39 research outputs found

    Finding detours is fixed-parameter tractable

    Get PDF
    We consider the following natural "above guarantee" parameterization of the classical Longest Path problem: For given vertices s and t of a graph G, and an integer k, the problem Longest Detour asks for an (s,t)-path in G that is at least k longer than a shortest (s,t)-path. Using insights into structural graph theory, we prove that Longest Detour is fixed-parameter tractable (FPT) on undirected graphs and actually even admits a single-exponential algorithm, that is, one of running time exp(O(k)) poly(n). This matches (up to the base of the exponential) the best algorithms for finding a path of length at least k. Furthermore, we study the related problem Exact Detour that asks whether a graph G contains an (s,t)-path that is exactly k longer than a shortest (s,t)-path. For this problem, we obtain a randomized algorithm with running time about 2.746^k, and a deterministic algorithm with running time about 6.745^k, showing that this problem is FPT as well. Our algorithms for Exact Detour apply to both undirected and directed graphs.Comment: Extended abstract appears at ICALP 201

    Parameterized complexity of the spanning tree congestion problem

    Get PDF
    We study the problem of determining the spanning tree congestion of a graph. We present some sharp contrasts in the parameterized complexity of this problem. First, we show that on apex-minor-free graphs, a general class of graphs containing planar graphs, graphs of bounded treewidth, and graphs of bounded genus, the problem to determine whether a given graph has spanning tree congestion at most k can be solved in linear time for every fixed k. We also show that for every fixed k and d the problem is solvable in linear time for graphs of degree at most d. In contrast, if we allow only one vertex of unbounded degree, the problem immediately becomes NP-complete for any fixed k≥8. Moreover, the hardness result holds for graphs excluding the complete graph on 6 vertices as a minor. We also observe that for k≤3 the problem becomes polynomially time solvable.publishedVersio

    Complexity Results for the Spanning Tree Congestion Problem

    Full text link
    We study the problem of determining the spanning tree congestion of a graph. We present some sharp contrasts in the complexity of this problem. First, we show that for every fixed k and d the problem to determine whether a given graph has spanning tree congestion at most k can be solved in linear time for graphs of degree at most d. In contrast, if we allow only one vertex of unbounded degree, the problem immediately becomes NP-complete for any fixed k ≥ 10. For very small values of k however, the problem becomes polynomially solvable. We also show that it is NP-hard to approximate the spanning tree congestion within a factor better than 11/10. On planar graphs, we prove the problem is NP-hard in general, but solvable in linear time for fixed k

    Bridge-Depth Characterizes Which Structural Parameterizations of Vertex Cover Admit a Polynomial Kernel

    Get PDF
    We study the kernelization complexity of structural parameterizations of the Vertex Cover problem. Here, the goal is to find a polynomial-time preprocessing algorithm that can reduce any instance (G,k) of the Vertex Cover problem to an equivalent one, whose size is polynomial in the size of a pre-determined complexity parameter of G. A long line of previous research deals with parameterizations based on the number of vertex deletions needed to reduce G to a member of a simple graph class ?, such as forests, graphs of bounded tree-depth, and graphs of maximum degree two. We set out to find the most general graph classes ? for which Vertex Cover parameterized by the vertex-deletion distance of the input graph to ?, admits a polynomial kernelization. We give a complete characterization of the minor-closed graph families ? for which such a kernelization exists. We introduce a new graph parameter called bridge-depth, and prove that a polynomial kernelization exists if and only if ? has bounded bridge-depth. The proof is based on an interesting connection between bridge-depth and the size of minimal blocking sets in graphs, which are vertex sets whose removal decreases the independence number

    On computing tree and path decompositions with metric constraints on the bags

    Get PDF
    We here investigate on the complexity of computing the \emph{tree-length} and the \emph{tree-breadth} of any graph GG, that are respectively the best possible upper-bounds on the diameter and the radius of the bags in a tree decomposition of GG. \emph{Path-length} and \emph{path-breadth} are similarly defined and studied for path decompositions. So far, it was already known that tree-length is NP-hard to compute. We here prove it is also the case for tree-breadth, path-length and path-breadth. Furthermore, we provide a more detailed analysis on the complexity of computing the tree-breadth. In particular, we show that graphs with tree-breadth one are in some sense the hardest instances for the problem of computing the tree-breadth. We give new properties of graphs with tree-breadth one. Then we use these properties in order to recognize in polynomial-time all graphs with tree-breadth one that are planar or bipartite graphs. On the way, we relate tree-breadth with the notion of \emph{kk-good} tree decompositions (for k=1k=1), that have been introduced in former work for routing. As a byproduct of the above relation, we prove that deciding on the existence of a kk-good tree decomposition is NP-complete (even if k=1k=1). All this answers open questions from the literature.Comment: 50 pages, 39 figure

    Chasing the Rainbow Connection: Hardness, Algorithms, and Bounds

    Get PDF
    We study rainbow connectivity of graphs from the algorithmic and graph-theoretic points of view. The study is divided into three parts. First, we study the complexity of deciding whether a given edge-colored graph is rainbow-connected. That is, we seek to verify whether the graph has a path on which no color repeats between each pair of its vertices. We obtain a comprehensive map of the hardness landscape of the problem. While the problem is NP-complete in general, we identify several structural properties that render the problem tractable. At the same time, we strengthen the known NP-completeness results for the problem. We pinpoint various parameters for which the problem is fixed-parameter tractable, including dichotomy results for popular width parameters, such as treewidth and pathwidth. The study extends to variants of the problem that consider vertex-colored graphs and/or rainbow shortest paths. We also consider upper and lower bounds for exact parameterized algorithms. In particular, we show that when parameterized by the number of colors k, the existence of a rainbow s-t path can be decided in O∗ (2k ) time and polynomial space. For the highly related problem of finding a path on which all the k colors appear, i.e., a colorful path, we explain the modest progress over the last twenty years. Namely, we prove that the existence of an algorithm for finding a colorful path in (2 − ε)k nO(1) time for some ε > 0 disproves the so-called Set Cover Conjecture.Second, we focus on the problem of finding a rainbow coloring. The minimum number of colors for which a graph G is rainbow-connected is known as its rainbow connection number, denoted by rc(G). Likewise, the minimum number of colors required to establish a rainbow shortest path between each pair of vertices in G is known as its strong rainbow connection number, denoted by src(G). We give new hardness results for computing rc(G) and src(G), including their vertex variants. The hardness results exclude polynomial-time algorithms for restricted graph classes and also fast exact exponential-time algorithms (under reasonable complexity assumptions). For positive results, we show that rainbow coloring is tractable for e.g., graphs of bounded treewidth. In addition, we give positive parameterized results for certain variants and relaxations of the problems in which the goal is to save k colors from a trivial upper bound, or to rainbow connect only a certain number of vertex pairs.Third, we take a more graph-theoretic view on rainbow coloring. We observe upper bounds on the rainbow connection numbers in terms of other well-known graph parameters. Furthermore, despite the interest, there have been few results on the strong rainbow connection number of a graph. We give improved bounds and determine exactly the rainbow and strong rainbow connection numbers for some subclasses of chordal graphs. Finally, we pose open problems and conjectures arising from our work

    Area-Efficient Drawings of Outer-1-Planar Graphs

    Get PDF
    We study area-efficient drawings of planar graphs: embeddings of graphs on an integer grid so that the bounding box of the drawing is minimized. Our focus is on the class of outer-1-planar graphs: the family of planar graphs that can be drawn on the plane with all vertices on the outer-face so that each edge is crossed at most once. We first present two straight-line drawing algorithms that yield small-area straight-line drawings for the subclass of complete outer-1-planar graphs. Further, we give an algorithm that produces an orthogonal drawing of any outer-1-plane graph in O(n log n) area while keeping the number of bends per edge relatively small

    Graph Embeddings Motivated by Greedy Routing

    Get PDF
    corecore