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ABSTRACT 

Topology optimization can play an important role in the Architecture, Engineering and Construction (AEC) 

sector. This technology along with digital manufacturing can be a game changer in the future of civil 

construction, allowing to build, in a short time period, lighter constructions with very geometry complexity 

but keeping the same of even better structural functioning. These optimized structures when coupled with a 

material with high capacity efforts redistribution, e.g. fibre reinforced cementitious material (FRC), can 

partially or totally substitute   the conventional reinforcement, consequently less raw material is use, 

contributing for a better sustainable development.  

Following this idea, this dissertation will focus on study topology optimization processes along with the use 

of FRC materials. Initially a comparison between some topology optimization software’s will be carried out, 

in order to proper evaluate to most suitable for the realization of the present work. In a second stage, 

considering only the linear behavior of the material, different topology optimization analyses will be done. 

These analyses will be based on the geometry and the intended structural application (support and load 

conditions), in addition to the optimization goal (design variable and constraint). This part aims to assess the 

influence of height / length ratio (H/L ratio) of the beam, in the optimization outcome. After that, a study of 

the influence of reinforcement amount in the optimization will be done. 

Afterwards, some finite element analysis (FEA) for one of the optimized structures will be performed and 

assessed using distinct approaches for obtaining the tensile stress – strain relationship, namely by adopting 

the ultimate limit state (USL) and service limit state (SLS) tensile diagrams according to the recommendations 

presented in FIB Model Code 2010. These simulations will serve to evaluate the nonlinear behavior of the 

FRC structure. For this study six FRC with different strength classes were considered. Finally, an optimized 

structural element obtained through the FEA was sliced for 3D printing and the influence of the nozzle 

dimensions, i.e. printing resolution was checked.  

KEYWORDS: Digital manufacturing (3D printing), fiber-reinforced concrete (FRC), finite element analysis (FEA), 

Industry 4.0, Structural/topology optimization.
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RESUMO 

A otimização da topologia pode desempenhar um papel importante no setor de Arquitetura, Engenharia e 

Construção (AEC). Esta tecnologia aliada à manufatura digital pode completamente revolucionar o futuro da 

construção civil, permitindo construir, num curto espaço de tempo, construções mais leves, mas mantendo 

o mesmo ou ainda melhor funcionamento estrutural. Estas estruturas otimizadas quando conjugadas a um 

material com alta capacidade de redistribuição de esforços, por ex. materiais cimentícios reforçado com 

fibras (FRC), pode substituir parcial ou totalmente o reforço convencional, onde consequentemente menos 

matéria-prima será utilizada, contribuindo-se assim, para um melhor desenvolvimento sustentável. 

Seguindo essa ideia, esta dissertação terá como foco estudar processos de otimização de topológica 

juntamente com o uso de materiais FRC. Inicialmente será realizada uma comparação entre alguns 

softwares de otimização de topológica, a fim de avaliar adequadamente o mais adequado para a realização 

do presente trabalho. Em uma segunda etapa, considerando apenas o comportamento linear do material, 

serão realizados diferentes processos de otimização topológica. Essas otimizações serão baseadas na 

geometria e na aplicação estrutural pretendida e no objetivo da otimização. Esta parte visa avaliar a influencia 

da relação altura/comprimento da viga (relação H/L), no resultado da otimização.  

Posteriormente, algumas análises de elementos finitos (FEM) para uma das estruturas otimizadas serão 

realizadas e avaliadas usando duas abordagens distintas para a obtenção da relação tensão de tração – 

deformação, uma para estado limite último (ELU) e estado limite de serviço (ELS), seguindo as 

recomendações presentes no FIB Model Code 2010. Estas simulações servirão para avaliar o 

comportamento não linear da estrutura de FRC. Para este estudo foram considerados seis FRC com 

diferentes classes de força. Finalmente, para um elemento estrutural otimizado anteriormente, foi realizada 

uma simulação de impressão 3D, de modo a estudar a influencia do tamanho do bico de impressão, ou 

seja, a resolução de impressão foi verificada. 

Palavras-Chave: Betão reforçado com fibra (FRC), impressão 3D, Indústria 4.0, método dos elementos finitos 

(MEF), Otimização estrutural/topológica.
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1. INTRODUCTION 

1.1  Problem Statement 

The Industry Sector has had a great impact in the development of the modern world, being crucial to the 

increasingly life quality that society has been experiencing and demanding up to the modern times. In order 

to provide response to the societal necessities, the demand of raw materials has been rapidly increasing, 

especially in the Architecture, Engineering and Construction (AEC) industry, being the latter, one of the 

sectors that consumes more natural resources. With that said, due to the progressively increasing of 

awareness regarding sustainability issues, it becomes necessary to pursue constructions and structural 

elements that employ a rational material usage, but at the same time complying with their structural 

requirements.  

Nowadays, with the developments on computer computation capacity, advanced numerical softwares based 

on the Finite Element Method (FEM) offer a panoply of features, being an example of those features structural 

optimization capabilities. Therefore, it becomes possible to design optimized structures, being this a step 

towards a contribution to an increasingly sustainable development. One problem that surges with this, is that 

most of the optimized structures / elements have an enhanced geometry complexity, becoming either almost 

impossible to manufacture through standard building techniques or with a very high cost, by e.g. in concrete 

structures, due to the higher cost of intricate formwork to accommodate the geometrical complexity.  

Digital manufacturing is a new way to build, that promises to solve many problems related to the traditional 

construction methods. Athwart, this technology enables to build very complex geometries in a shorter time, 

as well as to obviate the cost regarding the geometrical complexity. Therefore, basically, this methodology 

will be of interest to manufacture structures / structural elements obtained through numerical topological 

optimization methods. 

Following the aforementioned rational, one of the motivations for the research presented in this dissertation 

is to explore and employ topological optimization processes in structural elements to be produced through 

additive manufacturing techniques, a.k.a. 3D printing.  
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1.2  Objectives  

Topology optimization of structures produced through 3D printing is a thematic that is increasingly acquiring 

the attention of the scientific community and consequently the attention of the construction sector with the 

advent of the digital fabrication of concrete, which enables the production of objects / elements with 

considerable higher geometrical complexity, when compared to the traditional construction methods. In spite 

of being a topic that has been studied for some time in the scientific community, still requires a lot of research 

and mainly integration with new digital construction technologies, such as additive manufacturing.  

The main goal of the present dissertation aims to assess and deploy concepts inherent to industry 4.0, in 

the design, analysis and production of structures manufactured through 3D printing of cementitious materials 

reinforced with fibers. The topological optimization to be carried out will be based on the geometry and the 

intended structural application (support and load conditions), in addition to the optimization goal (design 

variable and constraint). 

Initially the principal objective will be to do a profound study about the most known software’s and tools that 

allow parametric modelling and topology optimization processes, in order to conclude that will be the most 

suitable, as well as that can successfully guarantee the interoperability between the design phase, 

optimization and analysis of the intended structure.  

Then a study about the most suitable parameter’s settings and optimization algorithms to be used during 

the topology optimization process. Moreover, the influence of other variables, such as by e.g. mesh 

refinement; optimization variables; etc will be assessed, in order to lead to the best optimization results 

possible. Afterwards, some optimization processes will be carried out, considering only the linear behavior 

of the material. Lastly some finite element analysis (FEA) will be done, but now considering the nonlinear 

behavior of fiber-reinforced cementitious material with distinct strength class strengths. This study, as stated 

before, will be used to evaluate the performance of the optimized structure along with the fiber reinforced 

cementitious material. 

Finally, an optimized structural element obtained through the FEA was sliced for 3D printing and the influence 

of the nozzle dimensions, i.e. printing resolution was checked. 
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1.3  Dissertation Structure 

The dissertation is organized as follows: 

• Chapter 2 will be focused on a review of the different subjects inherent to this theme, such as by 

example the additive manufacturing techniques and topology optimization algorithms currently 

available. This task will make it possible to acquire knowledge in areas directly linked to the theme 

of this dissertation, namely: manufacturing practices currently used, innovative manufacturing 

practices, more specifically the most efficient processes of additive manufacturing / 3D printing and 

the most known topology optimization methodologies. 

• Chapter 3 presents a survey of software’s currently available that offer not only parametric modelling 

tools, but also finite element analysis (FEA) and topological optimization processes. It is important 

to state that regarding FEA, the software should provide nonlinear capabilities, since in the case of 

employing fiber-reinforced cementitious materials, which have enhanced residual strength and 

ductility are therefore their stress redistribution capability benefits are observed on the post-cracking 

stage. 

• Chapter 4 focus on the topology optimization processes, considering only the linear behavior of the 

material. The goal is to conduct a study regarding the influence of distinct parameters in the 

optimization outcome, such as height to length of the beam ratio (H/L ratio), supports conditions, 

mesh refinement and variables in the optimization algorithm. 

• Chapter 5 presents a parametric study regarding the nonlinear behavior for one of the optimized 

structural elements. The study will focus on the nonlinear structural behavior of a fiber-reinforced 

cementitious (FRC) beam with an optimized topology.  The material laws for characterizing the tensile 

behavior of the FRC were defined accordingly distinct approaches proposed in the CEB-FIP Model 

Code 2010. 

Chapter 6 draws the main conclusions of this dissertation and provides some outlook for future works 

development, namely on the numerical modelling of 3D printed FRC structural elements. 
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2. LITERATURE REVIEW 

2.1  Industry 4.0  

At a time where the industry is globally positioned as the engine of economic growth, thus playing a 

fundamental role in maintaining employment and social stability, the fast development of technology allows 

an unprecedented repositioning of the industrial sector (SIEMENS, 2017). 

The industry, as it is known today, has suffered several changes / revolutions throughout history and has 

grown systematically, according to novel discoveries and developments that occurred during the course of 

the past centuries (Figure 1). The First Industrial Revolution started at the end of the 18th century, in which 

steam powered machines, have made possible a mechanized industrial production. Since then, other 

revolutions have changed the course and paradigms of the industrial production history. Between the end of 

the 19th century and the beginning of the 20th century, has arisen the Second Industrial Revolution, also 

known as electrical revolution, where factories began to operate and manufacture with power tools, which 

allowed to shift to mass production that unveiled a significant efficiency increase. The Third Industrial 

Revolution occurred in the seventies, and led to the emergence and evolution of computerized systems, 

allowing to fully automate the different industrial tasks during the production chain (Santos et al., 2018). 

 

Figure 1 - The four industrial revolutions (The Fourth Industrial Revolution - CADM) 
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Today, society is experiencing a profound digital transformation at an industrial level. This revolution, called 

by Fourth Industrial Revolution or Industry 4.0, is characterized by the conceptual fusion of technologies that 

shorten the boundary between physical, digital and human systems. These changes are more visible in some 

more innovative sectors, such as aeronautic, automotive, electronics and biology industries, due to its 

commitment to overall efficiency and innovation (L. Barretoa et al., 2018). This transformation is strongly 

focused on continuous improvement of efficiency, safety and productivity of operations in order to maximize 

the return of the investments, made at the first place, in other words to maximize ROCE (Return on Capital 

Employed). In order to pursue the latter premises, Industry 4.0 is essentially based on nine pillars / 

technologies (Figure 2), mentioned below (Puskás & Bohács, 2019): 

• Data and Analytics 

• Autonomous Robots 

• Simulation 

• Horizontal and Vertical System Integration 

• The Industrial Internet of Things 

• Cybersecurity 

• Cloud Computing 

• Additive Manufacturing 

• Augmented Reality 
 
 

 

Figure 2 - Technological Pillars of industry 4.0 (Puskás & Bohács, 2019) 
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Many of these nine pillars, which form the foundation of Industry 4.0 philosophy, are nowadays in use in 

industrial manufacturing. Nonetheless, with the emergence and dissemination of the Industry 4.0 paradigms, 

they are being synergistically used in order to transform production. Therefore isolated, optimized cells will 

come together as a fully integrated, automated, and optimized production flow, making it possible gather 

and analyze data between machines, allowing faster, more flexible and more efficient production processes, 

generating high-quality and highly personalized products at reduced costs. This revolution will also change 

the traditional production relationships among suppliers, producers, and customers—as well as between 

human and machine (Gerbert et al., 2015). Finally, this revolution may also enable a shift on the industrial 

production paradigms, i.e. from a mass production towards a mass customization as well as from “make to 

stock” to “dynamic make to order”.  

The raw material usage and optimization of topological geometry of structures / structural elements has 

become an increasingly critical point in the Architecture, Engineering and Construction (AEC) sector, inherent 

to the increasingly more demanding sustainability requirements. While many strategies to reduce / optimize 

the amount of raw materials used, focus on the end of a building’s life cycle by trying to employ circularity 

concepts based on recycling / reusing, on the other hand, there is a great potential to reduce the use of raw 

materials in the design and execution phases of a structural project. that the aforementioned, acquires 

special preponderance in materials that are more difficult to recycle, such as concrete (Allwood et al., 2011). 

Many techniques that aim to reduce / optimize material usage in the conception / project phase resort to 

the use of light concrete, or hollow sections, or even the use of pre-stress.  

Currently, the optimization of raw materials in structures / structural elements may  take advantage of 

numerical techniques, such as advanced computational methods currently available under the scope of the 

finite element method (FEM) that enable the optimization of size, shape, and topology, ensuring an adequate 

material / structural behavior while complying with a rational usage of raw materials. With this, a new 

problem arises, which resides on the complex geometric shapes that may result from the topological 

optimization process through computational calculation, which can often lead to highly complex geometries, 

and consequently enhanced difficulties to manufacture with controlled costs, or even turning it to be 

impossible to manufacture (Søndergaard & Per Dombernowsky, 2011). 

Digital manufacturing is the production of physical objects using virtual models and aims to create a digital 

continuity / interoperability between the design and execution of the object. Digital manufacturing processes 
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can include additive and subtractive manufacturing. Briefly, in the first technique, the additive process 

corresponds to the addition of material, by successive overlapping of multiple layers, forming a 3D model / 

prototype (Figure 3). This process is the most interesting, as it does not incur on considerable waste of 

material, inherent to the subtractive process, which increases the ecological footprint. Additive manufacturing 

is a manufacturing process that promises to overcome most of the obstacles associated with traditional 

manufacturing / construction methods, allowing optimization through computational methods, as well 

transposing an topological optimization with practically no constraints at the manufacturing level (Jipa et al., 

2016). 

 
 (a) 

 
(b) 

Figure 3 - (a) Additive manufacturing robotic (Add It Tech Pty Ltd | 3D Printing Services, n.d.) and (b) 

Subtractive manufacturing robotic arm (ABB Group. Leading digital technologies for industry — ABB Group, 

n.d.) 

 

The industry of Architecture, Engineering and Construction (AEC) is still not that much involved in the digital 

manufacturing, due to multiple aspects that this sector has been facing during the last decades. From those 

aspects it can be highlighted: low efficiency of workers, increasing rate of onsite accidents, lack of skilled 

workers and inability of controlling the onsite construction efficiently (Barbosa et al., 2017; Hook et al., 

2016). However, due to the abovementioned the construction sector can withdraw huge benefits from 

embracing digitalization. Therefore, the construction industry, namely large companies will necessarily have 

to start to invest more in the digital construction, not only in terms of the integrated approach of the design 

and production phases, but also in the improvement of efficiency of manufacturing / production processes. 

However, within the scope of research and innovation, very interesting digital construction processes are 
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already beginning to be seen, namely, novel constructive processes for producing elements within the scope 

of civil construction applications, aiming to cope with problems / drawbacks in the conventional constructions 

methods (Barbosa, 2017; Hook, 2016; Lim et al., 2012b). These digitization processes consist on 3D 

concrete printing (3DCP), which is mostly based on additive manufacturing (AM) techniques, specially 

developed / adapted to be used with concrete as material in the AEC industry. Those AM techniques consist 

mostly on “extrusion – based” and “powder – based” processes, which essentially consists on the “layer-

by-layer” printing of a cementitious matrices. Among these, fiber – reinforced cementitious materials have 

huge application potential with AM techniques since the reinforcement is already comprised within the printed 

matrix (Smarsly et al., 2020). 

The emergence and evolution of additive manufacturing processes unveils many advantages over 

conventional construction methods. Among those, it can be highlighted: i) the production of complex 

geometry architectural / structural elements (without using any extra tools or molds); ii) waste reduction; iii) 

safer construction processes; iv) decreasing construction’s cost and time of complex geometrical shapes; v) 

relatively easiness to add multi-functionality and functionally graded properties to the layered elements 

(Buswell et al., 2007; Hopkinson et al., 2006; Lim et al., 2012b; Ngo et al., 2018). These advancements on 

robotized / automated production of elements from buildings / infrastructures allows the AEC sector to move 

towards industry 4.0, making it possible to materialize complex geometrical elements that can be modeled 

parametrically and throughout topology optimization processes.  

In the following sections, the most up-to-date technologies in the field of 3DCP are overviewed, their potential, 

advantages and drawbacks are detailed and discussed. It will also be overviewed different strengthening 

techniques for 3DCP. Afterwards different methodologies and software for parametric modeling and topology 

optimization, current available, will be analyzed, in order to assess which one will be the most suitable 

software to be used in the scope of the present dissertation.  
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2.2  Current 3D concrete printing technologies  

2.2.1 Introduction 

As stated before, additive manufacturing, commonly known as 3D Printing, is defined as the addition of 

material, by successive overlapping of multiple layers, forming a 3D prototype / object, directly from a digital 

file that includes its geometry. It can be often referred as: additive fabrication, additive processes, additive 

techniques, additive layer manufacturing, freeform fabrication, accordingly to (ASTM F2792-10).  

Among additive manufacturing processes, there are two main approaches, powder-based and wet-extrusion 

3DCP, being the latter more widely disseminated. The powder-based approach is established on two main 

techniques, the one developed by (Pegna, 1997), which corresponds to the idea of a free-form construction 

using layer by layer selective deposition of Portland cement.  

In this first technique the elements were made by placing a matrix material layer (sand), which was selectively 

covered by a reactive agent (cement) (Lowke et al., 2018).  Later on appeared other powder-based technique, 

called by D-shape technology and was invented by the Italian engineer Enrico Dini. This approach essentially 

consists in injecting an adhesive binder into a powdered material, which is deposited layer upon layer. The 

adhesive binder serves to bind the powders together (Delgado Camacho et al., 2018).  

On the other hand, the wet-extrusion approach corresponds to the extrusion of a cementitious material (in 

its fresh state) through a nozzle and depositing it layer-by-layer, forming a 3D model. This approach is the 

most commonly used in AM techniques of cement-based materials and has the advantage that the material 

can be extruded using a pump system already used in conventional construction (Delgado Camacho et al., 

2018).  

 

2.2.2 Contour crafting 

The Contour Crafting (CC) method was developed by Prof. Khoshnevis at University of Southern California in 

the late nineties (B. Khoshnevis et al., 2001; Behrokh Khoshnevis & Dutton, 1998). CC technique is an 

additive manufacturing (AM) technology that uses computer control to exploit the superior surface-forming 
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capability of troweling in order to create smooth and accurate planar and free-form surfaces out of extruded 

materials (Behrokh Khoshnevis & Dutton, 1998). CC is a hybrid method constituted by a layer manufacturing 

process (extrusion-based) for forming the object, and by a filling process through pouring or injection, that 

build the object core (B. Khoshnevis et al., 2001; Behrokh Khoshnevis & Dutton, 1998). In relation to current 

layered fabrication processes (AM techniques), this method has some important advantages, such as: better 

surface quality, higher fabrication speed and the ability to use a diverse range of materials such as plaster, 

cement, clay, and concrete (B. Khoshnevis et al., 2001; Behrokh Khoshnevis, 2004; Behrokh Khoshnevis & 

Dutton, 1998).  

Other key advantage of CC is the possibility of integration with other robotics methods for installing internal 

components such as pipes, electrical conductors, and reinforcement modules to enhance mechanical 

property (Behrokh Khoshnevis & Dutton, 1998; Kwon, 2002).  

Since the ancient times, artists and craftsmen have effectively used simple tools such as trowels, blades, 

sculpturing knives, and putty knives for forming materials in paste (Behrokh Khoshnevis et al., 2005). 

However, even with the advance of mechanized processes, based on computer numerical control and 

robotics, this primary step of using these simple but powerful tools continues to be done manually.  

In CC approach, this step comes into consideration, by using computer control to take advantage of the 

superior surface forming capability of troweling to create smooth and accurate, planar, and free-form surfaces 

(Behrokh Khoshnevis et al., 2005). This method uses two trowels (see Figure 4) that are attached to the 

extrusion nozzle, thus allowing a superior quality finishing. In this approach only the outer surface of the 

object, that serves as a formwork (as well as a few internal hatches) are made by extrusion.  

The hollows are filled with a cement-based mortar / concrete, thus allowing high-speed manufacturing 

(Behrokh Khoshnevis, Yao, et al., 2006). Figure 5 shows a schematic example of a possible application of 

the the CC technique in an in-situ construction operation. 
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(a) 

                 
                 

                   (b) 

Figure 4 - The nozzle system of Contour Crafting technology with the side trowels. (a) Nozzle assembly and 

rotation mechanism and (b) Contour Crafting nozzle constructing a hollow wall (J. Zhang & Khoshnevis, 

2013). 

 

 

Figure 5 - Contour Crafting in construction operation (J. Zhang & Khoshnevis, 2013). 
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The CC method, has some certain limitations (B. Khoshnevis et al., 2001; Behrokh Khoshnevis & Dutton, 

1998). One of them is due to the use of the side trowel, since very small hollow volume, such as small holes, 

cannot be made, because they cannot accommodate the side trowel. In addition, probably, it is not possible 

no create features that are relatively thin (e.g. vertical blade) by using the side trowel. Other limitations 

regarding this method are related to the size of the extrusion nozzle’s orifice and with the control of the 

viscosity of the extrude material. Figure 6 shows some features created using the Contour Crafting 

technology. 

 

 
 

(a) 

 
 

(b) 

Figure 6 - Objects created using CC technology. (a) Wall section and (b) Top view of a concrete wall (Behrokh 

Khoshnevis, Hwang, et al., 2006; X. Zhang et al., 2018). 

2.2.3 Wet-extrusion technology(s) 

Wet-extrusion technology is basically similar to the CC approach, it is a construction method that has the 

capability of fabricating a predesigned building element in 2D layers on top of each other, the repetition of 

which completes a 3D model.  

The main printing methods based on wet-extrusion technology were developed by the Loughborough 

University, Eindhoven University of Technology, by Gosselin et al., and using mobile robots.  

Wet-extrusion technology (by Loughborough University) was developed at the Loughborough 

University in the United Kingdom (Lim et al., 2009). Similar to the most rapid manufacturing processes, this 
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method starts with data preparation. The object that is desired to be printed, is designed as a 3D CAD model, 

and then converted to an STL file format, which is then subsequently sliced with desired layer depth. A 

printing path for each layer is generated and a G-code file (based on low level language for machines) for 

printing is created (Lim; et al., 2011). The main difference to the conventional AM methods is the additional 

post-processing step that optimizes the generated printing path of the deposition head, thus reducing the 

printing time as well possible material overprint, due to the turn on/off operation of nozzle, by minimizing 

the non-printing movements of the deposition head (Lim; et al., 2011).  

The concrete printing (CP) machine at the Loughborough University consists of a 5.4 m in length by 4.4 m 

in width by 5.4 m in height frame, along X, Y and Z axis, respectively (see Figure 7). The printing head is 

located on a mobile horizontal beam. The beam moves in the Y and Z directions, while the printing head 

moves exclusively along the X axis. The concrete mixture is placed on a hopper on the top of the printing 

head and then extruded as a pre-defined filament shape. The current flow rate for printing is set to less than 

1.4 kg/min in order to support the small nozzle diameter of 9 mm (Lim; et al., 2011). The nozzle is rounded 

shaped, thus facilitating the control of the machine movement.  

 

  
(a) 

 
(b) 

Figure 7 - Concrete Printing technology by Loughborough University. (a) Structural frame and (b) Movable 

horizontal beam with the printing head (Lim; et al., 2011; Lim et al., 2012a). 

 

Like other (AM) techniques, this method has some limitations. The size of the printed object is constrained 

by the geometry of the CP frame (Lim et al., 2009). The existence of cross beams over the frame in order 
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the maximize the stiffness, limits the maximum height of the printed object. In addition, the movable beam 

and the printing head brings limitations to the actual area of the printed parts.  

Wet-extrusion technology (by Eindhoven University of Technology) is a technique based on the CC 

approach, and was been developed at the Eindhoven University of Technology (TU/e) (Bos et al., 2016). The 

printing system has a 4-degree-of-freedom (DOF) gantry robot serving a print area of 9 x 4.5x 2.8 m3 (see 

Figure 8a). Concrete is mixed with water and pumped into a hose, by a mixer-pump located on the side of 

the set-up. The hose is connected to the printer head (see Figure 8b) situated at the end of the vertical arm, 

which is able to perform linear displacements along X, Y and Z direction and allow a rotation around Z axis 

(Bos et al., 2016). 

 

 
 

(a) 

 
 

(b) 

Figure 8 - Wet-extrusion technology by Eindhoven University of Technology. (a) 3DCP facility at the TU 

Eindhoven and (b) Printer head and nozzle (Bos et al., 2016). 

 

As many other 3DCP technology one of the limitations of this approach, it is associated with the height of 

the print head above the print surface, which has considerable influence on the geometry and properties of 

the printed object (Bos et al., 2016).  
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Wet-extrusion technology (by Gosselin et al.) is a large-scale AM technology, developed by Gosselin et 

al. (2016). This technology is based on a FDM-like technique (Fused Deposition Modeling), where the material 

is deposited layer–by- layer through the printing head, and has the capability of creating ultra-high 

performance concrete (UHPC). The high mechanical performance of the material combined with the relatively 

small diameter of the extrude (4-6 mm) (Gosselin et al., 2016). This technology uses a different way of 

building path optimization called as tangential continuity method (TCM), (see Figure 9). The developers claim 

that this technique is more suitable of large-scale AM since the building paths are actually 3-dimensional, i.e. 

made of non-planar layers with locally varying thickness, thus allowing better exploiting of the geometrical 

potentialities of 3D printing technologies (Gosselin et al., 2016). One obvious advantage of this approach is 

the continuity between the different layers, thus avoiding the geometrical gaps between two layers which 

often limit the possibilities of AM processes, most notably FDM and powder-based processes. 

 

 

Figure 9 - Schematic cut perpendicular to layers 3D printed using the cantilever method commonly found in 

commercial 2D slicing software (l) and TCM method (right) (Gosselin et al., 2016). 

 

The machine used in this technique was developed in-house with exception of the robotic arm which is an 

industrial ABB 6620 6-axis, used for spatial displacement (Gosselin et al., 2016). The remaining hardware 

parts consist in a print-head mounted on the robot as well as two peristaltic pumps, one for the premix and 

one for the accelerating agent, and a premix mixer, all three parts deported from the robotic arm. Figure 10 

shows a schematic sketch of the 3D printing setup. 
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Figure 10 - Schematic of the 3D printing setup: 0. System command; 1. Robot Controller; 2. Printing 

Controller; 3.  Robotic Arm; 4. Printhead; 5. Accelerating agent; 6. Peristaltic pump for accelerating agent; 

7. Peristaltic pump for premix; 8. Premix mixer; 9. 3 

 

Wet-extrusion technology (using mobile robots) has been proposed by X.Zhang et al. (2018), This 

system allows the users to add as many robots as needed in a shared environment in order to print a large 

structure, simultaneously. The robots are capable of localization, collision avoidance and efficient coordinated 

printing through optimal robot placement (X. Zhang et al., 2018).  

One of the main limitations of the current printing systems available is their lack of scalability. Majority of the 

current approaches of 3D printing are based on a gantry system that requires a massive external framework 

in order to support the single printing head, thus limiting the size of the printed object. This methodology 

claims to solve those problems because stands on the idea of using multiples mobile robotic printers, that 

offers greater practical scalability and more time efficiency compared to others 3D printing technologies (X. 

Zhang et al., 2018). Each mobile robot printer consists of a holonomic mobile platform, a 6-axis robotic arm, 

a stereo camera and a pump (see Figure 11a).  Figure 11b shows the printing of a large structure made 

using this collaborative printing methodology. 
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(a) 

 

 
 

 
(b) 

Figure 11 - Wet-extrusion technology using mobile robots. (a) System setup for one robot printer and (b) 

Concurrent printing of a large, single-piece, concrete structure by two mobile robot printers (X. Zhang et al., 

2018). 

2.2.4 CONPrint3D 

Most of the extrusion-based additive concrete manufacturing approaches, are not suitable for large-scale, on-

site mass construction. The main reason is their focus on high spatial resolution, the use of fine filaments, 

and the concentration on in-plant rather than on-site-fabrication (Mechtcherine et al., 2019). The use of fine 

filaments brings advantages, such as: high resolution on the construction process, allowing fabrication of 

highly detailed structures; lightweight printheads, which can be of very simple design as well. In order to 

provide the necessary control of material flow and geometrical precision, the use of a circular vertically 

oriented nozzle is often sufficient. However, fine filaments also mean both low production rates and the need 

for very fine-grained mortars, which do not comply with the existing concrete codes (Mechtcherine et al., 

2019). The use of large-size filaments brings some advantages, such as: high productivity construction 

processes; use of concrete with coarse aggregates in accordance with valid national and international norms 

(Mechtcherine et al., 2019). Nowadays, rectangular-shaped extruders with larger dimensions, besides the 

productivity advantages bring also benefits regarding the overall mechanical behavior of a printed element 

due to a better layer interfacial bond behavior as consequence of the higher interface area between two 

adjacent layers (Zahabizadeh et al. 2019; Zahabizadeh et al. 2020). 
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The methodology in applying 3D-printing in the field of on-site concrete construction is being investigated 

since 2014, at the TU Dresden, in the scope of the research initiative ZukunftBau (Future Construction) of 

the German Federal Institute for Research on Building, Urban Affairs and Spatial Development (BBSR)’s 

(Nerella et al., 2016). The main reason of this project is to develop a formwork-free monolithic construction 

process using 3D-printing, called by CONPrint3D. Figure 12 depicts schematically the main components of 

CONPrint3D. 

 

 

Figure 12 - Illustration of CONPrint3D approach (Nerella et al., 2016). 

The main aspects of this technology are to develop a timely, labor and resource efficient advanced 

construction process, as well as make the process economically viable while achieving broader acceptance 

from the existing industry practitioners (Nerella et al., 2016). In order to achieve those objectives, this 

technology uses, as much as possible, existing construction and production techniques, adapting only new 

process to construction on-site constraints. One vital aspect of the project strategy is using, as a mechanical 

platform a modified truck-mounted concrete pump and a custom-developed print head attached to the boom, 

this ensures the continuous extrusion of the concrete and the geometrical precision on the construction site 

(Krause et al., 2018; Nerella et al., 2016). The methodology of the control process is a BIM-based planning, 

basically the geometric and material data, as well the geometrical precision data are extracted from the 3D 

building model, then processed and transferred to the modified concrete pump, allowing direct 

implementation of a previously created concreting plan in the machine control for automated movement 
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(Krause et al., 2018). As stated before, this technology uses an extrusion-based process, so the fresh 

concrete that comes from the print head is laid out layer by layer with lateral shaping elements (see Figure 

13) 

 

 
 

(a) 

 
 

(b) 

Figure 13 - CONPrint3D approach. (a) Geometrically precise installation of the concrete by modified truck-

mounted concrete pump and (b) Extrusion-based installation of fresh concrete using a newly developed print 

head (Krause et al., 2018). 

2.2.5 Powder-Based 3DCP technology  

The powder-based technology, as stated before essentially consists in injecting an adhesive binder (e.g. 

magnesium oxide and magnesium chloride) into a powdered material. The best-known system using the 

powder-based approach is the D-shape technology, which is a three-dimensional printing system for 

producing conglomerate building or building blocks (Cesaretti et al., 2014). Unlike the methods that use the 

cement-like paste in the fresh state (i.e. wet-extrusion technologies), this system uses powder-based 

materials. This technology can be used according to two different methods invented and patented by the 

Italian Enrico Dini (Cesaretti et al., 2014). In the first printing method the entire building structure is produced 

directly on site, while the second methods correspond to the assembly of a set of building blocks, fabricated 

“off-site” – or in the construction site. This last approach often requires additional reinforcements. 

The D-shape method uses a machine with a width of 6 m that comprises several massive plotters and a print 

head comprising up to 300 nozzles at 20 mm inter-axis distance in order to produce large objects (Lowke et 

al., 2018). This print head travels along two directions in the X-Y plane and hardens the powder using a 
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certain binder. The binder is deposited exclusively on places where the building material should become 

solid and the remaining is kept loose and removed at a later stage (Cesaretti et al., 2014; Sanjayan & 

Nematollahi, 2018). A set of four stepper motors move the frame on the Z-axis. Figure 14 shows the complete 

system of the D-shape 3D Printer used with this technique (Cesaretti et al., 2014). 

 

    
 

(a) 

        
 

(b) 

Figure 14 - D-shape technology. (a) Complete printing system and (b) detail of the printing head comprising 

over 300 nozzles (Cesaretti et al., 2014). 

 

The core of the system is the “printing head”, which acts also as a solid material spreader at the beginning 

of the printing process (see figure 14). The gantry holding the printing head is internally void and is cyclically 

filled with the granular material, which is then deposited for the next “layer”. The “sand” is deposited in a 

thin layer by a shaving blade during the beam movement along its main X axis. A set of rolling cylinders 

provide an homogeneous sand pressure and smoothens it prior to the printing start on the newly deposited 

layer (Cesaretti et al., 2014). After finishing the production process, the residual sand is removed, and the 

object is infiltrated by an additional binder. Afterwards, the object is sanded and polished. The process has 

been used to create 1.6 m height architectural pieces called “Radiolaria” (Sanjayan & Nematollahi, 2018).   

Figure 15 shows some created objects with very complex geometrical shapes using D-shape technology.  
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The disadvantage of the D-shape is that requires more maintenance, cleaning and control, and the final 

structure must be cleaned from the remaining dust to form the post-treatment shape. Part of the post-

processing process involves removing the unused dust and grinding and polishing the surface (Sahin & 

Tosun, 2019). The deposited sand that is not “activated” through the binder, which also serves as support 

material, may also contribute to the decrease of the sustainability footprint if not properly reused. 

 

   
 

(a) 

       
             

         (b) 

Figure 15 - Created objects using D-shape 3DCP technology. (a) Underwater Mona and (b) Radiolaria Pavilion 

for the city hall of Pontedera (Portfolio | D-shape). 

2.3  3D printable materials  

One of the advantages of using the 3D Concrete Printing (3DCP) technology is the possibility of creating / 

producing structural components without using any kind of formwork. Thus traditional concrete cannot be 

directly used, instead a “printable” material is required. Because the manufacture process requires a 

continuous, high degree of control of the material during the printing, high performance building materials 
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are preferred. For that purpose, the rheological properties of the cementitious materials are critical to the 

success of manufacture (Lim; et al., 2011; Lim et al., 2012).   

In order to obtain a proper printable material, with good workability or to be more precise with good 

“printability”, it must have the following key attributes (Soltan & Li, 2018): (1) extrudability, the capacity of 

the cementitious material in the fresh state to pass throughout the nozzle as a continuous filament, and be 

able to lay down accurately, and stay in the position correctly; (2) buildability, which is defined as the ability 

of the printed filament to hold its shape, for that the printed materials must have initial low viscosity, and 

increase immediately to ensure strength to stand under the weight of subsequently printed layers, from other 

words buildability can be based by the number of layers that could be built up, without the bottom layers 

exhibiting significant deformation; and (3) interlayer adhesion, the ability of the filaments to form a cohesive 

bond, generating a unified and structurally sound printed part with the capacity of maintain a “uniformly 

heterogenous” structure while being deposited. Moreover, another important characteristic is related to the 

material’s open time, i.e. for how long the material can be printable without affecting the printing quality. 

(Austin et al., 1999, 2002, 2005; Le et al., 2012a), showed that the dosage of superplasticizer, retarder and 

accelerator have significant effect on the workability. These results demonstrated the importance of 

superplasticizer for achieving the proper workability and high strength with a low water to binder ratio.  

The same studies also concluded that increasing the dosage of the retarder and accelerator cause a 

decreasing of workability (i.e. increasing the shear strength). It should be stated that the accelerator is added 

at the nozzle, just before the extrusion process, in order to be able to control the setting time during the 

printing process. 

Regarding the extrudability key attribute, (Malaeb et al., 2015) evaluated it based over the distance that the 

paste can be printed continuously without any separation or cracks. The studies made by  (Chen et al., 2019; 

Le et al., 2012a) concluded that the combination of particle size distribution of the components, binder to 

aggregate ratio, amount of superplasticizer and fibers have a considerable effect on the extrudability of a 

printable material (see Figure 16). 
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(a) 

 
 
 
 

 
 

 
(b) 

Figure 16 – Two examples of testing printability of material. (a) Low-quality and (b) high quality printed layers 

(Kazemian et al., 2019; Rahul et al., 2019). 

In order to the deposited layers exhibit practically zero deformation, either low to zero slump concrete is 

required (see Figure 17). (Malaeb et al., 2015) concluded that increasing the amount of superplasticizer 

caused a reduction in the maximum number of printed layers, which can support the weight of upper layers 

and even themselves (i.e. reduction of buildability). Studies made by (Kazemian et al., 2019; Panda et al., 

2019; X. Zhang et al., 2018), verified that the use of silica fume and highly purified Nano-attapulgite clay 

(NC) contributes positively to the shape stability of fresh mixture. On other hand, they concluded that adding 

polypropylene fibers didn’t help increasing the stability. (Panda 2019) also reported that the yield stress 

could be improved without affecting the viscosity of the materials, by adding NC in the cementitious mixtures. 

Figure 18 shows two examples made by (Panda et al., 2019). It’s possible to see that the mortar with NC 

on his composition have a better buildability (Figure 18a), something not reported by the normal cementitious 

mortar (Figure 18b), which started deforming after the extrusion of the 10th layer 

 

 

Figure 17 - No Slump 3D printable concrete (Paul et al., 2017) 
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(a) 

  
(b) 

Figure 18 – Buildability evaluation. (a) normal cementitious mortar and (b) mortar with NC on his composition 

(Panda et al., 2019). 

 

Extrudability and buildability are competing factors, since that a high workability is related with a good 

extrudability while a low workability promotes buildability. Furthermore, too much buildability can have a 

negative impact at the interlayer adhesion and high workability (high extrudability) can promote segregation 

of constituents. With that said, it is possible to conclude that these “key attributes”, mentioned before, must 

be properly balanced to allow printability. 

2.3.1 Material Composition 

An appropriate balance of all the constituents must be achieved to ensure both proper rheological and 

mechanical properties of a printable cementitious mixture. For that reason, most of the researchers had to 

perform several experiments in order to determinate the right composition of the optimal mix. Table 1 

presents some examples of material compositions for 3DCP available in literature. The most common 

constituents used in the mixes were sand (as fine aggregate) and cement. The majority of the authors did 

not resort to the use of coarse aggregates (maximum size of the aggregates was 2 mm), as the diameter of 

the nozzles are relatively small (Anell, 2015; Le et al., 2012b; Malaeb et al., 2015; Perrot et al., 2016). To 

be possible to have more control of the workability of the printed material (open time and setting period), 

superplasticizer (for example Viscocrete), accelerator and retarder were also used in the mixes (retarder to 

enhance the “open time”, facilitating a constant flow during the printing process and the accelerator to 
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control the setting time of the printed part). Usually the retarder is either injected directly in the printing head 

in an automated fashion, or sprayed manually between printing of consecutive layers. Furthermore, in order 

to reduce shrinkage and deformation, polymeric polypropylene micro fibers were also used in some of the 

mixes, by e.g. (Anell, 2015; Le et al., 2012b). 

 

Table 1 - Materials compositions of 3D printable concrete (Paul et al., 2017). 

Materials compositions (kg/m3) 

Authors cement Fly-ash Silica fume sand water SP Fiber 

(Nerella et al., 2016) 430 170 180 1240 180 10 - 

(Le et al., 2012a) 579 165 83 1241 232 16.5 1.2 (PP) 

(Anell, 2015) 659 87 83 1140 228 11.6 1.2 (PP) 

(Perrot et al., 2016) Binder content expressed as a weight: 
 cement 50%, limestone filler 25%, Kaolin 25%, w/c = 0.41; SP/cement = 0.3% 

(Malaeb et al., 2015) cement 125g, sand 80g, filler 160g, water/cement = 0.39; SP = 0.5-1 mL 
 

Notes:  SP: superplasticizer; PP: polypropylene (12/0.18 mm length/diameter) 

2.3.2 Mechanical properties of 3D printable materials 

Despite the many advantages that AM approaches brings to the AEC sector, there are some disadvantages. 

One of the main drawbacks is related to the structural behavior of the printed specimens, as they have  

distinct properties in different directions, i.e. anisotropic or orthotropic behavior, something not applied to 

casted specimens, which is assumed (for the most times) to have an isotropic behavior. Also, the printing 

parameters such as, flow behavior of fresh materials, printing speed, printing time gap between the 

subsequent layers, etc. have significant influence on the final 3D printed parts strength (Paul et al., 2018). 

In case of a composite with fiber reinforcement, strength is also influenced by the fiber orientation.  

Moreover, since in matrices reinforced with fibers there is not fiber bridging between two adjacent layers, 

printed FRC potentiate the appearance of cold-joints at layers interface. In the majority of the 3DCP 

approaches, since the printing process is done by the deposition “layer upon layer” of different filaments, is 

expected that the material mechanical properties have better behavior in the horizontal direction, i.e. in-plane 

printing direction, than in the vertical direction (Le et al., 2012b). Subsequently, it will be presented the some 
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mechanical properties of 3D printable materials available in literature, more specifically compressive, 

flexural, uniaxial tensile and interlayer bond strength behavior. 

Regarding compressive strength, a study made by (Le et al., 2012a) concluded that using 1 to 2% of 

superplasticizer (SP) in printed specimens increased the compressive strength, compared to the samples 

with only 0.5% of SP, however the SP caused a delay in the hardening process of concrete at early ages. 

(Nerella, 2016; Sanjayan 2018) observed on their studies an 10% to 14% increase on the compressive 

strength of printed specimens loaded perpendicular and parallel to the layer’s orientation (see Figure 19), 

respectively, when compared with mould cast specimens.  

Contrary to those findings, (Le et al., 2012a) reported that in their study the values of compressive strength 

were higher on the mould cast specimens, which is the most common case for the compressive strength 

results of 3DCP specimens available in literature.  

 

 
(a)                                                                    (b)                                                               

Figure 19 – Collection of 3DCP specimens for (a) compressive testing and (b) flexural testing (Le et al., 

2012b) 

 

In addition, (Le et al., 2012a) also reported that the average compressive strength, on the optimum mixture 

with a water to binder ratio of 0.26 and a Portland cement content of nearby 600 kg/m3, was measured 

between 91 e 102 MPa depending on the load direction relative to the orientation of the printed layers.  

Table 2 shows the values of compressive strength obtained in the studies mentioned before (Le et al., 2012a; 

Nerella, 2016). 
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Table 2 – Comparison of compressive strength of cast and printed objects (Paul et al., 2017) 

        Testing time 

    Printed specimens Cast specimens 

Authors 
Specimens 
retrieved from 

Type of test 
Testing 

direction 
3 

days 
21 

days 
28 

days 
21 

days 
28 

days 

Nerella et al. 
(2016) 

1000 x 300 x 
35-mm wall 

Compressive strength (MPa) 
(size: 35-mm cube) 

I 45.9 83.5 – 73.4 – 

II 49.7 80.6    

Le et al. 
(2012b) 
  

350 x 350 x 
120-mm slab 

Compressive strength (MPa) 
(size: 100-mm cube) 

I – – 96 – 107 

II   93   

 

 
III   93   

500 x 350 x 
120-mm slab 

 I – – 102   

 II   102   

  III   91   
                

 

Furthermore, (Sanjayan 2018; Van Der Putten et al., 2019), concluded that the increase of time gap between 

the printed layers, decreased the compressive strength. (Van Der Putten et al., 2019) also reported that the 

increase of printing speed also decreased the compressive strength.  

Regarding flexural strength, (Le et al., 2012a) measured it by performing a four-point bending test on both 

mould cast and printed specimens for different loading directions. It was reported that the flexural strength 

in the loading direction I and II were higher than the strength of vibrated mould cast specimens.  

On the other hand, along the direction III the flexural strength was significantly lower (see Figure 19 and 

Table 3). The main reason for that is due to the anisotropy associated with the printing process, since in the 

direction III the load is applied along the plane of the interface between filaments (see Figure 19b), which 

demonstrates the influence of the inter-layer adhesion strength on the overall materials properties. 

A study done by (Nerella et al., 2016), in high-performance mortar showed around 16% and 14% increase 

on the flexural strength of printed specimens loaded perpendicular and parallel to the layers orientation, 

respectively, when compared with mould cast specimens (see Table 3). 
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Some studies regarding the influence of the time gap between printed layers have been done. (Sanjayan et 

al., 2018) concluded that the flexural strength increased with time gaps between 10 to 20 minutes, and 

decreased with time gaps around 30 minutes. 

 

Table 3 - Comparison of flexural strength of cast and printed objects (Paul et al., 2017) 

        Testing time 

    Printed specimens Cast specimens 

Authors 
Specimens 
retrieved from 

Type of teste 
Testing 

direction 
3 

days 
21 

days 
28 

days 
21 

days 
28 

days 

Nerella et al. 
(2016) 

1000 x 300 x 
35-mm wall 

Flexural strength (MPa) (size: 
160 x 35 x 35 mm) 

I 4.8 5.8  5.1  
III 4.3 5.9    

Le et al. 
(2012b) 

500 x 350 x 
120-mm slab 

Flexural strength (MPa) (size: 
220 x 63 x 50 mm) 

I – – 16.5 – 11 

II   13   

   III   6.5   
                  

 

Concerning uniaxial tensile strength, (Ogura et al., 2018a) assessed it by doing a uniaxial tensile test in mold 

cast and printed specimens (see Figure 20). From the test results, it was reported that the printed specimens 

exhibited strain-hardening behavior under uniaxial tensile loading for fiber concentrations as low as 1%.  

For a fiber content of 1.5%, strain capacity was considerably higher, and very uniformly distributed, fine 

multiple cracks were observed. Beyond that, is was also concluded that the printed specimens exhibited 

superior strain-hardening behavior and more a pronounced multiple cracking stage in comparison to mold 

cast specimens (Ogura et al., 2018a).  

It should be stated that after cutting the specimens, their ends were strengthened by casting a self-reinforced 

strain-hardening cementitious composite (SHCC) mixture prepared with polyethylene microfibers (HDPE).  

(Yu & Leung, 2019) studied the importance of the fiber orientation on the ultimate tensile strength of printed 

SHCC mixtures. One of the conclusions of the study was that the strength appeared to be higher when fibers 

were preferentially aligned parallel to the loading directions, i.e. for the uniaxial tensile behavior. Contrary to 

that, the specimens with fibers aligned perpendicular to the loading direction showed to worst performance. 
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(a) 

 
 

(b) 

 
 

(c) 

Figure 20 - (a) setup for uniaxial tension tests; (b) schematic view of uniaxial tension tests on mold cast 

specimen and (c) on printed specimen (Ogura et al., 2018a) 

 

The interfacial behavior of 3D printed layers is considered a critical point of weakness in elements produced 

with this technique, due to either mechanical or chemical factors. Some tests have been done in order to 

evaluate the most important points of interlayer bond strength. (Le et al., 2012a) investigated the interlayer 

bond strength of a printed, high-performance, fiber-reinforced mortar using direct tension tests on cylindrical 

specimens, by varying the time gap between printing layers. The results shown in Figure 21, present a clear 

trend that the printing time gap has a significant influence on the bond strength, and that the same interlayer 

bond strength is reduced as the time-gap between printing consecutive layers is increased.  
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Figure 21 – Influence of printing time gap with tensile bond strength (Paul et al., 2017) 

 

(Marchment & Sanjayan  2019) also assessed the interlayer bond strength for different time gaps. They 

reported that the interlayer strength of the specimens printed with 10 and 30 minutes time gaps were 

practically the same, but higher than that of the specimens printed with 20 minutes delay time (see Figure 

22). The pattern observed in the latter study contrasts with the widely believed trend stated in the previous 

paragraph, which was reported by (Le et al., 2012a) and also observed by several researchers. 

 

 

Figure 22 – Influence of printing time gap with tensile bond strength (Marchment & Sanjayan 2019). 
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In the same study (Marchment & Sanjayan 2019), also assessed the influence of using cement paste 

(Ordinary Portland cement - OPC) between printed layers on the bond strength of printed specimens through 

a uniaxial tensile test. The study has shown that the specimens using the cement paste between printed 

layers had higher bond strength (approximately an increase of 60%) than the conventional printed parts 

without interlayer paste (see Figure 23). They also concluded that pastes mixed with additives (paste 1, 2 

and 3) such as retarder, viscosity modifying agent and slump retainer have shown a notably higher bond 

strength of approximately 120% to 180% higher than the samples in which was not employed paste in-

between layers. 

 

Figure 23 – Bond Strength test results of different types of mixture (Marchment & Sanjayan 2019). 

 

A study made by (Zareiyan & Khoshnevis, 2017), where they assessed the influence of aggregate size, time 

gap and layer thickness with the interlayer bond strength, concluded that small sized aggregates and higher 

cement to aggregate ratios increased the compressive strength due to a better interlayer adhesion. In 

addition, they also noticed that the bond strength increased, and the compressive strength decreased with 

the increase of layers height and time gaps between layers. 
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2.4 Strengthening techniques for 3D concrete printing 

2.4.1 Independent reinforcement methods for 3DCP  

Independent reinforcement methods are regarded as methods that are not automatedly implemented along 

sided with the concrete printing process. A good example of an independent reinforcement method is the 

CC approach presented in the section 2.2.2, where first occurs the formation of a mold by using 3D printing 

technology, and then the filling process with concrete (Behrokh Khoshnevis, Yao, et al., 2006). In this 

approach, the reinforcement process happens among those previously mentioned where ties are put inside 

the printed formwork (see Figure 24a). 

 

 
 

(a) 

 

 
 

 
(b) 

Figure 24 - Independent reinforcement techniques for 3DCP. (a) CC technology (Behrokh Khoshnevis et al., 

2006) and (b) CP technology (Lim et al., 2012). 

Other example that can be included in this category is the strategy used by Loughborough University, suitable 

for large components printed using AM (Lim et al., 2012). The printed elements were designed to form 

hollow conduits for the posterior placement of reinforcement (see Figure 24b). After printing, the post-

tensioned rebars are inserted in the voids and then are filled with grouting materials. This reinforcement 

strategy is a good example of incorporating tensile capacity into large cement-based components showing 

the potential of AM techniques for produce large construction elements (Lim et al., 2012). 
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The Winsun company also uses a strategy similar to the reinforced method used in the CC approach. 

Basically, they first do the 3D printing process in order to do the formwork and then place the longitudinal 

rebars and stirrups in the desired position (see Figure 25a) (Lu et al., 2019). Finally, they cast the inner part 

with conventional vibrated concrete, in which the previously printed outer walls serve as mold. Other strategy 

could pass to invert those processes, like the one done by the Huashang Tengda company (2016), where 

they first placed the reinforcement rebars in the desired location and only then the material was printed 

around them (see Figure 25b) (Lu et al., 2019). For this purpose, a special designed forked-shape nozzle is 

required, in order to print both sides of the wall at the same time, while covering the existing reinforcement 

rebars. 

 

 
(a) 

 

 
(b) 

Figure 25 - Independent reinforcement techniques for 3DCP. (a) Method used by Winsun similar based on 

CC technology and (b) Method used by Huashang Tengda company (Mechtcherine et al., 2018). 

2.4.2 Automated Reinforcement methods for 3DCP  

The addition of steel fibers to concrete to replace conventional reinforcements bars or reduce it has been 

applied in concrete construction for several years. This process can be easily transposed for 3DCP as the 

reinforcement is added to the mixture during the mixing process and then the composite can be printed with 

the discrete reinforcement. It shows to be effective to some extent, as it increases post-cracking behavior, 

namely residual tensile strength, toughness as well decreasing the crack width and spacing. (Ogura et al., 
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2018b) reported that the preferential alignment of fibers with the tensile loading direction in printed 

specimens lead to an enhancement of the ultimate tensile strain compared to mold cast specimens with a 

more random fiber orientation. However, it has some limitations regarding the length of the fibers, as they 

are short, they don’t provide continuity, something important for robustness and ductility. Other limitation is 

associated with the reinforcement direction, which is directly related to the printing path, so the fibers can’t 

be deposited vertically across the layers, something that would be very important to enhance layers strength 

and prevent cold joint between them (Mechtcherine et al., 2018). A way to solve the cold joints problem is 

to use a special 3D textile between the printed layers, a method proposed at University of TU Dresden 

(Mechtcherine et al., 2018).  

 

 

Figure 26 - Alignment of fibers in the crack of specimen (after testing) (Readts, 2017). 

 

Another method for automated reinforcement of cementitious printed materials is the one developed by (Bos 

et al., 2017). This methodology consists of a rotating spool feeding the reinforcement (metal cable / wire or 

chain) into the printing head where it is introduced in the concrete filament so that an integrated concrete-

with-reinforcement filaments is extruded from the printing nozzle (see Figure 27). Pull-out tests done showed 

that the bond strength in printed concrete was considerably lower than in cast concrete.  

Besides that, it was observed that the bond strength of steel cables is low compared to conventional ribbed 

bars, but somewhat higher than that of smooth bars (Bos et al., 2017). The four-point bending test showed 
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a good post-cracking behavior, however the failure of the specimen was controlled by the slippage of the 

cable, something that would not be expected based on the pull-out tests (Bos et al., 2017).  

Furthermore, the bending tests confirmed the suitability of analytical methods to determinate the resistance 

of printed concrete with cable reinforcement, at least to obtain global estimate on the resistant moment 

capacity (Bos et al., 2017).  

 
(a) 

               
                                         (b) 

Figure 27 - Automated reinforcement with metal cable. (a) active reinforcement entrainment device (RED) 

for cable reinforcement of printed concrete and (b) Early version of RED, equipped with chain reinforcement 

(Bos et al., 2017). 

 

To conclude, the use of this methodology has the advantage of decreasing the total time of manufacturing 

process due to the automated placement of the reinforcement during the extrusion process. Also, showed to 

be a feasible reinforcement method that has potential to achieve a similar performance to the one of 

conventional reinforced concrete.  
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2.5  Topology optimization algorithms 

2.5.1 Introduction 

The optimization of structural design is becoming more and more crucial due to the limited natural resources, 

environmental impact and technological competition among companies, being increasingly necessary the 

utilization of high-performance, low-cost and lightweight structures in the AEC industry. Recently, topological 

optimization gained a new interest with the advent of digitalized solutions such as digital fabrication of 

concrete, i.e. 3D printing. 

The main objective of topology optimization aims to achieve the best material layout within a structure in 

order to maximize performance, for a given set of load cases and boundary conditions, while satisfying 

various constraints such as a given maximum amount of material. Succinctly, the process of optimization 

consists in:  

• Defining the initial geometry of the structure; 

• Defining the material and mesh properties; 

• Defining the loads and boundary conditions; 

• Defining the optimization variables, e.g. objective functions and constraints; 

• Defining, if necessary, the geometry restrictions, such as, optimize and non-optimize regions, 
symmetry axes; 

• Run the topology optimization algorithm; 

 

In the following sections will be briefly summarized the most common numerical methods of topology 

optimization including the SIMP method which stands for Solid Isotropic Material with penalization for 

intermediate densities, and the ESO method that stands for Evolutionary Structural Optimization, which is a 

design method based on the practical concept of gradually removing inefficient material from a structure 

(Huang & Xie, 2010). 
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2.5.2 Evolutionary Structural Optimization method 

Evolutionary Structural Optimization (ESO) is an optimization process that continuously remove inefficient 

material from a structure according to the stress or strain energy levels of the elements. Over this process, 

the structure will evolve until reaching the optimal shape and topology. Among others topology optimization 

processes, the ESO is one of the most popular and was first proposed by (Xie & Steven et al., 1996). 

Although the ESO optimization process can provide useful results for architects and engineers who are 

interested in exploring structurally efficient forms and shapes during the conceptual design stage of a project, 

it cannot guarantee that the evolutionary process would always produce the best solution (Huang & Xie, 

2010). Figure 28 depicts the stiffness optimization of a cantilever beam in order to comply with distinct 

displacement constraints (u*). As expected, the most significant part of the material is removed near the free 

end where the stresses and cross sectional bending moment are lower. Moreover, as the displacement 

constraint increases, the flexural stiffness requirement decreases therefore the amount of material removed 

increases, see from Figure 28b to Figure 28d. 

Some of the advantages of this optimization process are (Huang & Xie, 2010): 

• It’s a very simple concept and can be easily understood by the user; 

• Does not require sophisticated mathematical programming techniques; 

• No access to the source code of the finite element analysis (FEA) software is necessary; 

• It can be readily implemented and linked to commercially available FEA software packages; 

• The resulting design provides a clear definition of the topology (with no “grey” area); 

• The ESO algorithm applies equally to general 2D and 3D problems; 

• Does not require regenerating new finite element meshes even when the final structure has 
departed substantially from the initial design. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 28 - Stiffness optimization with various displacement limits. (a) design domain of a short cantilever; 

(b) u* = 0.50 mm; (c) u* = 0.75 mm; (d) u* = 1.00 mm (Xie & Steven et al., 1996). 

 

 Figure 29 depicts an example regarding the stiffness optimization of a cantilever beam when using distinct 

mesh refinements. For a higher degree of refinement, the optimization surfaces were considerably smoother, 

as expected. Moreover, it is important to highlight that this refinement also affected the optimized topology 

by obtaining a distinct material disposition. 
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 (a) 

 
(b) 

Figure 29 - Stiffness optimization of a short cantilever using different mesh sizes. (a) 48 x 30; (b) 64 x 40 

(Chu et al., 1997). 

2.5.3 Bi-directional evolutionary structural optimization method 

The bi-directional evolutionary structural optimization (BESO) method like the ESO method also removes 

inefficient material from a structure, but beyond that it also adds material, simultaneously. (Yang et al., 1999) 

carried out one of the first known research on BESO method. The study was centered on the stiffness 

optimization, where the sensitivity number of the potential elements to be removed / or added were 

calculated through a linear extrapolation of the displacement field after the finite element analysis. After that, 

the algorithm removes the solid elements with the lowest sensitivity numbers and change into solid structure 

the void elements with the highest sensitivity numbers. The total number of removed and added elements in 

each iteration are determined by two unrelated parameters: the rejection ratio (RR) and the inclusion ratio 

(IR) respectively (Huang & Xie, 2010). 

(Querin et al., 2000) also study the BESO method, applying it to “full stress design” by using the von Mises 

stress criterion. In their study, the elements with the lowest von Mises stresses are removed and it turns to 

solid those elements near the highest von Mises stress regions. Similarly, the number of elements to be 

removed and added are treated separately with a rejection ratio and an inclusion ratio, respectively. Figure 

30 depicts a stiffness optimization of a short cantilever for a given volume constraint with BESO methodology. 

When comparing to the ESO method (see Figure 29), the BESO enables a higher quality of the optimized 

solution. 
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In brief, some advantages of the BESO method are (Huang & Xie, 2010). 

• High quality topology solutions; 

• Excellent computational efficiency; 

• Algorithms easy to understand and simples to implement. 
 

Figure 31 depicts the stiffness optimization of a centrally loaded beam for a given volume constraint with 

BESO methodology throughout the distinct iterations. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 30 - Stiffness optimization of a short cantilever for a given volume constraint: (a) iteration 15; (b) 

iteration 30; (c) iteration 45; (d) iteration 60; (e) iteration 69; (f) final solution (iteration 79) (Huang & Xie, 

2010). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

Figure 31 - Stiffness optimization of a centrally loaded beam for a given volume constraint: (a) design domain, 

boundary and loading conditions; (b) iteration 5; (c) iteration 10; (d) iteration 15; (e) iteration 25; (f) iteration 

40; (g) final solution (iteration 53) (Huang & Xie, 2010). 
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2.5.4 Solid Isotropic Material with Penalization method 

A topological optimization process has at least an objective function and a constraint. One example could be 

the minimization of the strain energy of the whole structure as objective function and a percentage of the 

initial volume as constraint. However, the design variables that are the relative densities of the elements will 

vary between 0 and 1 (0 < 𝑝 < 1).  With this variation in density, it will be created a variable density gradient 

that will exist in a new build domain. How it’s not possible to manufacture components that have a density 

variation across their domain, the gradient will need to be corrected.  

The Solid Isotropic Material with Penalization (SIMP) method is a common solution to this kind of problems. 

The method assumes that each element contains an isotropic material with variable density. The young’s 

modulus of the intermediate density material is interpolated as a function of the element density, represented 

by 𝐸𝑥𝑖 =  𝐸1 ∗ 𝑥𝑖
𝑝, where the original Young’s modulus of the material 𝐸1 is penalized by an external factor 

𝑥𝑖
𝑝, which will force a solution with nearly 0 or 1 material distribution, so the final solution will consist of 

either solid or void elements (Huang & Xie, 2010; Sigmund & Petersson, 1998). Figure 32 shows a beam 

topology optimization using the SIMP method for distinct penalization factors. 

 
(a) 

 
(b) 

Figure 32 - Beam topology optimization using the SIMP method written in MATLAB. (a) optimized beam with 

penalization factor 𝑝 = 1; (b) optimized beam with penalization factor 𝑝 = 3 (Sigmund et al., 2001) 
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3.  STUDY OF TOPOLOGY OPTIMIZATION SOFTWARE’S 

3.1  Introduction 

In this chapter it will be explained the steps that were made during the assessment of distinct commercial 

software for topology optimization. In an initial phase, it was done a brief research on different commercial 

programs that allow not only 2D and 3D modelling through the finite element method, but also topology 

optimization processes. With that said, in an early stage, it was tested a set of available programs for the 

purpose presented above. From the tested software, below are enunciated the ones that seemed having 

more potential to be further studied: 

• Karamba3D for Grasshopper; 

• Fusion 360 from Autodesk; 

• SIMULIA Abaqus; 

 

3.2  Advantages/disadvantages & conclusion  

3.2.1 Karamba3D for Grasshopper 

Grasshopper is a visual scripting platform that runs within Rhinoceros 3D computer-aid design (CAD). The 

program was designed and developed by David Rutten at Robert McNeel & Associates. The program allows 

the users to build precise and customizable Rhino objects by simply dragging components / boxes onto a 

canvas. Those components connect with each other throughout virtual wires. Many of Grasshopper’s 

components enable in straightway fashion the creation of 3D parametric geometries, but also contain other 

types of algorithms, including numeric, textual, audio-visual and haptic applications. One of the great 

advantages of using visual programming language as a way of making 3D drawing is that allows to build a 

widely range of 3D geometries with very complex parametric relationships (Bachman et al., 2017). 
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Regarding AEC industry, Grasshopper software has very advanced functionalities, such as: 

• Parametric modelling for structural engineering; 

• Parametric modelling for architecture and fabrication; 

• Lighting performance analysis for eco-friendly architecture; 

• Building energy consumption. 

Karamba3D is a parametric structural engineering tool, which provides accurate analysis of spatial trusses, 

frames and shells. It is fully embedded in Grasshopper, which makes it easy to combine parameterized 

geometries with finite element calculations and optimization algorithms like Galapagos, a Grasshopper native 

optimization algorithm (Rutten, 2013). It provides different type of analysis & algorithms such as (Preisinger 

et al., 2013): 

• Linear analysis; 

• Large deformation analysis; 

• Buckling mode; 

• Natural vibration; 

• Optimization of cross section; 

• Optimization for beam components; 

• Optimization for shell components; 

Karamba3D is a great tool that provides many different features & algorithms regarding structural analysis. 

After some research on the manual and forum from Karamba3D, unfortunately it was concluded that,  at the 

present moment the calculation in Karamba3D is physically linear being not possible to assign nonlinear 

properties material to the structures  (Karamba McNeel Forum), something that is crucial in the development 

of the present dissertation. So, in order to use Karamba3D in the current work, would be probably necessary 

to connect it with some external FEA program via a MATLAB script, or other (Wonoto & Blouin, 2018), 

something that would require more time than the available. With that said it was concluded that using 

Karamba3D for Grasshopper wouldn´t be the best solution.  
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3.2.2 Fusion 360 

Fusion 360 is a product introduced by Autodesk and is a 3D computer-aided design (CAD), computer aided 

manufacturing (CAM), and computer-aided engineering (CAE) tool, that connects all the entire product 

development process in a single cloud-based platform that works on Macs and Pcs (Pradhan et al., 2019). 

Fusion 360 is a fully featured parametric cadet program that offers many of the features that other programs 

have, but with a more affordable price, and additionally offering a completed fully featured free student 

license.  

When it comes to modeling, aside from the standard tools the program also includes capabilities such as 

environments for creating surfaces, free-form modeling and sculping, powerful direct modelling, mesh 

modeling, parametric modeling and it also offers an application programming interface (API) to enable third-

party extensibilities (Pradhan et al., 2019). Besides that, the software also comes with a suite of tools for 

rendering and creating animations, ensuring that nearly every detail of the model is included. 

Fusion 360 offers different simulation features such as (Autodesk): 

• Static stress analysis; 

• Nonlinear static stress analysis; 

• Model frequencies analysis; 

• Thermal stress analysis; 

• Structural Buckling analysis; 

• Event simulation; 

• Topology optimization; 

 

Lastly the software includes some manufacture features allowing additive and subtractive 3D printing with a 

widely range of plastic and metal materials. Figure 33 depicts a topology optimization process of a pinned 

supported beam, for a volume constraint of 40% of the initial volume of the flushed beam. This optimization 

was carried out under the scope of the preliminary analysis to assess Fusion 360 capabilities to optimize 

concrete structures. 
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Figure 33 – Topology optimization process of a pinned supported beam using Fusion 360 (for 40% of the 
initial volume). 

 

Fusion 360 is a great all-in-one 3D modelling software offering many tools and features, starting with the 2D 

drawing, up to the final stage of 3D printing. It also supports collaboration and sharing via the cloud allowing 

the users the see real time changes in the model.  

After testing the program and some research on the manual and forum from Autodesk,  it becomes clear 

that this software is more suitable for mechanical engineering purposes, only allowing to assign to the 

structure materials with the same tensile and compressive behavior such as plastics and metals, which is a 

huge disadvantage because, in the scope of this dissertation it will be used fiber reinforced concrete material 

with completely different tensile and compressive behavior. So, it’s possible to conclude that, unfortunately 

Fusion 360 does not meet all the necessary stipulated requirements. 

3.2.3 SIMULIA Abaqus 

Abaqus is a widely known finite element analysis (FEA) software with very advanced capabilities 

commercialized by SIMULIA from Dassault Systems S.A. The software includes (Dassault Systemes, Abaqus): 

• Abaqus/Standard which is a general-purpose finite element program; 

• Abaqus/Explicit, an explicit dynamics finite element program; 

• Abaqus/CFD, a general-purpose computational fluid dynamics program; 

• Abaqus/CAE, an interactive environment used to create finite element models, submit Abaqus 
analyses, monitor and diagnose jobs, and evaluate results; 

• Abaqus/Viewer, a subset of Abaqus/CAE that contains only the postprocessing capabilities of 
the Visualization module; 
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Abaqus/CAE supports familiar interactive computer-aided engineering (CAE) concepts, such as feature-

based, parametric modelling, interactive and scripted operation, and graphical user interface (GUI) 

customization (D.Systemes, Abaqus/CAE). The software offers a widely range of simulation and analysis, 

such as linear and non-linear material and/or geometric analysis, fluid simulation, event simulation, thermal 

stress analysis and many others, becoming a very advanced software with great calculating capabilities. 

When it comes to 3D and parametric modelling the interface it is not that intuitive when compared with other 

3D modelling software’s (e.g. Fusion 360), but that isn’t really a problem because it allows 

models/parts/drawings with other formats to be imported, such as .STL and DXF , which are commonly 

used in the 3D modelling & 3D printing industry (D.Systemes, Abaqus/CAE). 

Relating to topology optimization Abaqus/CAE offers a widely range of optimization variables / design 

responses, such as (SIMULIA Abaqus manual 6.14): 

• Strain energy; 

• Volume; 

• Displacement and rotation; 

• Modal eigenfrequency  

• Internal forces and moments 

• Stress (scaled centroidal von Mises stress); 

 

Figure 34 shows an example of topology optimization process using Abaqus/CAE for 40% of the initial 

volume, when considering distinct support conditions. These optimization processes were carried out under 

the scope of the preliminary analysis using Abaqus/CAE. 
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(a) 
 

 
(b) 

Figure 34 - Topology optimization process using Abaqus/CAE for 30% of the initial volume: (a) simply 

supported beam; (b) pinned supported beam. 

 

Regarding to the nonlinear analysis, this software offers much more capabilities when compared to Fusion 

360 and Karamba3D. The software supports a widely range of non-linear material models with different 

compressive and tensile behavior such as, concrete damaged plasticity, concrete smeared cracking and 

many others, becoming then possible to correctly model a fiber reinforced concrete material. With that said, 

it becomes clear that Abaqus/CAE is the most suitable software to be used throughout the present work 

(SIMULIA Abaqus manual 6.14). Nonetheless, as it will be discussed in Chapter 5, the adoption of non-linear 

material behavior during topological optimization procedure is limited to plasticity models for cast irons. Thus, 

more suitable models for quasi-fragile material, i.e. concrete, such as smeared crack model and concrete 

damage plasticity models are not possible to use during the optimization process. 
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4. TOPOLOGY OPTIMIZATION - PARAMETRIC STUDY 

4.1  Introduction 

In the present chapter, it will be carried out a parametric analysis regarding the influence of the variation of 

distinct variables on the topological optimization of a concrete beam, namely  the height to span ratio (H/L), 

the support conditions, mesh refinement and optimization variables. This parametric analysis will be 

conducted on the software Abaqus/CAE. The selected case study is a beam with 6 meters long and 20 

centimeters wide. The height will vary between a H / L ratio of 1/10, 1/5 and 1/3 corresponding to a height 

of 0.6 meters, 1.2 meters and 2 meters, respectively. Distinct support conditions will also be selected, varying 

between a simply supported beam a two pinned supported beam. Table 4 presents in summary the different 

geometrical dimensions and support conditions adopted during the parametric study. 

During the optimization processes, it was assumed a concrete material with a strength class C60 (accordingly 

to Model Code 2010), i.e. a density, modulus of elasticity and Poisson ratio of 2500 kg/m3, 39100 GPa and 

0.2 respectively. Furthermore, it is important to state that only the linear elastic behavior was considered for 

all topology optimization processes. 

 

Table 4 - H/L ratio and boundary conditions considered 

Span (m) Width (m) Height / span ratio (H/L) Support conditions 

6 0.2 

  1/10 
 

1/5 
 

1/3 

Simply supported   
               

Two pinned supported 
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Concerning the load case (LC) to be used in the parametric analyses of the optimization study, is was taken 

into consideration both the weight of the beam (SW) plus an overload (OL). The overload value will vary 

according to the area of the cross sections, as explained in 4.5.2. Since it was adopted three different heights 

for the parametric analysis, three different overloads were selected in order to take into account the distinct 

initial flexural stiffness. In the Abaqus software, the self-weight and the overload are applied through a 

gravitational load and a pressure load, respectively. The value of the overloads will be further detailed and 

explained in section 4.5. 

As the load considered for all optimization processes will always be applied evenly distributed across the 

upper face of the beam, it can be assumed that it is equally positioned along the symmetry plane comprising 

the longitudinal axis of the beam and the resultant of the applied load, as shown in Figure 35. Due to 

symmetry, support and load conditions, it can be assumed a plane stress behavior, for the topology 

optimization study. 

 
 

Figure 35 - Plane stress assumption 
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In Figure 36 is depicted an example of mesh used during the present study. In all finite element analysis, it 

was used 4 node linear plane stress elements. A full integration point scheme, i.e. 2 x 2 was adopted. 

 

Figure 36 - Mesh element properties considered in the topology optimization processes. 
 

For the topology optimization Abaqus/CAE supports two distinct algorithms, namely, the general sensitivity-

based and the condition-based (SIMULIA Abaqus manual 6.14). The first one uses an algorithm that adjusts 

the density and the stiffness of the design variables, while trying to satisfy the objective function and the 

constraints, being partly described in (Bendsøe & Sigmund, 2003). The condition-based uses the strain 

energy and the stresses as input and was developed at the University of Karlsruhe, Germany and is described 

in (Bakhtiari, 1996). After exploring these two algorithms, it was notable that the sensitivity-based was more 

efficient, needing much less time to complete the optimizations and for this reason it was the chosen 

algorithm to be used in the present work.  

It is important to mention that the algorithm allows to change multiple parameters. Regarding the present 

study, the material interpolation technique and the maximum change per design cycle that basically 

corresponds to the maximum amount of material that the algorithms can remove per cycle were adjusted 

for the present case study. For the material interpolation technique, it was chosen the SIMP method 

(described in a previous section) with a penalty factor of 3. On the other hand, for the maximum change per 

design cycle, the default value is 25%. It was perceived with the multiple analyses that the lower this value 

the more detailed the optimization is. However, lowering this parameter can rapidly increase the 

computational cost. After doing some experimental optimization processes, it was concluded that a value of 

5% was the most suitable regarding balancing both the optimization time and quality. For more detailed 

information regarding these parameters care to consult the Abaqus Manual (SIMULIA Abaqus manual 6.14). 

In order to undertake a topology optimization process, it is necessary beforehand to know which topology 

optimization’s parameters lead to the best results. Additionally, it is also needed to know if the mesh 
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refinement can affect the topology optimization procedure. After some research the following optimization 

variables were selected to be further studied: 

• Strain energy; 

• Stress (scaled centroidal von Mises stress); 

• Volume. 
 

On the other hand, three type of mesh refinement were used in the parametric analysis: 

• Coarse mesh refinement (CM); 

• Medium mesh refinement (MM); 

• Refined mesh (RM). 
 

Table 5 summarizes the different parameters that will be assessed in the present chapter. Firstly, it will be 

studied which are the most suitable optimization variables and mesh refinement to be used. Afterwards, it 

will be analyzed the influence of height / span ratio (H/L) and support conditions in the optimization process. 

Table 5 – Initial parameters adopted in the topology optimization 

height / span ratio 
(H/L) 

Optimization variables 
Mesh refinement Boundary conditions 

Objective function Constraint 

  1/10 
 

1/5 
 

1/3 

Minimize strain 
energy 

 
Minimize stress 

Volume 
constraint 

CM  
                            

MM 
                          

RM 

Simply supported 
                 

Two pinned supported 

 CM* - Coarse mesh refinement; MM* - Medium mesh refinement; RM* - Refined mesh 

4.2  Abaqus/CAE optimization methodology 

As stated and highlighted in section 3.2.3, Abaqus is an excellent software with very advanced algorithms 

regarding nonlinear analysis as well as topology optimization. Overall, the program is user friendly since it 

has a very intuitive graphic interface. Nonetheless, as many other advanced commercial finite element 

programs, Abaqus has an extensive finite element and material models library. The present chapter will be 

more focused in the topology optimization capabilities. Figure 37 shows a brief explanation of how a topology 
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optimization process works in Abaqus, from the geometry construction phase to the results visualization. For 

more details about  the Abaqus/CAE optimization workflow consult (SIMULIA Abaqus manual 6.14). 

 
Figure 37 - User actions and automated Abaqus/CAE actions in the optimization process (SIMULIA Abaqus 

manual 6.14). 

4.3  Influence of the optimization algorithm’s variables 
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A topology optimization process must always have at least two optimization variables, one that will be the 

objective function of the problem and another that will work as a constraint. Abaqus/CAE provides a wide 

range of optimization variables (see section 3.2.3) and as stated in the last section the most appropriate 

ones to be used within the scope of the present dissertation would be the strain energy, stress and volume. 

Having that in mind, it was defined that the volume will always be the constraint, whereas the stress or strain 

energy will work as objective functions.  

As the load case is driven by only external loads and no thermal field or prescribed displacements (SIMULIA 

Abaqus manual 6.14) the goal will be always to minimize the objective selected objective function. Table 6 

shows the two sets of optimization variables selected for this study. 

 

Table 6 - Optimization equations to be further study 

Optimization variables 

Objective function (goal) Constraint 

Minimize strain energy Volume constraint 

Minimize Stress Volume constraint 

4.3.1 Optimization process considering strain energy as objective function 

The objective here is to minimize de strain energy of the structure for a given volume constraint. As stated 

in Abaqus manual (SIMULIA Abaqus manual 6.14): “The compliance of a structure is a measure of its overall 

flexibility or stiffness and is defined as the sum of the strain energy of all the elements, ∑ 𝑢𝑡𝑘𝑢 for linear 

models, where 𝑢 is the displacement vector and 𝑘 is the global stiffness matrix. Compliance is the reciprocal 

of stiffness, and minimizing the compliance is equivalent to maximizing the global stiffness”. Therefore, 

having in mind the aforementioned,  minimizing the strain energy would be the same that maximizing the 

global stiffness of the structure, which is a goal commonly used in other academic works and it seems to be 

the approach that gives the best results (Grinde, 2018 & Rodrigues, 2014). Figure 38 depicts an example of 

a topology optimization procedure for a two-pinned supported beam by minimizing the strain energy. 
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Figure 38 - Topology optimization using strain energy as objective function for a two-pinned supported beam 

with tensile max stress values around 1.11 MPa (blue signed area). 

4.3.2 Optimization process considering stress as objective function 

In this section, the  stress is selected as an objective function by minimizing the maximum absolute stress 

value observed in a given volume, that is, the algorithm will optimize the structure’s topology in order to 

obtain the minimum stress value in the bulk of the structure. 

After analyzing the program’s results, by using the stress as an objective function, it was found two 

disadvantages when compared to the strain energy method. The first one is that usually the optimization 

process is more time consuming and, the second is that the stress variable takes into account all the regions 

of the model including stress singularities caused by external loads or boundary conditions which results in 

shapes not that are not correctly optimized, with higher in-plane stress values in crucial regions of the 

structure, e.g. section at mid-span, when compared to the ones obtained with strain energy as objective 

function (see Figure 39a). When the support regions were disregarded in the optimization process, the results 

improved, but continued be worse than the ones obtained in 4.3.1 (compare Figure 39b and Figure 38). In 

the latter situation, although the maximum stress is reduced to levels more near the ones observed for the 

strain energy method (still they are nearby 76% higher for the stress approach), the quality of the optimization 

significantly lower when adopting the stress criterion. 
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(a) 
 

 
 (b) 

Figure 39 – Topology optimization using minimize stress as objective function. (a) Considering the whole 

structure in the optimization process, with max tensile stress values around 3.10 MPa; (b) Disregard of the 

support regions in the optimization process, with max tensile stress values around 1.96 MPa. 

 

4.3.3 Conclusion 

After an in-depth review of the two variables, it is possible to conclude that the “minimize strain energy” 

variable gives best results, being also the most used in other scientific works, strengthening the idea that 

should be the chosen one. Moreover, according to the Abaqus Manual, the variable stress as an objective 

function can only be used in static linear analysis and doesn’t work when nonlinear materials are considered, 

“Static linear analysis is supported. Static nonlinear analysis supports only contact nonlinearities. Nonlinear materials 

and geometrical nonlinearities, such as large deformations, are not supported” (SIMULIA Abaqus manual 6.14).  

Having that in mind, as well the optimization outcome when using the strain energy variable as an objective 

function, it was concluded that this approach would be more suitable for conducting the parametric study. 

Table 7 shows the final optimization parameters used in the parametric analysis, which were updated from 

the initially presented in Table 5. 
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Table 7 – Final parameters adopted in the topology optimization 

height / span ratio 
(H/L) 

Optimization variables 
Mesh refinement Boundary conditions 

Objective function Constraint 

  1/10 
 

1/5 
 

1/3 

Minimize strain 
energy 

Volume 
constraint 

CM  
                            

MM 
                          

RM 

Simply supported 
                 

Two pinned supported 

 CM* - Coarse mesh refinement; MM* - Medium mesh refinement; RM* - Refined mesh 
 

4.4  Influence of the mesh refinement 

It is acknowledged that the higher the the mesh refinement the better the results from topology optimization 

will be. The main disadvantage is that certainly will be need more processing capacity and consequently will 

take more time to complete de optimization process. This section has the goal to ascertain which is the most 

suitable mesh refinement to be used that leads to detailed results without requiring too much computational 

time.  

For this parametric study, as stated in section 4.1, three different mesh refinements were chosen. The coarse 

mesh (CM), the medium mesh (MM) and the refined mesh (RM). Figure 40 shows the three mesh 

refinements for the beam with 6 m long and a height of 0.6 m. On the other hand, Figure 41 shows the 

results after a topology optimization process considering the same support and load conditions, as well as 

the same volume constraint, which were 40% of the initial volume, for all processes. 
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(a) 
 

 
(b) 
 

 
 (c) 

 
Figure 40 - Three types of mesh refinement. (a) CM - A 870 nodes mesh with approximately 70 mm squares; 

(b) MM – A 1834 nodes mesh with approximately 40 mm squares; (c) RM – A 6025 nodes mesh with 

approximately 25 mm squares. 

 
(a) 
 

 
(b) 

 

 
(c) 

Figure 41 - Topology optimization results. (a) Coarse mesh; (b) Medium mesh; (c) Refined mesh. 
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Before comparing the optimization outcomes, is important to state that the Abaqus algorithm reached for all 

the three optimization processes with the distinct mesh refinements, the target of 40% of the initial volume. 

After observing the figure above, it can be concluded that when using the coarse mesh, the topology 

optimization results in some areas, mainly at the mid-span region, was not so adequate. The refined mesh 

lead to higher definition and smoother geometries outcomes, but in some regions, mainly at the left and right 

top corners, the algorithm removed a lot of material, with max tensile stress values in that regions of around 

2.25 MPa.  

On the other hand, for the same regions, the result from using the medium refinement mesh lead to lower 

max tensile stress values of approximately 1.65 MPa. Furthermore, the results have a good geometry 

definition and overall seems to be the one that have the best material distribution. When it comes to 

computational cost, the optimization processes using CM and MM took approximately the same time, 

however the one using the RM took approximately three time more. With that said, it is possible to conclude 

that the medium mesh refinement (MM) seems to be to most suitable one to be used in the parametric 

analysis for the remaining defined variables. 

4.5  Influence of the height to span ratio (H/L) and support conditions  

4.5.1 Introduction 

With the optimization variables and mesh refinement defined through the preliminary analysis, it is possible 

now to proceed the parametric study. In this section, it will be analysed the influence of the height to span 

(H / L) ratio, as well the support conditions in the optimization process.  

The H /L ratio will vary between 1/10, 1/5, 1/3 and the support conditions will vary between a simply 

supported beam and a pinned supported beam as shown in Table 8.  As stated before, the goal will be to 

minimize the strain energy for a volume constraint of 40% of the initial value. 
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Table 8 - Parameters that will be study in the experiment 

height / span ratio 
(H/L) 

Optimization variables 
Mesh refinement Boundary conditions 

Objective function Constraint 

  1/10 (H=0.6 m) 
 

1/5 (H=1.2m) 
 

1/3 (H=2m) 

Minimize strain 
energy 

Volume 
constraint 

MM 
                          

Simply supported 
                 

Two pinned supported 

         

      MM* - Medium mesh refinement 

 

Firstly, will be defined the load case to be applied in the three beams. Thereafter a comparative analysis 

between the before and after optimization for the three beam’s heights will be made, first for the simply 

supported conditions and then for the pinned supported conditions. To finish, some 

observations / conclusions regarding the influence of the H/L ratio and support conditions in the optimization 

process will be described. 

4.5.2 Definition of the load cases 

For the load cases (LC) as explained before the overload will vary according to the cross-section height, for 

the shortest height it was stipulated two LC corresponding to the self-weight (SW) plus a 5 kN/m overload 

(OL). Since the other two cross sections are much deeper, in order to apply an adequate OL, its value will 

be estimated in compliance with the relation of the moment of inertia of the cross sections, as calculated 

below): 

• I0.6= 
0.2×0.63

12
 = 0.0036 m4 

• I1.2= 
0.2×1.23

12
 = 0.0288 m4 

• I2= 
0.2×23

12
 = 0.1333 m4 
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where I0.6, I1.2 and I2  corresponds to the moment of inertia for the beam with a H / L ratio of 1/10, 1/5 

and 1/3, respectively. Looking at the calculations previously performed, it’s possible to conclude that the 

inertias for the sections with a H / L ratio of 1/5 and 1/3 are, respectively, eight and thirty seven times 

higher than the one corresponding to a 1/10 ratio. In order to standardize the applied overload, it will be 

adopted an OL of 40 kN/m and 185 kN/m for the beams with an H / L ratio of 1/5 and 1/3, respectively.  

Note that, for the lower H / L ratios, the failure pattern will be dominated by inclined compression and shear-

compression, in opposition to the higher 1 / 10 ratio in which the failure occurs by bending moment. 

Therefore, this procedure may be somewhat arguable, since it is standardizing the load regarding the flexural 

inertia, a possibility could be the utilization also of the shear area to standardize the applied load in a more 

rational fashion. The three adopted LC combinations are as follows (for the purpose, no load partial factors 

have been used): 

• LC1 (H/10) = SW + 5 kN/m 

• LC2 (H/5) = SW + 40 kN/m 

• LC3 (H/3) = SW + 185 kN/m 

 

With the load cases’ combinations defined, it is possible to calculate the expected vertical reaction forces for 

the three geometries, before and after the optimization, respectively: 

• RF1 =
((0.2×0.6×6×2500×10)+(5000×6))

2
= 24000 N = 24.0 kN 

• RF2 =
((0.2×1.2×6×2500×10)+(40000×6))

2
= 138000 N = 138.0 kN 

• RF3 =
((0.2×2.0×6×2500×10)+(185000×6))

2
= 585000 N = 585.0 kN 

• RF1, opt =
((0.4×0.2×0.6×6×2500×10)+(5000×6))

2
=  18600 N = 18.6 kN 

• RF2, opt =
((0.4×0.2×1.2×6×2500×10)+(40000×6))

2
= 127200 N = 127.2 kN 

• RF3, opt =
((0.4×0.2×2.0×6×2500×10)+(185000×6))

2
= 567000 N = 567.0 kN 
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Where RF1, RF2, RF3 are the expected vertical reaction forces before the optimization process for the LC1, 

LC2 and LC3, respectively, whereas RF1,opt, RF2,opt and RF3,opt are the vertical reactions after the 

optimization process for the LC1, LC2 and LC3, respectively. These reaction’s values will be used to compare 

with the ones obtained through the static analysis in Abaqus/CAE in order to conclude if the loads were 

correctly applied as well as to quickly check if the optimization was performed to a certain target volume. 

4.5.3 Influence of the H / L ratio for a simply supported beam 

Figure 42 shows a schematic of the front view of the beam’s geometry with distinct H / L ratios, support and 

load conditions for the three beams that will be optimized.  

Beyond the visual assessment, before and after the optimization processes, some parameters related to the 

structure will be measured in order to evaluate the overall performance of the optimization. Those parameters 

were the: 

• Strain energy of the whole structure; 

• Tensile stress value at mid span; 

• Displacement at mid span. 

 

Firstly, after applying all the required settings related to parametric modelling such as, geometry, material 

and mesh properties, load and boundary conditions, it was performed an initial static analysis on the flushed 

beams, in order to measure the initial parameters values (i.e. strain energy, deflection at mid-span and 

maximum tensile stress at mid span) to be analyzed on the optimized structures, as shown in Figure 43. 

The values of those parameters are displayed in Table 9. 
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Figure 42 – Geometries that will be study in the section. (a) H/L = 1/10; (b) H/L = 1/5; (c) H/L = 1/3. 
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(a) 

 

 
(b) 
 

 
 

(c) 

Figure 43 – Initial static analysis for the simply supported beam. The stress values are represented in the 

left column (MPa). (a) H/L = 1/10; (b) H/L = 1/5; (c) H/L = 1/3. 

 

Table 9 – Parameters values before the optimization process for the simply supported beam 

Height / span 
ratio (H/L) 

 
Strain energy 

Vertical reaction 
Force (kN) 

Max. Tensile 
stress at mid span 

(MPa) 

Displacement at 
mid span (mm) 

1/10 15444 24.00 3.01 1.00 

1/5 84035 138.00 4.36 0.88 

1/3 671940 585.00 6.76 0.81 
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With the vertical reaction values being the same to the ones calculated before, it is possible to affirm that the 

loads were correctly applied. Before doing the optimization is important to state that the strain energy is 

obtained as the sum of the deformation energy of every single finite element.  

The selected objective function for the optimization procedure was the minimization of the strain energy, 

which in summary is the same as increasing the structure’s overall stiffness (SIMULIA Abaqus manual 6.14). 

Thus, the lower the strain energy value is, the higher the structure’s stiffness will be. 

After setting the variables and applying all the necessary requirements in the optimization module in 

Abaqus/CAE, the results obtained from the optimization with a target of 40% of the initial volume are shown 

in Figure 44. Table 10 shows the obtained output values of the parameters in order to evaluate the 

performance of the optimization. 

 

Table 10 – Parameters values after the optimization process for the simply supported beam 

Height / span 
ratio (H/L) 

 
Strain energy 

Vertical reaction 
Force (kN) 

Tensile stress 
value at mid span 

(MPa) 

Displacement at 
mid span (mm) 

1/10 16784 18.59 3.82 1.48 

1/5 129163 127.20 5.79 1.61 

1/3 1011131 567.00 11.94 2.16 

 

Looking to the vertical reactions, it´s possible to conclude that all the optimizations accomplished the goal 

of reducing the volume to approximately 40% of the initial value, with a maximum error of 0.05%.  
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(a) 
 

 
 

 

 
(b) 
 

  
(c) 
 

Figure 44 – Topology optimization outcomes, for a simply supported beam. The stress values are represented 

in the left column (MPa). (a) H/L = 1/10; (b) H/L = 1/5; (c) H/L = 1/3. 

 

The optimization cycles for the three geometries can be seen in video format, in attachment A. 

After a close look to Table 9 and Table 10, it is possible to state that the tensile stress and displacement 

values increased after the optimization, which was already expectable since that the overload value is superior 

than the self-weight for all the three beams. The strain energy column shows that the difference between the 
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before and after optimization increases accordingly to the H / L ratio growth, due to the pre-established 

exponential increase of the overload, where for the H / L ratio of 1/5 and 1/3, the self-weight basically has 

no influence when compared to the overload value. 

Something that comes in sight is the arc-effect present in the highest beam. In the beam with an height of 

0.6 m, as it still has a relatively low height, the optimization is more orientated to a trussed beam. In the 

beam with 1.2 m height, a mixed optimization was observed, between a trussed beam and the arc-effect, 

even though the beam functions as a truss.  

On the other hand, on the deepest beam, it is clearly predominant the arc-effect, which is a great optimization 

solution, hence that the behavior of the structure will be predominantly under compressive stresses. In the 

present optimization solution, it was obtained a lower flange connecting the two support regions that is mostly 

subjected to tensile stresses and acts in certain way as an elastic horizontal support enabling the formation 

of the arch.  

4.5.4 Influence of the H / L ratio for a pinned supported beam 

In this section, it will be executed the same procedure done in section 4.5.3, but for a pinned supported 

beam, i.e. with two supports restraining the translation degrees of freedom along both the horizontal and 

vertical directions. The geometries and consequently the relation between the beam’s height and span will 

be the same as the ones presented in the previous section. Figure 45 shows the initial static linear analysis 

for the three beams. The initial parameters values that will be monitored in the optimization process are 

included in Table 11.  

Comparing these initial values to the ones obtained from the analyses carried out with simple support 

conditions (see Table 10), i.e. without restraining the horizontal displacement in the left support, it is 

noteworthy to mention that the maximum deflection and total strain energy were significantly lower than for 

the support conditions presented in section 4.5.3. 
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(a) 

  
(b) 
 

 

 

 
(c) 
 

Figure 45 – Initial static analysis for the pinned supported beam. The stress values are represented in the 

left column (MPa). (a) H/L = 1/10; (b) H/L = 1/5; (c) H/L = 1/3. 

Table 11 – Parameters values before the optimization process for the pinned supported beam 

Span/beam height 
ratio (H/L) 

 
Strain energy 

Vertical reaction 
Force (kN) 

Tensile stress 
value at mid span 

(MPa) 

Displacement at 
mid span (mm) 

1/10 7042 24.00 1.29 0.48 

1/5 42793 138.00 2.00 0.47 

1/3 390741 585.00 2.71 0.45 



  Chapter 4 – Topology Optimization - Parametric Study 

69 

 

After the initial static linear analysis with flushed section, the topology optimization was performed. Figure 

46 depicts the final beam’s geometry after optimization for a target of 40% of the initial volume.  

Table 12 shows the values of the parameters selected to evaluate the performance of the optimization. 

 

 
 

 
 

 
(a) 

 

 

 
(b) 
 
 

 

 

 
(c) 
 

Figure 46 – Topology optimization outcomes, for a pinned supported beam. The stress values are 

represented in the left column (MPa) (a) H/L = 1/10; (b) H/L = 1/5; (c) H/L = 1/3.  
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The optimization cycles for the three geometries can be seen in video format, in attachment B. 

 

Table 12 – Parameters values after the optimization process for the pinned supported beam 

Span/beam height 
ratio (H/L) 

 
Strain energy 

Vertical reaction 
Force (kN) 

Stress value at 
mid span 

(MPa) 

Displacement at 
mid span (mm) 

1/10 6590 18.60 1.72 0.69 

1/5 57593 127.72 -7.03* 0.82 

1/3 500480 567.00 -11.60* 1.26 

* Maximum compressive stress observed at mid-span 

 

As the displacements are restrained in the two directions by the two pinned supports, the algorithm 

automatically recognizes that the formation of an arch would be more efficient in terms of minimizing the 

strain energy and transferring the applied loads to the bearings, turning the structural behavior predominantly 

under compressive stresses. The latter is particularly evident for the beams with a height of 1.2 and 2 m. By 

looking at Table 12 and Figure 46, it is possible to see that at mid-span, there is no fibers subjected to tensile 

stresses, making the behavior of them purely at compression, simulating an arch bridge. Moreover, the level 

of compressive stresses is relatively low for current concrete strength classes, which indicates that in the 

case of this support conditions the structural topology can be further optimized by using less material. Even 

the 0.6 m height beam, which has a very low height, has shown the formation of the arch effect during the 

optimization process. Nonetheless, because it is a very open arch the central part of the beam is governed 

predominantly by flexure, for this reason it is logical that a mixed truss / arch solution was obtained during 

the optimization process. Note that the formation of the truss in the beam’s central part ends at when the 

arch curvature starts to be more pronounced, i.e. where it starts being more effective as an arch.  In contrast, 

the two deepest beams allow for a more pronounced arch curvature, i.e. resulting in a more closed arch, 

then requiring no lower material. 
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4.5.5 Conclusions 

After an analysis of the results, it was possible to state the all the outcomes were well refined, and the overall 

shape optimizations were successfully carried out in order to make the structures as stiff as possible, which 

leads to conclude that the study of both the mesh refinement and the optimization variables were important 

to obtain adequate results. The study of the most suitable algorithm settings, such as the material 

interpolation technique (MIT) and the maximum change per design cycle (MCDC), also played a key role in 

the optimization process, and although the minimizing of the MCDC parameter value lead to increasing of 

the optimization cycles and consequently an increase of the computational costs, it certainly had a great 

impact in the overall quality of the optimization outcomes. 

Looking to the strain energy values between the two cases it becomes noticeable that the analyzed 

parameters (i.e. strain energy, maximum stress and displacement) for the pinned supported beam do not 

increase as much as in the simply supported case. For the beam with a height of 0.6 meters with pinned 

supported conditions, a decrease on total strain energy was observed.  Overall, the increase of the deflection 

and strain energy on the optimized solution when compared to the flushed section is in part due to the high 

relation between the overload and self-weight load, which leads to reduction of the displacement’ component 

due to the self-weight load not being as preponderant as the one due the overload. 

Focusing on the appearance of the results and on the maximum stress values displayed in the present tables, 

it is possible to conclude that the as deeper the beam and as more horizontal constraints, the more prevalent 

the arch effect and having a structural behavior predominantly under compression. 

 

4.6  Study of the reinforcement amount in the optimization process 

In this section, it will be done a study regarding the influence of the reinforcement amount in the topology 

optimization process. For the present case study, the beam with an H / L ratio of 1/10 and with simple 

support conditions was selected. In order to proceed to this study, it was calculated the reinforcement area 

(As) considering the self-weight plus an overload of 50 kN/m, as shown in Figure 47. 
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Figure 47 – Load case and support conditions 

 

For this study it will be carried out five optimization processes, one considering the necessary reinforcement 

(As) for the load case displayed above, three others considering  half, one quarter and an eighth of As and a 

last one considering one and a half of the initial reinforcement. 

 

It was considered the utilization of an C60/75 concrete and S500-B rebars as reinforcement. The calculation 

of As was done using the simple bending tables and assuming that there is only tensile reinforcement usage. 

The ratio a / h is equal to 0.0667, where it represents the beam’s utile depth, as shown in Figure 48. 

 

 

 
Figure 48 – Scheme showing the relation a/h 

 

For a 50 kN/m load the maximum moment at mid-span is approximately  
p×l2

8
≅ 225 kN. m. With that 

said, u =
M𝑟𝑑

b×𝑑2×fcd
, where M𝑟𝑑 is the maximum moment at mid span, b and d are the width and height of 

the beam and, u is the reduced moment, being approximately 0.078. Consulting the simple bending tables, 

the mechanical percentage of reinforcement (w) was estimated at 0.088.  
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Thereafter, knowing that  𝑤 =  
𝐴𝑠

b×h
×

fyd

fcd
, where, fyd and fcd are the design stress for reinforcement and 

concrete respectively, it’s possible to calculate the value of the reinforcement area (As), being approximately 

972 mm2.  

 

Table 13 shows the other values of the reinforcement amount that will be use through the optimization 

processes. 

 

Table 13 - Reinforcement amount for the five optimization processes 

Optimization 
process 

Reinforcement 
Amount (As) 

Cross sectional area 
(mm2) 

1 1.5 As 1458.0 

2 As 972.0 

3 0.5 As 486.0 

4 0.25 As 243.0 

5 0.125 As 121.5 

 

 

Figure 49 shows the results of the topology optimization for the five processes with distinct reinforcements. 
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(a) 
 

 
(b) 
 

 
(c) 
 

 
(d) 
 

 
 (e) 

Figure 49 – Outcomes of the five optimization processes. (a) 1.5 As; (b) As; (c) 0.5 As; (d) 0.25 As; (e) 0.125 

As 

 

It’s important to state that all the topology optimization processes reached the goal of reducing the volume 

in 60% and that all the mesh properties and optimization settings remained the same that were used in 4.5. 

After a close look to the results, it becomes noticeable that the main difference between the five outcomes 

is the amount of materials in the inferior flange of the beam. By comparing all five optimization processes, 

but especially the beam with higher reinforcement area (Figure 49a) with the beam with lower As (Figure 

49e) it becomes clear that, with a higher reinforcement area, a higher horizontal load can be transferred to 

the supports. This allows distributing a higher level of tensile stresses in the lower flange of the beam to the 
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supports, hence less material will be added to the regions near the supports where the bending moment is 

very reduced and consequently the tensile stresses in the beam’s bottom part. The algorithm uses that 

leftover material to reinforce other important regions of the beam e.g., the connecting rods and superior 

flange. 

4.7  Influence of the mesh refinement in 3D optimization 

In this section, it will be assessed the influence of the mesh refinement in a three-dimensional optimization. 

The geometry to be optimized will be the one corresponding to the deepest beam, i.e with a height of 2 m, 

considering the supports conditions as simply supported. For the load will be applied the LC3, the same 

explained in section 4.5. The geometry, supports conditions and load case are shown in Figure 42c. 

In order to assess the influence of the mesh refinement, four different meshes  will be used, one considering 

a 90 mm maximum edge dimension of the finite element , and the other ones considering 70, 40,  and 25 

mm for the edge dimension of the finite element. Thereafter will be also compared the values of strain energy, 

displacement and stress, for the 40 mm mesh size, with the ones obtained in Table 10, in order to evaluate 

the plane stress assumption.  

Figure 50 and Figure 51 present the outcome of the four optimization processes for the distinct adopted 

mesh refinements. The optimization cycles for the beam with 40 mm of mesh size can be seen in video 

format, in attachment C. 

 

Table 14 comprises the values of the strain energy, displacement and stress for the 40 mm mesh size. 
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(a) 
 

 
(b) 
 

 
(c) 
 

 
(d) 

Figure 50 – Optimization outcomes in Y-Z plane. (a) 90 mm mesh size; (b) 70 mm mesh size; (c) 40 mm 

mesh size; (d) 25 mm mesh size 
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The optimization cycles for the beam with 40 mm of mesh size can be seen in video format, in attachment 

C. 

 

Table 14 – Parameters values after the optimization, for the 40 mm mesh size 

Span/beam height 
ratio (H/L) 

 
Strain energy 

Vertical reaction 
Force (kN) 

Tensile stress 
value at mid span 

(MPa) 

Displacement at 
mid span (mm) 

  1/3  1007142       567.00 11.45 2.14 

 

 

 
(a) 
 

 
(b) 

Figure 51 – Perspective of the topology optimization along the beam’s width: (a) for 40 mm mesh size; (b) 

for 25 mm (mesh size) 
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As expected, for the more refined the meshes a higher computational time was required, with the mesh 

having the finite elements with 25 mm taking almost ten times more time to complete the same optimization 

process, when compared with the other refinements. When comparing the results from the 3D optimization 

with the ones obtained assuming a plane stress state, the optimization time also increased significantly. With 

that said, in terms of finding the right balance between the quality of the optimization and the computational 

cost, it’s possible to conclude that the 70 and 40 mm meshes are the most suitable ones. 

After a close look to Figure 50 and Figure 51 it can be noted that, for the more refined meshes (i.e. 40 and 

25 mm), the algorithm, in addition to optimizing in the main plane (Y-Z), also performs an optimization of 

the cross section in depth (in the X-Y plane). The latter is an advantage, when compared to the plane stress 

optimizations, since for 2D modelling the algorithm only optimizes in the main plane (Y-Z). Therefore, in 3D 

optimization processes, it is possible to achieve a higher degree of optimization  

The optimization cycles for the beam with 40 mm of mesh size can be seen in video format, in attachment 

C. 

 

Table 14 shows the strain energy, stress and displacement values for the 40 mm mesh size and, comparing 

to Table 10, where the counterpart results for a plane stress analysis are presented,  it is observed that the 

values are very close to each other, becoming possible to conclude that the plane stress assumption were 

correctly applied. Moreover, there was a reduction on the strain energy and maximum deflection at the mid-

span, however it was marginal, i.e. lower than 1%. This reduction is ascribed to the optimization along the 

beam’s X axis that can allow the allocation of material in regions that have a higher contribution longitudinal 

stiffness of the beam. 
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5. NONLINEAR BEHAVIOR OF FIBER REINFORCED CONCRETE OPTIMIZED 

STRUCTURES 

5.1  Introduction 

In the present chapter will be carried out non-linear simulations for one of the structures that was topological 

optimized in section 4.5. The selected beam was the one with a 0.6 m height. The geometry supports and 

loading conditions are shown in Figure 52.  

 

 
 

Figure 52– Geometry, support and load conditions to be applied 

 

The objective is to compare structural behavior of the beam for different strength classes of fiber-reinforced 

concrete (FRC) materials. The goal is to assess the influence of distinct material properties that represent 

three types of behavior, namely softening, hardening and hardening-softening behavior (i.e. corresponding 

to the usage of low to high fiber contents). The characterization of the tensile – strain relationship for the 

selected FRC materials will be done according to the proposal of the fib Model Code 2010 (FIB, 2010). 

For non-linear Finite Element analysis, the material constitutive model can play an essential role in predicting 

the strength of the concrete, so in order to conduct an appropriated analysis, the concrete damage plasticity 

(CDP), available in Abaqus/CAE, will be used, because it accordingly to the available literature can correctly 

predict the  tensile and compressive behavior of concrete structures (Abrishambaf et al., 2015; 

Hafezolghorani et al., 2017; Shobeiri & Ahmadi-Nedushan, 2019). The material constitutive model and the 

characterization of the FRC materials will be further explained in sections 5.2 and 5.3, respectively. 
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5.2 Concrete constitutive model 

For the concrete constitutive model it was used the damage plasticity (CDP) model in Abaqus. This model 

uses concepts of isotropic damaged elasticity in association with isotropic tensile and compressive plasticity 

to simulate the inelastic behavior of concrete. Both tensile and compressive crushing are included in this 

model. Beyond the failure stress in tension, the formation of micro-cracks is represented macroscopically 

with a softening stress-strain response. The post-failure behavior is modeled by using the tension stiffening 

diagram (SIMULIA Abaqus manual 6.14). 

In general, the flow potential surface and the yield surface make use of the principal stresses (S1, S2, S3) or 

the stress invariants (J1, J2, J3). The yield function defines a surface in the effective stress space in order to 

represent the states of failure or damage and is represented in Figure 53. 

 
 

Figure 53 – Yield surface in plane stress (SIMULIA Abaqus manual 6.14). 

 

Briefly, the potential flow and yield function are defined with four parameters: 

• The dilation angle (ψ) which is simulated as concrete’s internal friction angles and usually varies 
between 34 and 43º; 

• The eccentricity (e), which represents the eccentricity of the potential plastic surface and can be 

determined by the ratio between the uniaxial tensile strength (σt0) and compressive strength 

(σc0); 
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• The ratio between the initial biaxial compressive strength and the initial uniaxial compressive 
strength (σb0/σc0); 

• (kc) parameter, that defines the initial yield surface and is physically assumed as a ratio of the 
distances between, respectively, the compressive meridian and the tensile meridian with 
hydrostatic axis in the deviatoric cross section. 

 

Figure 54 shows the model tab in the graphical interface of the Abaqus software to input the aforementioned 

parameters 

 

Figure 54 – Definition of the yield surface in Abaqus/CAE 

 

Table 15 includes the constitutive parameters values for defining the yield surface of the CDP Abaqus model, 

which will be adopted in the present work, in order to simulate the concrete behavior during the nonlinear 

analysis.  The parameters included in Table 15 were obtained from the literature and have proven to provide 

accurate simulation of the concrete behavior for both plain and fiber reinforced concrete (Abrishambaf et al., 

2015; Hafezolghorani et al., 2017; Shobeiri & Ahmadi-Nedushan, 2019).  

 

Table 15 – The Constitutive parameters values of CDP model 

dilation angle (ψ) eccentricity (𝑒) 𝜎𝑏0/𝜎𝑐0 𝑘𝑐 

40 0.1 1.16 0.667 
 

For a more detailed explanation of the potential flow and yield function, care to consult section 26.6.3 in 

(SIMULIA Abaqus manual 6.14). 
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The CDP model describes the uniaxial tensile and compressive response by characterizing the damaged 

plasticity behavior as shown in Figure 55.  

 

 
(a) 

 

 
(b) 

Figure 55 – Material law under uniaxial loading in: (a) tension; (b) compression. 

After a close look of Figure 55, under uniaxial tension (Figure 55a) the stress-strain response follows a linear 

elastic relationship until the value of the failure stress, σt0, is reached. The failure stress corresponds to the 

onset of micro-cracking in the concrete. Beyond this failure stress, it is observed the formation of a macro-

crack, which is represented macroscopically with a softening stress-strain response that induces strain 

localization in in the concrete structure. Under uniaxial, compression (Figure 55b), the response is linear 

until the value of the initial yield, σc0. After reaching that value the response enters in a plastic domain, 

where is typically characterized by stress hardening followed by strain softening beyond the ultimate stress, 

σcu.  

It can also be concluded from Figure 55, that when the concrete is unloaded from any point of strain softening 

regime of the stress-strain curve, the unloading response is weakened, the elastic stiffness of the material is 

damaged. This reduced elastic stiffness is computed through applying a reduction factor to the undamaged 

stiffness. In this case, the strain after unloading, does not return to zero, but some residual stresses remain 

present which is similar to the real behavior of concrete (SIMULIA Abaqus manual 6.14). 

In the CDP model, the elastic stiffness is characterized by two damage variables, dt and dc, which are 

functions of plastic strains (εc
pl

 and εt
pl

: equivalent plastic strain, ε̇c
pl

 and ε̇t
pl

: equivalent plastic strain rate). 

These two damage variables can take values from zero to one, where zero represents the undamaged 

material and one represents the total damaged material (total loss of the strength). Therefore, when E0 is 
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the initial undamaged elastic stiffness, the stress-strain relations under uniaxial tension and compression 

loading are respectively calculated as: 

σt = (1 − dt)E0(εt − εt
pl

) 

σc = (1 − dc)E0(εc − εc
pl

) 

5.3  Characterization of the fibre-reinforced concrete (FRC) materials 

Fiber-reinforced concrete (FRC) is a composite material characterized by a cementitious matrix and discrete 

fibres (discontinuous). The matrix is made of either concrete or mortar. Fibers can be made of distinct 

materials, such as steel, polymers, carbon, glass or natural materials. Structural design of FRC elements is 

based on the post-cracking behavior and the residual strength provided by fiber reinforcement. Fibers can 

be used to improve the behavior at Serviceability Limit States (SLS) enhancing the durability, by reducing the 

crack spacing and width. Moreover, they can be used, to substitute partially or totally conventional 

reinforcement depending on the application and the FRC mechanical properties, hence improving the 

behavior at ULS.  

By adding fibres to the cementitious matrix, the mechanical properties regarding the post-cracking behavior 

are significantly affected, however, elastic properties and compressive strength are not significantly affected 

by fibers, unless a very high volumetric ratio is used (FIB, 2010). Having the latter in mind, the compressive 

behavior for the all the FRC will be assumed as perfectly plastic in and initial stage, with a compressive 

strength of 60 MPa, as shown in Figure 56. During preliminary analyses, the compressive stresses level and 

eventual plastic strains will be checked, in order to check if the material is in the elastic or in a plastic stage.    
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Figure 56 – Compressive behavior of the three materials 

 

Depending on their composition, FRC materials can mainly show two types of behavior under uniaxial tension: 

softening and hardening (FIB, 2010). As stated in section 5.1 the goal of this chapter is to simulate, in 

Abaqus/CAE, distinct types of behaviors corresponding to FRC with distinct strength classes. Initially, it will 

be done the characterization of the material law under tension adopting the simplified models proposed by 

Model Code 2010 for the Ultimate Limit State (ULS). Afterwards, the tensile law proposed for Serviceability 

Limit State (SLS), which comprises more branches for modeling the initial cracking stage will be adopted.  

5.3.1 Classification of the FRC materials 

According to section 5.6.3 section of Model Code 2010, the classification of the materials is done according 

with two parameters: fR1k (representing the strength interval) and a letter (representing the fR1k/fR3k ratio), 

where fR1k and fR3k are the characteristic flexural residual strength for serviceability and ultimate conditions, 

respectively. Table 16 shows the classification that was assigned to the different FRC materials after definition 

of the  fR1k and fR3k values.  
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Table 16 – Strength class and residual strength parameters of the adopted FRC 

 
Strength Class 

 
Behavior fR1k (MPa) 

 
fR1k/fR3k 

ratio 

 
fR3k 

(MPa) 

3a Softening 3 0.5 1.5 

3c Softening /Rigid plastic 3 1.0 3 

3e Softening / Hardening 3 1.5 4.5 

12a Hardening / Softening 12 0.5 6 

12c Softening / Rigid plastic 12 1.0 12 

12e Hardening / Hardening 12 1.5 18 

5.3.2 Stress-crack width diagram according simplified laws for ULS 

The nonlinear analysis performed with the laws derived on the simplified model for the ULS will be based on 

with a FRC with relatively low residual strength (fR1k = 3 MPa). According to sections 5.6.5 of Model Code 

2010, for the ULS the simplified constitutive laws presented in Figure 57 may be applied. However, the same 

recommendation states that in the case of using numerical analysis for designing FRC structures, more 

complex and detailed constitutive laws should be used. 

As explained in 5.6.4 in FIB Model Code 2010, for the Rigid-plastic model, fFtu = fR3k/3. For the softening 

and hardening models fFts = 0.45fR1k and fFtu = fFts −
wu

CMOD3
(fFts − 0.5fR3k + 0.2fR1k) ≥ 0 (see 

Figure 58). Where fFts represents the serviceability residual strength, defined as the post-cracking strength 

for serviceability crack openings, and fFtu represents the ultimate residual strength. wu is the maximum 

crack opening accepted in structural design and it’s given by lcs ∗ εFu, where lcs is the corresponding 

structural characteristic length (will be assumed the mesh refinement value) and, εFu is the ultimate crack 

strain, being recommended to use the value of 2% in the case where the crack opening / strain varies along 

the cross section, such is the case of a beam under flexure. 

  



 Chapter 5 – Nonlinear behavior of fiber reinforced concrete optimized structures 

86 

 

 
 

Figure 57 – Simplified post-cracking constitutive laws: stress-crack opening (continuous and dashed line refer 

to softening and hardening post-cracking behavior, respectively) (FIB, 2010). 

 

After defining the constitutive law type and residual strengths, it is possible now to calculate all the necessary 

parameters in order to fully characterize the constitutive laws, see (FIB, 2010). Figure 58 shows the tensile 

- strain relationship of the three materials. 

 

Table 17 – Mechanical Properties of the three materials 

Classification 
 

Behavior 
E 

(MPa) 

f𝑐𝑘 
(MPa) 

f𝐹𝑡𝑠 
(MPa) 

 

f𝐹𝑡𝑢 
(MPa) 

l𝑐𝑠 
(mm) 

𝜀𝐹𝑢 
(-) 

w𝑢 
(mm) 

3a Softening 39100 60 1.35 0.966 40 0.02 0.8 

3c 
Softening/ 

Rigid plastic 
39100 60 - 1.00 40 0.02 0.8 

3e 
Softening / 
Hardening 

39100 60 1.35 1.446 40 0.02 0.8 

      
f𝑐𝑘* Compressive strength 
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Figure 58 – Tensile -strain relationship for the three FRCs. 

5.3.3 Stress-crack width diagram according laws proposed for SLS 

Additionally, stress – strain relationships were also defined based on the recommendations of Model Code 

2010 for SLS. In this case FRCs with distinct class strengths were adopted, corresponding to low and high 

volumetric fiber contents (i. e.  fR1k = 3 MPa and fR1k = 12 MPa). According to Model Code 2010 for SLS 

the laws shown in Figure 59 should be used. 

 
(a) 
 

 
(b) 
 

Figure 59 – Constitutive laws at SLS. (a) for fFts < f𝑐𝑡 and (b) for fFts ≥ f𝑐𝑡 
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For the materials with fR1k = 3 MPa the law shown in Figure 59a will be used, on the other hand for the 

FRCs with fR1k = 12 MPa it will be used the law shown in Figure 59b. The branches OA and AB are the 

same for both laws. The concrete was assumed as C60, therefore fct, which is the tensile strength is equal 

to 4.4 MPa. Point A and εp are described in section 5.1.8.2 of Model Code 2010 (FIB, 2010). The calculation 

of branch DE for both laws is done according to the explanation presented in section 5.3.2. 

Point C presented in figure Figure 59a corresponds to the intersection of BQ with DE, where BQ is given by: 

σ−fct

0.2fct−fct
=

ε−εp

εQ− εp
  with εQ =

GF

fct∗lcs
+ (εp −

0.8fct

Ec
), where 𝐺𝐹 represents the fracture energy of plain 

concrete and is described in section 5.1.5.2 of Model Code 2010 (FIB, 2010). 

With that said is possible to calculate all the necessary parameters in order to characterize the constitutive 

laws, displayed in Table 18. Figure 60 shows the tensile - strain relationships for the six FRC class strengths. 

 

Table 18 - Materials mechanical properties 

Strength class 
 

Tensile behavior in 
branch: 

(BD – DE) 

E 
(MPa) 

f𝑐𝑘 

(MPa) 

f𝐴 

(MPa) 

f𝑐𝑡 
(MPa) 

 

σ𝑐 

(MPa) 

f𝐹𝑡𝑠 

(MPa) 

f𝐹𝑡𝑢 

(MPa) 

3a Softening - 
Softening 

39100 60 3.96 4.4 1.96 1.35 0.966 

3c Softening - Rigid 
plastic 

39100 60 3.96 4.4 1.00 1.00 1.00 

3e Softening - 
Hardening 

39100 60 3.96 4.4 1.20 1.35 1.446 

12a Hardening – 
Softening 

39100 60 3.96 4.4 - 5.40 3.864 

12c Softening – Rigid 
plastic 

39100 60 3.96 4.4 - 4.00 4.00 

12e Hardening - 
Hardening 

39100 60 3.96 4.4 - 5.40 5.784 

      
f𝑐𝑘* Compressive strength 
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(a) 
 

 
(b) 
 

Figure 60 – Stress / strain behavior for the materials presented in Table 18. (a) 3a, 3c, 3e and (b) 12a, 12c, 

12e. 
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5.4  Structural response of the optimized FRC beam 

In this section the nonlinear simulations will be carried out using the constitutive laws defined in the previous 

sections. As stated before, the mesh refinement will be the same used before (CPS4 elements with 4 nodes 

and 40 mm of length), as shown in Figure 36. The results obtaining the laws proposed by Model Code 2010 

for both ULS and SLS are displayed in the following sections.  

5.4.1 Results with the constitutive laws for ULS 

In this section, the results regarding the FRC beam’s mechanical behavior with the constitutive laws obtained 

in section 5.3.2 will be presented. The deformed geometries for the three constitutive laws are displayed in 

Figure 61. 

 

 
(a) 
 

 
(b) 
 

 
(c) 

Figure 61 – Deformed geometries for the three behaviors. (a) softening (3a); (b) softening / rigid plastic (3c); 

(c) hardening (3e) 
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Through the analysis of Figure 62, it is possible to conclude that both softening and softening / rigid plastic 

behaviors had similar rupture modes as it will discussed in more detail further ahead. The stress / plastic 

strain and force / deflection curves obtained in Abaqus/CAE are displayed Figure 62 and Figure 63, 

respectively. Note that the stress – strain diagram was obtained at the integration point that exhibited the 

highest strain value, on the other hand, the force was computed has the vertical resultant of the supports 

and the deflection at the point that showed the highest vertical displacement. Therefore, the deflection was 

assessed at distinct locations depending on the localization of the inelastic deformations, i.e. cracks. 

After a close look to the results displayed in Figure 62, regarding the stress – strain relationship assessed at 

the integration point, it is possible to state that they are very similar to the ones displayed in Figure 58, which 

leads to the conclusion that and the constitutive laws were correctly implemented in the Abaqus/CAE 

software.  

 

 
 

Figure 62 - Stress / strain relationships for the three FRCs 
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(a) 
 

 
(b) 
 

Figure 63 – Stress / strain and force / deflection curves. (a) stress / strain relationships for the three FRCs; 

(b) force/deflection behavior for the softening and rigid plastic materials; (c) force/deflection behavior for the 

hardening material. 
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Figure 63a shows the force / deflection, for both softening and softening / rigid plastic materials, where it is 

possible to see that the structure with the rigid plastic material assign, after reaching the 0.35 mm of 

deflection for a load of 15 kN enters in the plastic domain, reaching the maximum strain (2%) for a 16.7 kN 

load. On the other hand, the structure with the class strength 3a, since it has an initial yield strength superior 

than the rigid plastic law, enters in the plastic domain for a load superior, of approximately 20 kN with a 

deflection of 0.5 mm. Afterwards due to its softening behavior reaches the maximum strain (2%) for a lower 

load of 17.2 kN, being very close to the 16.7 kN load characterized by the rigid plastic behavior. Figure 63b 

shows the force / deflection at mid span for the hardening material, where the structure reaches the plastic 

domain at the same point of the softening material, hardening branch in the constitutive law, the structure 

keeps holding the load up to an maximum of approximately 24.5 kN with a deflection considerably higher, 

i.e. of 40 mm. Therefore, in this case hardening in the post-peak stage enabled a considerable stress 

redistribution capacity contributing to the increase of the ultimate load capacity and toughness. 

 Figure 64 and Figure 65 shows the appearance of the principal plastic strains according to the load level, 

respectively on the onset of cracking and at the last converged iteration, where it is possible to see that, for 

both softening and  softening / rigid plastic relationships only the element that first reached the yield stress 

was plasticized, in other words there is the localization of the macro-crack in one specific location. On the 

contrary, in the structure which was assigned the hardening material relationship, since it has a higher 

capability of redistributing the stresses, practically all the center part of the lower flange was plasticized. 

 

 
(a) 
 

 
(b) 
 

Figure 64 – Plastic strain according to the load level: (a) and (b) principal plastic strains at the onset of 

cracking and for the last converged iteration, respectively, strength class 3a 



 Chapter 5 – Nonlinear behavior of fiber reinforced concrete optimized structures 

94 

 

 
(a) 
 

 
(b) 
 

 
(c) 
 

 
(d) 
 

 
(e) 
 

 
 (f) 

 

Figure 65 – (a) and (b) principal plastic strains at the onset of cracking and for the last converged iteration, 

respectively, strength class 3c; (c), (d), (e) and (f) principal plastic strains at the onset of cracking up to the 

last converged iteration, respectively, strength class 3e. 
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5.4.2 Results with the constitutive laws for SLS 

In this section, the nonlinear analyses will be performed using the FRC constitutive laws defined in section 

5.3.3. The stress / strain and force / deflection curves obtained in Abaqus/CAE. The stress – strain 

relationships at the integration point with the highest strain in the last converged iteration are displayed in 

Figure 66 and Figure 67 for the materials with low and high strength (fR1k = 3 MPa and fR1k = 12 MPa), 

respectively. 

 

 
(a) 
 

 
(b) 
 

Figure 66 - Stress/strain (a) and force/deflection (b) curves for the materials with fR1k = 3 MPa. 
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(a) 
 

 
(b) 
 

Figure 67 - (a) Stress - strain relationship and (b) force - deflection curve, for the FRCs with fR1k = 12 MPa. 
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After a close look to the results displayed in Figure 66a and Figure 67a is possible to state that they are very 

similar to the ones displayed in Figure 60a Figure 60b respectively, which leads to conclude that its 

implementation in Abaqus/CAE was successfully carried out.  

When considering the constitutive law proposed for SLS, the three structural responses with  fR1k = 3 MPa, 

corresponding to strength classes 3a, 3c and 3e have very similar behaviors. The main difference is regarding 

the second post-peak stage (CD and DE branches), where the FRCs with the 3a, 3c and 3e materials have, 

respectively a, softening, perfectly plastic and hardening behavior. Regarding the initial post-peak response 

(BC branch) all three FRCs have a similar behavior, characterized by an abrupt drop of the tensile strength. 

Consequently, this material behavior leads to a similar rupture mode on the beams modelled with the distinct 

strength classes (see Figure 68 and Figure 69), with the localization a single macro-crack in the bottom 

flange nearby a lower central tie.  

As stated in Model Code 2010 (FIB, 2010), the difference between modelling using the constitutive laws 

proposed for ULS and SLS, is that in SLS the behavior of the structure under serviceability conditions, i.e. 

for lower crack opening widths and lower deformation levels is modeled more accurately. On the other hand, 

the simplified tensile relationship for ULS only renders good performance at the late stage of the structural 

response, i.e. at the failing time. This is corroborated by comparing Figure 63a and Figure 63b with Figure 

66b, in which the ultimate loads before rupture is observed are very similar when using the tensile diagram 

obtained for ULS and SLS. 

 
(a) 

 

 
(b) 

 
Figure 68 - Plastic strains presented in the structures. (a) and (b) Principal plastic strains and directions of 

the plastic strains, respectively, using the 3a material. 
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(a) 
 

 
(b) 
 

 
(c) 
 

 
(d) 
 

Figure 69 - Plastic strains presented in the structures. (a) and (b) Principal plastic strains and directions of 

the plastic strains, respectively, using the 3c material; (c) and (d) Principal plastic strains and directions of 

the plastic strains, respectively, using the 3e material. 
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Regarding FRCs with a higher strength class, namely by defining a  fR1k = 12 MPa, both FRCs with a strength 

class of 12a and 12e undergo through an initial hardening. After that, the structure with the FRC strength 

class 12a undergoes through rupture, for a load of 86 kN at a deflection over 30 mm (see Figure 67). On 

other hand, the FRC structure with the class strength 12e, the material keeps hardening before rupture up 

to a higher deflection level, over 50 mm, the rupture occurred for a load of approximately 94 kN (see Figure 

67). Both these structures are characterized by an initial plasticizing of the central part of the bottom flange 

before rupture, thanks to the hardening properties assign to them. To emphasize the abovementioned, in 

the FRC with the strength class 12e, the structure exhibited a higher number of cracks with lower crack 

spacing that lead to the observed hardening and improved ductility due to the high capacity of stress 

redistribution (see Figure 71). 

On the opposite, the latter kind of behavior was not verified in the beam with the strength class 12c. Analyzing 

Figure 62, Figure 63 and Figure 67 is possible to conclude that both structures with 3c and 12c materials 

assign have a very similar behavior, where the main difference is that the structure with 12c material endured 

a load of 60 kN, approximately three times bigger than the structure with the 3c material. This affirmation is 

also corroborated by looking to the rupture modules of both beams, where by comparing Figure 65b and 

Figure 70 is possible to see that they are very similar to each other. 

 

 
(c) 

 

 
(d) 

 
Figure 70 - Plastic strains presented in the structures. (a) and (b) Principal plastic strains and directions of 

the plastic strains, respectively, using the 12c material. 
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(a) 
 

 
(b) 
 

 
(c) 
 

 
(d) 
 

Figure 71 - Plastic strains presented in the structures. (a) and (b) Principal plastic strains and directions of 

the plastic strains, respectively, using the 12a material; (c) and (d) Principal plastic strains and directions of 

the plastic strains, respectively, using the 12e material. 

 

A simulation for the structures with the materials of strength class 12 can be seen in video format, in 

attachment D. 
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5.5 Post structural optimization 3D Printing methodology  

In this section a summarized explanation about the path to be followed in order to obtain to 3D model of the 

optimized structure, through 3D printing, will be made. After obtaining the optimization outcome, 

Abaqus/CAE offers the capabilities to export it, to STL format, as orphan mesh, as shown in Figure 72. 

 

 
 

Figure 72 – Extract options in Abaqus/CAE 

 

Since STL format is very commonly used in the modeling and manufacturing industry, there are many 

software’s available to do the post optimization necessary tasks. For the present work the Fusion 360, 

presented in chapter 3, was used. There the orphan mesh format was converted to 2D drawing and then to 

3D body, as shown in Figure 73. After that the structure was, again, converted to STL but now as an 3D 

body, with a geometry of 6 meters long for 0.6 meters tall and a width of 0.2 meters.  
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(a) 
 

 
(b) 
 

 
 (c) 

 
Figure 73– Methodology done in Fusion 360. (a) 2D orphan mesh; (b) 2D drawing; (c) 3D body 

 

After that the Ultimaker Cura as used in order to simulate the 3D printing process. Ultimaker Cura is an 

open source 3D printing application, that works by slicing the user’s model into layers and generating a 

printer-specific g-code. Once finished the g-code can be sent to the printer for the manufacture of the 

physical object (All 3DP, 2020). Figure 74 shows the 3D beam in Ultimaker Cura. 

 

 
Figure 74 – 3D model of the optimized beam in Ultimaker Cura 
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Lastly all necessary settings were specified in order to proper simulate the 3D printing process. Of the many 

options that the program allows the user to use/customize (e.g. geometry of the printer, geometry of the 

nozzle, properties of the material, layers height, infill density, etc), worth noting that the layers height and 

infill density were set to 20 millimeters and 100%, respectively.  

Three 3D printing processes were simulated, where the only variable that was changed was the diameter of 

the printed material, in order to simulate different types of printed refinements. Table 19 shows the material 

diameter values that were considered for the three printing processes. Figure 75 and Figure 76 shows the 

results of the printing simulations. 

 

Table 19 – 3D printing settings considered 

Printing 
process 

Layers height 
(mm) 

Infill density 
(%) 

Material diameter 
(mm) 

1 20 100 25 

2 20 100 10 

3 20 100 5 

 

 
(a) 
 

 
(b) 
 

 
(c) 
 

Figure 75 - 3D printing results for the 25mm diameter. 



 Chapter 5 – Nonlinear behavior of fiber reinforced concrete optimized structures 

104 

 

 
(a) 
 

 
(b) 
 

 
(c) 
 

 
(d) 
 

 
(e) 
 

 
 

(f) 
 

Figure 76 – 3D printing results. (a), (b), (c) material diameter of 10 mm; (d), (e), (f) material diameter of 5 

mm. 

After looking to Figure 75 and Figure 76 it can be concluded that results for the diameter of 25 mm 

(simulating a coarse refinement) were not that well achieved, where it can be perfectly notice the separation 

between the different printed lines, which will certainly have consequences in the structural capacity of the 

beam. So even though the printing time with the 25 mm diameter was significantly less than the other two 

the use of this diameter is not recommended. 



 Chapter 5 – Nonlinear behavior of fiber reinforced concrete optimized structures 

105 

 

On the other hand, the results from the 10 and 5 millimeters diameter have in general great definition, giving 

a feeling of a completely glued/homogeneous structure, so the use of these diameters is recommended. The 

main different is the printing time, where with the 5 mm diameter takes, approximately, twice the time. In  

Figure 77 is depicted a 3D view of different moments for the simulations with material the 10 mm diameter. 

 
(a) 
 

 
(b) 
 

 
(c) 
 

Figure 77 – 3D view of different moments for the simulations with material diameter of 10 mm 
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6. CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

Nowadays, where sustainability issues are well established in the major global societal debates, the material 

efficiency, rational usage of raw materials have become an increasingly critical aspect within the Architecture, 

Engineering and Construction (AEC) industry. Topology optimization linked with digital manufacturing 

promises to contributing in mitigating the current negative environmental impacts observed within the 

construction industry. Although the AEC sector has made some developments within the scope of the digital 

manufacturing, it is still quite limited to research and innovation areas. 

A preliminary study of distinct commercial optimization software was performed. From this analysis, it was 

concluded that Abaqus/CAE was the most suitable one, since that, even though some limitations, it allowed 

to carry out all the intended studies. 

In the present dissertation, different topology optimizations processes were carried out. Firstly, a study of the 

influence of H/L ratio and supports conditions was done. For this study were chosen three different heights 

(0.6, 1.2 and 2 m), and two support conditions (simply and pinned supported). Before the optimization 

simulations, it was evaluated which were the best mesh refinements, as well as the best variables for the 

optimization algorithm to be used. After that, in a second stage, nonlinear simulations were carried out in 

order to proper evaluate the post-crack response of an optimized structure made of fiber reinforced concrete, 

FRC.  

In relation to the study of the influence of H/L ratio and support conditions, it was concluded that the higher 

the beam height and more the horizontal constraints are, the more prevalent the arch effect and the more 

closed it will be, consequently making it more stiff, the formation of an arch would be more efficient in terms 

of minimizing the strain energy and transferring the applied loads to the bearings, turning the structural 

behavior predominantly under compressive stresses. Even in shallow beams, such as with 0.6 m height, 

pinned supported, since the horizontal displacements are constrained, the arch effect ist well present in the 

optimization process. Overall, the optimized shape obtained from the topology optimization provided quality 
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results, it can also be concluded that both the mesh refinement and the optimization variables and selected 

algorithm were important to the good results obtained.  

The influence of the flexural longitudinal reinforcement in the optimization process was also assessed. For 

this, five optimization processes were carried out, each one with different amounts of reinforcement (As). 

From this parametric analysis, it was found that as higher the reinforcement area was, less material will be 

added to bottom flange of the optimized beam. Furthermore, the optimization results obtained assuming a 

plane stress state was compared with 3D analysis. Comparing the stresses values with the ones obtained in 

the 2D optimizations it can be stated that they are very similar, which leads to conclude that the plane stress 

assumption was correctly applied. Moreover, if the mesh refinement degree is high, the topology optimization 

will also be performed along the beam’s width direction. Therefore, for the 3D analysis both the strain energy 

and deflection are slightly lower than the ones obtained for the correspondent 2D analysis.  

Regarding the nonlinear numerical analysis of the fiber reinforced concrete, FRC, beams, it was assessed 

the influence of distinct methodologies proposed for defining the tensile constitutive law and their impact in 

the overall structural performance. For distinct strength classes was observed that the shape of the post-

peak tensile law influenced considerably the maximum and ultimate load (i.e. at failure), as well as the 

rupture mode.  

To sum it up, it can be stated that the combination of structural optimization with the intelligent usage of 

materials with high capacity of redistributing efforts (e.g. FRC materials) can be an excellent way of building 

lighter and more efficient structures. Moreover, the interoperability between advanced numerical tools under 

the scope of the FEM and digital fabrication may oblige engineers to rethink the way that they design 

structures. 

6.2 Future works 

Future work developments could be divided into short and long-term research. Regarding the short-term 

research, 3D printed samples and flexural test will be performed, in order to compare the tests results with 

the ones obtained in Abaqus /CAE simulations. This is a crucial aspect and very interesting to be done, 

which was not performed due to the shortage of time and the 2020 very particular conjuncture.  
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Concerning to long-term research would be very interesting to conduct different structural optimization 

processes considering the nonlinear behavior of the FRC material and make further comparisons with the 

ones obtained using the current methodology. For this, probably, some external script via MATLAB or other, 

along with Abaqus capabilities would be necessary, since Abaqus is very limited regarding the nonlinear 

material models that can be employed in conjunction with the topology optimization module (SIMULIA 

Abaqus manual 6.14). Furthermore, would be also interesting to consider the printing path and the orthotopic 

behavior of the FRC material in the optimization process. 
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