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Abstract— While the present standard C.37.118-2005 for Phasor 

Measurement Units (PMUs) requires testing only at steady-state 

conditions, proposed new versions of the standard require much 

more stringent testing, involving frequency ramps and off-

nominal frequency testing. This paper presents two new 

algorithms for “P Class” PMUs which enable performance at off-

nominal frequencies to be retained at levels comparable to the 

performance for nominal frequency input. The performances of 

the algorithms are compared to the “Basic” Synchrophasor 

Estimation Model described in the new standard. The proposed 

algorithms show a much better performance than the “Basic” 

algorithm, particularly in the measurements of frequency and 

rate-of-change-of-frequency at off-nominal frequencies and in the 

presence of unbalance and harmonics. 

Keywords-component; Power system measurements; Discrete 

Fourier transforms; Filtering algorithms; Power system harmonics 

I.  INTRODUCTION 

Closed-loop real-time applications of synchrophasor 
measurements are gaining momentum. Examples of these 
include system integrity protection schemes (SIPS) and control 
of FACTS (Flexible AC transmission system) devices to 
improve system stability margins [1, 2]. Achieving such 
functionality, however, requires accurate transient information 
as reported by the PMUs (Phasor Measurement Units). Wide-
area protection algorithms such as those based on ROCOF 
(Rate of change of frequency) to perform selective load 
shedding also rely on accurate, timely measurements, 
potentially in an environment of localised frequency deviations 
in the aftermath of a major disturbance. 

Validation of power system models using synchrophasors 
also necessitates an accurate transient response since this 
information can be used for tuning wide-area generator and 
FACTS controllers. Furthermore, disparity in dynamic 
behaviour of PMUs from different vendors presents a challenge 
to achieving interoperability in digital substations. Should the 
protection and control schemes rely on synchrophasors from 
sources of dissimilar fidelity, mal-operation may occur. 

The existing standard for PMUs is given by C.37.118-2005 
[3]. This standard does not require testing under any non-
stationary conditions [4]. The proposed new standard is under 
development and currently stands at PC37.118.1(Draft 3.0) [5]. 
This standard now requires testing under frequency ramps to 

±1 Hz/s over a ±2 Hz window centered on the nominal 
frequency, amplitude steps, and phase steps. The algorithms are 
expected to be compliant with measurement accuracy 
specifications when 1% of any harmonic up the 50

th
 are present 

(for P class) or 10% of any such harmonic is present (for M 
class). The relationship between the measurements and the 
timestamps have also been specified much more formally, as 
have the latencies of the filters. Lack of clarity in the previous 
standard allowed PMUs from different manufacturers to 
behave in quite different manners but to still be compliant [6]. 
The new standard places much stricter requirements on the 
design of the PMU algorithm and its calibration mechanisms. 

The new standard describes “Basic” reference algorithms 
for P-class (protection) and M-class (measurement) devices, 
which are claimed to meet the requirements. This paper 
explores the behaviour of the “Basic” P class PMU algorithm, 
and also describes two alternative algorithms which provide 
much better performance for off-nominal frequencies, 
particularly where the measurement of frequency and rate-of-
change-of-frequency (ROCOF) are concerned. This is achieved 
by substituting the fixed-weight FIR (Finite Impulse Response) 
filter in the “Basic” algorithm with cascaded adaptive comb 
filters, created using rectangular exact-time average sections. 
These are fast to execute in real time and are shown to be 
viable at up to (or beyond) the 10 kHz sample rate.  

The use of adaptive filtering introduces additional effects 
and feedback paths within the PMU algorithm. These are 
described below, along with the algorithmic adjustments 
necessary to make the algorithms robust and accurate. 

II. THE BASIC MODEL FROM PC37.118.1 (DRAFT 3.0) 

The “Basic” model for the P-Class PMU described in the 
emerging PC37.118.1 standard is shown in Figure 1 and Figure 
2. In the “Basic” architecture, the input signals are correlated 
with a waveform at the nominal frequency f0. The output of 
each single-phase section is a phasor, each of which has a 
magnitude proportional to the voltage on each phase. The 
phase angles of each phasor rotate at a rate of 2π(f-f0) where f0 
is the correlation frequency (the nominal system frequency), 
and f is the actual system frequency. 

The work has been carried out as part of the Rolls-Royce UTC 
“programme”, and has also received funding from the European Union 

Framework 7 program on the basis of Decision No 912/2009/EC. 
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Figure 1. Single-phase section of the "Basic" P-Class PMU 

 

 
Figure 2. Three-phase “Basic” PMU 

During normal balanced operation, the phase angles of the 
Va, Vb, and Vc phasors are at (or close to) 120° to each other. 
The overall positive-sequence phasor can be calculated by: 
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Assuming that the single-phase sections are effective at 
filtering out noise, harmonics, and other unwanted non-
harmonic signals from Va, Vb and Vc, then the phasor V

p
 will 

also rotate at a steady rate of 2π(f-f0), for steady state values of 
f, and if the input signal magnitudes and relative phases remain 
constant. 

In the “Basic” P-class model, the FIR (Finite Impulse 
Response) filter used is a fixed-length triangular-weighted 
symmetric filter of length 2 cycles, designed to work optimally 
at the nominal system frequency f0. The filter produces notches 
with high attenuation at every multiple of f0, which are useful 
to attenuate contamination due to harmonics. For example, the 
filter weights are determined by: 
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N = filter order, where  12  SN  and S is the number of 

samples per cycle at nominal frequency f0. 

 

An example is given in [5] for a filter with 15 samples per 

cycle, giving an order 28 FIR filter. This is reproduced below: 

 

 
Figure 3. P class FIR filter coefficient weights (29 off) for S=15 samples/cycle 

and order N=28 [5] 

 
Since the filter is symmetric, its response is “zero phase” to 

an input waveform with a steady frequency, if the centre of the 
filter is placed at a time reference of zero. Of course, in 
practice, any real filter must be causal and only the ADC 
samples from the present instant and those in the past are 
known. However, the “zero phase” property can still be used 
because the standard allows the timestamp of the measurement 
to be allocated as if the measurement actually occurred half-
way through the FIR filter time length, where “time zero” 
would be placed for a non-causal filter. 

There are 2 problems with such an implementation, both of 
which are identified in the emerging standard and also in [7]. 
The problems become evident when the mixing frequency is 
considered. The mixing frequency appears at the inputs to the 
FIR filters in Figure 1. If frequency is nominal, i.e. f=f0, then 
the mixing frequency consists of the dominant (wanted) DC 
component, plus unwanted components at f+f0=2f0:, and at 
every frequency fH=f0±Hf0 for the harmonics where H>1 and 

H . However, when the frequency is not nominal, then 

the wanted component is no longer at DC, but is present at |f-f0| 
Hz. The unwanted harmonic components also shift from 
fH=f0±Hf0 to fH=f0±Hf. 

 

1) For off-nominal frequencies, the FIR filter notches no 

longer correspond exactly to the unwanted 

frequencies in the mixed signal. Therefore, the ability 

of the FIR filter to reject harmonic contamination 

reduces as frequency diverges from nominal. 

2) While the “Basic” FIR filter is carefully designed to 

be symmetric and “zero phase”, it has a finite 

amplitude attenuation of the wanted component when 

f≠f0, i.e. the mixing frequency is not 0 (DC) but is 

finite. Therefore, the measured amplitude needs to be 

calibrated. 
 

It would, in theory, be possible to address 1) by carefully 
designing new filters (in real time) to place notches at the 
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desired frequencies using, for example, the Tustin 
transformation [8] or other mathematical methods. However, 
designing the FIR in this manner is likely to be a time-
consuming process. Also, it (alone) does not address 2). 

This paper instead proposes two different P-class PMU 
algorithms which address both 1) and 2) by allowing the 
correlation frequency to adjust in real-time, and by 
implementing adaptive filters based upon cascaded exact-time 
averaging algorithms [9-11]. These can be executed extremely 
quickly in real-time since the FIR filter weights and zero/pole 
placements do not need to be recalculated explicitly. The 
proposed method of cascaded exact-time average filters also 
executes much faster than a traditional FIR filter, since only the 
effects of the first and last samples have to be calculated for 
each stage at each computational frame. This contrasts with a 
traditional FIR filter implementation in which the entire FIR 
filter window correlation needs be calculated at each 
computational frame. 

III. TWO PROPOSED P-CLASS PMU ALGORITHMS 

A. Symmetric twin filters in a “tick-tock” algorithm 

The first proposed algorithm maintains a symmetric FIR 
filter shape. This maintains the “zero-phase” filter property, if 
the centre of the filter window is considered to be at the 
timestamp. However, the correlation frequency fC is allowed to 
move with the measured frequency instead of remaining fixed 
at f0 , so that the wanted mixing frequency remains at DC or 
extremely close to it. The unwanted harmonic components then 
fall at harmonics of fH=f±Hf. Compared to the “Basic” 
algorithm, this is useful because now the required FIR filter 
notch frequencies to attenuate harmonics and unbalanced 
effects are at exact integer multiples of the fundamental 
frequency. This makes the notch filter much easier to 
implement. 

To achieve a symmetrical Fourier correlation and FIR filter 
when the frequency is changing requires a pair of correlation 
and FIR filter paths to operate in parallel (Figure 4). The 
correlation frequency fC and the filter in one path needs to be 
configured with the measured estimate of the system frequency 
fM*, but this configuration then needs to be held constant so 
that the FIR filter behaviour is fixed and symmetric for a 
certain period of time. The filter needs to be allowed to settle 
for at least 2 cycle periods (the P-class filter length) so that the 
FIR filter output is fully consistent and symmetric. After this, 
the filter can be used. This “frees up” the other filter path, 
which is then reconfigured to the latest frequency 
measurement, and allowed to settle, etc. This creates a “tick-
tock” pair of filter paths which are alternately used and 
reconfigured/settled to create a seamless output, but 
minimising deviation of the mixing frequency from 0 Hz. 

Each FIR filter path itself (Figure 5) is constructed using 2 
cascaded exact-time averaging filters, each of which averages 
its input waveform over exactly one cycle (a time period of 
1/fC) at the correlation frequency fC . This can be called a “1+1” 
filter. The averaging algorithms have been careful constructed 
to work accurately and quickly, being able to interpolate 
between samples where necessary [11]. Each (identical) single-

cycle filter section has a rectangular shape, and causes a notch 
at every multiple of the correlation frequency. The zeros and 
poles are not explicitly calculated in real-time, but 
“automatically” fall into the appropriate places. For example, 
Figure 6 shows the pole-zero plot for such a single-cycle 
averaging filter, and also the amplitude responses for a single 
filter and for 2 filters cascaded. The overall filter shape in the 
time domain for the 2-filter cascade is the convolution of the 2 
rectangular filters, and forms a triangular filter. When the 
measured frequency is nominal, i.e. f= fM*=fC=f0, the cascaded 
filter is exactly equivalent to the triangular filter for the “Basic” 
PMU. 

 

Figure 4. A pair of correlation and symmetric filter paths in a  “tick-tock” 

arrangement 

 

 
Figure 5. Single-phase correlation and “1+1” filter, adaptive 

 

 

Figure 6. Example of zeros, poles and response for single-cycle averaging 

filter s (0.02s window length per filter, 800 Hz sampling) 

Fourier 
Correlation 

and 
“1+1” filter 

Single phase sampled 

waveform 
Re 

Im 

ΦC Sample 
and 
hold 

Loopback 

frequency 

fM* 

Sample 
and 
hold 

Fourier 
Correlation 

and 
“1+1” filter 

Re 
Im 

ΦC 

Control setting and 
use of filters 

alternately 

Correlation frequency fC  

X 

X 

“1+1” filter. 

Quadrature 
Oscillator 

cos -sin 

Re 

Im 

Correlation 

Frequency 

fC 

“1+1” filter. 

Filter 

configuration 

parameters 

Exact-time 
average filter 
configurations 

ΦC 

Single phase sampled 

waveform 



This is a postprint of a paper published in IEEE Xplore [http://dx.doi.org/10.1109/SMFG.2011.6125761] and is subject to IEEE 

copyright. 

 

To evaluate the phasor phase, relative to the reference 
phase at f0, it needs to be appreciated that the phase of the real 
and imaginary components from the chosen “tick-tock” filter 
path represents the average phase of the signal, relative to ΦC, 
where ΦC is the phase of the correlation waveform. ΦC 
accumulates over time at a rate of 2πfC.. Therefore, since the 
timestamp of the measurement is to be in the middle of the 
time window, careful back-tracking and calibration must be 
done: 
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Note that in (4), for the special case of the 2-cycle filter, ΦC 
at the timestamp is exactly 2π (i.e. 0) less than ΦC at the present 
time. It should also be noted that during rate-of-change of 
frequency (ROCOF) events, the frequency of the input signal 
appears as a chirp. Since the length of the P-class filter is only 
2 cycles long, the effect on the measured phase can be ignored. 
For M-class devices however, this additional effect must be 
carefully accounted for, but this is beyond the scope of this 
paper. 

The measured amplitude can also be corrected by 
estimating the (almost-zero) mixing frequency from the 
correlation , as it passes through the two rectangular time-
window average filters, which introduce a cumulative gain of: 
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The measured amplitudes and phases also need to be 
corrected to account for analogue input hardware behaviour, 
such as instrumentation and anti-aliasing filters etc. 

 

The positive sequence calculation, and deduction of 
measured frequency fM and ROCOF by differentiating against 
time, are carried out in a similar fashion to the “Basic” 
algorithm. However, some care is needed at the instant that the 
“tick-tock” filter path change-over occurs. The high-level 
architecture is actually similar to Figure 7 (the Asymmetric 
algorithm, described in the next section) but the filter paths are 
doubly complex as per Figure 4. To measure frequency, the 
best performance is achieved by ignoring the phase calibrations 
for hardware, since this removes feedback paths for noise and 
interference. This requires two separate positive-sequence 
calculations: one using only partially calibrated phasors for the 
frequency calculation, and one using fully calibrated phasors 
for the outputs of single-phase and positive-sequence 
magnitude and phase. 

The measured frequency fM can be looped back (with a 
single cycle delay to avoid “algebraic loops”), and be used to 
calculate calibration factors and to determine filter settings. 
However an extra filter step to avoid oscillations and 
undesirable feedback is to further time-average the measured 
frequency fM over a period of approximately 3 cycles before 
looping it back as fM*. The length of this extra averaging is not 
critical, although making it exactly 3 cycles by averaging over 
exactly 3/fM* seconds adds further to the rejection of 
harmonics. The extra averaging does not impact on the latency 
of the primary PMU outputs, since the looped-back frequency 
fM* is only used internally to configure the correlations and 
filters. 

B. Asymmetric filter algorithm 

While the symmetric filter algorithm produces a very good 
performance, it is memory-hungry and relatively complex, due 
to the requirement for 2 parallel sets of correlation and filter 
paths, and the mechanisms for switching seamlessly between 
the two paths. 

 

 

Figure 7. Asymmetric filter algorithm overview 

 

An alternative approach is to allow the FIR filters to 
become asymmetric. This means that the “zero phase” property 
is lost. However, it turns out that this can be dealt with 
relatively easily. The entire algorithm logic is summarised in 
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locked loop” FLL algorithm previously developed in [12]. The 
structure is similar to the Symmetric filter algorithm, except 
that only one set of filters is required instead of the pair of 
“tick-tock” filters, and that the calibration process is slightly 
different. 

There are 2 positive sequence calculation blocks in Figure 
7. This is because there is a feedback path from the measured 
frequency via the loopback frequency fM* to many filters 
within the algorithm. This loopback path creates an IIR 
(infinite impulse response) response in fM* which must not be 
allowed to become unstable or under-damped. Better 
performance and rejection of interference is shown when the 
frequency measurement uses data which does not include the 
phase calibrations for hardware (such as anti-alias filter 
response). On the other hand, the PMU outputs such as the 
measured amplitude and phases (both single-phase and 
positive-sequence) need to account for this calibration data. 

In this algorithm, if the input frequency f is constant then 
the algorithm will behave in an identical manner to Symmetric 
algorithm. However, when the input frequency f is changing, 
the loopback frequency fM* changes continuously as it tracks f, 
and therefore both the correlation frequency and the filter 
weights/notches also change on a continuous basis. 

One effect of this is that while it still makes sense to 
position the timestamp at the centre of the filter time window, 
as per (3), the value of ΦC at the timestamp cannot be exactly 
deduced simply by backtracking using the most recent values 
of fM* and half the filter time window length, and (4) no longer 
holds. In fact, for the short 2-cycle P-class filter, the error 
which would be incurred in using (4) would be very small, but 
the error which would be incurred for a longer M-class filter 
would be significant. This is the similar effect of an input 
frequency chirp as was discussed above for the symmetric 
algorithm. However, for the asymmetric filter the correction of 
(4) is relatively easy to perform. Since the values of ΦC are 
known at every computational frame, it is possible to hold 
these values in a memory buffer and retrieve the value from a 
time exactly 1/fC seconds (half the filter time window) in the 
past, using linear interpolation between samples where 
required. This process automatically corrects for the frequency-
chirp effects when the input frequency f (and also the loopback 
frequency fM*) are rising or falling. 

One effect of this is that there is a feed-forward effect 
within the frequency calculation. This is because the value of 
ΦC is incremented every computational frame by fM*Ts , where 
Ts is the frame time (reciprocal of the sample rate). Also, 
during steady changes in f where ROCOF is constant, both f 
and fM* rise at the same rate. The properties of the chirping 
correlation and filter then lead to the surprising result that there 
is essentially no latency in the initial frequency measurement 
during times that ROCOF is constant. (But during changes in 
ROCOF, there is the expected latency). Consequently, to 
generate a measurement of frequency which is accurate at the 
timestamp, for constant-ROCOF situations, the frequency 
measurement needs to be delayed by half the filter time 
window length. More usefully, this “spare time” can be used to 
apply a further averaging over exactly 2 cycles. This reduces 
general noise, and the averaging over exactly 2 cycles places 

further filter notches at all multiples of 1/(2fM*) Hz. This 
“bonus” filtering is extremely beneficial for the PMU 
frequency and ROCOF outputs. 

IV. BENCHMARKING 

To verify the suitability of the algorithms for real-time 
implementation, they have been benchmarked on two different 
processors. The Infineon TC1796 microcontroller which has 
relatively slow RAM (Random Access Memory) access and 
small RAM size, and the Motorola MVME5500 which has a 
large RAM size and fast RAM access. All algorithms were 
configured for 2.5kHz sampling (a frame time of 400μs). The 
algorithms are coded in MATLAB® Simulink and converted to 
„C‟ code using the RealTime Workshop and Embedded Coder 
toolboxes. The execution times were then measured as 
described in [11]. The results in Table I show that, while 
seemingly much more complex than the “Basic” PMU, the 
asymmetric PMU algorithm executes about 5 times faster. This 
is primarily because while the standard FIR filter in the “Basic” 
algorithm needs to evaluate the multiplications and additions 
across the entire time window at every computational frame, 
the cascaded averaging filters only need to evaluate the 
changes to the filter outputs due to the incoming and outgoing 
samples at the ends of the time window. Thus, as the sample 
rate is increased, the number of calculations in the averaging 
filters is not increased (but the memory requirement of the 
buffers is) [9, 10]. 

Based on the measurements in Table I, there would be no 
problem in executing either of the proposed algorithms at a 
10kHz sample rate (100μs sample time). This removes the risk 
of aliasing of harmonics up to the 50

th
 and well beyond. 

TABLE 1 : BENCHMARKING OF ALGORITHMS 

P-class 

benchmark 

results 

TC1796 results 
MVME5500 

results 

Execution time 

RAM 

requirement 

(32-bit 

precision) 

Execution time 

Basic 180μs 2.4 kB 81μs 

Symmetric 

twin filters in 

“tick-tock” 

54μs 20 kB 24μs 

Asymmetric 

filter 
33μs 13 kB 17μs 

V. RESULTS 

A test environment has been created in software which 
exposes the algorithms to a sequence of waveforms and 
interfering effects. The PMU algorithm outputs can be 
compared to the known synthesized signal properties 
(frequency, ROCOF, amplitude, phase) by careful post-
analysis, taking into account the timestamps applied by the 
PMU algorithms. The test suite presented is not designed to 
provide formal demonstration of compatibility with C.37.118 
(this activity is being carried out as part of the EURAMET 
EMRP programme [13]), but provides a practical 
demonstration of relative PMU performance. 
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The sample rate used for the PMU algorithms is 10 kHz. 
Although PC.37.118 suggests that no anti-alias filter should be 
used for P-class devices, a first-order 2.5kHz low-pass filter 
has been modelled (and is calibrated for by the PMU 
algorithms). A 12-bit ADC (analogue to digital converter) is 
modelled, with a Gaussian noise of 0.1-bits RMS. The 
waveforms and filter are simulated at a time step of 25μs, 
taking care to model the anti-alias filter so that its latency in the 
simulation domain matches the latency of an analogue filter 
very closely (since even 25μs represents 0.45° at 50Hz). 

 

A. Scenario 1 : High levels of unbalance and harmonics 

In the first scenario presented, the waveforms contain 
severe unbalance, harmonics to 27% THD, and inter-
harmonics. These are more difficult challenges than the draft 
PC.37.118 standard describes. However, such waveforms are 
potential real scenarios within low voltage distribution grids, 
particularly for measurements of current, or during transient 
changes. 

The waveform inputs for the first test case are: 

 t=1s to t=2s: 50Hz, 1-per-unit (pu), clean sinusoids 

 t=2s to t=3s: Ramp to 52Hz at a ROCOF of 1 Hz/s 

 t=3s to t=4s: Add 5
th
 Harmonic to all phases at 10% 

 t=4s to t=5s: Harmonics 2 to 40 at random phases (but 
balanced on all three phases), total THD 28% 

 t=5s to t=6s: Add unbalance at 2% (negative sequence 
0.02pu, positive sequence drops to 0.98pu) 

 t=6s: Instant phase jump of 20° 

 t=7s to t=7.5s: Dip phase A to 10% by reducing 
positive sequence to 0.7pu, and adding -0.3pu 
negative and -0.3pu zero sequence. 

 t=8s to t=9s: Add unbalanced inter-harmonics at 
525 Hz (10%) to all three phases. 

 

Figure 8 shows the TVE (Total Vector Error) for the three 
algorithms. This shows that all three algorithms have similar 
and compliant TVE performance if calibrated correctly, with 
errors greater than 0.1% only occurring transiently after step 
changes to interfering qualities, which is compliant with the 
standard under the “response” and “delay” time allowances.  

Figure 9 shows the errors on the frequency measurements 
from the 3 algorithms. Clearly, the “Basic” algorithm gives 
some large frequency errors, because the fixed-weight filters do 
not filter out the interference caused by harmonics and 
unbalance, when the fundamental frequency is off-nominal at 
52 Hz. The performance of the proposed algorithms is far 
superior. The Asymmetric filter algorithm shows ringing on the 
frequency measurement immediately subsequently to step 
changes in the interfering qualities (harmonics, unbalance, 
ROCOF), but provides the best results when these interfering 
qualities are steady. 

The ROCOF PMU outputs follow similar trends since they 
are derived directly from the frequency output. Notably, the 
ROCOF output for the “Basic” algorithm in this scenario is 
unusable, containing noise to 100 Hz/s or more from t=3s 
onwards (Figure 10). The ROCOF for the proposed two 
algorithms is also shown in Figure 10, clearly showing that the 
asymmetric filter algorithm is the best. The asymmetric filter is 
better at reducing noise due to harmonic and random 
perturbations than the symmetric filter, due to the additional 2 
cycles of averaging which can applied to the frequency and 
ROCOF measurements using this algorithm (see section IIIB). 

 
Figure 8. Scenario 1 : Total Vector Error (TVE) errors in % for PMU 

algorithms: Basic (top), Symmetric “tick-tock” (middle) and Asymmetric 

(bottom) 

 

To accurately compare the phase angles reported from two 
PMUs, not only the vectors and timestamps need to be known 
accurately, but so do the frequency and ROCOF measurements. 
This is because the PMU measurements may have different 
timestamps when there are compared, due to communication 
delays. In these cases, the phase angles need to be corrected by 
formulas based upon the following equation: 
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where t  is the time elapsed since the measurement 

timestamp, f is the measured frequency, and df/dt is the 
measured ROCOF. 
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Figure 9. Scenario 1 : Frequency errors for PMU algorithms: Basic (top), 

Symmetric “tick-tock” (middle) and Asymmetric (bottom) 

 
Figure 10. Scenario 1 : ROCOF errors for proposed PMU algorithms: Basic 

(top), Symmetric “tick-tock” (middle) and Asymmetric (bottom) 

Assuming a 100ms communication delay between two 
PMUs needs to be compensated, and that an angle accuracy of 
0.5° is required (a TVE of 0.9%), then even if the original TVE 
measurement is exactly accurate, the maximum tolerable 
frequency and ROCOF errors by (6) are in the region of 
0.01 Hz and 0.3 Hz/s. This suggests that perhaps the value of 
±0.01 Hz/s specified in [5] is inappropriately small and should 
be increased. 

B. Scenario 2 : Balanced 1% 5
th

 Harmonic 

Since Figure 8 to Figure 10 show such high values of 
frequency and ROCOF error, particularly for the “Basic“ 
algorithm, this second scenario carefully examines these 
parameters under less harsh conditions specified explicitly by 
[5]. The frequency error specification is ±0.01 Hz during 
frequency ramps of up to ±1 Hz/s, and ±0.005 Hz at steady 
state. The ROCOF error specification is only ±0.01 Hz/s. At 
steady state with frequency in the range f0±2 Hz, 1% of any 
harmonic up the 50th may be present. 

 
Figure 11. Scenario 2 : ROCOF errors for proposed PMU algorithms: Basic 

(top), Symmetric “tick-tock” (middle) and Asymmetric (bottom) 

 
Figure 12. Scenario 2 : ROCOF errors for Asymmetric PMU algorithm. 
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Figure 11 shows the results with a steady application of a 
balanced 5

th
 harmonic at a relative magnitude of 1%, but no 

other departures from balanced sinusoidal waveforms. 
Frequency starts at 50Hz for the 1

st
 second, but then ramps 

from 50-52 Hz over the time between t=1s and t=5s (a 0.5 Hz/s 
ramp), and is then held steady at 52 Hz for t=5s to t=6s. 

Clearly the ROCOF errors given by the “Basic” algorithm are 
well outside the specified limits when frequency is off nominal, 
and also far above a sensible value of 0.3 Hz/s which would 
enable comparison of the results from 2 PMUs, accounting for 
communication delays. The ROCOF errors from the 
Symmetric “tick-tock” algorithm are much lower, but still well 
above ±0.01 Hz/s. The errors from the Asymmetric algorithm 
are actually marginally compliant, as shown by the magnified 
trace in Figure 12. All three algorithms are compliant with the 
TVE and frequency specifications (1% and ±0.01 Hz) in this 
scenario. 

VI. CONCLUSIONS 

The “Basic” algorithm described in PC37.118 is easily 
capable of meeting the magnitude, phase and TVE (total vector 
error) measurement specifications during frequency ramps and 
under the influence of unbalance, harmonics and inter-
harmonics at quite high levels. However, the measurements of 
frequency and ROCOF from this “Basic” algorithm have been 
shown to be very sensitive to the presence of harmonics and 
unbalance when frequency is off-nominal. This is due to the 
inability of the “Basic” FIR filters to adapt to the off-nominal 
frequencies and filter out unwanted mixing frequencies from 
the Fourier correlation. 

In particular, the “Basic” algorithm cannot meet the stated 
±0.01 Hz/s ROCOF accuracy under the influence of just a 
single 1% 5

th
 harmonic. In fact, its ROCOF errors are up to 

6 Hz/s at 52 Hz. The validity of the ±0.01 Hz/s specification in 
PC37.118 is questioned in this paper, and instead a value of 
about 0.3 Hz/s is perhaps more sensible for P-class PMUs. 

This paper describes two algorithms which both perform 
significantly better than the “Basic” algorithm at measuring 
frequency and ROCOF during complex scenarios involving 
harmonic interference and unbalance when frequency is off-
nominal. The two algorithms have different properties. The 
symmetric filter algorithm is more complex, having two 
parallel filter paths, and requires almost double the memory of 
the asymmetric filter algorithm. The asymmetric filter 
algorithm shows a tendency to “ring” following transients, but 
once settled, the frequency and ROCOF errors are significantly 
lower than those of the symmetric algorithm. This might be 
extremely useful since any device receiving and comparing 
data from multiple PMUs with different timestamps will need 
to use the frequency and ROCOF measurements to de-skew the 
PMU measurements so that they can be compared, and 

therefore frequency and ROCOF errors will increase the 
perceived phase error at the comparing device. 

It might be possible to create a hybrid of the two proposed 
algorithms, to provide a measurement with the minimal ringing 
of the symmetric filter algorithm, but the best frequency and 
ROCOF performance of the asymmetric filter algorithm. 
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