2,801 research outputs found

    Thermal design optimization of novel modular power converter assembly enabling higher performance, reliability and availability

    Get PDF
    An alternative integration scheme for a half-bridge switch using 70 ÎĽm thin Si IGBTs and diodes is presented. This flat switch, which is designed for high-frequency application with high power density, exhibits high strength, high toughness, low parasitic inductance and high thermal conductivity. Such a novel assembly approach is suitable to optimize performance, reliability and availability of the power system in which it is used. The paper focuses on the thermal performance of this assembly at normal and extreme operating conditions, studied by means of FEM thermo-fluidynamic simulations of the module integrated with connectors and liquid cooler, and thermal measurement performed on an early prototype. Improved solutions are also investigated by the FE model

    Modular assembly of a single phase inverter based on integrated functional block

    Get PDF
    This paper presents an original modular plug-in type assembly approach for a single phase-inverter. The main focus here is, indicatively, on the power range 1-20 kW, but the methodology can be transferred to higher power levels, too. At the core of the inverter lies a power-dense double-sided-cooled half-bridge power switch architecture with integrated cooler, which is interconnected to filter elements, gate-driver and control circuitry by means of compact flat connectors. The integration exercise targets, on the one hand, the optimization of the power switch performance and reliability, as well as the reduction of circuit parasitic elements; on the other, the production of a system compatible with maintenance and repairing, featuring minimized impact of single component failure on the system maintenance and repair cost and thus on its availability. Preliminary experimental tests demonstrate the nominal functionality of the inverter

    Thermal design and characterization of a modular integrated liquid cooled 1200 V-35 A SiC MOSFET bi-directional switch

    Get PDF
    The aim of this work is the thermal design of a modular direct liquid cooled package for 1200 V–35 A SiC power MOSFETs, in order to take full advantage of the high power density and high frequency performance of these devices, in the development of a modular integrated solution for power converters. An accurate electro-thermal fluid dynamic model is set up and validated by thermal characterization on a prototype; numerical models have been used to study the internal temperature distribution and to propose further optimization

    Derivation of Power System Module Metamodels for Early Shipboard Design Explorations

    Get PDF
    The U.S. Navy is currently challenged to develop new ship designs under compressed schedules. These ship designs must necessarily incorporate emerging technologies for high power energy conversion in order to enable smaller ship designs with a high degree of electrification and next generation electrified weapons. One way this challenge is being addressed is through development of collaborative concurrent design environment that allows for design space exploration across a wide range of implementation options. The most significant challenge is assurance of a dependable power and energy service via the shipboard Integrated Power and Energy System (IPES). The IPES is largely made up of interconnected power conversion and distribution equipment with allocated functionalities in order to meet demanding Quality of Power, Quality of Service and Survivability requirements. Feasible IPES implementations must fit within the ship hull constraints and must not violate limitations on ship displacement. This Thesis applies the theory of dependability to the use of scalable metamodels for power conversion and distribution equipment within a collaborative concurrent design environment to enable total ship set-based design outcomes that result implementable design specifications for procurement of equipment to be used in the final ship implementation

    Derivation of Power System Module Metamodels for Early Shipboard Design Explorations

    Get PDF
    The U.S. Navy is currently challenged to develop new ship designs under compressed schedules. These ship designs must necessarily incorporate emerging technologies for high power energy conversion in order to enable smaller ship designs with a high degree of electrification and next generation electrified weapons. One way this challenge is being addressed is through development of collaborative concurrent design environment that allows for design space exploration across a wide range of implementation options. The most significant challenge is assurance of a dependable power and energy service via the shipboard Integrated Power and Energy System (IPES). The IPES is largely made up of interconnected power conversion and distribution equipment with allocated functionalities in order to meet demanding Quality of Power, Quality of Service and Survivability requirements. Feasible IPES implementations must fit within the ship hull constraints and must not violate limitations on ship displacement. This Thesis applies the theory of dependability to the use of scalable metamodels for power conversion and distribution equipment within a collaborative concurrent design environment to enable total ship set-based design outcomes that result implementable design specifications for procurement of equipment to be used in the final ship implementation

    Modular plug-in high performance integrated single-phase inverter

    Get PDF
    The recent research exercises have targeted the transfer of the sandwich package benefits to application bespoke switch design, including flip-chip and device stacking topology [1]. This work presents the development of a highly integrated power switch, based on 70ÎĽm thin IGBTs and diodes rated at 600V/200A along with customized connectors to interface quickly the gate driver, the input, and the load side PCBs. This modular system has been designed with the aim to achieve high performance including the modularity and maintainability of power converter that can be worse in a system integrated into a single package

    Converter- and Module-level Packaging for High Power Density and High Efficiency Power Conversion

    Get PDF
    Advancements in the converter- and module-level packaging will be the key for the development of the emerging high-power, high power-density, high-eciency power conversion applications, such as traction, shipboards, more-electric-aircraft, and locomotive. Wide bandgap (WBG) devices such as silicon carbide (SiC) MOSFET attract much attention in these applications for their fast switching speeds, resulting in low loss and a consequent possibility for high switching frequency to increase the power density. However, for high-current, high power implementations, WBG devices are still available in small die sizes. Multiple SiC devices need to be connected in parallel to replace a large IGBT die. It is challenging to realize high-switching-frequency and low loss with a lot of parallel devices due to the inherent parameter dierences, which lead to unbalanced dynamic current sharing resulting in unequal temperature distribution and overstress. Apart from the technical challenges, the price of SiC modules is another roadblock for its widespread application. The paralleling of a large number of SiC chips in the module to handle high current increases the module cost. Hence, this work proposes a Si-IGBT and SiC-MOSFET-based hybrid switch solution. For a converter-level packaging, the device technology, available device package, and orientation of the pins are the essential governing factors. This work addresses the converter-level packaging, which is referred to as a power electronics building block, of the proposed hybrid switch, combining discrete packages and frame-based modules for the devices and a singlephase three-level T-type topology. The primary optimization objective for converter-level packaging includes low inductance busbar design, high eciency, and high specic and volumetric power density. Overall implementation is not trivial; however, this work achieves an optimum design compared to the state-of-the-art. The module-level packaging challenges are dependent on the type of device technology and topology. Reducing the parasitic inductances, capacitances, and the junction to case thermal resistance are the optimization objectives in module packaging. Given the intended application of the module, achieving a high-reliability module is also essential. This work includes a hybrid switch-based power module addressing the challenges of WBG module-level packaging and challenges specic to the hybrid switch. The availability of engineering samples of SiC MOSFETs with voltage ratings above 10 kV and commercialization in the future drive the module-level packaging of high voltage devices. High voltage power modules will support the development of future solid-state circuit breakers, transformers, and power conversion applications in shipboards and rolling stocks. The availability of these modules can eliminate the necessity of multilevel topologies. This work investigates and demonstrates the module-level packaging of HV (10-15 kV) SiC MOSFETs

    Wearable flexible lightweight modular RFID tag with integrated energy harvester

    Get PDF
    A novel wearable radio frequency identification (RFID) tag with sensing, processing, and decision-taking capability is presented for operation in the 2.45-GHz RFID superhigh frequency (SHF) band. The tag is powered by an integrated light harvester, with a flexible battery serving as an energy buffer. The proposed active tag features excellent wearability, very high read range, enhanced functionality, flexible interfacing with diverse low-power sensors, and extended system autonomy through an innovative holistic microwave system design paradigm that takes antenna design into consideration from the very early stages. Specifically, a dedicated textile shorted circular patch antenna with monopolar radiation pattern is designed and optimized for highly efficient and stable operation within the frequency band of operation. In this process, the textile antenna's functionality is augmented by reusing its surface as an integration platform for light-energy-harvesting, sensing, processing, and transceiver hardware, without sacrificing antenna performance or the wearer's comfort. The RFID tag is validated by measuring its stand-alone and on-body characteristics in free-space conditions. Moreover, measurements in a real-world scenario demonstrate an indoor read range up to 23 m in nonline-of-sight indoor propagation conditions, enabling interrogation by a reader situated in another room. In addition, the RFID platform only consumes 168.3 mu W, when sensing and processing are performed every 60 s

    Model-based Reliability Analysis of Power Electronic Systems

    Get PDF

    Power Semiconductors for An Energy-Wise Society

    Get PDF
    This IEC White Paper establishes the critical role that power semiconductors play in transitioning to an energy wise society. It takes an in-depth look at expected trends and opportunities, as well as the challenges surrounding the power semiconductors industry. Among the significant challenges mentioned is the need for change in industry practices when transitioning from linear to circular economies and the shortage of skilled personnel required for power semiconductor development. The white paper also stresses the need for strategic actions at the policy-making level to address these concerns and calls for stronger government commitment, policies and funding to advance power semiconductor technologies and integration. It further highlights the pivotal role of standards in removing technical risks, increasing product quality and enabling faster market acceptance. Besides noting benefits of existing standards in accelerating market growth, the paper also identifies the current standardization gaps. The white paper emphasizes the importance of ensuring a robust supply chain for power semiconductors to prevent supply-chain disruptions like those seen during the COVID-19 pandemic, which can have widespread economic impacts.The white paper highlights the importance of inspiring young professionals to take an interest in power semiconductors and power electronics, highlighting the potential to make a positive impact on the world through these technologies.The white paper concludes with recommendations for policymakers, regulators, industry and other IEC stakeholders for collaborative structures and accelerating the development and adoption of standards
    • …
    corecore