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Abstract We study the problem of determining the spanning tree congestion of
a graph. We present some sharp contrasts in the parameterized complexity of this
problem. First, we show that on apex-minor-free graphs, a general class of graphs
containing planar graphs, graphs of bounded treewidth, and graphs of bounded genus,
the problem to determine whether a given graph has spanning tree congestion at most
k can be solved in linear time for every fixed k. We also show that for every fixed
k and d the problem is solvable in linear time for graphs of degree at most d . In
contrast, if we allow only one vertex of unbounded degree, the problem immediately
becomes NP-complete for any fixed k ≥ 8. Moreover, the hardness result holds for
graphs excluding the complete graph on 6 vertices as a minor. We also observe that
for k ≤ 3 the problem becomes polynomially time solvable.
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1 Introduction

Spanning tree congestion is a relatively new graph parameter, which was formally
defined by Ostrovskii [38] in 2004. Prior to Ostrovskii [38], Simonson [46] studied
the same parameter under a different name to approximate the cutwidth of outerplanar
graphs. Although several graph theoretical results have been presented [6, 27, 28, 30,
33, 39] after Ostrovskii [38], so far, no results on the complexity of the problem
were known. In this paper, we present the first such results. The parameter is defined
as follows. Let G be a graph and T a spanning tree of G. The detour for an edge
{u,v} ∈ E(G) is the unique u–v path in T . We define the congestion of e ∈ E(T ),
denoted by cngG,T (e), as the number of detours that contain e. The congestion of G

in T , denoted by cngG(T ), is the maximum congestion over all edges in T . The
spanning tree congestion of G, denoted by stc(G), is the minimum congestion over
all spanning trees of G. We denote by STC the problem of determining whether a
given graph has spanning tree congestion at most some given k. If k is fixed, we
denote the problem by k-STC.

The name of the parameter comes from the following analogy [6]: Edges of G are
roads, and edges of T are those roads which are cleaned from snow after snowstorms.
For an edge h ∈ E(T ), it is natural to define the congestion of h as the number of
detours passing through h. Clearly, the congestion of the busiest roads should be
minimized.

The tree spanner problem [5] is a variant of the STC problem, which minimizes
the dilation, that is, the length of the longest detours. The problem is NP-complete
even on chordal and chordal bipartite graphs [37]. This is a well-studied problem with
various applications in distributed systems and communication networks [41]. Sev-
eral pairs of congestion and dilation problems are known [42]. The most famous pair
is the cutwidth problem and the bandwidth problem. It is worth to mention that while
the nature of this problem is different from STC, some algorithmic techniques work
well for both problems. For example, the techniques developed in this work were
used to obtain FPT-algorithms on graphs of bounded degree [22] and the approach
to solve the tree spanner problem on planar, and more generally, apex-minor-free,
graphs developed in [17] is used to solve STC in this paper.

Our contribution In this paper, we obtain the following results on the STC problem.
We show that the problem is fixed-parameter tractable on large classes of sparse
graphs. We refer to the book of Downey and Fellows [19] for an introduction to
Parameterized Complexity. In particular, we prove that

• k-STC can be solved in linear time for every fixed k on apex-minor-free graphs,
and thus on planar graphs and graphs of bounded genus, and on graphs of bounded
degree;

• k-STC can be solved in linear time for 1 ≤ k ≤ 3.
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Fig. 1 stc(G) = 4, stc(G′) = 5,
and stc(G′′) = 6

It is natural to ask if our results can be extended to even larger classes of sparse graphs
like d-degenerate graphs or graphs excluding some non-apex graph as a minor. We
show that this is not the case and thus our results are in some sense tight. We prove
that

• k-STC is NP-complete for every fixed k ≥ 8 on graphs excluding K6 as a minor
and with only one vertex of unbounded degree.

The remaining part of the paper is organized as follows. Section 2 provides def-
initions and some preliminary facts. In Sect. 3, we show that k-STC is expressible
in Monadic Second Order Logic (MSOL), which combined with the combinatorial
results obtained in Sects. 4 and 5 gives the main algorithmic results of the paper. In
Sect. 4, we prove that for every apex-minor-free graph G, its treewidth is at most
C · stc(G) for some constant C depending only on the size of the excluded apex
graph. The proof of this result is based on extensions of ideas from bidimension-
ality theory of Demaine et al. [10] and the Structure Theorem of Robertson and
Seymour [44]. However, the framework of Demaine et al. [10] for solving param-
eterized problems is strongly based on the assumption that problems should be mi-
nor or edge contraction closed, which is not the case for k-STC, see e.g. Fig. 1.
Here, to prove the bound, we follow the approach based on topological minors used
in [17] for sparse spanners. In Sect. 5, we obtain similar combinatorial bounds on
the treewidth of a graph as a function of its maximum vertex degree and its conges-
tion. Combined with results on the expressibility in MSOL, this yields that k-STC
is fixed-parameter tractable on apex-minor-free graphs and graphs of bounded maxi-
mum degree.

In Sect. 7, we provide a number of complexity results. We start by showing that
k-STC remains NP-complete on planar graphs when k is part of the input. In Sect. 7.2,
we show that k-STC is NP-complete for edge-weighted graphs if k ≥ 8 on a very
specific class of graphs, namely, apex graphs with one vertex of unbounded degree.
Using the result of Sect. 7.2, we show in Sect. 7.3 that for k ≥ 8, k-STC is NP-
complete for simple unweighted apex graphs with only one vertex of unbounded
degree. In particular, this shows that the problem is NP-complete even on K6-free
graphs for k ≥ 8, and thus the fixed-parameter tractability of the problem on apex-
minor-free graphs cannot be extended to larger classes of graphs excluding some
fixed graph as a minor. In the last section, we show the approximation hardness
of the spanning tree congestion problem and conclude the paper with open ques-
tions.
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2 Preliminaries

We consider finite undirected graphs that have no loops or multiple edges if it is
not stated otherwise explicitly. Let G = (V ,E) be a graph. We refer to the vertex
and edge sets of G as V (G) and E(G) respectively. For a vertex v, we denote by
NG(v) its (open) neighborhood, i.e. the set of vertices which are adjacent to v in G.
By degG(v) we denote the degree of v in G. We may omit the index if the graph
under consideration is clear from the context. For U ⊆ V (G), we denote by G[U ] the
subgraph induced by U . If U ⊆ V (G) (resp. u ∈ V (G) or E ⊆ E(G) or e ∈ E(G))
then G − U (resp. G − u or G − E or G − e) is the graph obtained from G by the
removal of vertices of U (resp. of vertex u or the edges of E or of the edge e). For
graphs G1 and G2, G1 ∩ G2 (respectively G1 ∪ G2) is the graph with the vertex
set V (G1) ∩ V (G2) and the edge set E(G1) ∩ E(G2) (respectively the vertex set
V (G1) ∪ V (G2) and the edge set E(G1) ∪ E(G2)).

We extend the notion of spanning tree congestion to edge-weighted graphs, by
defining the congestion of an edge as the sum of the weights of the edges whose
detours pass through the edge. We denote by w(F) the sum of the weights of the
edges in F for an edge set F ⊆ E(G).

Let G be a connected graph. For A,B ⊆ V (G), we define EG(A,B) = {{u,v} ∈
E(G) | u ∈ A, v ∈ B}. For S ⊆ V (G), we define the boundary edges of S, denoted by
θG(S), as θG(S) = EG(S,V (G) \ S). Using this notation, we can redefine cngG,T (e)

as cngG,T (e) = |θG(Ae)|, where Ae is the vertex set of one of the two components
of T − e. From this redefinition through boundary edges, we can see that c-cut trees
defined by Fekete and Kremer [21] and spanning trees of congestion at most c are
equivalent.

For an edge e in a tree T , we say that e separates A and B if A ⊆ Ae and B ⊆ Be,
where Ae and Be are the vertex sets of the two components of T − e. The following
often used proposition can easily be observed.

Proposition 2.1 Let T be a spanning tree of G and let e ∈ E(T ) separate A

and B . If G is unweighted, then cngG,T (e) ≥ |E(A,B)|, and if G is weighted, then
cngG,T (e) ≥ w(E(A,B)).

From the definition of the spanning tree congestion, the following proposition
holds.

Proposition 2.2 The spanning tree congestion of G equals the maximum spanning
tree congestion of its biconnected components.

Ostrovskii [38] showed the following lower bound on the spanning tree congestion
of graphs.

Lemma 2.3 (Ostrovskii [38]) Let G be a graph, and let u,v ∈ V (G). If G has k edge
disjoint u–v paths, then stc(G) ≥ k.
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Treewidth The concept of treewidth was introduced by Robertson and Seymour in
their project of Graph Minor Theory (see for example [43]). A tree decomposition of
a graph G is a pair (X , T ), where T is a tree and X = {Xi | i ∈ V (T )} is a collection
of subsets of V (G) such that

• ⋃
i∈V (T ) Xi = V (G),

• for each edge {u,v} ∈ E(G), there is a node i ∈ V (T ) such that u,v ∈ Xi , and
• for each v ∈ V (G), the set of nodes {i | v ∈ Xi} forms a subtree of T .

The elements in X are called bags. The width of a tree decomposition (X , T ) equals
maxi∈V (T ) |Xi | − 1. The treewidth of G, denoted by tw(G), is the minimum width
over all tree decompositions of G. A tree decomposition where T is a path is called
a path decomposition and the pathwidth of G is the minimum width over all path
decompositions of G.

Embeddings in Surfaces and Euler Genus A surface � is a compact 2-manifold
without boundary (we always consider connected surfaces). A line in � is a subset
homeomorphic to [0,1] and a (closed) disk (resp. open disk) � ⊆ � is a subset
homeomorphic to {(x, y) : x2 + y2 ≤ 1} (resp. {(x, y) : x2 + y2 < 1}) in R

2. When-
ever we refer to a �-embedded graph G, we consider a 2-cell embedding of G in �.
To simplify notation, we do not distinguish between a vertex of G and the point of �

used in the drawing to represent the vertex, or between an edge and the line repre-
senting it. We also consider a graph G embedded in � as the union of the points
corresponding to its vertices and edges. This way, a subgraph H of G can be seen as
a graph H , where H ⊆ G.

The Euler genus eg(�) of a non-orientable surface � is equal to the non-orientable
genus g̃(�) (or the crosscap number). The Euler genus eg(�) of an orientable sur-
face � is 2g(�), where g(�) is the orientable genus of �. The Euler genus of a
graph G, eg(G), is the minimum Euler genus of a surface � such that G can be �-
embedded. For additional information about graphs on surfaces we refer to the book
by Mohar and Thomassen [36].

A graph is planar if it is embeddable in a sphere or a plane. Let G be a graph
embedded in a plane �. Then the set � \ G is open, and its regions are called the
faces of G. Let F (G) be the set of faces of the embedding of G. It is said that an
edge e ∈ E(G) is incident to a face f ∈ F (G) if e is in the border of f . Recall that
each edge is incident either to the unique outer face if it is a bridge or to exactly two
faces otherwise. A dual graph G∗ of G is a multigraph (i.e. G∗ can have loops and
multiple edges) with the vertex set F (G) in which for any edge e ∈ E(G) incident
to a single face f , there is a separate loop {f,f } in G∗ (i.e. if we have several edges
incident only to f then there is the same number of loops), and for any edge e ∈ E(G)

incident to two distinct faces f,f ′, there is a separate edge {f,f ′}. Hence, for each
edge e ∈ E(G), there is the dual edge e∗ in G∗. For G∗, we always assume that
this multigraph is embedded in a plane, and that this embedding is induced by the
embedding of G in such a way that each vertex f ∈ V (G∗) is a point inside the
face f , and for any e ∈ E(G), the line e intersect only e∗ in G∗ in exactly one point.
It is well known that if G is connected then G = (G∗)∗, and that for an edge set
X ⊆ E(G), X is the set of edges of a cycle in G if and only if the set X∗ = {e∗ | e ∈ X}
is a minimal edge-cut in G∗.
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Fig. 2 A (5,8)-wall with the
border and paths Ph

4 , Pv
6

Minors and Topological Minors Let G be a graph. We say that a graph H is
obtained from G by an edge subdivision if V (H) = V (G) ∪ {w} and E(H) =
E(G) \ {{u,v}} ∪ {{u,w}, {w,v}} for some edge {u,v} ∈ E(G) and a new vertex w.
We say that H is a subdivision of G if H can be obtained from G by a finite se-
quence of edge subdivisions. If a subdivision of H is a subgraph of G, then H is a
topological minor of G.

Given an edge e = {x, y} of a graph G, the graph G/e is obtained from G by
contracting the edge e; that is, to get G/e we identify the vertices x and y, remove
all loops, and replace all multiple edges by simple edges. A graph H obtained by a
sequence of edge-contractions is said to be a contraction of G. Graph H is a minor
of G if H is a subgraph of a contraction of G.

We say that a graph G is H -minor-free when it does not contain H as a minor. We
also say that a graph class G is H -minor-free (or, excludes H as a minor) when all its
members are H -minor-free. For example, the class of planar graphs is a K5-minor-
free graph class.

An apex graph is a graph obtained from a planar graph G by adding a vertex
and making it adjacent to some vertices of G. A graph class G is apex-minor-free
if G excludes a fixed apex graph H as a minor. Many classes of graphs are apex-
minor-free, including the classes of planar graphs, graphs of bounded treewidth, and
graphs of bounded genus. This class was studied intensively from combinatorial and
algorithmic perspectives [11, 15, 17, 18, 20, 24].

Grids and Walls The (r, s)-grid is the Cartesian product of two paths of lengths
r − 1 and s − 1. The (r, s)-wall is a graph Wrs with the vertex set

{(i, j) : 1 ≤ i ≤ r,1 ≤ j ≤ s}
such that two vertices (i, j) and (i′, j ′) are adjacent if and only if either i = i′ and
j ′ ∈ {j − 1, j + 1}, or j = j ′ and i′ = i + (−1)i+j .

Let Wrs be a wall. By P h
i we denote the shortest path connecting vertices (i,1) and

(i, s), and by P v
j is denoted the shortest path connecting vertices (1, j) and (r, j) with

the assumption that, for j > 1, P v
j contains only vertices (x, y) with x = j − 1, j .

See Fig. 2 for an illustration of these notions. If W is obtained by subdividing edges
of Wrs , with slightly abusing the notation, we also will be using these terms for the
paths obtained by subdivisions from the corresponding paths of Wrs . Vertices of paths
P h

1 , P h
r , P v

1 and P v
s are called border vertices of W . The paths P h

1 , P h
r , P v

1 and P v
s

compose the border of W . We say that vertices of Wrs are the wall vertices of W .
Notice that if a graph G contains the (r, r)-grid as a minor, then it contains Wrr as

a topological minor: since Wrr is a subgraph of the (r, r)-grid, we have that when G
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contains the (r, r)-grid as a minor, it also contains Wrr as a minor, and every minor
with vertices of degree at most 3 is also a topological minor (see e.g. [16]).

Monadic Second Order Logic The syntax of Monadic Second Order Logic (MSOL)
of graphs includes the logical connectives ∨, ∧, ¬, ⇔, ⇒, variables for vertices,
edges, sets of vertices, and sets of edges, the quantifiers ∀, ∃ that can be applied to
these variables, and the following five binary relations:

1. u ∈ U where u is a vertex variable and U is a vertex set variable.
2. d ∈ D where d is an edge variable and D is an edge set variable.
3. inc(d,u), where d is an edge variable, u is a vertex variable, and the interpretation

is that the edge d is incident to the vertex u.
4. Equality, =, of variables representing vertices, edges, sets of vertices and sets of

edges.

3 Expressibility in MSOL

All algorithmic results obtained in this paper have the following “ingredients” in
common. We bound the treewidth of a graph by some function of its spanning tree
congestion. After we obtain the bound on treewidth, we use Courcelle’s Theorem [8]
to solve k-STC in linear time on graphs of bounded treewidth. In order to be able
to apply Courcelle’s Theorem, we need the following lemma. For a different proof
of Courcelle’s Theorem and more information on how problems can be expressed in
MSOL, see [2].

Lemma 3.1 The k-STC problem is expressible in Monadic Second Order Logic
(MSOL).

Proof Let G = (V ,E) and |G|2 := 〈V,E, inc〉. For a vertex v ∈ V and an edge e ∈ E,
inc(v, e) if and only if e has v as an endpoint. For F ⊆ E(G), we denote by G〈F 〉
the subgraph induced by F , that is, E(G〈F 〉) = F and V (G〈F 〉) = ⋃

{u,v}∈F {u,v}.
We first define the following basic expressions:

Deg1(v1,E1) := (∃e1 ∈ E1)(∀e2 ∈ E1)(e1 = e2 ⇐⇒ inc(v1, e2)),

Part(V1,V2,V3) := V2 �= ∅ ∧ V3 �= ∅ ∧ (V2 ∪ V3 = V1) ∧ (V2 ∩ V3 = ∅),

Adj(v1, v2,E1) := v1 �= v2 ∧ (∃e1 ∈ E1)(inc(v1, e) ∧ inc(v2, e)),

E1 = Ind(V1) := (∀e1)(e1 ∈ E1 ⇐⇒ (∃v1, v2 ∈ V1)

(v1 �= v2 ∧ inc(v1, e1) ∧ inc(v2, e1))),

E1 = IncE(v1) := (∀e1)(e1 ∈ E1 ⇐⇒ inc(v1, e1)),

V1 = IncV(E1) := (∀v1)(v1 ∈ V1 ⇐⇒ (∃e1 ∈ E1)(inc(v1, e1))).

It is easy to see that Deg1(v1,E1) if and only if v1 has only one neighbor in G〈E1〉,
Part(V1,V2,V3) if and only if (V2,V3) forms a partition of V1, Adj(v1, v2,E1) if
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and only if an edge {v1, v2} is in E1, E1 = Ind(V1) if and only if E1 is the edge
set of G[V1], E1 = IncE(v1) if and only if E1 is the set of edges between v1 and its
neighbors, and V1 = IncV(E1) if and only if V1 is the vertex set of G〈E1〉.

Using the above basic expressions, we define some expressions related to connec-
tivity of graphs.

Conn(E1) := (∀V2,V3)(Part(IncV(E1),V2,V3)

=⇒ (∃v2 ∈ V2, v3 ∈ V3)(Adj(v2, v3,E1))),

BiConn(E1) := (∃v1, v2, v3 ∈ IncV(E1))

( ∧

1≤i<j≤3

(vi �= vj )

)

∧ (∀v4)(Conn(E1 \ IncE(v4))).

Clearly, Conn(E1) if and only if G〈E1〉 is connected, and BiConn(E1) if and only if
G〈E1〉 is biconnected. Using these expressions, we can define the following expres-
sions.

Forest(E1) := (∀V1 ⊆ IncV(E1))(¬BiConn(Ind(V1) ∩ E1)),

Tree(E1) := Forest(E1) ∧ Conn(E1),

Path(v1, v2,E1) := Tree(E1)

∧ (∀v3 ∈ IncV(E1))(Deg1(v3,E1) ⇐⇒ v3 = v1 ∨ v3 = v2).

The meanings are clear: Forest(E1) if and only if G〈E1〉 is a forest, Tree(E1) if
and only if G〈E1〉 is a tree, and Path(v1, v2,E1) if and only if G〈E1〉 is a v1–v2 path.
Then, defining the expression SpnTree(E1) that means G〈E1〉 is a spanning tree of G

is an easy task.

SpnTree(E1) := Tree(E1) ∧ (∀v)(v ∈ IncV(E1)).

It is also easy to define the expression Detour(e1,E1) such that Detour(e1,E1) if and
only if G〈E1〉 forms a detour for e1:

Detour(e1,E1) := (∃v1, v2)(v1 �= v2 ∧ inc(v1, e1) ∧ inc(v2, e1) ∧ Path(v1, v2,E1)).

Let us remark that every edge of a spanning tree is a detour of itself. In particular, e0
itself is a detour containing e0. The following expression Congk(e0,E0) means that
e0 is contained in at most k detours in G〈E0〉.

Congk(e0,E0) :=¬(∃e1, . . . , ek)

( ∧

1≤i≤k

ei /∈ E0 ∧
∧

1≤i<j≤k

ei �= ej

∧
∧

1≤i≤k

(∃Ei)(e0 ∈ Ei ∧ Ei ⊆ E0 ∧ Detour(ei,Ei))

)

.

Obviously, stc(G) ≤ k if and only if G |= (∃E0)(SpnTree(E0) ∧
(∀e0 ∈ E0)(Congk(e0,E0))). �
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Using Lemma 3.1, the following lemma follows almost directly from deep results
of Bodlaender [1] and Courcelle [8].

Lemma 3.2 Let G be a class of graphs such that, for every G ∈ G , stc(G) is at least
cG · tw(G), where cG is a constant which depends only on G . Then k-STC is solvable
in linear time on G for every fixed k.

Proof Let G ∈ G be a graph on n vertices and m edges. For a given integer k, we use
Bodlaender’s Algorithm [1] to decide in time O(n+m) if tw(G) ≤ k/cG (the hidden
constants in the big-O depend only on k and cG ). If Bodlaender’s Algorithm reports
that tw(G) > k/cG , then we conclude that stc(G) > k. Otherwise (when tw(G) ≤
k/cG ), Bodlaender’s Algorithm computes a tree decomposition of G of width at most
k/cG . Now we apply Courcelle’s Theorem [8], namely that every problem expressible
in MSOL can be solved in linear time on graphs of constant treewidth. �

4 Spanning Tree Congestion of Apex-Minor-Free Graphs

In this section, we prove that apex-minor-free graphs of large treewidth have a large
spanning tree congestion. First, we need the following technical lemma.

Lemma 4.1 Let graph G be the union of two graphs GP and G+ (the set V (G+) can
be empty), such that GP is planar and for some planar embedding of GP the only
common vertices of GP and G+ are the vertices from the border of the external face
of GP . If GP contains an (r, r)-wall as a topological minor, then stc(G) ≥ r

4 − 2.

Proof Let r ≥ 12, otherwise the inequality is trivial. Assume that GP is embedded in
a plane in such a way that the only common vertices of GP and G+ are the vertices
from the border of the external face of GP . Since GP contains an (r, r)-wall as a
topological minor, it also contains a subdivided (r, r)-wall W as a subgraph. Let
{(i, j) : 1 ≤ i ≤ r,1 ≤ j ≤ r} be the set of wall vertices of W . Let T be a spanning
tree of G such that cngG(T ) = stc(G). Denote by u the wall vertex (� r

2�, � r
2�) of GP .

Let P be the shortest path in the spanning tree T connecting u with one of the border
vertices of W . Observe that this path is a path in GP and, moreover, this path is inside
the disk � in the plane bordered by the border of W . Let v be the first vertex of P

on the way from u which is on one of the paths P h
� r

4 �+1, P h
r−� r

4 �, P v
� r

4 �+1 or P v
r−� r

4 �
and let e be the first edge of P incident to v. This construction is shown in Fig. 3.
We denote by T1, T2 the subtrees of T and by P1, P2 the subpaths of P obtained by
the removal of e. We assume that u ∈ V (P1) ⊆ V (T1) and v ∈ V (P2) ⊆ V (T2). We
consider the sets U1 = V (T1) ∩ V (GP ) and U2 = V (T2) ∩ V (GP ). Clearly, U1, U2
is a partition of V (GP ). The subgraph GP [U1] can have several components. We
choose the component which contains P1 and denote by U ′

1 the set of vertices of
this component. Let U ′

2 be the set of vertices of the component of GP [U2] which
contains P2 respectively. The set of edges Z = {{x, y} ∈ E(GP )|x ∈ U1, y ∈ U2}
separates U1, U2 and, therefore, U ′

1, U ′
2. Consider a minimal edge-cut X ⊆ Z in GP

that separates U ′
1 and U ′

2. Since GP [U ′
1] and GP [U ′

2] are connected, X is a minimal
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Fig. 3 Separation of the paths P1 and P2 in the wall

edge-cut in GP . Hence, the dual graph GP
∗ contains a cycle with the set of edges X∗

which corresponds to the cut X. This cycle has the following properties:

• Edges of X∗ form the border of a disk in the plane. Moreover, one of the paths P1

and P2 is inside this disk and the other is outside.
• The dual edge e∗ corresponding to e is in X∗.

The edge e∗ crosses e in the embeddings of GP and GP
∗. Observe also that e

separates two different faces f1 and f2 of GP . Let Q be the f1–f2 path with the edge
set X∗ \ {e∗}. Now we estimate the number of edges of GP in W that are crossed
by X∗. We consider two cases.

Case 1. The cycle with the edge set X∗ is inside of � (see the left half of Fig. 3).
We have two subcases.

• v is a vertex of P h
� r

4 �+1 or P h
r−� r

4 �. Because of symmetry, we assume that v ∈
V (P h

� r
4 �+1). The path Q should at least twice intersect each path P h

i for i ∈ {� r
4�+

2, . . . , � r
2�}. It follows that it intersects at least 2(� r

2� − � r
4� − 1) ≥ r

4 − 3 edges
of W .

• v is a vertex of P v
� r

4 �+1 or P v
r−� r

4 �. Using the symmetry, we assume that v ∈
V (P v

� r
4 �+1). Now the path Q should at least twice intersect each path P v

� r
4 �+2i+1

for 1 ≤ i ≤ 1
2 (� r

2� − � r
4� − 1). It follows that Q intersects at least 2� 1

2 (� r
2� −

� r
4� − 1)� ≥ r

4 − 3 edges of W .

Case 2. Otherwise, the cycle with the edge set X∗ contains a vertex outside �

(see the right half of Fig. 3). Let Q1, Q2 be the shortest f1–f ′
1 and f2–f ′

2 subpaths
of Q respectively such that f ′

1, f ′
2 are embedded outside �. We estimate the number

of edges of GP in W that are crossed by Q1, Q2. We do it for Q1, since the bound
for Q2 is the same, and consider two cases.
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• The edge of Q1 incident to f ′
1 crosses P h

1 or P h
r . Because of symmetry, we assume

that this edge intersects P h
1 . The path Q1 should then intersect each path P h

i for
i ∈ {1, . . . , � r

4� + 1}. Therefore, it intersects at least � r
4� + 1 ≥ r

4 − 3 edges of W .
• The edge of Q1 incident to f ′

1 crosses P v
1 or P v

r . Using the symmetry, we assume
that this edge intersects P v

� r
4 �+1. Now the path Q1 should intersect each path P v

2i−1

for 1 ≤ i ≤ 1
2 (� r

4� + 2). It follows that Q intersects at least � r
8� + 1 edges of W .

Since 2(� r
8� + 1) ≥ r

4 − 3, the paths Q1, Q2 (and, therefore, Q) intersect at least
r
4 − 3 edges of W .

Taking into account the edge e∗, we conclude that the edges of X∗ intersect at
least r

4 − 2 edges of GP in W . It follows that |X∗| ≥ r
4 − 2. Therefore,

stc(G) = cngG(T ) ≥ cngG,T (e) ≥ |Z| ≥ |X| = |X∗| ≥ r

4
− 2. �

4.1 Planar Graphs and Graphs of Bounded Genus

Next, we establish lower bounds of the spanning tree congestion for planar graphs.
We will need the following result, which is due to Robertson, Seymour, and
Thomas [45].

Proposition 4.2 (Robertson et al. [45]) Every planar graph with no (r, r)-grid as a
minor has treewidth ≤ 6r − 5.

Now we can prove the following lemma.

Lemma 4.3 For a planar graph G, 1
24 tw(G) − 49

24 ≤ stc(G).

Proof Let r = � tw(G)+4
6 �. By Proposition 4.2, G contains an (r, r)-grid as a minor

and therefore it contains an (r, r)-wall as a topological minor. Now by Lemma 4.1
for GP = G and V (G+) = ∅, stc(G) ≥ r

4 − 2, and the proof of the lemma follows. �

Now we extend these bounds to graphs of bounded genus. The following extension
of Proposition 4.2 on graphs of bounded genus is due to Demaine et al. [10].

Proposition 4.4 (Demaine et al. [10]) Let G be a graph embeddable on a surface
with Euler genus eg(G), and having treewidth more than 6r(eg(G) + 1). Then G

contains an (r, r)-grid as a minor.

We also need a result that for any embedding of a sufficiently large wall in a
surface � of small genus, a large part of the wall would have a “planar” embedding.
We use the following variant of this result, which is a direct corollary of the results
from Geelen et al. [23]; see also the works of Mohar and Thomassen [35, 47].

Proposition 4.5 (Dragan et al. [17]) Let g, l, r be positive integers such that r ≥
2g(l + 1) and let W be an (r, r)-wall. If W is embedded on a surface � of Euler
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genus at most g2 − 1, then some (l, l)-subwall of G is embedded in a closed disk �

in �, such that the border of the (l, l)-wall composes the boundary of the disk.

Combining this result and Proposition 4.4, and using the same arguments as in the
planar case, we have the following lemma.

Lemma 4.6 For a graph G of Euler genus g, stc(G) = �(
tw(G)

g3/2 ).

Proof Let G be a �-embedded graph and let k = tw(G). We put g = eg(�) and
r = � k−1

6(g+1)
�. By Proposition 4.4, G contains an (r, r)-grid as a minor, and thus, an

(r, r)-wall as a topological minor. By Proposition 4.5, there is a subgraph W ⊆ G,
which is isomorphic to a subdivision of an (� r

2
√

g+1
� − 1, � r

2
√

g+1
� − 1)-wall, such

that the border of this wall borders some disk � containing W (in the �-embedded
graph G). We assume that GP is the subgraph induced by vertices of G which are
embedded in � and that G+ is the subgraph of G induced by vertices which are
embedded outside � and by vertices on the border of the wall. By Lemma 4.1, we
have that stc(G) = �(� r

2
√

g+1
� − 1). Thus stc(G) = �( k

g3/2 ). �

4.2 Apex-Minor-Free Graphs

Finally, we extend our bounds to apex-minor-free graphs. This extension is based on
a structural theorem of Robertson and Seymour [44]. Before describing this theorem,
we need some definitions.

Definition 1 (Clique sums) Let G1 and G2 be two disjoint graphs, and h ≥ 0 an
integer. For i = 1,2, let Wi ⊆ V (Gi) form a clique of size h, and let G′

i be the
graph obtained from Gi by removing a set of edges (possibly empty) from the clique
Gi[Wi]. Let F : W1 → W2 be a bijection between W1 and W2. We define the h-
clique-sum of G1 and G2, denoted by G1 ⊕h,F G2, or simply by G1 ⊕ G2 if there
is no confusion, as the graph obtained by taking the union of G′

1 and G′
2, identifying

each w ∈ W1 with F(w) ∈ W2, and removing all the multiple edges. The image of
the vertices of W1 and W2 in G1 ⊕ G2 is called the join of the sum.

Note that some edges of G1 and G2 are not edges of G = G1 ⊕ G2, since it is
possible that they had edges which were removed by the clique-sum operation. Such
edges are called virtual edges of G. We remark that ⊕ is not well defined; different
choices of G′

i and the bijection F could give different clique-sums. A sequence of h-
clique-sums, not necessarily unique, which result in a graph G, is called a clique-sum
decomposition of G.

Definition 2 (h-nearly embeddable graphs) Let � be a surface and h > 0 be an
integer. A graph G is h-nearly embeddable in � if there is a set of vertices X ⊆ V (G)

(called apices) of size at most h, such that graph G − X is the union of subgraphs
G0, . . . ,Gh with the following properties:

(i) There is a set of cycles C1, . . . ,Ch in � such that the cycles Ci are the borders
of open pairwise disjoint disks �i in �;
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(ii) G0 has an embedding in � in such a way that G0 ∩ ⋃
i=1,...,h �i = ∅;

(iii) Graphs G1, . . . ,Gh (called vortices) are pairwise disjoint and for 1 ≤ i ≤ h,
V (G0) ∩ V (Gi) ⊂ Ci ;

(iv) For 1 ≤ i ≤ h, let Ui := {ui
1, . . . , u

i
mi

} be the vertices of V (G0) ∩ V (Gi) ⊂ Ci

appearing in an order obtained by a clockwise traversal of Ci . We call vertices
of Ui bases of Gi . Then Gi has a path decomposition Bi = (Bi

j )1≤j≤mi
of width

at most h, such that ui
j ∈ Bi

j for 1 ≤ j ≤ mi .

The following proposition is known as the Excluded Minor Theorem [44] and
is the cornerstone of Robertson and Seymour’s Graph Minors theory. We need a
stronger version of this theorem, which follows from its proof in [44] (see e.g. [14]).

Proposition 4.7 (Robertson and Seymour [44]) For every non-planar graph H , there
exists an integer h, depending only on H , such that every graph excluding H as a
minor can be obtained by h-clique-sums on graphs that can be h-nearly embedded in
a surface � in which H cannot be embedded. Moreover, while applying each of the
clique sums, at most three vertices from each summand other than apices and vertices
in vortices are identified.

Let us remark that by the result of Demaine et al. [14] such a clique-sum decom-
position can be obtained in nO(1) time (the exponent in the running time depends
only on H ). However, we use Robertson and Seymour’s theorem only for the proof
of the combinatorial bound, so we do not need to construct such a decomposition.

We need the following two well-known results about treewidth.

Lemma 4.8 If G1 and G2 are graphs, then tw(G1 ⊕ G2) ≤ max{tw(G1), tw(G2)}.

Lemma 4.9 If G is a graph and X ⊆ V (G), then tw(G − X) ≥ tw(G) − |X|.

The following lemma is implicit in the proofs from [10, 13]. Here we give it as it
is stated in [12].

Lemma 4.10 (Demaine and Hajiaghayi [12, Lemma 4.3]) Let G = G0 ∪ G1 ∪
· · · ∪ Gh be an h-nearly embeddable graph without apices (i.e. where X = ∅). Then
tw(G) ≤ 3

2 (h + 1)2(tw(G0) + 2h + 1).

We also use the following auxiliary claims. Suppose that a graph G is presented
as an h-clique-sum G = F ⊕ F (1) ⊕ · · · ⊕ F (m), in such a way that F (1), . . . ,F (m)

are attached to F by these operations. Notice that we do not demand here that
F,F (1), . . . ,F (m) are h-nearly embeddable in any surface.

Lemma 4.11 stc(F ) ≤ h(h−1)
2 · stc(G).

Proof Suppose that Q1, . . . ,Qm are the cliques in F used to attach the summands
F (1), . . . ,F (m). Assume without loss of generality that for each i ∈ {1, . . . ,m},
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Fi − Qi is a connected graph, since otherwise it is possible to split this summand.
Let T be a spanning tree of G such that cngG(T ) = stc(G).

We construct a spanning tree T ′ of F by the following operations for each
i ∈ {1, . . . ,m}. Consider the forest R = T [V (F (i))]. We contract all edges of R −Qi

and reduce R − Qi to a set of independent vertices I adjacent to vertices of Qi

in T . Then for each vertex u ∈ I adjacent to vertices v1, . . . , vr ∈ Qi , we also con-
tract edge {u,v1}. Observe that edges {u,v2}, . . . , {u,vr} are contracted to the edges
{v1, v2}, . . . , {v1, vr} of Qi . For each edge e = {v1, vj }, we set a(e) = {u,vj } ∈
E(T ). Thus we contracted all edges of R − Qi to edges of Qi . Now we replace
edges of R − Qi by these edges of Qi . Then the constructed T ′ is a connected span-
ning subgraph of F , and T ′ has a cycle only if T does. Hence T ′ is a spanning tree
of F . Finally, we set a(e) = e for each e ∈ E(T ) ∩ E(T ′).

We claim that cngF (T ′) ≤ h(h−1)
2 · cngG(T ). To prove it, we consider an edge

e = {u,v} ∈ E(T ′). Let T ′
1, T

′
2 be the connected components of T ′ − e. By our con-

struction of T ′, sets X1 = V (T ′
1) and X2 = V (T ′

2) are subsets of the vertex sets
of the components T1 and T2 of T − a(e). Let {x, y} be an edge of F such that
x ∈ X1 and y ∈ X2. If {x, y} ∈ E(G), then we set l({x, y}) = {x, y}. Suppose that
{x, y} /∈ E(G). Then x and y belong to some Qi . Since Fi − Qi is a connected
graph, there is an x–y-path in G with all internal vertices in Fi − Qi . This path must
contain an edge s with endpoints in T1 and T2. We set l({x, y}) = s. Now we as-
sign the detour (as induced by T ′ in F ) of the edge {x, y} to the detour (as induced
by T in G) of the edge l({x, y}). Notice that detours for several edges of F can be
assigned to one detour in G, but the number of such detours for each l({x, y}) is at
most the number of edges in Qi . Therefore, cngF,T ′(e) ≤ h(h−1)

2 · cngG,T (a(e)), and

cngF (T ′) ≤ h(h−1)
2 · cngG(T ). �

Assume now additionally that F is h-nearly embedded in a surface �. Let X

be the set of apices and suppose that F − X = F0 ∪ F1 ∪ · · · ∪ Fh, where F0 is
embedded in � and F1, . . . ,Fh are the vortices. Suppose also that �1, . . . ,�h are
the corresponding disks in � whose boundaries are used to attach the vortices. The
proof of the following lemma is implicit in the proof of Theorem 3 in [17].

Lemma 4.12 (Dragan et al. [17]) Let H be an apex graph, and suppose that H is not
a minor of G. Then there is a positive constant cH,h,� which depends only on H , h,
and � such that if F0 contains a (cH,h,� · r, cH,h,� · r)-wall as a topological minor,
then there is a disk � in � such that

• � ∩ �i = ∅ for i ∈ {1, . . . , h},
• vertices of F embedded in � are not adjacent to apices,
• F contains a subdivided (r, r)-wall as a subgraph completely embedded in �.

We are ready to prove the main combinatorial result of this section.

Theorem 4.13 Let H be an apex graph. For any H -minor-free graph G, stc(G) =
�(tw(G)).
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Proof Let G be an H -minor-free graph. By Proposition 4.7, there is an integer h,
depending only on H , such that G can be obtained by h-clique-sums from graphs that
can be h-nearly embedded in a surface � in which H cannot be embedded. Assume
that G = G(1)⊕· · ·⊕G(s) is a representation of G. Let F = G(i) such that tw(G(i)) =
max{tw(G(1)), . . . , tw(G(s))} and suppose that G = F ⊕ F (1) ⊕ · · · ⊕ F (m), where
F (1), . . . ,F (m) are attached to F by h-clique-sum operations. By Lemma 4.8,

tw(G) ≤ tw(F ). (1)

Now we fix an h-nearly-embedding of F in �. Let X be the set of apices and suppose
that F − X = F0 ∪ F1 ∪ · · · ∪ Fh, where F0 is embedded in � and F1, . . . ,Fh are
the vortices. Suppose also that �1, . . . ,�h are the corresponding disks in �, the
boundaries of which are used to attach the vortices. By Lemmata 4.9 and 4.10, there
is a positive constant c1 such that

tw(F ) ≤ c1 · tw(F0). (2)

Since F0 is embedded in �, by Proposition 4.4, there is a constant c2, such that if
tw(F0) ≥ c2 · r , then F0 contains an (r, r)-grid as a minor and hence an (r, r)-wall as
a topological minor. We use Lemma 4.12 and conclude that there is a constant c3, such
that if tw(F0) ≥ c3 · r , then there is a disk � in � such that F contains a subdivided
(r, r)-wall as a subgraph completely embedded in �, vertices of F0 embedded in �

are not adjacent to apices, and � does not intersect disks in � to which the vortices
are attached. We apply Lemma 4.1 to the graphs FP , F+, where FP is the subgraph
of F induced by the vertices of F0 embedded in � and F+ is the subgraph induced
by all other vertices of F and by the vertices of FP lying on the boundary of the
external face of this graph. By the lemma, there is a constant c4 such that

tw(F0) ≤ c4 · stc(F ). (3)

According to Lemma 4.11, there is a constant c5 for which

stc(F ) ≤ c5 · stc(G). (4)

Finally, by putting together inequalities (1)–(4), we conclude that there is a con-
stant CH which depends only on H such that

tw(F ) ≤ CH · stc(G). (5)
�

Combined with Lemma 3.2, Theorem 4.13 yields the main algorithmic result of
this section.

Theorem 4.14 Let H be a fixed apex graph. For every fixed k, k-STC is solvable
in linear time on H -minor-free graphs (and hence on planar graphs and graphs of
bounded genus).
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In conclusion of this section, we observe that our combinatorial bounds cannot
be extended to more general classes of H -minor-free graphs, and thus the require-
ment of Theorem 4.13 that H is an apex graph is crucial. Indeed, let G be a graph
obtained from an (r, r)-grid by adding a vertex u adjacent to all vertices of the grid.
Consider the spanning tree T of G which contains all edges incident to u. It is easy
to see that stc(G) ≤ cngG(T ) ≤ 5, but tw(G) = r + 1. In Sect. 7.3, we show that the
algorithmic results cannot be extended as well, by showing that the problem becomes
NP-complete for k ≥ 8 on K6-minor-free graphs.

5 Graphs of Bounded Degree

In this section, we show that the treewidth of a graph of bounded degree is linear
in its spanning tree congestion. This upper bound improves on an earlier bound by
Kozawa, Otachi, and Yamazaki [28].

Theorem 5.1 For any connected graph G, tw(G) ≤ max{stc(G),�(G)(stc(G) −
1)/2}.

Proof Let k = stc(G) and d = �(G). Let T be a spanning tree of G such that
cngG(T ) = k.

Let T ′ be obtained from T by subdividing each edge. We use a tree decomposition
with T ′ as tree. To each node of T ′, we associate the following bag. If the node is a
vertex v ∈ V (G), then put v in the bag. If the node is an edge {v,w} ∈ E(T ) (i.e., the
node was obtained by subdividing the edge {v,w}), put v and w in the bag. Then, for
every edge {v,w} /∈ E(T ), select (arbitrarily) one endpoint, say v, and add v to all
bags on the path from the bag of v to the bag of w, except the bag of w. This is easily
seen to be a tree decomposition.

Now, the size of a bag that corresponds to a subdivided edge {v,w} of T is at most
k + 1: two for v and w, and one vertex for each of the at most k − 1 edges for which
the detour goes through {v,w}. Consider now a vertex v of T . Each edge not on T

whose detour uses v as intermediate vertex counts for the congestion of two of the
edges incident to v in the spanning tree. For each incident edge of v, there are at most
k − 1 edges not on the spanning tree that count for its congestion. Hence there are at
most d(k − 1)/2 such edges. Thus the size of a bag that corresponds to a vertex is at
most d(k − 1)/2 + 1; one vertex for each edge, and then one for v itself. �

By putting together Lemma 3.2 and Theorem 5.1, we obtain the following.

Theorem 5.2 For every fixed k and �, k-STC is solvable in linear time on graphs
with vertex degrees at most �.

We remark that the bound in Theorem 5.1 is tight. It is tight on cycles, which
have degree, spanning tree congestion, and treewidth all equal to two. Furthermore,
any upper bound must depend at least linearly on the spanning tree congestion. It is
known that n × n grids have bounded maximum degree, treewidth n, and spanning



Algorithmica

tree congestion n [6, 27]. Finally, any upper bound must also depend at least linearly
on the maximum degree. Grohe and Marx [25] show that a graph family based on
expanders exists in which each member has degree at most three and treewidth linear
in the number of vertices of the graph.

Proposition 5.3 Let G be a graph and let G′ be obtained from G by adding a vertex v

adjacent to each vertex of G. Then tw(G) ≤ tw(G′) ≤ tw(G) + 1 and stc(G′) ≤
�(G) + 1.

Proof By adding v to each bag of a tree decomposition, tw(G′) ≤ tw(G) + 1. As G

is a minor of G′, tw(G) ≤ tw(G′). A spanning tree isomorphic to K1,|V (G)| with v at
its center has congestion �(G) + 1. �

Using the above proposition and the family of Grohe and Marx, we obtain a family
of graphs of treewidth and maximum degree linear in the number of vertices of the
graph and spanning tree congestion at most four. These facts give strong evidence for
the tightness of our bound.

6 Linear Time Solvability of k-STC for 1 ≤ k ≤ 3

In this section, we show that k-STC can be solved in linear time for 1 ≤ k ≤ 3. First,
we give characterizations for graphs of spanning tree congestion one and two.

Theorem 6.1 For a connected graph G, stc(G) = 1 if and only if G is a tree.

Proof If G is a tree, then clearly stc(G) = 1. Assume G has a cycle C. Then, for any
two vertices in C, G has two edge disjoint paths between them. Thus, by Lemma 2.3,
G cannot have any cycle. �

A graph G is a cactus graph if no two cycles in G have a common edge.

Theorem 6.2 For a connected graph G, stc(G) = 2 if and only if G is not a tree but
a cactus graph.

Proof Clearly, every biconnected component of a cactus graph G is either a cycle
or a single edge, and thus G has spanning tree congestion at most two. It is easy to
verify that a biconnected graph G has no vertex pair u,v such that G contains three
edge disjoint u–v paths if and only if G is either a cycle or a single edge. Thus, from
Proposition 2.2 and Lemma 2.3, the theorem holds. �

Obviously, recognizing trees and cactus graphs can be done in linear time, by using
depth-first search (see e.g. [7]). For k = 3, we need the following lemma.

Lemma 6.3 For a graph G, if stc(G) ≤ 3, then G is planar.
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Proof Suppose that T is a spanning tree of G such that cngG(T ) ≤ 3. Recall that for
every edge e ∈ E(G) \E(T ), there is a unique cycle Ce in the graph obtained from T

by adding e, and these cycles Ce are called the fundamental cycles of G with respect
to T . Denote by F the set of fundamental cycles. The set F is a base of the cycle
space of G (see e.g. [16]). Since cngG(T ) ≤ 3, each edge e ∈ E(G) is contained in at
most two cycles from F . That is, F is simple. By MacLane’s Theorem [34], a graph
is planar if and only if its cycle space has a simple basis. Thus G is planar. �

From Lemmata 4.3 and 6.3, if stc(G) ≤ 3, then tw(G) ≤ 72, and by Lemma 3.2
we have the following theorem.

Theorem 6.4 For 1 ≤ k ≤ 3, k-STC can be solved in linear time.

Observe that we cannot hope to extend these results to k ≥ 4 in a similar way,
since the treewidth of graphs of spanning tree congestion at most 4 is not bounded.
Consider, for example, the graphs obtained from a wall by adding a vertex adjacent
to all vertices of the wall. All such graphs have spanning tree congestion at most 4,
but their treewidth can be arbitrary large.

7 Hardness

In this section, we provide NP-hardness proofs, complementing our algorithmic re-
sults.

7.1 Spanning Tree Congestion of Planar Graphs

We proved that k-STC can be solved on planar, and more generally, on apex-minor-
free graphs for every fixed k in linear time. In this section, we prove that the problem
cannot be solved in polynomial time on planar graphs if k is a part of the input, unless
P = NP. Our result follows from some known results for the tree spanner problem.

Let G be a graph and T a spanning tree of G. If distT (u, v) ≤ k for any {u,v} ∈
E(G), then T is a tree k-spanner [5]. We denote by tsp(G) the minimum number k

such that G has a tree k-spanner. For planar graphs, the following results are known.

Proposition 7.1 (Fekete and Kremer [21]) It is NP-complete to decide whether
tsp(G) ≤ k for planar graphs G and integers k.

Since a cut in G corresponds to a cycle in G∗, the following relation holds.

Proposition 7.2 (Fekete and Kremer [21]) For any planar graph G, stc(G) =
tsp(G∗) + 1.

A planar embedding of a planar graph can be constructed in linear time by an al-
gorithm proposed by Hopcroft and Tarjan [26]. From a planar embedding of a planar
graph G, we can easily construct geometrically a dual graph G∗ (see e.g. [31]).

Thus, from Propositions 7.1 and 7.2, we can conclude the following.
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Theorem 7.3 It is NP-complete to decide whether stc(G) ≤ k for planar graphs G

and integers k.

7.2 Weighted k-STC is NP-Complete for k ≥ 8

In this section, we prove the following hardness result for the weighted variant of the
k-STC problem with positive integer weights.

Theorem 7.4 For any fixed k ≥ 8, k-STC is NP-complete for edge-weighted apex
graphs with at most one vertex of degree greater than 4 and for which the weights of
the edges are at most k.

Clearly, the problem belongs to NP. To show NP-completeness, we present a
reduction from a variant of the Planar 3-Satisfiability problem (PLANAR 3-SAT),
which is a well-known NP-complete problem [32]. We consider the version of this
problem introduced by Dalhouse et al. [9], see also [29]. An instance (U,C) of this
problem consists of a set U of n distinct Boolean variables and a collection C of m

clauses such that each clause has two or three literals, each variable occurs exactly
once in positive and exactly twice in negation, and the graph with the vertex set U ∪C

such that a variable ui and a clause cj are adjacent if and only if ui occurs in Cj , is
planar. In what follows, we assume that instances of PLANAR 3-SAT satisfy these
conditions, but we also need an additional condition. For a set of variables X ⊆ U ,
we denote by C(X) ⊆ C the set of clauses containing literals on variables from X.

Lemma 7.5 The PLANAR 3-SAT problem is NP-complete for instances (U,C) such
that |C(X)| ≥ 4 for every X ⊆ U with 2 ≤ |X| ≤ 3.

Proof For the proof of the lemma, it is sufficient to observe that if |C(X)| ≤ 3 then it
is always possible to assign values to the variables in X in such a way that all clauses
in C(X) are satisfied. Hence we can exclude these variables and clauses from the
instance. �

The constructions in our proof are inspired by the proof of Cai and Corneil [5] for
the NP-completeness of the Weighted Tree Spanner problem. Let k ≥ 8 be a fixed
integer. For an arbitrary instance (U,C) of PLANAR 3-SAT such that |C(X)| ≥ 4
for every X ⊆ U with 2 ≤ |X| ≤ 3, we construct an edge-weighted graph GC such
that C is satisfiable if and only if stc(GC) ≤ k. Let a = �k/2� + 1, b1 = �k/2� − 2,
b2 = �k/2� − 3 and c = k − 1. Observe that for k ≥ 8, a, b1, b2 and c are positive
integers. Each edge in GC has a weight which will be either a, b1, b2, c, or 1.

From an instance (U,C) of PLANAR 3-SAT, the graph GC is constructed as fol-
lows (see Fig. 4):

1. Take a vertex x, literal vertices ui and ūi for each variable ui ∈ U , and clause
vertices ci for each clause ci ∈ C.

2. Connect x to all literal vertices ui by positive literal edges of weight b1 and con-
nect x to all literal vertices ūi by negative literal edges of weight b2.
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Fig. 4 Gadgets, and a constructed graph

3. For each variable ui ∈ U , create a path of length two between ui and ūi such that
edges in the path, which are called bridge edges, have weight a, and the center
vertex of the path is a new vertex yi .

4. For each clause ci = {lp, lq , lr} ∈ C with 3 literals, connect the clause vertex ci to
the literal vertices lp , lq , and lr by clause edges of unit weight.

5. For each clause ci = {lp, lq} ∈ C with 2 literals, add a complement vertex vi , join
it with x by a complement edge of weight c, and then connect the clause vertex ci

to the literal vertices lp , lq by clause edges of unit weight and to the complement
vertex vi by a complement clause edge of weight one.

Clearly, the above construction can be done in polynomial time. Observe that GC −x

is planar and that for any vertex w ∈ V (GC), deg(w) ≤ 4 if w �= x.
Now, we show the following useful properties of a spanning tree of GC with small

congestion.

Lemma 7.6 Let T be a spanning tree of GC . If cngGC
(T ) ≤ k, then

1. All bridge edges are contained in T ;
2. All complement edges are contained in T ;
3. All complement clause edges are not included in T ;
4. Each clause vertex is a leaf of T ;
5. For each variable, exactly one of its two literal edges is contained in T .

Proof of Property 1 Since yi has degree two, at least one of {ui, yi} and {ūi , yi} must
be in T . If {ūi , yi} is not in T , then cngGC,T ({ui, yi}) = w(θ({yi})) = 2a > k. The
other case is almost the same. �

Proof of Property 2 Assume T has the first property. Suppose that a complement
edge {x, vi} /∈ E(T ). Consider an x–vi -path in T . Let e be the edge of the path inci-
dent to x. If e is a complement edge, then cngG,T (e) ≥ 2c = 2k − 2. If e is a literal
edge {x,uj } or {x, ūj }, then, since the bridge edges {uj , yj }, {yj , ūj } are in E(T ),
cngG,T (e) ≥ c + b1 + b2 > k. We get a contradiction in both cases and hence the
property holds. �

Proof of Property 3 Assume T has the first and the second property. Suppose that,
contrarily to our claim, there is a complement clause edge {cj , vi} ∈ E(T ). Let e =
{x, vi}. If cj is a leaf of T , then cngG,T (e) ≥ c + 2 > k. Suppose that degT (cj ) ≥ 2
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and assume that a literal vertex lr is adjacent to cj in T . Since the bridge edges
{ur, yr}, {yr, ūr} ∈ E(T ), cngG,T (e) ≥ c + b1 + b2 > k. �

Proof of Property 4 Assume T has the first three properties. By way of contradiction,
suppose some clause vertices have degree larger than one in T . We divide the proof
into several cases. Recall that all bridge edges are in T from the first property.

Case 1: There is a clause vertex ci with degT (ci) = 3. Since complement clause
edges are not included in T , the three neighbors of ci in T are some literal vertices
lp , lq , and lr . Since |C(up,uq,ur)| ≥ 4, there is a clause vertex cj for which j �= i,
cj ∈ C(up,uq,ur), and N(cj ) \ {up, ūp, uq, ūq , ur , ūr} �= ∅. Let e be the unique lit-
eral edge in the unique ci–x path in T . Suppose that cj is not adjacent to vertices
up, ūp, uq, ūq, ur , ūr in T . Then, e separates {x, cj } and {up, ūp, uq, ūq , ur , ūr}.
Thus, cngGC,T (e) ≥ w(E({x, cj }, {up, ūp, uq, ūq , ur , ūr})) = 3(b1 + b2) + 1 > k.
Assume now that cj is adjacent to one vertex from the set {up, ūp, uq, ūq , ur , ūr}
in T . If cj is also adjacent to some literal vertex us or ūs for s �= p,q, r , then
we conclude that cngGC,T (e) ≥ 4(b1 + b2) > k. Otherwise, cngGC,T (e) ≥ 3(b1 +
b2) + 1 > k. From now on, we assume that no clause vertex has degree three in T .

Case 2: There are two clause vertices ci , cj with degT (ci) = 2, degT (cj ) = 2,
and ci is adjacent to some literal vertices lp , lq and cj is adjacent to lq , lr . The ar-
guments in this case are almost the same as in Case 1. Since |C(up,uq,ur)| ≥ 4,
there is a clause vertex cs such that s �= i, j , cs ∈ C(up,uq,ur) and N(cs) \
{up, ūp, uq, ūq, ur , ūr} �= ∅. Let e be the literal edge in the ci–x path in T . Suppose
that cs is not adjacent to vertices up, ūp, uq, ūq , ur , ūr in T . Then, cngGC,T (e) ≥
w(E({x, cs}, {up, ūp, uq, ūq , ur , ūr})) = 3(b1 + b2) + 1 > k. Assume now that cs is
adjacent to one vertex from the set {up, ūp, uq, ūq , ur , ūr} in T . If cs is adjacent to
some literal vertex ut or ūt , then we conclude that cngGC,T (e) ≥ 4(b1 + b2) > k.
Otherwise, cngGC,T (e) ≥ 3(b1 + b2)+ 1 > k. From now, we assume that there are no
such clause vertices ci, cj .

Case 3: There is a clause vertex ci with degT (ci) = 2. Assume that the two neigh-
bors of ci in T are lp and lq . Let e be the literal edge in the ci–x path in T . Since
|C(up,uq)| ≥ 4, there are clauses cj , cs, ct ∈ C(up,uq,ur), i �= j, s, t . Each vertex
c ∈ {ci, cj , cs, ct } is either not adjacent in T to vertices up , ūp , uq , ūq , or adjacent
in GC to a vertex w such that w /∈ {up, ūp, uq, ūq} and {c,w} /∈ E(T ). In both cases,
cngGC,T (e) ≥ 2(b1 + b2) + 4 > k. �

Proof of Property 5 Assume T has the first four properties. Since T is a tree and
contains all bridge edges, at most one of {x,ui} and {x, ūi} can be in T for each
ui ∈ U . Suppose T contains none of them. Since any clause vertex is a leaf of T ,
there is no path between ui and x. �

The next two lemmata show that C is satisfiable if and only if stc(GC) ≤ k, thus
proving Theorem 7.4.

Lemma 7.7 If stc(GC) ≤ k, then C is satisfiable.

Proof Let T be a spanning tree of GC such that cngGC
(T ) ≤ k. From Lemma 7.6,
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Fig. 5 Unsatisfied clauses

1. T contains all bridge edges,
2. T contains exactly one literal edge for each variable, and
3. every clause vertex is a leaf of T .

From the second property, we can define a truth assignment ξT by setting ξT (ui) =
true if {x,ui} ∈ E(T ) and ξT (ui) = false if {x, ūi} ∈ E(T ). We show that ξT satis-
fies C. It suffices to show that for every cj ∈ C, the unique neighbor li in T of cj is
adjacent to x. If li is not adjacent to x, then either cngGC,T ({li , yi}) ≥ a + b1 + 2 > k

or cngGC,T ({li , yi}) ≥ a + b2 + 3 > k (see Fig. 5). This contradicts cngGC
(T ) ≤ k. �

Lemma 7.8 If C is satisfiable, then stc(GC) ≤ k.

Proof Let ξ be a satisfying truth assignment for C. We say that a literal vertex li is
a true vertex if li becomes true by the assignment ξ . We construct a spanning tree T

of GC as follows:

1. Take all complement edges.
2. Take all bridge edges.
3. Take all literal edges incident to true vertices.
4. For each clause, take an arbitrary clause edge incident to a true vertex.

Clearly, T is a spanning tree of GC . We show that cngGC
(T ) ≤ k.

Suppose that vi is a complement vertex and e = {x, vi}. It is easy to see that
cngGC,T (e) = c + 1 = k. Let ui ∈ U .

Suppose that {x,ui} ∈ E(T ). Then T contains edges {x,ui} and {ui, yi}, {ūi , yi}.
From the construction of T , it follows that T may contain the clause edge incident
to ui , but cannot contain any clause edge incident to ūi . See Fig. 6. The edge {ui, yi}
and {ūi , yi} have the same congestion, and cngGC,T ({ūi , yi}) = w(θ({ūi})) = a +
b2 + 2 = k. If a clause edge incident to ui is contained in T , then the edge has
congestion 3 ≤ k. For the literal edge {x,ui}, cngGC,T ({x,ui}) ≤ b1 + b2 + 4 ≤ k

(see Fig. 6).
Assume now that {x, ūi} ∈ E(T ). Then T contains edges {x,ui} and {ui, yi},

{ūi , yi}. From the construction of T , we have that T cannot contain the clause edge
incident to ui , but may contain clause edges incident to ūi . See Fig. 6. The edge
{ui, yi} and {ūi , yi} have the same congestion, and cngGC,T ({ūi , yi}) = w(θ({ūi})) =
a + b1 + 1 = k. If a clause edge incident to ūi is contained in T , then the edge has
congestion 3 ≤ k. For the literal edge {x, ūi}, cngGC,T ({x, ūi}) ≤ b1 + b2 + 5 ≤ k. �
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Fig. 6 A spanning tree of congestion at most k

7.3 Unweighted k-STC is NP-Complete for k ≥ 8

Extending the result in the previous section, we prove the main hardness result of the
paper, that is, the NP-completeness of k-STC on unweighted H -minor free graphs.
We need the following two lemmata.

Lemma 7.9 An edge e of weight w ∈ Z+ can be replaced by w parallel edges of unit
weight without changing the spanning tree congestion.

Proof Let G be an edge-weighted graph, and let e = {u,v} ∈ E(G) be an edge of
integral weight w ≥ 2. We denote by G′ the graph obtained from G by the dele-
tion of e and the addition of w parallel edges e1, . . . , ew of unit weight between u

and v. Clearly, any spanning tree of G′ contains at most one of e1, . . . , ew . Without
loss of generality, we assume that any spanning tree T ′ of G′ contains only e1 from
{e1, . . . , ew}. By this assumption, we have a bijective correspondence between the
spanning trees of G and the spanning trees of G′; we simply identify e and e1.

Let T be a spanning tree of G, and let T ′ be the corresponding spanning
tree of G′. Let PT = {(Af ,Bf ) | f ∈ E(T )} and PT ′ = {(Af ,Bf ) | f ∈ E(T ′)}
denote the set of the partitions of V (G) defined by edges in T and T ′, re-
spectively. It is not difficult to see that PT = PT ′ . By definition, cngG(T ) =
max(A,B)∈PT

w(EG(A,B)) and cngG′(T ′) = max(A,B)∈PT ′ w(EG′(A,B)). If e is not
between A and B , then w(EG(A,B)) = w(EG′(A,B)). Otherwise, EG(A,B) \
{e} = EG′(A,B) \ {e1, . . . , ew}, and thus,

w
(
EG(A,B)

) = w
(
EG(A,B) \ {e}) + w(e) = w

(
EG(A,B) \ {e}) + w

= w
(
EG′(A,B) \ {e1, . . . , ew}) + ∣

∣{e1, . . . , ew}∣∣ = w
(
EG′(A,B)

)
.

Therefore, cngG(T ) = cngG′(T ′), and hence, stc(G) = stc(G′). �

Lemma 7.10 Edge subdivisions do not change the spanning tree congestion of un-
weighted graphs.

Proof Let G be a graph without edge weights, and let e = {u,v} ∈ E(G). We denote
by G′ the graph obtained from G by the deletion of e, and the addition of a vertex w

and two edges e1 = {u,w} and e2 = {w,v}. Clearly, any spanning tree of G′ contains
at least one of e1 and e2. Without loss of generality, we assume for any spanning
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tree T ′ of G′, e2 ∈ E(T ′). By this assumption, we have a bijective correspondence
between the spanning trees of G and the spanning trees of G′; we identify e and e1,
and ignore e2.

If stc(G) = 1, then G is a tree. Clearly, G′ is also a tree. This implies stc(G) =
stc(G′) = 1. Now assume that stc(G) ≥ 2. Let T be a spanning tree of G, and T ′
the corresponding spanning tree of G′. Clearly, if e1 ∈ E(T ′), then cngG′,T ′(e1) =
cngG′,T ′(e2); otherwise cngG′,T ′(e2) = |θ({w})| = 2 ≤ stc(G) ≤ cngG(T ). It is easy
to see that cngG,T (e) = cngG′,T ′(e1) if e ∈ E(T ), and cngG,T (f ) = cngG′,T ′(f ) for
any f ∈ E(T ) \ {e} = E(T ′) \ {e1, e2}. Therefore, cngG(T ) = cngG′(T ′), and hence,
stc(G) = stc(G′). �

Combining the above two lemmata, we can conclude that an edge {u,v} of
weight w can be replaced by w internally disjoint u–v paths of length two that con-
sist of unweighted edges, without changing the spanning tree congestion. It is easy
to see that this replacement can be done in O(w) time. Thus, we have the following
corollary.

Corollary 7.11 Let G be an edge-weighted graph such that the weight of every edge
of G is a positive integer, and the maximum weight of the edges is w. Then, in O(w ·
|E(G)|) time, G can be transformed into an unweighted simple graph G′ for which
stc(G′) = stc(G).

Now, we prove the main theorem of this section.

Theorem 7.12 For any fixed k ≥ 8, k-STC is NP-complete on simple unweighted
apex graphs that have at most one vertex of unbounded degree.

Proof By Theorem 7.4, for any fixed k ≥ 8, k-STC is NP-complete on edge-weighted
apex graphs with at most one vertex of degree greater than 4, such that the positive
integer weights of their edges are at most k. Let G be a weighted apex graph with
at most one vertex of degree greater than 4, such that the weights of its edges are
at most k. From Corollary 7.11, we can construct a simple unweighted graph G′

C in
polynomial time for which stc(G′

C) = stc(GC). Clearly, G′
C is also an apex graph

and it has at most one vertex of degree greater than 4k. �

We remark that no apex graph contains a clique K6 on six vertices, and thus by
Theorem 7.12, the problem is NP-complete for k ≥ 8 on K6-minor-free graphs with
at most one vertex of unbounded degree.

8 Concluding Remarks

We have proved that for fixed k, the problem of determining whether the spanning
tree congestion of a given graph is at most k is solvable in linear time on apex-minor-
free graphs and on graphs of bounded degree. We also showed that the problem can
be solved in linear time on any graph if 1 ≤ k ≤ 3. On the other hand, we showed that
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if the input graph has one vertex of unbounded degree, then the problem becomes
NP-complete for k ≥ 8. The complexity of k-STC remains open for 4 ≤ k ≤ 7.

Let us remark that our parameterized algorithms can be easily extended to
weighted graphs with positive integer edge weights due to the fact that all edge
weights in any “YES” instance are at most k.

Graphs of bounded degree and apex-minor-free graphs are graphs of bounded local
treewidth. An interesting open problem is whether k-STC is fixed-parameter tractable
on graphs of bounded local treewidth. Since the tree spanner problem is NP-hard on
chordal graphs [3] and on chordal bipartite graphs [4], it would be interesting to
determine the complexity of STC or k-STC for these graph classes.

Finally, we remark that our NP-hardness proof of 8-STC yields the following con-
stant lower bound on the approximability of STC. We say that a polynomial-time
algorithm for spanning tree congestion is a c1-approximation algorithm for a positive
number c1 if there is a positive integer c2 such that for any input graph G, the output
k of the algorithm satisfies k ≤ c1 · stc(G) + c2.

Theorem 8.1 There is no polynomial-time c1-approximation algorithm for the span-
ning tree congestion of simple unweighted graphs such that c1 < 9/8, unless P = NP.

Proof Suppose there is a polynomial-time c1-approximation algorithm A for the
spanning tree congestion of simple unweighted graphs with c1 < 9/8. Let c2 be
the constant additive of A, that is, the output A(G) of A for any graph G satis-
fies A(G) ≤ c1 · stc(G) + c2. Let t be the smallest positive integer that satisfies
(9/8 − c1) · t > c2.

Let G be a weighted graph for which the weight of its edges is at most k = 8. We
denote by G′ the graph obtained from G by setting the edge weights to wG′(e) =
t · wG(e). Clearly, stc(G′) = t · stc(G). Let G′′ be the simple unweighted graph ob-
tained from G′ by Corollary 7.11. Then stc(G′′) = stc(G′) = t · stc(GC).

Claim 8.2 A(G′′) < 9t if and only if stc(GC) ≤ 8.

Proof First, assume that A(G′′) < 9t . Then t · stc(G) = stc(G′′) ≤ A(G′′) < 9t .
Thus, we have stc(G) < 9, which implies that stc(G) ≤ 8. Next, assume that
stc(G) ≤ 8. Then

A(G′′) ≤ c1 · stc(G′′) + c2 = c1 · t · stc(G) + c2

= 9/8 · t · stc(G) − (9/8 − c1) · t · stc(G) + c2.

Since stc(G) ≤ 8 and (9/8 − c1) · t > c2, we have

A(G′′) < 9t − c2(stc(G) − 1) ≤ 9t. �

From the above claim, we can use A as a polynomial-time algorithm for k-STC on
weighted graphs with positive integer weights of edges for k = 8. But this problem is
NP-hard. Hence such an algorithm cannot exist, unless P = NP. �
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