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Abstract 

 

In this paper, a semi analytic iterative method (SAIM) is presented for solving two forms of Blasius 

equation. Blasius equation is a third order nonlinear ordinary differential equation in the problem of 

the two-dimensional laminar viscous flow over half-infinite domain. In this scheme, the first solution 

which is in a form of convergent series solution is combined with Padé approximants to handle the 

boundary condition at infinity. Comparison the results obtained by SAIM with those obtained by other 

method such as variational iteration method and differential transform method revealed the 

effectiveness of the SAIM. 
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Introduction 

 
In recent decades, there exists interest in solving nonlinear dynamics problems in scientific and 
engineering phenomena using semi-analytical or numerical solution methods. The method such as, 
Adomian decomposition method (ADM) (Adomian, 1994), variational iterative method (VIM) (He, 
2000), homotopy perturbation method (HPM) (He, 1999) and homotopy analysis method (HAM) 
(Liao, 2004) gained a great attention in the applications to solve nonlinear models. Some of the 
models considered lead to time-power series solutions which is have not contributed much to the 
understanding of nonlinear phenomena (Fernández, 2009). However, the applications in differential 
equations models are still widely used as in Jameel et al (2019), Altaie, Jameel and Saaban (2019), 
and Mabood et al. (2018). Some modification of the methods also presented and applied in various 
problems such as in Bakodah et al. (2017), Kang et al. (2017), Haq et al. (2017), Biazar and Montazeri 
(2019), Olumuyiwa et al. (2018), Maitama (2016), Martin (2016), Sakar and Ergören (2015), Rafiq, 
Ahmad and Mohyud-Din (2017), Ahmad (2018), Yin, Kumar dan Kumar (2015) and etc. 

   

Blasius equation is a one of most important equation in fluid dynamic. Blasius equation describes the 

velocity profile of the fluid in the boundary layer on a half infinite interval or flat plate. Blasius 

equation is regarded as the first exact solution of Navier-Stoke equation where the partial differential 

equation of Navier-Stoke equations had been transformed into ordinary differential equation. One of 

the phenomena governed by Blasius equation is free convection near a vertical impermeable surface 

embedded in a porous medium. This problem belongs to heat transfer phenomena which have many 

applications in geophysical and industrial fields (Chirita, Ene, & Nicolescu, 2012).  

 

Due to the significant of Blasius equation on sciences and engineering, many efforts had been done to 

solve this equation analytically and numerically at the boundary conditions of the interval. For 

example, Ertürk and Momani (2008) applied modified form of differential transform method (DTM) 

to provide the solution in the form of a convergent power series. Wang (2004) employed ADM to 

investigate the Blasius equation where the result had been corrected by Hashim (2006). A perturbation 

approach to solve Blasius equation had been done by He (2003). Meanwhile, Abbasbandy (2007) 

compared the numerical solution by ADM with homotopy perturbation method. Wazwaz (2007) 

approximate the solution of Blasius equation using VIM, which is the main reference in this article. 

Some recent studied on Blasius equations have been done by Asaithambi, (2016), Trujillo, Marin-
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Ramirez and de Indias, C. (2018), Bougoffa and Wazwaz (2015). Zheng et al. (2017), Fazio (2016), 

Ogunlaran and Sagay-Yusuf (2016), Sajid et al. (2015) and Najafi (2018). 

 
In this article, we employed the semi analytical iterative method (SAIM) proposed by Temimi and 
Ansari (2011a) to simulate approximate solution of Blasius equation. The SAIM has been used to find 
the exact and approximate solution  for various differential equations problems such as nonlinear 
second order multi-point boundary value problems (Temimi & Ansari, 2011b), Fokker-Plank’s 
equations (AL-Jawary, Radhi & Ravnik, 2017), nonlinear Burgers and advection-diffusion equations 
(AL-Jawary, Azeez & Radhi, 2018), chemistry problems (AL-Jawary & Al-Raham, 2017), thin flow 
problems (AL-Jawary, 2017), differential algebraic equations (AL-Jawary & Hatif, 2017), duffing 
equation (Al-Jawary and Al-Razaq, 2016) and some nonlinear differential equations in physics (AL-
Jawary, Adwan & Radhi, 2018). 

 

The semi analytic iterative method (SAIM) 

 
The basic idea of SAIM can be written as (Temimi & Ansari, 2011a): 
 

  (1) 

   
with boundary conditions: 
 

 
 

(2) 

   
where  denotes the independent variable,  is an unknown function,  is known function,  is 
a linear operator,  is a non-linear then  is a boundary operator. 𝐿 be the linear part of the 
differential equation but it is possible to take some linear parts and add them to 𝑁 as needed. By 
assuming that  as an initial guess solution for the problem  and is the solution of the 
equation  

 

  
 

(3) 

The next iteration, we solve the following problem: 

 

  
 

(4) 

and thus, we have a simple iterative procedure which is effectively the solution of a linear set of 

problems, 

  
 

(5) 

We noted that, each of the  are solutions to equation (5). 
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Analysis of SAIM in Blasius Equations 

 

Case I 

 
We considered the two type of Blasius equation given by 
 

 
 

(6) 

   
with the initial conditions: 
 

  (7) 

   
and  
 

 
 

(8) 

   
with initial conditions: 
 

  (9) 

   

 

We applied the SAIM into (6) and (7) by choosing  

 

 
 

(10) 

   

Thus, the primary problem is 

 

 
 

(11) 

 

with the initial conditions 

 

  (12) 

   

 

A general iterative procedure can be written as 

 

 
 

(13) 

with the initial conditions 

 

  (14) 

   

Approximations will be obtained by using SAIM and by used the boundary conditions given for  

thus, we choose  as an initial solution, where  Using equation (14), 

obtained the iterative solutions 

 

 
 

(15) 

 

 
 

(16) 
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(17) 

 

 

 
 

(18) 

 

   

 

The aim of this work is to estimate the value of  using Padé approximants (Boyd, 1997). We noted 

that Padé approximants are built-in utilities in manipulation language such as MAPLE. Moreover, it is 

worth to mentioned that, Wazwaz (2007) and Ertürk and Momani (2008) also used the same approach 

to approximate the value of . The mathematical behavior of will be study by derive the 

approximation of  Using the boundary condition, , the diagonal 

approximant  will be determined for  where  
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(19

) 

   
 

Table 1. A comparison value of  between VIM, DTM and SAIM 

Padé approximants Wazwaz (2007) 

(VIM) 

Ertürk and Momani 

(2008) 

(DTM) 

Current Aproximation 

(SAIM) 

[2/2] 0.5773502693 0.5773502692 0.5773502692 

[3/3] 0.5163977793 0.5163977795 0.5163977795 

[4/4] 0.5227030796 0.5227030798 0.5227030798 

[5/5] Complex Numbers Complex Numbers Complex Numbers 

 

 

Table 1 show a result of numerical value of  was obtained by using diagonal Padé 

approximants and the outcomes are in decent agreement with results in Wazwaz, (2007) and Ertürk 

and Momani (2008).  Based on this proves an efficiency and accuracy of the SAIM - Padé 

approximations approach for solving such kind of problem.  There are a similarities exact value of 

between DTM and SAIM for Padé approximations [2/2], [3/3] and [4/4]. From Table 1, we 

selected the approximation, . 

 

Case 2 

 

Following Wazwaz (2007), in attempted to solve equations (8) and (9), we introduced a new 

independent variable  

 

  (20) 

   

where, equivalent to 

 
 

(21) 

 

where,  is the parameter to be determined. Consequently, the equations (3) will be the same as: 
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(22) 

   

with the conditions: 

 

  as  (23) 

   

which is means that  when we imposed  . It is clear from (23), .  

 

Applied the SAIM into (22) will yields,  

 

 
 

(24) 

   

 

 
 

(25) 

   

 

 
 

(26) 

   

 

 

 

(27

) 

   

 

   

   

By considered  as the best approximation, then 

 

 

 

(28

) 

   

 

According to Wazwaz (2007),  has a leveled off for . Thus, we can use  to 

estimate several values of  as show in Table 2. 
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Table 2. A comparison value of  and between VIM and SAIM   

 
Series approximants, 

 

VIM  

(Wazwaz, 2007) 

SAIM 

     

2.0 1.313034017 0.4417454320 1.313034017 0.4417454320 

2.2 1.347736192 0.4084936660 1.347736192 0.4084936660 

2.4 1.373000106 0.3863565574 1.373000106 0.3863565574 

2.6 1.387743095 0.3741732832 1.387743095 0.3741732832 

2.8 1.388836100 0.3732905625 1.388836100 0.3732905625 

 

Table 2 show a result of numerical value of  was obtained by using simple series 

approximants and the results are in full agreement results in Wazwaz (2007).  This proved the 

efficiency and accuracy of the SAIM approach.   

 

From , the series solution of second Blasius equation is given by, 

 

 

 

(24

) 

   

where  is appximated by  and . 

 

 

Conclusion 

 

In this article, two form of Blasius equation were solved numerically using a semi analytic iterative 

method. The results obtained are comparable with results from Wazwaz (2007) and Ertürk and 

Momani (2008). Therefore, we concluded that SAIM has a good potential to solve every types of 

differential equations in physical problems. 
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