BATSEN: Modifying the BATMAN Routing Protocol for Wireless Sensor Networks

Abstract

The proliferation of autonomous Wireless Sensor Networks (WSN) has spawned research seeking power efficient communications to improve the lifetime of sensor motes. WSNs are characterized by their power limitations, wireless transceivers, and the converge-cast communications techniques. WSN motes use low-power, lossy radio systems deployed in dense, random topologies, working sympathetically to sense and notify a sink node of the detectable information. In an effort to extend the life of battery powered motes, and hence the life of the network, various routing protocols have been suggested in an effort to optimize converge-cast delivery of sensor data. It is well known that reducing the overhead required to perform converge-cast routing and communications reduces the effects of the primary power drain in the mote, the transceiver. Furthermore, WSNs are not well protected; network security costs energy both in computation and in RF transmission. This paper investigates the use of a Mobile Ad-hoc Networking (MANET) routing protocol known as B.A.T.M.A.N. in WSN. This thesis proposes that the features of B.A.T.M.A.N. in the MANET realm may prove beneficial to the WSN routing domain; and that slight modifications to the routing technique may prove beneficial beyond current protocol technologies. The B.A.T.M.A.N. variant will be compared against the contemporary LEACH WSN routing protocol to discern any potential energy savings

    Similar works