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ABSTRACT 

Single nucleotide polymorphism (SNP) is a variation of a single nucleotide in the 

genome. Some of these variations can cause a change of single amino acid in the 

corresponding protein, resulting in single amino acid variation (SAV).  SAVs can lead to 

profound alterations of the corresponding biological processes and thus can be associated 

with many human diseases. This dissertation focuses on integration of existing and 

development of new computational approaches to model the effects of SAVs with the goal 

to reveal molecular mechanism of human diseases. Since proton transfer and pKa shifts are 

frequently attributed to disease causality, the proton transfers in the protein-nucleic acid 

interactions are investigated and along with development of a new computational approach 

to predict the SAV’s effect on the protein-DNA binding affinity. The SAVs in four proteins: 

Lysine-specific demethylase 5C (KDM5C), Spermine Synthase (SpmSyn), 7-

Dehydrocholesterol reductase (DHCR7) and methyl CpG binding protein 2 (MeCP2) are 

extensively studied using numerous computational approaches to reveal molecular details 

of disease-associated effects. In case of MeCP2 protein, the effects of the most commonly 

occurring disease-causing mutation, R133C, was targeted by structure-based virtual 

screening to identify the small molecules potentially to rescue the malfunctioning R133C 

mutant.   
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CHAPTER ONE 

 

INTRODUCTION 

 

 

Importance of modelling the molecular effect of single amino acid variation: 

 

    Human genetic variations result in natural differences among the humans or may cause 

diseases[1]. Genetic variations originate from subtle differences in DNA and it is well 

know that humans share 99.5% of DNA code and only the rest 0.5% results in the 

uniqueness of individuals. However, despite of low occurrence, common genetic variations 

may contribute significantly to human’s susceptibility to common diseases[2-4]. Thus, 

understanding common human genetic variations and associated functional impact is a very 

important part of any genetic study and has great potential for direct clinical applications[5, 

6]. 

    Genetic differences can be manifested at different levels as a Single Nucleotide 

Polymorphism (SNPs), which is a change of single nucleotide or as non-synonymous SNP 

(nsSNP), manifested as amino acid change in the corresponding transcribed product. My 

dissertation focused on substitutions of single amino acid in the corresponding protein.  

Following the literature, such a change is termed single amino acid variation (SAV) [4, 7-

9]. The SAV can affect the corresponding protein’s function and thus may be associated 

with many human diseases[10-13]. Predicting disease associated SAV’s effect and 

discriminating disease-causing and harmless SAV is of crucial importance for the early 

diagnostics and medicine [5, 14-17]. However, predicting the effect of disease-associated 

SAV is not a trivial problem[18, 19], prompting many researchers to develop predictive 

algorithms and tools[6, 18-23]. 

javascript:void(%22Click%20to%20expand%20this%20glossary%20term%22)
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Disease-causing SAV can cause malfunctioning of the corresponding protein [13, 18, 

24-26]. Some disease-causing SAVs affect protein stability, resulting in unfolded 

dysfunctional protein [11, 25, 27, 28]. Other disease-causing SAVs that occur in protein 

binding interface may disrupt the protein interaction network by altering the affinity of 

interacting partners [24, 29, 30]. The effects on protein folding and binding can be accessed 

via the changes of folding free energy (G) and binding free energy (G). Many 

computational and experimental efforts were carried out to determine the changes of 

folding and binding free energies due to SAVs [30-34].  Roughly speaking, current existing 

methods can be categorized into sequence-based approaches, structure-based approaches 

and first principle approaches. Sequence-based approaches utilized machine learning 

models to perform fast predictions but highly depend on the training datasets. Structure-

based approaches consider the potential function or knowledge-based scoring function 

delivered from protein structural information.  First principle approaches, such as the free 

energy perturbation (FEP) and the thermodynamic integrations (TI) are the most rigorous, 

but require intensive calculations, which limit their applicability for large-scale analysis. 

The experimental studies are relatively limited due to the highly cost in time and expense. 

Thus, integration of existing in silico approaches can help us better understand the 

molecular mechanism of the disease-associated SAVs, which is crucial for the personalized 

medicine and identification of potential drugs for treatment. Besides, further development 

of accurate approaches is also highly in demand for understanding the mechanism of 

diseases and protein design. Especially for large scales-analysis of mutations’ effects, 
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computational approaches can complement the experimental measurement and provide fast 

predictions (Chapter III).   

 

Rescue the effects of disease associated single amino acid variation: 

    With the rapid development of computer techniques, computer-aided approaches have 

been currently widely applied in aiding early-stage drug discovery in both industrial and 

academic projects [35-38].  By discovering the potential compounds that target and affect 

the function of the specific proteins, the biological process can be modulated to mitigate or 

eliminate the disease-causing effects [36, 38].  Advances in human genome projects have 

provided vast target proteins for drug discovery projects [39, 40]. Meanwhile, 

breakthroughs in structural biology have offered in-depth structural information of more 

and more targets and elucidated the disease mechanisms at molecular level [41-44]. Such 

advances have further stimulated the application of computational approaches to integrate 

the available structural information, functional mechanism and physical-chemical 

properties to drug discovery [37, 45].  Discovery of compounds to mitigate or eliminate 

the disease-causing effects induced by a specific amino acid mutation is the main goal of 

Personalized Medicine [1]. 

Importance of elucidating and clustering the mutations’ effects in drug design: 

    In terms of a drug-design process targeting specific disease-causing mutations, 

elucidation of mutations’ effects is of great importance, especially for the approaches 

requiring information about target protein structure. Alone with aforementioned 

computational approaches, it can be integrated into the drug design pipeline (Fig. 1.1). For 

example, free energy calculation methods are used to determine the dominant effects of 
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mutations, whether affecting protein stability, protein binding or both.  With the in-depth 

analysis of mutations’ effects at molecular-level, the disease-causing mutations in the 

target proteins can be further clustered by their major effects such as destabilizing 

mutation, dimerization-affecting mutation, conformational-affecting mutation or catalytic 

mutation [41, 46-48]. Such type of classification can help designing drugs for certain 

groups of mutations with similar effects and thus being applicable to broader spectrum of 

patients.  

Structure-based approach in drug design: 

     Structure-based drug design (SBDD) is the computational approaches that rely on 

knowledge of the 3D structure of the biological targets to identify or design the potential 

chemical structure suitable for clinical tests[45, 49] (Fig 1.1). With the explosion of 

genomic, functional and structural information in last decades, vast of biological targets 

with 3D structure have been identified and stimulated the applications of structure-based 

approaches in current design pipeline. SSDB is popular for virtual screening to filter the 

drug-like compounds from a large library of small molecules, including widely applied 

approaches such as docking and structure-based pharcorphore [38]. While the established 

high-throughput screening (HTS) allows for automatic testing of vast compounds (up to 

millions), the low success rate and high cost limits its applications. Alternatively, one can 

use computational approaches to reduce the numbers of compounds subjected to testing 

[36, 50]. 

Ligand-based approaches in drug design: 
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    In the cases of lacking structural information of target protein, the aforementioned 

structure-based approaches may not be suitable for drug design. Alternatively, ligand-

based drug design (LBDD) can be applied for such cases [51]. Ligand-based methods only 

focus on the analysis of physico-chemical properties of known ligands that interact with 

the target of interests. Most popular approaches are quantitative structure activity 

relationship (QSAR) models and ligand-based pharmacophore modeling [51]. In terms of 

drug design targeting the mutant proteins, LBDD could be efficient for novel discovered 

mutations which effects have not yet been investigated (Fig. 1.1). 

    With the advances in understanding of structural and functional characteristics of 

biological targets, structure-based approaches have gained popularity. However, it should 

be pointed out that combining both ligand and structure-based approaches is expected to 

provide significant advantages [52, 53].   

 
 

Figure 1.1 Schematic presentation of drug discovery process to mitigate the effects of 

disease-causing mutations. 
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CHAPTER TWO 

MODELLING THE EFFECTS OF SINGLE AMINO ACID VARIATION  

 

Modelling of SAVs’ molecular effects in KDM5C protein: 

 

PART1: Mutations in KDM5C ARID-domain and their association with Syndromic 

Claes-Jensen-Type Disease: 

 

1. Introduction 

    Epigenetic processes regulate gene expression and are essential for development and 

differentiation of cells [1]. Histone proteins are the major components of chromatin, acting 

as spools around which DNA winds. Particularly, histone lysine methylation is an 

important epigenetic process which regulates chromatin structure and gene transcription 

[54, 55]. Due to this, loss of balance of histone lysine methylation has been found to have 

a profound effect on the diverse biological processes and to be involved in many diseases, 

including cancer development [56-58]. 

    This work focuses on a particular histone protein, the KDM5C protein of 1560 aa, which 

is a member of the SMCY homolog family. The KDM5C protein specifically reverses tri- 

and di-methylation of Lys4 of histone H3 (H3K4), helps maintain the dynamic balance of 

histone H3K4 methylation states, and also plays a crucial role in functional discrimination 

between enhancers and core promoters [59-61]. It is a multi-functional protein, which 

contains highly-conserved domains, including ARID/Bright, JmjN, JmjC, C5HC2 zinc 

finger, and two PHD zinc finger domains (Figure 2.1). These domains were shown to have 

specific functions alone or to function in concert with the other KDM5C domains. Thus, 
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the ARID (A–T rich interaction domain) is a helix–turn–helix motif-based DNA-binding 

domain, which is highly conserved in all eukaryotic proteins and plays important roles in 

development, tissue-specific gene expression, and cell growth regulation [62, 63]. The 

DNA sequence binding preference is still unclear for the ARID domain of KDM5C. The 

other domain, JmjC, catalyzes demethylation of H3K4me3 to H3K4me1 [59]. The JmjN 

domain and its interaction with the JmjC catalytic domain are important for the KDM5C 

function [64]. The N-terminal PHD zinc finger is a histone methyl-lysine binding motif 

and was shown to have a preferential binding to histone H3K9me3 [59, 65]. 

 

Figure 2.1 KDM5C protein domains. The numbers indicate approximate domain 

boundaries. The known disease-associated missense mutations are provided as well. 

    Previous studies have shown that many mutations in the KDM5C gene cause X-linked 

mental retardation (XLMR), the syndromic Claes-Jensen-type disease [59, 66, 67]. Mental 

retardation (MR) generally causes significant limitations both in intellectual functioning 

and in adaptive behavior, covering the social and practical skills that originate before the 

age of 18 years [68]. The estimated prevalence of MR among the general population is 

around 1%–3% [67, 69]. The frequency of mutations in the KDM5C gene approximately 
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accounts for 2.8% to 3.3% of families with XLMR [70]. Thirteen missense mutations 

associated with XLMR, the syndromic Claes-Jensen-type disease in KDM5C have been 

reported to date and affected individuals with KDM5C mutations show a mild-to-severe 

range of intellectual disability. Most of mutations are located in JmjC domain, ZF domain 

(C5HC2 zinc finger domain), and inter-domain regions and affect the demethylation 

activity [59, 60]. The severity of associated XLMR is roughly related to the cellular 

demethylase activities of KDM5C mutants [71]. In this study, we focus on the mutations 

in the ARID domain. Two MR associated mutations (A77T and D87G) are reported in the 

ARID domain [66, 72]. The D87G mutation causes mild to moderate MR including 

aggressive behavior, epileptic seizures, and speech impairment, while the A77T results in 

severe MR including speech impairment, short stature, seizures, microcephaly, hyper 

reflexia, and aggressive behavior [66, 72]. However, recent work has shown that the D87G 

has a minimal effect on KDM5C demethylase activity in vivo [71] indicating that the 

disease-associated effect is not demethylation. Combined with the lack of data for the 

molecular effect of A77T mutation, it can be concluded that the disease-associated effects 

of both A77T and D87G mutations are unknown. In this work, we extend the list of 

mutations, which will be investigated, to include three currently non-classified missense 

mutations in the ARID domain. The non-classified mutations are R108W(rs146232504), 

N142S(rs377166019), and R178H(rs201805773), taken from the NCBI dbSNP database 

[73]. They were identified from population cohorts participating in the NHLBI Exome 

Sequencing Project [74]. This project is designed to identify genetic variants in coding 

regions of the human genome that are associated with heart, lung, and blood diseases, and 
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the group included 200,000 individuals. However, there is no data about the linkage of 

these mutations with a particular disease. This motivates us to investigate the molecular 

mechanism of all abovementioned mutations, disease-associated and non-classified, and to 

infer plausible XLMR linkages with some of the non-classified mutations. The allele 

frequency of the mutations R108W, N142S, R179H are 0.00001151, 0.00001159, and 

0.0002497 taken from the ExAC database [75]. The frequency of the other two mutations 

is not currently available in the database. 

    Disease-associated mutations are often found to alter protein structure, dynamics and 

interaction, and cause deficiency of important protein functions [76-80]. Investigating 

mutations’ effects is important for understanding the molecular mechanisms of disease-

associated mutations and discriminating disease-causing and harmless mutations. Protein 

stability and protein interactions can be quantified by folding free energy change (∆∆G) 

and binding free energy change (∆∆∆G). In this study, we analyze the effects of diseasing-

associated and currently non-classified mutations on ARID domain stability and ARID-

DNA binding affinity utilizing webservers, third-party software, molecular dynamics (MD) 

and free energy perturbation (FEP) methods. Additionally, our free energy calculations 

results are further validated by experiments. Urea-induced unfolding monitored by circular 

dichroism spectroscopy is used to determine the unfolding free energy of the wild-type 

ARID domain, and the two disease-associated mutants A77T and D87G. 
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2. Results 

2.1. Protein Stability Changes due to Mutations 

    We applied the free energy perturbation theory (FEP) to analyze two disease associated 

(A77T, D87G), and three non-classified (R108W, N142S, R179H), mutations. The 

calculated folding and binding free energy changes caused by mutations are shown in Table 

2.1 It can be seen that the energy changes are predicted to be relatively small, being less 

than 1 kcal/mol in the majority of cases, with the notable exception of FEP calculated 

folding free energy changes involving Arg residue. A similar effect of over-predicting the 

magnitude of the change of the folding free energy involving the Arg group was noticed in 

another study [46]. Further investigations are needed to reveal the source of the over-

estimation of the changes caused by Arg mutants, but for completeness, these calculated 

energies will be used as they are in the present study. The average folding free energy 

changes predicted by webservers and third-party software are all relatively small, being 

less than 1 kcal/mol. The FEP calculated binding free energy changes indicate that 

mutations R108W and R179H cause relatively large changes compared to other mutations. 

 

Mutation 

NeEMO 

(Folding) 

PopMusic 

(Folding) 

I-Mutant 

(Folding) 

DUET 

(Folding) 

CUPSAT 

(Folding) 

Foldx 

(Folding) 

FEP 

(Folding) 

Folding 

(Average) 

FEP 

(Binding) 

A77T −1.03 −0.22 −0.75 −0.76 −0.29 −1.40 0.13 −0.74/−0.62 −0.35 

D87G −0.16 −0.49 −0.47 −0.729 −0.16 −0.60 −0.28 −0.43/−0.41 0.73 

R108W −0.36 −0.86 −1.32 −0.26 0.28 −0.18 −11.29 −0.45/−1.99 −1.44 

N142S −0.21 −0.27 −0.09 −0.02 0.17 −0.3 −0.98 −0.12/−0.24 0.64 

R179H −0.71 0.06 −0.15 −0.72 0.28 0.746 −8.78 −0.08/−1.32 −3.06 
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Table 2.1. The calculated binding and folding free energy changes due to mutations in 

kcal/mol. ∆∆G > 0 indicates stabilization, while ∆∆G < 0 shows destabilization. The 

“Folding (average)” column shows the average folding free energy changes calculated 

using the average folding free energy changes predicted by FEP, webservers, and third-

party software (left), and folding free energy changes predicted by webservers and third-

party software (right). The changes of the binding free energy were obtained only with FEP, 

since no reliable third-party tool currently exist. 

    As mentioned above, the mutations were predicted to have a small effect on both the 

folding and binding free energy (excluding the FEP results for Arg-involving mutations). 

This suggests that the disease-associated effect may not be related to these energies but 

may be linked to structural distortion or change of the internal dynamics/flexibility of the 

ARID domain caused by the mutations. Therefore, we review the structural features of the 

mutation sites below and elaborate on their possible linkage with the predicted effect of 

folding and binding free energy. 

2.2. Effect of Mutations on Protein Structure  

    To analyze the mutations’ plausible effect on the protein structure, here we investigated 

the side chains and backbone conformational changes resulting from mutations and discuss 

them with respect to structural integrity of the ARID domain and its interactions with DNA. 

The mutant is introduced into the structure using the Mutator Plugin, Version 1.3 in VMD 

[81] After that, the mutant structures were subjected to 10,000 steps of energy minimization 

to relax the structure and remove possible conflicting contacts. The structures are then 
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visualized in UCSF chimera [82]. The side chain conformation of the residues within 5 Å 

of the WT position or MT position, are shown in Appendix Figures B-1 and B-2, 

respectively. Appendix Figure B-1 shows side chain conformation of two disease-

associated mutations mapped on the KDM5C ARID domain. The A77T mutation involves 

substitution of a hydrophobic Ala by a polar Thr and is located in a short turn of the ARID 

N-terminal. The mutation site is far away from the DNA binding interface and it is solvent-

exposed. Neither the wild-type A77 nor the mutant T77 were found to be involved in any 

specific interactions (Appendix Figure B-1a,b) The mutation D87G is located in Helix 1 of 

the ARID domain and a charged residue, Asp, is substituted by a small residue, Gly. This 

mutation site is also far away from the DNA binding interface and it is totally solvent-

accessible. The wild-type residue, D87, is not involved in any specific interaction and its 

side chain faces the water (Appendix B Figure B-1 c,d). Based on these structural 

observations and the results of folding free energy calculations, it can be summarized that 

these mutations do not solely affect the stability and the structure of the ARID domain. 

Similarly, since the mutation sites are far away from DNA, the binding interface, and the 

binding free energy is not predicted to be affected, one can assume that the mutations have 

minimal effect on ARID-DNA recognition. 

    Appendix Figure B-2 shows the side chains and backbone conformations of non-

classified mutations mapped onto the ARID domain. The R108W is a positively-charged 

residue, Arg, substituted by an uncharged hydrophobic residue, Trp. This mutation occurs 

in the loop between Helix 1 and Helix 2 and is located close to the DNA binding interface 

(Appendix Figure B2-a,b). Since the mutation drastically changes the physico-chemical 
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property of the wild-type residue, it can be anticipated that this mutation may cause 

significant conformational changes. To address this possibility, we performed 20 ns MD 

simulations of the ARID domain and DNA complex and it was found that R108 does not 

form a direct hydrogen bond with DNA. Thus, the wild-type residue, R108, is probably not 

involved in specific interactions with DNA but may provide long-range steering towards 

the negatively-charged DNA. Figure 2.2 shows the electrostatic potential of WT KDM5C 

ARID domain and the ARID doman with mutation R108W generated by DelPhi software 

[83-85]. It can be seen that the electrostatic potential at the mutation site is changed from 

positive to negative upon the mutation. Since the DNA is highly negatively-charged, this 

electrostatic potential change nearby the DNA binding interface will probably decrease the 

ARID–DNA binding affinity and specificity, which is consistent with predictions of the 

protein binding free energy changes. Further, salt bridge analysis indicated that the R108 

forms a transient salt bridge with the neighboring amino acid, E74. Figure 2.3b shows the 

distance between the oxygen atom of E74 and the nitrogen atom of R108 in the MD 

simulation of the ARID domain and DNA complex. Using a cut-off distance of 4 Å as an 

indication of formation of a salt bridge, it was found that such a salt bridge is formed in 

17.4 ns out of 20 ns (87% of the simulation time). Thus, the mutation R108W will delete 

the salt bridge and will probably affect the protein’s stability, which is consistent with 

prediction of the protein folding free energy changes. The other mutation, N142S, occurs 

in a loop between Helix5 and Helix6, and results in a polar uncharged residue, Asn, 

substituted by another polar uncharged, but smaller, residue, Ser (Appendix Figure B-2c,d). 

Such a mutation preserves the biophysical characteristics of the mutation site and is 
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expected not to affect the stability and structural integrity of the ARID domain. The 

mutation R179H involves a positively-charged residue, Arg, substituted by a polar residue, 

His. It is located in the loop of the ARID domain C-terminal, which is far from the DNA 

binding interface and is totally solvent-exposed (Appendix Figure B-2e,f).  

 

Figure 2.2 (a) Electrostatic potential of the WT KDM5C ARID domain; and (b) the 

electrostatic potential of the KDM5C ARID domain with mutation R108W. The mutation 

site is marked with a red circle. The positive potential region is colored with bule and the 

negative potential region is colored with red. 
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Figure 2.3 (a) Part of the ARID domain zoomed at the salt bridge Glu74-Arg108; and (b) 

salt bridge analysis for Arg108 and Glu74 in the KDM5C ARID domain: N–O distance 

shows the distance between oxygen atom of Glu74 and nitrogen atom of Arg108 in the 20 

ns simulation. The cutoff distance of forming salt bridge is 4 Å and marked with red line 

in the graph. 

2.3. Residue Conservation via Multiple Sequence Alignment 

    Further, we investigate the conservation pattern of the KDM5C ARID domain amino 

acid positions based on the sequence alignment of human ARID domain proteins. The 

alignment (Appendix Figure B-3) shows that the two disease-associated mutations (A77T 

and D87G) are conserved in the KDM5 family and D87 is conserved in ARID1, ARID2, 

and ARID3 families, as well. All non-classified mutations are not conserved in the 

alignment, including the alignment of only KDM5 family members. However, position 108 

is predominantly taken by positively-charged residues, either Arg or Lys. Thus, a 

substitution to hydrophobic, uncharged Trp may not be tolerable. Combined with the 

predicted large change of the folding free energy and the change of the electrostatic 

potential, R108W mutation is predicted to be disease-associated. The other two non-

classified mutations, N142S and R179H, occur at sites that are not conserved and there is 

no pattern to indicate the conservation of physico-chemical property of the wild-type 

residue. Even more, the substitutions Asn to Ser and Arg to His are found to exist in some 

family members (ARID3 and ARID4A), which suggest that such substitutions are tolerable. 
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    Overall, the most highly conserved parts of the ARID domain are located on Loop1, 

Helix2, Helix3, Helix4, Loop2, and Helix5. Recent study showed that the KDM5A ARID 

domain binds DNA through the motif CCGCCC and the DNA binding interface includes 

Loop1 and a helix-turn-helix DNA binding motif formed by Helix4, Loop2, and Helix5 

[86]. More specifically, six key residues (Pro103, Lys112, Gly123, Gly124, Trp134, and 

Tyr 157) are conserved in all human ARID-containing proteins, which indicates their 

importance for protein function.  

2.4. Evolutionary Conservation and Protein Interacting Investigation Using the ConSurf 

Server and IBIS Server 

    The ConSurf server is a bioinformatics tool for estimating the evolutionary conservation 

of amino/nucleic acid positions in a protein/DNA/RNA molecule based on the 

phylogenetic relations between homologous sequences. The ConSurf server result (Figure 

2.4) shows that the N-terminal of the ARID domain is one of the most highly-conserved 

parts in the ARID domain, which is probably essential for protein’s function. We also 

predict the protein interacting partners and binding sites in the KDM5C ARID domain 

using the NCBI Inferred Biomolecular Interactions Server(IBIS) [87].The results show that 

Asp87 is a plausible zinc ion binding site. This binding sites is not verified experimentaly, 

but offer an implication that the N-terminal of ARID may be involved in some currently-

unknown function. 
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Figure 2.4. Evolutionary conservation analysis of the ARID domain using the ConSurf 

Server. The conservation grades are color-coded onto each amino acid of the KDM5C 

ARID domain. 

2.5. Experimental Results 

The mutations A77T and D87G affect the overall structure of the ARID domain slightly, 

but the percentage of each secondary structure of the mutants was in the same range as the 

wild-type (Table 2.2). In general, the effects of both A77T and D87G are the increase of 

the unordered structure percentage of the protein. While in the A77T mutation, the 

proportion of the structure shifted from alpha helix and turns to unordered; in D87G the 

shift came from of alpha helix and beta strand. 
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 Helix Strand Turns Unordered 

WT 14% 31% 20% 35% 

A77T 13% 31% 19% 38% 

D87G 13% 30% 20% 38% 

Table 2.2 Percentage of secondary structures of ARID proteins analyzed by using 

CONTINNLL [88] with the online tool Dichroweb [89]. 

The results from the urea denaturation experiments (Table 2.3 and Appendix Figure B-

4) indicate that both mutations caused a lower integrity protein structure (lower ∆G, easier 

to denature) than the wild-type, where the A77T is relatively more stable compared to 

D87G (but the difference is very small). There is a difference of the free energy of 

unfolding value of the ARID wild-type and the mutants. The two different methods to 

calculate the ∆∆G yields different value but the trends are the same, where the two mutants 

are less stable than the ARID wild-types, and D87G is less stable than A77T. The ∆∆G of 

the mutants A77T and D87G obtained by urea-induced unfolding monitored by CD are in 

the same order of magnitude compared to the in silico folding free energy predictions 

(Table 2.1). 

 

Protein 

∆𝑮𝒂𝒑𝒑
𝑯𝟐𝑶

 

(kcal·mol−1) 

∆∆𝑮𝒂𝒑𝒑
𝑯𝟐𝑶

 

(kcal·mol−1) 

[urea]½ 

(M) 

∆∆𝑮𝒂𝒑𝒑,𝟐
𝑯𝟐𝑶

 

(kcal·mol−1) 

ARID WT 3.51 ± 0.32  3.99 ± 0.02  

A77T 2.41 ± 0.05 1.10 3.07 ± 0.02 0.70 
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D87G 1.82 ± 0.01 1.70 2.99 ± 0.03 0.76 

 

Table 2.3 Results from an analysis of urea denaturation curves for ARID Wild-Type, A77T, 

and D87G variants. 

3. Methods and Experimental Section 

3.1. Structures 

    The ARID domain contains 90 amino acids and its sequence is mapped onto the KDM5C 

protein sequence from position 79 to 169. There is an NMR structure of the KDM5C ARID 

domain (PDB ID: 2JRZ) [90] in the Protein Data Bank (PDB) [91], which was used for 

modeling the ARID domain stability. The modeling of the effect of mutations on ARID-

DNA interactions requires the 3D structure of ARID-DNA complex, which is not available 

in the PDB and was generated in silico. For this purpose, we applied structural alignment 

between the KDM5C ARID domain (PDB ID: 2JRZ) and all available ARID-DNA 

complexes in PDB. The lowest RMSD value (2.22 Å) calculated from structural alignment 

(the alignment between the DNA binding interface of the KDM5C ARID domain and the 

ARID domain in the available complex structures) was found for the solution structure of 

the dead ringer ARID-DNA complex (PDB ID: 1KQQ) [92]. The dead ringer and the 

KDM5C ARID domains’ structural similarity (showed the lowest RMSD value (2.22 Å) 

calculated from structural alignment) was the highest for the residues situated at the 

protein-DNA interface, which suggested that the binding mode is preserved (Appendix 

Figure B-5). Thus, the model ARID-DNA complex was built by superimposing the 
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KDM5C ARID domain onto the dead ringer ARID-DNA complex and replacing the dead 

ringer ARID domain with the KDM5C ARID domain. Then, we saved the structure of the 

KDM5C ARID domain and DNA with untransformed coordinates as our model using the 

UCSF Chimera [82]. The DNA sequence in the model was kept the same as in the dead 

ringer ARID-DNA complex since the KDM5C ARID was not reported to show a DNA 

binding preference.  

3.2. ARID Folding and Binding Free Energy Changes 

    We calculated the folding free energy change (∆∆G) and the binding free energy change 

(∆∆∆G) based on free energy perturbation theory (FEP) [93, 94]. The free energy 

calculations of five mutations (A77T, D87G, R108W, N142S, and R179H) were performed 

with the NAMD program, version 2.9 [95] using alchemical transformations via the so-

called dual topology approach [95, 96], where both the initial and final states were defined 

concurrently. Periodic boundary conditions and a 12 Å cutoff distance for non-bonded 

interactions were applied in the system. Each FEP simulation was run using a 

CHARMM22 force field [97] and each mutation was carried out with one 18 ns run and 

four 5 ns runs. The initial protein structure used for each run was randomly taken from the 

trajectory of a 10 ns long equilibration. The results obtained with 18 ns and 5 ns runs were 

very similar and most of the 5 ns runs showed good convergence comparable with the 

convergence of 18 ns run. This motivated us to carry the rest of the FEP using 5 ns 

simulations. Then, the output of FEP simulations was analyzed with the ParseFEP Plugin, 

Version 1.9 [98] in Visual Molecular Dynamics (VMD) [81]. Also, it has to be pointed out 

that Gly is a very particular case in FEP calculations since the library of hybrids contains 
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the dual topologies for amino acids with a true side chain and the alpha carbon of Gly atom 

has to be modified in the transformation. For that reason, most patches cause problems and 

mutating glycine caused some angle and dihedral parameters to be duplicated, possibly 

modifying backbone conformational preferences [99]. Similar problems were also 

observed in our FEP calculation and, here, the FEP calculations of D87G were carried out 

for 1 ns with 0.5 fs time steps. For completeness, these calculated energies of D87G are 

used as they are in the present study. 

The calculations of the effects of mutations on the folding free energy were performed 

utilizing the thermodynamic cycle we have developed in the past [20, 24, 100, 101] 

(Appendix Figure B-6a). The main assumption in this model is the unfolded state, which 

is considered to be made of two structural segments: (i) a structural three-residue segment 

centered at the mutation site; and (ii) the rest of the protein being mutation-independent 

[20, 24, 100]. This allows for canceling mutation-independent components of the unfolded 

state. Thus, the folding free energy change due to a mutation was calculated with the 

following equation: 

∆∆𝐺𝑓𝑜𝑙𝑑𝑖𝑛𝑔 =  ∆𝐺𝑓𝑜𝑙𝑑𝑖𝑛𝑔_𝑊𝑇 − ∆𝐺𝑓𝑜𝑙𝑑𝑖𝑔_𝑀𝑇 = 𝐺𝑓𝑜𝑙𝑑𝑒𝑑_𝑊𝑇 − 𝐺𝑢𝑛𝑓𝑜𝑙𝑑𝑒𝑑_𝑊𝑇
3 −

                                                  𝐺𝑓𝑜𝑙𝑑𝑒𝑑_𝑀𝑇 + 𝐺𝑢𝑛𝑓𝑜𝑙𝑑𝑒𝑑_𝑀𝑇
3                                   (2.1) 

  

,where G3
unfolded_X is the free energy of the unfolded state of the three-residue segments at 

the center of mutation site, and x stands for WT or MT, respectively. 

The effect of mutations on the binding free energy was calculated with the following 

thermodynamic cycle (see refs for more details [20, 102-105]) (Appendix Figure B-6b), 

and the corresponding equation is provided below:  
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∆∆𝐺𝑏𝑖𝑛𝑑𝑖𝑛𝑔 =  ∆𝐺𝑏𝑖𝑛𝑑𝑖𝑛𝑔_𝑊𝑇 − ∆𝐺𝑏𝑖𝑛𝑑𝑖𝑛𝑔_𝑀𝑇 = 𝐺𝑏𝑜𝑢𝑛𝑑𝑒𝑑_𝑊𝑇 − 𝐺𝑢𝑛𝑏𝑜𝑢𝑛𝑑𝑒𝑑_𝑊𝑇 −

                                                             𝐺𝑏𝑜𝑢𝑛𝑑𝑒𝑑_𝑀𝑇 + 𝐺𝑢𝑛𝑏𝑜𝑢𝑛𝑑𝑒𝑑_𝑀𝑇                                  (2.2) 

,where the unbounded state means the protein is taken away from its partner and bounded 

state means the protein forms a complex with its partner protein. 

3.3. Utilizing Webservers and Third Party Software 

    Third-party methods were also used to predict protein folding free energy change, 

including webservers and stand-alone computer algorithms. The webservers used to predict 

the folding free energy changes upon single point mutations include NeEMO [106], 

PopMusic [107], I-Mutant 2.0 [108], DUET [109], and CUPSAT [110]. Additionally, a 

computer algorithm, FoldX 3.0 Beta3 [111, 112], was used to predict the folding free 

energy changes upon single-point mutations. Currently, no reliable third-party software or 

a functioning webserver for predicting binding free energy changes are available. 

3.4. Molecular Dynamics Simulation 

    We carried out MD simulations to investigate mutations’ effects on the dynamics on the 

ARID domain. The simulations were set up within the NAMD program, version 2.9 [95], 

using the CHARMM22 force field [97]. The PDB structure taken from Protein Data Bank 

[91] was used as the initial structure. To relax conflicting contacts, energy minimization 

was performed using the conjugate gradient energy minimization of 10,000 steps. The 

protein was solvated in a water box with a layer of water extending 10 Å in each direction 

before the minimization and equilibration with periodic boundary conditions. Temperature 

and pressure in the simulation were set to 298 K and 1 bar. Each mutation was repeated for 
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three 100 ns runs using 2 fs time steps. The trajectory files were analyzed by using VMD 

plugins [81] in order to obtain the RMSD, RMSF, and salt bridges. 

3.5. Electrostatic Potential Calculation 

    The DelPhi program was used to perform the electrostatic potential calculations using 

the following parameters: scale = 2 grid/Å; percentage of protein filling of the cube = 70%; 

dielectric constant = 2 for the protein and 80 for the solvent; and water probe radius = 1.4 

Å. We outputted the DelPhi-calculated potential map into a file in CUBE format, which 

was further opened and analyzed in UCSF Chimera. 

4. Discussion and Conclusion 

    The KDM5C ARID domain binds to DNA and the formation of an ARID-DNA complex 

is important for the KDM5C function in humans [62, 64, 86]. Our analysis shows that 

A77T and D87G have minimal effect on the ARID domain’s DNA binding, which 

indicates that the disease-associated mechanism is probably not due to the alteration of 

DNA binding. It is also interesting that both of the disease-associated mutations are located 

onto the N-terminal of the ARID domain and both of the mutations are far away from the 

ARID domain’s DNA binding interface. We speculate that some not-yet-discovered 

function of the KDM5C protein is associated with the ARID domain’s N-terminal. To test 

this, we analyzed the KDM5C ARID domain using the ConSurf Server [113-116].The 

Consurf results support our speculation and show that both of the disease-associated 

mutations are located in the most highly-conserved part of the ARID domain and possibly 

cause a change in an important function of the protein. Additionally, D87 is predicted to 
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be a plausible zinc ion binding site and further supports that some currently-unknown 

function is linked to N-terminal of the ARID domain. 

    Previous studies show that KDM5C is a muti-functional protein and inter-domain 

interactions are identified among the JmjN domain, N-PHD domain, and JmjC domain [59, 

64, 71]. The interaction between the JmjC domain is important for the demethelytion 

activity. The N-PHD domain and JmjC domain can bind to the same histone tail at Lys4 

and Lys9. Both of pathogenic mutations happen in the N-terminal of the ARID domain and 

are close to the linker part between the ARID and JmjN domains. This suggests that A77T 

and D87G may be involved in some unknown interaction among JmjN, ARID, PHD, and 

JmjC domains. Currently, only the ARID domain structure is available and the arrangement 

of the KDM5C domain is unknown. 

    Our study also evaluates three non-classified mutations’ effects on the KDM5C ARID 

domain. Among them, the R108W causes a loss of a salt bridge, slightly affecting protein’s 

stability and ARID-DNA binding affinity. Therefore, we speculate that R108W is a 

disease-associated mutation based on altering structural features rather than on the 

calculated free energy changes. In addition, as demonstrated, R108W changes the 

electrostatic potential near the DNA binding site which may affect the specificity of ARID-

DNA binding.  

    In our work, protein binding and folding energy changes were calculated with FEP, 

webservers, and third party software. Limitation about the technical issues in FEP 

calculations are observed for the Arg- and Gly-involved mutations, possibly causing less 

reliable predictions. Therefore, other methods, including webservers and third-party 
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software were also applied in the free energy calculation to compare with the FEP results. 

Furthermore, the experimental results of the mutants A77T and D87G are obtained by urea-

induced unfolding methods, showing the same order of magnitude compared to the folding 

free energy calculation. Another limitation about this work is that our speculation about 

the unknown function in the N-terminal of the ARID domain has not been experimentally 

verified and, currently, the only known function about the ARID domain is the DNA 

binding interaction. However, our work implicates that the sites 77 and 87 may be involved 

in some other function or interaction different from cognate ARID-DNA binding. This 

provides motivation for future studies to further investigating other functions of KDM5C. 

 

PART2:  Computational model for quaternary structure of Lysine-specific demethylase 

5C (KDM5C) protein 

1. Introduction 

    The epigenetic processes control transcription of genes and result in the widely different 

gene expression patterns in different tissues and organs [117, 118]. The most frequently 

occurring histone modifications involve acetylation, phosphorylation, methylation, 

ubiquitination and crotonylation [119, 120]. Lysine methylation is one of the most 

important histone modifications among them, and has a crucial role in heterochromatin 

formation, X-chromosome inactivation and transcriptional regulation. Histone lysine 

methylation occurs in histones H3 and H4, and this methylation results in lysine residue’s 

three different methylation states (mono-, di-, and tri-), which are associated with different 

nuclear features and transcriptional states[56].  
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    The KDM5C gene (also known as JARID1C and SMCX) is located on the X chromosome 

and encodes a ubiquitously expressed 1,560-aa protein, which plays an important role in 

transcriptional regulation and chromatin remodeling [71]. The KDM5C protein belongs to 

the JARID subfamily of JmjC-containing proteins. The function of JmjC domain is to 

specifically demethylate di- and trimethylated lysine 4 on histone 3 [59]. The KDM5C acts 

as a transcriptional repressor and many mutations in the KDM5C gene has been shown to 

cause X-linked mental retardation (XLMR) and the syndromic Claes-Jensen-type disease 

[48, 59, 67]. Most of disease-causing mutations are located on JmjC domain, ZF domain 

(C5HC2 zinc finger domain) and inter-domain regions. These mutations are expected to 

affect the protein stability and enzymatic activity [59, 121].  

    Overall KDM5C is a multi-functional protein, consisting structurally of several well-

defined domains, including ARID, JmjN, JmjC, ZF, and two PHD zinc finger domains. 

Little experimental data is available about the 3D structure of the entire protein, individual 

domains and the interactions with its partners. The first experimental structure of one of 

the KDM5C domains is the solution structure of ARID domain, released in 2007 [90]. In 

the past, we used it to generate a 3D model of the ARID-DNA complex [48]. Very recently, 

the 3D structure of part of the human KDM5C protein (JmjN, JmjC and ZF domains) was 

released [122]. The same work revealed that ARID and PHD1 domains contribute to the 

histone substrate recognition despite not being directly required for demethylase activity 

[122]. However, there is still no experimental or theoretical 3D structure of KDM5C 

protein which includes JmjN, ARID, JmjC, C5HC2 zinc finger (ZF), and two PHD 

domains.  
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    Several XLMR-associated mutations were shown to reduce KDM5C demethylase 

activity and binding to the H3K9me3 peptide [123]. Specifically, ARID domain is a DNA-

binding domain in which two missense mutations (A77T and D87G) were reported [67]. 

The other domain, the JmjC domain, catalyzes demethylation of H3K4me3 to H3K4me1, 

and three missense mutations (D402Y, S451R and Y642L) are experimentally shown to 

reduce KDM5C demethylase activity [123]. Several pathogenic mutations (A388P, 

R731W and Y751C) were reported in the PHD1 domain (a histone methyl-lysine binding 

motif) and ZF domain and were shown to reduce the demethylase activity as well [123]. 

However, the molecular mechanism of the above-mentioned disease-causing mutations is 

mostly unknown. Perhaps this is due to the lack of experimental or theoretical 3D structure 

of KDM5C protein, which would allow for modeling the effects of mutations on domain 

stability and inter-domain interactions. The goal of this work is to fill this gap by 

developing a 3D structural model of KDM5C quaternary structure and using it to model 

the effects of disease-causing mutations on KDM5C stability, dynamics and inter-domain 

interactions.  It is understood that such multi-functional and multi-domain proteins may 

adopt various domain arrangements in different functional states. Thus, the quaternary 

structure that is reported in this work represents one of several domain arrangements of 

KDM5C that the protein may adopt during its functional cycle.  

 

2. Results and Discussion 

    The results section has three major components, namely a report of building 3D models 

of the corresponding KDM5C domains and arranging them into quaternary structure of 
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KDM5C, and then validating and using the 3D structure of KDM5C protein to predict the 

effect of XLMD-linked mutations. Below we describe the results in sequential order.  

2.1 Modeling quaternary structure of KDM5C protein 

2.1.1 Homology model of KDM5C PHD1 domain 

    As mentioned above, KDM5C is multi-domain protein consisting of well-defined 

domains as JmjN, ARID, PHD, JmjC and ZF domains. For most of them, JmjN, ARID, 

JmjC and ZF domains, there is experimental 3D structure available (Protein Data Bank 

(PDB) ID:2JRZ and 5FWJ)[90]. However, the 3D structure of PHD1 domain is not 

available and must be modeled. For this purpose, we used homology modeling, since high 

homology templates do exist. Thus, the amino acid sequence of KDM5C was submitted to 

the PSI-Blast [124] and the search was performed against the sequences of proteins in PDB 

database [91]. The best template for KDM5C PHD1 domain is the solution structure of 

another PHD domain within JARID family (PDB: 2E6R), with 84% sequence identity 

[125]. Then, we used SWISS-MODEL server [126] to generate the homology model for 

KDM5C  PHD1 domain. 

2.1.2 Quaternary structure of KDM5C catalytic core 

    We began the modeling of quaternary structure of KDM5C protein by taking advantage 

of recently released experimental structure (PDB ID: 5FWJ), which includes JmjN, JmjC 

and ZF domains. The experimental structure revealed a previously known fact that JmjN 

interacts with JmjC domain and that this interaction is crucial for the KDM5C protein 

stability and catalytic function [64, 122]. Furthermore, it is known that the ZF domain is 

required for catalytic activity of JARID proteins [127]. 
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    While it is known that JmjC domain demethylates di- and trimethylated lysine 4 on 

histone 3 (H3K4me2 and H3K4me3) along with the cofactors Ferrous ion (Fe2+) and 

alpha–ketoglutarate (2-oxoglutaric acid), the binding mode of histone peptide to JmjC 

domain is still unknown for the JARID family. Developing such a model is one of the goals 

of this work and we intend to generate it by taking the advantage of the experimental 

structures of other JmjC domain containing proteins. For this purpose, we first collected 

all existing experimental structures of JmjC domain bound to histone peptide. The 

experimental structures include the structure of KDM2A bound to H3K36me1 (PDB ID: 

4QXH) [128], the structure of JMJD2B complexed with H3K9me3 (PDB ID: 4LXL) [129], 

the structure of human JMJD2D/KDM4D in complex with an H3K9me3 peptide (PDB 

ID:4HON) [130],  the structure of KDM6B bound with H3K27me3 peptide (PDB ID: 

4EZH) [131], the structure of KDM7A from C.elegans complexed with H3K4me3 peptide, 

H3K9me2 peptide and NOG (PDB ID: 3N9O) [132], and the complex structure of 

JMJD2A and trimethylated H3K36 peptide (PDB ID:2P5B) [133]. The structural 

alignment was applied using the Chimera [82] for all collected structures. Figure 2.5A 

shows the results of structural alignment and it can be observed that the structures are 

highly conserved among different JmjC containing proteins. The positions of the histone 

peptides are also similar among different proteins, especially for the regions close to the 

bound Lys4 residue.  Therefore, we took the average coordinates of these histone peptide 

backbones, which were manually assigned to the histone 3 peptide residues from 1 to 10. 

The side chain of each residue was generated using the most probable rotamer from the 

Dunbrack backbond-dependent rotamer library [134] as implemented in Chimera [82]. 
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Further, Lys4 and Lys9 in the peptide were modified to H3K4me3 and H3K9me3 using 

Avogadro [135], since in vivo they are methylated as they bind to JmjC and PHD1 domains. 

Finally, auto-optimization was performed for the peptide with Avogadro [135] to correct 

for bad contacts and improper bonds. 

    Since the template experimental structure contains Mn2+ ion and inhibitor MMK instead 

of enzymatic cofactors Fe2+ ion and 2-oxoglutaric acid, the enzymatic cofactors must be 

placed in the model to replace the template cofactors.  This was done by superimposing 

template structure (structure of rice JMJ703 in complex with alpha-KG, PDB ID: 4IGO) 

onto the structure of KDM5C catalytic core and then replacing the template cofactors with 

enzymatic cofactors. The final model of KDM5C catalytic core bound with histone peptide 

and enzymatic cofactors is shown in Appendix Figure 5B. 
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Figure 2.5: (A) Structural alignment of all existing JmjC domains bound to histone peptide. 

The histone peptides are marked in red. The JmjC domains are marked with other colors. 

The C and N terminals of the histone peptide are labeled as C and N, respectively. (B) The 

model of KDM5C catalytic core bound to histone peptide and enzymatic cofactors. The 

histone peptide backbone is shown in green and H3K4me3 is shown in red. Enzymatic 

cofactors Fe2+ ion and 2-oxoglutaric acid are marked with purple and yellow, respectively. 

The C and N terminals of the histone peptide are also labeled. 

2.1.3 Modeling ARID domain’s interactions in quaternary structure of KDM5C 
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    ARID domain is the DNA binding domain of KDM5C protein and a NMR structure is 

currently available (PDB ID: 2JRZ). Also, in our previous work [48], a model of ARID-

DNA complex has been generated. The presence of DNA provides constrains of how ARID 

interacts with the rest of KDM5C domains. It should be noted that the ARID domain is the 

second domain of the KDM5C sequence (after the JmjN domain) and a link consisting of 

23 amino acids connects these two domains.  This provides further constrains of mutual 

orientation and positioning of ARID and JmjN domains. Since the quaternary structure of 

JmjN, JmjC and ZF domains is already available (see above), the next question is to predict 

ARID domain position and orientation with respect to the JmjN, JmjC and ZF domains.  

    Thus, we first applied the ZDOCK server [136] to search possible binding modes of the 

ARID domain to the quaternary structure of JmjN, JmjC and ZF domains. The ten best 

predictions were collected and analyzed. It should be reiterated that JmjN and ARID 

domains are connected via a linker of 23 amino acids. Thus, the first consideration that was 

made in the analysis of the ten best binding modes was to remove binding modes that result 

in ARID position and orientation that makes it impossible for ARID and JmjN to be 

connected by 23-amino acid linker. It should be pointed out that the linker region between 

JmjN and ARID domain is also included in the crystal structure [122] and it is simply 

wrapped around the JmjC domain. It is tempting to use the linker in the experimental 

structure of JmjN, JmjC and ZF domains (PDB ID 5FWJ) as a guide in positioning the 

ARID domain. However, it should be clarified that the linker adopts crystallographic 

conformation in absence of the ARID domain and thus its conformation in 5FWJ may be 

misleading. Due to this, we decided to delete the linker region from the experimental 
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structure and rebuild 3D structure of the linker connecting ARID and JmjC domains using 

the LOOPY program [137]. The results showed that the 23 amino acid linker is not long 

enough to connect JmjN and ARID domain in six out of ten binding modes. Thus, these 

six models were deleted. To compare the rest of the four binding modes, we computed the 

RMSD among them (Table C-1).  The RMSDs among four models is relatively small, 

ranging from 1.80 to 3.46Å. This indicates that these four binding modes are quite similar 

and that the binding interface is almost identical (Appendix Figure B-7A). 

    To further select the best model and test its stability, we run molecular dynamic (MD) 

simulations for each binding mode. Three 10ns parallel runs were performed for each 

model with CHARMM22 force field [97] in NAMD [95].  Default charges of titratable 

residues were assigned, since the pKa analysis predicted no ionization changes in 

physiological pH. We first calculated RMSD of ARID and JmjC domains to observe the 

overall structural change along the simulation time (Appendix Figure B-7B). The RMSD 

ranged from 5 to 7.5 Å and the overall structure became stable after 5ns for all models. To 

further study the binding mode stability, we also calculated the RMSD of the interfacial 

residues of each binding mode. We identified the interfacial residues by calculating the 

solvent accessible surface area (SASA) change of each residue in the complex and unbound 

domains. A residue is defined as an interfacial residue if the SASA change is not equal to 

0. Since the identified interfacial residues were slightly different in each model due to the 

structure difference, we only selected the interfacial residues common in all models for our 

analysis and the RMSD results are shown in Appendix Figure B-7C. The RMSD of 
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interfacial residues ranges from 3.5 to 7 Å and reaches stable value after 5ns simulation 

time.  

    To finalize the model of ARID bound to KDM5C catalytic core, we took the twelve MD 

generated trajectories (Note that for each of the four binding modes we generated three MD 

trajectories) and selected 50% with lowest RMSD among them. The last 5ns of the 

trajectories were taken to calculate the averaged structure using VMD tcl script [138].  The 

averaged structure was subjected to 10,000 steps of energy minimization to relax the 

structure. The finalized model of ARID bound to KDM5C catalytic core is shown in 

Appendix Figure B-7D. 

2.1.4 Modeling PHD1 domain’s interaction in the quaternary structure of KDM5C 

    The KDM5C PHD1 domain is close in sequence to the JmjC domain (the linker is 13 

amino acids long) and it is expected to bind to tri-methylated H3K9 residue (H3K9me3) 

[59, 139]. Indeed, a recent study indicated that the PHD1 domain is not required for the 

demethylase activity but does contribute to the recognition of the substrate peptide [59, 

122]. Currently, there is no available experimental structure of the KDM5C PHD1 domain 

bound to H3K9me3 and KDM5C catalytic core.  

    Above we described the modeling of quaternary structure of KDM5C catalytic core 

bound to histone peptide and ARID domain. Since a homology model of KDM5C PHD1 

domain was already generated (see above), we applied the ZDOCK server [136] to predict 

the binding modes of PHD1 domain and the model of KDM5C catalytic core bound to 

histone peptide. The Z-dock server predicted the ten most plausible binding modes. We 

evaluated them by applying constraint of the linker length between PHD1 and JmjC domain. 
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Since PHD1 and JmjC domains are connected with a 13-residue-long liner (we built a 3D 

structure of the linker connecting the PHD1 and JmjC domains using the LOOPY program 

[137]), we only selected the binding mode in which a stretch of 13 amino acids is able to 

connect the two domains. This resulted in three possible binding modes (Appendix Figure 

B-8A).  The PHD1 domain in all binding models is close to the substrate peptide but adopts 

different orientations.  

    To further test the binding stability in the rest of the three binding modes, we performed 

MD simulations. Since the substrate peptide is very flexible and tends to move away from 

the JmjC catalytic core, the position of H3K4me3 residue was fixed to make the substrate 

peptide stay in the catalytic core during the simulation time. The enzymatic cofactors, Fe2+ 

ion and 2-oxoglutaric acid, were also fixed in the simulation to prevent them from moving 

away from the JmjC catalytic core. Five 10ns parallel runs were performed for each model 

using AMBER ff14SB force field [140] in NAMD [95]. As mentioned above, default 

charges were used for titratable groups since no protonation changes were predicted by the 

pKa analysis. The averaged RMSDs calculated for the complex JmjC domain, substrate 

peptide and the PHD1 domain are shown in the Appendix Figure B-8B. The RMSD 

calculated for model1 and model3 is around 7 Å and the PHD1 domain stays bound with 

the JmjC domain during the simulation time. At the same time, model2 shows much larger 

RMSD values. It was observed that the PHD1 domain moves away from the JmjC domain 

and substrate peptide. Therefore, model2 was removed from our protocol, while model1 

and model3 were subjected to further considerations.  
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    To further select the best binding mode among mode1 and model3, we took advantage 

of experimental data that indicates that PHD1 domain binds substrate peptide at H3K9me3. 

Therefore, we identified all residues in PHD1 domain, which have any atom within 6 Å 

distance from H3K9me3 in the last 2.5ns simulation time (Appendix Figure B-8C). 

Comparing with model1, the analysis of the trajectories indicated that the PHD1 domain 

in model3 is farther away from the H3K9me3. Due to this, we selected model1 for further 

investigations. In particular, we paid attention to plausible stabilizing charge-charge 

interactions between PHD1 domain and peptides. Since the methylation of Lys does not 

neutralize the charge, we searched for acidic residue in PHD1 domain within a distance of 

6 Å from H3K9me3. Thus, we identified two acidic residues:  Glu360 and Glu375. Further 

N-O distance analysis did not indicate stable salt bridges between H3K9me3 and acidic 

residues in PHD1 domain. However, two other salt bridges within PHD1, Glu381–Histone 

ARG2 (H3R2) and PHD1 Glu375–Histone Arg8 (H3R8), were identified (shown in 

Appendix Figure B-8D). It should be mentioned that the structural segment (the linker) 

connecting ARID domain and PHD1 domain was not included in the model due to lack of 

homology template and thus PHD1 domain may appear to be more flexible in the 

simulations than it actually is and cause us to observe less salt-bridges. Noting the 

consistence with experimental data, we took model1 as the most plausible binding mode 

(the structure is shown in Appendix Figure B-8F). 

 

2.1.5 Quaternary structure of KDM5C JmjN, ARID, PHD1, JmjC and ZF domains bound 

with DNA, substrate histone peptide and enzymatic cofactors 
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    In our previous work, we generated the 3D structure of ARID-DNA complex [48]. Here, 

we took advantage of our previous work and included the DNA in the KDM5C quaternary 

structure model discussed above. Combining all the models described above, we finally 

generated the quaternary model of KDM5C protein - including JmjN, ARID, PHD1, JmjC, 

ZF domains, substrate histone peptide, enzymatic cofactors and DNA (Figure 2.6).  

 

Figure 2.6: Finalized model of quaternary structure for the KDM5C including JmjN, ARID, 

PHD1, JmjC and ZF domains bound to DNA, substrate histone peptide and enzymatic 

cofactors. KDM5C JmjN, ARID, PHD1, JmjC, ZF domains, inter domain region, substrate 

histone peptide, enzymatic cofactors and DNA are marked with yellow, pink, green, purple, 

orange, blue, red, orange, red, and gray, respectively. 
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2.2 Validation of KDM5C quaternary structure model 

    In this paragraph we will investigate domain spatial arrangement within the quaternary 

structure of KDM5C model using biophysical considerations (charge complementarity, 

inter-domain salt bridges, binding motif preservation, MD simulations and experimental 

observations) and predictions of interfacial patches. With our work focusing on predicting 

spatial positions of ARID and PHD1 domains within KDM5C quaternary structure, we will 

continue to focus on validating ARID and PHD1 interactions with the rest of the KDM5C 

domains.   

ARID domain: The binding interface is mostly made of ARID domain’s N-terminal and 

C-terminal regions, including Helix1 and Helix6 (Appendix Figure B-9A). Our previous 

evolutionary conservation study showed that the N-terminal of the KDM5C ARID domain 

is the most highly conserved region, indicating its essential function for KDM5C protein 

[48] and thus implicating its involvement in some important interactions. There exists an 

interface of the ARID domain in which the domain binds the DNA. In the model, it is 

Loop1 and a helix-turn-helix DNA binding motif formed by Helix4, Loop2, and Helix5, 

which is typical for DNA binding motifs. In the previous study [48], we demonstrated that 

DNA binding interface is positively charged, which is expected for interface binding to 

negatively charged DNA. Similarly, we calculated electrostatic potential of ARID domain 

and KDM5C JmjC and JmjN domain using Delphi [84].  The binding interface of JmjC 

domain is highly negatively charged while the binding interface of ARID domain is slightly 

positively charged (Appendix Figure B-9B). This indicates electrostatic complementarity 

and further validates the model. Furthermore, we submitted the sequence to cons-PPISP 
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webserver [141, 142], a consensus neural network method for predicting protein-protein 

interaction sites. The webserver predicts the residues which form binding sites for another 

protein. Here, we separately submitted ARID, PHD and JmjC domains to the server to 

predict the interaction sites on each domain. The results are shown in Appendix Figure B-

10D,E. The predicted interaction sites in ARID domain are mostly in the N terminal helix, 

which is highly consistent with our model (Appendix Figure B-10D). We also perfomed 

MD simulations on the model of ARID bound with KDM5C catalytic core (see above). 

The RMSD analysis of the interfacial residues indicated that the binding is stable 

(Appendix Figure B-7C). Lastly we investigated plausible salt bridges formed at the 

interface of ARID and PHD1 domains, because salt bridges are frequently observed at 

transient domain-domain interfaces [143, 144]. Since we had previously performed 5 

parallel runs, we only selected the salt-bridges observed in no less than two runs. The list 

of identified interfacial salt bridges is shown in Table 2.2. It can be seen that ARID 

interface is rich of interfacial salt bridges, indirectly indicating that the interface is correctly 

predicted.  

PHD1 domain: The predicted binding interface between PHD1 and JmjC domains is shown 

in Appendix Figure B-10A and marked with green. It includes a short helix and two loops. 

The KDM5C PHD1 domain binds to H3K9me3 and reduction of its binding decreases 

enzyme activity [59, 139]. This mechanism is still unknown. However, a recent study 

indicated that PHD1 domain contributes to the histone substrate recognition, despite being 

not directly required for demethylase activity [122]. In our model, the PHD1 domain 

simultaneously binds to peptide and JmjC domain. Here we investigated whether PHD1 
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domain binds with the substrate histone peptide alone, or whether it also interacts with 

JmjC domain to help further stabilize its binding to substrate peptide. For this purpose, we 

carried out MD stimulations and monitored RMSDs (Appendix Figure B-8). It is shown 

that the PHD1 domain is highly flexible - the salt bridge formed between the substrate 

peptide and the PHD1 domain were not very stable during the simulations as well 

(Appendix Figure B-8D,E). To better understand this finding, we carried out the same type 

of MD simulations of closely related complexes with experimentally available 3D 

structures. Thus, we collected the experimental structure of the KDM5B PHD1 finger 

(having 61% sequence identity with KDM5C PHD1 domain) in complex with H3K4me0 

[145] and ran 10ns simulation to study the RMSD of PHD1 domain and histone peptide. 

The results showed that the peptide moves away from PHD1 domain around 5ns (Appendix 

Figure B-10B). The overall PHD1 domain is very flexible as well (Appendix Figure B-

10C). Thus, the simulations indicate that the binding between the substrate histone peptide 

and PHD domain alone is not stable. This is perhaps due to the high flexibility of both PHD 

domain and substrate peptide. This advocates that the binding of histone peptide is 

supported by PHD1 interactions with JmjC catalytic core. Indeed, very recent study of 

domain arrangement in KDM5B protein by small-angle X-ray scattering (SAXS) and rigid-

body modeling [122] provided an evidence of the interaction between PHD1 domain and 

JmjC catalytic core. The model derived from SAXS indicates that the PHD1 domain is in 

close contact with the JmjC catalytic core and suggested cooperation between PHD1 and 

the catalytic core in KDM5 enzymes [122].  Considering both these experimental results 

and our model [59, 122], we speculate that the PHD1 domain interacts with the JmjC 
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domain to help stabilize the substrate peptide and itself, and further to position the H3K4 

in the JmjC catalytic core. Furthermore, as we did for the ARID domain, we submitted the 

sequence to cons-PPISP webserver [141, 142]. The cons-PPISP predicted interaction sites 

in PHD domain are located in the binding interface in our model (Appendix Figure B-10E). 

Lastly, we identified interfacial salt bridges at the PHD1 interface (Table C-2). 

2.3 Effects of disease-associated mutations on KDM5C domain’s stability and interactions 

    Currently there are eleven amino acid mutations in KDM5C protein known to be causing 

XLMD. They were investigated to predict their effects on the KDM5C domain’s stability 

and interactions. First we predict the effect on folding free energy (domain stability) using 

various webservers (Table 2.4). The results indicate that most of the disease-associated 

mutations substantially decrease domain stability, particularly mutations A77T, D87G, 

F642L, E698K and Y751C.  Furthermore, mutations D87G and D402Y are located at the 

binding interface of the ARID and JmjC domains and their effect on domain-domain 

interactions was predicted using several webservers (Table 2.5). It can be seen that the 

mutation D87G significantly decreases the binding affinity while D402Y slightly increases 

it. Asp87 is in the binding interface (shown in Figure 2.5A) and participates in two salt 

bridges (Asp87-Lys459, Asp87-Arg460) across the binding interface. Replacing 

negatively charged D87 with small, uncharged residue will alter the salt bridges and reduce 

the ARID-JmjC binding. The other mutation, D402, involves negatively charged residue 

in which the wild type KDM5C is predicted to form a salt bridge with R159 of JmjC 

domain. Preplacing it with neutral residue is expected to alter the salt bridge and to decrease 

binding affinity. However, the mutation is predicted to slightly increase binding affinity of 
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ARID domain to JmjC domain.  Perhaps this is due to the fact that R159 is involved in 

another salt bridge (Table C-2) and the D402-R159 salt bridge does not contribute to inter-

domain interactions. However, this bridge may be essential for forming the wild type 

binding pose. Overall, all investigated mutations are predicted to alter the wild type domain 

stability and inter-domain interactions. 

  

 mCSM SDM DUET SAAFEC Average 

A77T 0.88 2.48 0.83 1.44 1.41 

D87G 0.84 1.9 0.86 5.01 2.16 

A388P 0.44 2.12 0.57 -0.13 0.75 

D402Y 1.03 -0.8 1.04 -7.93 0.42 

S451R 0.52 0.25 0.43 -3.74 0.40 

V504M 0.16 0.88 0.16 -0.14 0.27 

F642L 1.43 1.05 1.56 1.71 1.44 

E698K 0.22 3.27 0.29 4.16 1.99 

L731F 1.5 0.31 1.69 0.01 0.88 

R750W -0.56 -1.74 0.76 1.01 0.40 

Y751C 1.66 -1.76 1.57 1.44 1.56 

 

Table 2.4: Folding free energy change upon mutations (kcal/mol). Positive value indicates 

that the mutation decreases domain stability. The most contradictory predictions are 

underlined and not used. The averaged prediction is shown in the last column.  

 

 

 BeAtMuSiC SAAMBE MutaBind Average 

D87G 1.65 -0.54 0.42 1.04 

D402Y -0.22 -0.66 0.18 -0.23 

 

Table 2.5: Binding free energy change upon mutations (kcal/mol). Positive value indicates 

that the mutation decreases binding affinity. The most contradictory predictions are 

underlined and not used. The averaged prediction is shown in the last column. 
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3. Materials and Methods 

3.1 Sequence alignment and homology modeling 

    The homologues of the KDM5C protein and their domains were retrieved from the 

Protein Data Bank database using the protein basic local alignment search tool [124], 

applying Position-Specific Iterated BLAST. The homologues with the highest sequence 

similarity were used to generate the homology model of KDM5C domains using the Swiss-

Model webserver [126]. 

3.2 Protein docking and inter domain linker building 

    The KDM5C domains interactions were predicted with ZDOCK 3.0.2 [136], which 

searches all possible binding modes in the translational and rotational space between two 

proteins/domains and evaluates each pose using an energy-based scoring function. The 

linker regions were predicted with LOOPY [146], a computer algorithm to predict loop 

conformation provided the amino acid sequence.  

3.3 Molecular Dynamics simulation 

    Molecular dynamics (MD) simulations were performed with the NAMD program, 

version 2.11b [95]. The force field used in the simulation, including the substrate peptide 

and enzymatic cofactors, was Amber force field in the Amber tools 15 [79]. The inpcrd 

and prmtop files were generated with Amber tools 15 [147].  Other simulations, with only 

standard protein residues, were performed with CHARMM22 force field [97]. A 10,000 

steps minimization was performed for all simulations to relax plausible overlaps. 

Generalized Born implicit solvent (GBIS) was applied in the simulations and the time step 
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was set to 2 fs. The temperature in the simulation was set to 298 K. The trajectory files 

were investigated using VMD 1.9.2 [138] with related plugins in order to analyze the 

RMSD, RMSF, and salt bridges. 

3.4 Change of folding and binding free energies upon missense mutations 

    The binding free energy changes upon missense mutations (ΔΔΔG) were predicted with 

webservers including BeAtMuSiC [148], MutaBind [149] and SAAMBE [30, 150]. The 

folding free energy changes upon missense mutations (ΔΔG) were evaluated with mCSM 

[151], SDM [152], DUET [109] and SAAFEC [153] servers. 

3.5 Electrostatic Potential Calculation 

    The DelPhi program was used to perform the electrostatic potential calculations. The 

following parameters were applied in the calculation: scale = 2 grid/Å, percentage of 

protein filling of the cube = 70%, dielectric constant = 2 for the protein and 80 for the 

solvent, and water probe radius = 1.4 Å.  

3.6 pKa shifts analysis 

    To investigate the possibility that some titratable residues may undergo protonation 

change upon formation of quaternary structure of KDM5C, we performed the pKa 

calculations with DelPhiPKa [154, 155], which surface-free Poisson-Boltzmann based 

approach to calculate the pKa values of protein ionizable residues, nucleotides of RNA and 

DNA. We first calculated the pKa’s of titratable residues for unbound ARID, PHD1 

domains and KDM5C catalytic core and then repeated the calculations using quaternary 

KDM5C structure. The pKa shifts are calculated by subtracting the pKas of quaternary 

KDM5C structure and the pKas of individual domains (details are provided in SI).  
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4. Conclusion 

    The KDM5 protein is of significant interest for the biomedical community due to its 

relevance to X-linked mental retardation [70] and importance in oncological drug 

development [156]. KDM5C protein is a multi-functional protein of 1560-aa length and 

3D structure of the entire protein is currently unavailable. Only the 3D structure of ARID 

domain, and very recently of catalytic core, is available [122]. Here we fill this gap by 

reporting a 3D model of KDM5C protein quaternary structure, including JmjN, ARID, 

PHD1, JmjC and ZF domains bound to DNA, substrate histone peptide and enzymatic 

cofactors. The model was used to infer the effect of disease-causing mutations of domain 

stability and domain-domain interactions. From the model, it was demonstrated that the 

mutations significantly alter wild type domain stability and inter-domain interactions. This 

suggests that domain stability and domain spatial arrangement with KDM5C protein are 

essential for its wild type function.   
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Modelling of SAVs’ molecular effects in Spermine Synthase: 

1. Introduction 

    Polyamines are cationic polymers that play multiple important roles in a wide range of 

cell growth and development processes. [157-159]. This study focuses on human spermine 

synthase (SpmSyn), a protein whose function is to convert spermidine (SPD) into spermine 

(SPM). The reactant (SPD) and the product (SPM) are both polyamines, which are essential 

for normal mammalian cell growth and development [160, 161]. A previous study has 

illustrated that mutations in SpmSyn are associated with Snyder–Robinson syndrome 

(OMIM #309583, SRS) [13, 162, 163]. Mutations can affect SpmSyn’s dimer and 

monomer stability and alter the wild-type hydrogen bond network, which is important for 

the enzymatic functionality [13, 101, 164]. All of these alterations cause the disruption of 

SpmSyn function and thus result in an abnormal SPM/ SPD ratio and SRS. SRS is a rare 

form of X-linked intellectual disability characterized by mild to moderate mental 

retardation, asthenic body build (marfanoid habitus), diminished muscle bulk, 

osteoporosis, kyphoscoliosis, dysmorphisms (facial asymmetry, full lower lip, long great 

toes) and nasal or dysarthric speech [162, 163]. Significantly decreased SpmSyn activity 

results in low levels of intracellular SPM and a decreased SPM/ SPD ratio for Snyder–

Robinson syndrome patients. SpmSyn is thus an important drug target to restore the 

protein’s function [24, 164]. 

    SpmSyn consists of two structural domains, C-domain and N-domain, connected via a 

linker-domain. Structural and biochemical analyses have shown that the biological unit of 
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SpmSyn is a homo-dimer instead of a monomer [101, 165]. The C-terminal domain is the 

catalytic domain, which carries out the catalysis of SPD to SPM. In contrast, the N-terminal 

domain is not involved in catalytic function but plays a crucial role for the dimerization. 

Most of the binding interface is formed with the N-terminal domain and deletion of the N-

domain disables dimerization and results in the lack of activity [24, 160]. Missense 

mutations occurring in SpmSyn can directly affect the wild-type properties of the active 

site in the C-domain or alter the binding interface in the N-domain to lower dimer affinity 

[24, 101]. Since the SRS is caused by various molecular mechanisms, combined in silico 

and in vitro investigations are necessary to reveal molecular effects of missense mutations 

in SpmSyn in order to identify drug-like small molecules for disease treatment [24, 164, 

166, 167]. 

    Here, we investigate the molecular effect of five SRS causing mutations located within 

the N-domain of SpmSyn: M35R, G56S, F58L, G67E and P112L. Since these mutations 

are away from the active center of SpmSyn, they are not expected to directly affect the 

catalytic function of SpmSyn, but rather to alter SpmSyn activity indirectly by perturbing 

other biophysical properties. Here we focus on two of them, the stability and the 

dimerization of SpmSyn. 

    Some of the abovementioned mutations were previously investigated; others are 

reported in this work for the first time. Thus, M35R was identified at the Greenwood 

Genetic Center from a patient diagnosed with SRS. The P112L is the SRS-causing 

mutation included in this work due to personal communication with Raymond family. The 

G56S (rs121434610), which occurs at a highly conserved residue within the N-domain 
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region of SpmSyn, greatly reduces SpmSyn activity and leads to severe epilepsy and 

cognitive impairment [168]. The F58L (rs397515549) also greatly reduces SpmSyn 

activity and leads to mental retardation along with severe osteoporosis [169]. The G67E 

(rs397515553) causes an ectopic kidney and early-onset epilepsy in addition to features 

characteristic of Snyder-Robinson syndrome and completely destroys SpmSyn activity in 

the patient’s lymphoblastoid cells [162]. 

2. Results 

2.1. Effect of Missense Mutation on Monomer Stability (in Silico Modeling) 

    Table 2.6 shows the results of monomer stability changes (changes of the folding free 

energy) due to missense mutations calculated with webservers and stand-alone computer 

algorithms. For most of the cases, predictions made with different algorithms are in good 

agreement. The most controversial prediction is made by FoldX, where F58L is predicted 

to stabilize the monomer while other tools give opposite results. The five disease-causing 

mutations are all predicted to decrease monomer stability. Specifically, M35R, G67E and 

G56S are predicted to dramatically decrease monomer stability. 

Mutations PoPMuSiC DUET FOLDX I-Mutant 2.0 SDM SD AV 

M35R −0.93 −0.47 −0.42 −1.81 −2.93 1.06 −1.31 

G56S −1.99 −0.52 −3.50 −2.16 −3.51 1.24 −2.34 

F58L −1.77 −0.95 2.12 −2.72 −0.18 1.84 −0.7 

G67E −1.99 −1.26 −1.36 −0.18 −1.34 0.65 −1.22 

P112L −0.87 −0.06 −0.43 −0.83 −1.04 0.40 −0.65 
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Table 2.6 Predictions of monomer stability change due to missense mutations. The 

calculated folding free energy changes are in kcal/mol. G > 0 indicates stabilization 

while G < 0 indicates destabilization. Average value (AV) of folding free energy 

changes is given in the last column of the table. Standard deviation (SD) is also calculated 

to quantify the variation of energy changes. 

2.2. Effect of Missense Mutation on Monomer Stability (in Vitro Experiments) 

    The patient samples showed a reduced level of SpmSyn protein for all the patients either 

by native or denatured western blot analysis as compared to the control (Figure 2.7). After 

native gel electrophoresis, the dimer form of SpmSyn was only detectable in the lane for 

the G67E alteration. Its level was only detectable upon long exposure.  

    On denatured western blots, the P112L alteration was detected at about 20% of the 

control; F58L was detected at about 7% of the control, and G67E was detected at about 5% 

of the control. M35R and G56S were barely detectable (Table C-3). The implied stability 

order from this data is: WT > P112L > F58L > G67E > G56S > M35R. 



 50 

 

Figure 2.7 Western blot analysis of SMS levels in patient lymphoblast cell lines. (A) 

Denatured SMS blot. 10 µg of lymphoblast lysate was prepared in Lamelli sample buffer. 

The buffer was parted on a 4%–20% sodium dodecyl sulfate polyacrylamide gel (SDS–

PAGE). Furthermore, the buffer was probed for SMS and glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH). The control was GAPDH. Densitometry of the blots was 

analyzed using NIH Image J. SMS expression levels of the mutants were normalized to the 

control. (B) Native SMS blot. 10 ug of lymphoblast cell lysate was prepared in native 

sample buffer, separated on a native PAGE gel and probed for SMS and GAPDH. 

Densitometry of the blots was analyzed by NIH Image J. 
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2.3. Effect of Missense Mutation on Dimer Affinity 

Mutations 

BeAtMuSiC 

(AB) 

BeAtMuSiC 

(CD) 

Foldx 

(AB) 

Foldx 

(CD) 

SAAMBE 

(AB) 

SAAMBE 

(CD) 

SD 

(AB) 

MEAN 

(AB) 

SD 

(CD) 

MEAN 

(CD) 

M35R 0.05 0.24 0.17 −0.96 −0.27 −0.19 0.22 0.11 0.60 −0.30 

G56S −1.84 −1.34 −8.64 

−11.8

7 

1.58 −4.12 5.20 −5.24 5.45 −5.78 

F58L −2.74 −2.28 −0.1 −1.26 2.20 7.46 2.47 −1.42 5.35 1.31 

G67E −0.78 −0.83 0.372 0.16 −1.86 9.91 1.12 −0.76 5.93 3.08 

P112L −0.11 −0.17 −4.59 −3.32 −0.38 3.39 2.51 −2.35 3.35 −0.03 

Table 2.7 Predictions of dimer affinity change due to missense mutations. The calculated 

binding free energy changes are in kcal/mol. ∆∆G > 0 indicates stabilization while ∆∆G < 

0 indicates destabilization. The calculation is performed for “AB” dimer and “CD” dimer 

for comparison. The mean value is the average of all calculated results for each mutation. 

SD is also calculated to quantify variation of values. 

 

Table 2.7 shows the results for dimer affinity change (binding free energy change) due 

to missense mutations calculated with webservers and stand-alone computer algorithm. 

The calculations for all investigated mutations are performed using “AB” dimer and “CD” 

dimer. For most cases, the predictions made by different algorithms are in agreement. 

Among disease causing mutations, G56S, F58L, G67E and P112L, are predicted to 

substantially decrease dimer affinity while M35R is calculated to have negligible effect. 

2.4. Result of Multiple Sequence Alignment Analysis(MSA) 

    We investigated the evolutional conservation of the WT residues involved in the 

mutations based on MSA. The SpmSyn proteins used for MSA are taken from ten different 
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species, which include seven mammals and three non-mammals. Figure 2.8 shows the 

result of multiple sequence alignment of SpmSyn among different species. It can be seen 

that the residues involved in SRS are almost totally conserved across all different species, 

indicating that these residues are probably important for protein function. The substitution 

of these highly conserved residues will probably have a large impact on the protein’s 

functionality.  

 

Figure 2.8. Sequence alignment of SpmSyn among different species. The mutation sites 

considered in this study are represented in bold letters and the position of the residue in 

human SpmSyn is shown at the top. The mammals considered in this study are represented 

in bold letters. Multiple sequence alignment (MSA) is performed with Cobalt Constraint-

based Multiple Protein Alignment Tool (COBALT). 

3. Discussion 

    Dimerization is essential for the normal function of SpmSyn and the N-terminal domain 

plays a crucial role in the dimerization. In this work, we investigated the molecular effect 

of five mutations which causes SRS located within the N-domain of SpmSyn, focusing 
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mainly on the stability and the dimerization of SpmSyn. To analyze the effects of these 

mutations on SpmSyn stability and binding affinity, we investigated the structural features 

of the side chains involved in the mutations and made connections to computational and 

experimental results. We performed such an analysis for each mutation separately. 

Appendix Figure B-11 shows the side chain conformations of the wild type and the mutant 

residue for the five disease-causing mutations studied in this work. 

M35R: The M35R is substitution of a hydrophobic residue Met by a positive charged 

residue, Arg. The M35 site is totally buried in the protein’s interior. As it is shown in 

Appendix Figure B-11a, the structure around M35 site is very well packed and there is no 

room to accommodate the large Arg side chain. In addition, placing a charged residue, Arg, 

in the hydrophobic protein interior is energetically very costly and is typically referred as 

to desolvation penalty. It can be seen (Appendix Figure B-11b) that the mutant R35 does 

not establish any hydrogen bonds or other type of favorable interaction. In terms of binding 

affinity, the M35 site is far away from the interface and a direct effect of the mutation on 

the binding affinity is not expected. This is consistent with the energy calculations and 

experimental observation, which showed that M35R has large effect on the monomer 

stability but negligible effect on the dimer affinity. 

G56S: The mutation G56S is located ina sharp loop connecting two β strands of the N-

domain (Appendix Figure B-11c). The G56 site is almost totally exposed to the water in 

monomer state. However, it is well known that Gly is typically found in tight turns and any 

replacement may cause steric clashes. This is the structural argument for predicting that a 

substitution with a relatively long side chain of Ser is not favorable (Appendix Figure B-
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11d). The G56 is at the periphery of the dimer binding interface and direct effect on binding 

is expected for any residue substitution. This is consistent with the energy calculations 

reported here and in previous work [24, 101], showing that the G56S mutation decreases 

both monomer stability and dimer affinity. The effects were also experimentally confirmed 

[101].  

F58L: The mutation F58L is located in a β strand at the dimer binding interface; (Appendix 

Figure B-11e,f.) The energy calculations predict that the mutation destabilizes the 

monomer and has a large effect on dimer affinity. The experiments show that the mutation 

decreases monomer stability as well. As for the dimer affinity, Phe58 is totally buried at 

the dimer binding interface formed by two β sheets and there is no room for 

accommodating side chain of different volume—thus the substitution ofLeu is predicted to 

greatly decrease dimer affinity. 

G67E: The mutation G67E is a substitution of a neutral residue Gly by a negative charged 

residue, Glu, and is located in a sharp loop connecting two β strands of N-domain 

(Appendix Figure B-11g). Similar to the effect of the above mentioned mutation G56S, the 

replacement of Gly by Glu, which is a negative charged residue with long side chains and 

does not form any favorable interactions (Appendix Figure B-11h) , in a tight turn in 

structures will cause steric clashes and probably destabilize the protein. This predicted 

effect is consistent with the energy calculation that G67E significantly destabilizes the 

monomer stability. The experiments also confirm the computational prediction. In terms 

of dimer affinity, G67E is at the periphery of the dimer binding interface and the prediction 

is that G67E mutation will also destabilize the dimer. 
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P112L: The last disease causing mutation, P112L is also located at the binding interface 

(Appendix Figure B-11i,j). The P112 site is totally exposed to the water in the monomeric 

state. However the substitution is predicted to decrease stability of the monomer. The same 

is observed experimentally. Furthermore, the P112L is predicted to have a large effect on 

the dimer affinity as well. It can be seen that P112 site is located at a turn between two β 

strands and the specific characteristics of Pro residue cannot be mimicked by any other 

amino acid. This is consistent with the energy analysis indicating that P112L mutation will 

significantly destabilize the dimer. 

    From an evolutionary stand-point, the five disease-causing mutations are in sequence 

positions that are highly conserved across different species in multiple sequence alignment 

analyses, indicating that they are important for SpmSyn function. 

Overall, the study revealed the molecular mechanism of the five SRS-causing mutations: 

It was shown that all mutations greatly affect SpmSyn stability and dimerization. Thus, the 

disease-causing effect alters the structural integrity of SpmSyn and thus, the protein is 

either unfolded, and therefore subjected to degradation, or present in very small quantities 

with impaired ability to form a dimer. The functional result of either of these events would 

be a dysfunctional protein resulting in SRS. 

4. Materials and Methods 

4.1. Protein Structure 

    The wild type structure of human SpmSyn (PDB ID: 3C6K)[165] was downloaded from 

Protein Data Bank (PDB) [91]. The structure contains four chains and the biological unit 
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is taken as a homo-dimer made of chain “A” and “B” or Chain “C” and “D”. Since there is 

a small structural difference between the “AB” dimer and the “CD” dimer, both structures 

are used for energy calculation for comparison. The mutant structure was generated in 

silico by side chain replacement with VMD Mutator Plugin, Version 1.3 [81]. 

4.2. Protein Binding and Folding Free Energy Prediction 

    Webservers and stand-alone computer programs were applied to assess monomer 

folding free energy change and dimer affinity change due to mutations. The webservers 

used for energy calculation included BeAtMuSiC [148], NeEMO [106], PopMusic [107], 

I-Mutant 2.0 [108], SDM [152], DUET [109] and CUPSAT [110]. Also a computer 

algorithm, FoldX 3.0 [111, 112] was used to predict the folding free energy changes and 

dimer affinity change upon single point mutations. Another program developed in our lab, 

SAAMBE [30], was also used to calculate dimer affinity change. 

4.3. Multiple Sequence Alignment  

To investigate the evolutional conservation of the above mentioned mutations, multiple 

sequence alignment (MSA) was performed with Cobalt Constraint-based Multiple Protein 

Alignment Tool (COBALT) [170] among different species. The sequence of different 

species was downloaded from UniProtKB/Swiss-Prot Database [171] with FASTA format 

and include seven mammals: human (Homo sapiens; UniProtKB/Swiss-Prot: P52788), 

mouse (Mus musculus; UniProtKB/Swiss-Prot: P97355), bovin (Bos taurus; 

UniProtKB/Swiss-Prot: Q3SZA5), rat (Rattus norvegicus; UniProtKB/Swiss-Prot: 

Q3MIE9), calja (Callithrix jacchus; UniProtKB/Swiss-Prot: U3FPX7), pantr (Pan 
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troglodytes; UniProtKB/Swiss-Prot: P97355), and maceu (Macropus eugenii; 

UniProtKB/Swiss-Prot: B3VFB4) and three non-mammals: danre (Danio rerio; 

UniProtKB/Swiss-Prot: Q9YGC9), ophha (Ophiophagus hannah; UniProtKB/Swiss-Prot: 

V8NLB9), and ictpu (Ictalurus punctatus; UniProtKB/Swiss-Prot: W5U5T7). 

 

Modelling of SAVs’ molecular effects in DHCR7 protein: 

1. Introduction 

Smith-Lemli-Opitz syndrome (SLOS) is an inherited disorder of cholesterol synthesis 

characterized by intellectual disability and multiple malformations, including facial and 

genital abnormalities and syndactyly and was first described by Smith and coworkers 

[172]. The reported incidence of SLOS varies widely depending on the heterogeneity of 

the population studied, the biochemical methods used and the alleles assessed. Current 

estimates of SLOS carrier frequency in Caucasian populations lie between 1% and 3% 

[173-175]. SLOS is more prevalent in individuals of northern and eastern European descent 

and is rarely described in individuals of Asian or African descent [176]. Reports that up to 

80% of affected fetuses, likely those heterozygous for null mutations, die before birth and 

that milder cases of the disease may not be diagnosed, conceivably prevent accurate 

determination of frequency [177-179]. The majority of “classical” SLOS patients are 

compound heterozygotes with one severe null mutation and a second missense mutation 

which retains some enzyme functionality. Milder cases often possess two less severe 

missense mutations [180]. 
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SLOS is linked to mutations in 7-dehydroxycholesterol reductase (DHCR7), which is 

the rate-limiting enzyme in the cholesterol synthesis pathway [181]. DHCR7 reduces the 

C7–C8 double bond of 7-dehydrocholesterol (7DHC), the precursor molecule to 

cholesterol [182]. Cholesterol, though harmful in high levels, is essential to life since it is 

involved in membrane structure and permeability, synthesis of steroid hormones and 

proper fetal development. The loss of functionality of the DHCR7 enzyme in individuals 

with SLOS results in a significant decrease in cholesterol levels and possibly toxic buildup 

of 7DHC and other cholesterol precursors [183]. It was shown that accumulation of 7DHC 

in the brains of rats is associated with intellectual and learning disabilities [13,14]. 

In addition to its role in cholesterol synthesis, 7DHC is also required for vitamin D3 

production. Exposure to sunlight cleaves the C9–C10 bond of 7DHC in the skin, resulting 

in vitamin D3. Vitamin D3 is essential for calcium absorption and bone health [184]. As 

DHCR7 activity decreases the amount of 7DHC available for vitamin D3 synthesis, there 

is a potential heterozygote advantage to carriers of DHCR7 mutations, which typically 

decrease enzymatic activity [185, 186]. This may explain the prevalence of mutations 

originating in areas with decreased sun exposure such as northern Europe and northeast 

Asia [178, 187]. 

The DHCR7 gene maps to chromosome 11q13.2–13.5 [17–19] and consists of nine 

exons with the initiation codon located in exon three. The gene is expressed in all tissues 

with peak expression in adrenal glands, liver and brain [188]. DHCR7 encodes a 475 amino 

acid polypeptide with a molecular weight of 54.5 kDa, which is a transmembrane protein 

located in the endoplasmic reticulum (ER) membrane, the location of cholesterol synthesis. 
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The first DHCR7 mutations were identified in 1998 by several groups and the early 

years of the 21st century resulted in more advanced molecular tests to rapidly identify 

DHCR7 mutations [188, 189]. Most mutations are identified through sequence analysis of 

coding exons and flanking intronic sequences [5,17]. To date, more than 160 DHCR7 

mutations have been reported [176]. The most common mutation with a prevalence of 

~30% of reported SLOS patients is the IVS8AS G > C − 1 splice acceptor site mutation. 

This results in the inclusion of 134 base pairs of intronic sequence into the transcript and a 

non-functional protein. Other common mutations include T93M, W151X, V326L and 

R404C.  

The majority of pathogenic DHCR7 mutations occur in the highly conserved C-

terminus region of the protein. In their molecular model of the DHCR7 protein, Li and 

coworkers predicted two overlapping binding sites: one for docking of the sterol 7DHC 

and one for binding of the coactivator NADPH [190]. As both binding sites are critical for 

proper protein function, it can be speculated that mutations affecting these areas would be 

most likely to result in disease. In support of this hypothesis, Waterham and Hennekam 

conducted a systematic review of published SLOS patients and compared genotype with 

phenotype [176]. They concluded that the most severely affected patients presented with 

two null alleles or two mutations in the 8–9 cytoplasmic loop while a milder phenotype 

was associated with mutations in the 1–2 loop or one mutation in the N- or C-terminus 

[176]. 

In the present study, we obtained variations in the DHCR7 gene from online databases 

and modelled their effects on the corresponding protein to make predictions about SLOS 
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phenotype. We demonstrate that structural and conservation properties are good 

discriminators between pathogenic and non-pathogenic mutations, while folding free 

energy changes (∆∆Gs) are not. This is consistent with previous observations [191] that 

current methodology for computing ∆∆Gs are not accurate enough when applied to 

membrane proteins. Furthermore, based on detailed analysis of selected mutants, we 

predict that the currently non-classified mutation, R228Q, is pathogenic. 

2. Results and Discussion 

2.1. Mapping Missense Mutations onto the 3D Structure of DHCR7 Protein 

The dataset of DHCR7 missense mutations includes three types of mutations: 

pathogenic, non-pathogenic and mutations of unknown effect. The mutations were 

visualized by mapping them onto the DHCR7 structure (Figure 2.9A). Pathogenic 

mutations are predominantly located in transmembrane and ligand-binding regions while 

non-pathogenic mutations are primarily situated outside the membrane. This observation 

indicates that pathogenic mutations occur at protein sites that are either buried or directly 

involved in protein function, which corroborates the findings of previous investigations 

[41, 48, 78, 192]. To investigate the linkage between structural and evolutionary features 

of DHCR7 protein, we obtained the evolutionary conservation score (EC score) for each 

residue from multiple sequence alignment and mapped them onto the 3D structure of 

DHCR7 (Figure 2.9B). The transmembrane and ligand-binding regions appear to be highly 

conserved. Thus, most pathogenic mutations are located in highly conserved positions, 

while non-pathogenic mutations are less conserved. To further quantitatively assess the 
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mutations’ effects, we computed the relative solvent accessible surface area (rSASA), 

evolutionary conservation score (EC score) and folding free energy change (∆∆G) for all 

mutations studied in this work (Table C-4). Pathogenic mutations tend to have lower 

rSASA values and higher EC scores compared with non-pathogenic mutations. However, 

∆∆G results show no obvious tendency to discriminate pathogenic from non-pathogenic 

mutations. The predictions made with different servers frequently contradict each other 

resulting in large standard deviation (SD) when averaging these predictions (Table C-4). 

As DHCR7 is a transmembrane protein and recent work [191] demonstrated that current 

tools of ∆∆G predictions are not accurate when applied to membrane proteins, this may 

explain why ∆∆G fails to discriminate pathogenic from non-pathogenic mutations in this 

case. In addition, we also performed Polyphen predictions on all types of mutations (Table 

C-4). Almost all the pathogenic mutations are predicted to be probably damaging by 

Polyphen. However, Polyphen overestimated the deleteriousness of the non-pathogenic 

mutations. About half of the non-pathogenic mutations were classified as possibly or 

probably damaging. Thus, Polyphen has limited accuracy in discriminating the pathogenic 

mutations from the mutations with unknown effects for this particular protein. 
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Figure 2.9. (A) Visualization of mutations mapped onto DHCR7 protein. Red, orange and 

green colored sites represent pathogenic, unknown effects and non-pathogenic mutations, 

respectively. The membrane boundaries are schematically shown with light blue dashed 

lines; (B) Most highly evolutionarily conserved residues mapped onto DHCR7 protein. 

Residues with EC score > 0.9 are marked with blue and all mutation-affected residues are 

shown with side chain. The membrane boundaries are schematically shown with light blue 

dashed lines. 

2.2. Classification of the Mutations with Unknown Effects Using KNN Model 

One of the goals of this study was to identify biophysical features allowing us to 

distinguish between pathogenic and non-pathogenic mutations, and thus to make 

predictions about unclassified mutations. Above, we outlined several biophysical features, 
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namely rSASA, EC score, PD and ΔΔG, which will be used in conjunction with the K-

nearest neighbors (KNN) method (see Method section). The dataset includes 16 pathogenic 

mutations and 23 non-pathogenic mutations. These 39 mutations were randomly 

partitioned into training dataset (29 mutations) and test dataset (10 mutations) and then 

subjected to the KNN classifications. As the ΔΔG was shown to be less successful in 

distinguishing between pathogenic and non-pathogenic mutations, we performed the KNN 

classification with and without the ΔΔG (Table C-5). The classification shows better 

performance without using the ΔΔG and the accuracy is 100% when K value is within 5 to 

9. Here, we select K = 7 (the median of the K value corresponding to highest accuracy). 

Finally, KNN model with K = 7 and using properties: rSASA, EC score and PD applied to 

classify the mutations with unknown effects (Table 2.8). Thus, we predict that among all 

currently known unclassified mutations, only R228Q is pathogenic. In Table 2.8 we also 

compared our KNN classification results with the predictions from Polyphen. Consistent 

with our results, Polyphen predicted R228Q to be probably damaging. However, Polyphen 

gives contradictory predictions for eight additional mutations (predicted to be probably 

damaging), which are classified as non-pathogenic by our KNN classification. 

Overestimation of mutation deleteriousness was also observed when applying Polyphen to 

the known non-pathogenic mutations (Table C-4). 

 

Mutation KNN Classification Polyphen Mutation KNN Classification Polyphen 

A41V N Benign R228Q P Probably damaging 

I44T N Benign V330M N Probably damaging 

A67T N Possibly damaging V338M N Benign 
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I75F N Benign F361L N Probably damaging 

R81W N Probably damaging T364M N Probably damaging 

A97T N Possibly damaging R367C N Probably damaging 

V126I N Probably damaging G424S N Probably damaging 

V134L N Benign G425S N Benign 

A162V N Possibly damaging R461C N Probably damaging 

Table 2.8. KNN classifications and Polyphen predictions of the mutations with unknown 

effects. P and N represent pathogenic and non-pathogenic mutations, respectively. 

2.3 Case Study of Selected Mutations Using Molecular Dynamics (MD) Simulations 

The above classification and analyses were performed using fast computational 

approaches and were applied to the entire dataset. We selected a subset of mutations for 

extensive MD simulations to investigate the possibility that pathogenic and non-pathogenic 

mutations have different effects on DHCR7 protein conformational dynamics. For this 

purpose, we selected 10 representative mutations including five pathogenic mutations 

(T154R, E288K, T289I, G303R and R404C), two non-pathogenic mutations (R260Q and 

A452T) and three mutations with unknown effects (V134L, R228Q and F361L). These 

mutations are localized to different regions of protein structure. Five mutations (T154R, 

R228Q, E288K, T289I and G303R) are located in the transmembrane region and are buried 

in the membrane, two mutations (F361 and R404C) occur near the ligand-binding site and 

potentially affect ligand binding, and the remaining three mutations (V134, R260Q and 

A452T) are in neither the transmembrane region nor the ligand binding site. 

Since our focus was on protein conformational dynamics, we calculated the 

corresponding RMSDs and RMSFs for the wild type and mutant proteins. The average 
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RMSD data shows no obvious difference between wild type protein and proteins with non-

pathogenic or pathogenic mutations. However, the average RMSF indicates some 

differences between the wild type and mutants. For example, in the mutant A452T, cytosol 

loops (CL) 2 and 4 and transmembrane domain (TM) 10 regions are more rigid compared 

to the wild type (Table 2.9). However, no apparent patterns were identified to differentiate 

pathogenic mutations and non-pathogenic mutations by simply observing the graphs. A 

previous study of the AGAL protein has indicated a correlation between the protein’s 

flexibility and the severity of a mutant’s pathogenicity [193]. Thus, to identify such 

potential correlation in DHCR7 protein, we mapped the pathogenic and non-pathogenic 

mutations on the average RMSF of the wild type proteins (shown in Figure B-12). We 

observed that most pathogenic mutations are located on the low RMSF region while the 

non-pathogenic mutations show the opposite trend. As the low RMSF residues are mostly 

transmembrane, such observed correlation is expected when majority of the pathogenic 

mutations are located on the transmembrane region. In addition, further analysis was 

performed by grouping the residues into different regions and then summing up the RMSF 

of residues in that region to get a region-RMSF. Based on DHCR7 protein structure 

information [194], residues were grouped into regions: TM1 (residues 40–60), TM2 

(residues 94–115), TM3 (residues 145–164), TM4 (residues 176–191), TM5 (residues 

235–256), TM6 (residues 268–288), TM7 (residues 302–326), TM8 (residues 332–352), 

TM9-10 (residues 408–442), CL1 (residues 116–144), CL2 (residues 198–234), CL3 

(residues 289–301), CL4 (residues 354–407) and CTD (residues 443–475). The topology 

of the cytosol loops (CL), the C terminal domain (CTD) and transmembrane domains (TM) 
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mapped with selected mutations are further represented for better visualization of the 

DHCR7 structure (Figure 2.10). 

 

Figure 2.10. The topology of the cytosol loops (CL), the C terminal domain (CTD) and 

transmembrane domains (TM) in DHCR7 structure. Mutation sites are mapped with 

different colors according to mutation type (double color is applied for sites with unknown 

and non-pathologic classification). The unclassified mutation R228Q, which we predict to 

be pathogenic, is highlighted with a red asterisk. 

Table 2.9 shows the region-RMSFs. Pathogenic mutations tend to decrease the 

flexibility in the TM1, TM2 and CL2 regions and increase the flexibility in the TM7 and 

TM9-10 regions. Very little is known about DHCR7 function and structural changes 

occurring during chemical reactions, so we used the above observation to suggest an 

empirical formula that discriminates between pathogenic and non-pathogenic mutations, 

which were subjected to MD simulations (ideally, one should perform such an analysis for 

mutations analyzed in this manuscript, but this is too computationally demanding). For the 

wild type and each mutant, we sum the RMSFs of TM1, TM2 and CL2 and then subtract 
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the RMSFs of TM7 and TM9_10 (last column in Table 2.9). We refer to this quantity as 

cumulative RMSF. The wild type and non-pathogenic mutants have cumulative RMSFs 

larger than 50 Å while all pathogenic mutants have a cumulative RMSF less than or equal 

to 46 Å. Among non-classified mutations, V134L is confirmed to be non-pathogenic, while 

R228Q and F361L show the same cumulative RMSFs as pathogenic mutations. Thus, it is 

encouraging to observe that R228Q is independently confirmed to be pathogenic mutation 

(see KNN classification above), while F361L cannot be classified with high confidence 

and additional investigations are reported in the next section. 
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Table 2.9. RMSF values per structural region (see text for details) for each of the mutants. 

The RMSFs are given in Å units. The last column reports the RMSF calculated as the sum 

of RMSFs of TM1, TM2 and CL2 subtracted by RMSF of TM7 and TM9-10. Values larger 

than 50 Å are underlined. 
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2.4. Analysis of Mutations’ Pathogenic Effects: 

2.4.1. Ligand Binding 

Here, we investigated the possibility that mutations may change DHCR7 functionality 

by altering the binding affinity towards its ligand NADPH. For this purpose, we compared 

the effects of F361L (non-classified) and R404C (pathogenic mutation), both located near 

the NADPH binding site. It is anticipated that NADPH binding will cause structural 

rearrangement of the binding site and the conformational flexibility of the binding pocket 

is essential for proper protein function. We tested the effects of F361L and R404C on 

binding pocket flexibility by comparing them with the wild type protein. This was done 

using the MD trajectories obtained above and computing the residue cross-correlation for 

each trajectory with Bio3D [195]. These types of analyses were successfully used to 

elucidate the effects of a single mutation on the human β2-microglobulin’s protein 

dynamics [196]. For each mutation and wild type, we calculated the average cross-

correlation from three independent MD runs. Finally, the residue cross-correlation changes 

for mutations F361L and R404C are shown in Figure 2.11A,B, which is the subtraction of 

the averaged cross-correlation map between mutant and wild type proteins. Significant 

changes of the cross-correlation coefficient near the NADPH binding site were found for 

R404C, highlighted with a circle in Figure 2.11, but not for F361L. 

We also performed MM/PBSA analysis to investigate the effect of mutations on 

NADPH binding affinity (Figure 2.11D). Mutation R404C results in a large increase of the 

binding affinity by about 15 kcal/mol. As shown in the literature [78, 197, 198], any large 

deviation from wild type characteristics may be deleterious. In this case, R404C mutations 



 70 

contribute to disease by altering the binding affinity of NADPH. Compared to the effect of 

F361L, we observe that binding affinity is much less affected. This, combined with 

correlation analysis, allows us to speculate that F361L is a non-pathogenic mutation. 

 

Figure 2.11. (A–C) The changes in residue cross-correlation for mutations F361L, R404C 

and R228Q; (D) NADHP binding free energy for WT and mutations F361L and R404C. 

2.4.2. Protein Dynamics 

We further analyzed the selected mutations including our predicted pathogenic 

mutation R228Q to identify other pathogenic effects on protein functionality. The residue 

cross-correlation analysis of R228Q (Figure 2.11C) indicates a local conformational 

change near the mutation site. The R228Q mutation makes the corresponding region more 

rigid, resulting in local flexibility changes in CL2. Changes in protein dynamics are also 
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observed in the residue cross-correlation analysis of other pathogenic mutations such as 

E288K and G303R (shown in Appendix Figure B-13), indicating that alterations in DHCR7 

protein dynamics likely contribute to protein dysfunction.  

2.5. Allele Frequency Analysis 

We compared the frequency distribution of pathogenic mutations and frequently-

occurring common mutations among different populations and genders. Figure 2.12A 

displays the top 40 DHCR7 mutations of varying types occurring in more than 50 

individuals archived in the ExAC database. At the same time, Figure 2.12B shows the 

distribution of pathogenic missense mutations chosen for this study within the same set of 

populations. The most frequently-occurring mutations in the general population are found 

in individuals of non-Finnish European descent followed by South Asian and African and 

African American descent (Figure 2.12A). Additionally, individuals of non-Finnish 

European and South Asian descent have the highest frequency of pathogenic mutations as 

shown in Figure 2.12B. African and African American populations have few cases of 

SLOS despite high occurrences of DHCR7 mutations. The low occurrence and frequency 

of mutations in Europeans of Finnish descent is supported by the extremely low number of 

SLOS cases in Finland [199]. 

Interestingly, females in the overall ExAC population possess more DHCR7 mutations 

at higher frequencies than males (Figure 2.12C), while this is an opposite for the pathogenic 

mutations investigated in this manuscript (Figure 2.12D), though no support for this trend 

has been found in the literature. One can speculate that this is linked to sex hormones and 
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is embryo lethal, but the observation that females carry more pathogenic mutations than 

males should be taken with precaution. 

 

Figure 2.12. The frequency distribution of DHCR7 mutations. AFR, AMR, EAS, FIN, 

NFE, SAS and OTH represent African and African American, American, East Asian, 

Finnish, Non-Finnish European, South Asian and other populations, respectively. (A) The 

frequency distribution among different populations of the top 40 DHCR7 mutations of 

varying types occurring in more than 50 individuals archived in the ExAC database; (B) 

The frequency distribution among different populations of pathogenic missense mutations 

chosen for this study; (C) The frequency distribution in males and females of the top 40 

DHCR7 mutations of varying types occurring in more than 50 individuals archived in the 

ExAC database; (D) The frequency distribution in males and females of pathogenic 

missense mutations chosen for this study. 
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3. Materials and Methods 

3.1. Selection of DHCR7 Missense Variants 

The missense mutations investigated in this work were selected using ClinVar [200] 

and ExAC [201] databases. The ClinVar database (https://www.ncbi.nlm.nih.gov/clinvar/) 

was queried using the search term “DHCR7”. The results were further refined by missense 

mutations consisting of benign (2), likely benign (3), uncertain significance (30), likely 

pathogenic (15), pathogenic (26) and conflicting reports of pathogenicity (3) (as of 13 

November 2017). The ExAC (Exome Aggregation Consortium) Browser 

(http://exac.broadinstitute.org/) was queried using the search term “DHCR7” and the 

entries were sorted by allele frequencies in descending order. The missense variants with 

an allele frequency greater than 0.00001, which were also classified in ClinVar were 

chosen for further in silico analysis. Of the chosen mutations, the variants defined as 

pathogenic or likely pathogenic in Clinvar database are classified as pathogenic mutations 

in this study while the others defined as uncertain significance in Clinvar database are 

classified as mutations with unknown effects. E288K and G303R are previously reported 

SLOS-causing mutations [202, 203] although they are not classified as pathogenic in the 

Clinvar database. Thus, E288K and G303R were treated as pathogenic mutations in this 

study. Overall, 16 pathogenic mutations and 18 mutations with unknown effects are 

classified for this study. 

 

 

https://www.ncbi.nlm.nih.gov/clinvar/
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3.2. Selection of Non-Pathogenic DHCR7 Mutations 

We first obtained the missense mutations in DHCR7 gene from the ExAC database 

[201], including the whole genome sequencing data from 60,706 unrelated individuals. In 

total, 280 missense mutations in DHCR7 were identified. The ExAC database also provides 

the corresponding allele frequency data from the 1000 Genomes Project and the NHLBI-

GO Exome Sequencing Project (ESP) for each mutation. Individuals participating in the 

1000 Genomes Project were all healthy while the objective of the ESP is discovery of novel 

genes and mechanisms contributing to heart, lung and blood disorders. As our goal was to 

select non-pathogenic mutations from the ExAC database, we applied the following 

selection criteria: (a) mutations with allele frequency >0 in the 1000 Genomes Project; (b) 

mutations with allele frequency of 0 in the ESP. Thus, we classified the mutations 

identified from the healthy population of 1000 Genomes Project but not from the ESP as 

non-pathogenic mutations in this study. In total, 23 non-pathogenic missense mutations 

were identified. 

3.3. Obtaining Allele Frequency and Gender Occurrence 

The allele frequency and gender data of DHCR7 mutations were obtained from EXAC 

database [201]. The most recent database version was downloaded from the FTP site 

(http://exac.broadinstitute.org/downloads) and mutations affecting the DHCR7 protein as 

well as their corresponding allele frequencies and gender data were obtained. The 

frequency of mutation by gender is calculated by the number of carrier females or males 

divided by the total number of carrier individuals. 
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3.4. Generation of the 3D Model for DHCR7 

The 3D structure of the DHCR7 protein was generated by homology modeling due to 

lack of an existing experimental structure. Structure of the integral membrane sterol 

reductase from Methylomicrobium alcaliphilum (PDB: 4QUV) [190] was used as a 

template and subjected to MODELLER [204] for homology modeling. The sequence 

identity between the template and DHCR7 is 37% (sequence alignment is shown in 

Appendix Figure B-14) and thus high structural similarity was observed between the 

generated model and template. The model with lowest DOPE score was selected for this 

study and further subjected to automatic loop refinement with MODELLER [204]. 

3.5. Property Distance (PD) 

To quantify the physical-chemical property differences between the wild type and 

mutant residues, we used the property distance (PD) as a parameter to quantitatively 

describe such changes. In this study, we describe physical-chemical properties of a 

particular residue using a property vector which includes two elements: hydrophobicity 

and charge. The hydrophobicity of the residues are taken from an experimentally 

determined hydrophobicity scale [205, 206]. R and K carry +1 charge while E and D have 

−1 charge. All other residues are considered neutral. PD represents the Euclidean distance 

of the property vector between the wild type and mutant residues (shown in Equation (2.3)). 

The PD between all types of residues are shown as a matrix in Appendix Figure B-15. 

𝑃𝐷(𝑥, 𝑦) = √((𝐻(𝑥) − 𝐻(𝑦))
2

+ (𝑄(𝑥) − 𝑄(𝑦))
2
                                                                       (2.3) 
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,where x and y represent two types of residues; H and Q are corresponding hydrophobicity 

and charge for a particular residue. 

3.6. Evolutionary Conservation Score (EC Score) Calculation 

The DHCR7 sequence from 35 different species were collected from UnitProt [171] 

and subjected to multiple sequence alignment with the T-Coffee webserver [207]. The EC 

score of each residue in the human DHCR7 sequence was calculated using the multiple 

sequence alignment with the following equation: 

𝐄𝐂 𝐬𝐜𝐨𝐫𝐞(𝐢) =  
𝐍(𝐢)𝐢𝐝𝐞𝐧𝐭𝐢𝐭𝐲

𝐍(𝐢)𝐭𝐨𝐭𝐚𝐥
                                                                                             (2.4) 

,where N(i)identity  is the number of the species sharing identical residues in position i of the 

human DHCR7 sequence and N(i)total is the total number of the species in the multiple 

sequence alignment. 

3.7. Folding Free Energy Change (ΔΔG) and Relative Solvent Accessible Surface Area 

(rSASA) Calculation 

Several webservers were used to predict the effect of mutations on protein stability 

(folding free energy change (∆∆G)) using the generated homology model of DHCR7 

protein. The webservers used in this study include DUET [109], Eris [208], mCSM [151], 

SDM [209], Foldx [210] and SAAFEC [34]. The SASA were calculated using VMD [138]. 

As DHCR7 is a transmembrane protein, the membrane was also included when calculating 

the SASA. Thus, only the amino acids exposed to water were treated as exposed and the 

transmembrane regions were treated as buried in the calculation. The rSASA for residues 

were calculated using the following equation: 
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𝑟𝑆𝐴𝑆𝐴(𝑖) =  
𝑆𝐴𝑆𝐴(𝑖)

𝑆𝐴𝑆𝐴(𝑖)𝑚𝑎𝑥
                                                                                       (2.5) 

 

,where SASA(i) is the SASA measured for particular residue i and SASA(i)max is the 

maximum SASA obtained for a free residue (entire residue taken off the protein).  

3.8. Molecular Dynamic Simulations 

The membrane-protein-ligand system was built primarily using the CHARMM-GUI 

[211] tools. The DHCR7 protein with ligand structure was obtained from previous 

homology modeling. Ten mutant (V134L, T154R, R228Q, R260Q, E288K, T289I, F361L, 

G303R, R404C and A452T) structures were derived from the wild type DHCR7 protein 

structure using VMD 1.9.3 [138] mutator package. The protein was embedded in a POPC 

bilayer using the CHARMM-GUI website. The protein was oriented to align with 4QUV 

structure in the OPM [212] database. When the oriented protein was placed into the 

membrane, the z axis of the protein matched the z axis of the membrane. The whole system 

was solvated with 0.15 M KCl. The final system was 89.13 × 89.13 × 96.64 Å3 with a total 

of about 70,800 atoms. 

Molecular dynamic simulation (MDS) was performed using NAMD2.11 [95]. The 

system first underwent energy minimization for 10 ps, then equilibrated through 6 cycles 

where harmonic constraints were applied to keep original positions of: (a) lipid head groups 

(force constants were gradually reduced from 5 kcal∙mol−1∙Å−2 to 0 kcal∙mol−1∙Å−2), (b) 

protein backbone (force constants were gradually reduced from 10 kcal∙mol−1∙Å−2 to 0 

kcal∙mol−1∙Å−2), and (c) protein sidechains (force constants were gradually reduced from 5 

kcal∙mol−1∙Å−2 to 0 kcal∙mol−1∙Å−2). In addition, dihedral restraints were applied to keep 
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cis double bonds and c2 chirality (force constants were gradually reduced from 500 

kcal∙mol−1∙Å−2 to 0 kcal∙mol−1∙Å−2). A 1 fs timestep was used in the first few cycles and 

then switched to 2 fs for wild type whereas much smaller timesteps such as 0.01 fs were 

used for mutants to prevent restraints from failing. In the first two cycles, NVT simulation 

was performed and then switched to NPT simulation in the later cycles. Temperature was 

held at 303.15 K using a Langevin thermostat with a damping coefficient of 10 ps−1 and 

velocity rescaling thermostat. The pressure was maintained at 1 atm using a Langevin 

piston barostat with an oscillation period of 50 fs and a damping time constant of 25 fs. 

Electrostatic interactions between charged atoms were calculated using the particle mesh 

Ewald method. Van der Waals interactions were truncated at 12 Å with a switching 

function applied from 10 Å. RATTLE is used to constrain the length of all bonds involving 

a hydrogen atom. This stage of equilibration lasts for tens of ps to hundreds of ps. Then 

three 10 ns equilibration and 10 ns production runs with no constraints were performed for 

the wild type and each mutant. A 2 fs timestep was used. No velocity rescaling thermostat 

was used. Other conditions are the same as the previous stage. RMSD and root mean square 

fluctuation (RMSF) with the structure at the beginning of the 10 ns run as the reference 

structure were calculated using VMD 1.9.3. 

3.9. MM/PBSA Analysis 

To estimate the binding affinity of the DHCR7 protein with the ligand NADPH, we 

calculated the binding free energy using the MM/PBSA approach. For this purpose, we 

performed three independent 20 ns MD simulations as described above. We took the 

frames with an interval of 20 ps from the last 10 ns and a total of 500 frames were selected 
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from each trajectory. All ions, water and lipids were removed before MM/PBSA energy 

calculations. All the energy terms were averaged over 500 frames for each trajectory and 

the mean and standard deviation of binding free energy were calculated for wild type and 

mutant structures. The internal energy and van der Waals interactions were calculated using 

NAMD2.11b [95] by subjecting the structure to a one step equilibration at 300 K using 

dielectric constant = 2 for protein and = 80 for solvent. The electrostatic components of the 

binding free energy (Coulombic and solvation energy) were calculated by solving the 

Poisson Boltzmann (PB) equation using the Delphi program [84] with dielectric constant 

= 2 for protein and = 80 for solvent. The solvent accessible surface area (SASA) was 

calculated by VMD [138] with the solvent and lipid. The non-polar component of the 

solvation was further calculated with the following widely-used equation: 

𝐺𝑠𝑎𝑠𝑎 =  𝛼 ∙ 𝑆𝐴𝑆𝐴 +  𝛽                                                                                           (2.6) 

, where α = 0.0054 and β = 0.92 kcal/mol. 

3.10. K-Nearest Neighbors (KNN) classIfication 

K-Nearest Neighbors algorithm was used to classify the missense mutations with 

unknown effects in DHCR7 protein. The dataset includes 16 pathogenic missense 

mutations and 23 non-pathogenic missense mutations (non-classified/unknown effect 

mutations were excluded). The dataset was randomly partitioned into a training dataset (29 

mutations) and a testing dataset (10 mutations). The KNN classification was performed 

using R program and various numbers of K values were tested to obtain the best 

performance. 
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4. Conclusions 

We investigated the effects of mutations causing SLOS on the biophysical 

characteristics of DHCR7 protein with the goal of identifying methods allowing the 

discrimination of pathogenic mutations from non-pathogenic mutations. We found that 

pathogenic mutations are located either within the transmembrane region or are near the 

ligand-binding site and are highly conserved between species. In contrast, non-pathogenic 

mutations observed in the general population are located outside the transmembrane region 

and have different effects on the conformational dynamics of DHCR7. Our analyses 

confirmed the inability of folding free energy modeling to deliver reliable results and to be 

used to discriminate pathogenic from non-pathogenic mutations in membrane proteins. 

Future investigations may include modeling the effects of DHCR7 mutations on melting 

temperature (Tm) via MD simulations conducted at different temperatures using the 

methodology adopted from recent work on NBD1 domain [213]. As mentioned in the work 

of Estacio et al. [213], the decrease of Tm may cause the protein to adopt partially 

misfolded states that become targeted for degradation. 

In this work, using three characteristics: solvent exposure of the mutation site, residue 

conservation and physico-chemical descriptors, we were able to distinguish between 

pathogenic and non-pathogenic mutations. This observation, along with extensive MD 

simulations and MM/PBSA modeling, was used to classify R228Q as a pathogenic 

mutation. 

Taken together, these observations suggest that the non-classified mutation R228Q is 

in fact pathogenic. The analyses performed indicate that pathogenic effects may be of 
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different origin, from affecting protein stability and dynamics to altering binding affinity 

and flexibility of the binding site.  
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CHAPTER THREE 

PKA SHIFT AND PROTON TRANSFER IN PROTEIN-NUCLEIC ACID 

INTERACTION AND DEVELOPMENT OF COMPUTATIONAL APPROACH TO 

PREDICT SAV’S EFFECT IN PROTEIN-DNA BINDING 

 

Computational investigation of proton transfer, pKa shift and pH-optimum in 

protein-nucleic acid interaction: 

 

1. Introduction: 

Protein-nucleic acid interactions are common in various biological reactions and play 

a crucial role in cell life [214-216]. These interactions are mediated by various forces and 

effects, such as electrostatic interactions, hydrogen bonding, hydrophobic effect, and base 

stacking [215, 217, 218]. Particularly, electrostatic interaction plays a crucial role in 

protein-nucleic acid binding, since nucleic acids are predominantly negatively charged, 

while the binding protein interface is typically positively charged – this results in charge 

complementarity[219-223]. It has been demonstrated, in the case of protein-DNA 

interactions, that the protein recognizes a specific DNA sequence via formation of 

hydrogen bonds with specific bases (primarily in the major groove) and that the subsequent 

binding results in sequence-dependent deformations of the DNA helix [224, 225]. 

Furthermore, it was shown that the narrow minor groove of DNA strongly enhances the 

negative electrostatic potential of the DNA phosphate groups and thus facilitates the 

binding of positively charged arginine residues [224, 226]. Similarly, stacking, 

electrostatics, and hydrogen bonding play important roles in ssRNA recognition, providing 

affinity and sequence-specificity during the binding process [227].  
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   In the past, existing structures of protein-nucleic acid complexes were utilized to 

predict protein binding hot spots and elucidate the mechanism of the binding [215, 217, 

223, 227, 228]. However, no attempts were made to evaluate the pKa change induced by 

the binding, even though it is well recognized that any binding results in a change of 

electrostatic environment [229, 230]. Thus, the pKa values of the titratable groups may 

shift upon the complex formation and these pKa shifts can be used as an indicator of the 

electrostatic energy contribution to the binding [230-232].  

Most properties of biological macromolecules are pH dependent, and are tuned 

towards a particular cellular or sub-cellular pH [233]. Stability and binding are among the 

basic biophysical characteristics of these macromolecules. It was previously indicated that 

the stability of monomeric proteins is adapted to cellular and sub-cellular characteristic pH 

[217, 234, 235]. Similarly, our past investigations have demonstrated that the pH-optimum 

of binding and the pH-optimum of folding are correlated [231, 236, 237]. At the same time, 

the pH dependence of protein-nucleic acid binding has not attracted much attention.  

 Our work took advantage of a recent development: a Poisson-Boltzmann based 

pKa calculation approach, the DelPhiPKa [154, 155]. The DelPhiPKa is capable of 

performing rapid pKa calculations of protein ionizable residues, and of nucleotides of RNA 

and DNA. Complex structures from a large protein-nucleic acid interaction database 

(NPIDB database) [238, 239] were used for the modeling. Our work aims at revealing 

plausible proton transfers and pKa shifts induced by protein-nucleic acid interactions. 

Furthermore, we investigate whether or not the pH-optimum protein-nucleic acid binding 

is correlated with the stability of the corresponding binding protein.  
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2. Materials and Methods: 

2.1 Protein-nucleic acid structures used in the study: 

Protein-nucleic complex structures were downloaded from the NPIDB database [238, 

239]. The NPIDB is a large protein-nucleic acid interaction database, which contains 5,547 

structures of protein-nucleic acid complexes in the PDB format. The database also includes 

classification of complexes based on the protein domains using Pfam[240] and SCOP[241] 

families.  

Structural analysis of these 5,547 complex structures showed that there are many 

entries with very similar structures. This is due to either a particular protein-nucleic acid 

complex being reported at different experimental conditions, structural resolution, or the 

existence of highly homologous binding domains. These identical or highly similar 

structures would result in common protonation state changes in our analysis, and would 

cause overrepresentation of such protein-nucleic acid interaction types. To eliminate 

structural bias, we took advantage of the existing Pfam and SCOP classification in the 

NPIDB database. One representative structure from each Pfam/SCOP family was elected 

based on the best resolution. We then created two datasets resulting in 112 protein-DNA 

complex structures and 56 protein-RNA complex structures using SCOP classification, 

along with 99 protein-DNA complex structures and 105 protein-RNA complex structures 

using Pfam classification. In this investigation, they are referred as “NPIDB Pfam dataset” 

and “SCOP dataset”. 
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2.2 pKa calculations: 

   The calculations of pKa values were performed with DelPhiPKa [154, 155], which 

is a Poisson-Boltzmann based approach to calculating the pKa values of protein ionizable 

residues and nucleotides of RNA and DNA. The profix program, a software module within 

the JACKAL package (http://wiki.c2b2.columbia.edu/honiglab_public/index 

.php/Software:Jackal_General_Description) was used to generate missing atoms/residues 

of the original structures. The ligands and ions were removed from the structures. For each 

protein-nucleic acid complex, one pKa’s calculation was performed for the entire complex 

structure and then another two calculations were run for the protein and nucleic acid 

component respectively. This provides pKa values of the titratable groups in bound and 

unbound states. The pH range in the calculations was set from 0 to 14 with an interval of 

1.  

 

2.3 Proton uptake and pH dependence of folding and binding energies: 

   We calculated the pH dependence of the stability of the complexes and their monomers 

using the following equation [230, 237, 242]: 

∆𝐺(𝑝𝐻𝑓) = 2.3𝑅𝑇 ∫ (𝑄𝑓(𝑝𝐻) − 𝑄𝑢(𝑝𝐻)) 𝑑(𝑝𝐻)
𝑝𝐻𝑓

𝑝𝐻𝑖
                                                 (3.1) 

,where Qf(pH)  and Qu(pH)  are the total net charge of folded and unfolded states. R is the 

universal gas constant, taken as 8.314J/(mol*K) and T is the temperature (in K). Similarly, 

in the case of pH dependence of binding energy, Qf(pH)   and Qu(pH)   represent the net charge 

of the complex and the sum of the net charges of the unbound protein and nucleic acid 
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components. Typically, the difference of these net charges is referred as “proton uptake or 

release”[242]. 

   The net charge of the folded state for complexes and their components in the pH range 

were calculated with the DelPhiPKa [154, 155]. In this work, the unfolded state was 

modeled as a chain of non-interacting residues [237, 242]. Thus, the net charge of the 

unfolded state was calculated with the Henderson-Hasselbalch equation: 

𝑄𝑢(𝑝𝐻) = ∑
10−2.3𝑦(𝑖)(𝑝𝐻−𝑝𝐾𝑎(𝑖))

1+10−2.3𝑦(𝑖)(𝑝𝐻−𝑝𝐾𝑎(𝑖))
𝑁
𝑖=1                                                                                  (3.2) 

,where the summation is over all titratable groups in the system and y(i) is +1 for basic 

groups and -1 for acidic groups.  

 

2.4 Determination of the interfacial residues and classification of nucleotides in 

DNA/RNA: 

A residue is defined to be interfacial residue if its solvent accessible surface area 

(SASA) changes upon complex formation. The SASA of all residues in the complexes and 

components was calculated using the VMD plugin [138]. The probe radius was taken as 

1.4 Å. For statistical analysis of pKa shifts in DNA and RNA, we classified nucleotides 

into three different types: phosphate group binding type, base group binding type and O-

type [231]. These classifications were based on the different binding modes as described 

below. These different interaction types were identified by calculating the SASA change 

of phosphate and base groups upon the complex formation. In our work, we are focused on 

the effects on the protonation state changes for the N1 and N3 atom in the bases of adenine 

and cytosine [243]. Instead of the entire base group, we only carry out SASA calculations 
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on N1, N3, and two bound carbon atoms. For the phosphate group, the SASA calculations 

were restricted to the P, OP1, and OP2 atoms. Thus, the relative SASA change for each 

group of atoms of interest was calculated as: 

∆𝑟𝑆𝐴𝑆𝐴(𝑟𝑒𝑠𝑖𝑑𝑢𝑒 𝑖) =
|𝑆𝐴𝑆𝐴(𝑟𝑒𝑠𝑖𝑑𝑢𝑒 𝑖 𝑖𝑛 𝑚𝑜𝑛𝑜𝑚𝑒𝑟)−𝑆𝐴𝑆𝐴(𝑟𝑒𝑠𝑖𝑑𝑢𝑒 𝑖 𝑖𝑛 𝑐𝑜𝑚𝑝𝑙𝑒𝑥)|

𝑆𝐴𝑆𝐴(𝑟𝑒𝑠𝑖𝑑𝑢𝑒 𝑖 𝑖𝑛 𝑚𝑜𝑛𝑜𝑚𝑒𝑟)
                                  (3.3) 

 

Finally, the classification of the binding mode was done using the following rules: 

𝑛𝑢𝑐𝑙𝑒𝑜𝑡𝑖𝑑𝑒𝑠 = {

 𝑏𝑎𝑠𝑒 𝑏𝑖𝑛𝑑𝑖𝑛𝑔 𝑡𝑦𝑝𝑒, 𝑖𝑓 ∆𝑟𝑆𝐴𝑆𝐴(𝑏𝑎𝑠𝑒) ≥ 25%                                 

𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒 𝑏𝑖𝑛𝑑𝑖𝑛𝑔 𝑡𝑦𝑝𝑒, 𝑖𝑓 𝑜𝑛𝑙𝑦 ∆𝑟𝑆𝐴𝑆𝐴(𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒) ≥ 25%

𝑂 − 𝑡𝑦𝑝𝑒, 𝑖𝑓 ∆𝑆𝐴𝑆𝐴(𝑏𝑎𝑠𝑒)𝑎𝑛𝑑 ∆𝑟𝑆𝐴𝑆𝐴(𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒) < 25%     

                (3.4) 

 

3. Results and Discussion:  

 In the results section, we will first report general frequency patterns of ionizable residues 

in datasets, as well as statistical analysis of pKa shifts induced by the binding. Furthermore, 

different pKa shift origins are classified for all ionizable groups based on different 

chemical-physical properties and binding modes. The pKa shifts among different binding 

modes are then analyzed. Finally, we investigate the pH dependence of the net charge of 

binding, complexes, and their components – and reveal how the optimum pH values are 

correlated (pH-optimum is the pH at which the binding or folding free energy is most 

favorable, see refs [235, 236] for details). Below we describe the results in sequential order.  

 

3.1 The frequency patterns of ionizable residues in the datasets: 

It is expected that proteins binding to negatively charged DNA or RNA should be 

positively charged, so that the electrostatic interactions are able to guide the protein toward 
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its binding partner. To investigate this expectation, we carried out statistical analysis of 

amino acid composition of the proteins in both Pfam and SCOP datasets (Appendix Figure 

B-16). We considered only Arg and Lys residues to be carrying positive charge, as His is 

typically neutral. The acidic groups were Glu and Asp. It can be seen (Appendix Figure B-

16) that the frequency of Arg and Lys residues are almost the same as the acidic residues 

in both datasets. Thus, the total net charge of these binding proteins is close to zero in the 

neutral pH range, which is somewhat unexpected.  

We now expand the analysis to the interfacial ionizable residues. The frequency 

patterns of different residue types were shown in Appendix Figure B-17. In contrast to 

overall amino acid composition (Appendix Figure B-16), the interfacial regions are 

enriched with basic residues, resulting in highly positive charged interfacial patches. This 

confirms our expectations, since both RNA and DNA are highly negatively charged in 

neutral pH. The important role of electrostatics in protein nucleic acid binding is indicated 

by our observations that the overall net charge is almost zero, but interfaces are positively 

charged. It provides guidance for correct orientations of binding partners. It should be 

mentioned that interfaces of DNA binding proteins are typically more positively charged 

when compared with RNA binding protein (Appendix Figure B-17).   

 

3.2 Statistics of pKa shifts induced by the binding:  

Protein-protein binding frequently involves pKa shifts of ionizable groups as 

previously demonstrated both computationally [230, 231, 242, 244] and experimentally 

[242, 245-249]. Here we address the same question for protein-DNA and protein-RNA 
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binding, including the pKa changes of DNA/RNA bases, using computational methods. 

The calculations were done for all interfacial residues and bases separately for the complex 

and monomers alone. The pKa shifts were calculated with the following equation: 

∆𝑝𝐾𝑎𝑧 = 𝑝𝐾𝑎𝑐𝑜𝑚𝑝𝑙𝑒𝑥
𝑧 − 𝑝𝐾𝑎𝑚𝑜𝑛𝑜𝑚𝑒𝑟

𝑧                                                                    (3.5) 

,where Z stands for the ionizable group in the protein or DNA/RNA. 

  The pKa shifts of all interfacial residues were calculated in both Pfam and SCOP 

datasets and the results are shown in Appendix Figures B-18 and B-19. The corresponding 

pKa shifts are reported for all protein acidic interfacial residues, protein basic interfacial 

residues, and nucleic acid ionizable groups (bases) separately. The results are grouped by 

complex type: protein-RNA complex, protein-double stranded DNA (protein-dsDNA) 

complex, and protein-single stranded (protein-ssDNA) complex. This is done to facilitate 

the analysis of the effect of different binding modes. It can be seen (Appendix Figures B-

18 and B-19) that complex formation is predicted to cause positive pKa shifts for both 

acidic and basic protein titratable residues. This is in sharp contrast with the statistical 

observation made for protein-protein complexes[231]. An opposite shift is predicted for 

nucleic acid bases – they are predicted to lower their pKa values upon complex formation. 

These tendencies are similar for all types of complexes (such as protein-RNA, protein-

dsDNA, and protein-ssDNA complexes) and remain similar across both datasets (Pfam and 

SCOP). These pKa shifts originate from the different intrinsic properties of these groups, 

different binding modes, and different structural features (which will be discussed later).  

 Further analysis of the pKa shift distribution indicates that the overall pKa shifts of 

protein basic residues are slightly larger when compared with the pKa shifts of acidic 
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residues. This may indicate that protein basic groups are frequently involved in direct 

interactions with negatively charged phosphate groups of DNA/RNA. Nucleic bases of 

RNA and ssDNA are predicted to undergo larger pKa shifts than those of dsDNA. Perhaps 

this is due to the double helix structure of dsDNA, where the base groups make hydrogen 

bonds with their partners and are buried before binding. Due to this, the base groups of 

RNA and ssDNA are involved in more direct interactions with the corresponding binding 

protein.   

 

3.3 Analysis of the pKa shift origins: 

In this section, we will outline common reasons for predicted pKa shifts and categorize 

them into several distinctive classes. Since protein titratable groups and DNA/RNA bases 

have different physical-chemical properties, the origins of their pKa shifts will be discussed 

separately. 

Protein pKa shifts:  

pKa shifts are caused by various factors, the most prominent being interactions with other 

charges and de-solvation penalty (upon complex formation). Based on the comparison of 

these energy components, we will consider two common scenarios: (a) complex formation 

is not affected by much solvation energy change (small de-solvation penalty) but provides 

strong favorable interactions supporting the charged state of the protein titratable group 

(termed C-type); and (b) complex formation does not greatly affect the solvation energy 

(small de-solvation penalty) while resulting in strong unfavorable interactions suppressing 

the charged state of the protein titratable group (termed N-type). A representative example 
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for the first case, C-type residue, is shown in Figure 3.1A ,depicting a fragment of the 

binding interface of Archaeosine tRNA-Guanine Transglycosylase complexed with 

lambda-form tRNA(PDB: 1j2b) [250]. Upon the complex formation, Lys430 of chain A 

forms a new salt-bridge with the RNA Gua927’s phosphate group. In the unbound state, 

the pKa of Lys430 was calculated to be 10.22, a slight deviation from the standard pKa 

value. In the complex formation, the de-solvation energy slightly increases by 

0.04kcal/mol, since the degree of the burial of the residue does not undergo a large change. 

However, the interaction energy is changed by -1.52kcal/mol – a contribution from the salt-

bridge formed by Lys430 and phosphate group of RNA Gua927. As a result of favorable 

electrostatic interactions between the protein interfacial basic residue and phosphate group 

in RNA, the pKa of Lys430 shifts from 10.22 to 12.47 at the complex formation. This type 

of pKa shift was found in many cases, thus explaining the positive pKa shifts predicted for 

protein interfacial basic residues. The second common scenario is shown in Figure 3.1B 

for the structure of PVUII Endonuclease complexed with cognate DNA (PDB: 3pvi) [251]. 

In unbound protein, the Glu68 residue of chain A is exposed to the water and the side chain 

is stabilized by the interaction with the nearby Lys70. Upon the complex formation, Glu68 

side chain points to the phosphate group of DNA Cyt9. As shown in the corresponding 

Figure, the oxygen-oxygen distance between the Glu68 side chain and DNA Cyt9 

phosphate group is only 3.5 Å. This results in strong unfavorable interactions opposing the 

charged state of Glu68. The existing interactions of the Glu68 and Lys70 are additionally 

weakened in the complex as Lys 70 forms new interactions with a phosphate group. 

According to the energy calculation of DelphiPka, the interaction energy is increased by 
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0.64 kcal/mol and the de-solvation energy is only slightly increased, since the degree of 

the burial of the residue does not change much. As result, the Glu68 pKa value is shifted 

from 3.93 to 5.11. Therefore, we refer to these kinds of residues (which are under 

unfavorable interactions in the complex) as N-type protein residues. As shown in the 

previous statistical analysis of pKa shifts, the majority of the protein acidic residues are 

affected by different degrees of positive pKa shifts. Most of these cases can be classified 

as N-type residues due to the unfavorable electrostatic interactions between the acidic 

residue and the phosphate group of the DNA/RNA nucleotides.    

 



 93 

 

Figure 3.1: (A) Fragment of binding interface of Archaeosine tRNA-Guanine 

Transglycosylase complexed with lambda-form tRNA (PDB: 1j2b). (B) Fragment of 

binding interface of PVUII Endonuclease complexed with cognate DNA (PDB: 3pvi). The 

side chains of the residues directly contributing to the electrostatic interactions or H-

bonding are shown with balls and sticks. The protein and DNA/RNA are marked as blue 

and orange for comparison. The distance between the atom pairs are shown in Å. 
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DNA/RNA: 

In this investigation, the pKa values of Cys and Ade bases are predicted for bound 

and unbound states. These bases are typically neutral at physiological pH (pH about 7), but 

can be protonated and positively charged in some cases [154]. As shown from the above 

statistical analysis, the majority of DNA/RNA bases are predicted to undergo negative pKa 

shifts due to the binding. Therefore, the base groups are less likely to be protonated at 

physiological pH values. We will group the common pKa shift scenarios into several 

categories: (a) bases experiencing large de-solvation penalty and forming H-bonding or 

electrostatic interactions (termed B-type), (b) bases experiencing electrostatic interactions 

and negligible de-solvation penalty (termed L-type), and (c) bases experiencing small de-

solvation penalty (O-type). Typically, the B-type residue is a base group in which the 

nucleotide is buried into the binding interface and directly participates in hydrogen bonding 

or electrostatic interactions upon the complex formation. One representative example is 

shown in Figure 3.2A: a CCA-adding enzyme complexed with tRNA (PDB: 3ovb) [252]. 

The atom N3 of the base group of the RNA Cyt33 is predicted to have standard pKa of 

4.35 in unbound RNA. In chain C of the complex, the atom N3 of Cyt33 makes a hydrogen 

bond with the backbone atom of His93 of chain A of the complex. Since the N3 atom plays 

the role of a proton acceptor, such an interaction increases the energy cost of protonation. 

Cys 33 is also buried at the binding interface, and thus the charged form of Cys 33 pays 

the de-solvation penalty. Combining these two effects, the RNA Cys 33 pKa shifts from 

4.56 to 1.14. Another example is shown in the Figure 3.2B: TilS complexed with tRNA 

(PDB: 3a2k)[253]. The base group of RNA Ade36 is buried into the binding interface and 
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surrounded by a pocket of three Arg residues. Although the base group is not directly 

forming interactions with nearby residues, it is still affected by electrostatic interactions of 

the three positively charged Arg residues. This results in a shifting equilibrium towards the 

de-protonated form. The degree of burial for Ade36 is increased upon complex formation, 

resulting in a de-solvation penalty. Finally, the pKa value of Ade36 is predicted to decrease 

from 4.90 to 2.75. 

Another common type of pKa shift, listed above as L-type, is shown in Figure 3.2C. 

This shift occurs in case of restriction endonuclease MspI on its palindromic DNA 

recognition site (PDB: 1sa3)[254]. The Cyt13 of chain D resides in a double strand 

structure, and its base group makes a hydrogen bond with its base pair. The base group of 

Cyt13 is pre-buried in unbound DNA and its degree of burial is almost unchanged in the 

complex. Therefore, Cys13 does not pay a de-solvation penalty upon complex formation. 

However, a nearby positively charged Lys261 protein residue does interact with the base 

of Cyt13. This unfavorable interaction energy is calculated to be about 0.5 kcal/mol, and 

along with other smaller contributions, results in pKa shift of -0.83.  

Finally, the common cases referred to above as “O-type” are represented by many 

other residues that are not involved in strong interactions with charged residues upon 

complex formation. Their pKa shifts are relatively small (|pKa| < 0.5) and are mostly due 

to a de-solvation penalty upon complex formation.  
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Figure 3.2: (A) Fragment of binding interface of CCA-adding Enzyme complexed with 

tRNA (PDB: 3ovb). (B) Fragment of binding interface of TilS complexed with tRNA 
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(PDB: 3a2k). (C) Fragment of binding interface of restriction endonuclease MspI on its 

palindromic DNA recognition site (PDB: 1sa3). The side chains of the residues directly 

contributing to the electrostatic interactions or H-bonding are shown with balls and sticks. 

The protein and DNA/RNA are marked as blue and orange. The distances between atom 

pairs are shown in Å. 

 

3.4 pKa shifts and binding mode: 

In this section we investigate the effect of different binding modes on previously 

discussed pKa shifts. Here, we classify the binding modes into three categories: (a) 

phosphate group binding mode (protein interacts mostly with phosphate groups), (b) base 

group binding mode (protein interacts mostly with base groups), and (c) others (O-type 

mode: categorization is outlined in Method section).        

Appendix Figures B-20 and B-21 show the distributions of pKa shifts in different 

binding modes for both Pfam and SCOP datasets. The most significant pKa shifts are 

predicted for the base group binding mode. In base group binding modes, the base groups 

directly participate in the interactions across the interface and bases are buried at the 

binding interface, thus paying a large de-solvation penalty. According to the above 

categorization strategy, these bases are grouped as B-type nucleotides. Both the de-

solvation penalty and interaction energy oppose the charged form of the bases and thus 

result in significant pKa shifts, lowering the pKa of the bases. Phosphate group binding 

modes result in L-type bases, as the base groups are not at the interface and do not 

experience burial change upon complex formation (but are affected by long-range 
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electrostatic interactions). In the phosphate group binding mode, the bases are predicted to 

have relatively less significant pKa shifts. The rest of these cases are mostly of O-type, and 

are predicted to have the smallest pKa shifts as they are not involved in strong interactions 

and do not experience a de-solvation penalty upon binding. 

 

3.5 pH-optimum of binding: 

Previous studies investigated protein stability and interactions as a function of pH, 

and referred to the pH-optimum as the pH of maximal stability and interactions [235-237]. 

This optimum pH can be obtained by finding the pH value at which the net charge 

difference of the folded and unfolded states, or bound and unbound states, is zero. We 

illustrate this with a particular example from our dataset. The pH dependence of the net 

charge difference and the pH dependence of the binding free energy for a bacteriophage 

lambda cII protein in complex with dsDNA (PDB: 1zs4) [255] is shown in Figure 2.15. 

Three distinctively different pH regions can be clearly identified. The first region is in the 

acidic pH range, where both the net charge difference (Q < 0) and the free energy decrease 

(the free energy of binding becomes more favorable) with an increase in pH. Proton release 

occurs in this pH range upon complex formation or protein folding which involves mostly 

acidic groups. The third region is in the basic pH range, where Q > 0 and the free energy 

increases with the pH (the binding free energy becoming less favorable). Proton uptake 

involving predominantly basic groups occurs in this pH range. The second region is in the 

intermediate pH range, where Q is close to 0 and remains almost unchanged with the 

increase in pH. The titration of acidic or basic groups with non-standard pKa values occurs 
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in this pH range. Since most of the proteins perform their function in this intermediate pH 

range, it is the most interesting pH region for the study. The optimum pH can be determined 

by finding the pH corresponding to the minimum free energy. This is usually located at the 

border of first and third pH regions. As shown in Figure 3.3, the Q in the second region 

is frequently very small, practically close to zero. Thus, the results from this pH region are 

very sensitive to the imperfections of computational protocol and applied methodology. To 

reduce the error in finding the optimum pH, we introduce a threshold value Qt and assume 

that Q = 0 if abs(Q) < Qt . We explored different values for Qt  (from 0.1, 0.2, 0.3 to 

0.4) and the best results (in terms of obtaining the best correlation coefficient, explained 

below) were obtained with the 0.1 value. In cases of very flat intermediate pH regions, the 

pH-optimum was taken to be the center of the intermediate pH range. In Figure 3.3(B) and 

(D), the intermediate pH regions for binding and protein stability both range from pH 4 to 

9. Thus, the optimum pH for the binding and stability of the protein component is taken to 

be 6.5. Several other approaches were explored as outlined below.   
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Figure 3.3: pH dependence of the net charge difference and free energy for a bacteriophage 

lambda cII protein in complex with dsDNA (PDB: 1zs4). (A) and (B) show pH dependence 

of net charge difference (proton uptake/release) and the corresponding pH dependence of 

the binding free energy. (C) and (D) show pH dependence of net charge difference and 

folding free energy of the protein component.  

 

3.6 Correlation of pH-optimum of binding and protein stability: 

Protein-DNA/RNA interaction is a pH-dependent process, with the binding affinity 

reaching a maximum at the pH-optimum. In vivo, the monomers and their complex coexist 

in the same subcellular environment and thus should be adapted to the corresponding 

subcellular pH [233]. Indeed, it was demonstrated that the optimum pH of binding and 

folding are correlated [231, 236]. In this work, we investigate the possibility that the pH-

optimum of protein-DNA/RNA binding is correlated with the pH-optimum of the folding 

of the corresponding binding protein. We do not address the same question for RNA/DNA 

stability, since our approach considers only basic titration of RNA/DNA titratable groups 

and therefore the titration is monotonic with pH.   

The optimum pH was determined by using the above-discussed strategy for both 

SCOP and Pfam datasets, and  was taken as 0.1 in the calculations. A fraction of cases 

did not show clear pH dependence and thus no optimal pH value could be determined. 

Thus, we excluded these cases from the correlation analysis and the rest of the cases (62 

out of 105 cases and 33 out of 56 cases for protein-RNA complexes in Pfam and SCOP 

datasets respectively, as well as 68 out of 99 cases and 91 out of 112 cases for protein-
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DNA complexes in Pfam and SCOP datasets respectively) were subjected to two different 

protocols to assess pH-optimum: (a) pH-optimum is taken to be the middle of the “flat”, 

almost pH independent region and (b) the pH-optimum of binding is taken within the “flat” 

pH region, with selected pH being the closest to folding of the corresponding binding 

protein. The results are summarized in Table 3.1 and the corresponding plots are provided 

in the supplementary material. One can see a weak correlation between the pH-optimum 

of binding and the pH-optimum folding of the corresponding binding protein.  

 

Scenario (a) Scenario (b) 

Complexes 

Type 

Correlation 

coefficient for 

all complexes 

Correlation 

coefficient for 

STDEV<2 

Complexes 

Type 

Correlation 

coefficient for all 

complexes  

Correlation 

coefficient for 

STDEV<2 

Protein-RNA in 

SCOP 

0.71 0.66 Protein-RNA in 

SCOP 

0.78 0.83 

Protein-DNA in 

SCOP 

0.3 0.58 Protein-DNA in 

SCOP 

0.42 0.83 

Protein-RNA in 

Pfam 

0.48 0.56 Protein-RNA in 

Pfam 

0.5 0.77 

Protein-DNA in 

Pfam 

0.24 0.27 Protein-DNA in 

Pfam 

0.41 0.74 

 

Table 3.1 Pearson product-moment correlation coefficient between pH-optimum of 

binding and folding of the corresponding binding protein. Results are shown for both SCOP 

and Pfam classifications and the two scenarios outlined above. For each complexes type, 
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Pearson product-moment correlation coefficient is calculated for all complexes and also 

for complexes in which outliers are excluded (standard deviation > 2 pH units). 

 

4. Conclusion: 

      In this work, we investigated the electrostatic properties, pKa shifts, proton 

uptake/release, and pH-optimum of a large number of protein-DNA/RNA complexes with 

available 3D structures. The analysis of the pKa shifts induced by the complex formations 

indicated a completely different trend in comparison with previous studies on protein-

protein complexes [230, 231, 256]. Protein titratable residues were found to undergo 

positive pKa shift, thus increasing the pKa values of both basic and acidic groups. Such an 

opposite trend (opposite to the trend observed for protein-protein complexes) is due to the 

difference between the electrostatic properties of the corresponding partners. In the case of 

protein-protein complexes, the interfaces are frequently made up of patches of opposite 

polarity and thus the given protein may provide a favorable electrostatic environment for 

both basic and acidic groups [231, 256]. In contrast, most of the binding modes in our 

dataset consist of cases in which the protein binds to phosphate groups of DNA/RNA. Since 

phosphate groups are negatively charged, the electrostatic environment for protein 

titratable groups make the charged state of acidic groups less favorable while promoting 

the charged state of basic groups. This is the main reason for the observed tendency of 

protein-DNA/RNA binding to induce positive pKa shifts of protein titratable groups. In 

contrast, the binding causes pKa values of nucleic acid bases to lower. Most of this effect 
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is due to unfavorable electrostatic interactions with the positively charged interface of the 

corresponding binding protein. 

Very little proton uptake/release was predicted to accompany the binding. For many 

cases in the dataset, the proton uptake/release was almost zero for the pH range of 5 to 8. 

This is also quite different from observations made of protein-protein complexes [229, 230, 

236]. Protein-DNA/RNA binding seems to be less pH dependent than protein-protein 

binding. This likely reflects the fact that protein-protein interactions occur in more diverse 

environments than protein-DNA/RNA binding.  

 A weak correlation was found between the pH-optimum of binding affinity and the 

folding free energy of unbound protein. The correlation is not as significant as correlations 

found for protein-protein binding [229-231, 236]. This may be due to the fact that only 

basic groups of DNA/RNA were treated as titratable residues in our protocol. We anticipate 

that the inclusion of other groups (phosphate groups, for example) could result in a more 

significant correlation. Another reason could be computational protocol, which treats the 

structures of both protein and DNA/RNA as rigid bodies, considers that pKa shift are 

entirely due to electrostatic energy changes, does not include explicit ions and does not 

allow for water penetration at the binding interface. Some of the abovementioned 

deficiencies are intrinsic to continuum approaches [257], others can be handled via 

continuum approach as explicit ion binding [258-260], but were not implemented in this 

study in order to reduce computational cost of modeling such large set of complexes. 

Further insights can be obtained via constant pH molecular dynamics simulations (MD) 

[261, 262]. Recent constant pH MD study proposed “trap-and-trigger” mechanism was 
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proposed to accompany protein binding and to involve structural rearrangement and water 

penetration at the interface [263]. Such structural rearrangements upon molecular 

recognitions are frequently revealed in studies utilizing constant pH MD [264, 265], 

indicating that rigid body approach may induce significant error in modeling pKa’s [257].    

         Overall, our study indicates that electrostatics play a significant role in protein-DNA 

and protein-RNA binding and frequently this binding is accompanied by pKa shifts, 

resulting in little proton uptake/release and weak pH dependence.  
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Development of computational approach in prediction of SAV’s effect on protein 

DNA binding: 

1. Introduction  

Protein-DNA interactions are essential for functions of living cells and are involved in 

many important cellular processes such as transcription, replication, and recombination.  

For example, the expression level of genes is regulated by a wide number of proteins named 

transcription factors, which have DNA-binding domains recognizing a specific sequence 

of DNA [266, 267]. Protein-DNA binding is mediated by many factors such as DNA 

sequence, hydrogen bonds, van der Waals contacts, DNA shape, protonation states, 

flexibility and many others [217, 223, 224, 268-270].  While DNA–backbone interactions 

are important for the stability of protein-DNA complexes, proteins recognize specific DNA 

sequence by forming hydrogen bonds between amino-acid side chains and DNA bases 

[217, 224, 225]. 

Therefore, mutations occurring in DNA binding proteins that alter the physicochemical 

properties of the binding interfaces will affect binding specificity and affinity [271, 272]. 

Such mutations are frequently involved in many diseases like neurological disease, heart 

disease and cancer. Hence, understanding their molecular effects is crucial for deciphering 

disease origins and pursuing treatment [48, 273-275].  

Significant fractions of diseases are caused by the alteration of native binding affinities, 

which can be quantitatively described by the binding free energy change [26, 198]. There 

are many experimental techniques capable of measuring protein-DNA binding free energy 

such as isothermal titration calorimetry (ITC) [276], fluorescence resonance energy 

transfer (FRET) [277], nuclear magnetic resonance(NMR)  [278], surface plasmon 
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resonance(SPR) [279] and many others. However, these experimental methods are usually 

time consuming and non-applicable for large-scale studies. Recently, the available 

experimental data of protein-DNA binding free energy changes caused by amino acid 

substitutions was compiled and organized in a database, the ProNIT database [32]. 

    Computational approaches can complement experimental techniques and permit large-

scale investigations. Among them, the free energy perturbation (FEP) and the 

thermodynamic integrations (TI) are the most rigorous, but require intensive calculations, 

which limit their applicability for large-scale analysis. Alternatively to FEP and TI, 

different physical models and optimized knowledge-based potentials have been developed 

to carry out fast predictions of protein–DNA binding affinities achieving a good correlation 

with experimental measurements [280-284]. A structured based approach, the mCSM 

method, was developed [151, 285] and was shown that it achieves correlation coefficient 

of 0.673 in benchmarking test against ProNIT database. Very recently, mCSM-NA, an 

improved version of mCSM method, achieved correlation coefficient of 0.72 in 

benchmarking against ProNIT database [285].  Even so, the existing approaches for fast 

prediction of protein-DNA binding affinity changes upon mutations are still very limited, 

comparing with approaches developed for protein-protein interactions. 

    The Molecular Mechanics/Poisson Boltzmann Surface Area (MM/PBSA) approach is a 

widely applied method to calculate binding free energies of macromolecules by combining 

molecular mechanics calculations and continuum solvation models [286-288]. The 

MM/PBSA method computes a linear combination of energy terms for molecular 

mechanics, polar and non-polar solvation energy and shows high computational efficiency 
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comparing with the rigorous methods such as FEP and TI methods. In this work, we 

developed a new approach termed SAMPDI (Single Amino acid Mutation binding free 

energy change of Protein-DNA Interaction) to perform fast predictions of binding free 

energy changes of protein-DNA complexes caused by single mutations on the proteins. 

Our approach combines modified MM/PBSA based energy terms with additional 

knowledge-based terms. The method is implemented in a webserver 

(http://compbio.clemson.edu/SAMPDI/), which allows the users to upload the 

corresponding protein-DNA structural file, to specify the mutations and to obtain the 

predicted binding free energy change. 

2. Methods 

2.1 Dataset preparation 

We constructed a dataset, containing experimentally measured binding free energy change 

upon missense mutations and corresponding PDB structures, by combining the ProNIT 

database [32] and data from recent references. We applied three criteria in constructing the 

dataset: 1) Mutations affecting protein DNA binding, but not the quaternary structure of 

the corresponding protein, like dimerization.  2) The binding site of DNA (DNA sequence 

of the interface) used in the experiment is exactly identical to the DNA sequence of the 

corresponding PDB structure. 3) The structures with modified DNA, like methylation were 

removed and not considered in this study. Finally, the constructed dataset for this study 

included 105 missense mutations from 13 proteins. (The constructed dataset used in this 

study is shown in the supplementary material and can be downloaded from URL: 

http://compbio.clemson.edu/downloads) 
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2.2 NAMD Simulation protocols 

The structures of protein-DNA complexes were downloaded from RCSB Protein Data 

Bank (PDB) [289]. The biological units were retained and ligands, except ions, were 

removed from the initial structures. The missing heavy atoms were fixed using the default 

parameters of the profix module in Jackal package 

(https://honiglab.c2b2.columbia.edu/software/Jackal/Jackalmanual.htm). The mutant 

(MT) structures were generated by the VMD Mutator plugin [138] using the topology files 

from CHARMM36 force field [290, 291]. The energy minimization was performed with 

the NAMD program, version 2.11b [95] using the conjugate gradient algorithm. The 

default minimization steps were set to 5000 steps but longer minimization was applied if 

the variation of the total energy was more than 0.5 kcal/mol. In the minimization, the 

Generalized Born implicit solvent (GBIS) model and CHARMM36 force field[290, 291] 

were used. The dielectric constant of the implicit solvent was set to 80 and the various 

values of the protein-DNA dielectric constant were tested (see results section). Finally, the 

minimized structures were used to calculate the relevant energies. 

2.3 Electrostatic energy calculations 

Delphi with the Gaussian-based smooth dielectric function [83, 292, 293] was used to 

calculate the electrostatic component of the binding free energy in the Protein-DNA 

binding interaction using the following parameters: scale = 2 grid/Å; percentage of filling 

for the protein-DNA complex structures = 70%; dielectric constant = 80 for the solvent; 

salt concentration =0.15 mol/L; Gaussian with sigma=0.93, srfcut=20 and non-linear 

Poisson-Boltzmann equation (PBE) (non-linear PBE was used because of the high charge 
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of the DNA). Grid box for protein and DNA monomers were set exactly identical as for 

their complex by specifying the grid box size and center.  

2.4 Binding free energy calculations 

This study combines a modified MM/PBSA approach and knowledge based energy terms 

to calculate the protein-DNA binding free energy change upon single amino acid 

substitution. MM/PBSA is a widely used approach to calculate the receptor-ligand binding 

free energy and the thermodynamic cycle of computing the binding free energy change 

upon single amino acid change is shown in Figure 3.4. In our approach, the unbound 

monomer structures are taken from the corresponding complex, thus assuming no structural 

changes upon the binding (called rigid body approach).  In addition, a set of knowledge 

based energy terms, which are derived from analysis of physicochemical properties of the 

corresponding protein-DNA structures, are combined with the MM/PBSA approach (more 

details are provided in refs [30, 34]). All individual energy terms are combined via 

weighted linear scoring function and optimal weighted coefficients are determined via 

multiple linear regression against experimental data. Below, we will describe the protocols 

of computing each energy terms, including the MM/PBSA and knowledge based ones.  
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Figure 3.4: Thermodynamic cycle for binding free energy change calculations. The side 

chain of wild type and mutant residues are show in green and red color, respectively. 

 

2.4.1 The MM/PBSA-based energy terms 

The MM/PBSA components of the change of the binding free energy are in a linear 

combination of the five components shown in the following equation: 

∆∆𝐺𝑀𝑀/𝑃𝐵𝑆𝐴 = 𝑤0 + 𝑤1 ∙ ∆∆𝐼𝐸 + 𝑤2 ∙ ∆∆𝐶𝐸 + 𝑤3 ∙ ∆∆𝑃𝑆 + 𝑤4 ∙ ∆∆𝑉𝐸 + 𝑤5 ∙ ∆∆𝑁𝑆           (3.6) 

,where IE is the internal energy, CE is the Coulombic energy, PS is the polar component 

of the solvation energy, VE is the van der Waals energy, NS is the non polar component of 

the solvation energy and wi are weight coefficients. The energy difference for each energy 

term is computed using the following equation: 
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∆∆E = (𝐸𝑐𝑜𝑚𝑝𝑙𝑒𝑥
𝑀𝑇 − 𝐸𝑝𝑟𝑜𝑡𝑒𝑖𝑛

𝑀𝑇 − 𝐸𝐷𝑁𝐴
𝑀𝑇 ) − (𝐸𝑐𝑜𝑚𝑝𝑙𝑒𝑥

𝑊𝑇 − 𝐸𝑝𝑟𝑜𝑡𝑒𝑖𝑛
𝑊𝑇 − 𝐸𝐷𝑁𝐴

𝑊𝑇 )                    (3.7)   

,where MT and WT represent the mutant and wild-type structures. The structures of 

unbound protein and DNA are taken from the complex structures. Below we describe each 

energy component (more details can be found in [30]).  

    IE and VE energies were calculated using the NAMD program. Since the rigid body 

approach was applied and no structural changes are considered in the binding, ΔΔIE 

calculated by equation 3.7 will result in zero. In our methodology development, we have 

tried to minimize the complex structure and unbound monomer structure separately to take 

into account the structural changes induced by the binding. However, the results showed 

weaker correlation between the predicted value and experimental data comparing with 

applying the rigid body approach, thus w1 was set to zero. VE energy was obtained with 

NAMD by subjecting the corresponding minimized structure to an one step equilibration. 

CE and PS were calculated using the Delphi program with Gaussian-based smooth 

dielectric function, an accurate and fast Poisson-Boltzmann Equation (PBE) solver [83, 

292]. In Gaussian Delphi, the solute and water phase are treated as an inhomogeneous 

dielectric medium by using a smooth Gaussian-based dielectric function, which showed 

better performance comparing with the traditional two-dielectric model (the traditional two 

dielectric model treats biomolecule and water as two distinctive media with two different 

dielectric constants with a sharp dielectric border between the two media). The 

performance of the traditional two-dielectric model and the smooth Gaussian-based model 

were tested and the Gaussian-based model showed better results as benchmarked against 

experimental data. 
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 NS was calculated via the solvent accessible surface area (SASA) using the equation 3.8. 

The SASA was computed using the NACCESS software with default atom radius 

parameters [294]. The constants α and β in equation 3.8 were incorporated into to the 

weight coefficient in equation 3.6. 

𝑁𝑆 = 𝛼𝑆𝐴𝑆𝐴 + 𝛽                                                                                                            (3.8) 

2.4.2 Knowledge-based energy terms 

Many knowledge-based energy terms were tested in this study among which entropy (S) 

and hydrogen bond (HB) showed highest impact. The impact was evaluated based on the 

p-test indicating that S and HB are the terms showing highest correlation with experimental 

measured binding free energy changes (see supplementary material). Finally, the 

knowledge-based energy terms (ΔΔGKW) are a linear combination of the two components 

shown in the following equation: 

∆∆𝐺𝐾𝑊 = 𝑤1 ∙ ∆∆𝑆 + 𝑤2 ∙ ∆∆𝐻𝐵                                                                                     (3.9)        

where S is the entropy, and HB is the number of hydrogen bonds. The energy differences 

for each term are also computed using equation 3.7. 

The entropy of protein’s residue is calculated using the following empirical formula 

originally developed in our previous work [30]. 

𝑆 = 𝑙𝑛 [𝑟𝑆𝐴𝑆𝐴(𝑖) ∙ (𝑅(𝑖) − 1) + 1]                                                                                (3.10) 

,where rSASA(i) represents the relative solvent accessibility of residue i (calculated by the 

NACCESS software [294]) and small rSASA(i) values (close to 0) indicate that the residue 

is buried and only a few side chain rotamers can be sampled, which results in a small 

entropy contribution; R(i) is the maximum number of the rotamers for residue i  (R(i) for 
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all types of residues are shown in the Table C-6). The entropy change upon mutation is 

calculated by subtraction of the entropy for the wild-type residue and mutant residue.   

     The number of hydrogen bonds (HBs) is calculated using the VMD plugin with a cut-

off distance 3.0 Å and a cut-off angle of 30 degrees. We tried two protocols to compute the 

number of HB: 1) compute the total number of the HBs for the entire structures (including 

intra and inter HBs); 2) only compute the number of HBs near the mutation site and choose 

to count the HBs within 6 Å of the mutation site (different cut-off values were tested and 

6 Å showed the best correlation). The second protocol was applied in our calculation since 

it showed much better correlation with the experimental ΔΔG in the p-test (see 

supplementary material). 

3. Results 

3.1 Finding optimal value of dielectric constant  

In our protocol we used an implicit model to minimize protein-DNA structures and to 

calculate the MM/PBSA energy terms. Different dielectric constant values affect the 

energy minimization and the energy terms calculated with both Delphi and NAMD 

programs. Our previous works showed that selecting an optimal dielectric constant value 

for proteins results in improved correlation coefficient for binding/folding free energy 

calculation [30, 34]. Here, we tested various dielectric constants for the protein-DNA 

complex to identify the optimal value corresponding to the highest correlation coefficient 

against experimental data. Figure 3.5 shows the dependence of correlation coefficient on 

the value of the dielectric constant of the protein-DNA complex. We varied the dielectric 
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constant of protein-DNA from 1 to 5 for NAMD program (this was done for testing 

purposes, while understanding that dielectric constant value of 1 is physically sound) and 

1 to 20 for Delphi program with a step of 1. Multiple linear regression was performed for 

each set of values of dielectric constants using VDW energy, Coulomb energy and the polar 

component of the solvation energy to obtain the correlation coefficient (Figure 3.5). The 

results indicate the dielectric constant value used in NAMD modeling highly affects the 

correlation coefficient (Figure 3.5). Summarizing, the correlation coefficient reaches the 

highest value with a dielectric constant for NAMD =1 and for Delphi =14 and these values 

will be used in our protocol. 

 

Figure 3.5. The correlation coefficient calculated with various dielectric constants used in 

Delphi and NAMD. Panel A shows the correlation coefficient dependence of dielectric 

constant from 1 to 5 in NAMD and 1 to 10 in Delphi while Panel B shows the dependence 

of dielectric constant from 1 to 5 in NAMD and 11 to 20 in Delphi. The size and color of 
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circle are representing the correlation coefficients for a particular dielectric constant 

selection. 

3.2 Determination of optimal values of the weight coefficients  

As discussed in the Method section, the linear function of binding free energy changes 

contains 6 terms and 7 weight coefficients: 

∆∆G = 𝑤0 + 𝑤1 ∙ ∆∆𝐶𝐸 + 𝑤2 ∙ ∆∆𝑃𝑆 + 𝑤3 ∙ ∆∆𝑉𝐸 + 𝑤4 ∙ ∆∆𝑆𝐴𝑆𝐴 + 𝑤5 ∙ ∆∆𝑆 + 𝑤6 ∙ ∆∆𝐻𝐵     (3.10) 

Then, the weighted coefficients are determined from the multiple linear regression (MLR) 

between experimentally measured ΔΔG and calculated binding free energy changes. The 

resulting optimized weight coefficients are shown in Table C-7. The correlation coefficient 

from MLR is 0.72 over 105 cases. The plot of experimentally measured binding free energy 

changes and predicted binding free energy changes is shown in Figure 3.6. 
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Figure 3.6. A plot of experimentally measured binding free energy changes and predicted 

binding free energy changes. The corresponding linear fit and correlation coefficient are 

shown as well.  

3.3 Performance and Validation 

3.3.1 5-fold cross validation 

In our study the datasets used for training and testing are relatively small due to limited 

available experimental data. To address the problem of overfitting, we further performed 

5-fold cross validation by randomly partitioning the dataset into five subgroups of 

approximately equal sizes. For each round, four subgroups are used for training and the 

rest one is used for testing. The results are shown in the Table Appendix C-8 and Figure 

3.7A. The Root Mean Square of the Error (RMSE) in each fold varies a little and the 

resulting average is 0.54 kcal/mol. At the same time, Pearson correlation coefficient (CC) 

varies significantly probably due to the limited number of data points (20 data points for 

each fold and the corresponding CC shows significant variation even if with roughly same 

RMSE). We also analyzed the variation of the weighting coefficients for each energy terms 

in 5-fold cross validation and the results are shown in Appendix Table C-9. The standard 

deviation of the weighting coefficients is relatively small and indicate the variation is not 

significant across each fold. We further compared the average weighting coefficients in 5-

fold cross validation with the previous determined weighting coefficients from MLR and 

the results in Appendix Table C-9 shows that the differences for all the energy terms are 

very small. Overall, the testing indicates that overfitting is not significant. 
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3.3.2 Receiver operating characteristic (ROC) 

To evaluate the performance of SAMPDI, we further performed ROC analysis to 

distinguish large and small effects on binding free energy changes. Here, we classify the 

large effects as |ΔΔG| > 1kcal/mol and small effects as |ΔΔG| < 1kcal/mol. Figure 3.7B 

shows the ROC curve of SAMPDI for 105 experimentally measured binding free energy 

changes. The area under the curve is 0.76, indicating the capability of SAMPDI to 

distinguish different types of mutations.  

 

Figure 3.7. (A) Plot of predicted ΔΔG and experimental ΔΔG in 5-fold cross validation.  

(B) Receiver operating characteristic curve of classification of large effects (|ΔΔG| > 

1kcal/mol) and small effects (|ΔΔG| < 1kcal/mol).  

3.3.3 Multicollinearlity analysis 

It may be anticipated that some energy terms may reflect similar phenomena. To address 

such a possibility, we performed multicollinearlity analysis to study the correlation across 

each term and the variance inflation factors (VIF) from MLR. The results shown in 

Appendix Table C-10 indicate a strong correlation between CE and PS. This is due to the 

well-known fact that the PS originates from the CE. In addition, SASA has relative high 
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correlation with VDW, CE and PS. The rest, the VIFs of SASA, VDW, S and HB are 

within relative low multicollinearlity (VIF < 4). Removing highly correlated terms from 

eq. (5) results in decrease of prediction accuracy, but the change is not large. For example, 

removing the CE in the MLR leads to the decrease of correlation coefficient from 0.72 to 

0.65. Thus, these highly conserved terms were kept in our final protocol to achieve optimal 

accuracy. 

 

 

3.3.4 Case studies: consistent and inconsistent predictions comparing with experimental 

data. 

 To further investigate the factors affecting the predictions, representative examples of 

consistent and inconsistent predictions will be discussed below. The results of six single 

mutations shown in Table 3.2 will be discussed. 

 

Protein PDB 

(Mutation) 

ΔΔG 

(EXP) 

ΔΔG 

(PRED) 

ΔΔSASA ΔΔVE ΔΔCE ΔΔPS ΔΔS ΔΔHB 

1B3T 

(R469A) 

3.4 2.6 260.7 16.0 -61.4 106.9 1.8 -11.0 

1B3T 

(Y518A) 

2.6 2.2 72.6 14.3 1.3 -0.9 1.2 -9.0 

1MSE 

(C130I) 

0.3 0.2 3.6 -2.0 -2.3 3.8 0.0 0.0 
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1MSE E141A -0.1 -0.1 0.8 -1.8 7.6 -19.4 0.0 0.0 

1TN9 K54A 1.3 0.6 -18.0 -3.5 -20.5 38.4 0.9 -2.0 

2A0I E187A 2.1 1.2 24.3 7.4 7.1 -11.5 0.5 0.0 

 

Table 3.2 Cases of consistent and inconsistent predictions. Mutations in protein 1B3T and 

1MSE are the cases of consistent predictions (underlined), while the rest are inconsistent 

prediction cases. The ΔΔGs are in kcal/mol and positive value indicates destabilization 

(lowering protein-DNA affinity) while negative indicates stabilization.  The ΔΔE for each 

terms is shown as MT-WT. 

⚫ Predictions consistent with experimental data: 

Epstein-Barr nuclear antigen 1 (EBNA1) binds to the recognition site of the minimal origin 

of latent DNA replication of Epstein-Barr virus and results in activation of the latent-phase 

replication of the viral genome [295].  Here, we outline two single mutations (R469A and 

Y518A) of a permanganate-sensitive DNA site bound by EBNA1. Both mutations occur 

on the binding interface (PDB: 1B3T, Figure 3.8A) and dramatically destabilize the 

protein-DNA binding according to the experimental measurement (3.4 and 2.6 kcal/mol, 

respectively). The wild type residue R469 interacts with the DNA backbone and forms 

strong electrostatic interactions upon binding. Our calculations predict that a substitution 

to ALA will result in dramatic energy change of 61.44 kcal/mol of CE and 16.02 kcal/mol 

of VE upon binding along with a large effect on the SASA, HB and S (Table 3.2). Taking 

all together we predicted that R469A would cause decrease of 2.6 kcal/mol of binding free 

energy, which is very close to experiment. Another mutation, Y518A is also located at the 
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binding interface, which leads to a large change of VE along with decrease of HB and S. 

For both mutations, the experimental measured free energy changes are dramatic and 

destabilize DNA binding, which is reproduced by the SAMPDI.  Another representative 

example are two single mutations (C130I and E141A) in the structure of a specific DNA 

complex of the Myb DNA-binding domain with cooperative recognition helices (PDB: 

1MSE, Figure 3.8B) [296]. Both mutations are not in the binding interface and 

experimental measurement indicates minimal effects on the binding affinity. As shown in 

our energy calculations (Table 3.2), no large changes were computed for all energy terms 

resulting in minimal binding free energy change predictions, which is consistent with 

experiment.  

 

⚫ Predictions inconsistent with experimental data: 

             The first case is the mutation K54A in the structure of the Tn916 integrase-DNA 

complex. (PDB: 1TN9, Figure 3.8C) [297]. Experimental measurement indicated 

destabilization of binding and our calculation underestimated the binding free energy 

change by 0.72 kcal/mol (Table 3.2). In the wild-type structure, K54 is located in a flexible 

loop and does not directly form H-bond with nearby residue. It is feasible that K54 forms 

H-bonds in unbound protein or other specific interactions, which would not be captured in 

our rigid-body protocol and this could be the reason for discrepancy between experiment 

and modeling. Another case is the single mutation E187A in the complex structure of F 

Factor TraI Relaxase Domain bound to F oriT Single-stranded DNA (PDB: 2A0I, Figure 

3.8D). The experimental data indicates that the mutation destabilizes the binding by 2.12 
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kcal/mol while the effect is underestimated by SAMPDI. The corresponding reference 

[298] reporting the structure of protein-DNA complex indicates that there is significant 

uncertainty for the position of the Glu187 side chain. It is indicated that such a large free 

energy change is unexpected as the Glu187 side chain appears to only contact with Thy1 

5-methyl with its carboxylate [298]. The SAMPDI is a structure-based approach and thus 

strongly depends on the accuracy of the experimental structures. 

            The reasons that in some cases SAMPDI predictions are good or bad, as compared 

with experimental data stem from various sources. It should be reiterated that the SAMPDI 

protocol is a structure-based rigid-body approach and the accuracy is expected to be 

sensitive to the conformational changes upon binding and the resolution of experimental 

structures. Thus, mutations that do not induce large conformation changes are expected to 

be predicted with higher accuracy compared with mutations causing significant 

conformational changes. Another reason could be that the protocol does not take into 

account some non-specified experimental conditions, as non-reported specific ion binding, 

proton release/uptake and many others.  
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Figure 3.8. Case study of consistent and inconsistent predictions. The backbone of DNA is 

marked as orange while protein is shown as brown. Mutation site is labeled as red along 

with the side chain of the wild-type residue. (A) The estrogen receptor DNA-binding 

domain bound to DNA (PDB: 1HCQ). (B) DNA complex of the Myb DNA-binding 

domain (PDB: 1MSE). (C) TN916 integrase n-terminal domain/DNA complex (PDB: 

1TN9). (D) F Factor TraI Relaxase Domain bound to F oriT Single-stranded DNA (PDB: 

2A0I).  

 

4. Implementation  

4.1. SAMPDI Webserver architecture  

The design of SAMPDI webserver consists of three components: the user interface, the 

local server and the job backend (The flowchart is shown in Figure 3.9A). The user 

interface is implemented using the HTML (http://compbio.clemson.edu/SAMPDI/), which 

provides users with a webpage interface to upload all required input files and fill in 
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parameters for the free energy calculations. In the webpage, users are firstly asked to upload 

an input PDB file from a local computer. In addition, the job parameters including chain 

ID, mutation position, original amino acid and mutated amino acid are provided by the 

users. Detailed descriptions of all the input parameters are provided as tooltips. Once the 

job is submitted, users are provided with an URL link to the result page, which will 

automatically refresh itself every 30s to return the latest results from the backend. The local 

server part is run on a light-duty computer server, which obtains the PDB files and 

parameters from the user interface. All the jobs in the backend are executed on the Clemson 

University Palmetto Cluster. The jobs are executed using multiple nodes with MPI parallel 

runs to attain the capability for large-scale analysis. Large arrays of independent jobs are 

permitted to be submitted to the server and are sequentially executed on the Palmetto 

cluster according to the order of submission. 

4.2. Webserver performance 

To verify the capability of the SAMPDI server for large-scale analysis, we tested the 

execution time for different sizes of the proteins ranging from tens of residues up to more 

than 1000. The execution time linearly increases with the size of proteins (Figure 3.9B). 

For proteins with less than 200 residues, the results are returned to users within ten minutes. 

Execution time for middle size proteins is about 20 to 30 minutes and reaches maximum 

of an hour for large proteins with about and more than 1300 residues.   
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Figure 3.9. (A) Work flowchart of SAMPDI webserver. (B) Performance of SAMPDI 

webserver showing the execution time for different size proteins. 

5. Discussion 

    Development of computational approaches for large-scale predictions of effect of 

mutations on macromolecular binding is not a trivial problem [30, 151]. There are multiple 

available tools and servers for predicting protein-protein binding affinity changes upon 

single mutations [30, 148, 149, 151, 210, 299]. However, there is still lack of resources for 

predicting affinity changes of protein-DNA complexes. Currently, the only available 

method capable of quantitatively predicting binding affinity changes upon single mutation 

of protein-DNA binding, is the mCSM method [151] and its recent improved version 

mCSM-NA [285]. The mCSM was benchmarked against the ProNIT database [32] and 

was reported to result in a correlation coefficient of 0.673. However, the benchmarking 

was done on the entire ProNIT database without taking into consideration that in ProNIT 

database (a) some proteins interact with DNA as dimers and mutations could indirectly 

affect the binding by altering the quaternary structure of the corresponding protein dimer 
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instead of altering the binding; (b) in some cases, the binding affinity energy change upon 

mutations was experimentally measured using DNA which does not match the sequence of 

DNA in ProNIT database. This may indicate that mCSM is not very sensitive to the DNA 

sequence and may be over fitted, and thus alternative resources are needed. Its recent 

improved version, mCSM-NA method, enhanced the original method by including a 

pharmacophore modelling and information of nucleic acid properties into graph-based 

signatures and benchmarked against the new release of ProNIT database , achieving 

improved coefficient of 0.70 [285]. 

    In this work, we developed a new approach named SAMPDI, and benchmarked it against 

purged experimental data from the latest verison of ProNIT database and data from recent 

references. Comparing with existing mCSM and mCSM-NA approach, SAMPDI shows 

improvements in the accuracy and result in an improved correlation coefficient 0.72. The 

SAMPDI method was implemented in a user-friendly webservers, which shows good 

performance and capability for large-scale analysis. 

The SAMPDI applies the so-called rigid body approach, which is based on the assumption 

that the structures do not undergo conformational changes upon binding. It should be 

mentioned that in the development of the SAMPDI method we also tested a scenario such 

that, complex protein-DNA structure and unbound monomeric structures were separately 

minimized to take into account plausible structural changes induced by the binding, the 

final results indeed were worse and thus the rigid body approach was applied. In the 

standard MM/PBSA approach, long time-consuming MD simulations are required to 

explore the conformational space and intensive sampling of the entire conformation space 
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is still very challenging. The SAMPDI approach is a trade-off between extensive 

conformational sampling and execution time since one of the main goals of the SAMPDI 

method is to allow for large-scale analysis. Future expansion of the method could include 

fast conformation sampling method for protein and DNA to improve the accuracy of 

prediction. 
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CHAPTER FOUR 

 

RESCUING THE R133C RETT SYNDROME CAUSING MUTATION BY SMALL 

MOLECULE BINDING 

 

1. Introduction 

    Rett Syndrome (RTT) is another severe neurodevelopmental disease manifested by 

loss of hand skills, impaired mobility and speech, and development of stereotypical hand 

movement [300, 301]. RTT exclusively develops in females, affecting one in 10,000 to 

15,000 females with 50,000 RTT patients worldwide and no treatment is available now 

[302]. It was clinically demonstrated that vast majority of RTT cases are caused by 

mutations in MeCP2 gene [301, 303]. Particularly, the mutations in MeCP2 methyl-CpG-

binding (MBD) domain, which specifically binds to a methyl-CpG dinucleotide pair in 

DNA, were shown by us to affect MBD stability and interactions with DNA [46, 304] 

(Figure 4.1).  Many of the disease-associated mutations were shown to defect the MBD-

DNA binding [46] thus modulation of the protein-nucleic interaction could be a promising 

approach to seek treatment for RTT. 

      The interactions in biomacromolecule can be modulated via binding of small 

molecules [164, 305]. Such approaches can be either inhibition [306, 307] or stabilization 

of the interaction [308, 309]. In this chapter, we focused on rescuing one of the most 

frequently occurring mutation, R133C, demonstrated both computationally and 

experimentally that the mutation affects only MBD-DNA interactions[46, 304]. Thus, we 

are to seek a stabilizer which binding at the periphery of the MBD-DNA interface restores 

wild-type binding.  Structural based virtual screening was applied to screen a large database 

of compounds to identify potential drug-like compounds.  The crystal structure of MeCP2 
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MBD domain in complex with methylated DNA was used for the structurally-based 

screening [310]. However, proteins are well known to have highly flexibility and to adopt 

different conformational states. Such conformational changes should also be taken account 

into our screening. Thus, molecular dynamics simulations were performed to study the 

dynamics of the structures and generate the best representative structure for the docking. 

Three docking programs: Autodock4 [311], Autodock Vina [312] and Dock6 [313] were 

utilized to dock library of compounds to the structure. We analyzed and compared the 

docking results and eventually selected the common compound ranked in the top list of the 

different programs. Lastly, these selected potential compounds are to be subjected to 

experimental test in the future. 

 

 

 

Figure 4.1. Structure of MeCP2 MBD domain bound to DNA. RTT mutations are shown 

and marked.  
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2. Method and materials 

2.1 Molecular Dynamics simulation 

The crystal structure of MeCP2 MBD domain bound to methylated DNA (PDB:3C2i) [310] 

was used for the sampling of the protein conformations. MD simulations were performed 

with NAMD 2.11 [95] with Charmm36 force field [290]. The parameter files were prepared 

with VMD psfgen plugin [138]. Proteins were solvated with 0.15M NaCl in cubic water 

box with at least 10 Å from the protein to the edge of box. Langevin dynamics with periodic 

boundary conditions were applied in the simulation. VDW and electrostatic interactions 

were truncated at 12 Å with a switching function from 10 Å. Particle Mesh Ewald (PME) 

was applied for long-range electrostatic interaction calculations. First, the system 

underwent a 5000-step minimization with a fixed backbone, and then a subsequent 5000-

step minimization without constraint. Then, all atoms in the protein were fixed for 100 ps 

equilibration of the water. Harmonic constraint of 1 kcal∙mol-1∙Å-2 was applied to the 

protein alpha carbon atoms (CA), and the system was then gradually heated from 0K to 

310K with 1000-step/K in the NVT simulation. The system was maintained at 310K for 

1ns equilibration with CA constraints and another 2ns equilibration without constraints in 

NVT system. Finally, the system was switched to an NPT simulation and all constraints 

were removed for the 10 ns production run. 

 

2.2 Preparation of the compound library for virtual screening 

The diversity and size of compound library was critical for the virtual screening. To provide 

a high-quality library for virtual and vitro screening, we constructed a combined diverse 
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library using three large commercial libraries: Chembridge library (1159428 compounds), 

Chemdiv library (1638618 compounds) and LifeChemicals (544924 compunds). The 

merged compounds library was firstly subjected to the filtering to remove the molecules 

with undesired physico-chemical properties for a potential drug. We utilized FAF-Drgus4  

server [314] for the compounds filtering with the Drug like soft filter,  derived from 

published drug’s desired physico-chemical properties [315-319]. The details for the fileting 

ranges are: 100 < molecular weight < 600, -3 < LogP < 6, HBA (hydrogen bonds acceptors) 

<= 20, HBD (hydrogen bonds donors) <= 7, tPSA (topological Polar Surface Area) <= 180, 

Rotatable bonds < 11, Rings <=6.  Eventually, 1.34 million compounds remain for further 

analysis after the physico-chemical properties filtering. 

    To further enhance the compounds diversity in the merged library, the remaining 

compounds were further subjected to the clustering using Accelrys Pipeline Pilot [320] 

with the FCFP-4 fingerprint using similarity cut-off 0.7 and average cluster member size 

5. The clustering eventually leads to 0.31 million compounds with highly diversity. Lastly, 

we generated the 3D structures for the compounds using Corina [320] and further 

protonated at pH=7 using the ChemAxon.  

2.3 Structure-based Virtual Screening 

    Three popular docking programs were used for the virtual screening of the constructed 

diverse compound library.  

Autodock Vina and Audock4: 

Both Autodock Vina and Autodock4 reads PDBQT files as input for docking. We used 

Autodock tools to set up our systems and prepared the input files for both protein and 
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compounds. The sample parameter files used for Autodock Vina and Audock4 are shown 

in appendix Figure B-22 and Figure B-23. 

 

Dock6: 

Dock6 reads mol2 files of receptor and ligand for docking. We prepares the receptor mol2  

docking files using UCSF Chimera [82] and the input mol2 files for compounds are 

generated using ChemAxon. The receptor active sites for docking calculation are 

represented by a subset of spheres within the previous selected druggable pockets.  We 

used grid scores and gbsa hawkins score for primary and secondary ranking of the docking 

results. The sample parameters file used for docking is shown in Appendix Figure B-24. 

3. Results 

3.1 Identification of druggable pocket 

    Since our goal is to identify potential stabilizers to enhance the protein-DNA binding 

affinity, the small molecules are expected to bind at the periphery of the interface. Thus, 

we considered two cavities of the interface for the most potential druggable pockets for 

screening (Figure 4.2). One is located in the major groove of the DNA and in adjacent to 

the R133C mutation site (Pocket 1). Since the R133C causes loss of two salt bridges with 

the DNA bases, most promising drug-candidates are expected to form strong interactions 

to both protein and DNA, like a “clip” to enhance the binding affinity. Another potential 

druggable pockets are in the DNA minor groove but relatively far away from the mutation 

site (Pocket 2).  Such pocket is a small cavity expected to have small  conformational 

changes induced by the mutation, which was utilized as alternative pocket for our 
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screening.  To fully consider the conformational flexibility in the mutant structure, we 

perform clustering of the MD trajectory to identify the representative structure. The pockets 

were clustered via considering both the backbone and the side chain structural differences 

and the centroid structure from the most protonated cluster was retrieved as the 

representative structure for further docking analysis.  

 

Figure 4.2. Two potential druggable pocket subjected to virtual screening. 

3.2 Test of most suitable docking program for screening 

    The performance of docking programs vary with the targets and it is critical to select 

the most proper docking program for the screening[321]. Thus, we firstly tested different 

docking programs’ behavior over our systems and choose the best one for the screening 

over the large compound library.  Three docking programs:  Autodock4 [311], Autodock 

Vina [312] and Dock6 [313] were docked into 6000 compounds from the core library of 

the ChemBridge compound library. Then, the poses are ranked separately with the binding 

energy from each docking program. To evaluate the results, we took the top ranked 200 
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compounds from each program and manually compare the poses by considering characters 

such as charge complement, shape fitness, H-bonding, structural crashes and ligand 

conformations.  Eventually, the overall performance of Autodock4 is best among three 

docking programs while Autodock Vina ranked least top poses. Thus, we decide to use 

Autodock4 for the screening of the previous constructed large compound library. 

3.3 Virtual Screening 

    Autodock4 was applied for the docking of the constructed large diverse compound 

library into the two druggable pockets. For each compound, we retrieve the pose with 

lowest energy from all clusters. The median binding energy in pocket 1 is -8.08 kcal/mol 

and relative higher than pocket 2 (-7.44 kcal/mol), as shown in Figure 4.3. Since the 

R133C directly cause the loss of the H-bonds in the binding interface, compounds which 

forming H-bonds with both protein and DNA in the interface could have a higher chance 

to act as a successful stabilizer. Thus, for the first round of selection, we used two 

constrains: 1) Binding energy <= 8 kcal/mol;  2) Compounds forms at least one H-bond 

with both protein and DNA.  The selection leads to 163528 compounds for pocket 1 and 

113654 compounds for pocket 2. 

To  further reduce the number of candidates for final manual inspection and selection of 

the poses, we conduct rescoring and ranking using another docking program Dock6 [313]. 

Since free-energy based approach has been successfully applied in the rescoring of 

compounds in our previous study [164, 309],  we applied Hawkins GB/SA score, an 

Molecular Mechanics Generalized Born Surface Area (MM/GBSA) approach 

implemented in Dock6 [313], for the rescoring and reranking. The compounds with 
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GB/SA score less than -30 kcal/mol are selected, which results in 5543 compounds and 

1406 compounds for further analysis.  

 

Figure 4.3. The overall binding energy distribution from the virtual screening. 

3.4 Manual inspection and selection for the poses 

    Manual visualization and inspection of poses is very important at the final stage of the 

virtual screening to identify the best compounds. Thus, we used a visualization tool, 

PYMOL, to manually select the best poses. The major physico-chemical characteristics 

which would be critical to the potential stabilizer were fully considered based on our 

knowledge as shown in Figure 4.4. Besides manual selection, we also considered to 

eliminate the composes which would act as inhibitor via blocking the protein binding 

interface. Thus, we docked the selected compounds using a large searching box to include 

the entire protein and then to remove the compounds which most prefer to bind at the 
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interface and potentially block the binding (Figure 4.5). Eventually, 80 compounds are 

selected (shown in Appendix Table C-11) and to be subjected to experimental validation 

for their effects on the binding affinity.  

 

Figure 4.4. The major physico-chemical characteristics considered in manual pose 

selection. 

 

Figure 4.5. The overall binding energy distribution from the virtual screening. 
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Appendix B 

Supplementary materials: Figures 

 

 

 

 

Figure B-1. The side chain conformations of two disease-associated mutations 

mapped onto the KDM5C ARID domain: (a) part of the ARID domain zoomed at 

the WT position of A77; (b) part of thhe ARID domain zoomed at the MT position 

of T77; (c) part of the ARID domain zoomed at the WT position of D87; and (d) 

part of the ARID domain zoomed at the MT position of G87. 
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Figure B-2. The side chain conformation of non-classified mutations mapped onto 

the KDM5C ARID domain: (a) part of the ARID domain zoomed at the WT 

position of Arg108; (b) part of the ARID domain zoomed at the MT position of 

Try108; (c) part of the ARID domain zoomed at the WT position of Asn142; (d) 

part of the ARID domain zoomed at the MT position of Ser142; (e) part of the 

ARID domain zoomed at the WT position of Arg179; and (f) part of the ARID 

domain zoomed at the MT position of His179. 
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Figure B-3. Sequence alignment of human ARID-containing proteins. The 

mutation sites considered in this study are marked with grey bash line. The six 

most highly conserved residues are marked with a grey solid line. The helices 

from H0 to H7, and loops, are labeled at the top of the figure. The sequences are 

aligned with T-Coffee [207]. Similar results were obtained using the Clustal 

Omega webserver.  
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Figure B-4. A representative plot of ∆G for ARID WT, A77T, and D87G 

unfolding as a function of urea concentration.  
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Figure B-5. (a) Structural alignment between the KDM5C ARID domain and dead 

ringer ARID-DNA complex; and (b) part of structural alignment zoomed at DNA 

binding interface. Dead ringer ARID-DNA complex is marked with green and the 

KDM5C ARID domain is marked with blue. 

 

 

Figure B-6. (a) Thermodynamic cycle for folding free energy changes calculations; 

and (b) thermodynamic cycle for binding free energy changes calculations. 
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Figure B-7: (A) Four possible binding modes of ARID domain onto 5FWJ structure after 

applying constraint of linker length. (B) RMSD of ARID domain and JmjC domain. (C) 

RMSD of the interfacial residues. (D) Finalized model of ARID bound to KDM5C catalytic 
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core including JmjN, ARID, JmjC, ZF domains and the rest of inter domain regions marked 

with yellow, green, purple, orange and blue, respectively.  

 

Figure B-8: (A) Three possible binding modes after applying the constraint of linker length. 

(B) RMSDs of the complex of PHD1and JmjC domains. (C) Number of residues in PHD1 

domain, which have any atom within 6Å of H3K9me3 in the last 2.5ns simulation time. 

(D) The N-O distance of identified salt bridges (Glu375-H3R8 and Glu381-H3R2) between 
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PHD1 and substrate peptide. (E) Averaged RMSF of PHD1 domain residues calculated 

from model1 MD simulations. (F) Finalized model of PHD1 domain bound to KDM5C 

catalytic core including JmjN, PHD1, JmjC, ZF domains, inter domain region and histone 

peptide marked with yellow, green, purple, orange, blue and red, respectively 

 

Figure B-9: (A) Predicted interfacial region of ARID domain involved in domain 

interactions in the KDM5C quaternary structure. The interfacial region of ARID domain is 

marked with green while the rest of ARID domain is marked with pink. JmjN domain and 

DNA are marked with yellow and gray. Other regions, including JmjC and ZF domains, 

are marked with blue. The reside Asp87 side chain is shown with red. (B) The electrostatic 

potential map of ARID domain and KDM5C catalytic core. The electrostatic potential map 

of KDM5C catalytic core (including JmjN, JmjC and ZF domains) is shown on the left (the 

structure of ARID domain is marked with green). The electrostatic potential map of ARID 

domain is shown on the right (the structure of JmjN and JmjC domains are marked with 

purple). 
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Figure B-10: (A) The interfacial residues of PHD1 domain involved in the interaction in 

the KDM5C quaternary structure. The interfacial residues of PHD1 domain are marked 

with green while the rest of the PHD1 domain are marked with orange. The substrate 

histone peptide is marked with red while the rest of the region including JmjC and ZF 

domain are marked with blue. (B) The RMSD results for the KDM5B PHD1 domain bound 

to substrate peptide complex. (C) The RMSF results for the KDM5B PHD1 domain. (D) 

The predicted interfacial residues in ARID domain. The ARID domain, JmjC domain, 
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DNA and inter-domain region are marked with pink, purple, gray, and blue, respectively. 

The predicted interfacial residues in ARID domain are colored with yellow. (E) The 

predicted interfacial residues in PHD and JmjC domains. The PHD domain, JmjC domain, 

histone substrate and inter-domain regions are marked with green, purple, red, and blue, 

respectively. Predicted interfacial residues in PHD and JmjC domains are colored with 

yellow. 

 



 167 

 



 168 

Figure B-11. The side chain conformation of five disease-causing mutations 

mapped onto SpmSyn: (a) Part of SpmSyn zoomed at WT position of Met35; (b) 

Part of SpmSyn zoomed at MT position of Arg35; (c) Part of SpmSyn zoomed at 

WT position of Gly56; (d) Part of SpmSyn zoomed at MT position of Ser56; (e) 

Part of SpmSyn zoomed at WT position of Phe58; (f) Part of SpmSyn zoomed at 

MT position of Leu58; (g) Part of SpmSyn zoomed at WT position of Gly67; (h) 

Part of SpmSyn zoomed at MT position of Glu67; (i) Part of SpmSyn zoomed at 

WT position of Pro112; (j) Part of SpmSyn zoomed at MT position of Leu112; 

The side chain of WT and MT position is shown in red. Two different chains of 

the dimer are shown in blue and green. 

 

Figure B-12：The pathogenic and non-pathogenic mutation occurring sites mapping on 

the average RMSF of the WT DHCR7 protein. Pathogenic and non-pathogenic mutation 

sites are marked with red and green lines. The RMSF of transmembrane region are shown 

as blue. 
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Figure B-13：The changes in residue cross-correlation for mutation E288K and G303R. 

 

 

Figure B-14：Sequence alignment between DHCR7 and template 4QUV. 
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Figure B-15: Property distance for all types of amino acid pairs. 
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Figure B-16: Frequency patterns of ionizable residues in both Pfam and SCOP datasets. 

 

Figure B-17: Frequency patterns of ionizable interfacial residues in both Pfam and SCOP 

datasets. 
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Figure B-18: Distribution of pKa shifts for different types of ionizable groups and 

different types of complexes in Pfam dataset. 
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Figure B-19: Distribution of pKa shifts for different types of ionizable groups and 

different types of complexes in SCOP dataset.  
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Figure B-20: Distributions of pKa shifts across the different binding modes in the Pfam 

dataset. 
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Figure B-21: Distributions of pKa shifts across the different binding modes in the SCOP 

dataset. 

 

Figure B-22: Docking parameter file used for Autodock Vina. 
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Figure B-23: Docking parameter file used for Autodock4. 
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Figure B-24: Docking parameter file used for Dock6. 
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Appendix C 

Supplementary materials: Tables 

 

 

 
Model1 Model2 Model3 Model4 

Model 1 0 2.20 2.64 1.80 

Model 2 2.20 0 3.46 3.06 

Model 3 2.64 3.46 0 2.93 

Model 4 1.80 3.06 2.93 0 

average 2.21 2.91 3.01 2.60 

 

Table C-1:  The RMSD of various ARID binding modes (in Å). The last row shows the 

average RMSD calculated with respect with other three models. 

 

 

 Salt bridge involved in the domain interactions 

ARID Arg80-Glu465, Arg80-Glu467, Arg80-Gu468, Asp87-Lys459, Asp87-Arg460 

Lys91-Glu465, Lys91-Glu466, Glu94-Arg390, Glu94-Lys459, Arg159-Glu399, 

Arg159-Asp402, Arg159-Glu419, Arg159-Glu422 

PHD1 Asp334-Lys551, Glu334-Lys550, Glu335-Lys551, Glu335-Arg635, Asp336-

Arg637, Asp337-Lys550, Asp347-Arg637, Asp347-Lys711 

 

Table C-2: Lists of identified salt bridges involved in interfacial ARID and PHD1 domains 

interactions. 
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Mutation SMS/GAPDH Ratio % Ctrl 

M35R 0.04 1.5 

G56S 0.07 2.6 

F58L 0.18 6.6 

G67E 0.13 4.8 

P112L 0.55 20.3 

Ctrl 2.71 100 

Table C-3. Densitometric analysis of bands present in denatured gel. 

 

Disease-causing missense mutations 

Mutation rSASA_mem CV score SAFFEC mCSM SDM DUET FOLDX ΔΔG_ave Polyphen 

T93M 0.21 0.62 0.53 0.10 0.30 -0.03 -0.52 0.08 Probably 

damaging 

G147D 0.01 1.00 3.30 -1.53 -0.35 -1.39 7.40 1.49 Probably 

damaging 

T154R 0.01 0.97 -3.55 -0.59 -1.45 -0.60 1.62 -0.91 Probably 

damaging 

S169L 0.31 0.85 1.39 -0.25 0.69 -0.25 0.62 0.44 Probably 

damaging 

R242H 0.02 1.00 0.17 -2.38 -0.05 -2.59 -0.20 -1.01 Probably 

damaging 

R242C 0.02 1.00 0.40 -1.96 0.39 -2.05 -3.95 -1.43 Probably 

damaging 

G244R 0.01 1.00 0.96 -1.39 -0.10 -1.20 4.72 0.60 Probably 

damaging 

V281M 0.02 0.91 -0.19 -0.28 -0.08 -0.30 0.40 -0.09 Probably 

damaging 
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E288K 0.10 1.00 -15.77 -0.27 -1.17 -0.24 0.78 -3.33 Probably 

damaging 

T289I 0.43 0.29 -0.60 -0.09 1.26 0.18 -0.70 0.01 Possibly 

damaging 

G303R 0.04 1.00 -1.48 -1.15 -2.73 -1.22 21.73 3.03 Probably 

damaging 

V326L 0.00 0.94 0.24 -1.08 0.20 -1.00 1.01 -0.13 Benign 

R352W 0.06 0.94 0.00 -0.37 2.57 -0.55 0.12 0.35 Probably 

damaging 

R352Q 0.06 0.94 -0.91 -0.81 -0.63 -0.81 0.60 -0.51 Probably 

damaging 

R404C 0.04 0.97 -0.05 -1.97 0.11 -2.18 3.00 -0.22 Probably 

damaging 

G410S 0.01 0.91 -2.71 -1.81 -0.55 -1.69 11.05 0.86 Probably 

damaging 

Missense mutations with unknown effects 

Mutatio

n 

rSASA_mem CV score SAFFEC mCSM SDM DUET FOLDX Average SD 

A41V 0.05 0.44 0.03 -0.28 -0.29 0.01 -0.30 -0.17 Benign 

I44T 0.18 0.76 0.69 -1.29 -2.79 -1.19 1.40 -0.64 Benign 

A67T 0.00 0.18 2.48 -1.59 -0.79 -1.66 5.65 0.82 Possibly 

damaging 

I75F 0.53 0.24 -0.47 -0.64 0.12 -0.61 -0.56 -0.43 Benign 

R81W 0.51 0.21 -0.55 -0.49 1.18 -0.58 -0.64 -0.22 Probably 

damaging 

A97T 0.24 0.80 0.18 -1.28 -2.29 -1.19 1.64 -0.59 Possibly 

damaging 

V126I 0.12 0.76 0.60 -0.78 0.74 -0.72 0.04 -0.02 Probably 

damaging 

V134L 0.28 0.32 1.36 -0.63 1.13 -0.43 -1.24 0.04 Benign 

A162V 0.13 0.76 1.18 0.00 0.68 0.19 -1.50 0.11 Possibly 

damaging 

R228Q 0.18 0.97 1.27 -1.01 -0.84 -1.13 -0.23 -0.39 Probably 

damaging 

V330M 0.58 0.85 -2.47 -0.52 -0.51 -0.45 -0.57 -0.90 Probably 

damaging 
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V338M 0.25 0.41 -0.92 -0.38 0.80 -0.19 -0.70 -0.28 Benign 

F361L 0.01 0.91 -0.16 -2.72 -0.17 -2.80 -0.90 -1.35 Probably 

damaging 

T364M 0.25 0.85 -0.63 -0.03 0.30 -0.32 -0.60 -0.26 Probably 

damaging 

R367C 0.56 0.32 4.01 -0.37 0.83 -0.30 0.30 0.89 Probably 

damaging 

G424S 0.08 0.35 -0.48 -0.48 2.60 -0.02 -0.03 0.32 Probably 

damaging 

G425S 0.12 0.56 -0.95 -0.68 2.54 -0.28 -0.10 0.11 Probably 

damaging 

R461C 0.54 0.71 3.02 -0.39 0.16 -0.31 1.25 0.75 Probably 

damaging 

Non-disease-causing missense mutations 

Mutatio

n 

rSASA_mem Conser SAFFEC mCSM SDM DUET FOLDX Average SD 

V43I 0.16 0.74 0.02 -0.32 0.59 -0.10 0.61 0.16 Benign 

G70S 0.00 0.12 0.67 -1.68 -2.79 -1.95 2.51 -0.65 Benign 

V76I 0.43 0.06 -1.00 -0.27 0.01 -0.19 0.75 -0.14 Benign 

A137S 0.68 0.97 0.39 -0.81 -1.42 -0.66 -0.19 -0.54 Possibly 

damaging 

V140M 0.37 0.53 -0.75 -0.49 -0.74 -0.59 -0.81 -0.67 Benign 

A162V 0.13 0.76 0.94 0.00 0.68 0.19 -1.47 0.07 Possibly 

damaging 

V191I 0.31 0.82 0.43 -0.45 0.59 -0.20 -1.11 -0.15 Possibly 

damaging 

A195T 0.03 0.85 0.37 -0.96 -0.79 -0.96 4.06 0.35 Probably 

damaging 

M196V 0.03 0.41 -0.37 -0.97 -1.11 -1.08 4.19 0.13 Benign 

A206T 0.29 0.59 2.01 -1.05 -1.72 -0.99 -0.16 -0.38 Probably 

damaging 

M220L 0.08 0.85 0.27 0.16 0.40 0.47 0.14 0.29 Benign 

R260Q 0.25 0.15 -1.37 -0.49 -0.26 -0.28 0.23 -0.43 Benign 

I295V 0.09 0.88 0.55 -1.04 -0.59 -0.97 0.50 -0.31 Possibly 

damaging 
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Table C-4: Folding free energy, rSASA and Polyphen predictions for the mutations in 

DHCR7 protein. ΔΔGs are shown in kcal/mol and average ΔΔG are also calculated using 

the results from multiple webservers. Mutations A206T and H390T are located on the 

loop, not present in the template, thus the rSASA is highlighted as red to indicate low 

confidence in our calculation for these two mutations.  

 

P335R 0.32 0.38 -3.49 0.15 1.18 0.40 1.85 0.02 Possibly 

damaging 

R363C 0.54 0.88 2.53 -0.17 0.16 -0.10 0.29 0.54 Benign 

R363H 0.54 0.88 2.00 -0.98 -0.41 -0.99 0.29 -0.02 Probably 

damaging 

T364M 0.25 0.85 0.59 -0.03 0.30 -0.32 -0.62 -0.02 Probably 

damaging 

R367C 0.56 0.32 3.65 -0.37 0.83 -0.30 0.28 0.82 Probably 

damaging 

H390T 0.36 0.85 0.49 1.55 1.47 1.48 -0.34 0.93 Benign 

G425S 0.12 0.56 1.13 -0.68 2.54 -0.28 -0.10 0.52 Benign 

A452T 0.32 0.32 1.32 -1.28 -2.72 -1.18 0.41 -0.69 Possibly 

damaging 

G456S 0.33 0.94 -0.43 -1.30 -2.55 -1.21 4.05 -0.29 Probably 

damaging 

R461C 0.54 0.71 3.71 -0.39 0.16 -0.31 1.25 0.88 Probably 

damaging 

Using rSASA, EC score, PD and ΔΔG  Using only rSASA, EC score, PD 

K TP TN Accuracy K TP TN Accuracy 

1 4 2 0.6 1 5 4 0.9 

2 4 2 0.6 2 5 4 0.9 

3 5 2 0.7 3 6 4 1 

4 4 2 0.6 4 6 3 0.9 

5 5 2 0.7 5 6 4 1 
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Table C-5. KNN classifications using different properties and K values. True positive 

(TP), true negative (TN) and accuracy are calculated for each K value. 

 

 

Residue 

Rotamer 

A 

1 

C 

3 

D 

18 

E 

54 

F 

18 

G 

1 

H 

36 

I 

9 

K 

81 

L 

9 

Residue 

Rotamer 

M 

27 

N 

36 

P 

2 

Q 

108 

R 

81 

S 

3 

T 

3 

V 

3 

W 

36 

Y 

18 

 

Table C-6. Max number of the rotamers for all types of amino acids taken from [322]. 

 

 CE PS VE NS S HB Y-intercept 

Coefficient 0.078 0.048 0.088 -0.0012 0.14 -0.043 0.445 

P-value 2E-05 1E-05 7.13E-08 0.4 0.041 0.10 8.92E-08 

Correlation coefficient 0.72 Number of cases 105 

 

Table C-7. The weight coefficients of the linear function for binding free energy changes 

determined from MLR. The corresponding p-values are shown as well.    

6 5 2 0.7 6 6 4 1 

7 5 2 0.7 7 6 4 1 

8 5 3 0.8 8 6 4 1 

9 5 2 0.7 9 6 4 1 

10 5 0 0.5 10 5 4 0.9 
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Root Mean 

Square of the 

Error 

(kcal/mol) 

Pearson 

correlation 

coefficient 

Fold 1 0.53 0.33 

Fold 2 0.57 0.7 

Fold 3 0.48 0.76 

Fold 4 0.64 0.6 

Fold 5 0.49 0.52 

Average 0.54 0.58 

 

Table C-8. 5-fold cross validation for the dataset used for the SAMPDI approach. 

 

 
Averaged weighting 

coefficients in 5-fold cross 

validation 

Standard Deviation 

of weighting 

coefficients in 5-fold 

cross validation 

Weighting coefficients 

from MLR in the 

training 

Y-Intercept 0.46 0.075 0.445 

NS -0.0025 0.0015 -0.0012 

VE 0.098 0.016 0.088 

CE 0.074 0.017 0.078 

PS 0.046 0.01 0.048 

S 0.14 0.068 0.14 

HB -0.045 0.025 -0.043 
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Table C-9: Average weighting coefficients and corresponding standard deviation in 5-fold 

cross validation for all the energy terms. The determined weighting coefficients from MLR 

was also shown for the comparison.  

 

 

Correlation matrixes calculated with Pearson correlation 

 
SASA VDW CE PS S HB 

SASA 1 
     

VDW 0.7 1 
    

CE 0.64 0.29 1 
   

PS 0.61 0.26 0.99 1 
  

S 0.32 0.41 0.2 0.2 1 
 

HB 0.31 0.44 0.17 0.15 0.44 1 

Variance inflation factors (VIF) 

 SASA VDW CE PS S HB 

VIF 3.31 2.43 47.72 45.03 1.35 1.38 
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Table C-10. Correlation matrixes and variance inflation factors (VIF) for the energy terms 

in SAMPDI. Terms with high correlation and VIF values (CC > 0.5 and VIF >4) are 

underlined. 

 

Compound ID Chemical NAME 

Chembridge:78356510 (2R*,3R*)-3-amino-1'-[(1-isopropyl-4-piperidinyl)methyl]-2,3-
dihydrospiro[indene-1,4'-piperidin]-2-ol 

Chembridge:63954502 N-[3-(4-methylpiperazin-1-yl)butyl]-1-piperidin-1-ylcyclohexanecarboxamide 

Chembridge:82584961 3-{[4-(3-phenylpropyl)-1,4-diazepan-1-yl]methyl}pyrrolidin-3-ol 

Chembridge:14214075 1-methyl-4-{[1-(2-piperidin-2-ylethyl)-1H-1,2,3-triazol-4-yl]carbonyl}-1,4,9-
triazaspiro[5.5]undecane 

Chembridge:51996641 N-[(3-methyl-5,6,7,8-tetrahydro-2,7-naphthyridin-4-yl)methyl]-2-(3-
pyrrolidinyl)benzamide 

Chembridge:16017655 1-ethyl-4-{[3-(3-methylphenyl)-1-(4-methylphenyl)-1H-pyrazol-4-
yl]methyl}piperazine 

Chembridge:60958399 N-(2,5-dimethylphenyl)-3-{4-[1-(4-methylpiperazin-1-yl)ethyl]piperidin-1-yl}-3-
oxopropanamide 

Chembridge:74091868 2-(dimethylamino)-N-[2-methyl-2-(4-methyl-1-piperazinyl)propyl]-2-(3-
methylphenyl)acetamide 

Chembridge:58607167 (2R*,3R*)-1'-(N,N-dimethylglycyl)-3-(4-morpholinyl)-2,3-dihydrospiro[indene-
1,4'-piperidin]-2-ol 

Chembridge:71823596 2-methyl-N-{2-[3-(3-pyridinyl)-1H-1,2,4-triazol-5-yl]ethyl}-2,8-
diazaspiro[4.5]decane-3-carboxamide 

Chemdiv:L295-0542 N-(4-ethylbenzyl)-2-[2-(4-methylphenyl)-4-oxo-2,4-dihydro-5H-pyrazolo[3,4-
d]pyrimidin-5-yl]acetamide 

Chembridge:54664387 N-(2-methoxyethyl)-2-methyl-3-{[(4-methyl-1,4-diazepan-1-
yl)acetyl]amino}benzamide 

Chembridge:17062855 2-oxo-N-(4,5,6,7-tetrahydropyrazolo[1,5-a]pyrazin-2-ylmethyl)-1,2,3,4-
tetrahydroquinoline-6-sulfonamide 

Chembridge:41385842 8-(2-amino-6-methyl-4-pyrimidinyl)-2-[(3,5-dimethyl-4-isoxazolyl)methyl]-2,8-
diazaspiro[4.5]decan-3-one 

Chembridge:80203307 N-(1,2-diphenylethyl)-3-(4-methylpiperazin-1-yl)propanamide 

Chembridge:44531433 2-{1-benzyl-5-[(4-ethylpiperazin-1-yl)methyl]-1H-1,2,4-triazol-3-yl}acetamide 

Chembridge:48959062 (4R)-N-(1-ethylpiperidin-4-yl)-4-hydroxy-N-(2-pyridin-2-ylethyl)-D-prolinamide 

Chembridge:89707730 (1R,9aR)-1-({[2-(1H-indol-3-yl)ethyl]amino}methyl)octahydro-2H-quinolizin-1-
ol 

Chembridge:93839784 6-[(6-methyl-2-pyridinyl)methyl]-N-[(4-phenyltetrahydro-2H-pyran-4-
yl)methyl]-6-azaspiro[2.5]octane-1-carboxamide 

Chembridge:46845072 3-[(dimethylamino)methyl]-1-{[3-(2,5-dimethylphenyl)-1H-pyrazol-4-
yl]methyl}-3-piperidinol 

Chembridge:19371006 2-(1-phenylcyclohexyl)-6-piperidin-4-ylpyrimidin-4(3H)-one 

Chemdiv:G008-5368 5-(3,4-dimethylisoxazol-5-yl)-N-[(1-ethylpyrrolidin-2-yl)methyl]-2-
methoxybenzenesulfonamide 

Chembridge:35311030 4-{2-[(4-thiomorpholin-4-ylpiperidin-1-yl)carbonyl]phenyl}morpholine 

Chembridge:81745001 4-{1-[2-(4-methylbenzyl)benzoyl]piperidin-4-yl}morpholine 
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Chembridge:15330541 N-[(1-ethyl-2-pyrrolidinyl)methyl]-N-{[1-(2-methoxyethyl)-4-
piperidinyl]methyl}-2-(3-methyl-1H-pyrazol-1-yl)acetamide 

Chembridge:9294680 N-[2-methoxy-5-({[2-(1-methyl-4-
piperidinyl)ethyl]amino}sulfonyl)phenyl]acetamide 

Chembridge:30440650 4-{[3-(3-methoxybenzoyl)-1-piperidinyl]methyl}-1,5-dimethyl-2-phenyl-1,2-
dihydro-3H-pyrazol-3-one 

Chembridge:61839572 N-(5-methyl-2,1,3-benzothiadiazol-4-yl)-3-(4,5,6,7-tetrahydropyrazolo[1,5-
a]pyrazin-2-yl)propanamide 

Chemdiv:D153-0063 1'-[(2,3,5,6-tetramethylphenyl)sulfonyl]-1,4'-bipiperidine 

Chembridge:40078167 2-(3,9-diazabicyclo[4.2.1]non-9-yl)-N-(2-methylbenzyl)acetamide 

Chembridge:10864439 N-[3-[(benzylamino)methyl]-5-(1-
piperidinylcarbonyl)phenyl]methanesulfonamide 

Chembridge:70812278 N-[(4-{[1-(cyclopropylmethyl)piperidin-4-yl]methyl}-5-oxomorpholin-2-
yl)methyl]-1H-pyrazole-4-sulfonamide 

Chembridge:52194258 5-{[{[3-(1-benzofuran-2-yl)-1-benzyl-1H-pyrazol-4-
yl]methyl}(isopropyl)amino]methyl}-2-pyrrolidinone 

Chembridge:38093279 9-{3-[(dimethylamino)methyl]benzoyl}-1-oxa-9-azaspiro[5.5]undecan-5-ol 

Chembridge:40889750 N-[(1R)-1-(3-methoxyphenyl)ethyl]-2-methyl-6-piperidin-4-ylpyrimidin-4-
amine 

Chembridge:64562297 N-[(3-methyl-5,6,7,8-tetrahydro-2,7-naphthyridin-4-yl)methyl]-2-phenyl-2-
(1H-tetrazol-1-yl)acetamide 

Chembridge:23511553 5-({[2-(1-benzylpiperidin-2-yl)ethyl]amino}sulfonyl)thiophene-3-carboxamide 

Chembridge:26076097 N-{2-[3-(2-methylphenyl)-1-pyrrolidinyl]ethyl}-2-oxo-1,2-dihydro-4-
quinolinecarboxamide 

Chembridge:80360739 5-{[3-(diphenylmethyl)-6,7-dihydroisoxazolo[4,5-c]pyridin-5(4H)-yl]carbonyl}-
1H-1,2,4-triazol-3-amine 

Chemdiv:C255-0943 2-methyl-N-(3-methylbutyl)-1-[2-(4-methylpiperazin-1-yl)ethyl]-5-
oxoprolinamide 

Chembridge:84959457 N-[(1-benzyl-1H-imidazol-2-yl)methyl]-N-methyl-5-(pyrrolidin-1-ylmethyl)-2-
furamide 

Chembridge:69031290 1'-{2-[(4-methylphenyl)thio]propanoyl}-1,4'-bipiperidine-4'-carboxamide 

Chemdiv:S591-1521 N-[1-(2,1,3-benzothiadiazol-4-ylsulfonyl)-3-azetanyl]-N-ethyl-N-tetrahydro-
2H-pyran-4-ylamine 

Lifechem:F5017-0127 5-ethyl-N-((1-isopropylpiperidin-4-yl)methyl)thiophene-2-sulfonamide 

Chemdiv:1956-0061 1-[(4-methylphenyl)sulfonyl]-3-(pyrrolidin-1-ylacetyl)imidazolidine 

Chembridge:56480740 2-(2-pyridin-2-ylethyl)-8-(pyrimidin-5-ylmethyl)-2,8-diazaspiro[5.5]undecan-3-
one 

Chembridge:77982386 N-(cis-4-aminocyclohexyl)-3-(2-furyl)-4-phenylbutanamide 

Chembridge:66763532 N-(1-tert-butylpyrrolidin-3-yl)-2-methyl-5-(1H-pyrazol-1-
yl)benzenesulfonamide 

Chembridge:20528061 N-(1-methyl-4-piperidinyl)-N-(2-phenylethyl)-1-azepanesulfonamide 

Chembridge:78005408 N-{2,4-dimethyl-5-[(4-methylpiperazin-1-yl)methyl]benzyl}-3-(2-methyl-1H-
imidazol-1-yl)propan-1-amine 

Chembridge:39970175 2-(1-{[5-(pyrrolidin-1-ylmethyl)-2-thienyl]methyl}piperidin-4-yl)propan-2-ol 

Chembridge:91750483 N-({1-[2-(2-methylphenyl)ethyl]-4-piperidinyl}methyl)-N-(3-
pyridinylmethyl)ethanamine 

Chembridge:91245078 2-[(4-benzylpiperazin-1-yl)methyl]-N-(1H-imidazol-2-ylmethyl)-N-methyl-1,3-
oxazole-4-carboxamide 

Chembridge:43919158 5-[(2-{4-[(dimethylamino)methyl]phenyl}-1-piperidinyl)methyl]-N,N-dimethyl-
2-furamide 
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Chembridge:63028404 7-{2-[3-(dimethylamino)-2-hydroxypropoxy]-5-methoxybenzyl}-3,5,6,7,8,9-
hexahydro-4H-pyrimido[4,5-d]azepin-4-one 

Chemdiv:S720-1526 (2S,4S)-N-[3-(3,5-dimethyl-4-isoxazolyl)propyl]-4-phenoxy-1-tetrahydro-2H-
pyran-4-yltetrahydro-1H-pyrrole-2-carboxamide 

Chembridge:81027564 N-{[8-(3-methylbut-2-en-1-yl)-1-oxa-8-azaspiro[4.5]dec-2-yl]methyl}-3-(2-
oxoazepan-1-yl)propanamide 

Chembridge:45596927 N-{[1-(4-morpholinyl)cyclohexyl]methyl}-4,5,6,7-tetrahydro-1H-imidazo[4,5-
c]pyridine-4-carboxamide 

Chembridge:11156722 1-methyl-4-[3-(5-methyl-1H-tetrazol-1-yl)propanoyl]-1,4,9-
triazaspiro[5.6]dodecan-10-one 

Chembridge:65552572 3-{[({[1-(2-methoxyethyl)pyrrolidin-3-yl]methyl}amino)carbonyl]amino}-4-
methylbenzenesulfonamide 

Chembridge:61821585 N-[2-(dimethylamino)ethyl]-2-(2,4-dimethyl-6-oxo-1,6-dihydropyrimidin-5-yl)-
N-(2-methylbenzyl)acetamide 

Chembridge:97069383 7-(1H-imidazol-4-ylmethyl)-N-(2-phenylethyl)-6,7,8,9-tetrahydro-5H-
pyrimido[4,5-d]azepin-4-amine 

Chembridge:62154375 2-(3-{[3-(2-pyridinyl)-1-azetidinyl]methyl}phenoxy)acetamide 

Chembridge:31484474 8-[2-(dimethylamino)ethyl]-2-(2-phenylethyl)-2,8-diazaspiro[5.5]undecan-3-
one 

Chembridge:40851669 N-[3-(4-methylpiperazin-1-yl)butyl]-4-(4H-1,2,4-triazol-4-yl)benzamide 

Chembridge:76608419 2-(2-isopropyl-1H-benzimidazol-1-yl)-N-[(7S,8aS)-2-
methyloctahydropyrrolo[1,2-a]pyrazin-7-yl]acetamide 

Chembridge:89145681 N-ethyl-5-[(4-ethylpiperazin-1-yl)methyl]-N-(2-methylbenzyl)isoxazole-3-
carboxamide 

Chembridge:21627035 1-methyl-5-[N-methyl-N-(1-methylpiperidin-4-yl)glycyl]-4,5,6,7-tetrahydro-1H-
pyrazolo[4,3-c]pyridine-3-carboxamide 

Chembridge:75582364 N-[(3-methyl-5,6,7,8-tetrahydro-2,7-naphthyridin-4-yl)methyl]-2-(1H-tetrazol-
5-yl)benzamide 

Chembridge:98517584 5,7-dimethyl-6-[3-oxo-3-(4-pyridin-3-yl-1,4,6,7-tetrahydro-5H-imidazo[4,5-
c]pyridin-5-yl)propyl][1,2,4]triazolo[1,5-a]pyrimidine 

Chembridge:25787349 (1R,9aR)-1-{[bis(2-furylmethyl)amino]methyl}octahydro-2H-quinolizin-1-ol 

Chembridge:13033623 (2-{4-[2-(2,5-dimethylphenoxy)propanoyl]piperazin-1-yl}ethyl)dimethylamine 

Chembridge:88031006 N-[(4-{[1-(cyclopropylmethyl)piperidin-4-yl]methyl}-5-oxomorpholin-2-
yl)methyl]-5-oxo-4,5-dihydro-1H-1,2,4-triazole-3-carboxamide 

Chembridge:60618842 2-(1-isopropylpiperidin-4-yl)-N-(2-phenylethyl)-N-(pyridin-2-
ylmethyl)acetamide 

Chembridge:73314389 [1-(2,1,3-benzoxadiazol-4-ylmethyl)-3-(2-phenylethyl)-3-piperidinyl]methanol 

Lifechem:F6178-7296 N1-(2-cyanophenyl)-N2-((1-(tetrahydro-2H-pyran-4-yl)piperidin-4-
yl)methyl)oxalamide 

Chemdiv:SA46-2193 {7-[benzyl(methyl)amino]-5-oxa-2-azaspiro[3.4]oct-2-yl}(1H-indazol-3-
yl)methanone 

Chembridge:13675749 N-[(4-{[1-(cyclopropylmethyl)piperidin-4-yl]methyl}-5-oxomorpholin-2-
yl)methyl]-2-(3,5-dimethyl-1H-pyrazol-1-yl)acetamide 

Chembridge:19197720 (1R,9aR)-1-({[2-(2-methyl-1H-imidazol-1-yl)benzyl]amino}methyl)octahydro-
2H-quinolizin-1-ol 

Chembridge:76559661 2-morpholin-2-yl-N-[2-(2-phenoxyphenyl)ethyl]acetamide 

 

Table C-11. Final selected compounds for experimental verification. 
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