740 research outputs found

    Beyond the Bits: Cooperative Packet Recovery Using Physical Layer Information

    Get PDF
    PhD thesisWireless networks can suffer from high packet loss rates. This paper shows that the loss rate can be significantly reduced by exposing information readily available at the physical layer. We make the physical layer convey an estimate of its confidence that a particular bit is ``0'' or ``1'' to the higher layers. When used with cooperative design, this information dramatically improves the throughput of the wireless network. Access points that hear the same transmission combine their information to correct bits in a packet with minimal overhead. Similarly, a receiver may combine multiple erroneous transmissions to recover a correct packet. We analytically prove that our approach minimizes the errors in packet recovery. We also experimentally demonstrate its benefits using a testbed of GNU software radios. The results show that our approach can reduce loss rate by up to 10x in comparison with the current approach, and significantly outperforms prior cooperation proposals

    CDMA-based MAC protocol for wireless ad hoc networks

    Get PDF

    BATSEN: Modifying the BATMAN Routing Protocol for Wireless Sensor Networks

    Get PDF
    The proliferation of autonomous Wireless Sensor Networks (WSN) has spawned research seeking power efficient communications to improve the lifetime of sensor motes. WSNs are characterized by their power limitations, wireless transceivers, and the converge-cast communications techniques. WSN motes use low-power, lossy radio systems deployed in dense, random topologies, working sympathetically to sense and notify a sink node of the detectable information. In an effort to extend the life of battery powered motes, and hence the life of the network, various routing protocols have been suggested in an effort to optimize converge-cast delivery of sensor data. It is well known that reducing the overhead required to perform converge-cast routing and communications reduces the effects of the primary power drain in the mote, the transceiver. Furthermore, WSNs are not well protected; network security costs energy both in computation and in RF transmission. This paper investigates the use of a Mobile Ad-hoc Networking (MANET) routing protocol known as B.A.T.M.A.N. in WSN. This thesis proposes that the features of B.A.T.M.A.N. in the MANET realm may prove beneficial to the WSN routing domain; and that slight modifications to the routing technique may prove beneficial beyond current protocol technologies. The B.A.T.M.A.N. variant will be compared against the contemporary LEACH WSN routing protocol to discern any potential energy savings

    Survey on wireless technology trade-offs for the industrial internet of things

    Get PDF
    Aside from vast deployment cost reduction, Industrial Wireless Sensor and Actuator Networks (IWSAN) introduce a new level of industrial connectivity. Wireless connection of sensors and actuators in industrial environments not only enables wireless monitoring and actuation, it also enables coordination of production stages, connecting mobile robots and autonomous transport vehicles, as well as localization and tracking of assets. All these opportunities already inspired the development of many wireless technologies in an effort to fully enable Industry 4.0. However, different technologies significantly differ in performance and capabilities, none being capable of supporting all industrial use cases. When designing a network solution, one must be aware of the capabilities and the trade-offs that prospective technologies have. This paper evaluates the technologies potentially suitable for IWSAN solutions covering an entire industrial site with limited infrastructure cost and discusses their trade-offs in an effort to provide information for choosing the most suitable technology for the use case of interest. The comparative discussion presented in this paper aims to enable engineers to choose the most suitable wireless technology for their specific IWSAN deployment

    Atomic-SDN: Is Synchronous Flooding the Solution to Software-Defined Networking in IoT?

    Get PDF
    The adoption of Software Defined Networking (SDN) within traditional networks has provided operators the ability to manage diverse resources and easily reconfigure networks as requirements change. Recent research has extended this concept to IEEE 802.15.4 low-power wireless networks, which form a key component of the Internet of Things (IoT). However, the multiple traffic patterns necessary for SDN control makes it difficult to apply this approach to these highly challenging environments. This paper presents Atomic-SDN, a highly reliable and low-latency solution for SDN in low-power wireless. Atomic-SDN introduces a novel Synchronous Flooding (SF) architecture capable of dynamically configuring SF protocols to satisfy complex SDN control requirements, and draws from the authors' previous experiences in the IEEE EWSN Dependability Competition: where SF solutions have consistently outperformed other entries. Using this approach, Atomic-SDN presents considerable performance gains over other SDN implementations for low-power IoT networks. We evaluate Atomic-SDN through simulation and experimentation, and show how utilizing SF techniques provides latency and reliability guarantees to SDN control operations as the local mesh scales. We compare Atomic-SDN against other SDN implementations based on the IEEE 802.15.4 network stack, and establish that Atomic-SDN improves SDN control by orders-of-magnitude across latency, reliability, and energy-efficiency metrics

    Successive interference cancellation in vehicular networks to relieve the negative impact of the hidden node problem

    Get PDF
    Tese de mestrado integrado. Engenharia Electrotécnica e de Computadores (Telecomunicações). Universidade do Porto. Faculdade de Engenharia. 201

    PPR: Partial Packet Recovery for Wireless Networks

    Get PDF
    Bit errors occur over wireless channels when the signal isn't strongenough to overcome the effects of interference and noise. Currentwireless protocols may use forward error correction (FEC) to correct forsome (small) number of bit errors, but generally retransmit the wholepacket if the FEC is insufficient. We observe that current wirelessmesh network protocols retransmit a number of packets and that most ofthese retransmissions end up sending bits that have already beenreceived multiple times, wasting network capacity. To overcome thisinefficiency, we develop, implement, and evaluate a partial packetrecovery (PPR) system.PPR incorporates three new ideas: (1) SoftPHY, an expandedphysical layer (PHY) interface to provide hints to the higher layersabout how ``close'' the actual received symbol was to the one decoded,(2) a postamble scheme to recover data even when a packet'spreamble is corrupted and not decodable at the receiver, and (3) PP-ARQ, an asynchronous link-layer retransmission protocol that allowsa receiver to compactly encode and request for retransmission only thoseportions of a packet that are likely in error.Our experimental results from a 27-node 802.15.4 testbed that includesTelos motes with 2.4 GHz Chipcon radios and GNU Radio nodes implementingthe Zigbee standard (802.15.4) show that PPR increases the framedelivery rate by a factor of 2x under moderate load, and7x under heavy load when many links have marginal quality

    Characterization, Avoidance and Repair of Packet Collisions in Inter-Vehicle Communication Networks

    Get PDF
    This work proposes a combined and accurate simulation of wireless channel, physical layer and networking aspects in order to bridge the gaps between the corresponding research communities. The resulting high fidelity simulations enable performance optimizations across multiple layers, and are used in the second part of this thesis to evaluate the impact of fast-fading channel characteristics on Carrier-Sense Multiple Access, and to quantify the benefit of successive interference cancellation

    Characterization, Avoidance and Repair of Packet Collisions in Inter-Vehicle Communication Networks

    Get PDF
    This work proposes a combined and accurate simulation of wireless channel, physical layer and networking aspects in order to bridge the gaps between the corresponding research communities. The resulting high fidelity simulations enable performance optimizations across multiple layers, and are used in the second part of this thesis to evaluate the impact of fast-fading channel characteristics on Carrier-Sense Multiple Access, and to quantify the benefit of successive interference cancellation
    corecore