGROUND: One of the crucial steps in regulation of gene expression is the binding of transcription factor(s) to specific DNA sequences. Knowledge of the binding affinity and specificity at a structural level between transcription factors and their target sites has important implications in our understanding of the mechanism of gene regulation. Due to their unique functions and binding specificity, there is a need for a transcription factor-specific, structure-based database and corresponding web service to facilitate structural bioinformatics studies of transcription factor-DNA interactions, such as development of knowledge-based interaction potential, transcription factor-DNA docking, binding induced conformational changes, and the thermodynamics of protein-DNA interactions. DESCRIPTION: TFinDit is a relational database and a web search tool for studying transcription factor-DNA interactions. The database contains annotated transcription factor-DNA complex structures and related data, such as unbound protein structures, thermodynamic data, and binding sequences for the corresponding transcription factors in the complex structures. TFinDit also provides a user-friendly interface and allows users to either query individual entries or generate datasets through culling the database based on one or more search criteria. CONCLUSIONS: TFinDit is a specialized structural database with annotated transcription factor-DNA complex structures and other preprocessed data. We believe that this database/web service can facilitate the development and testing of TF-DNA interaction potentials and TF-DNA docking algorithms, and the study of protein-DNA recognition mechanisms

    PRIDB: a protein–RNA interface database

    Get PDF
    The Protein–RNA Interface Database (PRIDB) is a comprehensive database of protein–RNA interfaces extracted from complexes in the Protein Data Bank (PDB). It is designed to facilitate detailed analyses of individual protein–RNA complexes and their interfaces, in addition to automated generation of user-defined data sets of protein–RNA interfaces for statistical analyses and machine learning applications. For any chosen PDB complex or list of complexes, PRIDB rapidly displays interfacial amino acids and ribonucleotides within the primary sequences of the interacting protein and RNA chains. PRIDB also identifies ProSite motifs in protein chains and FR3D motifs in RNA chains and provides links to these external databases, as well as to structure files in the PDB. An integrated JMol applet is provided for visualization of interacting atoms and residues in the context of the 3D complex structures. The current version of PRIDB contains structural information regarding 926 protein–RNA complexes available in the PDB (as of 10 October 2010). Atomic- and residue-level contact information for the entire data set can be downloaded in a simple machine-readable format. Also, several non-redundant benchmark data sets of protein–RNA complexes are provided. The PRIDB database is freely available online at http://bindr.gdcb.iastate.edu/PRIDB

    Protein–DNA interactions: structural, thermodynamic and clustering patterns of conserved residues in DNA-binding proteins

    Get PDF
    Amino acid residues, which play important roles in protein function, are often conserved. Here, we analyze thermodynamic and structural data of protein–DNA interactions to explore a relationship between free energy, sequence conservation and structural cooperativity. We observe that the most stabilizing residues or putative hotspots are those which occur as clusters of conserved residues. The higher packing density of the clusters and available experimental thermodynamic data of mutations suggest cooperativity between conserved residues in the clusters. Conserved singlets contribute to the stability of protein–DNA complexes to a lesser extent. We also analyze structural features of conserved residues and their clusters and examine their role in identifying DNA-binding sites. We show that about half of the observed conserved residue clusters are in the interface with the DNA, which could be identified from their amino acid composition; whereas the remaining clusters are at the protein–protein or protein–ligand interface, or embedded in the structural scaffolds. In protein–protein interfaces, conserved residues are highly correlated with experimental residue hotspots, contributing dominantly and often cooperatively to the stability of protein–protein complexes. Overall, the conservation patterns of the stabilizing residues in DNA-binding proteins also highlight the significance of clustering as compared to single residue conservation

    CCRXP: exploring clusters of conserved residues in protein structures

    Get PDF
    Conserved residues forming tightly packed clusters have been shown to be energy hot spots in both protein–protein and protein–DNA complexes. A number of analyses on these clusters of conserved residues (CCRs) have been reported, all pointing to a crucial role that these clusters play in protein function, especially protein–protein and protein–DNA interactions. However, currently there is no publicly available tool to automatically detect such clusters. Here, we present a web server that takes a coordinate file in PDB format as input and automatically executes all the steps to identify CCRs in protein structures. In addition, it calculates the structural properties of each residue and of the CCRs. We also present statistics to show that CCRs, determined by these procedures, are significantly enriched in ‘hot spots’ in protein–protein and protein–RNA complexes, which supplements our more detailed similar results on protein–DNA complexes. We expect that CCRXP web server will be useful in studies of protein structures and their interactions and selecting mutagenesis targets. The web server can be accessed at http://ccrxp.netasa.org

    Protein-DNA docking with a coarse-grained force field

    Get PDF

    Modelling the Effects of Disease-Associated Single Amino Acid Variants and Rescuing the Effects by Small Molecules

    Get PDF
    Single nucleotide polymorphism (SNP) is a variation of a single nucleotide in the genome. Some of these variations can cause a change of single amino acid in the corresponding protein, resulting in single amino acid variation (SAV). SAVs can lead to profound alterations of the corresponding biological processes and thus can be associated with many human diseases. This dissertation focuses on integration of existing and development of new computational approaches to model the effects of SAVs with the goal to reveal molecular mechanism of human diseases. Since proton transfer and pKa shifts are frequently attributed to disease causality, the proton transfers in the protein-nucleic acid interactions are investigated and along with development of a new computational approach to predict the SAV’s effect on the protein-DNA binding affinity. The SAVs in four proteins: Lysine-specific demethylase 5C (KDM5C), Spermine Synthase (SpmSyn), 7-Dehydrocholesterol reductase (DHCR7) and methyl CpG binding protein 2 (MeCP2) are extensively studied using numerous computational approaches to reveal molecular details of disease-associated effects. In case of MeCP2 protein, the effects of the most commonly occurring disease-causing mutation, R133C, was targeted by structure-based virtual screening to identify the small molecules potentially to rescue the malfunctioning R133C mutant

    Quantitative evaluation of protein–DNA interactions using an optimized knowledge-based potential

    Get PDF
    Computational evaluation of protein–DNA interaction is important for the identification of DNA-binding sites and genome annotation. It could validate the predicted binding motifs by sequence-based approaches through the calculation of the binding affinity between a protein and DNA. Such an evaluation should take into account structural information to deal with the complicated effects from DNA structural deformation, distance-dependent multi-body interactions and solvation contributions. In this paper, we present a knowledge-based potential built on interactions between protein residues and DNA tri-nucleotides. The potential, which explicitly considers the distance-dependent two-body, three-body and four-body interactions between protein residues and DNA nucleotides, has been optimized in terms of a Z-score. We have applied this knowledge-based potential to evaluate the binding affinities of zinc-finger protein–DNA complexes. The predicted binding affinities are in good agreement with the experimental data (with a correlation coefficient of 0.950). On a larger test set containing 48 protein–DNA complexes with known experimental binding free energies, our potential has achieved a high correlation coefficient of 0.800, when compared with the experimental data. We have also used this potential to identify binding motifs in DNA sequences of transcription factors (TF). The TFs in 79.4% of the known TF–DNA complexes have accurately found their native binding sequences from a large pool of DNA sequences. When tested in a genome-scale search for TF-binding motifs of the cyclic AMP regulatory protein (CRP) of Escherichia coli, this potential ranks all known binding motifs of CRP in the top 15% of all candidate sequences

    From sequence to dynamics: the effects of transcription factor and polymerase concentration changes on activated and repressed promoters

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The fine tuning of two features of the bacterial regulatory machinery have been known to contribute to the diversity of gene expression within the same regulon: the sequence of Transcription Factor (TF) binding sites, and their location with respect to promoters. While variations of binding sequences modulate the strength of the interaction between the TF and its binding sites, the distance between binding sites and promoters alter the interaction between the TF and the RNA polymerase (RNAP).</p> <p>Results</p> <p>In this paper we estimated the dissociation constants (<it>K</it><sub><it>d</it></sub>) of several <it>E. coli </it>TFs in their interaction with variants of their binding sequences from the scores resulting from aligning them to Positional Weight Matrices. A correlation coefficient of 0.78 was obtained when pooling together sites for different TFs. The theoretically estimated <it>K</it><sub><it>d </it></sub>values were then used, together with the dissociation constants of the RNAP-promoter interaction to analyze activated and repressed promoters. The strength of repressor sites -- i.e., the strength of the interaction between TFs and their binding sites -- is slightly higher than that of activated sites. We explored how different factors such as the variation of binding sequences, the occurrence of more than one binding site, or different RNAP concentrations may influence the promoters' response to the variations of TF concentrations. We found that the occurrence of several regulatory sites bound by the same TF close to a promoter -- if they are bound by the TF in an independent manner -- changes the effect of TF concentrations on promoter occupancy, with respect to individual sites. We also found that the occupancy of a promoter will never be more than half if the RNAP concentration-to-<it>K</it><sub><it>p </it></sub>ratio is 1 and the promoter is subject to repression; or less than half if the promoter is subject to activation. If the ratio falls to 0.1, the upper limit of occupancy probability for repressed drops below 10%; a descent of the limits occurs also for activated promoters.</p> <p>Conclusion</p> <p>The number of regulatory sites may thus act as a versatility-producing device, in addition to serving as a source of robustness of the transcription machinery. Furthermore, our results show that the effects of TF concentration fluctuations on promoter occupancy are constrained by RNAP concentrations.</p

    Large scale analysis of protein stability in OMIM disease related human protein variants

    Get PDF
    Modern genomic techniques allow to associate several Mendelian human diseases to single residue variations in different proteins. Molecular mechanisms explaining the relationship among genotype and phenotype are still under debate. Change of protein stability upon variation appears to assume a particular relevance in annotating whether a single residue substitution can or cannot be associated to a given disease. Thermodynamic properties of human proteins and of their disease related variants are lacking. In the present work, we take advantage of the available three dimensional structure of human proteins for predicting the role of disease related variations on the perturbation of protein stability
    corecore