150 research outputs found

    A semi analytic iterative method for solving two forms of blasius equation / Mat Salim Selamat, Nurul Atkah Halmi and Nur Azyyati Ayob

    Get PDF
    In this paper, a semi analytic iterative method (SAIM) is presented for solving two forms of Blasius equation. Blasius equation is a third order nonlinear ordinary differential equation in the problem of the two-dimensional laminar viscous flow over half-infinite domain. In this scheme, the first solution which is in a form of convergent series solution is combined with Padé approximants to handle the boundary condition at infinity. Comparison the results obtained by SAIM with those obtained by other method such as variational iteration method and differential transform method revealed the effectiveness of the SAIM

    A new approach for solving nonlinear Thomas-Fermi equation based on fractional order of rational Bessel functions

    Full text link
    In this paper, the fractional order of rational Bessel functions collocation method (FRBC) to solve Thomas-Fermi equation which is defined in the semi-infinite domain and has singularity at x=0x = 0 and its boundary condition occurs at infinity, have been introduced. We solve the problem on semi-infinite domain without any domain truncation or transformation of the domain of the problem to a finite domain. This approach at first, obtains a sequence of linear differential equations by using the quasilinearization method (QLM), then at each iteration solves it by FRBC method. To illustrate the reliability of this work, we compare the numerical results of the present method with some well-known results in other to show that the new method is accurate, efficient and applicable

    A Hybrid Variational Iteration Method for Blasius Equation

    Get PDF
    The objective of this paper is to present the hybrid variational iteration method. The proposed algorithm is based on the combination of variational iteration and shooting methods. In the proposed algorithm the entire domain is divided into subintervals to establish the accuracy and convergence of the approximate solution. It is found that in each subinterval a three term approximate solution using variational iteration method is sufficient. The proposed hybrid variational iteration method offers not only numerical values, but also closed form analytic solutions in each subinterval. The method is implemented using an example of the Blasius equation. The results show that a hybrid variational iteration method is a powerful technique for solving nonlinear problems

    An approximation algorithm for the solution of the nonlinear Lane-Emden type equations arising in astrophysics using Hermite functions collocation method

    Full text link
    In this paper we propose a collocation method for solving some well-known classes of Lane-Emden type equations which are nonlinear ordinary differential equations on the semi-infinite domain. They are categorized as singular initial value problems. The proposed approach is based on a Hermite function collocation (HFC) method. To illustrate the reliability of the method, some special cases of the equations are solved as test examples. The new method reduces the solution of a problem to the solution of a system of algebraic equations. Hermite functions have prefect properties that make them useful to achieve this goal. We compare the present work with some well-known results and show that the new method is efficient and applicable.Comment: 34 pages, 13 figures, Published in "Computer Physics Communications

    Direct solution of uncertain bratu initial value problem

    Get PDF
    In this paper, an approximate analytical solution for solving the fuzzy Bratu equation based on variation iteration method (VIM) is analyzed and modified without needed of any discretization by taking the benefits of fuzzy set theory. VIM is applied directly, without being reduced to a first order system, to obtain an approximate solution of the uncertain Bratu equation. An example in this regard have been solved to show the capacity and convenience of VIM

    DTM-Pade Approximants for MHD Flow with Suction/Blowing

    Get PDF
    In this paper, we study theoretically the magnetic effect of Blasius equation with suction/blowing. The similarity transformations are applied to reduce the governing partial differential equations to a set of nonlinear ordinary differential equations in dimensionless form. A mathematical technique, namely the Differential Transform Method (DTM), is used to solve the nonlinear differential equations under appropriate boundary conditions, in the form of series with easily computable terms. Then, Pade approximants are applied to the solutions to increase the convergence of the given series. The combined DTM-Pade procedure is implemented directly without requiring linearization, discretization or perturbation. Graphical results are presented to investigate influence of the Magnetic field on the velocity profiles
    • …
    corecore