6,273 research outputs found

    A looped-functional approach for robust stability analysis of linear impulsive systems

    Full text link
    A new functional-based approach is developed for the stability analysis of linear impulsive systems. The new method, which introduces looped-functionals, considers non-monotonic Lyapunov functions and leads to LMIs conditions devoid of exponential terms. This allows one to easily formulate dwell-times results, for both certain and uncertain systems. It is also shown that this approach may be applied to a wider class of impulsive systems than existing methods. Some examples, notably on sampled-data systems, illustrate the efficiency of the approach.Comment: 13 pages, 2 figures, Accepted at Systems & Control Letter

    Analytical method for determining the stability of linear retarded systems with two delays

    Get PDF
    The stability is considered of the solution differential-difference equations of the retarded type with constant coefficients and two constant time delays. A method that makes use of analytical expressions to determine stability boundaries, and the stability of the system, is derived. The method was applied to a system represented by a second-order differential equation with constant coefficients and time delays in the velocity and displacement terms. The results obtained is in agreement with those obtained by other investigators

    A versatile quantum walk resonator with bright classical light

    Get PDF
    In a Quantum Walk (QW) the "walker" follows all possible paths at once through the principle of quantum superposition, differentiating itself from classical random walks where one random path is taken at a time. This facilitates the searching of problem solution spaces faster than with classical random walks, and holds promise for advances in dynamical quantum simulation, biological process modelling and quantum computation. Current efforts to implement QWs have been hindered by the complexity of handling single photons and the inscalability of cascading approaches. Here we employ a versatile and scalable resonator configuration to realise quantum walks with bright classical light. We experimentally demonstrate the versatility of our approach by implementing a variety of QWs, all with the same experimental platform, while the use of a resonator allows for an arbitrary number of steps without scaling the number of optics. Our approach paves the way for practical QWs with bright classical light and explicitly makes clear that quantum walks with a single walker do not require quantum states of light

    P-class phasor measurement unit algorithms using adaptive filtering to enhance accuracy at off-nominal frequencies

    Get PDF
    While the present standard C.37.118-2005 for Phasor Measurement Units (PMUs) requires testing only at steady-state conditions, proposed new versions of the standard require much more stringent testing, involving frequency ramps and off-nominal frequency testing. This paper presents two new algorithms for “P Class” PMUs which enable performance at off-nominal frequencies to be retained at levels comparable to the performance for nominal frequency input. The performances of the algorithms are compared to the “Basic” Synchrophasor Estimation Model described in the new standard. The proposed algorithms show a much better performance than the “Basic” algorithm, particularly in the measurements of frequency and rate-of-change-of-frequency at off-nominal frequencies and in the presence of unbalance and harmonics
    • 

    corecore