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Abstract

Background: Modern genomic techniques allow to associate several Mendelian human diseases to single residue
variations in different proteins. Molecular mechanisms explaining the relationship among genotype and phenotype are still
under debate. Change of protein stability upon variation appears to assume a particular relevance in annotating whether a
single residue substitution can or cannot be associated to a given disease. Thermodynamic properties of human proteins
and of their disease related variants are lacking. In the present work, we take advantage of the available three dimensional
structure of human proteins for predicting the role of disease related variations on the perturbation of protein stability.

Results: We develop INPS3D, a new predictor based on protein structure for computing the effect of single residue
variations on protein stability (ΔΔG), scoring at the state-of-the-art (Pearson’s correlation value of the regression is equal
to 0.72 with mean standard error of 1.15 kcal/mol on a blind test set comprising 351 variations in 60 proteins). We then
filter 368 OMIM disease related proteins known with atomic resolution (where the three dimensional structure covers
at least 70 % of the sequence) with 4717 disease related single residue variations and 685 polymorphisms without
clinical consequence. We find that the effect on protein stability of disease related variations is larger than the effect of
polymorphisms: in particular, by setting to |1 kcal/mol| the threshold between perturbing and not perturbing variations of
the protein stability, about 44 % of disease related variations and 20 % of polymorphisms are predicted with |ΔΔG| >
1 kcal/mol, respectively. A consistent fraction of OMIM disease related variations is however predicted to promote
|ΔΔG|≤ 1 kcal/mol and we focus here on detecting features that can be associated to the thermodynamic property of
the protein variant. Our analysis reveals that some 47 % of disease related variations promoting |ΔΔG|≤ 1 are located in
solvent exposed sites of the protein structure. We also find that the increase of the fraction of variations that in proteins
are predicted with |ΔΔG|≤ 1 kcal/mol, partially relates with the increasing number of the protein interacting partners,
corroborating the notion that disease related, non-perturbing variations are likely to impair protein-protein interaction
(70 % of the disease causing variations, with high accessible surface are indeed predicted in interacting sites). The set of
OMIM surface accessible variations with |ΔΔG|≤ 1 kcal/mol and located in interaction sites are 23 % of the total in 161
proteins. Among these, 43 proteins with some 327 disease causing variations are involved in signalling, structural
biological processes, development and differentiation.
(Continued on next page)
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Conclusions: We compute the effect of disease causing variations on protein stability with INPS3D, a new state-of-the-art
tool for predicting the change in ΔΔG value associated to single residue substitution in protein structures. The analysis
indicates that OMIM disease related variations in proteins promote a much larger effect on protein stability than
polymorphisms non-associated to diseases. Disease related variations with a slight effect on protein stability (|ΔΔG| < 1
kcal/mol) frequently occur at the protein accessible surface suggesting that they are located in protein-protein
interactions patches in putative human biological functional networks. The hypothesis is corroborated by proving that
proteins with many disease related variations that slightly perturb protein stability are on average more connected in the
human physical interactome (IntAct) than proteins with variations predicted with |ΔΔG| > 1 kcal/mol.

Keywords: Protein stability, Disease related-variations, Residue solvent accessibility, Interactomics networks

Background
One of the key goals in the postgenomic era is the eluci-
dation of the mechanisms at the basis of the relationship
between genotype and phenotype. In particular, under-
standing how human genetic variations are associated to
diseases is still an open problem and its solution is a
crucial issue for exploiting the possibilities offered by the
modern sequencing techniques in the framework of
precision medicine [1, 2].
The role of missense mutations inducing single residue

variations (SRVs) in proteins has been widely investigated:
several databases collect data about the relationship be-
tween SRVs and diseases [3] and several predictive tools
have been implemented in order to exploit the available
knowledge to predict whether new variants are related to
diseases ([4–6]; and others listed in [7]) or are affecting
protein function [8].
Biophysical studies allowed to measure the thermo-

dynamic effect that protein variations induce on protein
stability [9]. However the number of human proteins
whose folding thermodynamics is known in the native
and mutated form is still limited due to the time con-
suming and costly procedure at the basis of experi-
mental investigations. To fill the gap, predictive tools
have been trained on the available thermodynamic
data to compute the free energy change value upon
variation ([10–13], and others listed in [14]). Recently,
we introduced INPS [15], a sequence based predictor
that well compares with tools taking as input protein
structure. When dealing with disease related varia-
tions in human protein variants, very little is known
about their thermodynamics and it is unclear in an-
notation processes whether a variation perturbing the
protein stability is or not disease related. Extensive
comparative analyses of the two classes of datasets
(phenotypically vs thermodynamically characterized
variations) prove that, on average, variation types
most involved in disease are also associated to a large
effect on protein stability [16–18]. However, the
strength of this association, although recently im-
proved (compare results in [16] with [19]), is not

sufficient to consider protein destabilization as the
only mechanistic cause explaining the insurgence of
diseases. Indeed many variations with |ΔΔG| ≤ 1 kcal/
mol are disease-related [12, 13, 15, 16, 19]. In this
paper, as a follow up to the problem, we specifically
deal with OMIM disease related protein variants
whose native structure is known and predict the ex-
tent of perturbation that the variation may cause on
the native protein stability. To this aim, we develop
INPS3D, a new tool for computationally estimating
the effect of single residue variations on protein sta-
bility based on information extracted from protein
three dimensional structure, and compare its perform-
ance to state-of-the-art predictors on the blind test
set of the OMIM related proteins endowed with well
resolved structures. By this, we identify a subset of
disease-related variations with |ΔΔG| ≤ 1 kcal/mol and
prove that these variations often occurs in sites exposed
on the protein accessible surface, with a likelihood to
be in interaction sites. Integrating these results with hu-
man physical interactomic data, we find that on aver-
age, proteins endowed with many interaction partners
have disease related variations that are solvent exposed
and are characterized by low free energy change values.
Our results support the hypothesis that, besides protein
stability perturbation, impairment of protein-protein
interaction can be also a major mechanism explaining
the relation between variations and diseases.

Methods
Data set
We downloaded from the Humsavar dataset (release
2015_10 of 14 Oct 2015) a collection of 27,185 varia-
tions related to 3082 OMIM diseases, on 2367 different
human proteins and retained only proteins endowed
with a PDB structure (3D) covering at least 70 % of the
protein sequence. The PDBSWS resource [20] (August
2015 update) was adopted to map the UniProt sequences
onto the PDB structures. We ended up with a dataset of
4717 variations related to 484 OMIM diseases on 368 pro-
teins endowed with PDB structures with resolution lower
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than 3.0 Å (OMIM set). On the same proteins, we also
collected 685 polymorphism lacking evidence of associ-
ation to disease (POLY set).
To train/test (by adopting a cross validation proced-

ure) the predictors, we used S2648, a dataset that was
originally derived from the ProTherm database [9] and
corrected by the authors of the PoPMuSiC algorithm
[11]. It comprises 2648 variations out of 132 different
proteins endowed with a 3D structure. We also evalu-
ated the predictor performances on a blind test of 351
variations in 60 proteins, and on 42 variations of the P53
protein not included in the training set and previously
described in [12].

INPS3D: a structure based method for the prediction of
free energy changes upon protein variations
Here we introduce INPS3D that exploits both sequence
and structural information to predict the protein sta-
bility changes upon single point mutation. INPS3D
takes advantage of the recently released INPS [15]
that, starting only from protein sequence, performs
similarly to the state-of the-art methods based on
protein structure. INPS3D is based on nine input fea-
tures based on protein sequence and structure. The
features extracted from protein sequence are, [15]: 1)
substitution score derived from the Blosum62 matrix;
2-3) Kyte-Doolittle hydrophobicity scores of native
and mutated residues; 4) mutability index of the na-
tive residue; 5-6) molecular weights of native and mu-
tated residues; 7) the difference in the alignment
score between the native and mutated sequences and
an HMM encoding evolutionary information of the
target sequence. Two additional real-valued features
derived from the protein structures are: 8) the solvent
accessibility of the mutated residue, 9) the energy
difference between native and mutated proteins. The
solvent accessibility is computed with the DSSP
method [21] and normalized as previously described
[22]. The energy difference is evaluated by using the
residue-based contact potential described in [23]. We
consider that two residues are in contact if the min-
imal distance between all the atoms (not including
hydrogen atoms) of two residues is ≤ 5 Å. We used

the coordinates of the native protein to compute the
contact energy and the energy difference as:

X

r

P r;wð Þ−P r;mð Þ ð1Þ

where P is the contact potential, w is the wild-type
residue, m is the mutated residue, and the r-index
runs over the list of w-neighbouring residues. We
tested several other potentials, but the performances
were similar or lower than those here reported.
INPS3D is based on a Support Vector Regression
model (SVR) trained on the same dataset adopted for
INPS (see data set section). The adopted conventions
on the sign are such as when predicting the ΔΔG as-
sociated to a variation, positive values refer to the
protein stabilization and negative values to protein
destabilization.

Analysis of protein surfaces
The solvent accessible surface area of residues in wild-
type proteins has been evaluated with the DSSP program
[21]. In order to obtain the Relative Solvent Accessibility
(RSA), solvent accessibility areas were normalized to the
residue-specific maximum solvent accessible area, as
previously reported [22]. Residues with RSA ≥ 0.2 are
classified as accessible, residues with RSA < 0.2 are clas-
sified as buried. RSA has been measured on both the
protein isolated chain and the protein complex, as
downloaded from the repository of “biological assem-
blies” of the Protein Data Base [http://www.rcsb.org/
pdb/download/download.do#Structures]. To define the
interaction interface of the complex, we collected the set
of residues that are solvent accessible in the isolated
chain and are buried in the complex.

Interactomics analysis
Interacting partners of each protein were retrieved from
the IntAct database [24] as downloaded from the IntAct
FTP site as to November 2015. The search in the IntAct
file was performed using the UniProtKB code and exclud-
ing the negative interaction data. The statistical analysis
was performed considering only the proteins present in
the dataset, at least in one entry.

Table 1 Performance of INPS3D and other state-of-the-art predictors

Method Cross-validation (2648 variations
on 132 proteins)

Blind test set (351 variations
on 60 proteins)

Blind test set (42 variations
on P53 protein)

INPSb 0.53/1.29a 0.68/1.26a 0.71/1.49a

INPS3D 0.58/1.20a 0.72/1.15a 0.76/1.35a

MAESTROc 0.63/1.17a 0.71/1.16a 0.44/1.71a,e

mCSMd 0.51/1.26a 0.67/1.19a 0.68/1.40a

aPearson’s correlation coefficient/standard error (kcal/mol)
Data are from b[15]; c[13]; d[12], ethis work, respectively
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Results and discussion
INPS3D at work
INPS3D is a new tool for predicting the change of
protein folding free energy induced by single residue
variations. The performance of the structure based
predictor along with that of the sequence based one [15]
are shown in Table 1. We report statistical scores
obtained benchmarking the predictors with a more strin-
gent per-protein cross-validation procedure [15] on the
S2648 set previously described [11], and on a blind test
set including some 351 variations in 60 proteins, and a
P53 data set (both not included in the training set).
Results, reported in Table 1, indicate that INPS3D out-
performs INPS, exploiting structure based features not
present in the INPS input encoding. INPS3D well compares
with the performances obtained with structure-based state-
of-the-art methods, mCSM [12], and MAESTRO, recently
made available as web server [13].

Predicting the effect of disease related, single residue
variations on the stability of OMIM linked proteins
We applied INPS (sequence based), INPS3D (structure
based) and MAESTRO (structure based) to the OMIM
variation set for estimating the change in protein folding
free energy induced by the disease-related variations. For
sake of comparison we also ran the tools on the POLY
set, containing variations not related to diseases, on the
same OMIM proteins. We used polymorphisms from
the very same proteins that have also variations related
to diseases, in order to constrain the ΔG value of the
folded form and avoid possible biases due to the inclu-
sion of other proteins. The results (Fig. 1) confirm that
disease related variations tend to produce a larger effect
on protein stability than polymorphisms, which, on the
other hand, appear to promote free energy perturbations
mostly distributed within +/-1 kcal/mol. The result is

confirmed by all the predictors. INPS3D predicts that
80 % of polymorphisms and 56 % of disease causing var-
iations promote a |ΔΔG| ≤ 1 kcal/mol with respect to
the corresponding native protein.
The results are similar with INPS; with Maestro, the

fraction of disease-related variations predicted with low
|ΔΔG| values increases to 74 % of the total. Our results,
obtained with three independent predictors, corroborate
the notion that protein stability perturbation (as detected
from the predicted |ΔΔG| > 1 kcal/mol) is associated to
disease-related variations. However, at least half of the
OMIM set is predicted to promote only a slight change in
protein stability (within a range of about 1 kcal/mol in ab-
solute value). The observation poses the question as to
whether the thermodynamic property of the protein vari-
ant (albeit predicted) can be linked to some structural/
functional feature of the variation, specifically when it is
disease causing. Many investigations addressed the issue
of which structural features could be associated to disease
related variations ([25–29] and references therein). Con-
clusions are that genetic variations can have dramatic ef-
fects on protein stability, hydrogen bonding networks,
conformational dynamics, protein activity and protein
interaction networks, particularly at the level of functional
assemblies [28]. More recently the correlation between
the probability of perturbing the protein stability and that
of being disease causing was improved [19] with respect
to previous data [16]. However, here our analysis ad-
dresses the issue from a different perspective: considering
that we have predictors of protein stability, the problem is
to which extent they label the overall protein in/stability
in relation to the corresponding disease related mutation.
We find that a high fraction of the protein variants
carrying disease-related mutations are predicted with a
low |ΔΔG| value, rather independently of the method
(compare the INPS3D to MAESTRO results).
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Fig. 1 Distribution of the absolute value of the ΔΔG predicted with INPS3D, MAESTRO and INPS. The set includes 4717 disease related variations
and 687 polymorphisms in 368 OMIM proteins
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Protein |ΔΔG| values and structural/functional properties
of the variations
In the following we will consider how some structural
properties can be clustered considering perturbing and
non- perturbing predicted |ΔΔG| values. The analysis
focuses on the Relative Surface Accessibility (RSA), on
the propensity of the variation to be or not in an inter-
action patch, and finally on the relation of the protein
variant to be in physical interaction with other proteins,
considering ΔΔG values predicted with INPS3D.
We analyse the distribution of the relative solvent

accessibility (RSA) of the disease related mutations as
a function of the free energy change predicted for the
corresponding protein variant. Boxplots in Fig. 2 show
that the median and the upper quartile values of RSA
are higher in the intervals with ΔΔG values close to
zero. This indicates that disease related variations
with low ΔΔG values have a more spread out distri-
bution of RSA, and then a larger probability to be
solvent accessible.

In Fig. 3, the distribution of the fraction of solvent ac-
cessible variations is plotted as a function of the |ΔΔG|
values for disease related and polymorphic protein
variants. Low |ΔΔG| values are apparently common both
to disease causing and polymorphic variations, when
they are located in accessible protein sites.
A detailed grouping of the different behaviour of the

structural properties of the OMIM related variations is
shown in Tables 2 and 3, as a function of the thermo-
dynamic property of the protein variant. Here we focus
also on the difference among monomers and assemblies
(as documented in the Protein Data Bank, http://
www.rcsb.org/pdb/download/download.do#Structures),
in order to highlight the role of protein-protein in-
teractions, when present, in the biological functional
unit. As an additional feature, we also included the
likelihood of each variations to be or not in an inter-
action patch (computed with our PRED-PPI, [30]). It
appears that disease related mutations in proteins
variants with low |ΔΔG| values, when solvent

Fig. 2 Relative Solvent Accessibility of the variations as a function of ΔΔG predicted for the variants of the OMIM set. The box-plot reports the
median and the lower and upper quartiles of the distribution of relative solvent accessibility for each interval of ΔΔG

Fig. 3 Frequency of the solvent accessible variations as a function of ΔΔG predicted for the protein variants of the OMIM set
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exposed (RSA ≥ 0.20), have also a tendency to be in
interaction sites. The property is shared, as expected,
with variations that highly perturb protein stability
and with polymorphic ones. The low accessibility, in
all cases, well agrees with a propensity of being in
interaction sites ranging from 0 to 5 %. The value
can be considered indicative of the possible range of
the false positive rate of the predictor, trained and
tested on accessible interaction sites and for which
the OMIM set of disease related and polymorphic
variations is a blind test set.
Distinguishing functional monomeric from multimeric

biological assemblies highlights the relevance of the varia-
tions when they are located at the interface of protein
complexes [28]. In Table 3, the same grouping of Table 2
is therefore shown for proteins with a biologically func-
tional assembly, as documented in the PDB. Here, it
appears that only a small fractions of the total number of
disease related mutations in the set occurs at the mono-
mer interface (compare Monomer and Complex at RSA ≥
0.20) and concomitantly also the number of interaction
sites predicted on the complex interface is very low.
From the data reported in Tables 2 and 3, it can be

computed that about 70 % of the disease causing

variations with high accessible surface in monomers are
predicted to be part of an interaction patch. The result
is particularly significant considering that the fraction of
all accessible residues predicted in interaction patches
on the same 368 proteins is 55 %.
Summing up, we show that disease related variations

in proteins can promote a low |ΔΔG| value, particularly
when they are located in accessible sites that are also
interacting sites.
As a follow up, one may consider to which extent pro-

tein variants with disease-related mutations located in
solvent exposed sites and slightly perturbing the stability,
are or not involved in interaction networks of physical
interaction, as available in IntAct [24]. We collected
from IntAct the number of interacting partners for each
protein and analysed it as a function of the fraction of
solvent accessible, non-perturbing variations (Fig. 4).
The upper quartile and the mean values of the number
of interacting partners per protein increase as the
fraction of disease related variations predicted as non-
perturbing increases. When all the solvent exposed
disease related mutations (RSA ≥ 20 %) per protein are
related to the number of the corresponding protein
interacting partners (Fig. 5), the trend is different from
that observed in Fig. 4. This observation highlights the
role of predicted ΔΔG values for determining the rela-
tion among protein variants with disease-related muta-
tions located in solvent exposed sites and slightly
perturbing the stability, and the number of interacting
partners in a protein-protein interaction network.
The proteins endowed with a large amount of non-

perturbing and solvent exposed disease related variations
seem to play a central role in the human protein-protein
interaction network. Likely, a variation on the protein
surface can affect the interaction affinity, affecting im-
portant biological pathways and leading to an altered
phenotype, as recently described [31]. Out of the 43

Table 2 Relation between thermodynamic properties and
structural properties in proteins with biologically functional
monomeric assembly

Disease-related variant RSA≥ 0.20 RSA < 0.20

|ΔΔG| ≤ 1 562 (23.4 %)a398 756 (31.4 %)a39

|ΔΔG| > 1 176 (7.3 %)a120 907 (37.8 %)a36

Polymorphic variant

|ΔΔG| ≤ 1 194 (59.0 %)a110 72 (21.9 %)a3

|ΔΔG| > 1 22 (6.7 %)a10 41 (12.5 %)a0
aNumber of residue predicted to be part of a protein-protein interaction patch
(for details on the prediction method, see [30]). Predicted set: 2401 disease
related variations and 329 polymorphic variations in 177 proteins

Table 3 Relation between thermodynamic properties and structural properties in proteins with biologically functional multimeric
assembly

Disease-related variations RSA≥ 0.20 RSA < 0.20

|ΔΔG| ≤ 1 660 (28.5 %) Monomera465 650 (28.0 %) Monomera24

550 (25.0 %) Complexa421 760 (31.5 %) Complexa68

|ΔΔG| > 1 213 (9.2 %) Monomera152 793 (34.2 %) Monomera24

196 (8.5 %) Complexa140 810 (35.0 %) Complexa36

Polymorphic variations

|ΔΔG| ≤ 1 198 (55.6 %) Monomera131 84 (23.6 %) Monomera5

186 (52.2 %) Complexa119 96 (27.0 %) Complexa17

|ΔΔG| > 1 29 (8.1 %) Monomera21 45 (12.6 %) Monomera9

29 (8.1 %) Complexa21 45 (12.6 %) Complexa9
aNumber of residue predicted to be part of a protein-protein interaction patch. 2316 disease related variations and 356 polymorphic variations in 191 proteins.
Predictions of INPS-3D and PRED-PPI are independent of the assembly state. RSA values were independently estimated on the monomeric and the
complex structures
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proteins for which at least 50 % of disease related varia-
tions are solvent exposed and predicted with |ΔΔG| ≤ 1,
42 % are involved in differentiation and development
processes (including insulin, calmodulin, noggin,
angiogenin), 40 % are involved in signalling processes
(including the GTPases KRAS, HRAS and NRAS, the
serine/threonine kinases PIK3CA and CHEK2), 23 %
are structural and adhesion proteins (e.g., actins
ACTA1, ACTG2, tubulin TUBA1A and integrin β2).

Conclusions
We address the problem of the perturbations of the pro-
tein stability by disease causing variations on a set of

OMIM related proteins whose native structure is well
solved. To this aim we implemented INPS3D, a tool for
computationally estimating the change in ΔΔG value as-
sociated to single residue variations, taking as input pro-
tein structure. Our strategy is to adopt a predictor that
scores at the state-of-the-art and we compare its per-
formance to other state-of-the-art predictors. INPS3D
exploits information extracted from protein structures
and outperforms the recently released INPS, based only
on sequence information. Moreover INPS3D outper-
forms state-of-the-art structure-based methods that per-
form similarly to INPS and well compares with
MAESTRO, which recently became available as a web

Fig. 4 Relation between the per-protein fraction of non-perturbing, solvent accessible variations and the corresponding number of the wild-type
partners of interactions in the human interactome. The box-plot reports the median and the lower and upper quartiles of the number of interac-
tions present in IntAct as a function of the fraction of solvent accessible, non-perturbing variations. The dashed blue line connects the average
values. Non perturbing variations are those predicted to promote a |ΔΔG| ≤ 1 kcal/mol with INPS3D and found in protein sites that are solvent
accessible. Data refers to 170 proteins with 4037 variations of our data set. Proteins with less than 5 disease-related variations or without interactomic
data reported in IntAct are excluded

Fig. 5 Relation between the per-protein fraction of solvent accessible variations and the corresponding number of the wild-type partners of
interactions in the human interactome. The box-plot reports the median and the lower and upper quartiles of the number of interactions present
in IntAct as a function of the fraction of solvent accessible variations. The dashed blue line connects the average values. Data refers to 170
proteins with 4037 variations of our data set. Proteins with less than 5 disease-related variations or without interactomic data reported in IntAct
are excluded
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server [13]. Both predictors agree up to 90 % even in re-
gions of |ΔΔG| values that can be considered below the
error limit of the predictors. We found that OMIM
disease-related variations in proteins generally promote
a much larger effect on protein stability than polymor-
phisms non-associated to diseases on the same proteins,
confirming that stability perturbation plays a crucial role
in impairing protein function (recently confirmed also in
[31]). Nevertheless, a significant fraction of disease re-
lated variations is predicted to have a small perturbation
effect on protein stability: about 50 % of variations pro-
mote a |ΔΔG| <1 kcal/mol. The structural analysis of
the corresponding proteins reveals that disease-related
variations with a slight effect on protein stability often
occur on the protein surface suggesting that they can
affect the interaction of the proteins within biological
functional networks. The analysis of protein-protein
interaction networks corroborates the hypothesis that
proteins with many non-perturbing disease-related varia-
tions are more connected in the human physical interac-
tome (IntAct) than proteins with variations predicted
with |ΔΔG| > 1 kcal/mol. The results are however indi-
cative. The error associated to the computed |ΔΔG|
value by our predictors (Table 1) is competing with the
range of small changes in protein stability and this could
increase the number of variations actually destabilising
protein stability. It should also be mentioned that for
each protein other features that are not exploited in this
analysis (e.g., solubility, post-translational modifications,
subcellular location, level of expression, etc.) may be
considered when labelling a variations as disease
causing.
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