565 research outputs found

    Design of Lightweight Structural Components for Direct Digital Manufacturing

    Get PDF
    The rapid growth in direct digital manufacturing technologies has opened the challenge of designing optimal micro-structures for high-performance components. Current topology optimization techniques do not work well for this type of problems and hence in this paper we propose a technique based on an implicit representation of the structural topology. The detailed microstructure is defined by a continuous variable, the size distribution field, defined over the design domain by chosen shape functions. We can optimize the structural topology by optimizing only the weights of the size distribution field and, for any given size distribution, we use standard meshing software to determine the actual detailed micro-structure. We have implemented the optimization loop using commercial CAD and FEA software, running under a genetic algorithm in MATLAB. Application this novel technique to the design of a sandwich beam has produced designs that are superior to any standard solid beam or even optimized truss structure

    Design of Lightweight Structural Components for Direct Digital Manufacturing

    Get PDF
    The rapid growth in direct digital manufacturing technologies has opened the challenge of designing optimal micro-structures for high-performance components. Current topology optimization techniques do not work well for this type of problems and hence in this paper we propose a technique based on an implicit representation of the structural topology. The detailed microstructure is defined by a continuous variable, the size distribution field, defined over the design domain by chosen shape functions. We can optimize the structural topology by optimizing only the weights of the size distribution field and, for any given size distribution, we use standard meshing software to determine the actual detailed micro-structure. We have implemented the optimization loop using commercial CAD and FEA software, running under a genetic algorithm in MATLAB. Application this novel technique to the design of a sandwich beam has produced designs that are superior to any standard solid beam or even optimized truss structure

    An end-to-end framework for the additive manufacture of optimized tubular structures

    Get PDF
    Although additive manufacturing (AM) has been maturing for some years, it has only recently started to capture the interest of the cost-sensitive construction industry. The research presented herein is seeking to integrate AM into the construction sector through the establishment of an automated end-to-end framework for the generation of high-performance AM structures, combining sophisticated optimization techniques with cutting edge AM methods. Trusses of tubular cross-section subjected to different load cases have been selected as the demonstrators of the proposed framework. Optimization studies, featuring numerical layout and geometry optimization techniques, are employed to obtain the topology of the examined structures, accounting for practical and manufacturing constraints. Cross-section optimization is subsequently undertaken, followed by a series of geometric operations for the design of free-form joints connecting the optimized members. Solid models of the optimized designs are then exported for wire arc additive manufacturing (WAAM). Following determination of the optimal printing sequence, the trusses are printed and inspected. The efficiency of the optimized designs has been assessed by means of finite element modelling and compared against equivalent conventional designs. More than 200% increases in efficiency (reflected in the capacity-to-mass ratios) were achieved for all optimized trusses (when compared to their equivalent reference designs), demonstrating the effectiveness of the proposed optimization framework

    Topological optimization of structures produced through 3D printing of fiber reinforced cementitious materials

    Get PDF
    Dissertação de mestrado integrado em Engenharia CivilTopology optimization can play an important role in the Architecture, Engineering and Construction (AEC) sector. This technology along with digital manufacturing can be a game changer in the future of civil construction, allowing to build, in a short time period, lighter constructions with very geometry complexity but keeping the same of even better structural functioning. These optimized structures when coupled with a material with high capacity efforts redistribution, e.g. fibre reinforced cementitious material (FRC), can partially or totally substitute the conventional reinforcement, consequently less raw material is use, contributing for a better sustainable development. Following this idea, this dissertation will focus on study topology optimization processes along with the use of FRC materials. Initially a comparison between some topology optimization software’s will be carried out, in order to proper evaluate to most suitable for the realization of the present work. In a second stage, considering only the linear behavior of the material, different topology optimization analyses will be done. These analyses will be based on the geometry and the intended structural application (support and load conditions), in addition to the optimization goal (design variable and constraint). This part aims to assess the influence of height / length ratio (H/L ratio) of the beam, in the optimization outcome. After that, a study of the influence of reinforcement amount in the optimization will be done. Afterwards, some finite element analysis (FEA) for one of the optimized structures will be performed and assessed using distinct approaches for obtaining the tensile stress – strain relationship, namely by adopting the ultimate limit state (USL) and service limit state (SLS) tensile diagrams according to the recommendations presented in FIB Model Code 2010. These simulations will serve to evaluate the nonlinear behavior of the FRC structure. For this study six FRC with different strength classes were considered. Finally, an optimized structural element obtained through the FEA was sliced for 3D printing and the influence of the nozzle dimensions, i.e. printing resolution was checked.A otimização da topologia pode desempenhar um papel importante no setor de Arquitetura, Engenharia e Construção (AEC). Esta tecnologia aliada à manufatura digital pode completamente revolucionar o futuro da construção civil, permitindo construir, num curto espaço de tempo, construções mais leves, mas mantendo o mesmo ou ainda melhor funcionamento estrutural. Estas estruturas otimizadas quando conjugadas a um material com alta capacidade de redistribuição de esforços, por ex. materiais cimentícios reforçado com fibras (FRC), pode substituir parcial ou totalmente o reforço convencional, onde consequentemente menos matéria-prima será utilizada, contribuindo-se assim, para um melhor desenvolvimento sustentável. Seguindo essa ideia, esta dissertação terá como foco estudar processos de otimização de topológica juntamente com o uso de materiais FRC. Inicialmente será realizada uma comparação entre alguns softwares de otimização de topológica, a fim de avaliar adequadamente o mais adequado para a realização do presente trabalho. Em uma segunda etapa, considerando apenas o comportamento linear do material, serão realizados diferentes processos de otimização topológica. Essas otimizações serão baseadas na geometria e na aplicação estrutural pretendida e no objetivo da otimização. Esta parte visa avaliar a influencia da relação altura/comprimento da viga (relação H/L), no resultado da otimização. Posteriormente, algumas análises de elementos finitos (FEM) para uma das estruturas otimizadas serão realizadas e avaliadas usando duas abordagens distintas para a obtenção da relação tensão de tração – deformação, uma para estado limite último (ELU) e estado limite de serviço (ELS), seguindo as recomendações presentes no FIB Model Code 2010. Estas simulações servirão para avaliar o comportamento não linear da estrutura de FRC. Para este estudo foram considerados seis FRC com diferentes classes de força. Finalmente, para um elemento estrutural otimizado anteriormente, foi realizada uma simulação de impressão 3D, de modo a estudar a influencia do tamanho do bico de impressão, ou seja, a resolução de impressão foi verificada

    Computer-aided engineering methodology for structural optimization and control

    Get PDF
    Thesis (Civ.E.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2000.Includes bibliographical references (leaves 73-74).by Yi-Mei Maria Chow.Civ.E

    Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness

    Get PDF
    Acknowledgements H.N.G.W. is grateful for support for this work by the ONR (grant number N00014-15-1-2933), managed by D. Shifler, and the DARPA MCMA programme (grant number W91CRB-10-1-005), managed by J. Goldwasser.Peer reviewedPostprintPostprintPostprintPostprin

    Loading and planform shape influence of the wing structural layout through topology optimization

    Get PDF
    © 2018, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved. Topology optimization is a technique used to identify the optimal layout of a structure for a given objective and assigned boundary conditions. The progress it has experienced over the last three decades made it ready for industrial applications. In this paper topology optimization is employed to investigate the influence of sweep angle, aspect ratio and loading condition on the wing internal structure. The planform of the Common Research Model wing is used as a baseline. The geometry is modified parametrically to alter sweep angle and aspect ratio. Regarding the baseline planform, the optimization is performed considering the aerodynamic loading induced by the pull-up manoeuvre. Results are provided for AR = 7 and AR = 11, as well as sweep angle of 20 and 30 degrees. The results of topology optimization for all cases are compared. Common patterns are identified and exported to provide guidelines for the preliminary design of the wing primary structure
    corecore